Science.gov

Sample records for microbial protein synthesis

  1. The effects of volatile microbial secondary metabolites on protein synthesis in Serpula lacrymans.

    PubMed

    Humphris, Sonia N; Bruce, Alan; Buultjens, Eldridge; Wheatley, Ron E

    2002-05-07

    The effects of volatile secondary metabolites produced by Trichoderma pseudokoningii, Trichoderma viride and Trichoderma aureoviride on growth rate and protein synthesis in two Serpula lacrymans isolates were investigated. Mycelial growth was affected to differing degrees, depending on the specific interactive microbial couplet involved. Protein synthesis by both S. lacrymans (Forfar) and S. lacrymans (H28) was affected by the volatile secondary metabolites of T. aureoviride and T. viride, but not by those of T. pseudokoningii. Mycelial growth and the original pattern of protein synthesis resumed when the antagonists were removed. It is probable that volatile secondary metabolites have played an important role during the evolution of microorganisms in the context of community, population and functional dynamics.

  2. Use of Modern Chemical Protein Synthesis and Advanced Fluorescent Assay Techniques to Experimentally Validate the Functional Annotation of Microbial Genomes

    SciTech Connect

    Kent, Stephen

    2012-07-20

    The objective of this research program was to prototype methods for the chemical synthesis of predicted protein molecules in annotated microbial genomes. High throughput chemical methods were to be used to make large numbers of predicted proteins and protein domains, based on microbial genome sequences. Microscale chemical synthesis methods for the parallel preparation of peptide-thioester building blocks were developed; these peptide segments are used for the parallel chemical synthesis of proteins and protein domains. Ultimately, it is envisaged that these synthetic molecules would be ‘printed’ in spatially addressable arrays. The unique ability of total synthesis to precision label protein molecules with dyes and with chemical or biochemical ‘tags’ can be used to facilitate novel assay technologies adapted from state-of-the art single molecule fluorescence detection techniques. In the future, in conjunction with modern laboratory automation this integrated set of techniques will enable high throughput experimental validation of the functional annotation of microbial genomes.

  3. Effects of grain source, grain processing, and protein degradability on rumen kinetics and microbial protein synthesis in Boer kids.

    PubMed

    Brassard, M-E; Chouinard, P Y; Berthiaume, R; Tremblay, G F; Gervais, R; Martineau, R; Cinq-Mars, D

    2015-11-01

    Microbial protein synthesis in the rumen would be optimized when dietary carbohydrates and proteins have synchronized rates and extent of degradation. The aim of this study was to evaluate the effect of varying ruminal degradation rate of energy and nitrogen sources on intake, nitrogen balance, microbial protein yield, and kinetics of nutrients in the rumen of growing kids. Eight Boer goats (38.2 ± 3.0 kg) were used. The treatments were arranged in a split-plot Latin square design with grain sources (barley or corn) forming the main plots (squares). Grain processing methods and levels of protein degradability formed the subplots in a 2 × 2 factorial arrangement for a total of 8 dietary treatments. The grain processing method was rolling for barley and cracking for corn. Levels of protein degradability were obtained by feeding untreated soybean meal (SBM) or heat-treated soybean meal (HSBM). Each experimental period lasted 21 d, consisting of a 10-d adaptation period, a 7-d digestibility determination period, and a 4-d rumen evacuation and sampling period. Kids fed with corn had higher purine derivatives (PD) excretion when coupled with SBM compared with HSBM and the opposite occurred with barley-fed kids ( ≤ 0.01). Unprocessed grain offered with SBM led to higher PD excretion than with HSBM whereas protein degradability had no effect when processed grain was fed ( ≤ 0.03). Results of the current experiment with high-concentrate diets showed that microbial N synthesis could be maximized in goat kids by combining slowly fermented grains (corn or unprocessed grains) with a highly degradable protein supplement (SBM). With barley, a more rapidly fermented grain, a greater microbial N synthesis was observed when supplementing a low-degradable protein (HSBM).

  4. Rendered-protein hydrolysates for microbial synthesis of cyanophycin biopolymer

    USDA-ARS?s Scientific Manuscript database

    Cyanophycin is a poly(arginyl-aspartate) biopolymer produced and stored intracellularly by bacteria. Cyanophycin has been proposed as a renewable replacement for petrochemical-based industrial products. An abundant source of amino acids and nitrogen such as in the form of protein hydrolysates is n...

  5. Truly Absorbed Microbial Protein Synthesis, Rumen Bypass Protein, Endogenous Protein, and Total Metabolizable Protein from Starchy and Protein-Rich Raw Materials: Model Comparison and Predictions.

    PubMed

    Parand, Ehsan; Vakili, Alireza; Mesgaran, Mohsen Danesh; van Duinkerken, Gert; Yu, Peiqiang

    2015-07-29

    This study was carried out to measure truly absorbed microbial protein synthesis, rumen bypass protein, and endogenous protein loss, as well as total metabolizable protein, from starchy and protein-rich raw feed materials with model comparisons. Predictions by the DVE2010 system as a more mechanistic model were compared with those of two other models, DVE1994 and NRC-2001, that are frequently used in common international feeding practice. DVE1994 predictions for intestinally digestible rumen undegradable protein (ARUP) for starchy concentrates were higher (27 vs 18 g/kg DM, p < 0.05, SEM = 1.2) than predictions by the NRC-2001, whereas there was no difference in predictions for ARUP from protein concentrates among the three models. DVE2010 and NRC-2001 had highest estimations of intestinally digestible microbial protein for starchy (92 g/kg DM in DVE2010 vs 46 g/kg DM in NRC-2001 and 67 g/kg DM in DVE1994, p < 0.05 SEM = 4) and protein concentrates (69 g/kg DM in NRC-2001 vs 31 g/kg DM in DVE1994 and 49 g/kg DM in DVE2010, p < 0.05 SEM = 4), respectively. Potential protein supplies predicted by tested models from starchy and protein concentrates are widely different, and comparable direct measurements are needed to evaluate the actual ability of different models to predict the potential protein supply to dairy cows from different feedstuffs.

  6. Effect of monensin on in vitro fermentation of silages and microbial protein synthesis.

    PubMed

    Wischer, Gerald; Boguhn, Jeannette; Steingaß, Herbert; Schollenberger, Margit; Hartung, Karin; Rodehutscord, Markus

    2013-06-01

    The objective of the study was to investigate the effects of monensin on silage fermentation and microbial net protein synthesis. In Experiment 1, monensin (0.5, 1, 2, 4, 6, or 10 µg) was added to syringes that contained 120 mg of grass silage (GS), grass silage and concentrate (GS + C), or maize silage (MS), resulting in concentrations of 4.2, 8.3, 16.7, 33.3, 50.0 and 83.3 mg monensin/kg feed. Samples were incubated for 24 h to determine the monensin concentration that resulted in the maximum reduction in methane production without effects on the total gas production. In Experiment 2, GS and GS + C were incubated in a rumen simulation technique (Rusitec) to assess the monensin effects (133 and 266 mg/kg feed) on the production of total gas, methane and volatile fatty acids (VFA), degradation of nutrients and microbial net protein synthesis. In Experiment 1, methane production was reduced without significant effects on the total gas production; the reductions were 17% (GS), 10% (GS + C) and 13% (MS) with 16.7 (GS), 50.0 (GS + C) and 33.3 (MS) mg monensin/kg feed. Monensin reduced the total gas and methane production in GS and GS + C in Experiment 2. Propionate production was enhanced by monensin, accompanied by a decrease in acetate production. Along with a reduction in crude protein (CP) degradation, monensin reduced the ammonia nitrogen concentration in the effluent of both treatments. While the protein produced by liquid-associated microbes increased with monensin, protein production by solid-associated microbes was reduced. Total microbial net protein synthesis increased in the presence of monensin. Monensin influenced the production of total gas, methane and VFA from the silages without an effect on the degradation of organic matter (OM). Different microbial fractions were affected differently by monensin supplementation. If monensin is used as a tool to reduce methane emission, the supplementation level must be carefully chosen to avoid negative effects on

  7. Effects of Forage Sources on Rumen Fermentation Characteristics, Performance, and Microbial Protein Synthesis in Midlactation Cows

    PubMed Central

    Xu, Jun; Hou, Yujie; Yang, Hongbo; Shi, Renhuang; Wu, Caixia; Huo, Yongjiu; Zhao, Guoqi

    2014-01-01

    Eight multiparous Holstein cows (632±12 kg BW; 135±16 DIM) were used in a replicated 4×4 Latin square design to evaluate the effects of forage sources on rumen fermentation characteristics, performance, and microbial protein (MCP) synthesis. The forage portion of the diets contained alfalfa hay (AH), oat hay (OH), Leymus chinensis (LC), or rice straw (RS) as the primary source of fiber. Diets were isonitrogenous and isocaloric, and cows were fed four corn silages based total mixed rations with equivalent nonfiber carbohydrate (NFC) and forage neutral detergent fiber (NDF). Dry matter intake was not affected by the source of dietary forages, ranging from 18.83 to 19.20 kg/d, consequently, milk yield was similar among diets. Because of the numerical differences in milk fat and milk protein concentrations, 4% FCM and ECM yields were unchanged (p>0.05). Mean rumen pH, NH3-N content, and concentrations of volatile fatty acids in the rumen fluid were not affected by the treatments (p>0.05). Dietary treatments did not affect the total tract apparent digestibility of dry matter, organic matter, and crude protein (p>0.05); however, digestibility of NDF and acid detergent fiber in RS diet was higher compared with AH, OH, and LC diets (p<0.05). Total purine derivative excretion was higher in cows fed AH, OH, and LC diets compared with those fed RS diet (p<0.05), consequently, estimated MCP synthesis was 124.35 g/d higher in cows fed AH diet compared with those fed RS diet (p<0.05). The results indicated that cows fed AH, OH, LC, and RS diets with an equivalent forage NDF and NFC have no unfavourable effect on the ruminal fermentation and productive parameters. PMID:25050001

  8. Effect of inclusion of different levels of Leucaena silage on rumen microbial population and microbial protein synthesis in dairy steers fed on rice straw.

    PubMed

    Nguyen, Thien Truong Giang; Wanapat, Metha; Phesatcha, Kampanat; Kang, Sungchhang

    2017-02-01

    Leucaena leucocephala (Leucaena) is a perennial tropical legume that can be directly grazed or harvested and offered to ruminants as hay, silage, or fresh. However, Leucaena contain phenolic compounds, which are considered anti-nutritional factors as these may reduce intake, digestibility and thus animal performance. Therefore, the objective of this experiment was to determine effects of Leucaena silage (LS) feeding levels on rumen microbial populations, N-balance and microbial protein synthesis in dairy steers. Four, rumen fistulated dairy steers with initial weight of 167±12 kg were randomly assigned to receive dietary treatments according to a 4×4 Latin square design. Treatments were as followings: T1 = untreated rice straw (RS; Control), T2 = 70% RS+30% LS, T3 = 40% RS+60% LS, and T4 = 100% LS. Dairy steers were fed rice straw and LS ad libitum and supplemented with concentrate at 0.2% of body weight/d. Results revealed that the rumen microbial population, especially cellulolytic, proteolytic bacteria and fungal zoospores were enhanced in steers that received 60% of LS (p<0.05), whereas the amylolytic bacteria population was not affected by treatments (p>0.05). Protozoal population was linearly decreased with increasing level of LS (p<0.05). Moreover, N-balance and microbial protein synthesis were enhanced by LS feeding (p<0.05) and were the highest in 60% LS group. Based on this study, it could be concluded that replacement of RS with 60% LS significantly improved microbial population and microbial protein synthesis in diary steers.

  9. Effect of inclusion of different levels of Leucaena silage on rumen microbial population and microbial protein synthesis in dairy steers fed on rice straw

    PubMed Central

    Nguyen, Thien Truong Giang; Wanapat, Metha; Phesatcha, Kampanat; Kang, Sungchhang

    2017-01-01

    Objective Leucaena leucocephala (Leucaena) is a perennial tropical legume that can be directly grazed or harvested and offered to ruminants as hay, silage, or fresh. However, Leucaena contain phenolic compounds, which are considered anti-nutritional factors as these may reduce intake, digestibility and thus animal performance. Therefore, the objective of this experiment was to determine effects of Leucaena silage (LS) feeding levels on rumen microbial populations, N-balance and microbial protein synthesis in dairy steers. Methods Four, rumen fistulated dairy steers with initial weight of 167±12 kg were randomly assigned to receive dietary treatments according to a 4×4 Latin square design. Treatments were as followings: T1 = untreated rice straw (RS; Control), T2 = 70% RS+30% LS, T3 = 40% RS+60% LS, and T4 = 100% LS. Dairy steers were fed rice straw and LS ad libitum and supplemented with concentrate at 0.2% of body weight/d. Results Results revealed that the rumen microbial population, especially cellulolytic, proteolytic bacteria and fungal zoospores were enhanced in steers that received 60% of LS (p<0.05), whereas the amylolytic bacteria population was not affected by treatments (p>0.05). Protozoal population was linearly decreased with increasing level of LS (p<0.05). Moreover, N-balance and microbial protein synthesis were enhanced by LS feeding (p<0.05) and were the highest in 60% LS group. Conclusion Based on this study, it could be concluded that replacement of RS with 60% LS significantly improved microbial population and microbial protein synthesis in diary steers. PMID:27165024

  10. Effect of total mixed ration composition on fermentation and efficiency of ruminal microbial crude protein synthesis in vitro.

    PubMed

    Boguhn, J; Kluth, H; Rodehutscord, M

    2006-05-01

    The goal of this study was to identify dietary factors that affect fermentation and efficiency of microbial crude protein (CP(M)) synthesis in the rumen in vitro. We used 16 total mixed, dairy cow rations with known digestibilities that varied in ingredient composition and nutrient content. Each ration was incubated in a Rusitec (n = 3) for 15 d, and fermentation of different fractions was assessed. Observed extents of fermentation in 24 h were 35 to 47% for organic matter, 25 to 60% for crude protein, 3 to 28% for neutral detergent fiber, and 31 to 45% for gross energy. Organic matter fermentation depended on the content of crude protein and neutral detergent fiber in the ration. We studied net synthesis of CP(M) using an 15N dilution technique and found that 7 d of continuous 15N application are needed to achieve an 15N enrichment plateau in the N of isolated microbes in this type of study. The efficiency of CP(M) synthesis was 141 to 286 g/kg of fermented organic matter or 4.9 to 11.1 g/MJ of metabolizable energy, and these ranges agree with those found in the literature. Multiple regressions to predict the efficiency of CP(M) synthesis by diet data showed that crude protein was the only dietary chemical fraction that had a significant effect. Fat content and the inclusion rate of corn silage in the ration also tended to improve efficiency. We suggest that microbial need for preformed amino acids may explain the crude protein effect. A large part of the variation in efficiency of microbial activity still remains unexplained.

  11. Effect of Plants Containing Secondary Compounds with Palm Oil on Feed Intake, Digestibility, Microbial Protein Synthesis and Microbial Population in Dairy Cows

    PubMed Central

    Anantasook, N.; Wanapat, M.; Cherdthong, A.; Gunun, P.

    2013-01-01

    The objective of this study was to determine the effect of rain tree pod meal with palm oil supplementation on feed intake, digestibility, microbial protein synthesis and microbial populations in dairy cows. Four, multiparous early-lactation Holstein-Friesian crossbred (75%) lactating dairy cows with an initial body weight (BW) of 405±40 kg and 36±8 DIM were randomly assigned to receive dietary treatments according to a 4×4 Latin square design. The four dietary treatments were un-supplementation (control), supplementation with rain tree pod meal (RPM) at 60 g/kg, supplementation with palm oil (PO) at 20 g/kg, and supplementation with RPM at 60 g/kg and PO at 20 g/kg (RPO), of total dry matter intake. The cows were offered concentrates, at a ratio of concentrate to milk production of 1:2, and chopped 30 g/kg of urea treated rice straw was fed ad libitum. The RPM contained condensed tannins and crude saponins at 88 and 141 g/kg of DM, respectively. It was found that supplementation with RPM and/or PO to dairy cows diets did not show negative effects on feed intake and ruminal pH and BUN at any times of sampling (p>0.05). However, RPM supplementation resulted in lower crude protein digestibility, NH3-N concentration and number of proteolytic bacteria. It resulted in greater allantoin absorption and microbial crude protein (p<0.05). In addition, dairy cows showed a higher efficiency of microbial N supply (EMNS) in both RPM and RPO treatments. Moreover, NDF digestibility and cellulolytic bacteria numbers were highest in RPO supplementation (p<0.05) while, supplementation with RPM and/or PO decreased the protozoa population in dairy cows. Based on this study, supplementation with RPM and/or PO in diets could improve fiber digestibility, microbial protein synthesis in terms of quantity and efficiency and microbial populations in dairy cows. PMID:25049855

  12. Effects of different tannin-rich extracts and rapeseed tannin monomers on methane formation and microbial protein synthesis in vitro.

    PubMed

    Wischer, G; Boguhn, J; Steingaß, H; Schollenberger, M; Rodehutscord, M

    2013-11-01

    Tannins, polyphenolic compounds found in plants, are known to complex with proteins of feed and rumen bacteria. This group of substances has the potential to reduce methane production either with or without negative effects on digestibility and microbial yield. In the first step of this study, 10 tannin-rich extracts from chestnut, mimosa, myrabolan, quebracho, sumach, tara, valonea, oak, cocoa and grape seed, and four rapeseed tannin monomers (pelargonidin, catechin, cyanidin and sinapinic acid) were used in a series of in vitro trials using the Hohenheim gas test, with grass silage as substrate. The objective was to screen the potential of various tannin-rich extracts to reduce methane production without a significant effect on total gas production (GP). Supplementation with pelargonidin and cyanidin did not reduce methane production; however, catechin and sinapinic acid reduced methane production without altering GP. All tannin-rich extracts, except for tara extract, significantly reduced methane production by 8% to 28% without altering GP. On the basis of these results, five tannin-rich extracts were selected and further investigated in a second step using a Rusitec system. Each tannin-rich extract (1.5 g) was supplemented to grass silage (15 g). In this experiment, nutrient degradation, microbial protein synthesis and volatile fatty acid production were used as additional response criteria. Chestnut extract caused the greatest reduction in methane production followed by valonea, grape seed and sumach, whereas myrabolan extract did not reduce methane production. Whereas chestnut extract reduced acetate production by 19%, supplementation with grape seed or myrabolan extract increased acetate production. However, degradation of fibre fractions was reduced in all tannin treatments. Degradation of dry matter and organic matter was also reduced by tannin supplementation, and no differences were found between the tannin-rich extracts. CP degradation and ammonia

  13. Effects of dietary forage sources on rumen microbial protein synthesis and milk performance in early lactating dairy cows.

    PubMed

    Zhu, W; Fu, Y; Wang, B; Wang, C; Ye, J A; Wu, Y M; Liu, J-X

    2013-03-01

    The objective of this study was to evaluate the effects of dietary forage sources on milk performance, rumen microbial protein synthesis, and N utilization in early lactation dairy cows. Twelve primiparous Chinese Holstein dairy cows (45 ± 6.0 DIM) were used in a 3 × 3 Latin square design. Diets were isonitrogenous and isocaloric, with a forage-to-concentrate ratio of 45:55 [dry matter (DM) basis] and contained similar concentrate mixtures. Different forage sources were then added (on a DM basis): 21% corn silage, 19% corn stover, and 5% alfalfa hay (CS); 19% corn silage, 21% Chinese wild rye hay and 5% alfalfa hay (CWR); or 19% corn silage, 9% Chinese wild rye hay, and 17% alfalfa hay (AH). Each period lasted for 21 d, with the first 14 d for an adaptation period. Dry matter intake was not affected by the source of dietary forage. Milk yield was higher for cows fed AH than those fed CS, with an intermediate value for CWR. Milk protein content was higher in the cows fed AH compared with CWR (3.02 vs. 2.92%), with CS (2.95%) at an intermediate position. The contents of milk fat and lactose were not different among the treatments. However, milk efficiency (milk yield/DM intake) was higher for cows fed AH than those fed CS, with those fed CWR intermediate. Cows fed AH had higher microbial protein yield and metabolizable protein than those fed CS or CWR. The concentrations of urea N in the urine, blood, and milk were decreased for cows fed AH, indicating an increased N conversion. The results indicated that corn stover could replace Chinese wild rye grass in the diets for lactating cows and that a high proportion of alfalfa hay in the diet is beneficial for milk protein production by increasing microbial protein yield. This can be attributed to the improving the supply of rumen-available energy.

  14. Effects of BioChlor and Fermenten on microbial protein synthesis in continuous culture fermenters.

    PubMed

    Lean, I J; Webster, T K Miller; Hoover, W; Chalupa, W; Sniffen, C J; Evans, E; Block, E; Rabiee, A R

    2005-07-01

    Meta analysis models were constructed from a data-set of 15 continuous culture fermenter trials and 118 observations on studies with either BioChlor (n = 23 observations) or Fermenten (n = 95) included at 10 and 3%, respectively, of dietary dry matter (DM) to evaluate effects of the ingredients BioChlor and Fermenten (B/F) on rumen function. Digestibility of crude protein was significantly increased by 11% with B/F treatment. This was reflected in significant increases in digestibility of DM and organic matter (OM) by 3.6 and 7.9%, respectively. Increased amounts of sugar in the diet in the presence of B/F tended to reduce digestibility of non-structural carbohydrates (NSC); however, the net effect on NSC digestion was small. There was no effect of treatment on most individual volatile fatty acids (VFA) or total VFA production. Propionate production, however, was significantly reduced in treated fermenters. The main effect of B/F as well as of starch and soluble fiber when combined with the treatment was to increase propionate production; however, the interaction between B/F treatment and sugar decreased propionate production markedly, resulting in a net decrease. The acetate-to-propionate ratio increased by 6% with B/F, largely as a result of the decrease in propionate. Production of nonammonia nitrogen was 1% less in B/F-treated fermenters, and interactions between treatment and starch, sugar, or soluble fiber were significant. Treated fermenters produced 15.7% more microbial nitrogen, in association with a significant 37% increase in rumen protein digestion. Interactions between treatment and starch, soluble fiber, or sugar influenced these results. The interaction of B/F and sugar resulted in a decrease in undegradable protein N and an increase in microbial nitrogen production. Ammonia nitrogen concentrations were increased by 24.6% in treated fermenters. Efficiency of microbial nitrogen production from DM, OM, or carbohydrate was significantly increased by B

  15. Rumen microorganisms, methane production, and microbial protein synthesis affected by mangosteen peel powder supplement in lactating dairy cows.

    PubMed

    Polyorach, Sineenart; Wanapat, Metha; Cherdthong, Anusorn; Kang, Sungchhang

    2016-03-01

    Four crossbred dairy cows (50 % Holstein-Friesian × 50 % Thai native), 404 ± 50.0 kg of body weight (4 years old) and 90 ± 5 day in milk with daily milk production of 9 ± 2.0 kg/day, were randomly assigned according to a 4 × 4 Latin square design to study the effect of mangosteen (Garcinia mangostana) peel powder (MSP) supplementation on rumen microorganisms, methane production, and microbial protein synthesis fed concentrate containing yeast fermented cassava chip protein (YEFECAP). The treatments were different levels of MSP supplementation at 0, 100, 200, and 300 g/head/day. Rice straw was used as a roughage source fed ad libitum, and concentrate containing YEFECAP at 200 g/kg concentrate was offered corresponding to concentrate-to-milk-yield ratio at 1:2. A quantitative real-time PCR approach was used to determine the population densities of ruminal microorganisms. The results revealed that supplementation of MSP did not affect on Fibrobactor succinogenes, Ruminococcus flavefaciens, and Ruminococcus albus (P > 0.05). However, total bacteria was linearly increased (P < 0.01) while methanogens and protozoal population were linearly decreased (P < 0.01) with increasing level of MSP supplementation. Increasing level of MSP supplement could decrease rumen methane production from 27.5 to 23.7 mmol/100 ml(3). Furthermore, cows that received MSP at 300 g/head/day had the highest microbial crude protein and efficiency of rumen microbial N synthesis (416.8 g/day and 16.2 g/kg organic matter truly digested in the rumen (OMDR), respectively). In conclusion, supplementation of MSP at 300 g/head/day with YEFECAP as a protein source in the concentrate mixture revealed an enhancement of rumen fermentation and methane reduction in lactating dairy cows.

  16. Effect of Fusarium toxin-contaminated triticale and forage-to-concentrate ratio on fermentation and microbial protein synthesis in the rumen.

    PubMed

    Hildebrand, B; Boguhn, J; Dänicke, S; Rodehutscord, M

    2012-04-01

    In this study, the effect of Fusarium toxin-contaminated triticale (FUS) at high (60%) and low (30%) concentrate proportion in ruminant rations on ruminal fermentation, microbial protein synthesis and digestibility was investigated, using in vivo and in vitro methods. Significant effects of the forage-to-concentrate ratio on ruminal degradation and digestibility of crude nutrients and detergent fibre fractions as well as on the pH value and the concentration of short chain fatty acids (SCFA) in rumen fluid were found. The production of SCFA was affected, and the degradation of crude fibre and neutral detergent fibre in the rumen was reduced by the inclusion of FUS at high concentrate proportion. The efficiency of microbial crude protein synthesis was higher in diets with 60% than in diets with 30% concentrates, but was impaired in the presence of FUS in vitro at the high concentrate level. Marginal effects of FUS on the amino acid pattern of microbial protein were detected. It was concluded that the use of FUS in high concentrate diets can influence ruminal fermentation and microbial protein synthesis at a dietary deoxynivalenol concentration below 5 mg/kg dry matter. © 2011 Blackwell Verlag GmbH.

  17. Determination of protein and amino acid digestibility in foods including implications of gut microbial amino acid synthesis.

    PubMed

    Fuller, Malcolm

    2012-08-01

    To meet the protein and amino acid requirements of individuals and of populations requires information not only about their requirements but also about the capacity of available foods to meet those requirements. Most of our current knowledge of the digestibility of food proteins and the methods to estimate it has been derived from work with animals. Because the microbiota of the large intestine alter the amino acid composition of the digesta, and because only trivial quantities of amino acids are absorbed intact from the large intestine, the current method of choice for assessing amino acid digestibility is ileal digestibility corrected for basal endogenous losses, that is, standardized ileal digestibility. For protein as a whole, however, because nitrogen absorbed in forms other than as amino acids can contribute to the nitrogen economy, the absorption of nitrogen over the whole digestive tract is the more appropriate measure. Most of the methods developed for estimating ileal amino acid outflow in animals are not directly applicable to man: the exception is the use of volunteers with an ileostomy. The flow and composition of ileal digesta in human subjects can also be measured by the infusion of a marker and withdrawal of samples through a naso-intestinal tube. However, this method is too demanding for routine use and is likely to be restricted to validating the application to humans of digestibility data obtained either from animals, of which the pig seems most suitable, or in vitro methods. Microbial activity in the gastrointestinal (GI) tract is not confined to the large intestine: the numbers and metabolic activity of the upper GI microbiota lead to substantial amounts of microbial protein leaving the ileum. It appears however that a large proportion of the amino acids used by the upper GI microbiota are preformed - from the diet or from endogenous materials - rather than from de novo synthesis. Although there are still uncertainties about the impact of

  18. Effect of donor animals and their diet on in vitro nutrient degradation and microbial protein synthesis using grass and corn silages.

    PubMed

    Boguhn, J; Zuber, T; Rodehutscord, M

    2013-06-01

    Two nonlactating cows and two wether sheep, all fitted with a permanent cannula into the rumen, were fed either hay plus concentrate, grass silage or corn silage to study the effect of the donor animal and its diet on in vitro fermentation and microbial protein synthesis. Rumen inoculum was obtained before the morning feeding. Grass silage or corn silage was incubated in a semi-continuous rumen simulation system for 14 days. Four replicated vessels were used per treatment. Degradation of crude nutrients and detergent fibre fractions as well as microbial protein synthesis and the production of volatile fatty acids were studied. Additionally, total gas and methane production was measured with a standard in vitro gas test. Gas production and methane concentration was higher when the inoculum used was from sheep than that from cows. The donor animal also affected the degradation of organic matter and ether extract as well as the amount of propionate and butyrate, and the acetate-to-propionate ratio. The effect of the diet fed to the donor animal on fermentation was much greater than the effect of the donor animal itself. Feeding hay plus concentrate resulted in higher gas production and degradation of acid detergent fibre, but in lower degradation of ether extract and reduced microbial protein synthesis. Additionally, the pattern of volatile fatty acids changed significantly when the diet of the donor animals was hay plus concentrate or one of the silages. These results show that in vitro fermentation and microbial protein synthesis is different when based on inoculum from either cattle or sheep. The diet fed to the donor animal is more important than the animal species and is probably mediated by an adjusted microbial activity. With regard to standardized feed evaluations, these results further support the need to harmonize in vitro approaches used in different laboratories.

  19. Effect of dietary energy source and level on nutrient digestibility, rumen microbial protein synthesis, and milk performance in lactating dairy cows.

    PubMed

    Zhou, X Q; Zhang, Y D; Zhao, M; Zhang, T; Zhu, D; Bu, D P; Wang, J Q

    2015-10-01

    This study was conducted to examine the effects of dietary energy source and level on intake, digestion, rumen microbial protein synthesis, and milk production in lactating dairy cows, using corn stover as a forage source. Eight multiparous Holstein cows, 4 of which were fitted with rumen cannulas, were evaluated in a replicated 4 × 4 Latin square design, with each period lasting 21 d. The cows were randomly assigned into 4 treatment groups: low-energy (LE) ground corn (GC), LE steam-flaked corn (SFC), high-energy (HE) GC, and HE SFC. Changes to ruminal energy degradation rates were induced by feeding the cows diets of either finely ground corn or SFC as components of diets with the same total energy level. Milk yield, milk protein content and yield, and milk lactose yield all increased in response to higher levels of dietary energy, whereas contents of milk fat and lactose were unaffected. Cows fed HE diets had a higher crude microbial protein yield and total-tract apparent digestibility than those receiving LE diets. Milk yield, milk protein yield, and microbial protein yield were also higher when SFC replaced GC as the main energy source for lactating cows fed LE diets. These results suggest that an increased dietary energy level and ruminal degradation rate are beneficial to milk protein production, which we suggest is due to increased yields of microbial proteins, when cows are fed corn stover as a dietary forage source.

  20. Improving the quality of rice straw by urea and calcium hydroxide on rumen ecology, microbial protein synthesis in beef cattle.

    PubMed

    Polyorach, S; Wanapat, M

    2015-06-01

    Four rumen-fistulated beef cattle were randomly assigned to four treatments according to a 4 × 4 Latin square design to study the influence of urea and calcium hydroxide [Ca(OH)2 ] treatment of rice straw to improve the nutritive value of rice straw. Four dietary treatments were as follows: untreated rice straw, 50 g/kg urea-treated rice straw, 20 g/kg urea + 20 g/kg calcium hydroxide-treated rice straw and 30 g/kg urea + 20 g/kg calcium hydroxide-treated rice straw. All animals were kept in individual pens and fed with concentrate at 0.5 g/kg of BW (DM), rice straw was fed ad libitum. The experiment was conducted for four periods, and each period lasted for 21 days. During the first 14 days, DM feed intake measurements were made while during the last 7 days, all cattle were moved to metabolism crates for total faeces and urine collections. The results revealed that 20 g/kg urea + 20 g/kg calcium hydroxide-treated rice straw improved the nutritive value of rice straw, in terms of dry matter intake, digestibility, ruminal volatile fatty acids, population of bacteria and fungi, nitrogen retention and microbial protein synthesis. Based on this study, it could be concluded that using urea plus calcium hydroxide was one alternative method to improve the nutritive value of rice straw, rumen ecology and fermentation and thus a reduction of treatment cost.

  1. Microbial Engineering for Aldehyde Synthesis

    PubMed Central

    Kunjapur, Aditya M.

    2015-01-01

    Aldehydes are a class of chemicals with many industrial uses. Several aldehydes are responsible for flavors and fragrances present in plants, but aldehydes are not known to accumulate in most natural microorganisms. In many cases, microbial production of aldehydes presents an attractive alternative to extraction from plants or chemical synthesis. During the past 2 decades, a variety of aldehyde biosynthetic enzymes have undergone detailed characterization. Although metabolic pathways that result in alcohol synthesis via aldehyde intermediates were long known, only recent investigations in model microbes such as Escherichia coli have succeeded in minimizing the rapid endogenous conversion of aldehydes into their corresponding alcohols. Such efforts have provided a foundation for microbial aldehyde synthesis and broader utilization of aldehydes as intermediates for other synthetically challenging biochemical classes. However, aldehyde toxicity imposes a practical limit on achievable aldehyde titers and remains an issue of academic and commercial interest. In this minireview, we summarize published efforts of microbial engineering for aldehyde synthesis, with an emphasis on de novo synthesis, engineered aldehyde accumulation in E. coli, and the challenge of aldehyde toxicity. PMID:25576610

  2. Effects of Physical Form and Urea Treatment of Rice Straw on Rumen Fermentation, Microbial Protein Synthesis and Nutrient Digestibility in Dairy Steers

    PubMed Central

    Gunun, P.; Wanapat, M.; Anantasook, N.

    2013-01-01

    This study was designed to determine the effect of physical form and urea treatment of rice straw on rumen fermentation, microbial protein synthesis and nutrient digestibility. Four rumen-fistulated dairy steers were randomly assigned according to a 2 (2 factorial arrangement in a 4 (4 Latin square design to receive four dietary treatments. Factor A was roughage source: untreated rice straw (RS) and urea-treated (3%) rice straw (UTRS), and factor B was type of physical form of rice straw: long form rice straw (LFR) and chopped (4 cm) rice straw (CHR). The steers were offered the concentrate at 0.5% body weight (BW) /d and rice straw was fed ad libitum. DM intake and nutrient digestibility were increased (p<0.05) by urea treatment. Ruminal pH were decreased (p<0.05) in UTRS fed group, while ruminal ammonia nitrogen (NH3-N) and blood urea nitrogen (BUN) were increased (p<0.01) by urea treatment. Total volatile fatty acid (VFA) concentrations increased (p<0.01) when steers were fed UTRS. Furthermore, VFA concentrations were not altered by treatments (p>0.05), except propionic acid (C3) was increased (p<0.05) in UTRS fed group. Nitrogen (N) balance was affected by urea treatment (p<0.05). Microbial protein synthesis (MCP) synthesis were greater by UTRS and CHR group (p<0.05). The efficiency of microbial N synthesis was greater for UTRS than for RS (p<0.05). From these results, it can be concluded that using the long form combined with urea treatment of rice straw improved feed intake, digestibility, rumen fermentation and efficiency of microbial N synthesis in crossbred dairy steers. PMID:25049759

  3. Effects of physical form and urea treatment of rice straw on rumen fermentation, microbial protein synthesis and nutrient digestibility in dairy steers.

    PubMed

    Gunun, P; Wanapat, M; Anantasook, N

    2013-12-01

    This study was designed to determine the effect of physical form and urea treatment of rice straw on rumen fermentation, microbial protein synthesis and nutrient digestibility. Four rumen-fistulated dairy steers were randomly assigned according to a 2 (2 factorial arrangement in a 4 (4 Latin square design to receive four dietary treatments. Factor A was roughage source: untreated rice straw (RS) and urea-treated (3%) rice straw (UTRS), and factor B was type of physical form of rice straw: long form rice straw (LFR) and chopped (4 cm) rice straw (CHR). The steers were offered the concentrate at 0.5% body weight (BW) /d and rice straw was fed ad libitum. DM intake and nutrient digestibility were increased (p<0.05) by urea treatment. Ruminal pH were decreased (p<0.05) in UTRS fed group, while ruminal ammonia nitrogen (NH3-N) and blood urea nitrogen (BUN) were increased (p<0.01) by urea treatment. Total volatile fatty acid (VFA) concentrations increased (p<0.01) when steers were fed UTRS. Furthermore, VFA concentrations were not altered by treatments (p>0.05), except propionic acid (C3) was increased (p<0.05) in UTRS fed group. Nitrogen (N) balance was affected by urea treatment (p<0.05). Microbial protein synthesis (MCP) synthesis were greater by UTRS and CHR group (p<0.05). The efficiency of microbial N synthesis was greater for UTRS than for RS (p<0.05). From these results, it can be concluded that using the long form combined with urea treatment of rice straw improved feed intake, digestibility, rumen fermentation and efficiency of microbial N synthesis in crossbred dairy steers.

  4. Rumen microbial protein synthesis and nitrogen efficiency as affected by tanniferous and non-tanniferous forage legumes incubated individually or together in Rumen Simulation Technique.

    PubMed

    Brinkhaus, Anja Grosse; Bee, Giuseppe; Schwarm, Angela; Kreuzer, Michael; Dohme-Meier, Frigga; Zeitz, Johanna O

    2017-08-29

    A limited availability of microbial protein can impair productivity in ruminants. Ruminal nitrogen efficiency might be optimised by combining high-quality forage legumes such as red clover (RC), which have unfavourable great ruminal protein degradability, with tanniferous legumes like sainfoin (SF) and birdsfoot trefoil (BT). Silages from SF and from BT cultivars [Bull (BB) and Polom (BP)] were incubated singly or in combination with RC using the rumen simulation technique (n=6). The tanniferous legumes, when compared to RC, changed the total short-chain fatty acid profile by increasing propionate proportions at the expense of butyrate. Silage from SF contained the most condensed tannins (CTs) (136 g CT kg(-1) dry matter) and clearly differed in various traits from the BT and RC silages. The apparent nutrient degradability (small with SF), microbial protein synthesis, and calculated content of potentially utilizable crude protein (large with SF) indicated that SF had the greatest efficiency in ruminal protein synthesis. The effects of combining SF with RC were mostly linear. The potential of sainfoin to improve protein supply, demonstrated either individually or in combination with a high-performance forage legume, indicates its potential usefulness in complementing protein-deficient ruminant diets and high-quality forages rich in rumen-degradable protein. This article is protected by copyright. All rights reserved.

  5. Influence of carbohydrate source on ruminal fermentation characteristics, performance, and microbial protein synthesis in dairy cows.

    PubMed

    Gozho, G N; Mutsvangwa, T

    2008-07-01

    Eight multiparous Holstein cows (676 +/- 57 kg of body weight; 121 +/- 17 d-in-milk) were used in a replicated 4 x 4 Latin square design to determine the effects of 4 sources of carbohydrate on milk yield and composition, ruminal fermentation, and microbial N flow to the duodenum. Four cows in one of the Latin squares were fitted with permanent ruminal cannulae. Diets contained (DM basis) 50% forage in combinations of alfalfa hay and barley silage, and 50% concentrate. The concentrate portion of the diets contained barley, corn, wheat, or oats grain as the primary source of carbohydrate. Intake of DM ranged from 24.0 to 26.2 kg/d, and it tended to be lower in cows fed the wheat-based diet compared with those fed the barley-based diet; consequently, milk yield tended to be lower in cows fed the wheat-based diet compared with those fed the barley-based diet. Cows fed the barley- or wheat-based diets had a lower milk fat content compared with those fed the corn-based diet. Ruminal fermentation characteristics were largely unaffected by the source of dietary carbohydrate, with similar ruminal pH and volatile fatty acid and ammonia concentrations for the first 6 h after the morning feeding. Dietary treatment did not affect total tract apparent digestibility of DM, organic matter, and neutral detergent fiber; however, total tract apparent digestibility of starch in cows fed the oats-based diet was higher compared with those fed the corn-and wheat-based diets. Nitrogen that was used for productive purposes (i.e., N secreted in milk + N apparently retained by the cow) tended to be lower in cows fed the wheat-based diet compared with cows fed the barley-, corn-, or oats-based diets. Urinary purine derivative (PD) excretion was similar in cows fed the barley-, corn-, and wheat-based diets; however, purine derivative excretion was higher in cows fed the barley-based diet compared with those fed the oats-based diet. Consequently, estimated microbial N flow to the duodenum was

  6. Effect of incremental urea supplementation of a conventional corn silage-based diet on ruminal ammonia concentration and synthesis of microbial protein.

    PubMed

    Boucher, S E; Ordway, R S; Whitehouse, N L; Lundy, F P; Kononoff, P J; Schwab, C G

    2007-12-01

    One primiparous and 3 multiparous lactating Holstein cows fitted with ruminal and duodenal cannulas were used in a 4 x 4 Latin square design to determine the efficacy of adding urea to a corn silage-based diet on ruminal fermentation and microbial protein synthesis. Dietary treatments were 0, 0.3, 0.6, and 0.9% urea in diet dry matter (DM); urea was manually top dressed and incorporated into the ration. The basal diet contained (DM basis) 52% forage (with 61% of forage provided as corn silage) and 48% concentrate ingredients. The basal diet was formulated to meet National Research Council (NRC, 2001) requirements for energy and all nutrients except rumen-degradable protein (RDP) and metabolizable protein. Experimental periods lasted 14 d with the first 9 d for adaptation. The basal diet, without urea addition, contained 9.2% RDP in DM and had a predicted RDP balance of -167 g/d (NRC, 2001). There were no effects of dietary treatment on ruminal true digestibility of organic matter or ruminal apparent digestibility of neutral detergent fiber and acid detergent fiber. Total ruminal volatile fatty acid concentrations increased linearly with increasing urea level. Feeding increasing amounts of urea quadratically increased rumen ammonia N concentrations (9.0, 11.9, 12.8, and 17.4 mg/dL at 0, 0.3, 0.6, and 0.9% urea supplementation, respectively), passage of microbial N, and microbial N in duodenal digesta as a percentage of nonammonia N. The results of this study indicate that there were some positive effects of adding urea to the described lactating dairy cow diet, and that microbial protein synthesis was maximized at an average ruminal ammonia N concentration of 12.8 mg/dL when urea was added at 0.6% in diet DM.

  7. Microbial protein synthesis, ruminal digestion, microbial populations, and nitrogen balance in sheep fed diets varying in forage-to-concentrate ratio and type of forage.

    PubMed

    Ramos, S; Tejido, M L; Martínez, M E; Ranilla, M J; Carro, M D

    2009-09-01

    Six ruminally and duodenally cannulated sheep were used in a partially replicated 4 x 4 Latin square to evaluate the effects of 4 diets on microbial synthesis, microbial populations, and ruminal digestion. The experimental diets had forage to concentrate ratios (F:C; DM basis) of 70:30 (HF) or 30:70 (HC) with alfalfa hay (A) or grass hay (G) as forage and were designated as HFA, HCA, HFG, and HCG. The concentrate was based on barley, gluten feed, wheat middlings, soybean meal, palmkern meal, wheat, corn, and mineral-vitamin premix in the proportions of 22, 20, 20, 13, 12, 5, 5, and 3%, respectively (as-is basis). Sheep were fed the diets at a daily rate of 56 g/kg of BW(0.75) to minimize feed selection. High-concentrate diets resulted in greater (P < 0.001) total tract apparent OM digestibility compared with HF diets, but no differences were detected in NDF digestibility. Ruminal digestibility of OM, NDF, and ADF was decreased by increasing the proportion of concentrate, but no differences between forages were detected. Compared with sheep fed HF diets, sheep receiving HC diets had less ruminal pH values and acetate proportions, but greater butyrate proportions. No differences among diets were detected in numbers of cellulolytic bacteria, but protozoa numbers were less (P = 0.004) and total bacteria numbers tended (P = 0.08) to be less for HC diets. Carboxymethylcellulase, xylanase, and amylase activities were greater for HC compared with HF diets, with A diets showing greater (P = 0.008) carboxymethylcellulase activities than G diets. Retained N ranged from 28.7 to 37.9% of N intake and was not affected by F:C (P = 0.62) or the type of forage (P = 0.31). Microbial N synthesis and its efficiency was greater (P < 0.001) for HC diets compared with HF diets. The results indicate that concentrates with low cereal content can be included in the diet of sheep up to 70% of the diet without detrimental effects on ruminal activity, microbial synthesis efficiency, and N

  8. Microbial synthesis of pinene.

    PubMed

    Sarria, Stephen; Wong, Betty; García Martín, Hector; Keasling, Jay D; Peralta-Yahya, Pamela

    2014-07-18

    The volumetric heating values of today's biofuels are too low to power energy-intensive aircraft, rockets, and missiles. Recently, pinene dimers were shown to have a volumetric heating value similar to that of the tactical fuel JP-10. To provide a sustainable source of pinene, we engineered Escherichia coli for pinene production. We combinatorially expressed three pinene synthases (PS) and three geranyl diphosphate synthases (GPPS), with the best combination achieving ~28 mg/L of pinene. We speculated that pinene toxicity was limiting production; however, toxicity should not be limiting at current titers. Because GPPS is inhibited by geranyl diphosphate (GPP) and to increase flux through the pathway, we combinatorially constructed GPPS-PS protein fusions. The Abies grandis GPPS-PS fusion produced 32 mg/L of pinene, a 6-fold improvement over the highest titer previously reported in engineered E. coli. Finally, we investigated the pinene isomer ratio of our pinene-producing microbe and discovered that the isomer profile is determined not only by the identity of the PS used but also by the identity of the GPPS with which the PS is paired. We demonstrated that the GPP concentration available to PS for cyclization alters the pinene isomer ratio.

  9. Supplementation with non-fibrous carbohydrates reduced fiber digestibility and did not improve microbial protein synthesis in sheep fed fresh forage of two nutritive values.

    PubMed

    Tebot, I; Cajarville, C; Repetto, J L; Cirio, A

    2012-04-01

    To determine whether non-fibrous carbohydrate (NFC) supplementation improves fiber digestibility and microbial protein synthesis, 18 Corriedale ewes with a fixed intake level (40 g dry matter (DM)/kg BW0.75) were assigned to three (n = 6) diets: F = 100% fresh temperate forage, FG = 70% forage + 30% barley grain and FGM = 70% forage + 15% barley grain + 15% molasses-based product (MBP, Kalori 3000). Two experimental periods were carried out, with late (P1) and early (P2) vegetative stage forage. For P2, ewes were fitted with ruminal catheters. Forage was distributed at 0900 h, 1300 h, 1800 h and 2300 h, and supplement added at 0900 h and 1800 h meals. Digestibility of the different components of the diets, retained N and rumen microbial protein synthesis were determined. At the end of P2, ruminal pH and N-NH3 concentration were determined hourly for 24 h. Supplementation increased digestibility of DM (P < 0.001) and organic matter (OM; P < 0.001) and reduced NDF digestibility (P = 0.043) in both periods, with greater values in P2 (P = 0.008) for the three diets. Daily mean ruminal pH differed (P < 0.05) among treatments: 6.33 (F), 6.15 (FG) and 6.51 (FGM). The high pH in FGM was attributed to Ca(OH)2 in MBP. Therefore, the decreased fiber digestibility in supplemented diets could not be attributed to pH changes. The mean ruminal concentration of N-NH3 was 18.0 mg/dl, without differences among treatments or sampling hours. Microbial protein synthesis was greater in P2 (8.0 g/day) than in P1 (6.1 g/day; P = 0.006), but treatments did not enhance this parameter. The efficiency of protein synthesis tended to be lower in supplemented groups (16.4, 13.9 and 13.4 in P1, and 20.8, 16.7 and 16.2 g N/kg digestible OM ingested in P2, for F, FG and FGM, respectively; P = 0.07) without differences between supplements. The same tendency was observed for retained N: 2.55, 1.38 and 1.98 in P1, and 2.28, 1.23 and 1.10 g/day in P2, for F, FG and FGM, respectively; P = 0.05). The

  10. Effect of supplementation of mustard oil cake on intake, digestibility and microbial protein synthesis of cattle in a straw-based diet in Bangladesh.

    PubMed

    Khandaker, Zahirul Haque; Uddin, Mohammad Mohi; Sultana, Nadira; Peters, Kurt J

    2012-04-01

    The objective of this study was to analyse the effects of different levels of rumen-degradable protein (RDP) on intake, digestibility and microbial protein synthesis by supplementing mustard oil cake (MOC) on rice straw-based diet of cattle (Bos indicus) in Bangladesh. A 4 × 4 Latin square design was applied. Four diets having constant energy (7.0 MJ/kg of dry matter (DM)) with varying levels of RDP (M(0) = 4.1 g/MJ (control), M(1) = 6.3 g/MJ, M(2) = 8.3 g/MJ and M(3) = 12.4 g/MJ of metabolizable energy (ME)) were received by each animal for a period of 28 days. A metabolism trial was conducted for 7 days. Results indicate that with increasing levels of RDP, crude protein (CP) and RDP intake increased significantly (P < 0.01). The significant (P < 0.01) increase in digestibility values are obtained for DM, organic matter, CP and digestible organic matter in the rumen. The digestibility of neutral detergent fibre and acid detergent fibre was also increased significantly (P < 0.05). The total nitrogen (N), ammonia-N and total volatile fatty acids increase significantly (P < 0.01) while the rumen pH increased from M(0) to M(2) and decreased thereafter. The efficiency microbial N intake increased significantly (P < 0.01) but showed a curvilinear response with higher RDP level (12.40 g/RDP/MJ ME). This study concludes that supplementation of RDP from MOC enhances the intake, digestibility and microbial protein synthesis which ultimately increases utilization of low-quality feed resources that can be used for developing cost-effective feeding systems on a straw-based diet in tropical regions.

  11. Effect of carbohydrate sources and levels of cotton seed meal in concentrate on feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in young dairy bulls.

    PubMed

    Wanapat, M; Anantasook, N; Rowlinson, P; Pilajun, R; Gunun, P

    2013-04-01

    The objective of this study was to investigate the effect of levels of cottonseed meal with various carbohydrate sources in concentrate on feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in dairy bulls. Four, 6 months old dairy bulls were randomly assigned to receive four dietary treatments according to a 2×2 factorial arrangement in a 4×4 Latin square design. Factor A was carbohydrate source; cassava chip (CC) and cassava chip+rice bran in the ratio of 3:1 (CR3:1), and factor B was cotton seed meal levels in the concentrate; 109 g CP/kg (LCM) and 328 g CP/kg (HCM) at similar overall CP levels (490 g CP/kg). Bulls received urea-lime treated rice straw ad libitum and were supplemented with 10 g of concentrate/kg BW. It was found that carbohydrate source and level of cotton seed meal did not have significant effects on ruminal pH, ammonia nitrogen concentration, microbial protein synthesis or feed intake. Animals which received CC showed significantly higher BUN concentration, ruminal propionic acid and butyric acid proportions, while dry matter, organic matter digestibility, populations of total viable bacteria and proteolytic bacteria were lower than those in the CR3:1 treatment. The concentration of total volatile fatty acids was higher in HCM than LCM treatments, while the concentration of butyric acid was higher in LCM than HCM treatments. The population of proteolytic bacteria with the LCM treatments was higher than the HCM treatments; however other bacteria groups were similar among the different levels of cotton seed meal. Bulls which received LCM had higher protein digestibility than those receiving HCM. Therefore, using high levels of cassava chip and cotton seed meal might positively impact on energy and nitrogen balance for the microbial population in the rumen of the young dairy bull.

  12. Effect of Grape Pomace Powder, Mangosteen Peel Powder and Monensin on Nutrient Digestibility, Rumen Fermentation, Nitrogen Balance and Microbial Protein Synthesis in Dairy Steers.

    PubMed

    Foiklang, S; Wanapat, M; Norrapoke, T

    2016-10-01

    This study was designed to investigate the effect of grape pomace powder (GPP), mangosteen peel powder (MPP) and monensin on feed intake, nutrients digestibility, microorganisms, rumen fermentation characteristic, microbial protein synthesis and nitrogen balance in dairy steers. Four, rumen fistulated dairy steers with initial body weight (BW) of 220±15 kg were randomly assigned according to a 4×4 Latin square design to receive four treatments. The treatments were as follows: T1 = control, T2 = supplementation with monensin at 33 mg/kg diet, T3 = supplementation with GPP at 2% of dry matter intake, and T4 = supplementation with MPP at 30 g/kg diet. The steers were offered the concentrate diet at 0.2% BW and 3% urea treated rice straw (UTRS) was fed ad libitum. It was found that GPP supplemented group had higher UTRS intake and nutrient digestibility in terms of neutral detergent fiber and acid detergent fiber than those in control group (p<0.05). Ammonia nitrogen (NH3-N) and blood urea-nitrogen concentration were higher in monensin, GPP and MPP supplemented groups (p<0.05). Total volatile fatty acids and propionate in the GPP group were higher than those in the control group (p<0.05) while acetate concentration, and acetate to propionate ratio were decreased (p<0.01) when steers were supplemented with GPP, monensin, and MPP, respectively. Moreover, protozoal populations in GPP, MPP, and monensin supplementation were significantly lower than those in the control group (p<0.05), while cellulolytic bacterial population was significantly higher in the control group (p<0.05). Nitrogen retention, microbial crude protein and efficiency of microbial nitrogen synthesis were found significantly higher in steers that received GPP (p<0.05). Based on this study it could be concluded that the GPP has potential as an alternative feed supplement in concentrate diets which can result in improved rumen fermentation efficiency, digestibility and microbial protein synthesis in

  13. Effect of Grape Pomace Powder, Mangosteen Peel Powder and Monensin on Nutrient Digestibility, Rumen Fermentation, Nitrogen Balance and Microbial Protein Synthesis in Dairy Steers

    PubMed Central

    Foiklang, S.; Wanapat, M.; Norrapoke, T.

    2016-01-01

    This study was designed to investigate the effect of grape pomace powder (GPP), mangosteen peel powder (MPP) and monensin on feed intake, nutrients digestibility, microorganisms, rumen fermentation characteristic, microbial protein synthesis and nitrogen balance in dairy steers. Four, rumen fistulated dairy steers with initial body weight (BW) of 220±15 kg were randomly assigned according to a 4×4 Latin square design to receive four treatments. The treatments were as follows: T1 = control, T2 = supplementation with monensin at 33 mg/kg diet, T3 = supplementation with GPP at 2% of dry matter intake, and T4 = supplementation with MPP at 30 g/kg diet. The steers were offered the concentrate diet at 0.2% BW and 3% urea treated rice straw (UTRS) was fed ad libitum. It was found that GPP supplemented group had higher UTRS intake and nutrient digestibility in terms of neutral detergent fiber and acid detergent fiber than those in control group (p<0.05). Ammonia nitrogen (NH3-N) and blood urea-nitrogen concentration were higher in monensin, GPP and MPP supplemented groups (p<0.05). Total volatile fatty acids and propionate in the GPP group were higher than those in the control group (p<0.05) while acetate concentration, and acetate to propionate ratio were decreased (p<0.01) when steers were supplemented with GPP, monensin, and MPP, respectively. Moreover, protozoal populations in GPP, MPP, and monensin supplementation were significantly lower than those in the control group (p<0.05), while cellulolytic bacterial population was significantly higher in the control group (p<0.05). Nitrogen retention, microbial crude protein and efficiency of microbial nitrogen synthesis were found significantly higher in steers that received GPP (p<0.05). Based on this study it could be concluded that the GPP has potential as an alternative feed supplement in concentrate diets which can result in improved rumen fermentation efficiency, digestibility and microbial protein synthesis in

  14. Rumen microbes and microbial protein synthesis in Thai native beef cattle fed with feed blocks supplemented with a urea-calcium sulphate mixture.

    PubMed

    Cherdthong, Anusorn; Wanapat, Metha

    2013-12-01

    The influence of slow-release urea ( urea-calcium sulphate mixture; U-CaS) in feed blocks on rumen micro-organisms, predominant cellulolytic bacteria, microbial protein synthesis and ecology was studied in Thai native beef cattle. Four animals with an initial body weight of 100 ± 3.0 kg were randomly assigned to a 4 × 4 Latin square design with four dietary treatments (U-CaS in iso-nitrogen feed blocks at 0, 120, 150 and 180 g/kg dry matter (DM), respectively; U-CaS replaced urea). After 21 days of experimental feeding, rumen fluid was collected at 0 and 4 h after feeding. The mean intake of feed blocks and other feedstuffs offered (rice straw and concentrates) amounted to 0.3, 2.3 and 0.6 kg DM/day, respectively. Inclusion of U-CaS did not altered pH and temperature in the rumen. However, ruminal NH3-N concentration decreased quadratically (p < 0.05) in response to U-CaS inclusion, with the lowest value at 180 g U-CaS per kg feed block. With inclusion of U-CaS, the populations of rumen bacteria increased quadratically (p < 0.05) and counts of fungal zoospores were linearly enhanced (p < 0.05), being highest at 180 g U-CaS per kg feed block. Supplementation of U-CaS increased the concentration of total bacteria linearly (p < 0.05) and of Fibrobacter succinogenes quadratically (p < 0.05), whereas Ruminococcus flavefaciens and Ruminococcus albus were not affected by dietary treatments. Microbial crude protein yield and efficiency of microbial nitrogen (N) synthesis were linearly increased with different levels of U-CaS addition. Furthermore, current data clearly indicate that inclusion of U-CaS in feed blocks can affect micro-organism diversity and major cellulolytic bacteria.

  15. Chemical composition of alfalfa silage with waste date and its feeding effect on ruminal fermentation characteristics and microbial protein synthesis in sheep.

    PubMed

    Rajabi, R; Tahmasbi, R; Dayani, O; Khezri, A

    2017-06-01

    This study was conducted to evaluate the effect of feeding ensiled alfalfa with waste date on ruminal fermentation characteristics, microbial protein synthesis, protozoa population and blood parameters in sheep. Eight rams were used in a 2 × 2 change over design. Each experimental period consisted of 21 days including 16 days for adaptation and 5 days for sampling. For ensiling, fresh alfalfa (Medicago sativa L.) with different levels of waste date (Phoenix dactylifera L.) were mixed together and ensiled in 100-l containers for 45 days. Chemical composition of silages such as dry matter (DM), crude protein, NH3 -N, organic matter, NDF, ADF and pH were determined. Then, it was used as 30% (DM basis) in diets. The experimental diets were as follows: (i) control (diet containing alfalfa silage without waste date), (ii) diet containing alfalfa silage with 5 g waste date/95 g DM, (iii) diet containing alfalfa silage with 10 g waste date/90 g DM, and (iv) diet containing alfalfa silage with 15 g waste date/85 g DM. The results of this experiment showed that adding waste date to alfalfa during ensiling, improved silage quality, DM and energy level. Total protozoa population and all of holotrich, cellulolytic and entodinia in rumen fluid were increased linearly by increasing the level of waste date. Nitrogen (N) intake, urinary N excretion and nitrogen retention were affected by dietary treatments. Also, allantoin, uric acid, total purine derivatives, microbial protein synthesis, cholesterol level and blood urea nitrogen were significantly different. In conclusion, direct ensilage of alfalfa can be attained by mixing 15 g waste date/85 g DM and positive associative effects such as increased metabolizable energy (ME) and silage quality occurred. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  16. Total replacement of corn by mesquite pod meal considering nutritional value, performance, feeding behavior, nitrogen balance, and microbial protein synthesis of Holstein-Zebu crossbred dairy steers.

    PubMed

    de Oliveira Moraes, Gláucia Sabrine; de Souza, Evaristo Jorge Oliveira; Véras, Antonia Sherlânea Chaves; de Paula Almeida, Marina; da Cunha, Márcio Vieira; Torres, Thaysa Rodrigues; da Silva, Camila Sousa; Pereira, Gerfesson Felipe Cavalcanti

    2016-10-01

    The objective of the present study to assess the effects of mesquite pod addition replacing corn (0, 250, 500, 750, and 1000 g/kg in the dry matter basis) on nutrient intake, animal performance, feeding behavior, nutrient digestibility, nitrogen balance, and microbial protein synthesis. Twenty-five Holstein-Zebu crossbred dairy steers at 219 ± 22 kg initial body weight and 18 months of age were used. The experiment lasted 84 days, divided into three periods of 28 days. A completely randomized design was used, and data were submitted to analysis using PROC GLM for analysis of variance and PROC REG for regression analysis using the software Statistical Analysis Systems version 9.1. Experimental diets were composed of Tifton 85 hay, soybean meal, ground corn, mesquite pod meal, and mineral salt. Samples of food offered were collected during the last 3 days of each period, and the leftovers were collected daily, with samples bulked per week. At the end of each 28-day period, the remaining animals were weighed to determine total weight gain and average daily gain. The assessment of behavioral patterns was performed through instantaneous scans in 5-min intervals for three consecutive 12-h days. A single urine sample from each animal was collected on the last day of each collection period at about 4 h after the first feeding. The replacement of corn by mesquite pod meal did not significantly influence treatments regarding nutrients intake, animal performance, and feeding behavior. Retained and consumed nitrogen ratio did not statistically differ between replacement levels. Likewise, there were no statistical differences regarding microbial protein synthesis and efficiency between replacement levels. Mesquite pod meal can be used in Holstein-Zebu crossbred dairy steers' diet with total corn replacement.

  17. Engineering microbial factories for synthesis of value-added products

    PubMed Central

    Du, Jing; Shao, Zengyi; Zhao, Huimin

    2011-01-01

    Microorganisms have become an increasingly important platform for the production of drugs, chemicals, and biofuels from renewable resources. Advances in protein engineering, metabolic engineering, and synthetic biology enable redesigning microbial cellular networks and fine-tuning physiological capabilities, thus generating industrially viable strains for the production of natural and unnatural value-added compounds. In this review, we describe the recent progress on engineering microbial factories for synthesis of valued-added products including alkaloids, terpenoids, flavonoids, polyketides, non-ribosomal peptides, biofuels, and chemicals. Related topics on lignocellulose degradation, sugar utilization, and microbial tolerance improvement will also be discussed. PMID:21526386

  18. Engineering microbial factories for synthesis of value-added products.

    PubMed

    Du, Jing; Shao, Zengyi; Zhao, Huimin

    2011-08-01

    Microorganisms have become an increasingly important platform for the production of drugs, chemicals, and biofuels from renewable resources. Advances in protein engineering, metabolic engineering, and synthetic biology enable redesigning microbial cellular networks and fine-tuning physiological capabilities, thus generating industrially viable strains for the production of natural and unnatural value-added compounds. In this review, we describe the recent progress on engineering microbial factories for synthesis of valued-added products including alkaloids, terpenoids, flavonoids, polyketides, non-ribosomal peptides, biofuels, and chemicals. Related topics on lignocellulose degradation, sugar utilization, and microbial tolerance improvement will also be discussed.

  19. Maximizing efficiency of rumen microbial protein production

    PubMed Central

    Hackmann, Timothy J.; Firkins, Jeffrey L.

    2015-01-01

    Rumen microbes produce cellular protein inefficiently partly because they do not direct all ATP toward growth. They direct some ATP toward maintenance functions, as long-recognized, but they also direct ATP toward reserve carbohydrate synthesis and energy spilling (futile cycles that dissipate heat). Rumen microbes expend ATP by vacillating between (1) accumulation of reserve carbohydrate after feeding (during carbohydrate excess) and (2) mobilization of that carbohydrate thereafter (during carbohydrate limitation). Protozoa account for most accumulation of reserve carbohydrate, and in competition experiments, protozoa accumulated nearly 35-fold more reserve carbohydrate than bacteria. Some pure cultures of bacteria spill energy, but only recently have mixed rumen communities been recognized as capable of the same. When these communities were dosed glucose in vitro, energy spilling could account for nearly 40% of heat production. We suspect that cycling of glycogen (a major reserve carbohydrate) is a major mechanism of spilling; such cycling has already been observed in single-species cultures of protozoa and bacteria. Interconversions of short-chain fatty acids (SCFA) may also expend ATP and depress efficiency of microbial protein production. These interconversions may involve extensive cycling of intermediates, such as cycling of acetate during butyrate production in certain butyrivibrios. We speculate this cycling may expend ATP directly or indirectly. By further quantifying the impact of reserve carbohydrate accumulation, energy spilling, and SCFA interconversions on growth efficiency, we can improve prediction of microbial protein production and guide efforts to improve efficiency of microbial protein production in the rumen. PMID:26029197

  20. Chemical Synthesis of Proteins

    PubMed Central

    Nilsson, Bradley L.; Soellner, Matthew B.; Raines, Ronald T.

    2010-01-01

    Proteins have become accessible targets for chemical synthesis. The basic strategy is to use native chemical ligation, Staudinger ligation, or other orthogonal chemical reactions to couple synthetic peptides. The ligation reactions are compatible with a variety of solvents and proceed in solution or on a solid support. Chemical synthesis enables a level of control on protein composition that greatly exceeds that attainable with ribosome-mediated biosynthesis. Accordingly, the chemical synthesis of proteins is providing previously unattainable insight into the structure and function of proteins. PMID:15869385

  1. Effects of an exogenous enzyme preparation on microbial protein synthesis, enzyme activity and attachment to feed in the Rumen Simulation Technique (Rusitec).

    PubMed

    Wang, Y; McAllister, T A; Rode, L M; Beauchemin, K A; Morgavi, D P; Nsereko, V L; Iwaasa, A D; Yang, W

    2001-03-01

    The effects of an exogenous enzyme preparation, the application method and feed type on ruminal fermentation and microbial protein synthesis were investigated using the rumen simulation technique (Rusitec). Steam-rolled barley grain and chopped alfalfa hay were sprayed with water (control, C), an enzyme preparation with a predominant xylanase activity (EF), or autoclaved enzyme (AEF) 24 h prior to feeding, or the enzyme was supplied in the buffer infused into the Rusitec (EI). Microbial N incorporation was measured using (15NH4)2SO4 in the buffer. Spent feed bags were pummelled mechanically in buffer to segregate the feed particle-associated (FPA) and feed particle-bound (FPB) bacterial fractions. Enzymes applied to feed reduced neutral-detergent fibre content, and increased the concentration of reducing sugars in barley grain, but not alfalfa hay. Ruminal cellulolytic bacteria were more numerous with EF than with C. Disappearance of DM from barley grain was higher with EF than with C, but alfalfa was unaffected by EF. Treatment EF increased incorporation of 15N into FPA and FPB fractions at 24 and 48 h. In contrast, AEF reduced the 24 h values, relative to C; AEF and C were similar at 48 h. Infused enzyme (EI) did not affect 15N incorporation. Xylanase activity in effluent was increased by EF and EI, compared to C, but not by AEF. Xylanase activity in FPA was higher at 48 h than at 24 h with all treatments; it was higher with EF than C at 24 and 48 h, but was not altered by AEF or EI. Applying enzymes onto feeds before feeding was more effective than dosing directly into the artificial rumen for increasing ruminal fibrolytic activity.

  2. Replacing alfalfa hay with dry corn gluten feed and Chinese wild rye grass: Effects on rumen fermentation, rumen microbial protein synthesis, and lactation performance in lactating dairy cows.

    PubMed

    Hao, X Y; Gao, H; Wang, X Y; Zhang, G N; Zhang, Y G

    2017-04-01

    This experiment was conducted to investigate nutrient digestibility, rumen microbial protein synthesis, and lactation performance when a portion of alfalfa was replaced with combinations of dry corn gluten feed (DCGF) and Chinese wild rye grass in the diet of lactating cows. Six multiparous and 3 primiparous Chinese Holsteins were arranged in a replicated 3 × 3 Latin square experiment for 21-d periods. The animals were fed 1 of 3 treatment diets during each period: (1) 0% DCGF (0DCGF); (2) 6.5% DCGF (7DCGF); and (3) 11% DCGF (11DCGF). Diets were isonitrogenous, and a portion of alfalfa hay was replaced with DCGF and Chinese wild rye grass, with similar concentrate mixtures and corn silage contents. The dry matter intake was greater for 11DCGF (21.9 kg/d) than for 0DCGF (20.7 kg/d) or 7DCGF (21.2 kg/d). The treatment diets did not result in difference in milk production, fat and lactose concentration, or yield. Compared with 0DCGF, the ration containing 11% DCGF improved the milk protein concentration. Dry matter and neutral detergent fiber digestibility was greater for 7DCGF (62.7% and 45.6%) and 11DCGF (63.1% and 47.2%) than for 0DCGF (59.4% and 42.3%), and the nitrogen digestibility was similar for the 3 treatments. The concentration of rumen volatile fatty acids was higher in cows fed the 11DCGF diet than in those fed the 0DCGF diet, with no difference between the 7DCGF and 11DCGF diets. The estimated microbial crude protein yield was greater for the 11DCGF diet (1985.1 g/d) than for the 0DCGF diet (1745.0 g/d), with no difference between the 0DCGF and 7DCGF diets. Thus, it appears that feeding DCGF and Chinese wild rye grass in combination can effectively replace a portion of alfalfa hay in the rations of lactating dairy cows.

  3. Rumen fermentation, microbial protein synthesis, and nutrient flow to the omasum in cattle offered corn silage, grass silage, or whole-crop wheat.

    PubMed

    Owens, D; McGee, M; Boland, T; O'Kiely, P

    2009-02-01

    The objectives of this study were to determine the relative effect of feeding corn silage (CS), fermented whole-crop wheat (FWCW), and urea-treated processed whole-crop wheat (UPWCW) compared with grass silage (GS), each supplemented with concentrates, on forage intake, ruminal fermentation, microbial protein synthesis, some plasma metabolites, and ruminal and total tract digestibility in cattle. Four ruminally fistulated steers with a mean BW of 509 kg (SD 6.3) were used in a 4 x 4 Latin square-designed experiment with each period lasting 21 d. The omasal sampling technique in combination with a triple marker method was used to measure nutrient flows to the omasum with Co-EDTA, Yb acetate, and indigestible NDF as liquid, small particle, and large particle phase markers, respectively. Microbial N flow was assessed from purine base concentrations. Steers fed CS, FWCW, and UPWCW consumed 2.7, 2.4, and 2.6 kg/d more (P < 0.05) forage and total DMI, respectively, than those fed GS-based diets. Rumen pH (P = 0.07) and lactic acid (P = 0.11) concentration did not differ between the forages. Rumen concentration of NH(3)-N was greatest for UPWCW and least for CS (P < 0.001). Total VFA concentrations were greater (P < 0.05) for CS than GS and UPWCW, with FWCW being intermediate. Acetate-to-propionate ratio (P < 0.05) was greater (P < 0.05) for UPWCW than the other forages, which did not differ. Apparent ruminal digestion of OM (P < 0.05) was less for CS, FWCW, and UPWCW than GS. Ruminal NDF digestibility was greater (P < 0.01) for GS than the other forages, which did not differ (P > or = 0.06). Total tract NDF digestibility was less (P < 0.05) for UPWCW than the other forages, with GS being greatest and CS and FWCW being intermediate. Starch intake was less (P < 0.001) for GS than the other forages, but there was no effect of forage on omasal starch flow (P = 0.23) or ruminal digestibility (P = 0.88). Flow of non-NH(3)-N and microbial N was greater (P < 0.05) for CS, FWCW

  4. Influence of barley grain particle size and treatment with citric acid on digestibility, ruminal fermentation and microbial protein synthesis in Holstein calves.

    PubMed

    Kazemi-Bonchenari, M; Salem, A Z M; López, S

    2017-01-18

    Chemical and physical treatments of barley grain increase ruminally resistant starch and can improve the rumen fermentation pattern. The objective of the present study was to evaluate the effects of chemical (addition of citric acid, CA) and physical (grinding to two different particle sizes, PS) treatment of barley grain on performance, rumen fermentation, microbial protein yield in the rumen and selected blood metabolites in growing calves. In all, 28 male Holstein calves (172±5.1 kg initial BW) were used in a complete randomised design with a factorial arrangement of 2 barley grain particle sizes×2 levels of citric acid. The diets were as follows: (i) small PS (average 1200 µm) barley grain soaked in water (no CA addition); (ii) small PS barley grain soaked in a CA solution (adding 20 g CA/kg barley); (iii) large PS (average 2400 µm) barley grain soaked in water (no citric acid addition) and (iv) large PS barley grain soaked in a citric acid solution (adding 20 g CA/kg barley). Barley grain was then incorporated at 35% in a total mixed ration and fed to the calves for 11 weeks. Feeding small PS barley decreased feed intake (P=0.02) and average daily weight gain (P=0.01). The addition of CA to barley grain did not affect intake but increased weight gain (P0.05). However, the molar proportion of propionate was increased (P=0.03) when barley was more finely ground, and that of acetate was increased (P=0.04) when CA was added to barley grain. The ruminal concentration of ammonia nitrogen was increased (P<0.01) and microbial nitrogen synthesis in the rumen tended to decrease by adding CA to barley. Treating barley grain with citric acid increased fibre digestibility of total mixed rations, attenuated the decrease in ruminal pH, and improved weight gain and feed efficiency in male Holstein growing calves fed a high-cereal diet (550 g cereal grain/kg diet).

  5. Effects of quebracho tannin extract (Schinopsis balansae Engl.) and activated charcoal on nitrogen balance, rumen microbial protein synthesis and faecal composition of growing Boer goats.

    PubMed

    Al-Kindi, Amal; Dickhoefer, Uta; Schlecht, Eva; Sundrum, Albert; Schiborra, Anne

    2016-08-01

    Under irrigated arid conditions, organic fertiliser rich in slowly decomposable nitrogen (N) and carbon (C) is needed for soil fertility maintenance. Feeding ruminants with condensed tannins will lower ruminal protein degradation, reduce urinary N excretion and might increase the faecal fraction of slowly decomposable N. Supplementation with activated charcoal (AC) might enrich manure with slowly degrading C. Therefore, we investigated the effects of feeding quebracho tannin extract (QTE) and AC on the N balance of goats, the efficiency of microbial protein synthesis in the rumen (EMPS) and the composition of faeces. The feeding trial comprised three periods; in each period, 12 male Boer goats (28 ± 3.9 kg live weight) were assigned to six treatments: a Control diet (per kg diet 500 g grass hay and 500 g concentrate) and to further five treatments the Control diet was supplemented with QTE (20 g and 40 g/kg; diets QTE2 and QTE4, respectively), with AC (15 g and 30 g/kg, diets AC1.5 and AC3.0, respectively) and a mixture of QTE (20 g/kg) plus AC (15 g/kg) (diet QTEAC). In addition to the N balance, EMPS was calculated from daily excretions of purine derivatives, and the composition of faecal N was determined. There was no effect of QTE and AC supplementation on the intake of organic matter (OM), N and fibre, but apparent total tract digestibility of OM was reduced (p = 0.035). Feeding QTE induced a shift in N excretion from urine to faeces (p ≤ 0.001) without altering N retention. Total N excretion tended to decrease with QTE treatments (p = 0.053), but EMPS was not different between treatments. Faecal C excretion was higher in QTE and AC treatments (p = 0.001) compared with the Control, while the composition of faecal N differed only in concentration of undigested dietary N (p = 0.001). The results demonstrate that QTE can be included into diets of goats up to 40 g/kg, without affecting N utilisation, but simultaneously increasing the

  6. [Detection of microbial protein synthesis in the small intestine of sheep using an intraduodenal 15N-urea infusion].

    PubMed

    Bergner, H; Bartelt, J; Kijora, C; Götz, K P

    1991-10-01

    Sheep (3 animals, 50 kg LW) with reentrant cannulas in duodenum and at the end of the ileum received 700 g hay and 800 g alfalfa pellets per animal and day. In a previous 1st period of three days duodenal digesta and in a 2nd period of four days ileal digesta were collected and stored deep frozen. In the main period the digesta flow was interrupted for 28 hours. The duodenal and ileal digesta were collected quantitatively. The previously collected duodenal and ileal digesta portions were introduced hourly. The duodenal digesta was supplemented with 15N-labelled urea for a 24 hour period. 4.5% of the introduced 15N-excess were detected at the end of the ileum in the 24 hour period. 5.6% of the 15N-excess at the end of the ileum were incorporated in bacterial protein. It was measured that the ileal digesta contained 4.62 g N in the TCE precipitable fraction and 24.4% of the TCE precipitable N-fraction was bacterial nitrogen.

  7. Screening of protease producing fungi for microbial digestion of seed proteins and synthesis of amino acids-metalnutrient chelates.

    PubMed

    Deore, G B; Limaye, A S; Dushing, Y A; Dhobale, S B; Kale, S; Laware, S L

    2013-01-15

    The problem of metalnutrient deficiency is becoming more serious with the introduction of modern agricultural practices. As a result, metalnutrient deficiency is recognized as one of the critical yield limiting factors. Metalnutrients are generally offered in their sulphate or oxide forms. However, it is reported that organically bound minerals generally have a higher bioavailability than inorganic minerals. Chelation makes otherwise unavailable metalnutrients plant available. Amino acids are well known among various chelating agents. In present investigation the fungus Paecilomyces variotii PR-4 was isolated from soil and was used for production of protease and determination of its activity. Proteins from germinating seeds of chick pea, mung bean, soybean and cowpea were hydrolyzed for the production of amino acids. Amino acids were recovered, estimated and utilized for chelation of metalnutrients viz., Zn, Cu, Fe, Mn, Mg, B and Mo. The resultant chelates were employed to detect with Fourier Transform Infra-Red Spectrophotometer (FTIR) analysis. The peaks of most intensive bands in the IR spectra of ligands recorded were present in the intervals of the wave numbers 3500-3300 and 1720-1700 cm(-1). Chelation of metalnutrients led to the broadening of peak and changes of the peak position of hydroxyl groups, which indicated the binding of the carboxylic groups and primary amine groups of amino acids to the metalnutrients. The resultant amino acids-metalnutrient chelates can be utilized as organic fertilizer.

  8. Synthesis of Lipidated Proteins.

    PubMed

    Mejuch, Tom; Waldmann, Herbert

    2016-08-17

    Protein lipidation is one of the major post-translational modifications (PTM) of proteins. The attachment of the lipid moiety frequently determines the localization and the function of the lipoproteins. Lipidated proteins participate in many essential biological processes in eukaryotic cells, including vesicular trafficking, signal transduction, and regulation of the immune response. Malfunction of these cellular processes usually leads to various diseases such as cancer. Understanding the mechanism of cellular signaling and identifying the protein-protein and protein-lipid interactions in which the lipoproteins are involved is a crucial task. To achieve these goals, fully functional lipidated proteins are required. However, access to lipoproteins by means of standard expression is often rather limited. Therefore, semisynthetic methods, involving the synthesis of lipidated peptides and their subsequent chemoselective ligation to yield full-length lipoproteins, were developed. In this Review we summarize the commonly used methods for lipoprotein synthesis and the development of the corresponding chemoselective ligation techniques. Several key studies involving full-length semisynthetic lipidated Ras, Rheb, and LC3 proteins are presented.

  9. Effect of sulfur supplements on cellulolytic rumen micro-organisms and microbial protein synthesis in cattle fed a high fibre diet.

    PubMed

    McSweeney, C S; Denman, S E

    2007-11-01

    To examine the effect of sulfur-containing compounds on the growth of anaerobic rumen fungi and the fibrolytic rumen bacteria Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes in pure culture and within the cattle rumen. The effect of two reduced sulfur compounds, 3-mercaptopropionic acid (MPA) or 3-mercapto-1-propanesulfonic acid as the sole S source on growth of pure fibroyltic fungal and bacterial cultures showed that these compounds were capable of sustaining growth. An in vivo trial was then conducted to determine the effect of sulfur supplements (MPA and sodium sulfate) on microbial population dynamics in cattle fed the roughage Dichanthium aristatum. Real-time PCR showed significant increases in fibrolytic bacterial and fungal populations when cattle were supplemented with these compounds. Sulfate supplementation leads to an increase in dry matter intake without a change in whole tract dry matter digestibility. Supplementation of low S-containing diets with either sodium sulfate or MPA stimulates microbial growth with an increase in rumen microbial protein supply to the animal. Through the use of real-time PCR monitoring, a better understanding of the effect of S supplementation on discrete microbial populations within the rumen is provided.

  10. Tuning microbial hosts for membrane protein production

    PubMed Central

    2009-01-01

    The last four years have brought exciting progress in membrane protein research. Finally those many efforts that have been put into expression of eukaryotic membrane proteins are coming to fruition and enable to solve an ever-growing number of high resolution structures. In the past, many skilful optimization steps were required to achieve sufficient expression of functional membrane proteins. Optimization was performed individually for every membrane protein, but provided insight about commonly encountered bottlenecks and, more importantly, general guidelines how to alleviate cellular limitations during microbial membrane protein expression. Lately, system-wide analyses are emerging as powerful means to decipher cellular bottlenecks during heterologous protein production and their use in microbial membrane protein expression has grown in popularity during the past months. This review covers the most prominent solutions and pitfalls in expression of eukaryotic membrane proteins using microbial hosts (prokaryotes, yeasts), highlights skilful applications of our basic understanding to improve membrane protein production. Omics technologies provide new concepts to engineer microbial hosts for membrane protein production. PMID:20040113

  11. Microbial synthesis of gold nanoparticles: current status and future prospects.

    PubMed

    Shedbalkar, Utkarsha; Singh, Richa; Wadhwani, Sweety; Gaidhani, Sharvari; Chopade, B A

    2014-07-01

    Gold nanoparticles have been employed in biomedicine since the last decade because of their unique optical, electrical and photothermal properties. Present review discusses the microbial synthesis, properties and biomedical applications of gold nanoparticles. Different microbial synthesis strategies used so far for obtaining better yield and stability have been described. It also includes different methods used for the characterization and analysis of gold nanoparticles, viz. UV-visible spectroscopy, Fourier transform infrared spectroscopy, X ray diffraction spectroscopy, scanning electron microscopy, ransmission electron microscopy, atomic force microscopy, electron dispersive X ray, X ray photoelectron spectroscopy and cyclic voltametry. The different mechanisms involved in microbial synthesis of gold nanoparticles have been discussed. The information related to applications of microbially synthesized gold nanoparticles and patents on microbial synthesis of gold nanoparticles has been summarized. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Using a complex non-TDN based model (the DVE/OEB system) to predict microbial protein synthesis, endogenous protein, degradation balance, and total truly absorbed protein supply of different varieties of cereal oats for ruminants.

    PubMed

    Yu, Peiqiang; Niu, Zhiyuan

    2009-06-01

    Recently a new super-genotype of oat has been developed in the Crop Development Center called CDC SO-I ('SuperOat': low lignin and high fat). In a previous study, we evaluated total metabolizable protein using a TDN-based model-NRC-2001 which is popular in North America. However, the TDN-based NRC model is not accepted universally. The objectives of this study were to use a complex non-TDN based model, the DVE/OEB system, to evaluate potential nutrient supply to ruminants from the SuperOat in comparison with two normal varieties of oats (CDC Dancer and Derby) in western Canada. The quantitative predictions were made in terms of: (i) truly absorbed rumen synthesized microbial proteins in the small intestine; (ii) truly absorbed rumen undegraded feed protein in the small intestine; (iii) endogenous protein in the digestive tract; (iv) total truly absorbed protein in the small intestine; and (v) protein degraded balance. Results showed that using the DVE/OEB system to predict the potential nutrient supply, it was found that the SuperOat had similar truly absorbed rumen synthesized microbial protein levels (61, 63, 59 g/kg DM, P > 0.05, for SuperOat, CDC Dancer and Derby, respectively), higher truly absorbed rumen undegraded feed protein than CDC Dancer (22 vs. 17 g/kg DM P < 0.05, for SuperOat, CDC Dancer, respectively), but similar to Derby (22 vs. 21 g/kg DM; P > 0.05), and similar endogenous protein (16, 16, 18 g/kg DM; P > 0.05). Total truly absorbed protein in the small intestine is only numerically higher in the SuperOat (67 vs. 65, 62 g/kg DM, P > 0.05, for CDC Dancer and Derby, respectively). However, the protein degraded balance was significantly different (P < 0.05) with a positive value for the SuperOat (7.0 g/kg DM) and negative values for two normal varieties (-1.5, -6.8 g/kg DM for CDC Dancer and Derby, respectively). In conclusion, the model predicted significantly different protein degradation balance. The SuperOat had positive degradation balance but

  13. Effects of cold exposure on feed protein degradation, microbial protein synthesis and transfer of plasma urea to the rumen of sheep.

    PubMed

    Kennedy, P M; Christopherson, R J; Milligan, L P

    1982-05-01

    affect urea transfer. The production of ammonia from feed and endogenous protein was approximately 0.66 and 0.47 g N/g N intake of barley-CSM and lucerne diets, with no effect of cold exposure. Cold exposure reduced the value from 0.57 to 0.38 for brome-grass. 5. The results are compared with those obtained previously with pelleted hay, and the importance of large particle breakdown in the prediction of OM and N fermentation using nylon bags is discussed.

  14. Effects of feeding formate-treated alfalfa silage or red clover silage on omasal nutrient flow and microbial protein synthesis in lactating dairy cows.

    PubMed

    Brito, A F; Broderick, G A; Olmos Colmenero, J J; Reynal, S M

    2007-03-01

    Eight ruminally cannulated Holstein cows that were part of a larger lactation trial were blocked by days in milk and randomly assigned to replicated 4 x 4 Latin squares to quantify effects of nonprotein N (NPN) content of alfalfa silage (AS) and red clover silage (RCS) on omasal nutrient flows. Diets, fed as total mixed rations, contained 50% dry matter from control AS (CAS), ammonium tetraformate-treated AS (TAS), late maturity RCS (RCS1), or early maturity RCS (RCS2). Silages differed in NPN and acid detergent insoluble N (% of total N): 50 and 4% (CAS); 45 and 3% (TAS); 27 and 8% (RCS1); 29 and 4% (RCS2). The CAS, TAS, and RCS2 diets had 36% high-moisture shelled corn and 3% soybean meal, and the RCS1 diet had 31% high-moisture shelled corn and 9% soybean meal. All diets contained 10% corn silage, 27% neutral detergent fiber, and 17 to 18% crude protein. Compared with RCS, feeding AS increased the supply of rumen-degraded protein and omasal flows of nonammonia N and microbial protein, which may explain the improved milk yield observed in the companion lactation trial. However, omasal flow of rumen-undegraded protein was 34% greater on RCS. Except for Arg, omasal flows of individual AA, branched-chain AA, nonessential AA, essential AA, and total AA did not differ between cows fed AS vs. RCS. Within AS diets, no differences in omasal AA flows were observed. However, omasal flows of Asp, Ser, Glu, Cys, Val, Ile, Tyr, Lys, total nonessential AA, and total AA all were higher in cows fed RCS1 vs. cows fed RCS2. In this trial, there was no advantage to reducing NPN content of hay-crop silage.

  15. Evaluation of isoquinoline alkaloid supplementation levels on ruminal fermentation, characteristics of digestion, and microbial protein synthesis in steers fed a high-energy diet.

    PubMed

    Aguilar-Hernández, J A; Urías-Estrada, J D; López-Soto, M A; Barreras, A; Plascencia, A; Montaño, M; González-Vizcarra, V M; Estrada-Angulo, A; Castro-Pérez, B I; Barajas, R; Rogge, H I; Zinn, R A

    2016-01-01

    Four Holstein steers with ruminal and duodenal cannulas were used in a 4 × 4 Latin square design to examine the effect of daily intake of 0, 2, 4 or 6 g/steer of standardized plant extract containing a mixture of quaternary benzophenanthridine alkaloids and protopine alkaloids (QBA+PA) on the characteristics of ruminal fermentation and characteristics of digestion. The basal diet consisted of a steam-flaked corn-based finishing diet that contained 62% corn and 12% sudangrass hay and the rest of diet was composed of mainly dried distillers grains, molasses, fat, and minerals. The source of QBA+PA used was Sangrovit-RS (Phytobiotics Futterzusatzstoffe GmbH, Eltville, Germany) and supplementation levels of 2, 4, and 6 g Sangrovit-RS∙steer∙d, which represented a net daily ingestion of approximately 6, 12, and 18 mg of QBA+PA compounds, respectively. Inclusion of QBA+PA linearly increased ( = 0.04) flow to the duodenum of nonammonia N and linearly decreased ( < 0.01) duodenal flows of ammonia N. Ruminal microbial efficiency (duodenal microbial N; g/kg OM fermented in the rumen) and protein efficiency (duodenal nonammonia N; g/g N intake) were increased ( < 0.05) as the level of QBA+PA increased. There were no effects of QBA+PA supplementation on ruminal, postruminal, and total tract digestion of OM, starch, and NDF, but postruminal and total tract digestion of N increased ( < 0.01) as the level of QBA+PA increased. Digestible energy of the diet tended to increase (linear affect, = 0.09) with QBA+PA supplementation. Ruminal pH and total VFA molar concentrations were not different between treatments. Ruminal NH-N concentration linearly decreased ( = 0.02) with QBA+PA supplementation. Ruminal molar proportion of acetate increased ( = 0.04) as the supplementation level of QBA+PA increased. It is concluded that QBA+PA supplementation enhances efficiency of N utilization in feedlot steers fed a steam-flaked corn-based finishing diet. This effect was due, in part, to

  16. Selenite Reduction by Anaerobic Microbial Aggregates: Microbial Community Structure, and Proteins Associated to the Produced Selenium Spheres

    PubMed Central

    Gonzalez-Gil, Graciela; Lens, Piet N. L.; Saikaly, Pascal E.

    2016-01-01

    Certain types of anaerobic granular sludge, which consists of microbial aggregates, can reduce selenium oxyanions. To envisage strategies for removing those oxyanions from wastewater and recovering the produced elemental selenium (Se0), insights into the microbial community structure and synthesis of Se0 within these microbial aggregates are required. High-throughput sequencing showed that Veillonellaceae (c.a. 20%) and Pseudomonadaceae (c.a.10%) were the most abundant microbial phylotypes in selenite reducing microbial aggregates. The majority of the Pseudomonadaceae sequences were affiliated to the genus Pseudomonas. A distinct outer layer (∼200 μm) of selenium deposits indicated that bioreduction occurred in the outer zone of the microbial aggregates. In that outer layer, SEM analysis showed abundant intracellular and extracellular Se0 (nano)spheres, with some cells having high numbers of intracellular Se0 spheres. Electron tomography showed that microbial cells can harbor a single large intracellular sphere that stretches the cell body. The Se0 spheres produced by the microorganisms were capped with organic material. X-ray photoelectron spectroscopy (XPS) analysis of extracted Se0 spheres, combined with a mathematical approach to analyzing XPS spectra from biological origin, indicated that proteins and lipids were components of the capping material associated to the Se0 spheres. The most abundant proteins associated to the spheres were identified by proteomic analysis. Most of the proteins or peptide sequences capping the Se0 spheres were identified as periplasmic outer membrane porins and as the cytoplasmic elongation factor Tu protein, suggesting an intracellular formation of the Se0 spheres. In view of these and previous findings, a schematic model for the synthesis of Se0 spheres by the microorganisms inhabiting the granular sludge is proposed. PMID:27199909

  17. Selenite Reduction by Anaerobic Microbial Aggregates: Microbial Community Structure, and Proteins Associated to the Produced Selenium Spheres.

    PubMed

    Gonzalez-Gil, Graciela; Lens, Piet N L; Saikaly, Pascal E

    2016-01-01

    Certain types of anaerobic granular sludge, which consists of microbial aggregates, can reduce selenium oxyanions. To envisage strategies for removing those oxyanions from wastewater and recovering the produced elemental selenium (Se(0)), insights into the microbial community structure and synthesis of Se(0) within these microbial aggregates are required. High-throughput sequencing showed that Veillonellaceae (c.a. 20%) and Pseudomonadaceae (c.a.10%) were the most abundant microbial phylotypes in selenite reducing microbial aggregates. The majority of the Pseudomonadaceae sequences were affiliated to the genus Pseudomonas. A distinct outer layer (∼200 μm) of selenium deposits indicated that bioreduction occurred in the outer zone of the microbial aggregates. In that outer layer, SEM analysis showed abundant intracellular and extracellular Se(0) (nano)spheres, with some cells having high numbers of intracellular Se(0) spheres. Electron tomography showed that microbial cells can harbor a single large intracellular sphere that stretches the cell body. The Se(0) spheres produced by the microorganisms were capped with organic material. X-ray photoelectron spectroscopy (XPS) analysis of extracted Se(0) spheres, combined with a mathematical approach to analyzing XPS spectra from biological origin, indicated that proteins and lipids were components of the capping material associated to the Se(0) spheres. The most abundant proteins associated to the spheres were identified by proteomic analysis. Most of the proteins or peptide sequences capping the Se(0) spheres were identified as periplasmic outer membrane porins and as the cytoplasmic elongation factor Tu protein, suggesting an intracellular formation of the Se(0) spheres. In view of these and previous findings, a schematic model for the synthesis of Se(0) spheres by the microorganisms inhabiting the granular sludge is proposed.

  18. Microbial synthesis of chalcogenide semiconductor nanoparticles: a review.

    PubMed

    Jacob, Jaya Mary; Lens, Piet N L; Balakrishnan, Raj Mohan

    2016-01-01

    Chalcogenide semiconductor quantum dots are emerging as promising nanomaterials due to their size tunable optoelectronic properties. The commercial synthesis and their subsequent integration for practical uses have, however, been contorted largely due to the toxicity and cost issues associated with the present chemical synthesis protocols. Accordingly, there is an immediate need to develop alternative environment-friendly synthesis procedures. Microbial factories hold immense potential to achieve this objective. Over the past few years, bacteria, fungi and yeasts have been experimented with as eco-friendly and cost-effective tools for the biosynthesis of semiconductor quantum dots. This review provides a detailed overview about the production of chalcogen-based semiconductor quantum particles using the inherent microbial machinery. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. Effect of field peas, chickpeas, and lentils on rumen fermentation, digestion, microbial protein synthesis, and feedlot performance in receiving diets for beef cattle.

    PubMed

    Gilbery, T C; Lardy, G P; Soto-Navarro, S A; Bauer, M L; Anderson, V L

    2007-11-01

    Two experiments were conducted to evaluate the use of pulse grains in receiving diets for cattle. In Exp. 1, 8 Holstein (615 +/- 97 kg of initial BW) and 8 Angus-crossbred steers (403 +/- 73 kg of initial BW) fitted with ruminal and duodenal cannulas were blocked by breed and used in a randomized complete block design to assess the effects of pulse grain inclusion in receiving diets on intake, ruminal fermentation, and site of digestion. Experiment 2 was a 39-d feedlot receiving trial in which 176 mixed-breed steers (254 +/- 19 kg of initial BW) were used in a randomized complete block design to determine the effects of pulse grains on DMI, ADG, and G:F in newly received feedlot cattle. In both studies, pulse grains (field peas, lentils, or chickpea) replaced corn and canola meal as the grain component in diets fed as a total mixed ration. Treatments included 1) corn and canola meal (control); 2) field pea; 3) lentil; and 4) chickpea. Preplanned orthogonal contrasts were conducted between control vs. chickpea, control vs. field pea, and control vs. lentil. In Exp. 1, there were no differences among treatments for DMI (11.63 kg/d, 2.32% of BW daily, P = 0.63) or OM intake (P = 0.63). No treatment effects for apparent ruminal (P = 0.10) and total tract OM digestibilities (P = 0.40) were detected when pulse grains replaced corn and canola meal. Crude protein intake (P = 0.78), microbial CP flow (P = 0.46), total tract CP digestibility (P = 0.45), and microbial efficiency (P = 0.18) were also not influenced by treatment. Total-tract ADF (P = 0.004) and NDF (P = 0.04) digestibilities were greater with field pea vs. control. Total VFA concentrations were lower for field pea (P = 0.009) and lentil (P < 0.001) compared with control. Chickpea, field pea, and lentil had lower (P < or = 0.03) acetate molar proportion than control. Ruminal pH (P = 0.18) and NH3 (P = 0.14) were not different among treatments. In Exp. 2, calves fed chickpea, field pea, and lentil had greater

  20. The Modern Synthesis in the Light of Microbial Genomics.

    PubMed

    Booth, Austin; Mariscal, Carlos; Doolittle, W Ford

    2016-09-08

    We review the theoretical implications of findings in genomics for evolutionary biology since the Modern Synthesis. We examine the ways in which microbial genomics has influenced our understanding of the last universal common ancestor, the tree of life, species, lineages, and evolutionary transitions. We conclude by advocating a piecemeal toolkit approach to evolutionary biology, in lieu of any grand unified theory updated to include microbial genomics.

  1. Chloroplast ribosomes and protein synthesis.

    PubMed Central

    Harris, E H; Boynton, J E; Gillham, N W

    1994-01-01

    Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles in protein synthesis. This review is concerned primarily with the RNAs and proteins that constitute the chloroplast ribosome, the genes that encode these components, and their expression. It begins with an overview of chloroplast genome structure in land plants and algae and then presents a brief comparison of chloroplast and prokaryotic protein-synthesizing systems and a more detailed analysis of chloroplast rRNAs and ribosomal proteins. A description of the synthesis and assembly of chloroplast ribosomes follows. The review concludes with discussion of whether chloroplast protein synthesis is essential for cell survival. PMID:7854253

  2. Microbial Synthesis of Alka(e)nes

    PubMed Central

    Wang, Weihua; Lu, Xuefeng

    2013-01-01

    Alka(e)nes are the predominant constituents of gasoline, diesel, and jet fuels. They can be produced naturally by a wide range of microorganisms. Bio-alka(e)nes can be used as drop-in biofuels. To date, five microbial pathways that convert free fatty acids or fatty acid derivatives into alka(e)nes have been identified or reconstituted. The discoveries open a door to achieve microbial production of alka(e)nes with high efficiency. The modules derived from these alka(e)ne biosynthetic pathways can be assembled as biological parts and synthetic biology strategies can be employed to optimize the metabolic pathways and improve alka(e)ne production. PMID:25023719

  3. Influence of ruminal or duodenal soybean oil infusion on intake, ruminal fermentation, site and extent of digestion, and microbial protein synthesis in beef heifers consuming grass hay.

    PubMed

    Krysl, L J; Judkins, M B; Bohman, V R

    1991-06-01

    Six heifers (two Hereford X Jersey, four Hereford X Longhorn; average BW 278 kg) cannulated at the rumen and duodenum and fed a grass hay (fescue/orchardgrass) diet were used in a replicated 3 X 3 Latin square. Treatments were either no infusion (C), 150 ml of duodenally infused soybean oil (DI), or 150 ml of ruminally infused soybean oil (RI)/heifer twice daily for a total daily infusion of 300 ml of soybean oil. Periods of the Latin square included 18 d for adaptation and 5 d for collection. Forage OM, ADF, NDF, and N intakes were not affected (P greater than .10) by soybean oil infusion. Ruminal (P = .11) and total tract (P less than .10) OM digestibilities were decreased by RI compared with C or DI, but ADF and NDF digestibilities were not affected by treatment. Duodenal N (P less than .05) and microbial N flows were increased (P less than .10) for C and RI compared with DI. Microbial efficiency (g of N/kg of OM truly fermented) was improved (P less than .10) by RI compared with DI but did not differ (P greater than .10) from C. Ruminal pH was lower (P less than .05) with RI than with either C or DI. Ruminal NH3 N, total VFA, and acetate were not affected (P greater than .10) by treatment. Propionate (mol/100 mol) was greater (P less than .05) with RI than with DI and C, but the proportion of butyrate did not differ among treatments. These data indicate minimal direct benefits for improving forage usage as a result of soybean oil infusion with a 100% grass diet; however, animals should realize benefits from additional dietary energy provided by infused lipid.

  4. Microbial protein production: maximizing protein production efficiency in Space habitats

    NASA Astrophysics Data System (ADS)

    Clauwaert, Peter; Alloul, Abbas; Muys, Maarten; Sui, Yixing; Boon, Nico; Luther, Amanda; Christiaens, Marlies E. R.; Ilgrande, Chiara; Lindeboom, Ralph E. F.; Rabaey, Korneel; Vlaeminck, Siegfried

    2016-07-01

    On top of the goal of a closed material cycle for Space habitats or deep Space missions with food production, extreme requirements apply to such Life Support Systems (LSS) in terms of mass, volume, crew time, energy consumption and controllability. Although relatively high water recovery efficiencies (~70-90%) can be achieved, all Space missions until now have relied on terrestrial food resupply and thus no nutrient recovery has been achieved so far. Researchers and Space agencies have typically been focussing on the cultivation of higher plants to produce food for crew members for future Space LSS. It can be assumed that the required surface area (50-500 m2 per crew member), plant evaporation rates (~200 kg per crew member per day), power consumption (~65 kW per crew member) and the degree of controllability of a higher plant compartment will have a great impact on the feasibility of realizing a future closed loop LSS in Space for the first time. As the food production density is so critical in a LSS, a combination of higher plant cultivation and microbial protein production might increase the chances of success of future Space LSS's since the production densities are significantly higher. Higher plants in Space LSS's would typically have an average specific protein production rate in the order of 0-4 kg protein m-3 year-1 (calculated from Do, Owens et al. (2016)), whereas bacterial biomass can be produced continuously at a rate up to ~1000 kg protein m-3 year-1. Several routes for microbial food production will be discussed in this presentation, ranging from aerobic heterotrophic production with for instance Candida ingens (Strayer, Finger et al. 1997), photoheterotrophic production with PNSB such as Rhodospirillum rubrum (Hendrickx, De Wever et al. 2006) and hydrogenotrophic production with HOB such as Cupriavidus necator (Matassa, Boon et al. 2015)) and photoautotrophic production of oxygen and microbial food (e.g. Arthrospira sp. (Hendrickx, De Wever et al

  5. Effects of Combining Feed Grade Urea and a Slow-release Urea Product on Characteristics of Digestion, Microbial Protein Synthesis and Digestible Energy in Steers Fed Diets with Different Starch:ADF Ratios

    PubMed Central

    López-Soto, M. A.; Rivera-Méndez, C. R.; Aguilar-Hernández, J. A.; Barreras, A.; Calderón-Cortés, J. F.; Plascencia, A.; Dávila-Ramos, H.; Estrada-Angulo, A.; Valdes-García, Y. S.

    2014-01-01

    As a result of the cost of grains, the replacement of grains by co-products (i.e. DDGS) in feedlot diets is a common practice. This change produces diets that contain a lower amount of starch and greater amount of fibre. Hypothetically, combining feed grade urea (U) with slow release urea (Optigen) in this type of diet should elicit a better synchrony between starch (high-rate of digestion) and fibre (low-rate of digestion) promoting a better microbial protein synthesis and ruminal digestion with increasing the digestible energy of the diet. Four cannulated Holstein steers (213±4 kg) were used in a 4×4 Latin square design to examine the combination of Optigen and U in a finishing diet containing different starch:acid detergent fibre ratios (S:F) on the characteristics of digestive function. Three S:F ratios (3.0, 4.5, and 6.0) were tested using a combination of U (0.80%) and Optigen (1.0%). Additionally, a treatment of 4.5 S:F ratio with urea (0.80% in ration) as the sole source of non-protein nitrogen was used to compare the effect of urea combination at same S:F ratio. The S:F ratio of the diet was manipulated by replacing the corn grain by dried distillers grain with solubles and roughage. Urea combination did not affect ruminal pH. The S:F ratio did not affect ruminal pH at 0 and 2 h post-feeding but, at 4 and 6 h, the ruminal pH decreased as the S:F ratio increased (linear, p<0.05). Ruminal digestion of OM, starch and feed N were not affected by urea combination or S:F ratio. The urea combination did not affect ADF ruminal digestion. ADF ruminal digestion decreased linearly (p = 0.02) as the S:F ratio increased. Compared to the urea treatment (p<0.05) and within the urea combination treatment (quadratic, p<0.01), the flow of microbial nitrogen (MN) to the small intestine and ruminal microbial efficiency were greater for the urea combination at a S:F ratio of 4.5. Irrespective of the S:F ratio, the urea combination improved (2.8%, p = 0.02) postruminal N

  6. Effects of alfalfa silage storage structure and roasting corn on ruminal digestion and microbial CP synthesis in lactating dairy cows

    USDA-ARS?s Scientific Manuscript database

    The objective of this experiment was to determine the effects of unroasted ground shelled corn (GSC) or roasted GSC (RGSC), when fed with alfalfa, ensiled in bag, bunker, or O2-limiting tower silos on ruminal digestion and microbial protein synthesis in lactating dairy cows. The roasted corn was hea...

  7. Urinary excretion of purine derivatives, microbial protein synthesis, nitrogen use, and ruminal fermentation in sheep and goats fed diets of different quality.

    PubMed

    Carro, M D; Cantalapiedra-Hijar, G; Ranilla, M J; Molina-Alcaide, E

    2012-11-01

    The objective of this study was to compare N balance, microbial N flow (MNF) estimated from purine derivatives (PD) urinary excretion, and its variation when estimated using purine bases:N ratios in liquid associated bacteria (LAB) from models reported in the literature (MNF - response models) or measured ratios in liquid and solid-associated bacterial (SAB) pellets (MNF-LAB+SAB), diet digestibility, and rumen fermentation variables in sheep and goats fed 3 different practical, quality diets to study interspecies differences concerning N use as accurately as possible. Four mature female Merino sheep and 4 mature female Granadina goats, each fitted with a ruminal cannula, were used in 3 × 3 Latin square design with an extra animal. Two experimental diets had a forage-to-concentrate ratio of 70:30 (DM basis) with alfalfa hay (ALC) or grass hay (GRC) as forage, and the third diet contained 70% concentrate and 30% alfalfa hay (CAL). All animals were fed the diets at a daily rate of 56 g/kg BW(0.75) to minimize feed selection. Digestibility of nutrients was similar (P = 0.16 to 0.88) in the 2 species, but some animal species × diet interactions (P = 0.01 to 0.04) were detected. There were small differences between the fermentation patterns of both animal species. Goats showed decreased VFA concentrations (P = 0.005) and butyrate proportions (P = 0.04), and greater acetate proportions (P = 0.02) compared with sheep, whereas N intake and percentage of N intake excreted in feces were similar in both species (P = 0.58 and 0.15, respectively), the percentage excreted via the urine was greater in goats compared with sheep (P < 0.001). As a consequence, sheep had greater (P < 0.001) N retention than goats (averaged across diets, 32.6% and 16.1% of N intake, respectively). There were no differences (P = 0.95) between animal species in total PD excretion, but goats showed a greater excretion of allantoin (P = 0.01) and decreased excretion of xanthine (P = 0.008) and

  8. Effects of extruding wheat dried distillers grains with solubles with peas or canola meal on ruminal fermentation, microbial protein synthesis, nutrient digestion, and milk production in dairy cows.

    PubMed

    Claassen, R M; Christensen, D A; Mutsvangwa, T

    2016-09-01

    Our objective was to examine the effects of feeding coextruded and nonextruded supplements consisting of wheat dried distillers grains with solubles with peas (WDDGS-peas) or canola meal (WDDGS-CM) on ruminal fermentation, omasal flow, and production performance in Holstein cows. Eight cows (4 ruminally cannulated) were used in a replicated 4×4 Latin square with 28-d periods and a 2×2 factorial arrangement of dietary treatments. Dietary treatments were coextruded or nonextruded mixtures of WDDGS-peas and WDDGS-CM that were included in total mixed rations at 15.1% [dry matter (DM) basis]. Diet had no effect on DM intake. Milk yield was greater in cows fed coextruded diets compared with those fed nonextruded diets. Milk fat content was greater in cows fed nonextruded diets compared with those fed coextruded diets, but milk fat yield was greater in cows fed coextruded diets compared with those fed nonextruded diets. Milk yield tended to be greater and milk protein yield was greater in cows fed WDDGS-peas compared with those fed WDDGS-CM. Cows fed nonextruded diets had a greater milk urea-N concentration compared with those fed coextruded diets. Cows fed coextruded diets had greater ruminal digestion of DM and tended to have greater ruminal digestion of organic matter compared with those fed nonextruded diets. Total-tract digestibilities of organic matter, crude protein, ether extract, and starch were greater, whereas that of acid detergent fiber and neutral detergent fiber tended to be greater in cows fed coextruded compared with those fed nonextruded diets. Total-tract digestibility of ether extract was lower whereas that of starch was greater and that of crude protein tended to be greater in cows fed WDDGS-peas compared with those fed WDDGS-CM. Total N excretion and milk N efficiency were unaffected by diet. Ruminal NH3-N concentration tended to be greater in cows fed WDDGS-CM compared with those fed WDDGS-peas. Ruminal propionate concentration was greater whereas

  9. Microbial synthesis and the characterization of metal-substituted magnetites

    NASA Astrophysics Data System (ADS)

    Roh, Y.; Lauf, R. J.; McMillan, A. D.; Zhang, C.; Rawn, C. J.; Bai, J.; Phelps, T. J.

    2001-06-01

    The use of bacteria as a novel biotechnology to facilitate the production of nanoparticles is in its infancy. We describe a bacterially mediated electrochemical process in which metal (Co, Cr, or Ni)-substituted magnetite powders were synthesized by iron(III)-reducing bacteria under anaerobic conditions. Amorphous Fe(III) oxyhydroxides plus soluble metal species (Co, Cr, Ni) comprise the electron acceptor and hydrogen or simple organics comprise the electron donor. The microbial processes produced copious amount of nm-sized, metal-substituted magnetite crystals. Chemical analysis and X-ray powder diffraction analysis showed that metals such as Co, Cr, and Ni were substituted into biologically facilitated magnetites. These results suggest that the bacteria may be viewed as a nonspecific source of electrons at a potential that can be calculated or surmised based on the underlying thermodynamics. Microbially facilitated synthesis of the metal-substituted magnetites at near ambient temperatures may expand the possible use of the specialized ferromagnetic particles.

  10. Protein chemical synthesis in drug discovery.

    PubMed

    Liu, Fa; Mayer, John P

    2015-01-01

    The discovery of novel therapeutics to combat human disease has traditionally been among the most important goals of research chemists. After a century of innovation, state-of-the-art chemical protein synthesis is now capable of efficiently assembling proteins of up to several hundred residues in length from individual amino acids. By virtue of its unique ability to incorporate non-native structural elements, chemical protein synthesis has been seminal in the recent development of several novel drug discovery technologies. In this chapter, we review the key advances in peptide and protein chemistry which have enabled our current synthetic capabilities. We also discuss the synthesis of D-proteins and their applications in mirror image phage-display and racemic protein crystallography, the synthesis of enzymes for structure-based drug discovery, and the direct synthesis of homogenous protein pharmaceuticals.

  11. Chronological protein synthesis in regenerating rat liver.

    PubMed

    He, Jinjun; Hao, Shuai; Zhang, Hao; Guo, Fuzheng; Huang, Lingyun; Xiao, Xueyuan; He, Dacheng

    2015-07-01

    Liver regeneration has been studied for decades; however, its regulation remains unclear. In this study, we report a dynamic tracing of protein synthesis in rat regenerating liver with a new proteomic technique, (35) S in vivo labeling analysis for dynamic proteomics (SiLAD). Conventional proteomic techniques typically measure protein alteration in accumulated amounts. The SiLAD technique specifically detects protein synthesis velocity instead of accumulated amounts of protein through (35) S pulse labeling of newly synthesized proteins, providing a direct way for analyzing protein synthesis variations. Consequently, protein synthesis within short as 30 min was visualized and protein regulations in the first 8 h of regenerating liver were dynamically traced. Further, the 3.5-5 h post partial hepatectomy (PHx) was shown to be an important regulatory turning point by acute regulation of many proteins in the initiation of liver regeneration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electricity generation from synthesis gas by microbial processes: CO fermentation and microbial fuel cell technology.

    PubMed

    Kim, Daehee; Chang, In Seop

    2009-10-01

    A microbiological process was established to harvest electricity from the carbon monoxide (CO). A CO fermenter was enriched with CO as the sole carbon source. The DGGE/DNA sequencing results showed that Acetobacterium spp. were enriched from the anaerobic digester fluid. After the fermenter was operated under continuous mode, the products were then continuously fed to the microbial fuel cell (MFC) to generate electricity. Even though the conversion yield was quite low, this study proved that synthesis gas (syn-gas) can be converted to electricity with the aid of microbes that do not possess the drawbacks of metal catalysts of conventional methods.

  13. Protein Synthesis--An Interactive Game.

    ERIC Educational Resources Information Center

    Clements, Lee Ann J.; Jackson, Karen E.

    1998-01-01

    Describes an interactive game designed to help students see and understand the dynamic relationship between DNA, RNA, and proteins. Appropriate for either a class or laboratory setting, following a lecture session about protein synthesis. (DDR)

  14. Protein Synthesis--An Interactive Game.

    ERIC Educational Resources Information Center

    Clements, Lee Ann J.; Jackson, Karen E.

    1998-01-01

    Describes an interactive game designed to help students see and understand the dynamic relationship between DNA, RNA, and proteins. Appropriate for either a class or laboratory setting, following a lecture session about protein synthesis. (DDR)

  15. Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources.

    PubMed

    Lan, Ethan I; Liao, James C

    2013-05-01

    Microbial production of fuel and chemical feedstock is a promising approach to solving energy and environmental problems. n-Butanol, isobutanol and other higher alcohols are of particular interest because they can serve as both fuel and chemical feedstock. Alternative resources such as CO2, syngas, waste protein, and lignocellulose are currently being investigated for their potential to produce these compounds. Except for lignocellulose, utilization of such alternative resource has not been examined extensively. This review aims to summarize the development of metabolic pathways for efficient synthesis of these higher alcohols and the current status of microbial strain development for the conversion of diverse resources into higher alcohols. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Quest for the chemical synthesis of proteins.

    PubMed

    Engelhard, Martin

    2016-05-01

    The chemical synthesis of proteins has been the wish of chemists since the early 19th century. There were decisive methodological steps necessary to accomplish this aim. Cornerstones were the introduction of the Z-protecting group of Bergmann and Zervas, the development of Solid-phase Peptide Synthesis of Merrifield, and the establishment of Native Chemical Ligation by Kent. Chemical synthesis of proteins has now become generally applicable technique for the synthesis of proteins with tailor made properties which can be applied not only in vitro but also in vivo .Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  17. Production of biofuels from synthesis gas using microbial catalysts.

    PubMed

    Tirado-Acevedo, Oscar; Chinn, Mari S; Grunden, Amy M

    2010-01-01

    World energy consumption is expected to increase 44% in the next 20 years. Today, the main sources of energy are oil, coal, and natural gas, all fossil fuels. These fuels are unsustainable and contribute to environmental pollution. Biofuels are a promising source of sustainable energy. Feedstocks for biofuels used today such as grain starch are expensive and compete with food markets. Lignocellulosic biomass is abundant and readily available from a variety of sources, for example, energy crops and agricultural/industrial waste. Conversion of these materials to biofuels by microorganisms through direct hydrolysis and fermentation can be challenging. Alternatively, biomass can be converted to synthesis gas through gasification and transformed to fuels using chemical catalysts. Chemical conversion of synthesis gas components can be expensive and highly susceptible to catalyst poisoning, limiting biofuel yields. However, there are microorganisms that can convert the CO, H(2), and CO(2) in synthesis gas to fuels such as ethanol, butanol, and hydrogen. Biomass gasification-biosynthesis processing systems have shown promise as some companies have already been exploiting capable organisms for commercial purposes. The discovery of novel organisms capable of higher product yield, as well as metabolic engineering of existing microbial catalysts, makes this technology a viable option for reducing our dependency on fossil fuels.

  18. T-2 mycotoxin inhibits mitochondrial protein synthesis

    SciTech Connect

    Pace, J.G.; Watts, M.R.; Canterbury, W.J.

    1988-01-01

    The authors investigated the effect of T-2 toxin on rat liver mitochondrial protein synthesis. Isolated rat liver mitochondria were supplemented with an S-100 supernatant from rat liver and an external ATP-generating system. An in-vitro assay employing cycloheximide, and inhibitor of cytoplasmic protein synthesis, and chloramphenicol, and inhibitor of mitochondrial protein synthesis, to distinguish mitochondrial protein synthesis from the cytoplasmic process. Amino acid incorporation into mitochondria was dependent on the concentration of mitochondria and was inhibited by chloramphenicol. The rate of uptake of tritium leucine into mitochondrial protein was unaffected by the addition of T-2 toxin and was not a rate-limiting step in incorporation. However, 0.02 micrograms/ml of T-2 toxin decreased the rate of protein synthesis inhibition correlated with the amount of T-2 toxin taken up by the mitochondria. While T-2 toxin is known to inhibit eukaryotic protein synthesis, this is the first time T-2 was shown to inhibit mitochondrial protein synthesis.

  19. Leucine stimulation of skeletal muscle protein synthesis

    SciTech Connect

    Layman, D.K.; Grogan, C.K.

    1986-03-01

    Previous work in this laboratory has demonstrated a stimulatory effect of leucine on skeletal muscle protein synthesis measured in vitro during catabolic conditions. Studies in other laboratories have consistently found this effect in diaphragm muscle, however, studies examining effects on nitrogen balance or with in vivo protein synthesis in skeletal muscle are equivocal. This experiment was designed to determine the potential of leucine to stimulate skeletal muscle protein synthesis in vivo. Male Sprague-Dawley rats weighing 200 g were fasted for 12 hrs, anesthetized, a jugular cannula inserted, and protein synthesis measured using a primed continuous infusion of /sup 14/C-tyrosine. A plateau in specific activity was reached after 30 to 60 min and maintained for 3 hrs. The leucine dose consisted of a 240 umole priming dose followed by a continuous infusion of 160 umoles/hr. Leucine infusion stimulated protein synthesis in the soleus muscle (28%) and in the red (28%) and white portions (12%) of the gastrocnemius muscle compared with controls infused with only tyrosine. The increased rates of protein synthesis were due to increased incorporation of tyrosine into protein and to decreased specific activity of the free tyrosine pool. These data indicate that infusion of leucine has the potential to stimulate in vivo protein synthesis in skeletal muscles.

  20. Modulation of protein synthesis by polyamines.

    PubMed

    Igarashi, Kazuei; Kashiwagi, Keiko

    2015-03-01

    Polyamines are ubiquitous small basic molecules that play important roles in cell growth and viability. Since polyamines mainly exist as a polyamine-RNA complex, we looked for proteins whose synthesis is preferentially stimulated by polyamines at the level of translation, and thus far identified 17 proteins in Escherichia coli and 6 proteins in eukaryotes. The mechanisms of polyamine stimulation of synthesis of these proteins were investigated. In addition, the role of eIF5A, containing hypusine formed from spermidine, on protein synthesis is described. These results clearly indicate that polyamines and eIF5A contribute to cell growth and viability through modulation of protein synthesis. © 2015 International Union of Biochemistry and Molecular Biology.

  1. Acetobixan, an inhibitor of cellulose synthesis identified by microbial bioprospecting.

    PubMed

    Xia, Ye; Lei, Lei; Brabham, Chad; Stork, Jozsef; Strickland, James; Ladak, Adam; Gu, Ying; Wallace, Ian; DeBolt, Seth

    2014-01-01

    In plants, cellulose biosynthesis is an essential process for anisotropic growth and therefore is an ideal target for inhibition. Based on the documented utility of small-molecule inhibitors to dissect complex cellular processes we identified a cellulose biosynthesis inhibitor (CBI), named acetobixan, by bio-prospecting among compounds secreted by endophytic microorganisms. Acetobixan was identified using a drug-gene interaction screen to sift through hundreds of endophytic microbial secretions for one that caused synergistic reduction in root expansion of the leaky AtcesA6prc1-1 mutant. We then mined this microbial secretion for compounds that were differentially abundant compared with Bacilli that failed to mimic CBI action to isolate a lead pharmacophore. Analogs of this lead compound were screened for CBI activity, and the most potent analog was named acetobixan. In living Arabidopsis cells visualized by confocal microscopy, acetobixan treatment caused CESA particles localized at the plasma membrane (PM) to rapidly re-localize to cytoplasmic vesicles. Acetobixan inhibited 14C-Glc uptake into crystalline cellulose. Moreover, cortical microtubule dynamics were not disrupted by acetobixan, suggesting specific activity towards cellulose synthesis. Previous CBI resistant mutants such as ixr1-2, ixr2-1 or aegeus were not cross resistant to acetobixan indicating that acetobixan targets a different aspect of cellulose biosynthesis.

  2. Acetobixan, an Inhibitor of Cellulose Synthesis Identified by Microbial Bioprospecting

    PubMed Central

    Xia, Ye; Lei, Lei; Brabham, Chad; Stork, Jozsef; Strickland, James; Ladak, Adam; Gu, Ying; Wallace, Ian; DeBolt, Seth

    2014-01-01

    In plants, cellulose biosynthesis is an essential process for anisotropic growth and therefore is an ideal target for inhibition. Based on the documented utility of small-molecule inhibitors to dissect complex cellular processes we identified a cellulose biosynthesis inhibitor (CBI), named acetobixan, by bio-prospecting among compounds secreted by endophytic microorganisms. Acetobixan was identified using a drug-gene interaction screen to sift through hundreds of endophytic microbial secretions for one that caused synergistic reduction in root expansion of the leaky AtcesA6prc1-1 mutant. We then mined this microbial secretion for compounds that were differentially abundant compared with Bacilli that failed to mimic CBI action to isolate a lead pharmacophore. Analogs of this lead compound were screened for CBI activity, and the most potent analog was named acetobixan. In living Arabidopsis cells visualized by confocal microscopy, acetobixan treatment caused CESA particles localized at the plasma membrane (PM) to rapidly re-localize to cytoplasmic vesicles. Acetobixan inhibited 14C-Glc uptake into crystalline cellulose. Moreover, cortical microtubule dynamics were not disrupted by acetobixan, suggesting specific activity towards cellulose synthesis. Previous CBI resistant mutants such as ixr1-2, ixr2-1 or aegeus were not cross resistant to acetobixan indicating that acetobixan targets a different aspect of cellulose biosynthesis. PMID:24748166

  3. Microbial synthesis of Flower-shaped gold nanoparticles.

    PubMed

    Singh, Priyanka; Kim, Yeon Ju; Wang, Chao; Mathiyalagan, Ramya; Yang, Deok Chun

    2016-09-01

    The shape of nanoparticles has been recognized as an important attribute that determines their applicability in various fields. The flower shape (F-shape) has been considered and is being focused on, because of its enhanced properties when compared to the properties of the spherical shape. The present study proposed the microbial synthesis of F-shaped gold nanoparticles within 48 h using the Bhargavaea indica DC1 strain. The F-shaped gold nanoparticles were synthesized extracellularly by the reduction of auric acid in the culture supernatant of B. indica DC1. The shape, size, purity, and crystalline nature of F-shaped gold nanoparticles were revealed by various instrumental techniques including UV-Vis, FE-TEM, EDX, elemental mapping, XRD, and DLS. The UV-Vis absorbance showed a maximum peak at 536 nm. FE-TEM revealed the F-shaped structure of nanoparticles. The EDX peak obtained at 2.3 keV indicated the purity. The peaks obtained on XRD analysis corresponded to the crystalline nature of the gold nanoparticles. In addition, the results of elemental mapping indicated the maximum distribution of gold elements in the nanoproduct obtained. Particle size analysis revealed that the average diameter of the F-shaped gold nanoparticles was 106 nm, with a polydispersity index (PDI) of 0.178. Thus, the methodology developed for the synthesis of F-shaped gold nanoparticles is completely green and economical.

  4. Synthesis of post-translationally modified proteins.

    PubMed

    van Kasteren, Sander

    2012-10-01

    Post-translational modifications of proteins can have dramatic effect on the function of proteins. Significant research effort has gone into understanding the effect of particular modifications on protein parameters. In the present paper, I review some of the recently developed tools for the synthesis of proteins modified with single post-translational modifications at specific sites in the protein, such as amber codon suppression technologies, tag and modify, and native chemical ligation.

  5. Chemical protein synthesis (CPS) meeting 2013.

    PubMed

    Metanis, Norman

    2013-07-22

    Building bonds in Vienna: The Chemical Protein Synthesis meeting recently took place at the University of Vienna, Austria. This report describes the event and highlights the science presented over the four days.

  6. Fluorescent proteins in microbial biotechnology--new proteins and new applications.

    PubMed

    Vizcaino-Caston, Isaac; Wyre, Chris; Overton, Tim W

    2012-02-01

    The recent advances over the past 5 years in the utilisation of fluorescent proteins in microbial biotechnology applications, including recombinant protein production, food processing, and environmental biotechnology, are reviewed. We highlight possible areas where fluorescent proteins currently used in other bioscience disciplines could be adapted for use in biotechnological applications and also outline novel uses for recently developed fluorescent proteins.

  7. Microbial degradation of dissolved proteins in seawater

    SciTech Connect

    Hollibaugh, J.T.; Azam, F.

    1983-11-01

    An experimental protocol using radiolabeled proteins was developed to investigate the rates and mechanisms whereby dissolved proteins are degraded in natural marine plankton communities. The results of field observations and laboratory experiments indicate that proteins are degraded by a particle-bound, thermolabile system, presumably bacteria-associated enzymes, with an apparent half-saturation constant of ca. 25 ..mu..g bovine serum albumin (BSA) per liter. Gel permeation chromatography indicated that peptides of chain length intermediate between BSA and the final products of degradation (MW<700) do not accumulate in the medium. Competition experiments indicate that the system is relatively nonspecific. Turnover rates for the protein pool in samples collected in the Southern California Bight were of the same order of magnitude as the turnover rate of the L-leucine pool and were correlated with primary productivity, chlorophyll a concentrations, bacterial abundance and biomass, and L-leucine turnover rate. These data suggest that amino acids derived from proteins are utilized preferentially and do not completely mix with the amino acids in the bulk phase.

  8. Microbial growth and macromolecular synthesis in the northwestern Atlantic Ocean

    SciTech Connect

    Cuhel, R.L.; Jannasch, H.W.; Taylor, C.D.

    1983-01-01

    Simultaneous time-course measurements of /sup 35/SO/sub 4//sup 2 -/, /sup 32/PO/sup 43 -/, /sup 15/NH/sub 4//sup +/, and (/sup 14/C)acetate, glucose, and glutamate uptake were made at three stations in the northwestern Atlantic Ocean, using water samples taken from well below the euphotic zone. Marked deviations from linearity were observed in 14 of the 15 cases. At the two most inshore stations uptake of /sup 15/NH/sub 4//sup +/ or incorporation of /sup 35/SO/sub 4//sup 2 -/ into protein was undetectable for 16-30 h, followed by very rapid increases in the rates of activity. The sudden burst of SO/sub 4//sup 2 -/and NH/sub 4//sup +/ uptake was accompanied by a major increase in the incorporation of /sup 32/P into RNA and lipid fractions of the microbial population at a continental slope station. At a station in Sargasso Sea, all substrates were taken up without lag. Extended incubations led to a growth plateau which may be a measure of the total biologically labile organic nutrient supply. In all cases tested, chloramphenicol severely restricted uptake. One of the inshore stations was revisited a year later with similar results. The combined data demonstrate the utility of using inorganic nutrient uptake and subcellular incorporation patterns to measure microbial growth and metabolism and stress the necessity of time-course rather than end-point incubations.

  9. Microbial Protein-Antigenome Determination (MAD) Technology: A Proteomics-Based Strategy for Rapid Identification of Microbial Targets of Host Humoral Immune Responses

    USDA-ARS?s Scientific Manuscript database

    Immunogenic, pathogen-specific proteins have excellent potential for development of novel management modalities. Here, we describe an innovative application of proteomics called Microbial protein-Antigenome Determination (MAD) Technology for rapid identification of native microbial proteins that eli...

  10. Microbial Protein-Antigenome Determination (MAD) Technology: A Proteomics-Based Strategy for Rapid Identification of Microbial Targets of Host Humoral Immune Responses

    USDA-ARS?s Scientific Manuscript database

    Immunogenic, pathogen-specific proteins have excellent potential for development of novel management modalities. Here, we describe an innovative application of proteomics called Microbial protein-Antigenome Determination (MAD) Technology for rapid identification of native microbial proteins that el...

  11. Study of the effect of presence or absence of protozoa on rumen fermentation and microbial protein contribution to the chyme.

    PubMed

    Belanche, A; Abecia, L; Holtrop, G; Guada, J A; Castrillo, C; de la Fuente, G; Balcells, J

    2011-12-01

    The aim of this study was to investigate the effect of presence or absence of protozoa on rumen fermentation and efficiency of microbial protein synthesis under different diets. Of 20 twin paired lambs, 1 lamb of each pair was isolated from the ewe within 24 h after birth and reared in a protozoa-free environment (n = 10), whereas their respective twin-siblings remained with the ewe (faunated, n = 10). When lambs reached 6 mo of age, 5 animals of each group were randomly allocated to 1 of 2 experimental diets consisting of either alfalfa hay as the sole diet, or 50:50 mixed with ground barley grain according to a 2 × 2 factorial arrangement of treatments. After 15 d of adaptation to the diet, the animals were euthanized and total rumen and abomasal contents were sampled to estimate rumen microbial synthesis using C(31) alkane as flow marker. Different ((15)N and purine bases) and a novel (recombinant DNA sequences) microbial markers, combined with several microbial reference extracts (rumen protozoa, liquid and solid associated bacteria) were evaluated. Absence of rumen protozoa modified the rumen fermentation pattern and decreased total tract OM and NDF digestibility in 2.0 and 5.1 percentage points, respectively. The effect of defaunation on microbial N flow was weak, however, and was dependent on the microbial marker and microbial reference extract considered. Faunated lambs fed with mixed diet showed the greatest rumen protozoal concentration and the least efficient microbial protein synthesis (29% less than the other treatments), whereas protozoa-free lambs fed with mixed diet presented the smallest ammonia concentration and 34% greater efficiency of N utilization than the other treatments. Although (15)N gave the most precise estimates of microbial synthesis, the use of recombinant DNA sequences represents an alternative that allows separate quantification of the bacteria and protozoa contributions. This marker showed that presence of protozoa decrease the

  12. Protein synthesis in geostimulated root caps

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.

    1982-01-01

    A study is presented of the processes occurring in the root cap of corn which are requisite for the formation of root cap inhibitor and which can be triggered or modulated by both light and gravity. The results of this study indicate the importance of protein synthesis for light-induced gravitropic bending in roots. Root caps in which protein synthesis is prevented are unable to induce downward bending. This suggests that light acts by stimulating proteins which are necessary for the translation of the gravitropic stimulus into a growth response (downward bending). The turnover of protein with time was also examined in order to determine whether light acts by stimulating the synthesis of unique proteins required for downward growth. It is found that auxin in combination with light allows for the translation of the gravitropic stimulus into a growth response at least in part through the modification of protein synthesis. It is concluded that unique proteins are stimulated by light and are involved in promoting the downward growth in roots which are responding to gravity.

  13. Protein synthesis in geostimulated root caps

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.

    1982-01-01

    A study is presented of the processes occurring in the root cap of corn which are requisite for the formation of root cap inhibitor and which can be triggered or modulated by both light and gravity. The results of this study indicate the importance of protein synthesis for light-induced gravitropic bending in roots. Root caps in which protein synthesis is prevented are unable to induce downward bending. This suggests that light acts by stimulating proteins which are necessary for the translation of the gravitropic stimulus into a growth response (downward bending). The turnover of protein with time was also examined in order to determine whether light acts by stimulating the synthesis of unique proteins required for downward growth. It is found that auxin in combination with light allows for the translation of the gravitropic stimulus into a growth response at least in part through the modification of protein synthesis. It is concluded that unique proteins are stimulated by light and are involved in promoting the downward growth in roots which are responding to gravity.

  14. Protein Synthesis Initiation Factors: Phosphorylation and Regulation

    SciTech Connect

    Karen S. Browning

    2009-06-15

    The initiation of the synthesis of proteins is a fundamental process shared by all living organisms. Each organism has both shared and unique mechanisms for regulation of this vital process. Higher plants provide for a major amount of fixation of carbon from the environment and turn this carbon into food and fuel sources for our use. However, we have very little understanding of how plants regulate the synthesis of the proteins necessary for these metabolic processes. The research carried out during the grant period sought to address some of these unknowns in the regulation of protein synthesis initiation. Our first goal was to determine if phosphorylation plays a significant role in plant initiation of protein synthesis. The role of phosphorylation, although well documented in mammalian protein synthesis regulation, is not well studied in plants. We showed that several of the factors necessary for the initiation of protein synthesis were targets of plant casein kinase and showed differential phosphorylation by the plant specific isoforms of this kinase. In addition, we identified and confirmed the phosphorylation sites in five of the plant initiation factors. Further, we showed that phosphorylation of one of these factors, eIF5, affected the ability of the factor to participate in the initiation process. Our second goal was to develop a method to make initiation factor 3 (eIF3) using recombinant methods. To date, we successfully cloned and expressed 13/13 subunits of wheat eIF3 in E. coli using de novo gene construction methods. The final step in this process is to place the subunits into three different plasmid operons for co-expression. Successful completion of expression of eIF3 will be an invaluable tool to the plant translation community.

  15. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    PubMed

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  16. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis

    PubMed Central

    He, J.; Cooper, H. M.; Reyes, A.; Di Re, M.; Sembongi, H.; Litwin, T. R.; Gao, J.; Neuman, K. C.; Fearnley, I. M.; Spinazzola, A.; Walker, J. E.; Holt, I. J.

    2012-01-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion. PMID:22453275

  17. Protein synthesis during encystment of Azotobacter vinelandii

    SciTech Connect

    Su, C.J.; da Cunha, A.; Wernette, C.M.; Reusch, R.N.; Sadoff, H.L.

    1987-10-01

    Proteins synthesized during the encystment of Azotobacter vinelandii were radiolabeled with (/sup 35/S) methionine and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Pulse labeling was used to demonstrate that early encystment-specific proteins were beginning to be synthesized by 2 h and reach peak levels about 12 h after initiation of encystment. One such protein was identified as a ..beta..-ketoacyl acyl-carrier protein synthase. The concentration of early proteins began to decrease at 16 h, when intermediate proteins specific to the differentiation process began to be synthesized. The cessation of synthesis of intermediate proteins began at 20 h postinitiation, and the labeling pattern of proteins then remained constant throughout the remaining 4 days of encystment.

  18. Origins of the protein synthesis cycle

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1981-01-01

    Largely derived from experiments in molecular evolution, a theory of protein synthesis cycles has been constructed. The sequence begins with ordered thermal proteins resulting from the self-sequencing of mixed amino acids. Ordered thermal proteins then aggregate to cell-like structures. When they contained proteinoids sufficiently rich in lysine, the structures were able to synthesize offspring peptides. Since lysine-rich proteinoid (LRP) also catalyzes the polymerization of nucleoside triphosphate to polynucleotides, the same microspheres containing LRP could have synthesized both original cellular proteins and cellular nucleic acids. The LRP within protocells would have provided proximity advantageous for the origin and evolution of the genetic code.

  19. Origins of the protein synthesis cycle

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1981-01-01

    Largely derived from experiments in molecular evolution, a theory of protein synthesis cycles has been constructed. The sequence begins with ordered thermal proteins resulting from the self-sequencing of mixed amino acids. Ordered thermal proteins then aggregate to cell-like structures. When they contained proteinoids sufficiently rich in lysine, the structures were able to synthesize offspring peptides. Since lysine-rich proteinoid (LRP) also catalyzes the polymerization of nucleoside triphosphate to polynucleotides, the same microspheres containing LRP could have synthesized both original cellular proteins and cellular nucleic acids. The LRP within protocells would have provided proximity advantageous for the origin and evolution of the genetic code.

  20. Energy utilization, nitrogen balance and microbial protein supply in cattle fed Pennisetum purpureum and condensed tannins.

    PubMed

    Piñeiro-Vázquez, A T; Canul-Solis, J R; Alayón-Gamboa, J A; Chay-Canul, A J; Ayala-Burgos, A J; Solorio-Sánchez, F J; Aguilar-Pérez, C F; Ku-Vera, J C

    2017-02-01

    The aim of the experiment was to assess the effect of condensed tannins (CT) on feed intake, dry matter digestibility, nitrogen balance, supply of microbial protein to the small intestine and energy utilization in cattle fed a basal ration of Pennisetum purpureum grass. Five heifers (Bos taurus × Bos indicus) with an average live weight of 295 ± 19 kg were allotted to five treatments consisting of increasing levels of CT (0, 1, 2, 3 and 4% CT/kg DM) in a 5 × 5 Latin square design. Dry matter intake (DMI) was similar (p > 0.05) between treatments containing 0, 1, 2 and 3% of CT/kg DM and it was reduced (p < 0.05) to 4% CT (5.71 kg DM/day) with respect to that observed with 0% CT (6.65 kg DM/day). Nitrogen balance, purine derivatives excretion in urine, microbial protein synthesis and efficiency of synthesis of microbial nitrogen in the rumen were not affected (p ≥ 0.05) by the increase in the levels of condensed tannins in the ration. Energy loss as CH4 was on average 2.7% of the gross energy consumed daily. Metabolizable energy intake was 49.06 MJ/day in cattle fed low-quality tropical grass with a DMI of 6.27 kg/day. It is concluded that concentrations of CT between 2 and 3% of DM of ration reduced energy loss as CH4 by 31.3% and 47.6%, respectively, without affecting intakes of dry and organic matter; however, digestibilities of dry and organic matter are negatively affected. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  1. SPECIFIC PROTEIN SYNTHESIS IN CELLULAR DIFFERENTIATION

    PubMed Central

    Paul, M.; Goldsmith, M. R.; Hunsley, J. R.; Kafatos, F. C.

    1972-01-01

    Silkmoth follicles, arranged in a precise developmental sequence within the ovariole, yield pure and uniform populations of follicular epithelial cells highly differentiated for synthesis of the proteinaceous eggshell (chorion). These cells can be maintained and labeled efficiently in organ culture; their in vitro (and cell free) protein synthetic activity reflects their activity in vivo. During differentiation the cells undergo dramatic changes in protein synthesis. For 2 days the cells are devoted almost exclusively to production of distinctive chorion proteins of low molecular weight and of unusual amino acid composition. Each protein has its own characteristic developmental kinetics of synthesis. Each is synthesized as a separate polypeptide, apparently on monocistronic messenger RNA (mRNA), and thus reflects the expression of a distinct gene. The rapid changes in this tissue do not result from corresponding changes in translational efficiency. Thus, the peptide chain elongation rate is comparable for chorion and for proteins synthesized at earlier developmental stages (1.3–1.9 amino acids/sec); moreover, the spacing of ribosomes on chorion mRNA (30–37 codons per ribosome) is similar to that encountered in other eukaryotic systems. PMID:4656706

  2. Microbial chemical factories: recent advances in pathway engineering for synthesis of value added chemicals.

    PubMed

    Dhamankar, Himanshu; Prather, Kristala L J

    2011-08-01

    The dwindling nature of petroleum and other fossil reserves has provided impetus towards microbial synthesis of fuels and value added chemicals from biomass-derived sugars as a renewable resource. Microbes have naturally evolved enzymes and pathways that can convert biomass into hundreds of unique chemical structures, a property that can be effectively exploited for their engineering into Microbial Chemical Factories (MCFs). De novo pathway engineering facilitates expansion of the repertoire of microbially synthesized compounds beyond natural products. In this review, we visit some recent successes in such novel pathway engineering and optimization, with particular emphasis on the selection and engineering of pathway enzymes and balancing of their accessory cofactors.

  3. Affinity labeling of protein synthesis factors

    SciTech Connect

    Anthony, D.D.; Dever, T.E.; Abramson, R.D.; Lobur, M.; Merrick, W.C.

    1986-05-01

    The authors laboratory is interested in determining those eukaryotic protein synthesis factors which interact with nucleotides and mRNA. To study the binding the authors have used the nucleotides, their analogs, and mRNA analogs as listed below: (1) UV cross-linking with normal (/sup 32/P)XTP; (2) Oxidized GTP; (3) 3'p-azido benzoyl GDP (GTP); (4) 5'p-fluoro sulfonyl benzoyl guanosine; (5) 5'p-fluoro sulfonyl benzoyl adenosine; (6) oxidized mRNA. Currently, they are continuing their efforts to specifically label the proteins, and they are also trying to isolate a single labeled tryptic peptide from the proteins.

  4. Haematopoietic stem cells require a highly regulated protein synthesis rate.

    PubMed

    Signer, Robert A J; Magee, Jeffrey A; Salic, Adrian; Morrison, Sean J

    2014-05-01

    Many aspects of cellular physiology remain unstudied in somatic stem cells, for example, there are almost no data on protein synthesis in any somatic stem cell. Here we set out to compare protein synthesis in haematopoietic stem cells (HSCs) and restricted haematopoietic progenitors. We found that the amount of protein synthesized per hour in HSCs in vivo was lower than in most other haematopoietic cells, even if we controlled for differences in cell cycle status or forced HSCs to undergo self-renewing divisions. Reduced ribosome function in Rpl24(Bst/+) mice further reduced protein synthesis in HSCs and impaired HSC function. Pten deletion increased protein synthesis in HSCs but also reduced HSC function. Rpl24(Bst/+) cell-autonomously rescued the effects of Pten deletion in HSCs; blocking the increase in protein synthesis, restoring HSC function, and delaying leukaemogenesis. Pten deficiency thus depletes HSCs and promotes leukaemia partly by increasing protein synthesis. Either increased or decreased protein synthesis impairs HSC function.

  5. Protein ingestion increases myofibrillar protein synthesis after concurrent exercise.

    PubMed

    Camera, Donny M; West, Daniel W D; Phillips, Stuart M; Rerecich, Tracy; Stellingwerff, Trent; Hawley, John A; Coffey, Vernon G

    2015-01-01

    We determined the effect of protein supplementation on anabolic signaling and rates of myofibrillar and mitochondrial protein synthesis after a single bout of concurrent training. Using a randomized crossover design, eight healthy males were assigned to experimental trials consisting of resistance exercise (8 × 5 leg extension, 80% 1RM) followed by cycling (30 min at approximately 70% V˙O2peak) with either postexercise protein (PRO, 25-g whey protein) or placebo (PLA) ingestion. Muscle biopsies were obtained at rest and at 1 and 4 h after exercise. Akt and mTOR phosphorylation increased 1 h after exercise with PRO (175%-400%, P < 0.01) and was different from PLA (150%-300%, P < 0.001). Muscle RING finger 1 and atrogin-1 messenger RNA (mRNA) were elevated after exercise but were higher with PLA compared with those in PRO at 1 h (50%-315%, P < 0.05), whereas peroxisome proliferator-activated receptor gamma coactivator 1-alpha mRNA increased 4 h after exercise (620%-730%, P < 0.001), with no difference between treatments. Postexercise rates of myofibrillar protein synthesis increased above rest in both trials (75%-145%, P < 0.05) but were higher with PRO (67%, P < 0.05), whereas mitochondrial protein synthesis did not change from baseline. Our results show that a concurrent training session promotes anabolic adaptive responses and increases metabolic/oxidative mRNA expression in the skeletal muscle. PRO ingestion after combined resistance and endurance exercise enhances myofibrillar protein synthesis and attenuates markers of muscle catabolism and thus is likely an important nutritional strategy to enhance adaptation responses with concurrent training.

  6. Antibiotics that target protein synthesis.

    PubMed

    McCoy, Lisa S; Xie, Yun; Tor, Yitzhak

    2011-01-01

    The key role of the bacterial ribosome makes it an important target for antibacterial agents. Indeed, a large number of clinically useful antibiotics target this complex translational ribonucleoprotein machinery. The majority of these compounds, mostly of natural origin, bind to one of the three key ribosomal sites: the decoding (or A-site) on the 30S, the peptidyl transferase center (PTC) on the 50S, and the peptide exit tunnel on the 50S. Antibiotics that bind the A-site, such as the aminoglycosides, interfere with codon recognition and translocation. Peptide bond formation is inhibited when small molecules like oxazolidinones bind at the PTC. Finally, macrolides tend to block the growth of the amino acid chain at the peptide exit tunnel. In this article, the major classes of antibiotics that target the bacterial ribosome are discussed and classified according to their respective target. Notably, most antibiotics solely interact with the RNA components of the bacterial ribosome. The surge seen in the appearance of resistant bacteria has not been met by a parallel development of effective and broad-spectrum new antibiotics, as evident by the introduction of only two novel classes of antibiotics, the oxazolidinones and lipopeptides, in the past decades. Nevertheless, this significant health threat has revitalized the search for new antibacterial agents and novel targets. High resolution structural data of many ribosome-bound antibiotics provide unprecedented insight into their molecular contacts and mode of action and inspire the design and synthesis of new candidate drugs that target this fascinating molecular machine.

  7. Semi-synthesis of thioamide containing proteins.

    PubMed

    Wang, Yanxin J; Szantai-Kis, D Miklos; Petersson, E James

    2015-05-14

    Our laboratory has shown that the thioamide, a single atom O-to-S substitution, can be a versatile fluorescence quenching probe that is minimally-perturbing when placed at many locations in a protein sequence. In order to make these and other thioamide experiments applicable to full-sized proteins, we have developed methods for incorporating thioamides by generating thiopeptide fragments through solid phase synthesis and ligating them to protein fragments expressed in E. coli. To install donor fluorophores, we have adapted unnatural amino acid mutagenesis methods, including the generation of new tRNA synthetases for the incorporation of small, intrinsically fluorescent amino acids. We have used a combination of these two methods, as well as chemoenzymatic protein modification, to efficiently install sidechain and backbone modifications to generate proteins labeled with fluorophore/thioamide pairs.

  8. Mechanism and regulation of eukaryotic protein synthesis.

    PubMed Central

    Merrick, W C

    1992-01-01

    This review presents a description of the numerous eukaryotic protein synthesis factors and their apparent sequential utilization in the processes of initiation, elongation, and termination. Additionally, the rare use of reinitiation and internal initiation is discussed, although little is known biochemically about these processes. Subsequently, control of translation is addressed in two different settings. The first is the global control of translation, which is effected by protein phosphorylation. The second is a series of specific mRNAs for which there is a direct and unique regulation of the synthesis of the gene product under study. Other examples of translational control are cited but not discussed, because the general mechanism for the regulation is unknown. Finally, as is often seen in an active area of investigation, there are several observations that cannot be readily accommodated by the general model presented in the first part of the review. Alternate explanations and various lines of experimentation are proposed to resolve these apparent contradictions. PMID:1620067

  9. Mass-Spectrometry-Based Quantification of Protein-Bound Fatty Acid Synthesis Intermediates from Escherichia coli.

    PubMed

    Noga, Marek J; Cerri, Mattia; Imholz, Nicole; Tulinski, Pawel; Şahin, Enes; Bokinsky, Gregory

    2016-10-07

    The production of fatty acids from simple nutrients occurs via a complex biosynthetic pathway with dozens of intermediate compounds and multiple branch points. Despite its importance for microbial physiology and biotechnology, critical aspects of fatty acid biosynthesis, especially dynamics of in vivo regulation, remain poorly characterized. We have developed a liquid chromatography/mass spectroscopy (LC-MS) method for relative quantification of fatty acid synthesis intermediates in Escherichia coli, a model organism for studies of fatty acid metabolism. The acyl carrier protein, a vehicle for the substrates and intermediates of fatty acid synthesis, is extracted from E. coli, proteolytically digested, resolved using reverse-phase LC, and detected using electrospray ionization coupled with a tandem MS. Our method reliably resolves 21 intermediates of fatty acid synthesis, with an average relative standard deviation in ratios of individual acyl-ACP species to total ACP concentrations of 20%. We demonstrate that fast sampling and quenching of cells is essential to accurately characterize intracellular concentrations of ACP species. We apply our method to examine the rapid response of fatty acid metabolism to the antibiotic cerulenin. We anticipate that our method will enable the characterization of in vivo regulation and kinetics of microbial fatty acid synthesis at unprecedented detail and will improve integration of fatty acid synthesis into models of microbial metabolism.

  10. Elongation factors in protein synthesis.

    PubMed

    Kraal, B; Bosch, L; Mesters, J R; de Graaf, J M; Woudt, L P; Vijgenboom, E; Heinstra, P W; Zeef, L A; Boon, C

    1993-01-01

    Recent discoveries of elongation factor-related proteins have considerably complicated the simple textbook scheme of the peptide chain elongation cycle. During growth and differentiation the cycle may be regulated not only by factor modification but also factor replacement. In addition, rare tRNAs may have their own rare factor proteins. A special case is the acquisition of resistance by bacteria to elongation factor-directed antibiotics. Pertinent data from the literature and our own work with Escherichia coli and Streptomyces are discussed. The GTP-binding domain of EF-Tu has been studied extensively, but little molecular detail is available on the interactions with its other ligands or effectors, or on the way they are affected by the GTPase switch signal. A growing number of EF-Tu mutants obtained by ourselves and others are helping us in testing current ideas. We have found a synergistic effect between EF-Tu and EF-G in their uncoupled GTPase reactions on empty ribosomes. Only the EF-G reaction is perturbed by fluoroaluminates.

  11. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells

    EPA Science Inventory

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2...

  12. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells

    EPA Science Inventory

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2...

  13. Synthesis of milligram quantities of proteins using a reconstituted in vitro protein synthesis system.

    PubMed

    Kazuta, Yasuaki; Matsuura, Tomoaki; Ichihashi, Norikazu; Yomo, Tetsuya

    2014-11-01

    In this study, the amount of protein synthesized using an in vitro protein synthesis system composed of only highly purified components (the PURE system) was optimized. By varying the concentrations of each system component, we determined the component concentrations that result in the synthesis of 0.38 mg/mL green fluorescent protein (GFP) in batch mode and 3.8 mg/mL GFP in dialysis mode. In dialysis mode, protein concentrations of 4.3 and 4.4 mg/mL were synthesized for dihydrofolate reductase and β-galactosidase, respectively. Using the optimized system, the synthesized protein represented 30% (w/w) of the total protein, which is comparable to the level of overexpressed protein in Escherichia coli cells. This optimized reconstituted in vitro protein synthesis system may potentially be useful for various applications, including in vitro directed evolution of proteins, artificial cell assembly, and protein structural studies. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Cell-free protein synthesis as a promising expression system for recombinant proteins.

    PubMed

    Ge, Xumeng; Xu, Jianfeng

    2012-01-01

    Cell-free protein synthesis (CFPS) has major advantages over traditional cell-based methods in the capability of high-throughput protein synthesis and special protein production. During recent decades, CFPS has become an alternative protein production platform for both fundamental and applied purposes. Using Renilla luciferase as model protein, we describe a typical process of CFPS in wheat germ extract system, including wheat germ extract preparation, expression vector construction, in vitro protein synthesis (transcription/translation), and target protein assay.

  15. Protein synthesis inhibitor from potato tuber

    SciTech Connect

    Romaen, R. )

    1989-04-01

    A protein fraction capable of inhibit in vitro protein synthesis was found in potato tubers in fresh and wounded tissue. Inhibitor activity from fresh tissue decays with wounding. Inhibition activity was detected absorbed to ribsomal fraction and cytosol of potato tuber tissue by a partially reconstituted in vitro system from potato tuber and wheat germ. Adsorbed ribosomal fraction was more suitable of purification. This fraction was washed from ribosomes with 0.3M KCl, concentrated with ammonium sulfate precipitation and purified through sephadex G100 and sephadex G-75 columns chromatography. After 61 fold purification adsorbed protein fraction can inhibit germination of maize, wheat and sesame seeds, as well as {sup 3}H-leucine incorporation into protein by imbibed maize embryos. Inhibition activity was lost by temperature, alkali and protease-K hydrolysis. Preliminar analysis could not show presence of reductor sugars. Physiological role of this inhibitor in relation to rest and active tissue remains to be studied.

  16. Failure of leucine to stimulate protein synthesis in vivo.

    PubMed Central

    McNurlan, M A; Fern, E B; Garlick, P J

    1982-01-01

    The effect of 100 mumol of leucine on protein synthesis in several tissues was assessed in the intact rat. Leucine had no immediate effect on protein synthesis in gastrocnemius muscle, heart, jejunal serosa, jejunal mucosa or liver in rats which were fed, starved for 2 days or deprived of dietary protein for 9 days. Leucine treatment for 1 h also failed to stimulate protein synthesis in tissues of 2-day-starved animals. PMID:7126170

  17. Protein synthesis by ribosomes with tethered subunits.

    PubMed

    Orelle, Cédric; Carlson, Erik D; Szal, Teresa; Florin, Tanja; Jewett, Michael C; Mankin, Alexander S

    2015-08-06

    The ribosome is a ribonucleoprotein machine responsible for protein synthesis. In all kingdoms of life it is composed of two subunits, each built on its own ribosomal RNA (rRNA) scaffold. The independent but coordinated functions of the subunits, including their ability to associate at initiation, rotate during elongation, and dissociate after protein release, are an established model of protein synthesis. Furthermore, the bipartite nature of the ribosome is presumed to be essential for biogenesis, since dedicated assembly factors keep immature ribosomal subunits apart and prevent them from translation initiation. Free exchange of the subunits limits the development of specialized orthogonal genetic systems that could be evolved for novel functions without interfering with native translation. Here we show that ribosomes with tethered and thus inseparable subunits (termed Ribo-T) are capable of successfully carrying out protein synthesis. By engineering a hybrid rRNA composed of both small and large subunit rRNA sequences, we produced a functional ribosome in which the subunits are covalently linked into a single entity by short RNA linkers. Notably, Ribo-T was not only functional in vitro, but was also able to support the growth of Escherichia coli cells even in the absence of wild-type ribosomes. We used Ribo-T to create the first fully orthogonal ribosome-messenger RNA system, and demonstrate its evolvability by selecting otherwise dominantly lethal rRNA mutations in the peptidyl transferase centre that facilitate the translation of a problematic protein sequence. Ribo-T can be used for exploring poorly understood functions of the ribosome, enabling orthogonal genetic systems, and engineering ribosomes with new functions.

  18. Subglacial Lake Whillans microbial biogeochemistry: a synthesis of current knowledge.

    PubMed

    Mikucki, J A; Lee, P A; Ghosh, D; Purcell, A M; Mitchell, A C; Mankoff, K D; Fisher, A T; Tulaczyk, S; Carter, S; Siegfried, M R; Fricker, H A; Hodson, T; Coenen, J; Powell, R; Scherer, R; Vick-Majors, T; Achberger, A A; Christner, B C; Tranter, M

    2016-01-28

    Liquid water occurs below glaciers and ice sheets globally, enabling the existence of an array of aquatic microbial ecosystems. In Antarctica, large subglacial lakes are present beneath hundreds to thousands of metres of ice, and scientific interest in exploring these environments has escalated over the past decade. After years of planning, the first team of scientists and engineers cleanly accessed and retrieved pristine samples from a West Antarctic subglacial lake ecosystem in January 2013. This paper reviews the findings to date on Subglacial Lake Whillans and presents new supporting data on the carbon and energy metabolism of resident microbes. The analysis of water and sediments from the lake revealed a diverse microbial community composed of bacteria and archaea that are close relatives of species known to use reduced N, S or Fe and CH4 as energy sources. The water chemistry of Subglacial Lake Whillans was dominated by weathering products from silicate minerals with a minor influence from seawater. Contributions to water chemistry from microbial sulfide oxidation and carbonation reactions were supported by genomic data. Collectively, these results provide unequivocal evidence that subglacial environments in this region of West Antarctica host active microbial ecosystems that participate in subglacial biogeochemical cycling. © 2015 The Author(s).

  19. Glucocorticoid effects on hippocampal protein synthesis

    SciTech Connect

    Schlatter, L.K.

    1988-01-01

    Following subcutaneous injection of rats with 5 mg corticosterone, hippocampal slices in vitro show increased ({sup 35}S)-methionine labeling of a cytosolic protein with an apparent molecular weight (M{sub r}) of 35,000 and an isoelectric point (IEP) of 6.6. This labeling is temporally consistent with a transcriptional event, and is steroid- and tissue-specific. The pear serum concentration of steroid occurs one hour or less following the injection. Maximal labeling of this protein is reached whenever serum corticosterone values are approximately 100 ng/ml. When endogenous corticosterone levels are elevated to 100 ng/ml through stressors or exogenous ACTH injections the same maximal increase in synthesis of the 35,000 M{sub r} protein is observed. Adrenalectomy prevents the observed response from occurring following stressor application or ACTH injections. Comparison of the increases observed after administration of the type 2 receptor agonist RU 28362 and aldosterone, which has a higher affinity for the type 1 receptor, shows a 50-fold greater sensitivity of the response to the type 2 receptor agonist. Synthesis of this protein following serum increases of steroid possibly correlates to the theorized function of the type 2 receptor feedback regulation. The similar protein in the liver has an IEP of 6.8 and a slightly higher M{sub r}. A second hippocampal protein with an M{sub r} of 46,000 and an IEP of 6.2 is also increased in labeling. Two additional liver proteins, one of Mr 53,000 (IEP of 6.2) and the other with an M{sub r} of 45,000 (IEP of 8.7-7.8) are increased in the liver following glucocorticoid administration.

  20. Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells.

    PubMed

    Lu, Lu; Xing, Defeng; Xie, Tianhui; Ren, Nanqi; Logan, Bruce E

    2010-08-15

    Microorganisms can produce hydrogen gas (H(2)) at high rates by fermentation of carbohydrates, but not from proteins. However, it is possible to produce H(2) at high rates and yields from proteins by electrohydrogenesis in microbial electrolysis cells (MECs). Hydrogen gas was generated using bovine serum albumin (BSA, 700 mg/L) in a single-chamber MEC at a rate of Q=0.42+/-0.07 m(3)/m(3)/day and a yield of Y(H2) = 21.0 +/- 5.0 mmol-H2/g-COD, with an energy recovery (relative to electrical input) of eta(E)=75+/-12% (applied voltage of 0.6 V). Hydrogen production was substantially reduced using a complex protein (peptone) under the same conditions, to Q=0.05+/-0.01 m(3)/m(3)/day, YH2 = 2.6 +/- 0.1 mmol-H2/g-COD, and eta(E)=14+/-3%. There was good removal of organic matter for both substrates in terms of either protein (87+/-6 -97 +/-2%) or total COD (86+/-2 - 91+/-2%). Electron recycling likely occurred as Coulombic efficiencies exceeded 100% using BSA. The use of a two-chamber design, with either a CEM or AEM membrane, reduced the hydrogen production rate, but did not appreciably affect the hydrogen yield or energy efficiency. When an MEC was first acclimated to acetate, and then switched to BSA, performance was substantially reduced and was similar to that obtained using peptone. These results demonstrate that electrohydrogenesis can be used to produce H(2) from proteins, and it can also be used as a method for treatment of protein-containing wastewaters.

  1. The evolution of the protein synthesis system. I - A model of a primitive protein synthesis system

    NASA Technical Reports Server (NTRS)

    Mizutani, H.; Ponnamperuma, C.

    1977-01-01

    A model is developed to describe the evolution of the protein synthesis system. The model is comprised of two independent autocatalytic systems, one including one gene (A-gene) and two activated amino acid polymerases (O and A-polymerases), and the other including the addition of another gene (N-gene) and a nucleotide polymerase. Simulation results have suggested that even a small enzymic activity and polymerase specificity could lead the system to the most accurate protein synthesis, as far as permitted by transitions to systems with higher accuracy.

  2. The evolution of the protein synthesis system. I - A model of a primitive protein synthesis system

    NASA Technical Reports Server (NTRS)

    Mizutani, H.; Ponnamperuma, C.

    1977-01-01

    A model is developed to describe the evolution of the protein synthesis system. The model is comprised of two independent autocatalytic systems, one including one gene (A-gene) and two activated amino acid polymerases (O and A-polymerases), and the other including the addition of another gene (N-gene) and a nucleotide polymerase. Simulation results have suggested that even a small enzymic activity and polymerase specificity could lead the system to the most accurate protein synthesis, as far as permitted by transitions to systems with higher accuracy.

  3. MannDB: A microbial annotation database for protein characterization

    SciTech Connect

    Zhou, C; Lam, M; Smith, J; Zemla, A; Dyer, M; Kuczmarski, T; Vitalis, E; Slezak, T

    2006-05-19

    MannDB was created to meet a need for rapid, comprehensive automated protein sequence analyses to support selection of proteins suitable as targets for driving the development of reagents for pathogen or protein toxin detection. Because a large number of open-source tools were needed, it was necessary to produce a software system to scale the computations for whole-proteome analysis. Thus, we built a fully automated system for executing software tools and for storage, integration, and display of automated protein sequence analysis and annotation data. MannDB is a relational database that organizes data resulting from fully automated, high-throughput protein-sequence analyses using open-source tools. Types of analyses provided include predictions of cleavage, chemical properties, classification, features, functional assignment, post-translational modifications, motifs, antigenicity, and secondary structure. Proteomes (lists of hypothetical and known proteins) are downloaded and parsed from Genbank and then inserted into MannDB, and annotations from SwissProt are downloaded when identifiers are found in the Genbank entry or when identical sequences are identified. Currently 36 open-source tools are run against MannDB protein sequences either on local systems or by means of batch submission to external servers. In addition, BLAST against protein entries in MvirDB, our database of microbial virulence factors, is performed. A web client browser enables viewing of computational results and downloaded annotations, and a query tool enables structured and free-text search capabilities. When available, links to external databases, including MvirDB, are provided. MannDB contains whole-proteome analyses for at least one representative organism from each category of biological threat organism listed by APHIS, CDC, HHS, NIAID, USDA, USFDA, and WHO. MannDB comprises a large number of genomes and comprehensive protein sequence analyses representing organisms listed as high

  4. Engineering the prion protein using chemical synthesis.

    PubMed

    Ball, H L; King, D S; Cohen, F E; Prusiner, S B; Baldwin, M A

    2001-11-01

    In recent years, the technology of solid-phase peptide synthesis (SPPS) has improved to the extent that chemical synthesis of small proteins may be a viable complementary strategy to recombinant expression. We have prepared several modified and wild-type prion protein (PrP) polypeptides, of up to 112 residues, that demonstrate the flexibility of a chemical approach to protein synthesis. The principal event in prion disease is the conformational change of the normal, alpha-helical cellular protein (PrPc) into a beta-sheet-rich pathogenic isoform (PrP(Sc)). The ability to form PrP(Sc) in transgenic mice is retained by a 106 residue 'mini-prion' (PrP106), with the deletions 23-88 and 141-176. Synthetic PrP106 (sPrP106) and a His-tagged analog (sPrP106HT) have been prepared successfully using a highly optimized Fmoc chemical methodology involving DCC/HOBt activation and an efficient capping procedure with N-(2-chlorobenzyloxycarbonyloxy) succinimide. A single reversed-phase purification step gave homogeneous protein, in excellent yield. With respect to its conformational and aggregational properties and its response to proteinase digestion, sPrP106 was indistinguishable from its recombinant analog (rPrP106). Certain sequences that proved to be more difficult to synthesize using the Fmoc approach, such as bovine (Bo) PrP(90-200), were successfully prepared using a combination of the highly activated coupling reagent HATU and t-Boc chemistry. To mimic the glycosylphosphatidyl inositol (GPI) anchor and target sPrP to cholesterol-rich domains on the cell surface, where the conversion of PrPc is believed to occur, a lipophilic group or biotin, was added to an orthogonally side-chain-protected Lys residue at the C-terminus of sPrP sequences. These groups enabled sPrP to be immobilized on either the cell surface or a streptavidin-coated ELISA plate, respectively, in an orientation analogous to that of membrane-bound, GPI-anchored PrPc. The chemical manipulation of such

  5. Stream microbial diversity in response to environmental changes: review and synthesis of existing research

    PubMed Central

    Zeglin, Lydia H.

    2015-01-01

    The importance of microbial activity to ecosystem function in aquatic ecosystems is well established, but microbial diversity has been less frequently addressed. This review and synthesis of 100s of published studies on stream microbial diversity shows that factors known to drive ecosystem processes, such as nutrient availability, hydrology, metal contamination, contrasting land-use and temperature, also cause heterogeneity in bacterial diversity. Temporal heterogeneity in stream bacterial diversity was frequently observed, reflecting the dynamic nature of both stream ecosystems and microbial community composition. However, within-stream spatial differences in stream bacterial diversity were more commonly observed, driven specifically by different organic matter (OM) compartments. Bacterial phyla showed similar patterns in relative abundance with regard to compartment type across different streams. For example, surface water contained the highest relative abundance of Actinobacteria, while epilithon contained the highest relative abundance of Cyanobacteria and Bacteroidetes. This suggests that contrasting physical and/or nutritional habitats characterized by different stream OM compartment types may select for certain bacterial lineages. When comparing the prevalence of physicochemical effects on stream bacterial diversity, effects of changing metal concentrations were most, while effects of differences in nutrient concentrations were least frequently observed. This may indicate that although changing nutrient concentrations do tend to affect microbial diversity, other environmental factors are more likely to alter stream microbial diversity and function. The common observation of connections between ecosystem process drivers and microbial diversity suggests that microbial taxonomic turnover could mediate ecosystem-scale responses to changing environmental conditions, including both microbial habitat distribution and physicochemical factors. PMID:26042102

  6. Mitochondrial Protein Synthesis, Import, and Assembly

    PubMed Central

    Fox, Thomas D.

    2012-01-01

    The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes. PMID:23212899

  7. Protein synthesis in synaptosomes: a proteomics analysis.

    PubMed

    Jiménez, C R; Eyman, M; Lavina, Z Scotto; Gioio, A; Li, K W; van der Schors, R C; Geraerts, W P M; Giuditta, A; Kaplan, B B; van Minnen, J

    2002-05-01

    A proteomics approach was used to identify the translation products of a unique synaptic model system, squid optic lobe synaptosomes. Unlike its vertebrate counterparts, this preparation is largely free of perikaryal cell fragments and consists predominantly of pre-synaptic terminals derived from retinal photoreceptor neurones. We metabolically labelled synaptosomes with [(35)S] methionine and applied two-dimensional gel electrophoresis to resolve newly synthesized proteins at high resolution. Autoradiographs of blotted two-dimensional gels revealed de novo synthesis of about 80 different proteins, 18 of which could be matched to silver-stained gels that were run in parallel. In-gel digestion of the matched spots and mass spectrometric analyses revealed the identities of various cytosolic enzymes, cytoskeletal proteins, molecular chaperones and nuclear-encoded mitochondrial proteins. A number of novel proteins (i.e. not matching with database sequences) were also detected. In situ hybridization was employed to confirm the presence of mRNA and rRNA in synaptosomes. Together, our data show that pre-synaptic endings of squid photoreceptor neurones actively synthesize a wide variety of proteins involved in synaptic functioning, such as transmitter recycling, energy supply and synaptic architecture.

  8. A biocompatible alkene hydrogenation merges organic synthesis with microbial metabolism.

    PubMed

    Sirasani, Gopal; Tong, Liuchuan; Balskus, Emily P

    2014-07-21

    Organic chemists and metabolic engineers use orthogonal technologies to construct essential small molecules such as pharmaceuticals and commodity chemicals. While chemists have leveraged the unique capabilities of biological catalysts for small-molecule production, metabolic engineers have not likewise integrated reactions from organic synthesis with the metabolism of living organisms. Reported herein is a method for alkene hydrogenation which utilizes a palladium catalyst and hydrogen gas generated directly by a living microorganism. This biocompatible transformation, which requires both catalyst and microbe, and can be used on a preparative scale, represents a new strategy for chemical synthesis that combines organic chemistry and metabolic engineering.

  9. Influence of soybean meal and sorghum grain supplementation on intake, digesta kinetics, ruminal fermentation, site and extent of digestion and microbial protein synthesis in beef steers grazing blue grama rangeland.

    PubMed

    Krysl, L J; Branine, M E; Cheema, A U; Funk, M A; Galyean, M L

    1989-11-01

    Six beef steers (British x Brahman) cannulated at the rumen, duodenum and ileum (avg wt 334 kg) and three mature steers (British x British) cannulated at the esophagus were used in a replicated 3 x 3 latin square design and fed no supplement (C), .5 kg soybean meal (SBM) or .5 kg steam-flaked sorghum grain (SFS).head-1.d-1 (DM basis) while grazing blue grama rangeland. Periods of the latin square included a minimum of 14 d for adaptation and 11 d for esophageal masticate collection and digesta sampling. In September, October and November, respectively, forage collected by esophageally cannulated steers averaged 74.5, 88.8 and 71.0% grasses; 2.06, 1.53 and 1.77% N and 68.3, (P greater than .10) by treatment, but total N intake was greater (P less than .05) for SBM vs C and SFS treatments. No differences (P greater than .10) were detected among treatments in OM, NDF, ADF and N digestibilities in the rumen, small intestine or hindgut, but total tract OM digestibility was greater (P less than .10) for SBM and SFS than for C, and total tract N digestibility was greater (P less than .10) for SBM than for C or SFS. Duodenal ammonia N flow was greater (P less than .05) when SBM was fed that when SFS and C were fed, but microbial N and non-ammonia, non-microbial N flows and microbial efficiency were not altered by treatment. Likewise, ileal N flow was not affected (P greater than .10) by treatment. Particulate passage rate, gastrointestinal mean retention time, forage in vitro OM disappearance and in situ rate of forage NDF digestion also were not affected (P greater than .10) by treatments. Ruminal fluid volume was greater (P less than .05) for SFS vs SBM and C treatments, but no differences were noted in fluid dilution rate. Ruminal fluid ammonia concentration was greater (P less than .05) when SBM was fed than when SFS and C were fed (13.5, 9.9 and 8.7 mg/dl, respectively), whereas pH and total VFA concentrations were not different (P greater than .10). Proportion of

  10. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview

    PubMed Central

    Gasser, Brigitte; Saloheimo, Markku; Rinas, Ursula; Dragosits, Martin; Rodríguez-Carmona, Escarlata; Baumann, Kristin; Giuliani, Maria; Parrilli, Ermenegilda; Branduardi, Paola; Lang, Christine; Porro, Danilo; Ferrer, Pau; Tutino, Maria Luisa; Mattanovich, Diethard; Villaverde, Antonio

    2008-01-01

    Different species of microorganisms including yeasts, filamentous fungi and bacteria have been used in the past 25 years for the controlled production of foreign proteins of scientific, pharmacological or industrial interest. A major obstacle for protein production processes and a limit to overall success has been the abundance of misfolded polypeptides, which fail to reach their native conformation. The presence of misfolded or folding-reluctant protein species causes considerable stress in host cells. The characterization of such adverse conditions and the elicited cell responses have permitted to better understand the physiology and molecular biology of conformational stress. Therefore, microbial cell factories for recombinant protein production are depicted here as a source of knowledge that has considerably helped to picture the extremely rich landscape of in vivo protein folding, and the main cellular players of this complex process are described for the most important cell factories used for biotechnological purposes. PMID:18394160

  11. Continuous cultivation of fission yeast: analysis of single-cell protein synthesis kinetics

    SciTech Connect

    Agar, D.W.; Bailey, J.E.

    1981-01-01

    A fundamental problem in microbial reactor analysis is identification of the relation between environment and individual cell metabolic activity. Population balance equations provide a link between experimental measurements of composition frequency functions in microbial populations on the one hand and macromolecule synthesis kinetics and cell division control parameters for single cells on the other. Flow microfluorometry measurements of frequency functions for single-cell protein content in Schizosaccharomyces pombe in balanced exponential growth were analyzed by 2 different methods. One approach utilizes the integrated form of the population balance equation known as the Collins-Richmond equation, and the other method involves optimization of parameters in assumed kinetic and cell division functional forms to fit measured frequency functions with corresponding model solutions. Both data interpretation techniques indicate that rates of protein synthesis increase most in low-protein-content cells as the population specific growth rate increases, leading to parabolic single-cell protein synthesis kinetics at large specific growth rates. Utilization of frequency function data for an asynchronous population is in this case a far more sensitive method for determination of single-cell kinetics than is monitoring the metabolic dynamics of a single cell or, equivalently, synchronous culture analyses.

  12. Effects of Replacing Dry-rolled Corn with Increasing Levels of Corn Dried Distillers Grains with Solubles on Characteristics of Digestion, Microbial Protein Synthesis and Digestible Energy of Diet in Hair Lambs Fed High-concentrate Diets

    PubMed Central

    Castro-Pérez, B. I.; Garzón-Proaño, J. S.; López-Soto, M. A.; Barreras, A.; González, V. M.; Plascencia, A.; Estrada-Angulo, A.; Dávila-Ramos, H.; Ríos-Rincón, F. G.; Zinn, R. A.

    2013-01-01

    Four male lambs (Katahdin; average live weight 25.9±2.9 kg) with “T” type cannulas in the rumen and proximal duodenum were used in a 4×4 Latin square experiment to evaluate the influence of supplemental dry distillers grain with solubles (DDGS) levels (0, 10, 20 and 30%, dry matter basis) in substitution for dry-rolled (DR) corn on characteristics of digestive function and digestible energy (DE) of diet. Treatments did not influence ruminal pH. Substitution of DR corn with DDGS increased ruminal neutral detergent fiber (NDF) digestion (quadratic effect, p<0.01), but decreased ruminal organic matter (OM) digestion (linear effect, p<0.01). Replacing corn with DDGS increased (linear, p≤0.02) duodenal flow of lipids, NDF and feed N. But there were no treatment effects on flow to the small intestine of microbial nitrogen (MN) or microbial N efficiency. The estimated UIP value of DDGS was 44%. Postruminal digestion of OM, starch, lipids and nitrogen (N) were not affected by treatments. Total tract digestion of N increased (linear, p = 0.04) as the DDGS level increased, but DDGS substitution tended to decrease total tract digestion of OM (p = 0.06) and digestion of gross energy (p = 0.08). However, it did not affect the dietary digestible energy (DE, MJ/kg), reflecting the greater gross energy content of DDGS versus DR corn in the replacements. The comparative DE value of DDGS may be considered similar to the DE value of the DR corn it replaced up to 30% in the finishing diets fed to lambs. PMID:25049896

  13. Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis.

    PubMed

    Xing, Mei-Ning; Zhang, Xue-Zhu; Huang, He

    2012-01-01

    Feedstock for biofuel synthesis is transitioning to lignocelluosic biomass to address criticism over competition between first generation biofuels and food production. As microbial catalysis is increasingly applied for the conversion of biomass to biofuels, increased import has been placed on the development of novel enzymes. With revolutionary advances in sequencer technology and metagenomic sequencing, mining enzymes from microbial communities for biofuel synthesis is becoming more and more practical. The present article highlights the latest research progress on the special characteristics of metagenomic sequencing, which has been a powerful tool for new enzyme discovery and gene functional analysis in the biomass energy field. Critical enzymes recently developed for the pretreatment and conversion of lignocellulosic materials are evaluated with respect to their activity and stability, with additional explorations into xylanase, laccase, amylase, chitinase, and lipolytic biocatalysts for other biomass feedstocks. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Technical difficulties and solutions of direct transesterification process of microbial oil for biodiesel synthesis.

    PubMed

    Yousuf, Abu; Khan, Maksudur Rahman; Islam, M Amirul; Wahid, Zularisam Ab; Pirozzi, Domenico

    2017-01-01

    Microbial oils are considered as alternative to vegetable oils or animal fats as biodiesel feedstock. Microalgae and oleaginous yeast are the main candidates of microbial oil producers' community. However, biodiesel synthesis from these sources is associated with high cost and process complexity. The traditional transesterification method includes several steps such as biomass drying, cell disruption, oil extraction and solvent recovery. Therefore, direct transesterification or in situ transesterification, which combines all the steps in a single reactor, has been suggested to make the process cost effective. Nevertheless, the process is not applicable for large-scale biodiesel production having some difficulties such as high water content of biomass that makes the reaction rate slower and hurdles of cell disruption makes the efficiency of oil extraction lower. Additionally, it requires high heating energy in the solvent extraction and recovery stage. To resolve these difficulties, this review suggests the application of antimicrobial peptides and high electric fields to foster the microbial cell wall disruption.

  15. Microbial protein in soil: influence of extraction method and C amendment on extraction and recovery.

    PubMed

    Taylor, Erin B; Williams, Mark A

    2010-02-01

    The capacity to study the content and resolve the dynamics of the proteome of diverse microbial communities would help to revolutionize the way microbiologists study the function and activity of microorganisms in soil. To better understand the limitations of a proteomic approach to studying soil microbial communities, we characterized extractable soil microbial proteins using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Two methods were utilized to extract proteins from microorganisms residing in a Quitman and Benfield soil: (1) direct extraction of bulk protein from soil and (2) separation of the microorganisms from soil using density gradient centrifugation and subsequent extraction (DGC-EXT) of microbial protein. In addition, glucose and toluene amendments to soil were used to stimulate the growth of a subset of the microbial community. A bacterial culture and bovine serum albumin (BSA) were added to the soil to qualitatively assess their recovery following extraction. Direct extraction and resolution of microbial proteins using SDS-PAGE generally resulted in smeared and unresolved banding patterns on gels. DGC-EXT of microbial protein from soil followed by separation using SDS-PAGE, however, did resolve six to 10 bands in the Benfield but not the Quitman soil. DGC-EXT of microbial protein, but not direct extraction following the addition of glucose and toluene, markedly increased the number of bands (approximately 40) on the gels in both Benfield and Quitman soils. Low recoveries of added culture and BSA proteins using the direct extraction method suggest that proteins either bind to soil organic matter and mineral particles or that partial degradation takes place during extraction. Interestingly, DGC may have been preferentially selected for actively growing cells, as gauged by the 10-100x lower cy19:0/18:1omega7 ratio of the fatty acid methyl esters in the isolated community compared to that for the whole soil. DGC can be used to

  16. Microbial synthesis of magnetite and Mn-substituted magnetite nanoparticles: influence of bacteria and incubation temperature.

    PubMed

    Roh, Yul; Jang, Hee-Dong; Suh, Yongjae

    2007-11-01

    Microbial synthesis of magnetite and metal (Co, Cr, Ni)-substituted magnetites has only recently been reported. The objective of this study was to examine the influence of Mn ion on the microbial synthesis of magnetite nanoparticles. The reductive biotransformation of an akaganeite (beta-FeOOH) or a Mn-substituted (2-20 mol%) akaganeite (Fe(1-x)Mn(x)OOH) by Shewanella loiha (PV-4, 25 degrees C) and Thermoanaerobacter ethanolicus (TOR-39, 60 degrees C) was investigated under anaerobic conditions at circumneutral pH (pH = 7-8). Both bacteria formed magnetite nanoparticles using akaganeite as a magnetite precursor. By comparison of iron minerals formed by PV-4 and TOR-39 using Mn-mixed akaganeite as the precursor, it was shown that PV-4 formed siderite (FeCO3), green rust [Fe2+Fe3+(OH)16CO3 x 4H2O], and magnetite at 25 degrees C, whereas TOR-39 formed mainly nm-sized magnetite at 60 degrees C. The presence of Mn in the magnetite formed by TOR-39 was revealed by energy dispersive X-ray analysis (EDX) is indicative of Mn substitution into magnetite crystals. EDX analysis of iron minerals formed by PV-4 showed that Mn was preferentially concentrated in the siderite and green rust. These results demonstrate that coprecipitated/sorbed Mn induced microbial formation of siderite and green rust by PV-4 at 25 degrees C, but the synthesis of Mn-substituted magnetite nanoparticles proceeded by TOR-39 at 60 degrees C. These results indicate that the bacteria have the ability to synthesize magnetite and Mn-substituted magnetite nano-crystals. Microbially facilitated synthesis of magnetite and metal-substituted magnetites at near ambient temperatures may expand the possible use of specialized ferromagnetic nano-particles.

  17. Metaproteomics reveals functional shifts in microbial and human proteins during a preterm infant gut colonization case.

    PubMed

    Young, Jacque C; Pan, Chongle; Adams, Rachel M; Brooks, Brandon; Banfield, Jillian F; Morowitz, Michael J; Hettich, Robert L

    2015-10-01

    Microbial colonization of the human gastrointestinal tract plays an important role in establishing health and homeostasis. However, the time-dependent functional signatures of microbial and human proteins during early colonization of the gut have yet to be determined. To this end, we employed shotgun proteomics to simultaneously monitor microbial and human proteins in fecal samples from a preterm infant during the first month of life. Microbial community complexity increased over time, with compositional changes that were consistent with previous metagenomic and rRNA gene data. More specifically, the function of the microbial community initially involved biomass growth, protein production, and lipid metabolism, and then switched to more complex metabolic functions, such as carbohydrate metabolism, once the community stabilized and matured. Human proteins detected included those responsible for epithelial barrier function and antimicrobial activity. Some neutrophil-derived proteins increased in abundance early in the study period, suggesting activation of the innate immune system. Likewise, abundances of cytoskeletal and mucin proteins increased later in the time course, suggestive of subsequent adjustment to the increased microbial load. This study provides the first snapshot of coordinated human and microbial protein expression in a preterm infant's gut during early development.

  18. Metaproteomics Reveals Functional Shifts in Microbial and Human Proteins During a Preterm Infant Gut Colonization Case

    PubMed Central

    Young, Jacque C.; Pan, Chongle; Adams, Rachel; Brooks, Brandon; Banfield, Jillian F.; Morowitz, Michael J.; Hettich, Robert L.

    2015-01-01

    Microbial colonization of the human gastrointestinal tract plays an important role in establishing health and homeostasis. However, the time-dependent functional signatures of microbial and human proteins during early colonization of the gut have yet to be determined. To this end, we employed shotgun proteomics to simultaneously monitor microbial and human proteins in fecal samples from a preterm infant during the first month of life. Microbial community complexity increased over time, with compositional changes that were consistent with previous metagenomic and rRNA gene data. More specifically, the function of the microbial community initially involved biomass growth, protein production, and lipid metabolism, and then switched to more complex metabolic functions, such as carbohydrate metabolism, once the community stabilized and matured. Human proteins detected included those responsible for epithelial barrier function and antimicrobial activity. Some neutrophil-derived proteins increased in abundance early in the study period, suggesting activation of the innate immune system. Likewise, abundances of cytoskeletal and mucin proteins increased later in the time course, suggestive of subsequent adjustment to the increased microbial load. This study provides the first snapshot of coordinated human and microbial protein expression in a preterm infant’s gut during early development. PMID:26077811

  19. Microbial Synthesis of the Forskolin Precursor Manoyl Oxide in an Enantiomerically Pure Form.

    PubMed

    Nielsen, Morten T; Ranberg, Johan Andersen; Christensen, Ulla; Christensen, Hanne Bjerre; Harrison, Scott J; Olsen, Carl Erik; Hamberger, Björn; Møller, Birger Lindberg; Nørholm, Morten H H

    2014-12-01

    Forskolin is a promising medicinal compound belonging to a plethora of specialized plant metabolites that constitute a rich source of bioactive high-value compounds. A major obstacle for exploitation of plant metabolites is that they often are produced in small amounts and in plants difficult to cultivate. This may result in insufficient and unreliable supply leading to fluctuating and high sales prices. Hence, substantial efforts and resources have been invested in developing sustainable and reliable supply routes based on microbial cell factories. Here, we report microbial synthesis of (13R)-manoyl oxide, a proposed intermediate in the biosynthesis of forskolin and other medically important labdane-type terpenoids. Process optimization enabled synthesis of enantiomerically pure (13R)-manoyl oxide as the sole metabolite, providing a pure compound in just two steps with a yield of 10 mg/liter. The work presented here demonstrates the value of a standardized bioengineering pipeline and the large potential of microbial cell factories as sources for sustainable synthesis of complex biochemicals. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Effect of creep feed supplementation and season on intake, microbial protein synthesis and efficiency, ruminal fermentation, digestion, and performance in nursing calves grazing native range in southeastern North Dakota.

    PubMed

    Reed, J J; Gelvin, A L; Lardy, G P; Bauer, M L; Caton, J S

    2006-02-01

    Nine ruminally and duodenally cannulated (172 +/- 23 kg of initial BW; Exp. 1) and 16 intact (153 +/- 28 kg of initial BW; Exp. 2) crossbred nursing steer calves were used to evaluate the effects of creep feed supplementation and advancing season on intake, digestion, microbial efficiency, ruminal fermentation, and performance while grazing native rangeland. Treatments in both experiments were no supplement or supplement fed at 0.45% of BW (DM basis) daily. Supplement consisted of 55% wheat middlings, 38.67% soyhulls, 5% molasses, and 1.33% limestone. Three 15-d collection periods occurred in June, July, and August. In Exp. 1, ruminal evacuations were performed and masticate samples were collected for diet quality analysis on d 1. Duodenal and fecal samples were collected from cannulated calves on d 7 to 12 at 0, 4, 8, and 12 h after supplementation. Ruminal fluid was drawn on d 9 and used as the inoculate for in vitro digestibility. On d 11, ruminal fluid was collected, and the pH was recorded at -1, 1, 2, 4, 8, 12, and 24 h postsupplementation. In Exp. 1 and 2, milk intake was estimated using weigh-suckle-weigh on d 15. Steers in Exp. 2 were fitted with fecal bags on d 6 to 11 to estimate forage intake. In Exp. 1, supplementation had no effect (P = 0.22 to 0.99) on grazed diet or milk composition. Apparent total tract OM disappearance increased (P = 0.03), and apparent total tract N disappearance tended (P = 0.11) to increase in supplemented calves. Microbial efficiency was not affected (P = 0.50) by supplementation. There were no differences in ruminal pH (P = 0.40) or total VFA concentration (P = 0.21) between treatments, whereas ruminal NH3 concentration increased (P = 0.03) in supplemented compared with control calves. In Exp. 2, supplementation decreased (P = 0.02) forage OM intake (OMI; % of BW) and increased (P = 0.06) total OMI (% of BW). Supplementation had no effect on ADG (P = 0.94) or G:F (P = 0.35). Supplementation with a wheat middlings and soybean

  1. Understanding Protein Synthesis: An Interactive Card Game Discussion

    ERIC Educational Resources Information Center

    Lewis, Alison; Peat, Mary; Franklin, Sue

    2005-01-01

    Protein synthesis is a complex process and students find it difficult to understand. This article describes an interactive discussion "game" used by first year biology students at the University of Sydney. The students, in small groups, use the game in which the processes of protein synthesis are actioned by the students during a…

  2. Protein synthesis during sleep consolidates cortical plasticity in vivo

    PubMed Central

    Seibt, Julie; Dumoulin, Michelle C.; Aton, Sara J.; Coleman, Tammi; Watson, Adam; Naidoo, Nirinjini; Frank, Marcos G.

    2012-01-01

    SUMMARY Sleep consolidates experience-dependent brain plasticity, but the precise cellular mechanisms mediating this process are unknown [1]. De novo cortical protein synthesis is one possible mechanism. In support of this hypothesis, sleep is associated with increased brain protein synthesis [2, 3] and transcription of mRNAs involved in protein synthesis regulation [4, 5]. Protein synthesis in turn is critical for memory consolidation and persistent forms of plasticity in vitro and in vivo [6, 7]. However, it is unknown if cortical protein synthesis in sleep serves similar functions. We investigated the role of protein synthesis in the sleep-dependent consolidation of a classic form of cortical plasticity in vivo (ocular dominance plasticity: ODP [8, 9]) in the cat visual cortex. We show that intracortical inhibition of mammalian target of rapamycin (mTOR)-dependent protein synthesis during sleep abolishes consolidation, but has no effect on plasticity induced during wakefulness. Sleep also promotes phosphorylation of protein synthesis regulators (i.e. 4E-BP1 and eEF2) and the translation (but not transcription) of key plasticity-related mRNAs (ARC and BDNF). These findings show that sleep promotes cortical mRNA translation. Interruption of this process has functional consequences, as it abolishes the consolidation of experience in the cortex. PMID:22386312

  3. SHORT-TERM MEMORY IS INDEPENDENT OF BRAIN PROTEIN SYNTHESIS

    SciTech Connect

    Davis, Hasker P.; Rosenzweig, Mark R.; Jones, Oliver W.

    1980-09-01

    Male Swiss albino CD-1 mice given a single injection of a cerebral protein synthesis inhibitor, anisomycin (ANI) (1 mg/animal), 20 min prior to single trial passive avoidance training demonstrated impaired retention at tests given 3 hr, 6 hr, 1 day, and 7 days after training. Retention was not significantly different from saline controls when tests were given 0.5 or 1.5 hr after training. Prolonging inhibition of brain protein synthesis by giving either 1 or 2 additional injections of ANI 2 or 2 and 4 hr after training did not prolong short-term retention performance. The temporal development of impaired retention in ANI treated mice could not be accounted for by drug dosage, duration of protein synthesis inhibition, or nonspecific sickness at test. In contrast to the suggestion that protein synthesis inhibition prolongs short-term memory (Quinton, 1978), the results of this experiment indicate that short-term memory is not prolonged by antibiotic drugs that inhibit cerebral protein synthesis. All evidence seems consistent with the hypothesis that short-term memory is protein synthesis independent and that the establishment of long-term memory depends upon protein synthesis during or shortly after training. Evidence for a role of protein synthesis in memory maintenance is discussed.

  4. Protein Synthesis Rate Assessment by Fluorescence Recovery after Photobleaching (FRAP)

    PubMed Central

    Kourtis, Nikos; Tavernarakis, Nektarios

    2017-01-01

    Currently available biochemical methods cannot be applied to monitor protein synthesis in specific cells or tissues, in live specimens. Here, we describe a non-invasive method for monitoring protein synthesis in single cells or tissues with intrinsically different translation rates, in live Caenorhabditis elegans animals. PMID:28286807

  5. Understanding Protein Synthesis: An Interactive Card Game Discussion

    ERIC Educational Resources Information Center

    Lewis, Alison; Peat, Mary; Franklin, Sue

    2005-01-01

    Protein synthesis is a complex process and students find it difficult to understand. This article describes an interactive discussion "game" used by first year biology students at the University of Sydney. The students, in small groups, use the game in which the processes of protein synthesis are actioned by the students during a…

  6. Microbial/enzymatic synthesis of chiral pharmaceutical intermediates.

    PubMed

    Patel, Ramesh N

    2003-11-01

    Chirality is a key factor in the efficacy of many drugs; thus, the production of single enantiomers of drug intermediates has become increasingly important in the pharmaceutical industry. Chiral intermediates and fine chemicals are in high demand from the pharmaceutical and agrochemical industries for the preparation of bulk drug substances and agricultural products. There has been an increasing awareness of the enormous potential of microorganisms and enzymes for the transformation of synthetic chemicals with high chemo-, regio- and enantioselectivity. In this article, biocatalytic processes for the synthesis of chiral pharmaceutical intermediates are described.

  7. Metaproteomics Reveals Functional Shifts in Microbial and Human Proteins During Infant Gut Colonization Case

    SciTech Connect

    Young, Jacque C.; Pan, Chongle; Adams, Rachel M.; Brooks, Brandon; Banfield, Jillian F.; Morowitz, Michael J.; Robert L. Hettich

    2015-01-01

    The microbial colonization of the human gastrointestinal tract plays an important role in establishing health and homeostasis. However, the time-dependent functional signatures of microbial and human proteins during early colonization of the gut have yet to be determined. Thus, we employed shotgun proteomics to simultaneously monitor microbial and human proteins in fecal samples from a preterm infant during the first month of life. Microbial community complexity and functions increased over time, with compositional changes that were consistent with previous metagenomic and rRNA gene data indicating three distinct colonization phases. Overall microbial community functions were established relatively early in development and remained stable. Human proteins detected included those responsible for epithelial barrier function and antimicrobial activity. Some neutrophil-derived proteins increased in abundance early in the study period, suggesting activation of the innate immune system. Moreover, abundances of cytoskeletal and mucin proteins increased later in the time course, suggestive of subsequent adjustment to the increased microbial load. Our study provides the first snapshot of coordinated human and microbial protein expression in the infant gut during early development.

  8. Metaproteomics Reveals Functional Shifts in Microbial and Human Proteins During Infant Gut Colonization Case

    DOE PAGES

    Young, Jacque C.; Pan, Chongle; Adams, Rachel M.; ...

    2015-01-01

    The microbial colonization of the human gastrointestinal tract plays an important role in establishing health and homeostasis. However, the time-dependent functional signatures of microbial and human proteins during early colonization of the gut have yet to be determined. Thus, we employed shotgun proteomics to simultaneously monitor microbial and human proteins in fecal samples from a preterm infant during the first month of life. Microbial community complexity and functions increased over time, with compositional changes that were consistent with previous metagenomic and rRNA gene data indicating three distinct colonization phases. Overall microbial community functions were established relatively early in development andmore » remained stable. Human proteins detected included those responsible for epithelial barrier function and antimicrobial activity. Some neutrophil-derived proteins increased in abundance early in the study period, suggesting activation of the innate immune system. Moreover, abundances of cytoskeletal and mucin proteins increased later in the time course, suggestive of subsequent adjustment to the increased microbial load. Our study provides the first snapshot of coordinated human and microbial protein expression in the infant gut during early development.« less

  9. Effects of feeding corn silage inoculated with microbial additives on the ruminal fermentation, microbial protein yield, and growth performance of lambs.

    PubMed

    Basso, F C; Adesogan, A T; Lara, E C; Rabelo, C H S; Berchielli, T T; Teixeira, I A M A; Siqueira, G R; Reis, R A

    2014-12-01

    This study aimed to examine the effects of feeding corn silage inoculated without or with either Lactobacillus buchneri (LB) alone or a combination of LB and Lactobacillus plantarum (LBLP) on the apparent digestibility, ruminal fermentation, microbial protein synthesis, and growth performance of lambs. Thirty Santa Inês×Dorper crossbred intact males lambs weighing 20.4±3.8 kg were blocked by weight into 10 groups. Lambs in each group were randomly assigned to 1 of the following 3 dietary treatments: untreated (Control), LB, and LBLP silage. Lambs were fed experimental diets for 61 d. The apparent digestibility was indirectly estimated from indigestible NDF measured on d 57 to 59. Spot urine samples were collected from all animals on d 59 to estimate microbial protein synthesis. Lambs were slaughtered for carcass evaluation on d 61 when they weighed 32.4±5.2 kg. Six additional ruminally cannulated Santa Inês×Dorper crossbred wethers weighing 40.5±1.8 kg were used to examine dietary effects on ruminal fermentation. Average daily gain was increased when lambs were fed LBLP silage (P<0.05) but not LB silage. The LBLP silage had the highest (P<0.05) lactic acid concentration and both inoculated silages had greater acetic acid concentrations than the Control silage (P<0.05). Inoculation of corn silage increased intakes of DM, OM, CP, NDF, total carbohydrate (CHO), and GE by the lambs but decreased digestibility of DM, OM, CP, total and nonstructural carbohydrates, and concentration of GE and ME. (P<0.05). Nevertheless, lambs fed inoculated silages had greater microbial N supply than those on the Control treatment (P<0.05). The acetate to propionate ratio was lower in ruminal fluid of wethers in LBLP treatment than LB and Control treatment (P<0.05) and ruminal pH tended to be greater in LB lambs than in LBLP and Control wethers (P<0.10). Finally, the inoculation with both bacteria combined enhanced the silage fermentation. The intakes of DM, OM, CP, NDF, and GE

  10. Effect of acute smoke exposure on hepatic protein synthesis.

    PubMed

    Garrett, R J; Jackson, M A

    1979-05-01

    In vivo hepatic protein synthesis was monitored in female rats under control and smoke-exposed conditions. During the 15 min period after i.v. administration of [3H]proline protein synthesis was 206 +/- 35 nmol of proline per mg of DNA for sham-control animals. When animals were subjected to acute exposure to cigarette smoke, protein synthesis was inhibited and the extent of inhibition was positively correlated with the dosage of smoke (32%, 15 puffs; 66%, 60 puffs). The inhibitory effect of whole smoke on protein synthesis was unaltered by passing the smoke through either charcoal or cambridge filters. Carbon monoxide in smoke is not removed by either type of filter. At a level comparable to that in cigarette smoke carbon monoxide depressed hepatic protein synthesis to the same extent as did whole or filtered smoke.

  11. Synthesis of Endosperm Proteins in Wheat Seed during Maturation 1

    PubMed Central

    Flint, Dennis; Ayers, George S.; Ries, Stanley K.

    1975-01-01

    The time of synthesis, the molecular weight, and the relative glutamine-glutamate and proline to leucine ratios of the endosperm proteins of wheat (Triticum aestivum L. cv. Logan) were determined using a sodium dodecyl sulfate-polyacrylamide gel technique. In general, synthesis of most proteins occurred through much of the maturation of the seed, but past 20 days the rate of synthesis of the high molecular weight proteins declined more rapidly than those of lower molecular weight. The synthesis of at least one protein occurred only late in seed maturation. Several of the high molecular weight proteins had glutamate-glutamine to leucine ratios higher than the remainder of the proteins. No evidence for proteins of a polyglutamine-glutamate and/or proline nature was found. PMID:16659308

  12. Role of RNA and Protein Synthesis in Abscission

    PubMed Central

    Abeles, F. B.

    1968-01-01

    The cell separation aspect of abscission is thought to involve the action of specific cell wall degrading enzymes. Enzymes represent synthesis which in turn is preceded by the synthesis of specific RNA molecules, and it follows that inhibition of either of these processes would also block abscission. Since abscission is a localized phenomenon usually involving 2 or 3 cell layers, RNA and protein synthesis should also be localized. Manipulations of plant material which either accelerate or retard abscission may be due to the regulation of RNA and protein synthesis. This paper is a review of literature concerned with these and related questions. Images PMID:16657020

  13. Regulation of ribosomal protein synthesis in an Escherichia coli mutant missing ribosomal protein L1.

    PubMed Central

    Jinks-Robertson, S; Nomura, M

    1981-01-01

    In an Escherichia coli B strain missing ribosomal protein L1, the synthesis rate of L11 is 50% greater than that of other ribosomal proteins. This finding is in agreement with the previous conclusion that L1 regulates synthesis of itself and L11 and indicates that this regulation is important for maintaining the balanced synthesis of ribosomal proteins under physiological conditions. PMID:7009590

  14. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    PubMed

    Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina

    2014-11-01

    Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis. © 2014 International Union of Biochemistry and Molecular Biology.

  15. Endotoxemia reduces skeletal muscle protein synthesis in neonates.

    PubMed

    Orellana, Renan A; O'Connor, Pamela M J; Nguyen, Hanh V; Bush, Jill A; Suryawan, Agus; Thivierge, M Carole; Fiorotto, Marta L; Davis, Teresa A

    2002-11-01

    Protein synthesis in skeletal muscle is reduced by as much as 50% as early as 4 h after a septic challenge in adults. However, the effect of sepsis on muscle protein synthesis has not been determined in neonates, a highly anabolic population whose muscle protein synthesis rates are elevated and uniquely sensitive to insulin and amino acid stimulation. Neonatal piglets (n = 10/group) were infused for 8 h with endotoxin [lipopolysaccharide (LPS), 0 and 10 microg. kg(-1). h(-1)]. Plasma amino acid and glucose concentrations were kept at the fed level by infusion of dextrose and a balanced amino acid mixture. Fractional protein synthesis rates were determined by use of a flooding dose of [(3)H]phenylalanine. LPS infusion produced a septic-like state, as indicated by an early and sustained elevation in body temperature, heart rate, and plasma tumor necrosis factor-alpha, interleukin-1, cortisol, and lactate concentrations. Plasma levels of insulin increased, whereas glucose and amino acids decreased, suggesting the absence of insulin resistance. LPS significantly reduced protein synthesis in longissimus dorsi muscle by only 11% and in gastrocnemius by only 15%, but it had no significant effect in masseter and cardiac muscles. LPS increased protein synthesis in the liver (22%), spleen (28%), kidney (53%), jejunum (19%), diaphragm (21%), lung (50%), and skin (13%), but not in the stomach, pancreas, or brain. These findings suggest that, when substrate supply is maintained, skeletal muscle protein synthesis in neonates compared with adults is relatively resistant to the catabolic effects of sepsis.

  16. A resource dependent protein synthesis model for evaluating synthetic circuits.

    PubMed

    Halter, Wolfgang; Montenbruck, Jan Maximilian; Tuza, Zoltan A; Allgöwer, Frank

    2017-03-09

    Reliable in silico design of synthetic gene networks necessitates novel approaches to model the process of protein synthesis under the influence of limited resources. We present such a novel protein synthesis model which originates from the Ribosome Flow Model and among other things describes the movement of RNA-polymerase and ribosomes on mRNA and DNA templates, respectively. By analyzing the convergence properties of this model based upon geometric considerations, we present additional insights into the dynamic mechanisms of the process of protein synthesis. Further, we demonstrate how this model can be used to evaluate the performance of synthetic gene circuits under different loading scenarios.

  17. Neuronal GPCR OCTR-1 regulates innate immunity by controlling protein synthesis in Caenorhabditis elegans

    PubMed Central

    Liu, Yiyong; Sellegounder, Durai; Sun, Jingru

    2016-01-01

    Upon pathogen infection, microbial killing pathways and cellular stress pathways are rapidly activated by the host innate immune system. These pathways must be tightly regulated because insufficient or excessive immune responses have deleterious consequences. Increasing evidence indicates that the nervous system regulates the immune system to confer coordinated protection to the host. However, the precise mechanisms of neural-immune communication remain unclear. Previously we have demonstrated that OCTR-1, a neuronal G protein-coupled receptor, functions in the sensory neurons ASH and ASI to suppress innate immune responses in non-neural tissues against Pseudomonas aeruginosa in Caenorhabditis elegans. In the current study, by using a mass spectrometry-based quantitative proteomics approach, we discovered that OCTR-1 regulates innate immunity by suppressing translation and the unfolded protein response (UPR) pathways at the protein level. Functional assays revealed that OCTR-1 inhibits specific protein synthesis factors such as ribosomal protein RPS-1 and translation initiation factor EIF-3.J to reduce infection-triggered protein synthesis and UPR. Translational inhibition by chemicals abolishes the OCTR-1-controlled innate immune responses, indicating that activation of the OCTR-1 pathway is dependent on translation upregulation such as that induced by pathogen infection. Because OCTR-1 downregulates protein translation activities, the OCTR-1 pathway could function to suppress excessive responses to infection or to restore protein homeostasis after infection. PMID:27833098

  18. Nonfeed application of rendered animal proteins for microbial production of eicosapentaenoic acid by the fungus Pythium irregulare.

    PubMed

    Liang, Yi; Garcia, Rafael A; Piazza, George J; Wen, Zhiyou

    2011-11-23

    Rendered animal proteins are well suited for animal nutrition applications, but the market is maturing, and there is a need to develop new uses for these products. The objective of this study is to explore the possibility of using animal proteins as a nutrient source for microbial production of omega-3 polyunsaturated fatty acids by the microalga Schizochytrium limacinum and the fungus Pythium irregulare. To be absorbed by the microorganisms, the proteins needed to be hydrolyzed into small peptides and free amino acids. The utility of the protein hydrolysates for microorganisms depended on the hydrolysis method used and the type of microorganism. The enzymatic hydrolysates supported better cell growth performance than the alkali hydrolysates did. P. irregulare displayed better overall growth performance on the experimental hydrolysates compared to S. limacinum. When P. irregulare was grown in medium containing 10 g/L enzymatic hydrolysate derived from meat and bone meal or feather meal, the performance of cell growth, lipid synthesis, and omega-3 fatty acid production was comparable to the that of culture using commercial yeast extract. The fungal biomass derived from the animal proteins had 26-29% lipid, 32-34% protein, 34-39% carbohydrate, and <2% ash content. The results show that it is possible to develop a nonfeed application for rendered animal protein by hydrolysis of the protein and feeding to industrial microorganisms which can produce omega-3 fatty acids for making omega-3-fortified foods or feeds.

  19. Dendritic protein synthesis in the normal and diseased brain

    PubMed Central

    Swanger, Sharon A.; Bassell, Gary J.

    2015-01-01

    Synaptic activity is a spatially-limited process that requires a precise, yet dynamic, complement of proteins within the synaptic micro-domain. The maintenance and regulation of these synaptic proteins is regulated, in part, by local mRNA translation in dendrites. Protein synthesis within the postsynaptic compartment allows neurons tight spatial and temporal control of synaptic protein expression, which is critical for proper functioning of synapses and neural circuits. In this review, we discuss the identity of proteins synthesized within dendrites, the receptor-mediated mechanisms regulating their synthesis, and the possible roles for these locally synthesized proteins. We also explore how our current understanding of dendritic protein synthesis in the hippocampus can be applied to new brain regions and to understanding the pathological mechanisms underlying varied neurological diseases. PMID:23262237

  20. [Plasmatic membrane protein synthesis in cells of the regenerating liver].

    PubMed

    Pospelov, A V; Gorelova, N V

    1978-05-01

    Protein synthesis in the cells of the regenerating rat liver was studied. The rate of 3H-glycine incorporation into the total proteins of the liver, those of microsomal fraction, proteins of hyaloplasm, and plasmatic membrane proteins, soluble and non-soluble in 0.05 M K2CO3, was determined. The rate of 3H-glycine incorporation into soluble proteines of plasma membranes became maximal one hour after partial hepatectomy. The peak of the rate of synthesis of proteins of other fractions fell on the end of the G1-period. A sharp increase of the synthesis rate of plasma membrane proteins seems to be one of the earliest biochemical events in the regenerating liver hepatocytes ready for division.

  1. The Role of Post-Exercise Nutrient Administration on Muscle Protein Synthesis and Glycogen Synthesis

    PubMed Central

    Poole, Chris; Wilborn, Colin; Taylor, Lem; Kerksick, Chad

    2010-01-01

    Nutrient administration following an exercise bout vastly affects anabolic processes within the human body, irrespective of exercise mode. Of particular importance are protein and carbohydrates whereby these two macronutrients portray distinct functions as anabolic agents. It has been confirmed that protein and/or amino acid ingestion following resistance training is required to reach a positive protein/nitrogen balance, and carbohydrate intake during recovery is the most important consideration to replenish glycogen stores from an exhaustive exercise bout. Several factors play significant roles in determining the effectiveness of protein and carbohydrate supplementation on post-exercise protein and glycogen synthesis. Improper application of these factors can limit the body’s ability to reach an anabolic status. The provided evidence clearly denotes the importance these two macronutrients have in regards to post-exercise nutrition and anabolism. Therefore, the purpose of this review is to discuss the impact of dietary protein and carbohydrate intake during the recovery state on muscle protein synthesis and glycogen synthesis. Key points Post-exercise nutrient intake is essential for promoting protein synthesis and glycogen synthesis. The timing and amount of protein and/or carbohydrate ingested affects the rate and amount of synthesis. The type/form of protein and/or carbohydrate ingested after exercise alters anabolic processes during the recovery period. PMID:24149627

  2. Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology.

    PubMed

    von Bergen, Martin; Jehmlich, Nico; Taubert, Martin; Vogt, Carsten; Bastida, Felipe; Herbst, Florian-Alexander; Schmidt, Frank; Richnow, Hans-Hermann; Seifert, Jana

    2013-10-01

    The recent development of metaproteomics has enabled the direct identification and quantification of expressed proteins from microbial communities in situ, without the need for microbial enrichment. This became possible by (1) significant increases in quality and quantity of metagenome data and by improvements of (2) accuracy and (3) sensitivity of modern mass spectrometers (MS). The identification of physiologically relevant enzymes can help to understand the role of specific species within a community or an ecological niche. Beside identification, relative and absolute quantitation is also crucial. We will review label-free and label-based methods of quantitation in MS-based proteome analysis and the contribution of quantitative proteome data to microbial ecology. Additionally, approaches of protein-based stable isotope probing (protein-SIP) for deciphering community structures are reviewed. Information on the species-specific metabolic activity can be obtained when substrates or nutrients are labeled with stable isotopes in a protein-SIP approach. The stable isotopes ((13)C, (15)N, (36)S) are incorporated into proteins and the rate of incorporation can be used for assessing the metabolic activity of the corresponding species. We will focus on the relevance of the metabolic and phylogenetic information retrieved with protein-SIP studies and for detecting and quantifying the carbon flux within microbial consortia. Furthermore, the combination of protein-SIP with established tools in microbial ecology such as other stable isotope probing techniques are discussed.

  3. Microbial conversion of synthesis gas components to useful fuels and chemicals

    SciTech Connect

    Madhukar, G.R.; Elmore, B.B.; Huckabay, H.K.

    1996-12-31

    Enriched culture techniques have been used to isolate microbial cultures exhibiting growth on synthesis gas components. Three rod-shaped, gram-positive cultures have been isolated from petroleum-contaminated soil, a cow manure-soil mixture, and sheep rumen fluid. Each culture exhibits growth on carbon monoxide as its primary carbon source, producing alcohols and acids in the fermentation medium. Quantities of up to 7.5, 0.58, and 0.25 g/L of acetate, ethanol, and methanol, respectively, have been produced in batch culture with lesser amounts of acetone, butyric, and propionic acid detected. 15 refs., 5 figs., 3 tabs.

  4. A practical total synthesis of the microbial alkaline proteinase inhibitor (MAPI).

    PubMed

    Haebich, Dieter; Hillisch, Alexander; El Sheikh, Sherif

    2009-12-01

    Diverse serine and cysteine proteases as well as alkaline proteinases and elastases play a crucial role in numerous biological processes. Natural peptide aldehydes such as the "microbial alkaline proteinase inhibitor" (MAPI, 1) are valuable tools to characterize novel enzymes and to study their function in nature. Within a drug discovery program we wanted to design and explore non-natural MAPI congeners with novel biological profiles. To that end we devised a simple, practical, and scalable synthesis of MAPI 1 from readily available amino acid building blocks. The modular nature of our approach allows convenient structural modification of the MAPI backbone.

  5. Regulation of muscle protein synthesis in humans.

    PubMed

    Phillips, Bethan E; Hill, Derek S; Atherton, Philip J

    2012-01-01

    Investigations into the regulation of muscle protein synthesis (MPS) are a cornerstone of understanding the control of muscle mass. Rates of MPS are finely tuned according to levels of activity, nutrient availability and health status. For instance, rates of MPS are positively regulated by exercise and nutrition, and negatively regulated by inactivity (e.g. disuse), ageing (i.e. sarcopenia) and in muscle-wasting related diseases (e.g. cancer). Skeletal muscles display a high degree of intrinsic regulation. Increases in MPS after exercise occur independently of the systemic milieu for example growth hormone/testosterone concentrations. In the absence of exercise, increases in MPS after feeding are of finite duration despite enduring precursor availability; that is muscles can sense they are 'full'. Intriguingly, exercise delays this 'muscle-full' response to allow for building and repair. In contrast, muscle-wasting conditions exhibit a premature 'muscle-full' response to nutrition and exercise (i.e. anabolic resistance), which may cause atrophy. Observations of 'dissociations' between MPS and anabolic signalling pathways have cast doubt on how much we understand of the molecular regulation of human MPS. Anabolic and anticatabolic interventions in health and disease should be aimed at manipulating the 'muscle-full' set point to maximize muscle maintenance/hypertrophy.

  6. Protein synthesis as an integral quality control mechanism during ageing.

    PubMed

    Charmpilas, Nikolaos; Daskalaki, Ioanna; Papandreou, Margarita Elena; Tavernarakis, Nektarios

    2015-09-01

    Ageing is manifested as functional and structural deterioration that affects cell and tissue physiology. mRNA translation is a central cellular process, supplying cells with newly synthesized proteins. Accumulating evidence suggests that alterations in protein synthesis are not merely a corollary but rather a critical factor for the progression of ageing. Here, we survey protein synthesis regulatory mechanisms and focus on the pre-translational regulation of the process exerted by non-coding RNA species, RNA binding proteins and alterations of intrinsic RNA properties. In addition, we discuss the tight relationship between mRNA translation and two central pathways that modulate ageing, namely the insulin/IGF-1 and TOR signalling cascades. A thorough understanding of the complex interplay between protein synthesis regulation and ageing will provide critical insights into the pathogenesis of age-related disorders, associated with impaired proteostasis and protein quality control.

  7. Comparative efficiency of microbial enzyme preparations versus pancreatin for in vitro alimentary protein digestion.

    PubMed

    Andriamihaja, Mireille; Guillot, Alain; Svendsen, Allan; Hagedorn, Joerg; Rakotondratohanina, Sahondra; Tomé, Daniel; Blachier, François

    2013-02-01

    Utilisation of microbial enzymes may represent an alternative strategy to the use of conventional pancreatin obtained from pig pancreas for the treatment of severe pancreatic insufficiency. In this study, we focused on the capacity of two microbial preparations for their capacity to digest alimentary proteins (caseins and soya proteins) in comparison with pancreatin. These microbial enzymatic preparations were found to be able to generate small, medium-size and larger polypeptides from caseins and soya proteins but were inactivated at pH 3.0. As determined by Liquid Chromatography-Mass Spectrometry analysis, microbial enzymes generated very different peptides from caseins when compared with peptides generated through pancreatin action. These microbial preparations were characterised by relatively low trypsin- and low carboxypeptidase-like activities but high chymotrypsin-like activities and strong capacity for cleavage of caseins at the methionine sites. Although the efficiency of these microbial preparations to increase the rate of absorption of nitrogen-containing compounds in severe pancreatic insufficiency remains to be tested in vivo, our in vitro data indicate proteolytic capacities of such preparations for alimentary protein digestion.

  8. Cloning-independent expression and screening of enzymes using cell-free protein synthesis systems.

    PubMed

    Kwon, Yong-Chan; Song, Jae-Kwang; Kim, Dong-Myung

    2014-01-01

    We present a strategy for expression and screening of microbial enzymes without involving cloning procedures. Libraries of putative ω-transaminases (ω-TA) and mutated Candida antarctica lipase B (CalB) are PCR-amplified from bacterial colonies and directly expressed in an Escherichia coli-based cell-free protein synthesis system. The open nature of cell-free protein synthesis system also allows streamlined analysis of the enzymatic activity of the expressed enzymes, which greatly shortens the time required for enzyme screening. We expect that the proposed strategy will provide a universal platform for bridging the information gap between nucleotide sequence and protein function, in order to accelerate the discovery of novel enzymes. The proposed strategy can also serve as a viable option for the rapid and precise tuning of enzyme molecules, not only for analytical purposes, but also for industrial applications. This is accomplished via large-scale production using microbial cells transformed with variant genes selected from the cell-free expression screening.

  9. N-acetylcysteine stimulates protein synthesis in enterocytes independently of glutathione synthesis.

    PubMed

    Yi, Dan; Hou, Yongqing; Wang, Lei; Long, Minhui; Hu, Shengdi; Mei, Huimin; Yan, Liqiong; Hu, Chien-An Andy; Wu, Guoyao

    2016-02-01

    Dietary supplementation with N-acetylcysteine (NAC) has been reported to improve intestinal health and treat gastrointestinal diseases. However, the underlying mechanisms are not fully understood. According to previous reports, NAC was thought to exert its effect through glutathione synthesis. This study tested the hypothesis that NAC enhances enterocyte growth and protein synthesis independently of cellular glutathione synthesis. Intestinal porcine epithelial cells were cultured for 3 days in Dulbecco's modified Eagle medium containing 0 or 100 μM NAC. To determine a possible role for GSH (the reduced form of glutathione) in mediating the effect of NAC on cell growth and protein synthesis, additional experiments were conducted using culture medium containing 100 μM GSH, 100 μM GSH ethyl ester (GSHee), diethylmaleate (a GSH-depletion agent; 10 μM), or a GSH-synthesis inhibitor (buthionine sulfoximine, BSO; 20 μM). NAC increased cell proliferation, GSH concentration, and protein synthesis, while inhibiting proteolysis. GSHee enhanced cell proliferation and GSH concentration without affecting protein synthesis but inhibited proteolysis. Conversely, BSO or diethylmaleate reduced cell proliferation and GSH concentration without affecting protein synthesis, while promoting protein degradation. At the signaling level, NAC augmented the protein abundance of total mTOR, phosphorylated mTOR, and phosphorylated 70S6 kinase as well as mRNA levels for mTOR and p70S6 kinase in IPEC-1 cells. Collectively, these results indicate that NAC upregulates expression of mTOR signaling proteins to stimulate protein synthesis in enterocytes independently of GSH generation. Our findings provide a hitherto unrecognized biochemical mechanism for beneficial effects of NAC in intestinal cells.

  10. Predictors of Muscle Protein Synthesis after Severe Pediatric Burns

    PubMed Central

    Diaz, Eva C.; Herndon, David N.; Lee, Jinhyung; Porter, Craig; Cotter, Matthew; Suman, Oscar E.; Sidossis, Labros S.; Børsheim, Elisabet

    2015-01-01

    Background Following a major burn, skeletal muscle protein synthesis rate increases, but is often insufficient to compensate for massively elevated muscle protein breakdown rates. Given the long-term nature of the pathophysiologic response to burn injury, we hypothesized that muscle protein synthesis rate would be chronically elevated in severely burned children. The objectives of this study were to characterize muscle protein synthesis rate of burned children over a period of 24 months post-injury, and identify predictors that influence this response. Study design 87 children with ≥40% total body surface area (TBSA) burn were included. Patients participated in stable isotope infusion studies at 1, 2 and ~ 4 weeks post-burn, and at 6, 12 and 24 months post-injury to determine skeletal muscle fractional synthesis rate. Generalized estimating equations with log link normal distribution were applied to account for clustering of patients and control for patient characteristics. Results Patients (8±6 years) had large (62, 51–72% TBSA) and deep (47±21% TBSA third degree) burns. Muscle fractional synthesis rate was elevated throughout the first 12 months post-burn compared to established values from healthy young adults. Muscle fractional synthesis rate was lower in boys, children >3 years old, and when burns were >80% TBSA. Conclusions Muscle protein synthesis is elevated for at least one year after injury, suggesting that greater muscle protein turnover is a component of the long-term pathophysiological response to burn trauma. Muscle protein synthesis is highly affected by gender, age and burn size in severely burned children. These findings may explain the divergence in net protein balance and lean body mass in different populations of burn victims. PMID:25807408

  11. Hyperoxia: Influence on Lung Mechanics and Protein Synthesis

    PubMed Central

    Gacad, Gerardo; Massaro, Donald

    1973-01-01

    We studied the time-course of the influence of in vivo hyperoxia on lung mechanics and on protein synthesis. After 24 h of exposure to greater than 98% O2 at 1 atm there were no alterations in descending pressure-volume curves (air or saline) of lungs excised from O2-exposed rats compared to control rats. After 48 h of hyperoxia there was a decrease in lung compliance. To study protein synthesis, as indicated by L-[U-24C] leucine incorporation into protein, lung slices were incubated with L-[U-14C]leucine and surface-active material then obtained by ultracentrifugation of lung homogenates. We measured radioactivity in total protein and in protein in the surface-active fraction. There were no alterations in incorporation after 12 h of hypertoxia. After 24 h of hyperoxia there were significant decreases (P<0.05) in L-[U-14C]leucine incorporation into total protein and into protein of the surface-active fraction. After 48 h of hyperoxia incorporation into protein of the surface-active fraction was decreased to a greater extent than incorporation into total protein, 63±4% and 75±5%, respectively, (P<0.025). These studies show that hyperoxia produces a major decrease in protein synthesis, including synthesis of protein in a surface-active fraction, before the onset of any detectable changes in the static compliance of excised lungs. PMID:4739291

  12. Protein chemical synthesis by α-ketoacid-hydroxylamine ligation.

    PubMed

    Harmand, Thibault J; Murar, Claudia E; Bode, Jeffrey W

    2016-06-01

    Total chemical synthesis of proteins allows researchers to custom design proteins without the complex molecular biology that is required to insert non-natural amino acids or the biocontamination that arises from methods relying on overexpression in cells. We describe a detailed procedure for the chemical synthesis of proteins with the α-ketoacid-hydroxylamine (KAHA ligation), using (S)-5-oxaproline (Opr) as a key building block. This protocol comprises two main parts: (i) the synthesis of peptide fragments by standard fluorenylmethoxycarbonyl (Fmoc) chemistry and (ii) the KAHA ligation between fragments containing Opr and a C-terminal peptide α-ketoacid. This procedure provides an alternative to native chemical ligation (NCL) that could be valuable for the synthesis of proteins, particularly targets that do not contain cysteine residues. The ligation conditions-acidic DMSO/H2O or N-methyl-2-pyrrolidinone (NMP)/H2O-are ideally suited for solubilizing peptide segments, including many hydrophobic examples. The utility and efficiency of the protocol is demonstrated by the total chemical synthesis of the mature betatrophin (also called ANGPTL8), a 177-residue protein that contains no cysteine residues. With this protocol, the total synthesis of the betatrophin protein has been achieved in around 35 working days on a multimilligram scale.

  13. Circulating protein synthesis rates reveal skeletal muscle proteome dynamics

    PubMed Central

    Shankaran, Mahalakshmi; King, Chelsea L.; Angel, Thomas E.; Holmes, William E.; Li, Kelvin W.; Colangelo, Marc; Price, John C.; Turner, Scott M.; Bell, Christopher; Hamilton, Karyn L.; Miller, Benjamin F.; Hellerstein, Marc K.

    2015-01-01

    Here, we have described and validated a strategy for monitoring skeletal muscle protein synthesis rates in rodents and humans over days or weeks from blood samples. We based this approach on label incorporation into proteins that are synthesized specifically in skeletal muscle and escape into the circulation. Heavy water labeling combined with sensitive tandem mass spectrometric analysis allowed integrated synthesis rates of proteins in muscle tissue across the proteome to be measured over several weeks. Fractional synthesis rate (FSR) of plasma creatine kinase M-type (CK-M) and carbonic anhydrase 3 (CA-3) in the blood, more than 90% of which is derived from skeletal muscle, correlated closely with FSR of CK-M, CA-3, and other proteins of various ontologies in skeletal muscle tissue in both rodents and humans. Protein synthesis rates across the muscle proteome generally changed in a coordinate manner in response to a sprint interval exercise training regimen in humans and to denervation or clenbuterol treatment in rodents. FSR of plasma CK-M and CA-3 revealed changes and interindividual differences in muscle tissue proteome dynamics. In human subjects, sprint interval training primarily stimulated synthesis of structural and glycolytic proteins. Together, our results indicate that this approach provides a virtual biopsy, sensitively revealing individualized changes in proteome-wide synthesis rates in skeletal muscle without a muscle biopsy. Accordingly, this approach has potential applications for the diagnosis, management, and treatment of muscle disorders. PMID:26657858

  14. The origin of polynucleotide-directed protein synthesis

    NASA Technical Reports Server (NTRS)

    Orgel, Leslie E.

    1989-01-01

    If protein synthesis evolved in an RNA world it was probably preceded by simpler processes by means of which interaction with amino acids conferred selective advantage on replicating RNA molecules. It is suggested that at first the simple attachment of amino acids to the 2'(3') termini of RNA templates favored initiation of replication at the end of the template rather than at internal positions. The second stage in the evolution of protein synthesis would probably have been the association of pairs of charged RNA adaptors in such a way as to favor noncoded formation of peptides. Only after this process had become efficient could coded synthesis have begun.

  15. The origin of polynucleotide-directed protein synthesis

    NASA Technical Reports Server (NTRS)

    Orgel, Leslie E.

    1989-01-01

    If protein synthesis evolved in an RNA world it was probably preceded by simpler processes by means of which interaction with amino acids conferred selective advantage on replicating RNA molecules. It is suggested that at first the simple attachment of amino acids to the 2'(3') termini of RNA templates favored initiation of replication at the end of the template rather than at internal positions. The second stage in the evolution of protein synthesis would probably have been the association of pairs of charged RNA adaptors in such a way as to favor noncoded formation of peptides. Only after this process had become efficient could coded synthesis have begun.

  16. Enzymic synthesis of gastrodin through microbial transformation and purification of gastrodin biosynthesis enzyme.

    PubMed

    Zhu, Hongli; Dai, Penggao; Zhang, Wei; Chen, Erfang; Han, Wenxian; Chen, Chao; Cui, Yali

    2010-01-01

    Gastrodin, a major bioactive component of a famous Chinese herb Gastrodia elata B1., has diverse pharmaceutical functions. It is usually obtained by extraction from a plant or through chemical synthesis. However, traditional extraction from Gastrodia elata B1. is time and money consuming, while chemical synthesis is a complicated procedure and always leads to very serious environmental pollution. Thus it is urgent to explore a new gastrodin source which is more economical and environmental. The present study reports a novel approach to the production of gastrodin through biosynthesis and microbial transformation. Rhizopus chinensis SAITO AS3.1165 was screened from about 50 fungal and bacterial strains and found capable of biotransforming p-hydroxybenzaldehyde into gastrodin for use in gastrodin production. A series of purification steps including (NH(4))(2)SO(4) precipitation, ion exchange chromatography and gel filtration column chromatography was successfully used for purification of the gastrodin biosynthesis enzyme (GBE). The purity of GBE was above 95% and its molecular weight was about 63.2 kDa. We further characterized GBE's function condition, and found that the optimal temperature was 50 °C and the optimum pH 6.0. The enzyme was stable at a temperature lower than 50 °C and a pH between 6.0 and 9.0. The result indicated that gastrodin could be successfully synthesized by microbial transformation, providing a new approach for gastrodin production.

  17. Improved Cell-Free RNA and Protein Synthesis System

    PubMed Central

    Li, Jun; Gu, Liangcai; Aach, John; Church, George M.

    2014-01-01

    Cell-free RNA and protein synthesis (CFPS) is becoming increasingly used for protein production as yields increase and costs decrease. Advances in reconstituted CFPS systems such as the Protein synthesis Using Recombinant Elements (PURE) system offer new opportunities to tailor the reactions for specialized applications including in vitro protein evolution, protein microarrays, isotopic labeling, and incorporating unnatural amino acids. In this study, using firefly luciferase synthesis as a reporter system, we improved PURE system productivity up to 5 fold by adding or adjusting a variety of factors that affect transcription and translation, including Elongation factors (EF-Ts, EF-Tu, EF-G, and EF4), ribosome recycling factor (RRF), release factors (RF1, RF2, RF3), chaperones (GroEL/ES), BSA and tRNAs. The work provides a more efficient defined in vitro transcription and translation system and a deeper understanding of the factors that limit the whole system efficiency. PMID:25180701

  18. Cell-free protein synthesis: applications in proteomics and biotechnology.

    PubMed

    He, Mingyue

    2008-01-01

    Protein production is one of the key steps in biotechnology and functional proteomics. Expression of proteins in heterologous hosts (such as in E. coli) is generally lengthy and costly. Cell-free protein synthesis is thus emerging as an attractive alternative. In addition to the simplicity and speed for protein production, cell-free expression allows generation of functional proteins that are difficult to produce by in vivo systems. Recent exploitation of cell-free systems enables novel development of technologies for rapid discovery of proteins with desirable properties from very large libraries. This article reviews the recent development in cell-free systems and their application in the large scale protein analysis.

  19. Amiloride, protein synthesis, and activation of quiescent cells.

    PubMed

    Lubin, M; Cahn, F; Coutermarsh, B A

    1982-11-01

    Amiloride is known to inhibit both influx of sodium ions and activation of quiescent cells by growth factors. The coincidence of these effects has been cited to support the proposal that influx of sodium ions acts as a mitogenic signal. Although it was noted that amiloride inhibited protein synthesis, this was attributed to an action on transport of amino acids, particularly those coupled to sodium fluxes. We find, however, that amiloride directly inhibits polypeptide synthesis in a reticulocyte lysate. In Swiss 3T3 cells, concentrations of amiloride and of cycloheximide that are nearly matched in their degree of inhibition of protein synthesis, produce about the same degree of inhibition of transit of cells from G0 to S. Inhibition of protein synthesis is sufficient to explain the effect of amiloride on mitogenesis; the drug, therefore, is not suitable for testing the hypothesis that sodium influx is a mitogenic signal.

  20. Regulation of ribosomal protein synthesis in Vibrio cholerae.

    PubMed

    Allen, Todd D; Watkins, Tonya; Lindahl, Lasse; Zengel, Janice M

    2004-09-01

    We have investigated the regulation of the S10 and spc ribosomal protein (r-protein) operons in Vibrio cholerae. Both operons are under autogenous control; they are mediated by r-proteins L4 and S8, respectively. Our results suggest that Escherichia coli-like strategies for regulating r-protein synthesis extend beyond the enteric members of the gamma subdivision of proteobacteria.

  1. Regulation of Ribosomal Protein Synthesis in Vibrio cholerae

    PubMed Central

    Allen, Todd D.; Watkins, Tonya; Lindahl, Lasse; Zengel, Janice M.

    2004-01-01

    We have investigated the regulation of the S10 and spc ribosomal protein (r-protein) operons in Vibrio cholerae. Both operons are under autogenous control; they are mediated by r-proteins L4 and S8, respectively. Our results suggest that Escherichia coli-like strategies for regulating r-protein synthesis extend beyond the enteric members of the gamma subdivision of proteobacteria. PMID:15317799

  2. Inadequacy of prebiotic synthesis as origin of proteinous amino acids.

    PubMed

    Wong, J T; Bronskill, P M

    1979-07-18

    The production of some nonproteinous, and lack of production of other proteinous, amino acids in model prebiotic synthesis, along with the instability of glutamine and asparagine, suggest that not all of the 20 present day proteinous amino acids gained entry into proteins directly from the primordial soup. Instead, a process of active co-evolution of the genetic code and its constituent amino acids would have to precede the final selection of these proteinous amono acids.

  3. Adeno-associated virus rep protein synthesis during productive infection

    SciTech Connect

    Redemann, B.E.; Mendelson, E.; Carter, B.J.

    1989-02-01

    Adeno-associated virus (AAV) Rep proteins mediate viral DNA replication and can regulate expression from AAV genes. The authors studied the kinetics of synthesis of the four Rep proteins, Rep78, Rep68, Rep52, and Rep40, during infection of human 293 or KB cells with AAV and helper adenovirus by in vivo labeling with (/sup 35/S)methionine, immunoprecipitation, and immunoblotting analyses. Rep78 and Rep52 were readily detected concomitantly with detection of viral monomer duplex DNA replicating about 10 to 12 h after infection, and Rep68 and Rep40 were detected 2 h later. Rep78 and Rep52 were more abundant than Rep68 and Rep40 owing to a higher synthesis rate throughout the infectious cycle. In some experiments, very low levels of Rep78 could be detected as early as 4 h after infection. The synthesis rates of Rep proteins were maximal between 14 and 24 h and then decreased later after infection. Isotopic pulse-chase experiments showed that each of the Rep proteins was synthesized independently and was stable for at least 15 h. A slower-migrating, modified form of Rep78 was identified late after infection. AAV capsid protein synthesis was detected at 10 to 12 h after infection and also exhibited synthesis kinetics similar to those of the Rep proteins. AAV DNA replication showed at least two clearly defined stages. Bulk duplex replicating DNA accumulation began around 10 to 12 h and reached a maximum level at about 20 h when Rep and capsid protein synthesis was maximal. Progeny single-stranded DNA accumulation began about 12 to 13 h, but most of this DNA accumulated after 24 h when Rep and capsid protein synthesis had decreased.

  4. Effect of treating alfalfa silage with pistachio by-products extract on Saanen dairy goats performance and microbial nitrogen synthesis.

    PubMed

    Mokhtarpour, A; Naserian, A A; Pourmollae, F; Ghaffari, M H

    2016-08-01

    A lactation experiment was conducted to determine the influence of addition of pistachio by-products extract (PBE) to alfalfa silage (AS) on performance, rumen fermentation, milk yield and composition, and microbial nitrogen synthesis. Eight multiparous dairy goats (1.8 ± 0.25 kg of milk yield) were used in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments to compare two types of AS (supplemented with or without PBE) with two levels of dietary crude protein (14% vs. 16% CP). Dietary treatments were (i) AS with 14% CP of DM diet without PBE (14%CP-PBE), (ii) AS with 14% CP of DM diet with PBE (14%CP + PBE), (iii) AS with 16% CP of DM diet without PBE (16%CP-PBE) and (iv) AS with 16% CP of DM diet with PBE (16%CP + PBE). PBE was sprayed on fresh alfalfa at a ratio of 500 ml/kg alfalfa DM to get the final concentration of 1% tannin as tannic acid equivalent on DM basis. Intake of CP was greater (p < 0.01) in goats fed 16% CP diets than those fed 14% CP diets, regardless of PBE supplementation. Supplementation of PBE tended to decrease (p = 0.09) rumen NH3 -N concentration regardless of the level of CP in the diet. Supplementation of PBE tended (p = 0.09) to decrease total purine derivatives regardless of the level of CP in the diet with no significant change in microbial nitrogen supply. Efficiency of microbial nitrogen synthesis (EMNS) had a tendency (p = 0.07) to decrease in PBE supplemented diets. There was also a tendency (p = 0.10) for more EMNS in 14% CP fed goats than those fed 16% CP diets. Therefore, AS supplemented with PBE may lead to less concentration of ruminal NH3 -N because of decreased degradation of CP by rumen micro-organisms in response to pistachio by-products tannins.

  5. Development of microbial spoilage and lipid and protein oxidation in rabbit meat.

    PubMed

    Nakyinsige, K; Sazili, A Q; Aghwan, Z A; Zulkifli, I; Goh, Y M; Abu Bakar, F; Sarah, S A

    2015-10-01

    This experiment aimed to determine microbial spoilage and lipid and protein oxidation during aerobic refrigerated (4°C) storage of rabbit meat. Forty male New Zealand white rabbits were slaughtered according to the Halal slaughter procedure. The hind limbs were used for microbial analysis while the Longissimus lumborum m. was used for determination of lipid and protein oxidation. Bacterial counts generally increased with aging time and the limit for fresh meat (10(8)cfu/g) was reached at d 7 postmortem. Significant differences in malondialdehyde content were observed after 3d of storage. The thiol concentration significantly decreased with increase in aging time. The band intensities of myosin heavy chain and troponin T significantly reduced with increased refrigerated storage while actin remained relatively stable. This study thus proposes protein oxidation as a potential deteriorative change in refrigerated rabbit meat along with microbial spoilage and lipid oxidation.

  6. Determination of Microbial Growth by Protein Assay in an Air-Cathode Single Chamber Microbial Fuel Cell.

    PubMed

    Li, Na; Kakarla, Ramesh; Moon, Jung Mi; Min, Booki

    2015-07-01

    Microbial fuel cells (MFCs) have gathered attention as a novel bioenergy technology to simultaneously treat wastewater with less sludge production than the conventional activated sludge system. In two different operations of the MFC and aerobic process, microbial growth was determined by the protein assay method and their biomass yields using real wastewater were compared. The biomass yield on the anode electrode of the MFC was 0.02 g-COD-cell/g- COD-substrate and the anolyte planktonic biomass was 0.14 g-COD-cell/g-COD-substrate. An MFC without anode electrode resulted in the biomass yield of 0.07 ± 0.03 g-COD-cell/g-COD-substrate, suggesting that oxygen diffusion from the cathode possibly supported the microbial growth. In a comparative test, the biomass yield under aerobic environment was 0.46 ± 0.07 g-COD-cell/g-COD-substrate, which was about 3 times higher than the total biomass value in the MFC operation.

  7. Predictors of muscle protein synthesis after severe pediatric burns

    USDA-ARS?s Scientific Manuscript database

    Objectives: Following a major burn, muscle protein synthesis rate increases but in most patients, this response is not sufficient to compensate the also elevated protein breakdown. Given the long-term nature of the pathophysiologic response to burn injury, we hypothesized that skeletal muscle prot...

  8. The influence of an increased cobalt supply on ruminal parameters and microbial vitamin B12 synthesis in the rumen of dairy cows.

    PubMed

    Stemme, Kirsten; Lebzien, Peter; Flachowsky, Gerhard; Scholz, Henner

    2008-06-01

    The aim of the study was to examine the effects of an elevated dietary cobalt supply to dairy cows on rumen fermentation parameters and microbial vitamin B12 synthesis in the rumen. Five lactating dairy cows fitted with a ruminal and a duodenal cannula were subsequently fed either a ration containing only the native cobalt content (0.17 mg Co/ kg DM) or a ration supplemented with cobalt sulphate (0.29 mg Co/kg DM). The pH-value, the ammonia concentration as well as the concentration and the molar proportions of short chain fatty acids in the rumen were not significantly influenced by feeding the ration with the higher cobalt content. While there was no difference in microbial protein flow, the cobalamin flow at the duodenum was significantly elevated in supplemented animals (3.67 +/- 0.69 vs. 8.63 +/- 2.22 mg B12/d). The efficiency of cobalt utilisation for ruminal vitamin B12 synthesis was calculated to be 7.1 +/- 1.3% for the unsupplemented and 9.5 +/- 2.4% for the supplemented ration. Further investigation has to prove if there are any benefits for cows resulting from the elevated cobalamin synthesis measured, caused by feeding higher amounts of dietary cobalt.

  9. 9-Fluorenylmethyloxycarbonyl/ tbutyl-based convergent protein synthesis.

    PubMed

    Barlos, K; Gatos, D

    1999-01-01

    Besides linear solid phase peptide synthesis, segment condensation in solution and chemical ligation, convergent peptide synthesis (CPS) was developed in order to enable the efficient preparation of complex peptides and small proteins. According to this synthetic strategy, solid phase synthesized and suitably protected peptide fragments corresponding to the entire peptide/protein-sequence are condensed on a solid support or in solution, to the target protein. This review summarizes CPS performed utilizing the mild 9-fluorenylmethyloxycarbonyl/tbutyloxycarbonyl-based protecting scheme for the amino acids.

  10. Chemical synthesis and biophysical applications of membrane proteins.

    PubMed

    Zuo, Chao; Tang, Shan; Zheng, Ji-Shen

    2015-07-01

    Chemical synthesis or semi-synthesis of membrane proteins can provide unique molecular tools, such as site-specific isotope labeling or post-translationally modified membrane proteins to gain insight into their biophysical and functional characteristics. However, during preparation, purification, and ligation of transmembrane peptides, tremendous challenges are encountered owing to their hydrophobic nature. This review focuses on the recent advances in chemical synthesis strategies of membrane proteins. These strategies help to solubilize the hydrophobic transmembrane peptide sequences under standard purification and chemical ligation conditions to improve their handling properties. Biophysical and functional studies of synthetic membrane proteins are reviewed as well. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  11. Serine/threonine ligation for the chemical synthesis of proteins.

    PubMed

    Lee, Chi Lung; Li, Xuechen

    2014-10-01

    Advances in the development of efficient peptide ligation methods have enabled the total synthesis of complex proteins to be successfully undertaken. Recently, a Ser/Thr ligation has emerged as a new tool in synthetic protein chemistry. The chemoselective reaction between an N-terminal serine or threonine of an unprotected peptide segment and a C-terminal salicylaldehyde ester of another unprotected peptide segment gives rise to an N,O-benzylidene acetal linked product, which upon acidolysis produces a native peptide bond at the site of ligation. Ser/Thr ligation has been used for the synthesis of the human erythrocyte acylphosphatase protein and MUC1 glycopeptide segments, semisynthesis of peptoid/PEG-RNase S protein hybrids, and cyclic peptide synthesis including cyclic tetrapeptides, cyclomontanin B, yunnanin C, mahafacyclin B, and daptomycin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae

    PubMed Central

    Dever, Thomas E.; Kinzy, Terri Goss; Pavitt, Graham D.

    2016-01-01

    In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae. The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs. PMID:27183566

  13. Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae.

    PubMed

    Dever, Thomas E; Kinzy, Terri Goss; Pavitt, Graham D

    2016-05-01

    In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs.

  14. Energizing eukaryotic cell-free protein synthesis with glucose metabolism.

    PubMed

    Anderson, Mark J; Stark, Jessica C; Hodgman, C Eric; Jewett, Michael C

    2015-07-08

    Eukaryotic cell-free protein synthesis (CFPS) is limited by the dependence on costly high-energy phosphate compounds and exogenous enzymes to power protein synthesis (e.g., creatine phosphate and creatine kinase, CrP/CrK). Here, we report the ability to use glucose as a secondary energy substrate to regenerate ATP in a Saccharomyces cerevisiae crude extract CFPS platform. We observed synthesis of 3.64±0.35 μg mL(-1) active luciferase in batch reactions with 16 mM glucose and 25 mM phosphate, resulting in a 16% increase in relative protein yield (μg protein/$ reagents) compared to the CrP/CrK system. Our demonstration provides the foundation for development of cost-effective eukaryotic CFPS platforms.

  15. Glucose Synthesis in a Protein-Based Artificial Photosynthesis System.

    PubMed

    Lu, Hao; Yuan, Wenqiao; Zhou, Jack; Chong, Parkson Lee-Gau

    2015-09-01

    The objective of this study was to understand glucose synthesis of a protein-based artificial photosynthesis system affected by operating conditions, including the concentrations of reactants, reaction temperature, and illumination. Results from non-vesicle-based glyceraldehyde-3-phosphate (GAP) and glucose synthesis showed that the initial concentrations of ribulose-1,5-bisphosphate (RuBP) and adenosine triphosphate (ATP), lighting source, and temperature significantly affected glucose synthesis. Higher initial concentrations of RuBP and ATP significantly enhanced GAP synthesis, which was linearly correlated to glucose synthesis, confirming the proper functions of all catalyzing enzymes in the system. White fluorescent light inhibited artificial photosynthesis and reduced glucose synthesis by 79.2 % compared to in the dark. The reaction temperature of 40 °C was optimum, whereas lower or higher temperature reduced glucose synthesis. Glucose synthesis in the vesicle-based artificial photosynthesis system reconstituted with bacteriorhodopsin, F 0 F 1 ATP synthase, and polydimethylsiloxane-methyloxazoline-polydimethylsiloxane triblock copolymer was successfully demonstrated. This system efficiently utilized light-induced ATP to drive glucose synthesis, and 5.2 μg ml(-1) glucose was synthesized in 0.78-ml reaction buffer in 7 h. Light-dependent reactions were found to be the bottleneck of the studied artificial photosynthesis system.

  16. Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation.

    PubMed

    Ranjan, Shivendu; Dasgupta, Nandita; Rajendran, Bhavapriya; Avadhani, Ganesh S; Ramalingam, Chidambaram; Kumar, Ashutosh

    2016-06-01

    Titanium dioxide nanoparticles (TNPs) are widely used in the pharmaceutical and cosmetics industries. It is used for protection against UV exposure due to its light-scattering properties and high refractive index. Though TNPs are increasingly used, the synthesis of TNPs is tedious and time consuming; therefore, in the present study, microwave-assisted hybrid chemical approach was used for TNP synthesis. In the present study, we demonstrated that TNPs can be synthesized only in 2.5 h; however, the commonly used chemical approach using muffle furnace takes 5 h. The activity of TNP depends on the synthetic protocol; therefore, the present study also determined the effect of microwave-assisted hybrid chemical approach synthetic protocol on microbial and cytotoxicity. The results showed that TNP has the best antibacterial activity in decreasing order from Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. The IC50 values of TNP for HCT116 and A549 were found to be 6.43 and 6.04 ppm, respectively. Cell death was also confirmed from trypan blue exclusion assay and membrane integrity loss was observed. Therefore, the study determines that the microwave-assisted hybrid chemical approach is time-saving; hence, this technique can be upgraded from lab scale to industrial scale via pilot plant scale. Moreover, it is necessary to find the mechanism of action at the molecular level to establish the reason for greater bacterial and cytotoxicological toxicity. Graphical abstract A graphical representation of TNP synthesis.

  17. Retinal protein synthesis in relationship to environmental lighting

    SciTech Connect

    Hollyfield, J.G.; Anderson, R.E.

    1982-11-01

    A series of in vivo and in vitro experiments using Xenopus laevis juvenile toads was conducted to probe the relationship between environmental lighting and protein synthesis in the retina. Autoradiographic and biochemical analyses indicated that measurable changes in protein synthesis did not occur during a normal diurnal cycle when animals were conditioned to 12 hr light followed by 12 hr darkness each day (LD). However, when retinas from animals maintained in continuous darkness (DD) for 3 days were incubated with /sup 3/H-leucine, there was a 40% reduction in the specific radioactivity of total retinal proteins compared with retinas from animals maintained in continuous light (LL) for 3 days or on the LD cycle. Retinas from DD animals injected with /sup 3/H-leucine showed a 48% reduction in protein synthesis compared with retinas of LL animals. In autoradiographs of retinas from in vivo or in vitro experiments, grain counts were 40% lower in the total retinas of the DD animals compared with retinas of LL animals. This reduction occurred throughout the entire retina and was not restricted to any specific cell type. There was also a 35% reduction in the rate of radioactive band displacement in the rod outer segments of DD animals, although the percent of /sup 3/H-leucine incorporated into opsin relative to total retinal protein was the same for both groups. We conclude from these studies that fluctuations in the rate of protein synthesis during the normal light-dark cycle are not detectable. However, major differences in protein synthesis are evident when animals are stressed with continuous darkness for several days. This effect is not restricted to any particular retinal layer but occurs throughout the entire retina. Moreover, prolonged darkness affects protein synthesis in extraocular tissues as well.

  18. Microbial protein: future sustainable food supply route with low environmental footprint.

    PubMed

    Matassa, Silvio; Boon, Nico; Pikaar, Ilje; Verstraete, Willy

    2016-09-01

    Microbial biotechnology has a long history of producing feeds and foods. The key feature of today's market economy is that protein production by conventional agriculture based food supply chains is becoming a major issue in terms of global environmental pollution such as diffuse nutrient and greenhouse gas emissions, land use and water footprint. Time has come to re-assess the current potentials of producing protein-rich feed or food additives in the form of algae, yeasts, fungi and plain bacterial cellular biomass, producible with a lower environmental footprint compared with other plant or animal-based alternatives. A major driver is the need to no longer disintegrate but rather upgrade a variety of low-value organic and inorganic side streams in our current non-cyclic economy. In this context, microbial bioconversions of such valuable matters to nutritive microbial cells and cell components are a powerful asset. The worldwide market of animal protein is of the order of several hundred million tons per year, that of plant protein several billion tons of protein per year; hence, the expansion of the production of microbial protein does not pose disruptive challenges towards the process of the latter. Besides protein as nutritive compounds, also other cellular components such as lipids (single cell oil), polyhydroxybuthyrate, exopolymeric saccharides, carotenoids, ectorines, (pro)vitamins and essential amino acids can be of value for the growing domain of novel nutrition. In order for microbial protein as feed or food to become a major and sustainable alternative, addressing the challenges of creating awareness and achieving public and broader regulatory acceptance are real and need to be addressed with care and expedience.

  19. Microbial Protein-Protein Interactions (MiPPI) Data from the Genomics: GTL Center for Molecular and Cellular Systems (CMCS)

    DOE Data Explorer

    The Genomic Science Center for Molecular and Cellular Systems (CMCS), established in 2002, seeks to identify and characterize the complete set of protein complexes within a cell to provide a mechanistic basis for the understanding of biochemical functions. The CMCS is anchored at ORNL and PNNL. CMCS initially focused on the identification and characterization of protein complexes in two microbial systems,Rhodopseudomonas palustris (R. palustris) and Shewanella oneidensis (S. oneidensis). These two organisms have also been the focus of major DOE Genomic Science/Microbial Cell Program (MCP) projects. To develop an approach for identifying the diverse types of complexes present in microbial organisms, CMCS incorporates a number of molecular biology, microbiology, analytical and computational tools in an integrated pipeline.

  20. Microbial amino acid synthesis and utilization in rats: the role of coprophagy.

    PubMed

    Torrallardona, D; Harris, C I; Fuller, M F

    1996-11-01

    Four rats were housed in cages with mesh floors; another four rats were housed in tubular anticoprophagy cages, in which they could not turn round to reach their own faeces. Both groups were fed for 6 d on a low-protein diet containing fermentable carbohydrates and 15NH4Cl. At the end of the experiment the rats were killed and their carcasses were homogenized, lysine was isolated by ion-exchange chromatography and its 15N enrichment measured by isotope-ratio mass spectrometry. The 15N enrichment in the lysine of the microbial fraction of faeces and the total amount of lysine in the body were also determined in order to estimate the amount of microbial lysine absorbed. The 15N enrichment in body lysine of non-coprophagic rats was not different from that previously measured in rats given unlabelled NH4Cl, but in coprophagic rats it was significantly higher. The daily absorption of microbial lysine by the coprophagic rats accounted for 20.7 (SE 2.55) mg/kg body weight0-75, but was only 0.5 (SE 1.04) mg/kg body weight0-75 for the non-coprophagic rats. This value was not significantly different from zero. The utilization of microbial amino acids via coprophagy resulted in a higher weight gain (adjusted for intake) in the coprophagic group (15.5 g/6 d) than in the non-coprophagic rats (3.1 g/6 d). It was concluded that, in rats, the utilization of microbial lysine occurred exclusively via coprophagy.

  1. Mildiomycin: a nucleoside antibiotic that inhibits protein synthesis.

    PubMed

    Feduchi, E; Cosín, M; Carrasco, L

    1985-03-01

    Mildiomycin, a new nucleoside antibiotic, selectively inhibits protein synthesis in HeLa cells, and is less active in the inhibition of RNA or DNA synthesis. An increased inhibition of translation by mildiomycin is observed in cultured HeLa cells when they are permeabilized by encephalomyocarditis virus. This observation suggests that this antibiotic does not easily pass through the cell membrane, as occurs with other nucleoside and aminoglycoside antibiotics. The inhibition of translation is also observed in cell-free systems, such as endogenous protein synthesis in a rabbit reticulocyte lysate or the synthesis of polyphenylalanine directed by poly (U). Finally the mode of action of mildiomycin was investigated and the results suggest that the compound blocks the peptidyl-transferase center.

  2. Protein synthesis rates in atrophied gastrocnemius muscles after limb immobilization

    NASA Technical Reports Server (NTRS)

    Tucker, K. R.; Seider, M. J.; Booth, F. W.

    1981-01-01

    Noting that protein synthesis declines in the gastrocnemius 6 hr after immobilization, the study sought to detect an increase of protein synthesis when the limb was freed, and to examine the effects of exercise on the rate of increase. Rats were used as subjects, with their hind legs in plaster of Paris in plantar flexion to eliminate strain on the gastrocnemius. Periods of immobilization were varied and samples of blood from the muscle were taken to track protein synthesis rates for different groups in immobilization and exercise regimens (running and weightlifting). Synthesis rates declined 3.6% during time in the cast, then increased 6.3%/day after the casts were removed. Both running and weightlifting were found to increase the fractional rate of protein formation in the gastrocnemius muscle when compared with contralateral muscles that were not exercised and were used as controls, suggesting that the mechanism controlling protein synthesis in skeletal muscles is rapidly responsive to changes in muscular contractile activity.

  3. Protein synthesis rates in atrophied gastrocnemius muscles after limb immobilization

    NASA Technical Reports Server (NTRS)

    Tucker, K. R.; Seider, M. J.; Booth, F. W.

    1981-01-01

    Noting that protein synthesis declines in the gastrocnemius 6 hr after immobilization, the study sought to detect an increase of protein synthesis when the limb was freed, and to examine the effects of exercise on the rate of increase. Rats were used as subjects, with their hind legs in plaster of Paris in plantar flexion to eliminate strain on the gastrocnemius. Periods of immobilization were varied and samples of blood from the muscle were taken to track protein synthesis rates for different groups in immobilization and exercise regimens (running and weightlifting). Synthesis rates declined 3.6% during time in the cast, then increased 6.3%/day after the casts were removed. Both running and weightlifting were found to increase the fractional rate of protein formation in the gastrocnemius muscle when compared with contralateral muscles that were not exercised and were used as controls, suggesting that the mechanism controlling protein synthesis in skeletal muscles is rapidly responsive to changes in muscular contractile activity.

  4. Regulation of protein synthesis during sea urchin early development

    SciTech Connect

    Kelso, L.C.

    1989-01-01

    Fertilization of the sea urchin egg results in a 20-40 fold increase in the rate of protein synthesis. The masked message hypothesis proposes that mRNAs are masked or unavailable for translation in the egg. We devised an in vivo assay to test this hypothesis. Our results show that masked mRNAs limit protein synthesis in the unfertilized egg. In addition, we show that protein synthesis is also regulated at the level of translational machinery. Following fertilization is a period of rapid cell divisions. This period, known as the rapid cleavage stage, is characterized by the transient synthesis of a novel set of proteins. The synthesis of these proteins is programmed by maternal mRNAs stored in the unfertilized egg. To study the behavior of these mRNAs, we prepared a cDNA library from polysomal poly (A+) RNA from 2-hour embryos. ({sup 32}P) labeled probes, prepared from the cDNA library, were used to monitor the levels of individual mRNAs in polysomes at fertilization and during early development.

  5. Stimulation of protein synthesis by phosphatidic acid in rat cardiomyocytes.

    PubMed

    Xu, Y J; Yau, L; Yu, L P; Elimban, V; Zahradka, P; Dhalla, N S

    1996-12-13

    Phosphatidic acid (PA) was observed to stimulate protein synthesis in adult cardiomyocytes in a time- and concentration-dependent manner. The maximal stimulation in protein synthesis (142 +/- 12% vs 100% as the control) was achieved at 10 microM PA within 60 min and was inhibited by actinomycin D (107 +/- 4% of the control) or cycloheximide (105 +/- 6% of the control). The increase in protein synthesis due to PA was attenuated or abolished by preincubation of cardiomyocytes with a tyrosine kinase inhibitor, genistein (94 +/- 9% of the control), phospholipase C inhibitors 2-nitro-4-carboxyphenyl N,N-diphenyl carbamate or carbon-odithioic acid O-(octahydro-4,7-methanol-1H-inden-5-yl (101 +/- 6 and 95 +/- 5% of the control, respectively), protein kinase C inhibitors staurosporine or polymyxin B (109 +/- 3 and 93 +/- 3% of the control), and chelators of extracellular and intracellular free Ca2+ EGTA or BAPTA/AM (103 +/- 6 and 95 +/- 6% of the control, respectively). PA at different concentrations (0.1 to 100 microM) also caused phosphorylation of a cell surface protein of approximately 24 kDa. In addition, mitogen-activated protein kinase was stimulated by PA in a concentration-dependent manner; maximal stimulation (217 +/- 6% of the control) was seen at 10 microM PA. These data suggest that PA increases protein synthesis in adult rat cardiomyocytes and thus may play an important role in the development of cardiac hypertrophy.

  6. His6 tag-assisted chemical protein synthesis.

    PubMed

    Bang, Duhee; Kent, Stephen B H

    2005-04-05

    To make more practical the total chemical synthesis of proteins by the ligation of unprotected peptide building blocks, we have developed a method to facilitate the isolation and handling of intermediate products. The synthetic technique makes use of a His6 tag at the C terminus of the target polypeptide chain, introduced during the synthesis of the C-terminal peptide segment building block. The presence of a His6 tag enables the isolation of peptide or protein products directly from ligation reaction mixtures by Ni-NTA affinity column purification. This simple approach enables facile buffer exchange to alternate reaction conditions and is compatible with direct analytical control by protein MS of the multiple ligation steps involved in protein synthesis. We used syntheses of crambin and a modular tetratricopeptide repeat protein of 17 kDa as models to examine the utility of this affinity purification approach. The results show that His6 tag-assisted chemical protein synthesis is a useful method that substantially reduces handling losses and provides for rapid chemical protein syntheses.

  7. His6 tag-assisted chemical protein synthesis

    PubMed Central

    Bang, Duhee; Kent, Stephen B. H.

    2005-01-01

    To make more practical the total chemical synthesis of proteins by the ligation of unprotected peptide building blocks, we have developed a method to facilitate the isolation and handling of intermediate products. The synthetic technique makes use of a His6 tag at the C terminus of the target polypeptide chain, introduced during the synthesis of the C-terminal peptide segment building block. The presence of a His6 tag enables the isolation of peptide or protein products directly from ligation reaction mixtures by Ni-NTA affinity column purification. This simple approach enables facile buffer exchange to alternate reaction conditions and is compatible with direct analytical control by protein MS of the multiple ligation steps involved in protein synthesis. We used syntheses of crambin and a modular tetratricopeptide repeat protein of 17 kDa as models to examine the utility of this affinity purification approach. The results show that His6 tag-assisted chemical protein synthesis is a useful method that substantially reduces handling losses and provides for rapid chemical protein syntheses. PMID:15784744

  8. His6 tag-assisted chemical protein synthesis

    NASA Astrophysics Data System (ADS)

    Bang, Duhee; Kent, Stephen B. H.

    2005-04-01

    To make more practical the total chemical synthesis of proteins by the ligation of unprotected peptide building blocks, we have developed a method to facilitate the isolation and handling of intermediate products. The synthetic technique makes use of a His6 tag at the C terminus of the target polypeptide chain, introduced during the synthesis of the C-terminal peptide segment building block. The presence of a His6 tag enables the isolation of peptide or protein products directly from ligation reaction mixtures by Ni-NTA affinity column purification. This simple approach enables facile buffer exchange to alternate reaction conditions and is compatible with direct analytical control by protein MS of the multiple ligation steps involved in protein synthesis. We used syntheses of crambin and a modular tetratricopeptide repeat protein of 17 kDa as models to examine the utility of this affinity purification approach. The results show that His6 tag-assisted chemical protein synthesis is a useful method that substantially reduces handling losses and provides for rapid chemical protein syntheses. affinity purification | native chemical ligation

  9. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running

    PubMed Central

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-01-01

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR) at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d3-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control) was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise. PMID:27367725

  10. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running.

    PubMed

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-06-28

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR) at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d₃-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control) was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise.

  11. Effect of nitrogen source in high-concentrate, low-protein beef cattle diets on microbial fermentation studied in vivo and in vitro.

    PubMed

    Devant, M; Ferret, A; Calsamiglia, S; Casals, R; Gasa, J

    2001-07-01

    In Exp. 1, four Holstein heifers (112+/-5.5 kg BW) fitted with ruminal cannulas were used in a 4 x 4 Latin square to evaluate the effects of N source on ruminal fermentation and urinary excretion of purine derivatives. A 2 x 2 factorial arrangement of treatments was used; the factors were the type of protein source (soybean meal, SBM, vs a 50:50 mixture of fish meal and corn gluten meal, FMCGM) and the partial substitution of protein source by urea (with vs without). Heifers were allowed to consume concentrate and barley straw on an ad libitum basis. Barley straw:concentrate ratio (12:88) and average ruminal pH (6.25) were not affected (P > 0.05) by treatment. Ruminal NH3 N concentration and urinary excretion of purine derivatives were not affected (P > 0.05) by supplemental N source. In situ CP degradability of supplemented SBM was very low (50%). In Exp. 2, eight dual-flow continuous-culture fermenters were used to study diet effects on microbial fermentation and nutrient flow, using forage:concentrate ratio, solid and liquid passage rates, and pH fluctuation to simulate in vivo conditions. The treatment containing SBM without urea reached the greatest total VFA concentration (P < 0.01), molar percentage of acetate (P < 0.05), and NH3 N concentration (P < 0.05), followed by treatments with partial substitution of protein source by urea, and finally by the treatment containing FMCGM. True OM digestion tended to increase (P = 0.13) in treatments containing SBM. These results suggest that amino N from SBM and NH3 N concentration stimulated nutrient digestion. Microbial protein synthesis was lowest in treatments with FMCGM and without urea, indicating that rapidly available N limited microbial growth. The low CP degradability of SBM observed may have contributed to the limitation in N supply for microbial growth. Efficiency of microbial protein synthesis increased in treatments containing urea (P < 0.05). Protein source affected total (P < 0.05) and essential AA (P

  12. On the feasibility of growth-coupled product synthesis in microbial strains.

    PubMed

    Klamt, Steffen; Mahadevan, Radhakrishnan

    2015-07-01

    Enforcing obligate coupling of growth with synthesis of a desired product has become a key principle for metabolic engineering of microbial production strains. Various methods from stoichiometric and constraint-based modeling have been developed to calculate intervention strategies by which a given microorganism can only grow if it synthesizes a desired compound as a mandatory by-product. However, growth-coupled synthesis is not necessarily feasible for every compound of a metabolic network and no rigorous criterion is currently known to test feasibility of coupled product and biomass formation (before searching for suitable intervention strategies). In this work, we show which properties a network must fulfill such that strain designs guaranteeing coupled biomass and product synthesis can exist at all. In networks without flux bounds, coupling is feasible if and only if an elementary mode exists that leads to formation of both biomass and product. Setting flux boundaries leads to more complicated inhomogeneous problems. Making use of the concept of elementary (flux) vectors, a generalization of elementary modes, a criterion for feasibility can also be derived for this situation. We applied our criteria to a metabolic model of Escherichia coli and determined for each metabolite, whether its net production can be coupled with biomass synthesis and calculated the maximal (guaranteed) coupling yield. The somewhat surprising result is that, under aerobic conditions, coupling is indeed possible for each carbon metabolite of the central metabolism. This also holds true for most metabolites under anaerobic conditions but consideration of ATP maintenance requirements implies infeasibility of coupling for certain compounds. On the other hand, ATP maintenance may also increase the maximal coupling yield for some metabolites. Overall, our work provides important insights and novel tools for a central problem of computational strain design.

  13. Structure and Function of Microbial Metal-Reduction Proteins

    SciTech Connect

    Xu, Ying; Crawford, Oakly H.; Xu, Dong; Larimer, Frank W.; Uberbacher, Edward C.; Zhou, Jizhong

    2009-09-02

    In this project, we proposed (i) identification of metal-reduction genes, (ii) development of new threading techniques and (iii) fold recognition and structure prediction of metal-reduction proteins. However, due to the reduction of the budget, we revised our plan to focus on two specific aims of (i) developing a new threading-based protein structure prediction method, and (ii) developing an expert system for protein structure prediction.

  14. Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling.

    PubMed

    Magennis, E Peter; Fernandez-Trillo, Francisco; Sui, Cheng; Spain, Sebastian G; Bradshaw, David J; Churchley, David; Mantovani, Giuseppe; Winzer, Klaus; Alexander, Cameron

    2014-07-01

    The detection and inactivation of pathogenic strains of bacteria continues to be an important therapeutic goal. Hence, there is a need for materials that can bind selectively to specific microorganisms for diagnostic or anti-infective applications, but that can be formed from simple and inexpensive building blocks. Here, we exploit bacterial redox systems to induce a copper-mediated radical polymerization of synthetic monomers at cell surfaces, generating polymers in situ that bind strongly to the microorganisms that produced them. This 'bacteria-instructed synthesis' can be carried out with a variety of microbial strains, and we show that the polymers produced are self-selective binding agents for the 'instructing' cell types. We further expand on the bacterial redox chemistries to 'click' fluorescent reporters onto polymers directly at the surfaces of a range of clinical isolate strains, allowing rapid, facile and simultaneous binding and visualization of pathogens.

  15. The cell-free protein synthesis system from wheat germ.

    PubMed

    Takai, Kazuyuki; Endo, Yaeta

    2010-01-01

    The wheat-germ cell-free protein synthesis system had been one of the most efficient eukaryotic cell-free systems since it was first developed in 1964. However, radio-labeled amino acids had long been essential for detection of the products. Since the discovery of a method for prevention of the contamination by a protein synthesis inhibitor originated from endosperm, the wheat cell-free system has found a wide variety of applications in postgenomic high-throughput screening, structural biology, medicine, and so on. In this chapter, we describe a method for preparation of the cell-free extract and a standard protein synthesis method, as the methods for the applications are found in later chapters.

  16. Synthesis of peptide sequences derived from fibril-forming proteins.

    PubMed

    Scanlon, Denis B; Karas, John A

    2011-01-01

    The pathogenesis of a large number of diseases, including Alzheimer's Disease, Parkinson's Disease, and Creutzfeldt-Jakob Disease (CJD), is associated with protein aggregation and the formation of amyloid, fibrillar deposits. Peptide fragments of amyloid-forming proteins have been found to form fibrils in their own right and have become important tools for unlocking the mechanism of amyloid fibril formation and the pathogenesis of amyloid diseases. The synthesis and purification of peptide sequences derived from amyloid fibril-forming proteins can be extremely challenging. The synthesis may not proceed well, generating a very low quality crude product which can be difficult to purify. Even clean crude peptides can be difficult to purify, as they are often insoluble or form fibrils rapidly in solution. This chapter presents methods to recognise and to overcome the difficulties associated with the synthesis, and purification of fibril-forming peptides, illustrating the points with three synthetic examples.

  17. Compounds affecting membranes that inhibit protein synthesis in yeast.

    PubMed

    Alonso, M A; Vázquez, D; Carrasco, L

    1979-12-01

    The regulation of translation has been investigated in yeast cells by means of ionophores and other compounds affecting the ionic concentration inside the cell. Treatment of a variety of cells with these compounds produces a drastic inhibition in the protein-synthesizing activity of the cell. Protein synthesis in yeast is strongly inhibited by amphotericin B and nystatin. Mammalian cells are blocked in their translation capacity by gramicidin D, nigericin, monensin, nystatin, A23187, and bromolasalocid. The effects of these compounds on protein synthesis in Escherichia coli and Staphylococcus aureus were also investigated. Amphotericin B is a powerful inhibitor of both protein and ribonucleic acid syntheses in yeast cells at concentrations that do not affect the transport of the labeled amino acid or nucleoside precursor. The analysis of the polysomal profiles in yeast spheroplasts could indicate that initiation is the target of amphotericin B action on translation. Studies on the reversion of the protein synthesis blockade by amphotericin B by increasing the potassium concentration in the medium suggest that changes in the potassium concentration in cellular cytoplasm might be responsible, at least in part, for the inhibition of protein synthesis.

  18. Compounds affecting membranes that inhibit protein synthesis in yeast.

    PubMed Central

    Alonso, M A; Vázquez, D; Carrasco, L

    1979-01-01

    The regulation of translation has been investigated in yeast cells by means of ionophores and other compounds affecting the ionic concentration inside the cell. Treatment of a variety of cells with these compounds produces a drastic inhibition in the protein-synthesizing activity of the cell. Protein synthesis in yeast is strongly inhibited by amphotericin B and nystatin. Mammalian cells are blocked in their translation capacity by gramicidin D, nigericin, monensin, nystatin, A23187, and bromolasalocid. The effects of these compounds on protein synthesis in Escherichia coli and Staphylococcus aureus were also investigated. Amphotericin B is a powerful inhibitor of both protein and ribonucleic acid syntheses in yeast cells at concentrations that do not affect the transport of the labeled amino acid or nucleoside precursor. The analysis of the polysomal profiles in yeast spheroplasts could indicate that initiation is the target of amphotericin B action on translation. Studies on the reversion of the protein synthesis blockade by amphotericin B by increasing the potassium concentration in the medium suggest that changes in the potassium concentration in cellular cytoplasm might be responsible, at least in part, for the inhibition of protein synthesis. PMID:394675

  19. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli

    PubMed Central

    Biggs, Bradley Walters; Lim, Chin Giaw; Sagliani, Kristen; Shankar, Smriti; Stephanopoulos, Gregory; Ajikumar, Parayil Kumaran

    2016-01-01

    Recent advances in metabolic engineering have demonstrated the potential to exploit biological chemistry for the synthesis of complex molecules. Much of the progress to date has leveraged increasingly precise genetic tools to control the transcription and translation of enzymes for superior biosynthetic pathway performance. However, applying these approaches and principles to the synthesis of more complex natural products will require a new set of tools for enabling various classes of metabolic chemistries (i.e., cyclization, oxygenation, glycosylation, and halogenation) in vivo. Of these diverse chemistries, oxygenation is one of the most challenging and pivotal for the synthesis of complex natural products. Here, using Taxol as a model system, we use nature’s favored oxygenase, the cytochrome P450, to perform high-level oxygenation chemistry in Escherichia coli. An unexpected coupling of P450 expression and the expression of upstream pathway enzymes was discovered and identified as a key obstacle for functional oxidative chemistry. By optimizing P450 expression, reductase partner interactions, and N-terminal modifications, we achieved the highest reported titer of oxygenated taxanes (∼570 ± 45 mg/L) in E. coli. Altogether, this study establishes E. coli as a tractable host for P450 chemistry, highlights the potential magnitude of protein interdependency in the context of synthetic biology and metabolic engineering, and points to a promising future for the microbial synthesis of complex chemical entities. PMID:26951651

  20. Prolonged cell-free protein synthesis in a batch system using wheat germ extract.

    PubMed

    Kawarasaki, Y; Nakano, H; Yamane, T

    1994-10-01

    Reaction conditions of cell-free protein synthesis using wheat germ extract were examined to prolong the period of protein synthesis in a batch reaction. By optimizing conditions for ATP regeneration system involved in the cell-free system, protein synthesis continued about 4 hours, so that about 17 micrograms dihydrofolate reductase protein was obtained in 1 ml of a reaction mixture. It suggests that maintaining ATP concentration is the primary requirement for long-life cell-free protein synthesis.

  1. Determination of in vivo protein synthesis in human palatine tonsil.

    PubMed

    Januszkiewicz, Anna; Klaude, Maria; Loré, Karin; Andersson, Jan; Ringdén, Olle; Rooyackers, Olav; Wernerman, Jan

    2005-02-01

    The palatine tonsils are constantly exposed to ingested or inhaled antigens which, in turn, lead to a permanent activation of tonsillar immune cells, even in a basic physiological state. The aim of the present study was to investigate if the immunological activation of the human palatine tonsil is reflected by a high metabolic activity, as determined by in vivo measurement of protein synthesis. The protein synthesis rate of the tonsil was also compared with that of the circulating T-lymphocytes, the total blood mononuclear cells and the whole population of blood leucocytes. Phenotypic characterization of immune-competent cells in tonsil tissue and blood was performed by flow cytometry. Pinch tonsil biopsies were taken after induction of anaesthesia in healthy adult patients (n=12) scheduled for ear surgery, uvulopalatopharyngoplasty or nose surgery. Protein synthesis was quantitatively determined during a 90-min period by a flooding-dose technique. The in vivo protein synthesis rate in the palatine tonsils was 22.8+/-5.7%/24 h (mean+/-S.D.), whereas protein synthesis in the circulating T-lymphocytes was 10.7+/-3.4%/24 h, in mononuclear cells was 10.8+/-2.8%/24 h and in leucocytes was 3.2+/-1.2%/24 h. CD3+ lymphocytes were the most abundant cell population in the tonsil. The in vivo protein synthesis rate in human tonsils was higher compared with the circulating immune cells. This high metabolic rate may reflect the permanent immunological activity present in human tonsils, although cell phenotypes and activity markers do not explain the differences.

  2. Preparation of ubiquitin-conjugated proteins using an insect cell-free protein synthesis system.

    PubMed

    Suzuki, Takashi; Ezure, Toru; Ando, Eiji; Nishimura, Osamu; Utsumi, Toshihiko; Tsunasawa, Susumu

    2010-01-01

    Ubiquitination is one of the most significant posttranslational modifications (PTMs). To evaluate the ability of an insect cell-free protein synthesis system to carry out ubiquitin (Ub) conjugation to in vitro translated proteins, poly-Ub chain formation was studied in an insect cell-free protein synthesis system. Poly-Ub was generated in the presence of Ub aldehyde (UA), a de-ubiquitinating enzyme inhibitor. In vitro ubiquitination of the p53 tumor suppressor protein was also analyzed, and p53 was poly-ubiquitinated when Ub, UA, and Mdm2, an E3 Ub ligase (E3) for p53, were added to the in vitro reaction mixture. These results suggest that the insect cell-free protein synthesis system contains enzymatic activities capable of carrying out ubiquitination. CBB-detectable ubiquitinated p53 was easily purified from the insect cell-free protein synthesis system, allowing analysis of the Ub-conjugated proteins by mass spectrometry (MS). Lys 305 of p53 was identified as one of the Ub acceptor sites using this strategy. Thus, we conclude that the insect cell-free protein synthesis system is a powerful tool for studying various PTMs of eukaryotic proteins including ubiqutination presented here.

  3. The relationship between protein synthesis and protein degradation in object recognition memory.

    PubMed

    Furini, Cristiane R G; Myskiw, Jociane de C; Schmidt, Bianca E; Zinn, Carolina G; Peixoto, Patricia B; Pereira, Luiza D; Izquierdo, Ivan

    2015-11-01

    For decades there has been a consensus that de novo protein synthesis is necessary for long-term memory. A second round of protein synthesis has been described for both extinction and reconsolidation following an unreinforced test session. Recently, it was shown that consolidation and reconsolidation depend not only on protein synthesis but also on protein degradation by the ubiquitin-proteasome system (UPS), a major mechanism responsible for protein turnover. However, the involvement of UPS on consolidation and reconsolidation of object recognition memory remains unknown. Here we investigate in the CA1 region of the dorsal hippocampus the involvement of UPS-mediated protein degradation in consolidation and reconsolidation of object recognition memory. Animals with infusion cannulae stereotaxically implanted in the CA1 region of the dorsal hippocampus, were exposed to an object recognition task. The UPS inhibitor β-Lactacystin did not affect the consolidation and the reconsolidation of object recognition memory at doses known to affect other forms of memory (inhibitory avoidance, spatial learning in a water maze) while the protein synthesis inhibitor anisomycin impaired the consolidation and the reconsolidation of the object recognition memory. However, β-Lactacystin was able to reverse the impairment caused by anisomycin on the reconsolidation process in the CA1 region of the hippocampus. Therefore, it is possible to postulate a direct link between protein degradation and protein synthesis during the reconsolidation of the object recognition memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Cell-free protein synthesis and assembly on a biochip

    NASA Astrophysics Data System (ADS)

    Heyman, Yael; Buxboim, Amnon; Wolf, Sharon G.; Daube, Shirley S.; Bar-Ziv, Roy H.

    2012-06-01

    Biologically active complexes such as ribosomes and bacteriophages are formed through the self-assembly of proteins and nucleic acids. Recapitulating these biological self-assembly processes in a cell-free environment offers a way to develop synthetic biodevices. To visualize and understand the assembly process, a platform is required that enables simultaneous synthesis, assembly and imaging at the nanoscale. Here, we show that a silicon dioxide grid, used to support samples in transmission electron microscopy, can be modified into a biochip to combine in situ protein synthesis, assembly and imaging. Light is used to pattern the biochip surface with genes that encode specific proteins, and antibody traps that bind and assemble the nascent proteins. Using transmission electron microscopy imaging we show that protein nanotubes synthesized on the biochip surface in the presence of antibody traps efficiently assembled on these traps, but pre-assembled nanotubes were not effectively captured. Moreover, synthesis of green fluorescent protein from its immobilized gene generated a gradient of captured proteins decreasing in concentration away from the gene source. This biochip could be used to create spatial patterns of proteins assembled on surfaces.

  5. Identification of a Class of Protein ADP-Ribosylating Sirtuins in Microbial Pathogens

    PubMed Central

    Rack, Johannes Gregor Matthias; Morra, Rosa; Barkauskaite, Eva; Kraehenbuehl, Rolf; Ariza, Antonio; Qu, Yue; Ortmayer, Mary; Leidecker, Orsolya; Cameron, David R.; Matic, Ivan; Peleg, Anton Y.; Leys, David; Traven, Ana; Ahel, Ivan

    2015-01-01

    Summary Sirtuins are an ancient family of NAD+-dependent deacylases connected with the regulation of fundamental cellular processes including metabolic homeostasis and genome integrity. We show the existence of a hitherto unrecognized class of sirtuins, found predominantly in microbial pathogens. In contrast to earlier described classes, these sirtuins exhibit robust protein ADP-ribosylation activity. In our model organisms, Staphylococcus aureus and Streptococcus pyogenes, the activity is dependent on prior lipoylation of the target protein and can be reversed by a sirtuin-associated macrodomain protein. Together, our data describe a sirtuin-dependent reversible protein ADP-ribosylation system and establish a crosstalk between lipoylation and mono-ADP-ribosylation. We propose that these posttranslational modifications modulate microbial virulence by regulating the response to host-derived reactive oxygen species. PMID:26166706

  6. Retraction Statement: Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    PubMed

    2017-07-01

    IUBMB Life (2014) 66:793-802. DOI: 10.1002/iub.1328 The above article, published online on November 15, 2014 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal's Editors-in-Chief, Angelo Azzi and William J. Whelan, Corresponding Author Tina Wenz, the University of Cologne, and Wiley Periodicals, Inc. The article has been retracted on request of the University of Cologne that, after an investigation, established that the data reported in it are not reproducible. Note from the Corresponding Author: "The paper reports on the influence of mitochondrial acetylation on protein synthesis. After publication, several irregularities appeared and have been thoroughly investigated by the lab of the Corresponding Author in cooperation with the commission of Research integrity of the University of Cologne. Both came to the conclusion that data used for the publication are erroneous and that the presented data are not reproducible by the lab of the Corresponding Author and other labs. The Corresponding Author takes responsibility and regrets not having detected these issues before publication. The appropriate corrective action is retraction of the paper. The Corresponding Author apologizes to the scientific community." Antonella Di Domenico, Annette Hofer, Federica Tundo, Tina Wenz (2014), Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance, IUBMB Life. 66: 793-802, 2014. DOI: 10.1002/iub.1328 © 2017 IUBMB Life, 69(7):553-553, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  7. Microbial drug efflux proteins of the major facilitator superfamily.

    PubMed

    Saidijam, Massoud; Benedetti, Giulia; Ren, Qinghu; Xu, Zhiqiang; Hoyle, Christopher J; Palmer, Sarah L; Ward, Alison; Bettaney, Kim E; Szakonyi, Gerda; Meuller, Johan; Morrison, Scott; Pos, Martin K; Butaye, Patrick; Walravens, Karl; Langton, Kate; Herbert, Richard B; Skurray, Ronald A; Paulsen, Ian T; O'reilly, John; Rutherford, Nicholas G; Brown, Melissa H; Bill, Roslyn M; Henderson, Peter J F

    2006-07-01

    Drug efflux proteins are widespread amongst microorganisms, including pathogens. They can contribute to both natural insensitivity to antibiotics and to emerging antibiotic resistance and so are potential targets for the development of new antibacterial drugs. The design of such drugs would be greatly facilitated by knowledge of the structures of these transport proteins, which are poorly understood, because of the difficulties of obtaining crystals of quality. We describe a structural genomics approach for the amplified expression, purification and characterisation of prokaryotic drug efflux proteins of the 'Major Facilitator Superfamily' (MFS) of transport proteins from Helicobacter pylori, Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Bacillus subtilis, Brucella melitensis, Campylobacter jejuni, Neisseria meningitides and Streptomyces coelicolor. The H. pylori putative drug resistance protein, HP1092, and the S. aureus QacA proteins are used as detailed examples. This strategy is an important step towards reproducible production of transport proteins for the screening of drug binding and for optimisation of crystallisation conditions to enable subsequent structure determination.

  8. Microbial response to single-cell protein production and brewery wastewater treatment

    PubMed Central

    Lee, Jackson Z; Logan, Andrew; Terry, Seth; Spear, John R

    2015-01-01

    As global fisheries decline, microbial single-cell protein (SCP) produced from brewery process water has been highlighted as a potential source of protein for sustainable animal feed. However, biotechnological investigation of SCP is difficult because of the natural variation and complexity of microbial ecology in wastewater bioreactors. In this study, we investigate microbial response across a full-scale brewery wastewater treatment plant and a parallel pilot bioreactor modified to produce an SCP product. A pyrosequencing survey of the brewery treatment plant showed that each unit process selected for a unique microbial community. Notably, flow equalization basins were dominated by Prevotella, methanogenesis effluent had the highest levels of diversity, and clarifier wet-well samples were sources of sequences for the candidate bacterial phyla of TM7 and BD1-5. Next, the microbial response of a pilot bioreactor producing SCP was tracked over 1 year, showing that two different production trials produced two different communities originating from the same starting influent. However, SCP production resulted generally in enrichment of several clades of rhizospheric diazotrophs of Alphaproteobacteria and Betaproteobacteria in the bioreactor and even more so in the final product. These diazotrophs are potentially useful as the basis of a SCP product for commercial feed production. PMID:24837420

  9. Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise.

    PubMed

    Kanda, Atsushi; Nakayama, Kyosuke; Sanbongi, Chiaki; Nagata, Masashi; Ikegami, Shuji; Itoh, Hiroyuki

    2016-06-03

    Whey protein (WP) is characterized as a "fast" protein and caseinate (CA) as a "slow" protein according to their digestion and absorption rates. We hypothesized that co-ingestion of milk proteins (WP and CA) may be effective for prolonging the muscle protein synthesis response compared to either protein alone. We therefore compared the effect of ingesting milk protein (MP) to either WP or CA alone on muscle protein synthesis after exercise in rats. We also compared the effects of these milk-derived proteins to a control, soy protein (SP). Male Sprague-Dawley rats swam for two hours. Immediately after exercise, one of the following four solutions was administered: WP, CA, MP, or SP. Individual rats were euthanized at designated postprandial time points and triceps muscle samples collected for measurement of the protein fractional synthesis rate (FSR). FSR tended to increase in all groups post-ingestion, although the initial peaks of FSR occurred at different times (WP, peak time = 60 min, FSR = 7.76%/day; MP, peak time = 90 min, FSR = 8.34%/day; CA, peak time = 120 min, FSR = 7.85%/day). Milk-derived proteins caused significantly greater increases (p < 0.05) in FSR compared with SP at different times (WP, 60 min; MP, 90 and 120 min; CA, 120 min). Although statistical analysis could not be performed, the calculated the area under the curve (AUC) values for FSR following this trend were: MP, 534.61; CA, 498.22; WP, 473.46; and SP, 406.18. We conclude that ingestion of MP, CA or WP causes the initial peak time in muscle protein synthesis to occur at different times (WP, fast; MP, intermediate; CA, slow) and the dairy proteins have a superior effect on muscle protein synthesis after exercise compared with SP.

  10. Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise

    PubMed Central

    Kanda, Atsushi; Nakayama, Kyosuke; Sanbongi, Chiaki; Nagata, Masashi; Ikegami, Shuji; Itoh, Hiroyuki

    2016-01-01

    Whey protein (WP) is characterized as a “fast” protein and caseinate (CA) as a “slow” protein according to their digestion and absorption rates. We hypothesized that co-ingestion of milk proteins (WP and CA) may be effective for prolonging the muscle protein synthesis response compared to either protein alone. We therefore compared the effect of ingesting milk protein (MP) to either WP or CA alone on muscle protein synthesis after exercise in rats. We also compared the effects of these milk-derived proteins to a control, soy protein (SP). Male Sprague-Dawley rats swam for two hours. Immediately after exercise, one of the following four solutions was administered: WP, CA, MP, or SP. Individual rats were euthanized at designated postprandial time points and triceps muscle samples collected for measurement of the protein fractional synthesis rate (FSR). FSR tended to increase in all groups post-ingestion, although the initial peaks of FSR occurred at different times (WP, peak time = 60 min, FSR = 7.76%/day; MP, peak time = 90 min, FSR = 8.34%/day; CA, peak time = 120 min, FSR = 7.85%/day). Milk-derived proteins caused significantly greater increases (p < 0.05) in FSR compared with SP at different times (WP, 60 min; MP, 90 and 120 min; CA, 120 min). Although statistical analysis could not be performed, the calculated the area under the curve (AUC) values for FSR following this trend were: MP, 534.61; CA, 498.22; WP, 473.46; and SP, 406.18. We conclude that ingestion of MP, CA or WP causes the initial peak time in muscle protein synthesis to occur at different times (WP, fast; MP, intermediate; CA, slow) and the dairy proteins have a superior effect on muscle protein synthesis after exercise compared with SP. PMID:27271661

  11. A perfusion-capable microfluidic bioreactor for assessing microbial heterologous protein production

    PubMed Central

    Mozdzierz, Nicholas J.; Love, Kerry R.; Lee, Kevin S.; Lee, Harry L. T.; Shah, Kartik A.; Ram, Rajeev J.

    2015-01-01

    We present an integrated microfluidic bioreactor for fully continuous perfusion cultivation of suspended microbial cell cultures. This system allowed continuous and stable heterologous protein expression by sustaining the cultivation of Pichia pastoris over 11 days. This technical capability also allowed testing the impact of perfusion conditions on protein expression. This advance should enable small-scale models for process optimization in continuous biomanufacturing. PMID:26055071

  12. Rabies virus protein synthesis in infected BHK-21 cells.

    PubMed Central

    Madore, H P; England, J M

    1977-01-01

    Rabies virus specific polypeptide synthesis was examined under hypertonic conditions, which selectively inhibit cellular protein synthesis. The rabies virus proteins (L, G, N, M1, M2) were synthesized throughout the course of infection, with little change in their relative rates of synthesis. The rates of synthesis of the G and M1 polypeptides were more sensitive to increasing osmolarity than those of the L, N, and M2 polypeptides. Extrapolation to isotonicity of the results obtained under hypertonic conditions indicated that the molar ratios of the polypeptides synthesized under normal conditions were 0.4 (L), 64 (G), 100 (N), 75 (M1) and 35 (M2). A high-molecular-weight polypeptide (190,000), designated polypeptide L, was repeatedly detected both in infected cells and in extracellular virus. The estimated number of L polypeptide molecules per virion was 33. The synthesis of a viral glycoprotein precursor, designated gp78, , preceded the appearance of the mature viral glycoprotein in infected cells labeled with [3H]glucosamine under isotonic conditions. In cells labeled under hypertonic conditions, little or no mature viral glycoprotein was detected, but a virus-specific glycoprotein with an electrophoretic mobility similar to that of gp78 was observed. This glycoprotein could be chased into mature viral glycoprotein when the hypertonic conditions were made isotonic. These results suggest that a reversible block of viral glycoprotein synthesis occurs under hypertonic conditions. PMID:558341

  13. Microbial CO conversions with applications in synthesis gas purification and bio-desulfurization.

    PubMed

    Sipma, Jan; Henstra, Anne M; Parshina, Sofiya M; Lens, Piet N; Lettinga, Gatze; Stams, Alfons J M

    2006-01-01

    Recent advances in the field of microbial physiology demonstrate that carbon monoxide is a readily used substrate by a wide variety of anaerobic micro-organisms, and may be employed in novel biotechnological processes for production of bulk and fine chemicals or in biological treatment of waste streams. Synthesis gas produced from fossil fuels or biomass is rich in hydrogen and carbon monoxide. Conversion of carbon monoxide to hydrogen allows use of synthesis gas in existing hydrogen utilizing processes and is interesting in view of a transition from hydrogen production from fossil fuels to sustainable (CO2-neutral) biomass. The conversion of CO with H2O to CO2 and H2 is catalyzed by a rapidly increasing group of micro-organisms. Hydrogen is a preferred electron donor in biotechnological desulfurization ofwastewaters and flue gases. Additionally, CO is a good alternative electron donor considering the recent isolation of a CO oxidizing, sulfate reducing bacterium. Here we review CO utilization by various anaerobic micro-organisms and their possible role in biotechnological processes, with a focus on hydrogen production and bio-desulfurization.

  14. [Effects of zinc-finger proteins and artificial zinc-finger proteins on microbial metabolisms--a review].

    PubMed

    Liu, Zhuo; Zhang, Fei; Zhao, Xinqing; Bai, Fengwu

    2014-03-01

    Zinc-finger proteins have been widely studied due to their highly conserved structures and DNA-binding specificity of zinc-finger domains. However, researches on the zinc-finger proteins from microorganisms, especially those from prokaryotes, are still very limited. This review focuses on the latest progress on microbial zinc-finger proteins, especially those from prokaryotes and the application of artificial zinc-finger proteins in the breeding of robust strains. Artificial zinc-finger proteins with transcriptional activation or repression domain can regulate the global gene transcription of microbial cells to acquire improved phenotypes, such as stress tolerance to heat, ethanol, butanol, and osmotic pressure. Using the zinc-finger domain as DNA scaffold in the construction of enzymatic system can enhance the catalytic efficiency and subsequently the production of specific metabolites. Currently, zinc-finger domains used in the construction of artificial transcription factor are usually isolated from mammalian cells. In the near future, novel transcription factors can be designed for strain development based on the natural zinc-finger domains from different microbes, which may be used to regulate the global gene expression of microbial cells more efficiently.

  15. Insulin accelerates global and mitochondrial protein synthesis rates in neonatal muscle during sepsis

    USDA-ARS?s Scientific Manuscript database

    In neonatal pigs, sepsis decreases protein synthesis in skeletal muscle by decreasing translation initiation. However, insulin stimulates muscle protein synthesis despite persistent repression of translation initiation signaling. To determine whether the insulin-induced increase in global rates of m...

  16. A Working Model of Protein Synthesis Using Lego(TM) Building Blocks.

    ERIC Educational Resources Information Center

    Templin, Mark A.; Fetters, Marcia K.

    2002-01-01

    Uses Lego building blocks to improve the effectiveness of teaching about protein synthesis. Provides diagrams and pictures for a 2-3 day student activity. Discusses mRNA, transfer RNA, and a protein synthesis model. (MVL)

  17. A Working Model of Protein Synthesis Using Lego(TM) Building Blocks.

    ERIC Educational Resources Information Center

    Templin, Mark A.; Fetters, Marcia K.

    2002-01-01

    Uses Lego building blocks to improve the effectiveness of teaching about protein synthesis. Provides diagrams and pictures for a 2-3 day student activity. Discusses mRNA, transfer RNA, and a protein synthesis model. (MVL)

  18. Tinkering with Translation: Protein Synthesis in Virus-Infected Cells

    PubMed Central

    Walsh, Derek; Mathews, Michael B.; Mohr, Ian

    2013-01-01

    Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus. PMID:23209131

  19. Translational Control of Specific Uterine Protein Synthesis After Estrogen Induction

    PubMed Central

    DeAngelo, Anthony B.; Fujimoto, George I.

    1973-01-01

    The rate of leucine incorporation into a specific estrogen-induced protein of immature rat isolated by gel electrophoresis declines rapidly between 2-4 hr after estrogen stimulation in vivo followed by incubation in vitro. Actinomycin D present during the in vitro phase prevents this decline, and elicits a “superinduction” effect at 2 hr. Labeled induced protein remains stable during this time period, indicating that its decline is due to a reduction in synthesis capacity for the inducible protein, rather than to its degradation. A second injection of hormone at 3 hr has no effect on the reduced level of synthesis capacity for induced protein noted at 4 hr in the rat uterus. PMID:4509650

  20. Requirement of protein kinase C zeta for stimulation of protein synthesis by insulin.

    PubMed Central

    Mendez, R; Kollmorgen, G; White, M F; Rhoads, R E

    1997-01-01

    The ability of insulin to stimulate protein synthesis and cellular growth is mediated through the insulin receptor (IR), which phosphorylates Tyr residues in the insulin receptor substrate-signaling proteins (IRS-1 and IRS-2), Gab-1, and Shc. These phosphorylated substrates directly bind and activate enzymes such as phosphatidylinositol 3'-kinase (PI3K) and the guanine nucleotide exchange factor for p21Ras (GRB-2/SOS), which are in turn required for insulin-stimulated protein synthesis, cell cycle progression, and prevention of apoptosis. We have now shown that one or more members of the atypical protein kinase C group, as exemplified by the zeta isoform (PKC zeta), are downstream of IRS-1 and P13K and mediate the effect of insulin on general protein synthesis. Ectopic expression of constitutively activated PKC zeta eliminates the requirement of IRS-1 for general protein synthesis but not for insulin-stimulated activation of 70-kDa S6 kinase (p70S6K), synthesis of growth-regulated proteins (e.g., c-Myc), or mitogenesis. The fact that PKC zeta stimulates general protein synthesis but not activation of p70S6K indicates that PKC zeta activation does not involve the proto-oncogene Akt, which is also activated by PI3K. Yet insulin is still required for the stimulation of general protein synthesis in the presence of constitutively active PKC zeta and in the absence of IRS-1, suggesting a requirement for the convergence of the IRS-1/PI3K/PKC zeta pathway with one or more additional pathways emanating from the IR, e.g., Shc/SOS/p21Ras/mitogen-activated protein kinase. Thus, PI3K appears to represent a bifurcation in the insulin signaling pathway, one branch leading through PKC zeta to general protein synthesis and one, through Akt and the target of rapamycin (mTOR), to growth-regulated protein synthesis and cell cycle progression. PMID:9271396

  1. Characterising microbial protein test substances and establishing their equivalence with plant-produced proteins for use in risk assessments of transgenic crops.

    PubMed

    Raybould, Alan; Kilby, Peter; Graser, Gerson

    2013-04-01

    Most commercial transgenic crops are genetically engineered to produce new proteins. Studies to assess the risks to human and animal health, and to the environment, from the use of these crops require grams of the transgenic proteins. It is often extremely difficult to produce sufficient purified transgenic protein from the crop. Nevertheless, ample protein of acceptable purity may be produced by over-expressing the protein in microbes such as Escherichia coli. When using microbial proteins in a study for risk assessment, it is essential that their suitability as surrogates for the plant-produced transgenic proteins is established; that is, the proteins are equivalent for the purposes of the study. Equivalence does not imply that the plant and microbial proteins are identical, but that the microbial protein is sufficiently similar biochemically and functionally to the plant protein such that studies using the microbial protein provide reliable information for risk assessment of the transgenic crop. Equivalence is a judgement based on a weight of evidence from comparisons of relevant properties of the microbial and plant proteins, including activity, molecular weight, amino acid sequence, glycosylation and immuno-reactivity. We describe a typical set of methods used to compare proteins in regulatory risk assessments for transgenic crops, and discuss how risk assessors may use comparisons of proteins to judge equivalence.

  2. Frog Foam Nest Protein Diversity and Synthesis.

    PubMed

    Hissa, Denise Cavalcante; Bezerra, Walderly Melgaço; Freitas, Cléverson Diniz Teixeira De; Ramos, Márcio Viana; Lopes, José Luiz De Souza; Beltramini, Leila Maria; Roberto, Igor Joventino; Cascon, Paulo; Melo, Vânia Maria Maciel

    2016-08-01

    Some amphibian species have developed a breeding strategy in which they deposit their eggs in stable foam nests to protect their eggs and larvae. The frog foam nests are rich in proteins (ranaspumin), especially surfactant proteins, involved in the production of the foam nest. Despite the ecological importance of the foam nests for evolution and species conservation, the biochemical composition, the long-term stability and even the origin of the components are still not completely understood. Recently we showed that Lv-RSN-1, a 23.5-kDa surfactant protein isolated from the nest of the frog Leptodacylus vastus, presents a structural conformation distinct from any protein structures yet reported. So, in the current study we aimed to reveal the protein composition of the foam nest of L. vastus and further characterize the Lv-RSN-1. Proteomic analysis showed the foam nest contains more than 100 of proteins, and that Lv-RSN-1 comprises 45% of the total proteins, suggesting a key role in the nest construction and stability. We demonstrated by Western blotting that Lv-RSN-1 is mainly produced only by the female in the pars convoluta dilata, which highlights the importance of the female preservation for conservation of species that depend on the production of foam nests in the early stages of development. Overall, our results showed the foam nest of L. vastus is composed of a great diversity of proteins and that besides Lv-RSN-1, the main protein in the foam, other proteins must have a coadjuvant role in building and stability of the nest.

  3. Protein Synthesis Inhibition Blocks Consolidation of an Acrobatic Motor Skill

    ERIC Educational Resources Information Center

    Kaelin-Lang, Alain; Dichgans, Johannes; Schulz, Jorg B.; Luft, Andreas R.; Buitrago, Manuel M.

    2004-01-01

    To investigate whether motor skill learning depends on de novo protein synthesis, adult rats were trained in an acrobatic locomotor task (accelerating rotarod) for 7 d. Animals were systemically injected with cycloheximide (CHX, 0.5 mg/kg, i.p.) 1 h before sessions 1 and 2 or sessions 2 and 3. Control rats received vehicle injections before…

  4. Problem-Solving Test: The Mechanism of Protein Synthesis

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2009-01-01

    Terms to be familiar with before you start to solve the test: protein synthesis, ribosomes, amino acids, peptides, peptide bond, polypeptide chain, N- and C-terminus, hemoglobin, [alpha]- and [beta]-globin chains, radioactive labeling, [[to the third power]H] and [[to the fourteenth power]C]leucine, cytosol, differential centrifugation, density…

  5. The Teaching of Protein Synthesis--A Microcomputer Based Method.

    ERIC Educational Resources Information Center

    Goodridge, Frank

    1983-01-01

    Describes two computer programs (BASIC for 32K Commodore PET) for teaching protein synthesis. The first is an interactive test of base-pairing knowledge, and the second generates random DNA nucleotide sequences, with instructions for substitution, insertion, and deletion printed out for each student. (JN)

  6. Initiation of protein-primed picornavirus RNA synthesis

    PubMed Central

    Paul, Aniko V.; Wimmer, Eckard

    2015-01-01

    Plus strand RNA viruses use different mechanisms to initiate the synthesis of their RNA chains. The Picornaviridae family constitutes a large group of plus strand RNA viruses that possess a small terminal protein (VPg) covalently linked to the 5’-end of their genomes. The RNA polymerases of these viruses use VPg as primer for both minus and plus strand RNA synthesis. In the first step of the initiation reaction the RNA polymerase links a UMP to the hydroxyl group of a tyrosine in VPg using as template a cis-replicating element (cre) positioned in different regions of the viral genome. In this review we will summarize what is known about the intiation reaction of protein-primed RNA synthesis by the RNA polymerases of the Picornaviridae. As an example we will use the RNA polymerase of poliovirus, the prototype of Picornaviridae. We will also discuss models of how these nucleotidylylated protein primers might be used, together with viral and cellular replication proteins and other cis-replicating RNA elements, during minus and plus strand RNA synthesis. PMID:25592245

  7. Problem-Solving Test: The Mechanism of Protein Synthesis

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2009-01-01

    Terms to be familiar with before you start to solve the test: protein synthesis, ribosomes, amino acids, peptides, peptide bond, polypeptide chain, N- and C-terminus, hemoglobin, [alpha]- and [beta]-globin chains, radioactive labeling, [[to the third power]H] and [[to the fourteenth power]C]leucine, cytosol, differential centrifugation, density…

  8. Protein Synthesis Inhibition Blocks Consolidation of an Acrobatic Motor Skill

    ERIC Educational Resources Information Center

    Kaelin-Lang, Alain; Dichgans, Johannes; Schulz, Jorg B.; Luft, Andreas R.; Buitrago, Manuel M.

    2004-01-01

    To investigate whether motor skill learning depends on de novo protein synthesis, adult rats were trained in an acrobatic locomotor task (accelerating rotarod) for 7 d. Animals were systemically injected with cycloheximide (CHX, 0.5 mg/kg, i.p.) 1 h before sessions 1 and 2 or sessions 2 and 3. Control rats received vehicle injections before…

  9. Leucine acts as a nutrient signal to stimulate protein synthesis

    USDA-ARS?s Scientific Manuscript database

    The postprandial rise in amino acids and insulin independently stimulates protein synthesis in skeletal muscle of piglets. Leucine is an important mediator of the response to amino acids. We have shown that the postprandial rise in leucine, but not isoleucine or valine, acutely stimulates muscle pro...

  10. Converting a Natural Protein Compartment into a Nanofactory for the Size-Constrained Synthesis of Antimicrobial Silver Nanoparticles.

    PubMed

    Giessen, Tobias W; Silver, Pamela A

    2016-12-16

    Engineered biological systems are used extensively for the production of high value and commodity organics. On the other hand, most inorganic nanomaterials are still synthesized via chemical routes. By engineering cellular compartments, functional nanoarchitectures can be produced under environmentally sustainable conditions. Encapsulins are a new class of microbial nanocompartments with promising applications in nanobiotechnology. Here, we engineer the Thermotoga maritima encapsulin EncTm to yield a designed compartment for the size-constrained synthesis of silver nanoparticles (Ag NPs). These Ag NPs exhibit uniform shape and size distributions as well as long-term stability. Ambient aqueous conditions can be used for Ag NP synthesis, while no reducing agents or solvents need to be added. The antimicrobial activity of the synthesized protein-coated or shell-free Ag NPs is superior to that of silver nitrate and citrate-capped Ag NPs. This study establishes encapsulins as an engineerable platform for the synthesis of biogenic functional nanomaterials.

  11. Circulating Microbial Products and Acute Phase Proteins as Markers of Pathogenesis in Lymphatic Filarial Disease

    PubMed Central

    Anuradha, R.; George, P. Jovvian; Pavan Kumar, N.; Fay, Michael P.; Kumaraswami, V.; Nutman, Thomas B.; Babu, Subash

    2012-01-01

    Lymphatic filariasis can be associated with development of serious pathology in the form of lymphedema, hydrocele, and elephantiasis in a subset of infected patients. Dysregulated host inflammatory responses leading to systemic immune activation are thought to play a central role in filarial disease pathogenesis. We measured the plasma levels of microbial translocation markers, acute phase proteins, and inflammatory cytokines in individuals with chronic filarial pathology with (CP Ag+) or without (CP Ag−) active infection; with clinically asymptomatic infections (INF); and in those without infection (endemic normal [EN]). Comparisons between the two actively infected groups (CP Ag+ compared to INF) and those without active infection (CP Ag− compared to EN) were used preliminarily to identify markers of pathogenesis. Thereafter, we tested for group effects among all the four groups using linear models on the log transformed responses of the markers. Our data suggest that circulating levels of microbial translocation products (lipopolysaccharide and LPS-binding protein), acute phase proteins (haptoglobin and serum amyloid protein-A), and inflammatory cytokines (IL-1β, IL-12, and TNF-α) are associated with pathogenesis of disease in lymphatic filarial infection and implicate an important role for circulating microbial products and acute phase proteins. PMID:22685406

  12. Effects of a new microbial α-amylase inhibitor protein on Helicoverpa armigera larvae.

    PubMed

    Zeng, Fanrong; Wang, Xiaojing; Cui, Jinjie; Ma, Yan; Li, Qiannan

    2013-03-06

    A new microbial α-amylase inhibitor gene was cloned and characterized. The encoded, recombinant, α-amylase inhibitor protein was induced and expressed by isopropyl β-d-1-thiogalactopyranoside (IPTG) in Escherichia coli M15 cells. The effects of the α-amylase inhibitor protein on Helicoverpa armigera larvae were studied. Compared to the control, the weight of H. armigera larvae fed the diet with recombinant α-amylase inhibitor protein added at a concentration of 20 μg/g was reduced by 49.8%. The total soluble protein of H. armigera larvae fed the diet with the α-amylase inhibitor protein added was also reduced by 36.8% compared to the control. The recombinant α-amylase inhibitor protein showed inhibition activity against α-amylase of H. armigera. These results suggested that this α-amylase inhibitor protein may be a promising bioinsecticide candidate for controlling H. armigera.

  13. Pin1 and PKMζ Sequentially Control Dendritic Protein Synthesis

    PubMed Central

    Westmark, Pamela R.; Westmark, Cara J.; Wang, SuQing; Levenson, Jonathan; O’Riordan, Kenneth J.; Burger, Corinna; Malter, James S.

    2010-01-01

    Some forms of learning and memory, and their electrophysiologic correlate, long-term potentiation (LTP), require dendritic translation. We demonstrate that Pin1, a peptidyl-prolyl isomerase, is present in dendritic spines and shafts and inhibits protein synthesis induced by glutamatergic signaling. Pin1 suppression increased dendritic translation, possibly through eIF4E binding proteins 1 and 2 (4E-BP1/2) and eukaryotic translation initiation factor 4E (eIF4E). Consistent with increased protein synthesis, hippocampal slices from Pin−/− mice had normal early LTP (E-LTP) but significantly enhanced late LTP (L-LTP) compared to wild-type controls. Protein kinase C ζ (PKCζ) and protein kinase M ζ (PKMζ) were increased in Pin1−/− mouse brain and their activity was required to maintain dendritic translation. PKMζ interacted with and inhibited Pin1 by phosphorylating Ser16. Therefore, glutamate-induced, dendritic protein synthesis is sequentially regulated by Pin1 and PKMζ signaling. PMID:20215645

  14. Sulfated polysaccharide-directed recruitment of mammalian host proteins: a novel strategy in microbial pathogenesis.

    PubMed

    Duensing, T D; Wing, J S; van Putten, J P

    1999-09-01

    Fundamental to the virulence of microbial pathogens is their capacity for adaptation and survival within variable, and often hostile, environments encountered in the host. We describe a novel, extragenomic mechanism of surface modulation which may amplify the adaptive and pathogenic potential of numerous bacterial species, including Staphylococcus, Yersinia, and pathogenic Neisseria species, as well as Helicobacter pylori and Streptococcus pyogenes. The mechanism involves specific bacterial recruitment of heparin, glycosaminoglycans, or related sulfated polysaccharides, which in turn serve as universal binding sites for a diverse array of mammalian heparin binding proteins, including adhesive glycoproteins (vitronectin and fibronectin), inflammatory (MCP-3, PF-4, and MIP-1alpha) and immunomodulatory (gamma interferon) intermediates, and fibroblast growth factor. This strategy impacts key aspects of microbial pathogenicity as exemplified by increased bacterial invasion of epithelial cells and inhibition of chemokine-induced chemotaxis. Our findings illustrate a previously unrecognized form of parasitism that complements classical virulence strategies encoded within the microbial genome.

  15. Autophagy protein Rubicon mediates phagocytic NADPH oxidase activation in response to microbial infection or TLR stimulation.

    PubMed

    Yang, Chul-Su; Lee, Jong-Soo; Rodgers, Mary; Min, Chan-Ki; Lee, June-Yong; Kim, Hee Jin; Lee, Kwang-Hoon; Kim, Chul-Joong; Oh, Byungha; Zandi, Ebrahim; Yue, Zhenyu; Kramnik, Igor; Liang, Chengyu; Jung, Jae U

    2012-03-15

    Phagocytosis and autophagy are two important and related arms of the host's first-line defense against microbial invasion. Rubicon is a RUN domain containing cysteine-rich protein that functions as part of a Beclin-1-Vps34-containing autophagy complex. We report that Rubicon is also an essential, positive regulator of the NADPH oxidase complex. Upon microbial infection or Toll-like-receptor 2 (TLR2) activation, Rubicon interacts with the p22phox subunit of the NADPH oxidase complex, facilitating its phagosomal trafficking to induce a burst of reactive oxygen species (ROS) and inflammatory cytokines. Consequently, ectopic expression or depletion of Rubicon profoundly affected ROS, inflammatory cytokine production, and subsequent antimicrobial activity. Rubicon's actions in autophagy and in the NADPH oxidase complex are functionally and genetically separable, indicating that Rubicon functions in two ancient innate immune machineries, autophagy and phagocytosis, depending on the environmental stimulus. Rubicon may thus be pivotal to generating an optimal intracellular immune response against microbial infection.

  16. Biorefining of by-product streams from sunflower-based biodiesel production plants for integrated synthesis of microbial oil and value-added co-products.

    PubMed

    Leiva-Candia, D E; Tsakona, S; Kopsahelis, N; García, I L; Papanikolaou, S; Dorado, M P; Koutinas, A A

    2015-08-01

    This study focuses on the valorisation of crude glycerol and sunflower meal (SFM) from conventional biodiesel production plants for the separation of value-added co-products (antioxidant-rich extracts and protein isolate) and for enhancing biodiesel production through microbial oil synthesis. Microbial oil production was evaluated using three oleaginous yeast strains (Rhodosporidium toruloides, Lipomyces starkeyi and Cryptococcus curvatus) cultivated on crude glycerol and nutrient-rich hydrolysates derived from either whole SFM or SFM fractions that remained after separation of value-added co-products. Fed-batch bioreactor cultures with R. toruloides led to the production of 37.4gL(-1) of total dry weight with a microbial oil content of 51.3% (ww(-1)) when a biorefinery concept based on SFM fractionation was employed. The estimated biodiesel properties conformed with the limits set by the EN 14214 and ASTM D 6751 standards. The estimated cold filter plugging point (7.3-8.6°C) of the lipids produced by R. toruloides is closer to that of biodiesel derived from palm oil.

  17. Insulin and amino acids independently stimulate skeletal muscle protein synthesis in neonatal pigs.

    PubMed

    O'Connor, Pamela M J; Bush, Jill A; Suryawan, Agus; Nguyen, Hanh V; Davis, Teresa A

    2003-01-01

    Infusion of physiological levels of insulin and/or amino acids reproduces the feeding-induced stimulation of muscle protein synthesis in neonates. To determine whether insulin and amino acids independently stimulate skeletal muscle protein synthesis in neonates, insulin secretion was blocked with somatostatin in fasted 7-day-old pigs (n = 8-12/group) while glucose and glucagon were maintained at fasting levels and insulin was infused to simulate either less than fasting, fasting, intermediate, or fed insulin levels. At each dose of insulin, amino acids were clamped at either the fasting or fed level; at the highest insulin dose, amino acids were also reduced to less than fasting levels. Skeletal muscle protein synthesis was measured using a flooding dose of l-[4-(3)H]phenylalanine. Hyperinsulinemia increased protein synthesis in skeletal muscle during hypoaminoacidemia and euaminoacidemia. Hyperaminoacidemia increased muscle protein synthesis during hypoinsulinemia and euinsulinemia. There was a dose-response effect of both insulin and amino acids on muscle protein synthesis. At each insulin dose, hyperaminoacidemia increased muscle protein synthesis. The effects of insulin and amino acids on muscle protein synthesis were largely additive until maximal rates of protein synthesis were achieved. Amino acids enhanced basal protein synthesis rates but did not enhance the sensitivity or responsiveness of muscle protein synthesis to insulin. The results suggest that insulin and amino acids independently stimulate protein synthesis in skeletal muscle of the neonate.

  18. Thermally activated charge transport in microbial protein nanowires.

    PubMed

    Lampa-Pastirk, Sanela; Veazey, Joshua P; Walsh, Kathleen A; Feliciano, Gustavo T; Steidl, Rebecca J; Tessmer, Stuart H; Reguera, Gemma

    2016-03-24

    The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors.

  19. Thermally activated charge transport in microbial protein nanowires

    PubMed Central

    Lampa-Pastirk, Sanela; Veazey, Joshua P.; Walsh, Kathleen A.; Feliciano, Gustavo T.; Steidl, Rebecca J.; Tessmer, Stuart H.; Reguera, Gemma

    2016-01-01

    The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors. PMID:27009596

  20. Thermally activated charge transport in microbial protein nanowires

    NASA Astrophysics Data System (ADS)

    Lampa-Pastirk, Sanela; Veazey, Joshua P.; Walsh, Kathleen A.; Feliciano, Gustavo T.; Steidl, Rebecca J.; Tessmer, Stuart H.; Reguera, Gemma

    2016-03-01

    The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors.

  1. A synthesis of the effects of pesticides on microbial persistence in aquatic ecosystems.

    PubMed

    Staley, Zachery R; Harwood, Valerie J; Rohr, Jason R

    2015-01-01

    Pesticides have a pervasive presence in aquatic ecosystems throughout the world. While pesticides are intended to control fungi, insects, and other pests, their mechanisms of action are often not specific enough to prevent unintended effects, such as on non-target microbial populations. Microorganisms, including algae and cyanobacteria, protozoa, aquatic fungi, and bacteria, form the basis of many food webs and are responsible for crucial aspects of biogeochemical cycling; therefore, the potential for pesticides to alter microbial community structures must be understood to preserve ecosystem services. This review examines studies that focused on direct population-level effects and indirect community-level effects of pesticides on microorganisms. Generally, insecticides, herbicides, and fungicides were found to have adverse direct effects on algal and fungal species. Insecticides and fungicides also had deleterious direct effects in the majority of studies examining protozoa species, although herbicides were found to have inconsistent direct effects on protozoans. Our synthesis revealed mixed or no direct effects on bacterial species among all pesticide categories, with results highly dependent on the target species, chemical, and concentration used in the study. Examination of community-level, indirect effects revealed that all pesticide categories had a tendency to reduce higher trophic levels, thereby diminishing top-down pressures and favoring lower trophic levels. Often, indirect effects exerted greater influence than direct effects. However, few studies have been conducted to specifically address community-level effects of pesticides on microorganisms, and further research is necessary to better understand and predict the net effects of pesticides on ecosystem health.

  2. A Synthesis of the Effects of Pesticides on Microbial Persistence in Aquatic Ecosystems

    PubMed Central

    Staley, Zachery R.; Harwood, Valerie J.; Rohr, Jason R.

    2016-01-01

    Pesticides are a pervasive presence in aquatic ecosystems throughout the world. While pesticides are intended to control fungi, insects, and other pests, their mechanisms of action are often not specific enough to prevent unintended effects, such as on non-target microbial populations. Microorganisms, including algae and cyanobacteria, protozoa, aquatic fungi, and bacteria, form the basis of many food webs and are responsible for crucial aspects of biogeochemical cycling; therefore, the potential for pesticides to alter microbial community structures must be understood to preserve ecosystem services. This review examines studies that focused on direct population-level effects and indirect community-level effects of pesticides on microorganisms. Generally, insecticides, herbicides, and fungicides were found to have adverse direct effects on algal and fungal species. Insecticides and fungicides also had deleterious direct effects in the majority of studies examining protozoa species, although herbicides were found to have inconsistent direct effects on protozoans. Our synthesis revealed mixed or no direct effects on bacterial species among all pesticide categories, with results highly dependent on the target species, chemical, and concentration used in the study. Examination of community-level, indirect effects revealed that all pesticide categories had a tendency to reduce higher trophic levels, thereby diminishing top-down pressures and favoring lower trophic levels. Often, indirect effects exerted greater influence than direct effects. However, few studies have been conducted to specifically address community-level effects of pesticides on microorganisms and further research is necessary to better understand and predict the net effects of pesticides on ecosystem health. PMID:26565685

  3. Transcriptional regulation of decreased protein synthesis during skeletal muscle unloading

    NASA Technical Reports Server (NTRS)

    Howard, G.; Steffen, J. M.; Geoghegan, T. E.

    1989-01-01

    The regulatory role of transcriptional alterations in unloaded skeletal muscles was investigated by determining levels of total muscle RNA and mRNA fractions in soleus, gastrocnemius, and extensor digitorum longus (EDL) of rats subjected to whole-body suspension for up to 7 days. After 7 days, total RNA and mRNA contents were lower in soleus and gastrocnemius, compared with controls, but the concentrations of both RNAs per g muscle were unaltered. Alpha-actin mRNA (assessed by dot hybridization) was significantly reduced in soleus after 1, 3, and 7 days of suspension and in gastrocnemius after 3 and 7 days, but was unchanged in EDL. Protein synthesis directed by RNA extracted from soleus and EDL indicated marked alteration in mRNAs coding for several small proteins. Results suggest that altered transcription and availability of specific mRNAs contribute significantly to the regulation of protein synthesis during skeletal muscle unloading.

  4. Transcriptional regulation of decreased protein synthesis during skeletal muscle unloading

    NASA Technical Reports Server (NTRS)

    Howard, G.; Steffen, J. M.; Geoghegan, T. E.

    1989-01-01

    The regulatory role of transcriptional alterations in unloaded skeletal muscles was investigated by determining levels of total muscle RNA and mRNA fractions in soleus, gastrocnemius, and extensor digitorum longus (EDL) of rats subjected to whole-body suspension for up to 7 days. After 7 days, total RNA and mRNA contents were lower in soleus and gastrocnemius, compared with controls, but the concentrations of both RNAs per g muscle were unaltered. Alpha-actin mRNA (assessed by dot hybridization) was significantly reduced in soleus after 1, 3, and 7 days of suspension and in gastrocnemius after 3 and 7 days, but was unchanged in EDL. Protein synthesis directed by RNA extracted from soleus and EDL indicated marked alteration in mRNAs coding for several small proteins. Results suggest that altered transcription and availability of specific mRNAs contribute significantly to the regulation of protein synthesis during skeletal muscle unloading.

  5. Impact of Enzymatic and Microbial Bioprocessing on Protein Modification and Nutritional Properties of Wheat Bran.

    PubMed

    Arte, Elisa; Rizzello, Carlo G; Verni, Michela; Nordlund, Emilia; Katina, Kati; Coda, Rossana

    2015-10-07

    Besides providing dietary fiber, wheat bran is a recognized source of protein and is considered a very valuable substitute for other protein-rich sources in the food and feed industry. Nonetheless, several factors affect protein bioavailability, including bran's layered structure. This study showed the influence on the release and protein modification of wheat bran of different bioprocessing methods involving the activation of endogenous enzymes of bran, the addition of an enzyme mixture having carbohydrase activity, and microbial fermentation. Bioprocessing in acidic conditions significantly enhanced the solubilization of protein from wheat bran, reaching the highest value in the treatment where the sole endogenous protease activity was activated. Bioprocessing through controlled fermentation allowed a more intense proteolysis and strongly impacted the in vitro digestibility of proteins. The combined use of starter cultures and cell-wall-degrading enzymes was characterized by the highest increase of phytase activity and total phenols.

  6. From Asymmetric Exclusion Processes to Protein Synthesis

    NASA Astrophysics Data System (ADS)

    Dong, Jiajia; Schmittmann, Beate; Zia, Royce K. P.

    2006-03-01

    Protein production rates are clearly vital for all biological systems. Thus, there is considerable interest in understanding the origins of these rates, as well as in manipulating them, especially for physiological and pharmaceutical applications. Since some codons are ``fast'' and others ``slow,'' we propose to exploit these differences and modify the production rate for any specific protein by replacing codons in the associated mRNA by their synonymous counterparts. As an illustration, we study a simple model of protein production: the one-dimensional driven lattice gas, also known as the totally asymmetric simple exclusion process (TASEP). We investigate systematically the effects on the overall current (the protein production rate) of having one or two slow/fast sites (i.e., codons) in an otherwise homogeneous lattice. The currents show a non-trivial dependence on the location of a single ``defect'' as well as on the separation between two defects. We discuss the implications for more realistic models of protein production.

  7. Protein Synthesis Driven by Dynamical Stochastic Transcription.

    PubMed

    Innocentini, Guilherme C P; Forger, Michael; Radulescu, Ovidiu; Antoneli, Fernando

    2016-01-01

    In this manuscript, we propose a mathematical framework to couple transcription and translation in which mRNA production is described by a set of master equations, while the dynamics of protein density is governed by a random differential equation. The coupling between the two processes is given by a stochastic perturbation whose statistics satisfies the master equations. In this approach, from the knowledge of the analytical time-dependent distribution of mRNA number, we are able to calculate the dynamics of the probability density of the protein population.

  8. Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles.

    PubMed

    Hosseinkhani, Baharak; Søbjerg, Lina Sveidal; Rotaru, Amelia-Elena; Emtiazi, Giti; Skrydstrup, Troels; Meyer, Rikke Louise

    2012-01-01

    Bimetallic nanoparticles are considered the next generation of nanocatalysts with increased stability and catalytic activity. Bio-supported synthesis of monometallic nanoparticles has been proposed as an environmentally friendly alternative to the conventional chemical and physical protocols. In this study we synthesize bimetallic bio-supported Pd-Au nanoparticles for the first time using microorganisms as support material. The synthesis involved two steps: (1) Formation of monometallic bio-supported Pd(0) and Au(0) nanoparticles on the surface of Cupriavidus necator cells, and (2) formation of bimetallic bio-supported nanoparticles by reduction of either Au(III) or Pd(II) on to the nanoparticles prepared in step one. Bio-supported monometallic Pd(0) or Au(0) nanoparticles were formed on the surface of C. necator by reduction of Pd(II) or Au(III) with formate. Addition of Au(III) or Pd(II) to the bio-supported particles resulted in increased particle size. UV-Vis spectrophotometry and HR-TEM analyses indicated that the previously monometallic nanoparticles had become fully or partially covered by Au(0) or Pd(0), respectively. Furthermore, Energy Dispersive Spectrometry (EDS) and Fast Fourier Transformation (FFT) analyses confirmed that the nanoparticles indeed were bimetallic. The bimetallic nanoparticles did not have a core-shell structure, but were superior to monometallic particles at reducing p-nitrophenol to p-aminophenol. Hence, formation of microbially supported nanoparticles may be a cheap and environmentally friendly approach for production of bimetallic nanocatalysts. Copyright © 2011 Wiley Periodicals, Inc.

  9. Microbial synthesis of polyhydroxyalkanoate using seaweed-derived crude levulinic acid as co-nutrient.

    PubMed

    Bera, Anupam; Dubey, Sonam; Bhayani, Khushbu; Mondal, Dibyendu; Mishra, Sandhya; Ghosh, Pushpito K

    2015-01-01

    Production of polyhydroxyalkanoates (PHAs) from Jatropha biodiesel residues, namely crude glycerol and oil cake hydrolysate, has been reported previously. Halomonas hydrothermalis (MTCC accession no. 5445; NCBI Genbank accession no. GU938192), a wild marine strain, was used in the bio-synthesis. The present study was initiated to vary the properties of the polymer. Seaweed-derived crude levulinic acid (SDCLA), containing formic acid, residual sugars and dissolved minerals additionally, was proposed as co-feed along with the biodiesel residues. Experiments were conducted at 100mL scale in batch process. Whereas the PHA yield was only 0.40 ± 0.01 g when only biodiesel residues were employed, it rose to 1.07 ± 0.02 g in presence of 0.35% (w/v) of SDCLA. The corresponding carbon utilisation efficiencies were 29.3% and 57.5%, respectively. 3-Hydroxy valerate incorporation in the PHA was pronounced in presence of SDCLA, with associated changes in polymer properties. The microbial synthesis fared poorly when SDCLA was substituted with pure levulinic acid. Thus, Halomonas hydrothermalis had a poor response to levulinic acid, as such, and other constituents present in SDCLA appear to have played a vital role in bacterial cell division and accumulation of PHA. Biodegradability tests in moist soil were also conducted as part of the study. Marine microalgal cultivation for biodiesel and seaweed cultivation for fuels may help generate biodiesel residues and crude levulinic acid in proximity, which would open up the possibility of large scale PHA manufacture in efficient and practical manner in the future through the methodology of the present study.

  10. Protein Synthesis Using A Reconstituted Cell-Free System

    PubMed Central

    Tuckey, Corinna; Asahara, Haruichi; Zhou, Ying; Chong, Shaorong

    2014-01-01

    Most cell free protein synthesis systems are based on cell extracts, which often contain undesirable activities. The reconstituted systems, by contrast, are composed of a defined number of purified and recombinant components with minimal nuclease and protease activities. This unit describes the use of a particular commercial reconstituted system, "PURExpress®" This system allows in vitro synthesis of proteins from mRNA and circular and linear DNA templates, as well as co-translational labeling of proteins. Unique to this system, all recombinant protein components of the system are His-tagged, allowing purification of the synthesized untagged protein by removing the rest of the system’s components. Newly synthesized proteins can often be visible on a SDS-PAGE gel and directly assayed for their functions without labeling and purification. Certain components of the system, such as ribosomes or release factors, can be omitted for specific applications. Such "delta" versions of the system are well suited for studies of bacterial translation, assays of ribosome functions, incorporation of unnatural amino acids and ribosome display of protein libraries. PMID:25271715

  11. Ribosomal History Reveals Origins of Modern Protein Synthesis

    PubMed Central

    Harish, Ajith; Caetano-Anollés, Gustavo

    2012-01-01

    The origin and evolution of the ribosome is central to our understanding of the cellular world. Most hypotheses posit that the ribosome originated in the peptidyl transferase center of the large ribosomal subunit. However, these proposals do not link protein synthesis to RNA recognition and do not use a phylogenetic comparative framework to study ribosomal evolution. Here we infer evolution of the structural components of the ribosome. Phylogenetic methods widely used in morphometrics are applied directly to RNA structures of thousands of molecules and to a census of protein structures in hundreds of genomes. We find that components of the small subunit involved in ribosomal processivity evolved earlier than the catalytic peptidyl transferase center responsible for protein synthesis. Remarkably, subunit RNA and proteins coevolved, starting with interactions between the oldest proteins (S12 and S17) and the oldest substructure (the ribosomal ratchet) in the small subunit and ending with the rise of a modern multi-subunit ribosome. Ancestral ribonucleoprotein components show similarities to in vitro evolved RNA replicase ribozymes and protein structures in extant replication machinery. Our study therefore provides important clues about the chicken-or-egg dilemma associated with the central dogma of molecular biology by showing that ribosomal history is driven by the gradual structural accretion of protein and RNA structures. Most importantly, results suggest that functionally important and conserved regions of the ribosome were recruited and could be relics of an ancient ribonucleoprotein world. PMID:22427882

  12. Ribosomal history reveals origins of modern protein synthesis.

    PubMed

    Harish, Ajith; Caetano-Anollés, Gustavo

    2012-01-01

    The origin and evolution of the ribosome is central to our understanding of the cellular world. Most hypotheses posit that the ribosome originated in the peptidyl transferase center of the large ribosomal subunit. However, these proposals do not link protein synthesis to RNA recognition and do not use a phylogenetic comparative framework to study ribosomal evolution. Here we infer evolution of the structural components of the ribosome. Phylogenetic methods widely used in morphometrics are applied directly to RNA structures of thousands of molecules and to a census of protein structures in hundreds of genomes. We find that components of the small subunit involved in ribosomal processivity evolved earlier than the catalytic peptidyl transferase center responsible for protein synthesis. Remarkably, subunit RNA and proteins coevolved, starting with interactions between the oldest proteins (S12 and S17) and the oldest substructure (the ribosomal ratchet) in the small subunit and ending with the rise of a modern multi-subunit ribosome. Ancestral ribonucleoprotein components show similarities to in vitro evolved RNA replicase ribozymes and protein structures in extant replication machinery. Our study therefore provides important clues about the chicken-or-egg dilemma associated with the central dogma of molecular biology by showing that ribosomal history is driven by the gradual structural accretion of protein and RNA structures. Most importantly, results suggest that functionally important and conserved regions of the ribosome were recruited and could be relics of an ancient ribonucleoprotein world.

  13. Action of phenylephrine on protein synthesis in liver cells.

    PubMed Central

    Menaya, J; Parrilla, R; Ayuso, M S

    1987-01-01

    The alpha-adrenergic agonist phenylephrine was found to inhibit protein labelling from [3H]valine in isolated liver cells. This effect is only observable under conditions of partial Ca2+ depletion and in cells displaying maximal rates of protein labelling, i.e. cells isolated from fed animals or from starved animals when incubated in the presence of alanine. The ability of phenylephrine to inhibit protein labelling at near-saturating concentrations of the amino acid precursor indicates that this alpha-agonist actually decreases the rate of protein synthesis. The possibility that phenylephrine acts by making cellular Ca2+ availability further limiting can be ruled out, since alanine stimulates protein labelling under conditions of severe Ca2+ depletion obtained by pretreatment of the cells with EGTA. The following observations indicate that the phenylephrine action may be mediated by an increase in cellular cyclic AMP content: (1) a close relationship was found between the abilities of phenylephrine to inhibit protein labelling and to increase cyclic AMP content; (2) cyclic AMP mimics the phenylephrine action only in cells partially depleted of Ca2+; (3) the alpha 1-antagonist prazosin, which inhibited the phenylephrine-mediated increase in cyclic AMP, also abolished the effect on protein synthesis. PMID:2829846

  14. Fixed metabolic costs for highly variable rates of protein synthesis in sea urchin embryos and larvae.

    PubMed

    Pace, Douglas A; Manahan, Donal T

    2006-01-01

    Defining the physiological mechanisms that set metabolic rates and the 'cost of living' is important for understanding the energy costs of development. Embryos and larvae of the sea urchin Lytechinus pictus (Verrill) were used to test hypotheses regarding differential costs of protein synthesis in animals differing in size, rates of protein synthesis, and physiological feeding states. For embryos, the rate of protein synthesis was 0.22+/-0.014 ng protein embryo(-1) h(-1) (mean +/- s.e.m.) and decreased in unfed larvae to an average rate of 0.05+/-0.001 ng protein larva(-1) h(-1). Fed larvae had rates of synthesis that were up to 194 times faster than unfed larvae (9.7+/-0.81 ng protein larva(-1) h(-1)). There was no significant difference, however, in the cost of protein synthesis between these larvae with very different physiological states. Furthermore, the cost of synthesis in the larval stages was also similar to costs measured for blastula and gastrula embryos of 8.4+/-0.99 J mg(-1) protein synthesized. The cost of protein synthesis was obtained using both direct ('inhibitor') and indirect ('correlative') measurements; both methods gave essentially identical results. Protein synthesis accounted for up to 54+/-8% of metabolic rate in embryos. Percent of metabolism accounted for by protein synthesis in larvae was dependent on their physiological feeding state, with protein synthesis accounting for 16+/-4% in unfed larvae and 75+/-11% in fed larvae. This regulation of metabolic rate was due to differential rates of synthesis for a fixed energy cost per unit mass of protein synthesized. The cost of synthesizing a unit of protein did not change with increasing rates of protein synthesis. We conclude that the cost of protein synthesis is independent of the rate of synthesis, developmental stage, size and physiological feeding state during sea urchin development.

  15. Glucocorticoid action on protein synthesis and protein breakdown in isolated skeletal muscles

    PubMed Central

    McGrath, Josephine A.; Goldspink, David F.

    1982-01-01

    The direct actions of glucocorticoid hormones on protein turnover were studied in isolated soleus muscles. These steroids were found to decrease the rates of both protein synthesis and protein breakdown within 3 h and 4 h respectively. Synthetic steroids (e.g. dexamethasone) were found to be more potent than naturally secreted hormones (e.g. cortisol) in inducing these changes, but only at concentrations in vitro less than 10nm. PMID:7150268

  16. Transcriptional regulation of storage protein synthesis during dicotyledon seed filling.

    PubMed

    Verdier, Jérôme; Thompson, Richard D

    2008-09-01

    Seeds represent a major source of nutrients for human and animal livestock diets. The nutritive value of seeds is largely due to storage products which accumulate during a key phase of seed development, seed filling. In recent years, our understanding of the mechanisms regulating seed filling has advanced significantly due to the diversity of experimental approaches used. This review summarizes recent findings related to transcription factors that regulate seed storage protein accumulation. A framework for the regulation of storage protein synthesis is established which incorporates the events before, during and after seed storage protein synthesis. The transcriptional control of storage protein synthesis is accompanied by physiological and environmental controls, notably through the action of plant hormones and other intermediary metabolites. Finally, recent post-genomics analyses on different model plants have established the existence of a conserved seed filling process involving the master regulators (LEC1, LEC2, ABI3 and FUS3) but also revealed certain differences in fine regulation between plant families.

  17. Structure and microbial synthesis of sub-10 nm Bi2O3 nanocrystals.

    PubMed

    Uddin, Imran; Adyanthaya, Suguna; Syed, Asad; Selvaraj, K; Ahmad, Absar; Poddar, Pankaj

    2008-08-01

    After the advent of novel chemical and microbial techniques, providing control over grain size and shape of the nanomaterials, several binary-oxide materials have been explored in size less than 10 nm for their tunable physical properties. Bi2O3 nanoparticles have also redrawn attention due to their excellent properties, mostly as optoelectronic material. Here, we report the room-temperature biosynthesis of Bi2O3 nanoparticles in a size range of 5-8 nm by extra-cellularly challenging the plant pathogenic fungus--Fusarium oxysporum with the bismuth nitrate as precursor. The as-synthesized particle-surfaces are inherently functionalized by a robust layer of proteins which provides them very good stability in the aqueous medium. Structural investigation using selected area electron diffraction, high resolution transmission electron microscopy and powder XRD shows that particles are almost perfectly single crystalline and primarily crystallize in alpha-phase with monoclinic structure.

  18. Escherichia coli cell-free protein synthesis and isotope labeling of mammalian proteins.

    PubMed

    Terada, Takaho; Yokoyama, Shigeyuki

    2015-01-01

    This chapter describes the cell-free protein synthesis method, using an Escherichia coli cell extract. This is a cost-effective method for milligram-scale protein production and is particularly useful for the production of mammalian proteins, protein complexes, and membrane proteins that are difficult to synthesize by recombinant expression methods, using E. coli and eukaryotic cells. By adjusting the conditions of the cell-free method, zinc-binding proteins, disulfide-bonded proteins, ligand-bound proteins, etc., may also be produced. Stable isotope labeling of proteins can be accomplished by the cell-free method, simply by using stable isotope-labeled amino acid(s) in the cell-free reaction. Moreover, the cell-free protein synthesis method facilitates the avoidance of stable isotope scrambling and dilution over the recombinant expression methods and is therefore advantageous for amino acid-selective stable isotope labeling. Site-specific stable isotope labeling is also possible with a tRNA molecule specific to the UAG codon. By the cell-free protein synthesis method, coupled transcription-translation is performed from a plasmid vector or a PCR-amplified DNA fragment encoding the protein. A milligram quantity of protein can be produced with a milliliter-scale reaction solution in the dialysis mode. More than a thousand solution structures have been determined by NMR spectroscopy for uniformly labeled samples of human and mouse functional domain proteins, produced by the cell-free method. Here, we describe the practical aspects of mammalian protein production by the cell-free method for NMR spectroscopy. © 2015 Elsevier Inc. All rights reserved.

  19. Protein synthesis rate is the predominant regulator of protein expression during differentiation

    PubMed Central

    Kristensen, Anders R; Gsponer, Joerg; Foster, Leonard J

    2013-01-01

    External perturbations, by forcing cells to adapt to a new environment, often elicit large-scale changes in gene expression resulting in an altered proteome that improves the cell's fitness in the new conditions. Steady-state levels of a proteome depend on transcription, the levels of transcripts, translation and protein degradation but system-level contribution that each of these processes make to the final protein expression change has yet to be explored. We therefore applied a systems biology approach to characterize the regulation of protein expression during cellular differentiation using quantitative proteomics. As a general rule, it seems that protein expression during cellular differentiation is largely controlled by changes in the relative synthesis rate, whereas the relative degradation rate of the majority of proteins stays constant. In these data, we also observe that the proteins in defined sub-structures of larger protein complexes tend to have highly correlated synthesis and degradation rates but that this does not necessarily extend to the holo-complex. Finally, we provide strong evidence that the generally poor correlation observed between transcript and protein levels can fully be explained once the protein synthesis and degradation rates are taken into account. PMID:24045637

  20. N(α)-Acetylation of yeast ribosomal proteins and its effect on protein synthesis.

    PubMed

    Kamita, Masahiro; Kimura, Yayoi; Ino, Yoko; Kamp, Roza M; Polevoda, Bogdan; Sherman, Fred; Hirano, Hisashi

    2011-04-01

    N(α)-Acetyltransferases (NATs) cause the N(α)-acetylation of the majority of eukaryotic proteins during their translation, although the functions of this modification have been largely unexplored. In yeast (Saccharomyces cerevisiae), four NATs have been identified: NatA, NatB, NatC, and NatD. In this study, the N(α)-acetylation status of ribosomal protein was analyzed using NAT mutants combined with two-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry (MS). A total of 60 ribosomal proteins were identified, of which 17 were N(α)-acetylated by NatA, and two by NatB. The N(α)-acetylation of two of these, S17 and L23, by NatA was not previously observed. Furthermore, we tested the effect of ribosomal protein N(α)-acetylation on protein synthesis using the purified ribosomes from each NAT mutant. It was found that the protein synthesis activities of ribosomes from NatA and NatB mutants were decreased by 27% and 23%, respectively, as compared to that of the normal strain. Furthermore, we have shown that ribosomal protein N(α)-acetylation by NatA influences translational fidelity in the presence of paromomycin. These results suggest that ribosomal protein N(α)-acetylation is necessary to maintain the ribosome's protein synthesis function. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium.

    PubMed

    Satyamurthy, P; Vigneshwaran, N

    2013-01-10

    Degradation of cellulose by anaerobic microbial consortium is brought about either by an exocellular process or by secretion of extracellular enzymes. In this work, a novel route for synthesis of nanocellulose is described where in an anaerobic microbial consortium enriched for cellulase producers is used for hydrolysis. Microcrystalline cellulose derived from cotton fibers was subjected to controlled hydrolysis by the anaerobic microbial consortium and the resultant nanocellulose was purified by differential centrifugation technique. The nanocellulose had a bimodal size distribution (43±13 and 119±9 nm) as revealed by atomic force microscopy. A maximum nanocellulose yield of 12.3% was achieved in a span of 7 days. While the conventional process of nanocellulose preparation using 63.5% (w/w) sulfuric acid resulted in the formation of whisker shaped nanocellulose with surface modified by sulfation, controlled hydrolysis by anaerobic microbial consortium yielded spherical nanocellulose also referred to as nano crystalline cellulose (NCC) without any surface modification as evidenced from Fourier transform infrared spectroscopy. Also, it scores over chemo-mechanical production of nanofibrillated cellulose by consuming less energy due to enzyme (cellulase) assisted catalysis. This implies the scope for use of microbial prepared nanocellulose in drug delivery and bio-medical applications requiring bio-compatibility.

  2. PATtyFams: Protein Families for the Microbial Genomes in the PATRIC Database

    PubMed Central

    Davis, James J.; Gerdes, Svetlana; Olsen, Gary J.; Olson, Robert; Pusch, Gordon D.; Shukla, Maulik; Vonstein, Veronika; Wattam, Alice R.; Yoo, Hyunseung

    2016-01-01

    The ability to build accurate protein families is a fundamental operation in bioinformatics that influences comparative analyses, genome annotation, and metabolic modeling. For several years we have been maintaining protein families for all microbial genomes in the PATRIC database (Pathosystems Resource Integration Center, patricbrc.org) in order to drive many of the comparative analysis tools that are available through the PATRIC website. However, due to the burgeoning number of genomes, traditional approaches for generating protein families are becoming prohibitive. In this report, we describe a new approach for generating protein families, which we call PATtyFams. This method uses the k-mer-based function assignments available through RAST (Rapid Annotation using Subsystem Technology) to rapidly guide family formation, and then differentiates the function-based groups into families using a Markov Cluster algorithm (MCL). This new approach for generating protein families is rapid, scalable and has properties that are consistent with alignment-based methods. PMID:26903996

  3. PATtyFams: Protein families for the microbial genomes in the PATRIC database

    SciTech Connect

    Davis, James J.; Gerdes, Svetlana; Olsen, Gary J.; Olson, Robert; Pusch, Gordon D.; Shukla, Maulik; Vonstein, Veronika; Wattam, Alice R.; Yoo, Hyunseung

    2016-02-08

    The ability to build accurate protein families is a fundamental operation in bioinformatics that influences comparative analyses, genome annotation, and metabolic modeling. For several years we have been maintaining protein families for all microbial genomes in the PATRIC database (Pathosystems Resource Integration Center, patricbrc.org) in order to drive many of the comparative analysis tools that are available through the PATRIC website. However, due to the burgeoning number of genomes, traditional approaches for generating protein families are becoming prohibitive. In this report, we describe a new approach for generating protein families, which we call PATtyFams. This method uses the k-mer-based function assignments available through RAST (Rapid Annotation using Subsystem Technology) to rapidly guide family formation, and then differentiates the function-based groups into families using a Markov Cluster algorithm (MCL). In conclusion, this new approach for generating protein families is rapid, scalable and has properties that are consistent with alignment-based methods.

  4. Flame synthesis of carbon nanostructures on stainless steel anodes for use in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lamp, Jennifer L.; Guest, Jeremy S.; Naha, Sayangdev; Radavich, Katherine A.; Love, Nancy G.; Ellis, Michael W.; Puri, Ishwar K.

    Microbial fuel cells (MFCs) offer a promising alternative energy technology, but suffer from low power densities which hinder their practical applicability. In order to improve anodic power density, we deposited carbon nanostructures (CNSs) on an otherwise plain stainless steel mesh (SS-M) anode. Using a flame synthesis method that did not require pretreatment of SS-M substrates, we were able to produce these novel CNS-enhanced SS-M (CNS-M) anodes quickly (in a matter of minutes) and inexpensively, without the added costs of chemical pretreatments. During fed batch experiments with biomass from anaerobic digesters in single-chamber MFCs, the median power densities (based on the projected anodic surface area) were 2.9 mW m -2 and 187 mW m -2 for MFCs with SS-M and CNS-M anodes, respectively. The addition of CNSs to a plain SS-M anode via flame deposition therefore resulted in a 60-fold increase in the median power production. The combination of CNSs and metallic current collectors holds considerable promise for power production in MFCs.

  5. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells.

    PubMed

    Sim, Junyoung; An, Junyeong; Elbeshbishy, Elsayed; Ryu, Hodon; Lee, Hyung-Sool

    2015-11-01

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2O2 conversion efficiency was negligible at 0.3-12%. Current density decreased for passive O2 diffusion to the cathode, but H2O2 conversion efficiency increased by 65%. An MEC equipped with a gas diffusion cathode was operated with acetate medium and domestic wastewater, which presented relatively high H2O2 conversion efficiency from 36% to 47%, although cathode overpotential was fluctuated. Due to different current densities, the maximum H2O2 production rate was 141 mg H2O2/L-h in the MEC fed with acetate medium, but it became low at 6 mg H2O2/L-h in the MEC fed with the wastewater. Our study clearly indicates that improving anodic current density and mitigating membrane fouling would be key parameters for large-scale H2O2-MECs.

  6. Impact of microbial transglutaminase on gelling properties of Indian mackerel fish protein isolates.

    PubMed

    Chanarat, Sochaya; Benjakul, Soottawat

    2013-01-15

    Impacts of microbial transglutaminase (MTGase) (0-0.6 units/g sample) on gel properties of Indian mackerel unwashed mince, surimi and protein isolates with and without prewashing were studied. Generally, lower myoglobin and lipid contents were found in protein isolate with and without prewashing, compared to those of unwashed mince and surimi (P<0.05). Protein isolate had the decreased Ca(2+)-ATPase and protein solubility, indicating protein denaturation. When MTGase was incorporated, breaking force and deformation of all gels markedly increased, especially as MTGase levels increased (P<0.05). At the same MTGase level, gel from protein isolate with prewashing exhibited the highest breaking force and deformation (P<0.05). The addition of MTGase could lower the expressible moisture content of most gels. No change in whiteness of gel was observed with the addition of MTGase (P>0.05), but gel from protein isolate gels had decreased whiteness as MTGase at high level was added. The microstructure of protein isolate gels without prewashing showed a similar network to unwashed mince gels, whilst a similar network was observed between surimi gel and gel from protein isolate with prewashing. Nevertheless, a larger void was noticeable in gels from protein isolates. All gels incorporated with MTGase (0.6 units/g) showed a slightly denser network than those without MTGase. Thus, gel with improved properties could be obtained from protein isolate from Indian mackerel with added MTGase.

  7. Identification of Biofilm Matrix-Associated Proteins from an Acid Mine Drainage Microbial Community

    SciTech Connect

    Jiao, Yongqin; D'Haeseleer, Patrik M; Dill, Brian; Shah, Manesh B; Verberkmoes, Nathan C; Hettich, Robert {Bob} L; Banfield, Jillian F.; Thelen, Michael P.

    2011-01-01

    In microbial communities, extracellular polymeric substances (EPS), also called the extracellular matrix, provide the spatial organization and structural stability during biofilm development. One of the major components of EPS is protein, but it is not clear what specific functions these proteins contribute to the extracellular matrix or to microbial physiology. To investigate this in biofilms from an extremely acidic environment, we used shotgun proteomics analyses to identify proteins associated with EPS in biofilms at two developmental stages, designated DS1 and DS2. The proteome composition of the EPS was significantly different from that of the cell fraction, with more than 80% of the cellular proteins underrepresented or undetectable in EPS. In contrast, predicted periplasmic, outer membrane, and extracellular proteins were overrepresented by 3- to 7-fold in EPS. Also, EPS proteins were more basic by 2 pH units on average and about half the length. When categorized by predicted function, proteins involved in motility, defense, cell envelope, and unknown functions were enriched in EPS. Chaperones, such as histone-like DNA binding protein and cold shock protein, were overrepresented in EPS. Enzymes, such as protein peptidases, disulfide-isomerases, and those associated with cell wall and polysaccharide metabolism, were also detected. Two of these enzymes, identified as -N-acetylhexosaminidase and cellulase, were confirmed in the EPS fraction by enzymatic activity assays. Compared to the differences between EPS and cellular fractions, the relative differences in the EPS proteomes between DS1 and DS2 were smaller and consistent with expected physiological changes during biofilm development.

  8. Polyaromatic compounds alter placental protein synthesis in pregnant rats

    SciTech Connect

    Shiverick, K.T.; Ogilvie, S.; Medrano, T. )

    1991-03-15

    The administration of the polyaromatic compounds {beta}-naphthoflavone ({beta}NF) and 3-methylcholanthrene (3MC) to pregnant rats during mid-gestation has been shown to produce marked feto-placental growth retardation. This study examined secretory protein synthesis in placental tissue from rats following administration of {beta}NF on gestation days (gd) 11-14 or 3MC on gd 12-14. Explants of placental basal zone tissue were cultured for 24 hours in serum-free medium in the presence of ({sup 3}H)leucine. Secreted proteins were analyzed by two-dimensional SDS-polyacrylamide gel electrophoresis followed by either fluorography or immunostaining. Total incorporation of ({sup 3}H)leucine into secreted proteins was not altered in BZ explants from {beta}NF or 3MC-treated animals. However a selective decrease was observed in ({sup 3}H)leucine incorporation into a major complex of proteins with apparent molecular weight of 25-30,000 and isoelectric point between 5.3 to 5.7. This group of proteins has been further identified as being related to rat pituitary growth hormone (GH) using N-terminal amino acid microsequencing of individual spots from 2-D SDS-PA gels. This is the first report that synthesis of GH-related proteins by rat placenta is decreased following {beta}NF and 3MC administration, a change which may underlie the feto-placental growth retardation associated with these polyaromatic compounds.

  9. Concurrent protein synthesis is required for in vivo chitin synthesis in postmolt blue crabs

    SciTech Connect

    Horst, M.N. )

    1990-12-01

    Chitin synthesis in crustaceans involves the deposition of a protein-polysaccharide complex at the apical surface of epithelial cells which secrete the cuticle or exoskeleton. The present study involves an examination of in vivo incorporation of radiolabeled amino acids and amino sugars into the cuticle of postmolt blue crabs, Callinectes sapidus. Rates of incorporation of both 3H leucine and 3H threonine were linear with respect to time of incubation. Incorporation of 3H threonine into the endocuticle was inhibited greater than 90% in the presence of the protein synthesis inhibitor, puromycin. Linear incorporation of 14C glucosamine into the cuticle was also demonstrated; a significant improvement of radiolabeling was achieved by using 14C-N-acetylglucosamine as the labeled precursor. Incorporation of 3H-N-acetylglucosamine into the cuticle of postmolt blue crabs was inhibited 89% by puromycin, indicating that concurrent protein synthesis is required for the deposition of chitin in the blue crab. Autoradiographic analysis of control vs. puromycin-treated crabs indicates that puromycin totally blocks labeling of the new endocuticle with 3H glucosamine. These results are consistent with the notion that crustacean chitin is synthesized as a protein-polysaccharide complex. Analysis of the postmolt and intermolt blue crab cuticle indicates that the exoskeleton contains about 60% protein and 40% chitin. The predominant amino acids are arginine, glutamic acid, alanine, aspartic acid, and threonine.

  10. When Too Much ATP Is Bad for Protein Synthesis.

    PubMed

    Pontes, Mauricio H; Sevostyanova, Anastasia; Groisman, Eduardo A

    2015-08-14

    Adenosine triphosphate (ATP) is the energy currency of living cells. Even though ATP powers virtually all energy-dependent activities, most cellular ATP is utilized in protein synthesis via tRNA aminoacylation and guanosine triphosphate regeneration. Magnesium (Mg(2+)), the most common divalent cation in living cells, plays crucial roles in protein synthesis by maintaining the structure of ribosomes, participating in the biochemistry of translation initiation and functioning as a counterion for ATP. A non-physiological increase in ATP levels hinders growth in cells experiencing Mg(2+) limitation because ATP is the most abundant nucleotide triphosphate in the cell, and Mg(2+) is also required for the stabilization of the cytoplasmic membrane and as a cofactor for essential enzymes. We propose that organisms cope with Mg(2+) limitation by decreasing ATP levels and ribosome production, thereby reallocating Mg(2+) to indispensable cellular processes. Copyright © 2015. Published by Elsevier Ltd.

  11. Question 7: Optimized Energy Consumption for Protein Synthesis

    NASA Astrophysics Data System (ADS)

    Szaflarski, Witold; Nierhaus, Knud H.

    2007-10-01

    In our previous contribution (Nierhaus, Orig Life Evol Biosph, this volume, 2007) we mentioned that life had solved the problem of energy supply in three major steps, and that these steps also mark major stages during the development of life. We further outlined a possible scenario concerning a minimal translational apparatus focusing on the essential components necessary for protein synthesis. Here we continue that consideration by addressing on one of the main problems of early life, namely avoiding wasteful energy loss. With regard to the limiting energy supply of early living systems, i.e. those of say more than 3,000 Ma, a carefully controlled and product oriented energy consumption was in demand. In recent years we learned how a bacterial cell avoids energy drain, thus being able to pump most of the energy into protein synthesis. These lessons must be followed by the design of a minimal living system, which is surveyed in this short article.

  12. Synthesis of Proteins by Isolated Euglena gracilis Chloroplasts 1

    PubMed Central

    Vasconcelos, Aurea C.

    1976-01-01

    Intact Euglena gracilis chloroplasts, which had been purified on gradients of silica sol, incorporated [35S]methionine or [3H]leucine into soluble and membrane-bound products, using light as the only source of energy. The chloroplasts were osmotically shocked, fractionated on discontinuous gradients of sucrose, and the products of protein synthesis of the different fractions characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The soluble fraction resolved into three zones of radioactivity, the major one corresponding to the large subunit or ribulose diphosphate carboxylase. The thylakoid membrane fraction contained nine labeled polypeptides, the two most prominent in the region of 31 and 42 kilodaltons. The envelope fraction contained a major radioactive peak of about 48 kilodaltons and four other minor peaks. The patterns of protein synthesis by isolated Euglena chloroplasts are broadly similar to those observed with chloroplasts of spinach and pea. PMID:16659752

  13. DNA Methyltransferase protein synthesis is reduced in CXXC finger protein 1-deficient embryonic stem cells.

    PubMed

    Butler, Jill S; Palam, Lakshmi R; Tate, Courtney M; Sanford, Jeremy R; Wek, Ronald C; Skalnik, David G

    2009-05-01

    CXXC finger protein 1 (CFP1) binds to unmethylated CpG dinucleotides and is required for embryogenesis. CFP1 is also a component of the Setd1A and Setd1B histone H3K4 methyltransferase complexes. Murine embryonic stem (ES) cells lacking CFP1 fail to differentiate, and exhibit a 70% reduction in global genomic cytosine methylation and a 50% reduction in DNA methyltransferase (DNMT1) protein and activity. This study investigated the underlying mechanism for reduced DNMT1 expression in CFP1-deficient ES cells. DNMT1 transcript levels were significantly elevated in ES cells lacking CFP1, despite the observed reduction in DNMT1 protein levels. To address the posttranscriptional mechanisms by which CFP1 regulates DNMT1 protein activity, pulse/chase analyses were carried out, demonstrating a modest reduction in DNMT1 protein half-life in CFP1-deficient ES cells. Additionally, global protein synthesis was decreased in ES cells lacking CFP1, contributing to a reduction in the synthesis of DNMT1 protein. ES cells lacking CFP1 were found to contain elevated levels of phosphorylated eIF2alpha, and an accompanying reduction in translation initiation as revealed by a lower level of polyribosomes. These results reveal a novel role for CFP1 in the regulation of translation initiation, and indicate that loss of CFP1 function leads to decreased DNMT1 protein synthesis and half-life.

  14. The Roles of RNA in the Synthesis of Protein

    PubMed Central

    Moore, Peter B.; Steitz, Thomas A.

    2011-01-01

    The crystal structures of ribosomes that have been obtained since 2000 have transformed our understanding of protein synthesis. In addition to proving that RNA is responsible for catalyzing peptide bond formation, these structures have provided important insights into the mechanistic details of how the ribosome functions. This review emphasizes what has been learned about the mechanism of peptide bond formation, the antibiotics that inhibit ribosome function, and the fidelity of decoding. PMID:21068149

  15. The intestinal proteome of diabetic and control children is enriched with different microbial and host proteins.

    PubMed

    Pinto, Elsa; Anselmo, Marisol; Calha, Manuela; Bottrill, Andrew; Duarte, Isabel; Andrew, Peter W; Faleiro, Maria L

    2017-02-01

    In this study, the intestinal microbial proteome of children with established type 1 diabetes (T1D) was compared with the proteome of healthy children (Control) with the aim to identify differences in the activity of the intestinal microbiota that not only will contribute to a deeper knowledge of the functionality of the gut in these children but also may provide new approaches to improve the control of the disease. Faecal protein extracts collected from three T1D children (aged 9.3±0.6 years) and three Control children (aged 9.3±1.5 years) were analysed using a combination of 2D gel electrophoresis and spectral counting. The results evidenced markedly differences between the intestinal proteome of T1D children and the Control. The T1D microbial intestinal proteome was enriched with proteins of clostridial cluster XVa and cluster IV and Bacteroides. In contrast, the Control proteome was enriched with bifidobacterial proteins. In both groups, proteins with moonlight function were observed. Human proteins also distinguished the two groups with T1D children depleted in exocrine pancreatic enzymes.

  16. The intestinal proteome of diabetic and control children is enriched with different microbial and host proteins.

    PubMed

    Pinto, Elsa; Anselmo, Marisol; Calha, Manuela; Bottrill, Andrew; Duarte, Isabel; Andrew, Peter; Faleiro, Maria Leonor

    2016-12-15

    In this study the intestinal microbial proteome of children with established type 1 diabetes (T1D) was compared with the proteome of healthy children (Control) with the aim to identify differences in the activity of the intestinal microbiota that will not only contribute to a deeper knowledge of the functionality of the gut in these children but may also provide new approaches to improve the Control of the disease. Fecal protein extracts collected from three T1D children (aged of 9.3 ± 0.6) and three Control children (aged of 9.3 ± 1.5) were analyzed using a combination of two-dimensional gel electrophoresis (2-DE) and spectral counting. The results evidenced markedly differences between the intestinal proteome of T1D children and the Control. The T1D microbial intestinal proteome was enriched with proteins of clostridial cluster XVa and cluster IV and Bacteroides. In contrast, the Control proteome was enriched with bifidobacterial proteins. In both groups proteins with moonlight function were observed. Human proteins also distinguished the two groups with T1D children depleted in exocrine pancreatic enzymes.

  17. Investigations on the effect of forage source, grinding, and urea supplementation on ruminal fermentation and microbial protein flow in a semi-continuous rumen simulation system.

    PubMed

    Hildebrand, Bastian; Boguhn, Jeannette; Rodehutscord, Markus

    2011-10-01

    The objective of the present study was to compare the effect of maize silage and grass silage on microbial fermentation and protein flow in a semi-continuous rumen simulation system (Rusitec) when milling screen size (MSS) during grinding was varied. Oven-dried silages were milled through screens of 1, 4 or 9 mm pore size and incubated for 48 h in a Rusitec system. Furthermore, the effect of N supplementation to maize silage (MSS: 4 mm) was investigated and single dose vs. continuous infusion of urea-N were compared. Degradation of organic matter (OM), crude protein (CP), fibre fractions and non-structural carbohydrates (NSC) as well as short-chain fatty acid production differed significantly between forage sources. Urea-N supplementation improved the degradation of NSC, but not that of fibre fractions in maize silage. The way of urea supply had only marginal effects on fermentation characteristics. An increase in MSS, and consequently in mean feed particle size, led to an improvement in the degradation of OM, CP and NSC, but efficiency of microbial net protein synthesis (EMPS; mg microbial N flow/g degraded OM) and the microbial amino acid profile were less affected. EMPS was higher in grass silage than in maize silage and was improved by urea-N supplementation in maize silage. This study indicates that fermentation of NSC as well as EMPS during incubation of maize silage was limited by availability of NH3-N. Furthermore, an increase in MSS above 1 mm seems to improve fermentation of silages in the Rusitec system.

  18. Possible involvement of poly(A) in protein synthesis.

    PubMed Central

    Jacobson, A; Favreau, M

    1983-01-01

    The experiments of this paper have re-evaluated the possibility that poly(A) is involved in protein synthesis by testing whether purified poly(A) might competitively inhibit in vitro protein synthesis in rabbit reticulocyte extracts. We have found that poly(A) inhibits the rate of translation of many different poly(A)+ mRNAs and that comparable inhibition is not observed with other ribopolymers. Inhibition by poly(A) preferentially affects the translation of adenylated mRNAs and can be overcome by increased mRNA concentrations or by translating mRNPs instead of mRNA. The extent of inhibition is dependent on the size of the competitor poly(A) as well as on the translation activity which a lysate has for poly(A)+ RNA. In light of our results and numerous experiments in the literature, we propose that poly(A) has a function in protein synthesis and that any role in the determination of mRNA stability is indirect. Images PMID:6137807

  19. Voluntary exercise regionally augments rates of cerebral protein synthesis.

    PubMed

    Nadel, Jeffrey; Huang, Tianjian; Xia, Zengyan; Burlin, Thomas; Zametkin, Alan; Smith, Carolyn Beebe

    2013-11-06

    Exercise is a natural form of neurophysiologic stimulation that has known benefits for mental health, maintenance of cerebral function, and stress reduction. Exercise is known to induce an upregulation of brain-derived neurotrophic factor and this is thought to be involved in associated increases in neural plasticity. Protein synthesis is also an essential component of adaptive plasticity. We hypothesized that exercise may stimulate changes in brain protein synthesis as part of its effects on plasticity. Here, we applied the quantitative autoradiographic L-[1-(14)C]leucine method to the in vivo determination of regional rates of cerebral protein synthesis (rCPS) in adult rats following a seven day period of voluntary wheel-running and their sedentary counterparts. In four of 21 brain regions examined, the mean values of rCPS in the exercised rats were statistically significantly higher than in sedentary controls; regions affected were paraventricular hypothalamic nucleus, ventral hippocampus as a whole, CA1 pyramidal cell layer in ventral hippocampus, and frontal cortex. Increases in rCPS approached statistical significance in dentate gyrus of the ventral hippocampus. Our results affirm the value of exercise in encouraging hippocampal and possibly cortical neuroplasticity, and also suggest that exercise may modulate stimulation of stress-response pathways. Ultimately, our study indicates that measurement of rCPS with PET might be used as a marker of brain response to exercise in human subjects. Published by Elsevier B.V.

  20. Identification of lipid synthesis and secretion proteins in bovine milk.

    PubMed

    Lu, Jing; van Hooijdonk, Toon; Boeren, Sjef; Vervoort, Jacques; Hettinga, Kasper

    2014-02-01

    Lactation physiology is a process that is only partly understood. Proteomics techniques have shown to be useful to help advance the knowledge on lactation physiology in human and rodent species but have not been used as major tools for dairy cows, except for mastitis. In this paper, advanced non-targeted proteomics techniques (Filter aided sample preparation and NanoLC-Orbitrap-MS/MS) were applied to study the milk fat globule membrane and milk serum fraction, resulting in the identification of 246 proteins. Of these, 23 transporters and enzymes were related to lipid synthesis and secretion in mammary gland and their functions are discussed in detail. The identification of these intracellular transporters and enzymes in milk provides a possibility of using milk itself to study lipid synthesis and secretion pathways. This full-scale scan of milk proteins by using non-targeted proteomic analysis helps to reveal the important proteins involved in lipid synthesis and secretion for further examination in targeted studies.

  1. SYNTHESIS OF PROTEINS BY NATIVE CHEMICAL LIGATION USING FMOC-BASED CHEMISTRY

    SciTech Connect

    Camarero, J A; Mitchell, A R

    2005-01-20

    C-terminal peptide {alpha}-thioesters are valuable intermediates in the synthesis/semisynthesis of proteins by native chemical ligation. They are prepared either by solid-phase peptide synthesis (SPPS) or biosynthetically by protein splicing techniques. The present paper reviews the different methods available for the chemical synthesis of peptide {alpha}-thioesters using Fmoc-based SPPS.

  2. Microbial Relatives of the Seed Storage Proteins of Higher Plants: Conservation of Structure and Diversification of Function during Evolution of the Cupin Superfamily

    PubMed Central

    Dunwell, Jim M.; Khuri, Sawsan; Gane, Paul J.

    2000-01-01

    This review summarizes the recent discovery of the cupin superfamily (from the Latin term “cupa,” a small barrel) of functionally diverse proteins that initially were limited to several higher plant proteins such as seed storage proteins, germin (an oxalate oxidase), germin-like proteins, and auxin-binding protein. Knowledge of the three-dimensional structure of two vicilins, seed proteins with a characteristic β-barrel core, led to the identification of a small number of conserved residues and thence to the discovery of several microbial proteins which share these key amino acids. In particular, there is a highly conserved pattern of two histidine-containing motifs with a varied intermotif spacing. This cupin signature is found as a central component of many microbial proteins including certain types of phosphomannose isomerase, polyketide synthase, epimerase, and dioxygenase. In addition, the signature has been identified within the N-terminal effector domain in a subgroup of bacterial AraC transcription factors. As well as these single-domain cupins, this survey has identified other classes of two-domain bicupins including bacterial gentisate 1,2-dioxygenases and 1-hydroxy-2-naphthoate dioxygenases, fungal oxalate decarboxylases, and legume sucrose-binding proteins. Cupin evolution is discussed from the perspective of the structure-function relationships, using data from the genomes of several prokaryotes, especially Bacillus subtilis. Many of these functions involve aspects of sugar metabolism and cell wall synthesis and are concerned with responses to abiotic stress such as heat, desiccation, or starvation. Particular emphasis is also given to the oxalate-degrading enzymes from microbes, their biological significance, and their value in a range of medical and other applications. PMID:10704478

  3. Targeted isolation of proteins from natural microbial communities living in an extreme environment.

    PubMed

    Singer, Steven W

    2012-01-01

    Microorganisms from extreme environments are often very difficult to cultivate, precluding detailed study by biochemical and physiological techniques. Recent advances in genomic sequencing and proteomic measurements of samples obtained from natural communities have allowed new access to these uncultivated extremophiles and identified abundant proteins that can be isolated directly from natural samples. Here we report the isolation of two abundant heme proteins from low-diversity biofilm microbial communities that thrive in very acidic (pH ~ 1), metal-rich water in a subsurface mine. Purification and detailed characterization of these proteins has afforded new insight into the possible mechanism of Fe(II) oxidation by Leptospirillum Group II, the dominant population in most of these biofilms, and demonstrated that the abundance and posttranslational modifications of one of these proteins is dependent on the lifecycle of the biofilm.

  4. Leaf Treatments with a Protein-Based Resistance Inducer Partially Modify Phyllosphere Microbial Communities of Grapevine

    PubMed Central

    Cappelletti, Martina; Perazzolli, Michele; Antonielli, Livio; Nesler, Andrea; Torboli, Esmeralda; Bianchedi, Pier L.; Pindo, Massimo; Puopolo, Gerardo; Pertot, Ilaria

    2016-01-01

    Protein derivatives and carbohydrates can stimulate plant growth, increase stress tolerance, and activate plant defense mechanisms. However, these molecules can also act as a nutritional substrate for microbial communities living on the plant phyllosphere and possibly affect their biocontrol activity against pathogens. We investigated the mechanisms of action of a protein derivative (nutrient broth, NB) against grapevine downy mildew, specifically focusing on the effects of foliar treatments on plant defense stimulation and on the composition and biocontrol features of the phyllosphere microbial populations. NB reduced downy mildew symptoms and induced the expression of defense-related genes in greenhouse- and in vitro-grown plants, indicating the activation of grapevine resistance mechanisms. Furthermore, NB increased the number of culturable phyllosphere bacteria and altered the composition of bacterial and fungal populations on leaves of greenhouse-grown plants. Although, NB-induced changes on microbial populations were affected by the structure of indigenous communities originally residing on grapevine leaves, degrees of disease reduction and defense gene modulation were consistent among the experiments. Thus, modifications in the structure of phyllosphere populations caused by NB application could partially contribute to downy mildew control by competition for space or other biocontrol strategies. Particularly, changes in the abundance of phyllosphere microorganisms may provide a contribution to resistance induction, partially affecting the hormone-mediated signaling pathways involved. Modifying phyllosphere populations by increasing natural biocontrol agents with the application of selected nutritional factors can open new opportunities in terms of sustainable plant protection strategies. PMID:27486468

  5. Quantitating protein synthesis, degradation, and endogenous antigen processing.

    PubMed

    Princiotta, Michael F; Finzi, Diana; Qian, Shu-Bing; Gibbs, James; Schuchmann, Sebastian; Buttgereit, Frank; Bennink, Jack R; Yewdell, Jonathan W

    2003-03-01

    Using L929 cells, we quantitated the macroeconomics of protein synthesis and degradation and the microeconomics of producing MHC class I associated peptides from viral translation products. To maintain a content of 2.6 x 10(9) proteins, each cell's 6 x 10(6) ribosomes produce 4 x 10(6) proteins min(-1). Each of the cell's 8 x 10(5) proteasomes degrades 2.5 substrates min(-1), creating one MHC class I-peptide complex for each 500-3000 viral translation products degraded. The efficiency of complex formation is similar in dendritic cells and macrophages, which play a critical role in activating T cells in vivo. Proteasomes create antigenic peptides at different efficiencies from two distinct substrate pools: rapidly degraded newly synthesized proteins that clearly represent defective ribosomal products (DRiPs) and a less rapidly degraded pool in which DRiPs may also predominate.

  6. High-throughput synthesis of stable isotope-labeled transmembrane proteins for targeted transmembrane proteomics using a wheat germ cell-free protein synthesis system.

    PubMed

    Takemori, Nobuaki; Takemori, Ayako; Matsuoka, Kazuhiro; Morishita, Ryo; Matsushita, Natsuki; Aoshima, Masato; Takeda, Hiroyuki; Sawasaki, Tatsuya; Endo, Yaeta; Higashiyama, Shigeki

    2015-02-01

    Using a wheat germ cell-free protein synthesis system, we developed a high-throughput method for the synthesis of stable isotope-labeled full-length transmembrane proteins as proteoliposomes to mimic the in vivo environment, and we successfully constructed an internal standard library for targeted transmembrane proteomics by using mass spectrometry.

  7. Fluorinated proteins: from design and synthesis to structure and stability.

    PubMed

    Marsh, E Neil G

    2014-10-21

    Fluorine is all but absent from biology; however, it has proved to be a remarkably useful element with which to modulate the activity of biological molecules and to study their mechanism of action. Our laboratory's interest in incorporating fluorine into proteins was stimulated by the unusual physicochemical properties exhibited by perfluorinated small molecules. These include extreme chemical inertness and thermal stability, properties that have made them valuable as nonstick coatings and fire retardants. Fluorocarbons also exhibit an unusual propensity to phase segregation. This phenomenon, which has been termed the "fluorous effect", has been effectively exploited in organic synthesis to purify compounds from reaction mixtures by extracting fluorocarbon-tagged molecules into fluorocarbon solvents. As biochemists, we were curious to explore whether the unusual physicochemical properties of perfluorocarbons could be engineered into proteins. To do this, we developed a synthesis of a highly fluorinated amino acid, hexafluoroleucine, and designed a model 4-helix bundle protein, α4H, in which the hydrophobic core was packed exclusively with leucine. We then investigated the effects of repacking the hydrophobic core of α4H with various combinations of leucine and hexafluoroleucine. These initial studies demonstrated that fluorination is a general and effective strategy for enhancing the stability of proteins against chemical and thermal denaturation and proteolytic degradation. We had originally envisaged that the "fluorous interactions", postulated from the self-segregating properties of fluorous solvents, might be used to mediate specific protein-protein interactions orthogonal to those of natural proteins. However, various lines of evidence indicate that no special, favorable fluorine-fluorine interactions occur in the core of the fluorinated α4 protein. This makes it unlikely that fluorinated amino acids can be used to direct protein-protein interactions. More

  8. Engineering bacterial phenylalanine 4-hydroxylase for microbial synthesis of human neurotransmitter precursor 5-hydroxytryptophan.

    PubMed

    Lin, Yuheng; Sun, Xinxiao; Yuan, Qipeng; Yan, Yajun

    2014-07-18

    5-Hydroxytryptophan (5-HTP) is a drug that is clinically effective against depression, insomnia, obesity, chronic headaches, etc. It is only commercially produced by the extraction from the seeds of Griffonia simplicifolia because of a lack of synthetic methods. Here, we report the efficient microbial production of 5-HTP via combinatorial protein and metabolic engineering approaches. First, we reconstituted and screened prokaryotic phenylalanine 4-hydroxylase activity in Escherichia coli. Then, sequence- and structure-based protein engineering dramatically shifted its substrate preference, allowing for efficient conversion of tryptophan to 5-HTP. Importantly, E. coli endogenous tetrahydromonapterin (MH4) could be utilized as the coenzyme, when a foreign MH4 recycling mechanism was introduced. Whole-cell bioconversion allowed the high-level production of 5-HTP (1.1-1.2 g/L) from tryptophan in shake flasks. On this basis, metabolic engineering efforts were further made to achieve the de novo 5-HTP biosynthesis from glucose. This work not only holds great scale-up potential but also demonstrates a strategy for expanding the native metabolism of microorganisms.

  9. Protein synthesis in chloroplasts. Characteristics and products of protein synthesis in vitro in etioplasts and developing chloroplasts from pea leaves.

    PubMed Central

    Siddell, S G; Ellis, R J

    1975-01-01

    The function of plastid ribosomes in pea (Pisum sativum L.) was investigated by characterizing the products of protein synthesis in vitro in plastids isolated at different stages during the transition from etioplast to chloroplast. Etioplasts and plastids isolated after 24, 48 and 96h of greening in continuous white light, use added ATP to incorporate labelled amino acids into protein. Plastids isolated from greening leaves can also use light as the source of energy for protein synthesis. The labelled polypeptides synthesized in isolated plastids were analysed by electrophoresis in sodium dodecyl sulphate-ureapolyacrylamide gels. Six polypeptides are synthesized in etioplasts with ATP as energy source. Only one of these polypeptides is present in a 150 000g supernatant fraction. This polypeptide has been identified as the large subunit of Fraction I protein (3-phospho-D-glycerate carboxylyase EC 4.1.1.39) by comparing the tryptic 'map' of its L-(35S)methionine-labelled peptides with the tryptic 'map' of large subunit peptides from Fraction I labelled with L-(35S)methionine in vivo. The same gel pattern of six polypeptides is seen when plastids isolated from greening leaves are incubated with either added ATP or light as the energy source. However, the rates of synthesis of particular polypeptides are different in plastids isolated at different stages of the etioplast to chloroplast transition. The results support the idea that plastid ribosomes synthesize only a small number of proteins, and that the number and molecular weight of these proteins does not alter during the formation of chloroplasts from etioplasts. Images PLATE 1 PMID:1147911

  10. Protein synthesis and the recovery of both survival and cytoplasmic "petite" mutation in ultraviolet-treated yeast cells. I. Nuclear-directed protein synthesis.

    PubMed

    Heude, M; Chanet, R; Moustacchi, E

    1975-04-01

    The contribution of nuclear-directed protein synthesis in the repair of lethal and mitochondrial genetic damage after UV-irradiation of exponential and stationary phage haploid yeast cells was examined. This was carried out using cycloheximide (CH), a specific inhibitor of nuclear protein synthesis. It appears that nuclear protein synthesis is required for the increase in survival seen after the liquid holding of cells at both stages, as well as for the "petite" recovery seen after the liquid holding of exponential phase cells. The characteristic negative liquid holding effect observed for the UV induction of "petites" in stationary phase cells (increase of the frequency of "petites" during storage) remained following all the treatments which inhibited nuclear protein synthesis. However, the application of photoreactivating light following dark holding with cycloheximide indicates that some steps of the repair of both nuclear and mitochondrial damage are performed in the absence of a synthesis of proteins.

  11. Sexually dimorphic effect of aging on skeletal muscle protein synthesis

    PubMed Central

    2012-01-01

    Background Although there appear to be no differences in muscle protein turnover in young and middle aged men and women, we have reported significant differences in the rate of muscle protein synthesis between older adult men and women. This suggests that aging may affect muscle protein turnover differently in men and women. Methods We measured the skeletal muscle protein fractional synthesis rate (FSR) by using stable isotope-labeled tracer methods during basal postabsorptive conditions and during a hyperaminoacidemic-hyperinsulinemic-euglycemic clamp in eight young men (25–45 y), ten young women (25–45 y), ten old men (65–85 y) and ten old women (65–85 y). Results The basal muscle protein FSR was not different in young and old men (0.040 ± 0.004 and 0.043 ± 0.005%·h-1, respectively) and combined insulin, glucose and amino acid infusion significantly increased the muscle protein FSR both in young (to 0.063 ± 0.006%·h-1) and old (to 0.051 ± 0.008%·h-1) men but the increase (0.023 ± 0.004 vs. 0.009 ± 0.004%·h-1, respectively) was ~60% less in the old men (P = 0.03). In contrast, the basal muscle protein FSR was ~30% greater in old than young women (0.060 ± 0.003 vs. 0.046 ± 0.004%·h-1, respectively; P < 0.05) and combined insulin, glucose and amino acid infusion significantly increased the muscle protein FSR in young (P < 0.01) but not in old women (P = 0.10) so that the FSR was not different between young and old women during the clamp (0.074 ± 0.006%·h-1 vs. 0.072 ± 0.006%·h-1, respectively). Conclusions There is sexual dimorphism in the age-related changes in muscle protein synthesis and thus the metabolic processes responsible for the age-related decline in muscle mass. PMID:22620287

  12. Protein synthesis in vitro by Micrococcus luteus.

    PubMed Central

    Farwell, M A; Rabinowitz, J C

    1991-01-01

    Bacillus subtilis and related gram-positive bacteria which have low to moderate genomic G + C contents are unable to efficiently translate mRNA derived from gram-negative bacteria, whereas Escherichia coli and other gram-negative bacteria are able to translate mRNA from both types of organisms. This phenomenon has been termed translational species specificity. Ribosomes from the low-G + C-content group (low-G + C group) of gram-positive organisms (B. subtilis and relatives) lack an equivalent to Escherichia ribosomal protein S1. The requirement for S1 for translation in E. coli (G. van Dieijen, P. H. van Knippenberg, J. van Duin, B. Koekman, and P. H. Pouwels, Mol. Gen. Genet. 153:75-80, 1977) and its specific role (A.R. Subramanian, Trends Biochem. Sci. 9:491-494, 1984) have been proposed. The group of gram-positive bacteria characterized by high genomic G + C content (formerly Actinomyces species and relatives) contain S1, in contrast to the low-G + C group (K. Mikulik, J. Smardova, A. Jiranova, and P. Branny, Eur. J. Biochem. 155:557-563, 1986). It is not known whether members of the high-G + C group are translationally specific, although there is evidence that one genus, Streptomyces, can express Escherichia genes in vivo (M. J. Bibb and S. N. Cohen, Mol. Gen. Genet. 187:265-277, 1985; J. L. Schottel, M. J. Bibb, and S. N. Cohen, J. Bacteriol. 146:360-368, 1981). In order to determine whether the organisms of this group are translationally specific, we examined the in vitro translational characteristics of a member of the high-G + C group, Micrococcus luteus, whose genomic G + C content is 73%. A semipurified coupled transcription-translation system of M. luteus translates Escherichia mRNA as well as Bacillus and Micrococcus mRNA. Therefore, M. luteus is translationally nonspecific and resembles E. coli rather than B. subtilis in its translational characteristics. Images PMID:2045372

  13. Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis.

    PubMed

    Liu, Han-Hsuan; Cline, Hollis T

    2016-07-06

    Fragile X mental retardation protein (FMRP) is thought to regulate neuronal plasticity by limiting dendritic protein synthesis, but direct demonstration of a requirement for FMRP control of local protein synthesis during behavioral plasticity is lacking. Here we tested whether FMRP knockdown in Xenopus optic tectum affects local protein synthesis in vivo and whether FMRP knockdown affects protein synthesis-dependent visual avoidance behavioral plasticity. We tagged newly synthesized proteins by incorporation of the noncanonical amino acid azidohomoalanine and visualized them with fluorescent noncanonical amino acid tagging (FUNCAT). Visual conditioning and FMRP knockdown produce similar increases in FUNCAT in tectal neuropil. Induction of visual conditioning-dependent behavioral plasticity occurs normally in FMRP knockdown animals, but plasticity degrades over 24 h. These results indicate that FMRP affects visual conditioning-induced local protein synthesis and is required to maintain the visual conditioning-induced behavioral plasticity. Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Exaggerated dendritic protein synthesis resulting from loss of fragile X mental retardation protein (FMRP) is thought to underlie cognitive deficits in FXS, but no direct evidence has demonstrated that FMRP-regulated dendritic protein synthesis affects behavioral plasticity in intact animals. Xenopus tadpoles exhibit a visual avoidance behavior that improves with visual conditioning in a protein synthesis-dependent manner. We showed that FMRP knockdown and visual conditioning dramatically increase protein synthesis in neuronal processes. Furthermore, induction of visual conditioning-dependent behavioral plasticity occurs normally after FMRP knockdown, but performance rapidly deteriorated in the absence of FMRP. These studies show that FMRP negatively regulates local protein synthesis and is required to maintain visual conditioning

  14. Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis

    PubMed Central

    Liu, Han-Hsuan

    2016-01-01

    Fragile X mental retardation protein (FMRP) is thought to regulate neuronal plasticity by limiting dendritic protein synthesis, but direct demonstration of a requirement for FMRP control of local protein synthesis during behavioral plasticity is lacking. Here we tested whether FMRP knockdown in Xenopus optic tectum affects local protein synthesis in vivo and whether FMRP knockdown affects protein synthesis-dependent visual avoidance behavioral plasticity. We tagged newly synthesized proteins by incorporation of the noncanonical amino acid azidohomoalanine and visualized them with fluorescent noncanonical amino acid tagging (FUNCAT). Visual conditioning and FMRP knockdown produce similar increases in FUNCAT in tectal neuropil. Induction of visual conditioning-dependent behavioral plasticity occurs normally in FMRP knockdown animals, but plasticity degrades over 24 h. These results indicate that FMRP affects visual conditioning-induced local protein synthesis and is required to maintain the visual conditioning-induced behavioral plasticity. SIGNIFICANCE STATEMENT Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Exaggerated dendritic protein synthesis resulting from loss of fragile X mental retardation protein (FMRP) is thought to underlie cognitive deficits in FXS, but no direct evidence has demonstrated that FMRP-regulated dendritic protein synthesis affects behavioral plasticity in intact animals. Xenopus tadpoles exhibit a visual avoidance behavior that improves with visual conditioning in a protein synthesis-dependent manner. We showed that FMRP knockdown and visual conditioning dramatically increase protein synthesis in neuronal processes. Furthermore, induction of visual conditioning-dependent behavioral plasticity occurs normally after FMRP knockdown, but performance rapidly deteriorated in the absence of FMRP. These studies show that FMRP negatively regulates local protein synthesis and is required to maintain visual

  15. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation

    PubMed Central

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-01-01

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders. PMID:26984393

  16. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation.

    PubMed

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-03-17

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders.

  17. Diverse and divergent protein post-translational modifications in two growth stages of a natural microbial community

    SciTech Connect

    Li, Zhou; Wang, Yingfeng; Yao, Qiuming; Justice, Nicholas B.; Ahn, Tae-Hyuk; Xu, Dong; Hettich, Robert {Bob} L; Banfield, Jillian F.; Pan, Chongle

    2014-01-01

    Detailed characterization of posttranslational modifications (PTMs) of proteins in microbial communities remains a significant challenge. Here we directly identify and quantify a broad range of PTMs (hydroxylation, methylation, citrullination, acetylation, phosphorylation, methylthiolation, S-nitrosylation and nitration) in a natural microbial community from an acid mine drainage site. Approximately 29% of the identified proteins of the dominant Leptospirillum group II bacteria are modified, and 43% of modified proteins carry multiple PTM types. Most PTM events, except S-nitrosylations, have low fractional occupancy. Notably, PTM events are detected on Cas proteins involved in antiviral defense, an aspect of Cas biochemistry not considered previously. Further, Cas PTM profiles from Leptospirillum group II differ in early versus mature biofilms. PTM patterns are divergent on orthologues of two closely related, but ecologically differentiated, Leptospirillum group II bacteria. Our results highlight the prevalence and dynamics of PTMs of proteins, with potential significance for ecological adaptation and microbial evolution.

  18. Diverse and divergent protein post-translational modifications in two growth stages of a natural microbial community.

    PubMed

    Li, Zhou; Wang, Yingfeng; Yao, Qiuming; Justice, Nicholas B; Ahn, Tae-Hyuk; Xu, Dong; Hettich, Robert L; Banfield, Jillian F; Pan, Chongle

    2014-07-25

    Detailed characterization of post-translational modifications (PTMs) of proteins in microbial communities remains a significant challenge. Here we directly identify and quantify a broad range of PTMs (hydroxylation, methylation, citrullination, acetylation, phosphorylation, methylthiolation, S-nitrosylation and nitration) in a natural microbial community from an acid mine drainage site. Approximately 29% of the identified proteins of the dominant Leptospirillum group II bacteria are modified, and 43% of modified proteins carry multiple PTM types. Most PTM events, except S-nitrosylations, have low fractional occupancy. Notably, PTM events are detected on Cas proteins involved in antiviral defense, an aspect of Cas biochemistry not considered previously. Further, Cas PTM profiles from Leptospirillum group II differ in early versus mature biofilms. PTM patterns are divergent on orthologues of two closely related, but ecologically differentiated, Leptospirillum group II bacteria. Our results highlight the prevalence and dynamics of PTMs of proteins, with potential significance for ecological adaptation and microbial evolution.

  19. Diverse and divergent protein post-translational modifications in two growth stages of a natural microbial community

    PubMed Central

    Li, Zhou; Wang, Yingfeng; Yao, Qiuming; Justice, Nicholas B.; Ahn, Tae-Hyuk; Xu, Dong; Hettich, Robert L.; Banfield, Jillian F.; Pan, Chongle

    2014-01-01

    Detailed characterization of post-translational modifications (PTMs) of proteins in microbial communities remains a significant challenge. Here we directly identify and quantify a broad range of PTMs (hydroxylation, methylation, citrullination, acetylation, phosphorylation, methylthiolation, S-nitrosylation and nitration) in a natural microbial community from an acid mine drainage site. Approximately 29% of the identified proteins of the dominant Leptospirillum group II bacteria are modified, and 43% of modified proteins carry multiple PTM types. Most PTM events, except S-nitrosylations, have low fractional occupancy. Notably, PTM events are detected on Cas proteins involved in antiviral defense, an aspect of Cas biochemistry not considered previously. Further, Cas PTM profiles from Leptospirillum group II differ in early versus mature biofilms. PTM patterns are divergent on orthologues of two closely related, but ecologically differentiated, Leptospirillum group II bacteria. Our results highlight the prevalence and dynamics of PTMs of proteins, with potential significance for ecological adaptation and microbial evolution. PMID:25059763

  20. Synthesis and secretion of proteins by released malarial parasites.

    PubMed

    Elmendorf, H G; Bangs, J D; Haldar, K

    1992-06-01

    Controlled mechanical homogenization of Plasmodium falciparum-infected erythrocytes releases parasites of a quality sufficient for studying the export of newly synthesized plasmodial proteins. Protein synthesis occurs within intact released parasites as defined by resistance of acid-insoluble incorporation of radiolabel to high levels of exogenously added EDTA, hexokinase, and RNaseA. While exogenously added ATP and erythrocyte cytosol were not essential for biosynthetic activity at levels comparable to that seen in infected erythrocytes, the addition of an extracellular ATP regenerating system (ARS) stimulated the synthesis of parasite proteins. Conversely, parasite viability and biosynthetic activity are decreased by the addition of a non-hydrolyzable ATP analogue (ATP gamma S), ADP, or ATP in the absence of a regenerating system. These data suggest a metabolic interdependence between extracellular energy metabolism and biosynthetic functions within the parasite. The export of a predominant subset of proteins was retarded in the presence of Brefeldin A, indicating the existence of a classical secretory pathway characteristic of that seen in higher eukaryotic cells. Interestingly, a Brefeldin A-insensitive component of export was also consistently observed; this may suggest the existence of an additional alternative secretory mechanism in malaria.

  1. The relative importance of muscle protein synthesis and breakdown in the regulation of muscle mass.

    PubMed Central

    Millward, D J; Garlick, P J; Nnanyelugo, D O; Waterlow, J C

    1976-01-01

    The effects of growth-suppressing and muscle-wasting treatments on muscle protein turnover and amino acid concentrations were determined in vivo. All treatments depressed protein synthesis and some treatments depressed protein breakdown. Only prolonged starvation increased protein breakdown. Muscle protein mass is regulated primarily through alterations in protein synthesis in all except emergency conditions. The increased concentrations of the branched-chain amino acids indicate that they are unlikely to be involved in this regulation. PMID:133677

  2. Polyhydroxyalkanoate synthesis by mixed microbial consortia cultured on fermented dairy manure: Effect of aeration on process rates/yields and the associated microbial ecology.

    PubMed

    Coats, Erik R; Watson, Benjamin S; Brinkman, Cynthia K

    2016-12-01

    Polyhydroxyalkanoates (PHAs) are biodegradable polymers that can substitute for petroleum-based plastics in a variety of applications. One avenue to commercial PHA production involves coupling waste-based synthesis with the use of mixed microbial consortia (MMC). In this regard, production requires maximizing the enrichment of a MMC capable of feast-famine PHA synthesis, with the metabolic response induced through imposition of aerobic-dynamic feeding (ADF) conditions. However, the concept of PHA production in complex matrices remains unrefined; process operational improvements are needed, along with an enhanced understanding of the MMC. Research presented herein investigated the effect of aeration on feast-famine PHA synthesis, with four independent aeration state systems studied; MMC were fed volatile fatty acid (VFA)-rich fermented dairy manure. Regardless of the aeration state, all MMC exhibited a feast-famine response based on observed carbon cycling. Moreover, there was no statistical difference in PHA synthesis rates, with qPHA ranging from 0.10 to 0.19 CmmolPHA gVSS(-1) min(-1); VFA uptake rates exhibited similar statistical indifferences. PHA production assessments on the enriched MMC resulted in maximum intracellular concentrations ranging from 22.5 to 90.7% (mgPHA mgVSS(-1)); at maximum concentration, the mean hydroxyvalerate mol content was 73 ± 0.6%. While a typical feast-famine dissolved oxygen (DO) pattern was observed at maximum aeration, less resolution was observed at decreasing aeration rates, suggesting that DO may not be an optimal process monitoring parameter. At lower aeration states, nitrogen cycling patterns, supported by molecular investigations targeting AOBs and NOBs, indicate that NO2 and NO3 sustained feast-famine PHA synthesis. Next-generation sequencing analysis of the respective MMC revealed numerous and diverse genera exhibiting the potential to achieve PHA synthesis, suggesting functional redundancy embedded in the diverse MMC

  3. Lil3 Assembles with Proteins Regulating Chlorophyll Synthesis in Barley.

    PubMed

    Mork-Jansson, Astrid; Bue, Ann Kristin; Gargano, Daniela; Furnes, Clemens; Reisinger, Veronika; Arnold, Janine; Kmiec, Karol; Eichacker, Lutz Andreas

    2015-01-01

    The light-harvesting-like (LIL) proteins are a family of membrane proteins that share a chlorophyll a/b-binding motif with the major light-harvesting antenna proteins of oxygenic photoautotrophs. LIL proteins have been associated with the regulation of tetrapyrrol biosynthesis, and plant responses to light-stress. Here, it was found in a native PAGE approach that chlorophyllide, and chlorophyllide plus geranylgeraniolpyrophosphate trigger assembly of Lil3 in three chlorine binding fluorescent protein bands, termed F1, F2, and F3. It is shown that light and chlorophyllide trigger accumulation of protochlorophyllide-oxidoreductase, and chlorophyll synthase in band F3. Chlorophyllide and chlorophyll esterified to geranylgeraniol were identified as basis of fluorescence recorded from band F3. A direct interaction between Lil3, CHS and POR was confirmed in a split ubiquitin assay. In the presence of light or chlorophyllide, geranylgeraniolpyrophosphate was shown to trigger a loss of the F3 band and accumulation of Lil3 and geranylgeranyl reductase in F1 and F2. No direct interaction between Lil3 and geranylgeraniolreductase was identified in a split ubiquitin assay; however, accumulation of chlorophyll esterified to phytol in F1 and F2 corroborated the enzymes assembly. Chlorophyll esterified to phytol and the reaction center protein psbD of photosystem II were identified to accumulate together with psb29, and APX in the fluorescent band F2. Data show that Lil3 assembles with proteins regulating chlorophyll synthesis in etioplasts from barley (Hordeum vulgare L.).

  4. Lil3 Assembles with Proteins Regulating Chlorophyll Synthesis in Barley

    PubMed Central

    Gargano, Daniela; Furnes, Clemens; Reisinger, Veronika; Arnold, Janine; Kmiec, Karol; Eichacker, Lutz Andreas

    2015-01-01

    The light-harvesting-like (LIL) proteins are a family of membrane proteins that share a chlorophyll a/b-binding motif with the major light-harvesting antenna proteins of oxygenic photoautotrophs. LIL proteins have been associated with the regulation of tetrapyrrol biosynthesis, and plant responses to light-stress. Here, it was found in a native PAGE approach that chlorophyllide, and chlorophyllide plus geranylgeraniolpyrophosphate trigger assembly of Lil3 in three chlorine binding fluorescent protein bands, termed F1, F2, and F3. It is shown that light and chlorophyllide trigger accumulation of protochlorophyllide-oxidoreductase, and chlorophyll synthase in band F3. Chlorophyllide and chlorophyll esterified to geranylgeraniol were identified as basis of fluorescence recorded from band F3. A direct interaction between Lil3, CHS and POR was confirmed in a split ubiquitin assay. In the presence of light or chlorophyllide, geranylgeraniolpyrophosphate was shown to trigger a loss of the F3 band and accumulation of Lil3 and geranylgeranyl reductase in F1 and F2. No direct interaction between Lil3 and geranylgeraniolreductase was identified in a split ubiquitin assay; however, accumulation of chlorophyll esterified to phytol in F1 and F2 corroborated the enzymes assembly. Chlorophyll esterified to phytol and the reaction center protein psbD of photosystem II were identified to accumulate together with psb29, and APX in the fluorescent band F2. Data show that Lil3 assembles with proteins regulating chlorophyll synthesis in etioplasts from barley (Hordeum vulgare L.). PMID:26172838

  5. Synthesis and performance of 3D-megaporous structures for enzyme immobilization and protein capture.

    PubMed

    Bibi, Noor Shad; Gavara, Poondi Rajesh; Soto Espinosa, Silvia L; Grasselli, Mariano; Fernández-Lahore, Marcelo

    2011-01-01

    The preparation of megaporous bodies, with potential applications in biotechnology, was attempted by following several strategies. As a first step, naive and robust scaffolds were produced by polymerization of selected monomers in the presence of a highly soluble cross-linker agent. Ion-exchange function was incorporated by particle embedding, direct chemical synthesis, or radiation-induced grafting. The total ionic capacity of such systems was 1.5 mmol H(+)/g, 1.4 mmol H(+)/g, and 17 mmol H(+)/g, respectively. These values were in agreement with the ability to bind model proteins: observed dynamic binding capacity at 50% breakthrough was ≅7.2 mg bovine serum albumin/g, ≅7.4 hen egg-white lysozyme (HEWL) mg/g, and ≅108 HEWL mg/g. In the later case, total (static) binding capacity reached 220 mg/g. It was observed that the structure and size of the megapores remained unaffected by the grafting procedure which, however, allowed for the highest protein binding capacity. Lysozyme supported on grafted body showed extensive clarification activity against a Micrococcus lysodekticus suspension in the flow-through mode, i.e., 90% destruction of suspended microbial cells was obtained with a residence time ≈ 18 min. Both protein capture and biocatalysis applications are conceivable with the 3D-megaporous materials described in this work.

  6. Alphavirus RNA synthesis and non-structural protein functions.

    PubMed

    Rupp, Jonathan C; Sokoloski, Kevin J; Gebhart, Natasha N; Hardy, Richard W

    2015-09-01

    The members of the genus Alphavirus are positive-sense RNA viruses, which are predominantly transmitted to vertebrates by a mosquito vector. Alphavirus disease in humans can be severely debilitating, and depending on the particular viral species, infection may result in encephalitis and possibly death. In recent years, alphaviruses have received significant attention from public health authorities as a consequence of the dramatic emergence of chikungunya virus in the Indian Ocean islands and the Caribbean. Currently, no safe, approved or effective vaccine or antiviral intervention exists for human alphavirus infection. The molecular biology of alphavirus RNA synthesis has been well studied in a few species of the genus and represents a general target for antiviral drug development. This review describes what is currently understood about the regulation of alphavirus RNA synthesis, the roles of the viral non-structural proteins in this process and the functions of cis-acting RNA elements in replication, and points to open questions within the field.

  7. Protein-synthesis-dependent induction of annexin I by glucocorticoid.

    PubMed Central

    Wong, W T; Frost, S C; Nick, H S

    1991-01-01

    We demonstrate that annexin I/lipocortin I (lipo I) gene expression is regulated by dexamethasone (DEX) in mouse 3T3-L1 fibroblasts and LA-4 lung epithelial cells. We have characterized this induction further in 3T3-L1 fibroblasts. At 24 h after addition of DEX, the levels of lipo I mRNA and protein increased 5-fold and 1.5-fold respectively. Time-course experiments revealed that the induction was delayed by 2-4 h after DEX addition. Half-maximal induction of both lipo I mRNA and protein was achieved with 10 nM-DEX. Both actinomycin D and cycloheximide blocked the DEX effect on lipo I mRNA expression. These results indicate that the induction of lipo I by DEX has a transcriptional component and requires protein synthesis de novo. Images Fig. 1. Fig. 2. Fig. 4. Fig. 6. Fig. 7. Fig. 8. PMID:1827255

  8. Monocyte cytokine synthesis in response to extracellular cell stress proteins suggests these proteins exhibit network behaviour.

    PubMed

    Kaiser, Frank; Steptoe, Andrew; Thompson, Stephen; Henderson, Brian

    2014-01-01

    Human peripheral blood monocytes were exposed to single or pairs of cell stress proteins (CSPs), specifically Hsp10, Hsp27, Hsp60 and Hsp70-the former two having anti-inflammatory actions while the latter pair being assumed to be pro-inflammatory in activity. This study was to test if these proteins exhibited any network behaviour. To control for possible lipopolysaccharide contamination, polymyxin B was used. Surprisingly, at concentrations higher than 1 μg/ml, polymyxin B itself could induce cytokine synthesis. A number of commercial sources of the molecular chaperones were tested, and marked variations in monocyte cytokine synthesis were found. All four CSPs stimulated the same profile of IL-1/IL-6 synthesis and IL-10/TNF-α synthesis although the kinetics of production of these two pairs of cytokines were very different. A key question was whether extracellular molecular chaperones exhibited network behaviour. To test this, monocytes were cultured with suboptimal concentrations of single CSP and pairs of CSP to look for additive, synergistic or antagonistic cell responses. The major finding was that pairs of molecular chaperones, including chaperones thought to stimulate monocyte cytokine synthesis, could produce significant antagonistic cellular responses. This demonstrates that extracellular CSPs constitute an additional potent layer within the complex cytokine network and furthermore suggests that monocytes have evolved to dampen their immune responses upon exposure to extracellular networks of CSPs-perhaps as a mechanism for protecting cells against detrimental cellular stress responses.

  9. Amino acid metabolism and protein synthesis in malarial parasites*

    PubMed Central

    Sherman, I. W.

    1977-01-01

    Malaria-infected red cells and free parasites have limited capabilities for the biosynthesis of amino acids. Therefore, the principal amino acid sources for parasite protein synthesis are the plasma free amino acids and host cell haemoglobin. Infected cells and plasmodia incorporate exogenously supplied amino acids into protein. However, the hypothesis that amino acid utilization (from an external source) is related to availability of that amino acid in haemoglobin is without universal support: it is true for isoleucine and for Plasmodium knowlesi and P. falciparum, but not for methionine, cysteine, and other amino acids, and it does not apply to P. lophurae. More by default than by direct evidence, haemoglobin is believed to be the main amino acid reservoir available to the intraerythrocytic plasmodium. Haemoglobin, ingested via the cytostome, is held in food vacuoles where auto-oxidation takes place. As a consequence, haem is released and accumulates in the vacuole as particulate haemozoin (= malaria pigment). Current evidence favours the view that haemozoin is mainly haematin. Acid and alkaline proteases (identified in crude extracts from mammalian and avian malarias) are presumably secreted directly into the food vacuole. They then digest the denatured globin and the resulting amino acids are incorporated into parasite protein. Cell-free protein synthesizing systems have been developed using P. knowlesi and P. lophurae ribosomes. In the main these systems are typically eukaryotic. Studies of amino acid metabolism are exceedingly limited. Arginine, lysine, methionine, and proline are incorporated into protein, whereas glutamic acid is metabolized via an NADP-specific glutamic dehydrogenase. Glutamate oxidation generates NADPH and auxiliary energy (in the form of α-ketoglutarate). The role of red cell glutathione in the economy of the parasite remains obscure. Important goals for future research should be: quantitative assessment of the relative importance of

  10. Protein synthesis in tomato-fruit locule tissue

    PubMed Central

    Davies, J. W.; Cocking, E. C.

    1967-01-01

    1. Osmotically disrupted protoplasts and isolated plastids from tomato-fruit locule tissue were found capable of incorporating 14C-labelled amino acids under aseptic conditions into an exhaustively washed trichloroacetic acid-insoluble protein fraction. 2. The disrupted protoplast system incorporated 20–45μμmoles of amino acid/mg. of protein in 10min. The isolated plastid system incorporated 10–20μμmoles of amino acid/mg. of protein; 40–150μμg. of carbon/mg. of protein was incorporated in 10min. from 14C-labelled amino acid mixture. 3. Incorporation is stimulated by added ATP in the dark, but no added ATP is required when the system is illuminated. The cell-free plastid system is to some extent self-sufficient and does not normally require an added supernatant fraction or unlabelled amino acids. 4. Amino acid incorporation by plastids is inhibited by chloramphenicol, puromycin, actinomycin D, ribonuclease and deoxyribonuclease. It is suggested that the mechanism of protein synthesis in the cell-free plastids, and in the tissue generally, is basically the same as established for bacteria. Ribosomes and highspeed supernatant from this tissue were to some extent interchangeable with Escherichia coli ribosomes and supernatant in cell-free incubations. 5. Incorporation of amino acids by isolated plastids was stimulated by indol-3-ylacetic acid and kinetin, and, whereas incorporation normally proceeds for only 10–20min., the time-course was extended in the presence of these growth substances. It is suggested that hormones may be involved in the regulation of protein synthesis in plants. PMID:5340735

  11. Studies with Hydroxyurea VII. Hydroxyurea and the Synthesis of Functional Proteins

    PubMed Central

    Rosenkranz, Herbert S.; Winshell, Elaine B.; Mednis, Aiga; Carr, Howard S.; Ellner, Cornelia J.

    1967-01-01

    Hydroxyurea affected neither the synthesis nor the degradation of bacterial messenger-ribonucleic acid. The proteins made by hydroxyurea-treated cells were structurally intact and fully functional. Since the expression of the lethal action of hydroxyurea requires active protein production, the data indicate that treated cells do not die as the result of the synthesis of abnormal proteins. Images PMID:4963772

  12. Effect of a protein synthetic inhibitor on in vivo estimates of protein synthesis in dogs

    SciTech Connect

    Schwenk, W.F.; Rubanyi, E.; Haymond, M.W.

    1987-05-01

    In vivo estimates of nonoxidative leucine disappearance have frequently been used as estimates of leucine incorporation into protein. To attempt to assess this extrapolation to protein synthesis, seven overnight fasted dogs received primed 4-h infusions of emetine, an alkaloid known to inhibit protein synthesis at the translational level. Protein metabolism was studied using infusions of (1-/sup 14/C)leucine and ..cap alpha..-(4,5-/sup 3/H)ketoisocaproate (KIC) and the steady-state specific activities of the leucine moiety (e.g., (/sup 14/C)KIC and (/sup 3/H)leucine) reciprocal to the infused isotopes as estimates of intracellular leucine specific activities. Plasma leucine and KIC concentrations increased, as did leucine oxidation. Estimates of nonoxidative leucine disappearance decreased by approx. 70%, and estimates of the endogenous leucine rate of appearance decreased by approx. 40% using either the /sup 14/C or /sup 3/H data. They conclude that, although in vivo estimates of leucine metabolism are not quantitative, rapid changes in whole-body estimates of protein synthesis can be predicted during infusion of labeled leucine.

  13. A Simple Protein Synthesis Model for the PURE System Operation.

    PubMed

    Mavelli, Fabio; Marangoni, Roberto; Stano, Pasquale

    2015-06-01

    The encapsulation of transcription-translation (TX-TL) cell-free machinery inside lipid vesicles (liposomes) is a key element in synthetic cell technology. The PURE system is a TX-TL kit composed of well-characterized parts, whose concentrations are fine tunable, which works according to a modular architecture. For these reasons, the PURE system perfectly fulfils the requirements of synthetic biology and is widely used for constructing synthetic cells. In this work, we present a simplified mathematical model to simulate the PURE system operations. Based on Michaelis-Menten kinetics and differential equations, the model describes protein synthesis dynamics by using 9 chemical species, 6 reactions and 16 kinetic parameters. The model correctly predicts the time course for messenger RNA and protein production and allows quantitative predictions. By means of this model, it is possible to foresee how the PURE system species affect the mechanism of proteins synthesis and therefore help in understanding scenarios where the concentration of the PURE system components has been modified purposely or as a result of stochastic fluctuations (for example after random encapsulation inside vesicles). The model also makes the determination of response coefficients for all species involved in the TX-TL mechanism possible and allows for scrutiny on how chemical energy is consumed by the three PURE system modules (transcription, translation and aminoacylation).

  14. Ribosome recycling: An essential process of protein synthesis.

    PubMed

    Kiel, Michael C; Kaji, Hideko; Kaji, Akira

    2007-01-01

    A preponderance of textbooks outlines cellular protein synthesis (translation) in three basic steps: initiation, elongation, and termination. However, researchers in the field of translation accept that a vital fourth step exists; this fourth step is called ribosome recycling. Ribosome recycling occurs after the nascent polypeptide has been released during the termination step. Despite the release of the polypeptide, ribosomes remain bound to the mRNA and tRNA. It is only during the fourth step of translation that ribosomes are ultimately released from the mRNA, split into subunits, and are free to bind new mRNA, thus the term "ribosome recycling." This step is essential to the viability of cells. In bacteria, it is catalyzed by two proteins, elongation factor G and ribosome recycling factor, a near perfect structural mimic of tRNA. Eukaryotic organelles such as mitochondria and chloroplasts possess ribosome recycling factor and elongation factor G homologues, but the nature of ribosome recycling in eukaryotic cytoplasm is still under investigation. In this review, the discovery of ribosome recycling and the basic mechanisms involved are discussed so that textbook writers and teachers can include this vital step, which is just as important as the three conventional steps, in sections dealing with protein synthesis.

  15. Quantitative aspects of protein fractional synthesis rates in ruminants.

    PubMed

    Lescoat, P; Sauvant, D; Danfaer, A

    1997-01-01

    Protein fractional synthesis rate (FSR) is a key-factor in the characterisation of ruminant metabolism. Published data from the literature were collected and statistically analysed to isolate the factors influencing FSR. FSR varied largely depending on the tissue considered, over a range from 1 to 20. FSR, with the plasma as the precursor pool for protein synthesis, was halved compared to that of the intracellular pool. The method for supplying the amino acid also significantly affects FSR since the flooding dose technique gave higher FSR estimates than the constant infusion technique. The choice of the labelled amino acid infused influenced FSR. There is a ranking order depending on the tissue or organ. The protein and energy levels of the diets significantly increased FSR, which raises the question of the body nitrogen requirements. Moreover, FSR values were dependent on the physiological status of the animals. To conclude, FSR values should be determined simultaneously with other biological parameters in order to obtain a realistic quantitative estimate of the nitrogen turnover rates during intermediary metabolism.

  16. Creating a completely "cell-free" system for protein synthesis.

    PubMed

    Smith, Mark Thomas; Bennett, Anthony M; Hunt, Jeremy M; Bundy, Bradley C

    2015-01-01

    Cell-free protein synthesis is a promising tool to take biotechnology outside of the cell. A cell-free approach provides distinct advantages over in vivo systems including open access to the reaction environment and direct control over all chemical components for facile optimization and synthetic biology integration. Promising applications of cell-free systems include portable diagnostics, biotherapeutics expression, rational protein engineering, and biocatalyst production. The highest yielding and most economical cell-free systems use an extract composed of the soluble component of lysed Escherichia coli. Although E. coli lysis can be highly efficient (>99.999%), one persistent challenge is that the extract remains contaminated with up to millions of cells per mL. In this work, we examine the potential of multiple decontamination strategies to further reduce or eliminate bacteria in cell-free systems. Two strategies, sterile filtration and lyophilization, effectively eliminate contaminating cells while maintaining the systems' protein synthesis capabilities. Lyophilization provides the additional benefit of long-term stability at storage above freezing. Technologies for personalized, portable medicine and diagnostics can be expanded based on these foundational sterilized and completely "cell-free" systems. © 2015 American Institute of Chemical Engineers.

  17. Human FMO2-based microbial whole-cell catalysts for drug metabolite synthesis.

    PubMed

    Geier, Martina; Bachler, Thorsten; Hanlon, Steven P; Eggimann, Fabian K; Kittelmann, Matthias; Weber, Hansjörg; Lütz, Stephan; Wirz, Beat; Winkler, Margit

    2015-06-12

    Getting access to authentic human drug metabolites is an important issue during the drug discovery and development process. Employing recombinant microorganisms as whole-cell biocatalysts constitutes an elegant alternative to organic synthesis to produce these compounds. The present work aimed for the generation of an efficient whole-cell catalyst based on the flavin monooxygenase isoform 2 (FMO2), which is part of the human phase I metabolism. We show for the first time the functional expression of human FMO2 in E. coli. Truncations of the C-terminal membrane anchor region did not result in soluble FMO2 protein, but had a significant effect on levels of recombinant protein. The FMO2 biocatalysts were employed for substrate screening purposes, revealing trifluoperazine and propranolol as FMO2 substrates. Biomass cultivation on the 100 L scale afforded active catalyst for biotransformations on preparative scale. The whole-cell conversion of trifluoperazine resulted in perfectly selective oxidation to 48 mg (46% yield) of the corresponding N (1)-oxide with a purity >98%. The generated FMO2 whole-cell catalysts are not only useful as screening tool for human metabolites of drug molecules but more importantly also for their chemo- and regioselective preparation on the multi-milligram scale.

  18. Kluyveromyces marxianus as a host for heterologous protein synthesis.

    PubMed

    Gombert, Andreas K; Madeira, José Valdo; Cerdán, María-Esperanza; González-Siso, María-Isabel

    2016-07-01

    The preferentially respiring and thermotolerant yeast Kluyveromyces marxianus is an emerging host for heterologous protein synthesis, surpassing the traditional preferentially fermenting yeast Saccharomyces cerevisiae in some important aspects: K . marxianus can grow at temperatures 10 °C higher than S. cerevisiae, which may result in decreased costs for cooling bioreactors and reduced contamination risk; has ability to metabolize a wider variety of sugars, such as lactose and xylose; is the fastest growing eukaryote described so far; and does not require special cultivation techniques (such as fed-batch) to avoid fermentative metabolism. All these advantages exist together with a high secretory capacity, performance of eukaryotic post-translational modifications, and with a generally regarded as safe (GRAS) status. In the last years, replication origins from several Kluyveromyces spp. have been used for the construction of episomal vectors, and also integrative strategies have been developed based on the tendency for non-homologous recombination displayed by K. marxianus. The recessive URA3 auxotrophic marker and the dominant Kan(R) are mostly used for selection of transformed cells, but other markers have been made available. Homologous and heterologous promoters and secretion signals have been characterized, with the K. marxianus INU1 expression and secretion system being of remarkable functionality. The efficient synthesis of roughly 50 heterologous proteins has been demonstrated, including one thermophilic enzyme. In this mini-review, we summarize the physiological characteristics of K. marxianus relevant for its use in the efficient synthesis of heterologous proteins, the efforts performed hitherto in the development of a molecular toolbox for this purpose, and some successful examples.

  19. Microbial Physiology of the Conversion of Residual Oil to Methane: A Protein Prospective

    NASA Astrophysics Data System (ADS)

    Morris, Brandon E. L.; Bastida-Lopez, Felipe; von Bergen, Martin; Richnow, Hans-Hermann; Suflita, Joseph M.

    2010-05-01

    Traditional petroleum recovery techniques are unable to extract the majority of oil in most petroliferous deposits. The recovery of even a fraction of residual hydrocarbon in conventional reserves could represent a substantive energy supply. To this end, the microbial conversion of residual oil to methane has gained increasing relevance in recent years [1,2]. Worldwide demand for methane is expected to increase through 2030 [3], as it is a cleaner-burning alternative to traditional fuels [4]. To investigate the microbial physiology of hydrocarbon-decomposition and ultimate methanogenesis, we initiated a two-pronged approach. First, a model alkane-degrading sulfate-reducing bacterium, Desulfoglaeba alkanexedens, was used to interrogate the predominant metabolic pathway(s) differentially expressed during growth on either n-decane or butyrate. A total of 81 proteins were differentially expressed during bacterial growth on butyrate, while 100 proteins were unique to the alkane-grown condition. Proteins related to alkylsuccinate synthase, or the homologous 1-methyl alkylsuccinate synthase, were identified only in the presence of the hydrocarbon. Secondly, we used a newly developed stable isotope probing technique [5] targeted towards proteins to monitor the flux of carbon through a residual oil-degrading bacterial consortium enriched from a gas-condensate contaminated aquifer [1]. Combined carbon and hydrogen stable isotope fractionation identified acetoclastic methanogenesis as the dominant process in this system. Such findings agree with the previous clone library characterization of the consortium. Furthermore, hydrocarbon activation was determined to be the rate-limiting process during the net conversion of residual oil to methane. References 1. Gieg, L.M., K.E. Duncan, and J.M. Suflita, Bioenegy production via microbial conversion of residual oil to natural gas. Appl Environ Micro, 2008. 74(10): p. 3022-3029. 2. Jones, D.M., et al., Crude-oil biodegradation via

  20. Participation of endothelial cells in the protein C-protein S anticoagulant pathway: the synthesis and release of protein S

    PubMed Central

    1986-01-01

    The protein C-protein S anticoagulant pathway is closely linked to the endothelium. In this paper the synthesis and release of the vitamin K- dependent coagulation factor protein S is demonstrated. Western blotting, after SDS PAGE of Triton X-100 extracts of bovine aortic endothelial cells grown in serum-free medium, demonstrated the presence of protein S. A single major band was observed at Mr approximately 75,000, closely migrating with protein S purified from plasma absent from cells treated with cycloheximide. Metabolic labeling of endothelial cells with [35S]methionine confirmed de novo synthesis of protein S. Using a radioimmunoassay, endothelium was found to release 180 fmol/10(5) cells per 24 h and contain 44 fmol/10(5) cells of protein S antigen. Protein S released from endothelium was functionally active and could promote activated protein C-mediated factor Va inactivation on the endothelial cell surface. Warfarin decreased secretion of protein S antigen by greater than 90% and increased intracellular accumulation by almost twofold. Morphological studies demonstrated intracellular protein S was in the Golgi complex, concentrated at the trans face, rough endoplasmic reticulum, lysosomes, and in vesicles at the periphery. In contrast, protein S was not found in vascular fibroblasts or smooth muscle cells. A pool of intracellular protein S could be released rapidly by the calcium ionophore A23187 (5 microM). This effect was dependent on the presence of calcium in the culture medium and could be blocked by LaCl3, which suggests that cytosolic calcium flux may be responsible for protein S release. These results demonstrate that endothelial cells, but not the subendothelial cells of the vessel wall, can synthesize and release protein S, which indicates a new mechanism by which the inner lining of the vessel wall can contribute to the prevention of thrombotic events. PMID:2939094

  1. mTOR's role in ageing: protein synthesis or autophagy?

    PubMed

    Hands, Sarah L; Proud, Christopher G; Wyttenbach, Andreas

    2009-07-20

    The molecular and cellular mechanisms that regulate ageing are currently under scrutiny because ageing is linked to many human diseases. The nutrient sensing TOR pathway is emerging as a key regulator of ageing. TOR signaling is complex affecting several crucial cellular functions and two such functions, which show clear effects on ageing, are protein synthesis and autophagy. In this article we discuss the relative importance of both these processes in ageing, identify how TOR regulates translation and autophagy and speculate on links between the TOR signaling network and ageing pathways.

  2. Lewis lung carcinoma regulation of mechanical stretch-induced protein synthesis in cultured myotubes.

    PubMed

    Gao, Song; Carson, James A

    2016-01-01

    Mechanical stretch can activate muscle and myotube protein synthesis through mammalian target of rapamycin complex 1 (mTORC1) signaling. While it has been established that tumor-derived cachectic factors can induce myotube wasting, the effect of this catabolic environment on myotube mechanical signaling has not been determined. We investigated whether media containing cachectic factors derived from Lewis lung carcinoma (LLC) can regulate the stretch induction of myotube protein synthesis. C2C12 myotubes preincubated in control or LLC-derived media were chronically stretched. Protein synthesis regulation by anabolic and catabolic signaling was then examined. In the control condition, stretch increased mTORC1 activity and protein synthesis. The LLC treatment decreased basal mTORC1 activity and protein synthesis and attenuated the stretch induction of protein synthesis. LLC media increased STAT3 and AMP-activated protein kinase phosphorylation in myotubes, independent of stretch. Both stretch and LLC independently increased ERK1/2, p38, and NF-κB phosphorylation. In LLC-treated myotubes, the inhibition of ERK1/2 and p38 rescued the stretch induction of protein synthesis. Interestingly, either leukemia inhibitory factor or glycoprotein 130 antibody administration caused further inhibition of mTORC1 signaling and protein synthesis in stretched myotubes. AMP-activated protein kinase inhibition increased basal mTORC1 signaling activity and protein synthesis in LLC-treated myotubes, but did not restore the stretch induction of protein synthesis. These results demonstrate that LLC-derived cachectic factors can dissociate stretch-induced signaling from protein synthesis through ERK1/2 and p38 signaling, and that glycoprotein 130 signaling is associated with the basal stretch response in myotubes. Copyright © 2016 the American Physiological Society.

  3. In silico investigation of lactoferrin protein characterizations for the prediction of anti-microbial properties

    PubMed Central

    Sohrabi, Seyyed Mohsen; Niazi, Ali; Chahardoli, Mahmood; Hortamani, Ali; Setoodeh, Payam

    2014-01-01

    Lactoferrin (Lf) is an iron-binding multi-functional glycoprotein which has numerous physiological functions such as iron transportation, anti-microbial activity and immune response. In this study, different in silico approaches were exploited to investigate Lf protein properties in a number of mammalian species. Results showed that the iron-binding site, DNA and RNA-binding sites, signal peptides and transferrin motifs in the Lf structure were highly conserved. Examined sequences showed three conserved motifs which were repeated twice in the Lf structure, demonstrating ancient duplication events in its gene. Also, results suggest that the functional domains in mammalian Lf proteins are Zinc finger, Tubulin/FtsZ, GTPase, α/β hydrolase and Zinc knuckle. The potential site for nucleic acid binding and the major DNA and RNA- binding sites in this protein were found in the lactoferricin (Lfc) fragment. Due to its high positive charge, Lf is able to bind a large number of compounds. Our analysis also revealed that the interactions between Lf and ITLN1, LYZ, CSN2, and CD14 proteins played an important role in the protective activities of Lf. Analysis for the prediction of secondary structures indicated that high amounts of α-helix, β-strand and β-sheet were present in Lf. The high degree of conservation among mammalian Lf proteins indicates that there is a close relationship between these proteins, reflecting their important role. PMID:27843978

  4. Cost of protein synthesis and energy allocation during development of antarctic sea urchin embryos and larvae.

    PubMed

    Pace, Douglas A; Manahan, Donal T

    2007-04-01

    Cold environments represent a substantial volume of the biosphere. To study developmental physiology in subzero seawater temperatures typically found in the Southern Ocean, rates and costs of protein synthesis were measured in embryos and larvae of Sterechinus neumayeri, the Antarctic sea urchin. Our analysis of the "cost of living" in extreme cold for this species shows (1) that cost of protein synthesis is strikingly low during development, at 0.41 +/- 0.05 J (mg protein synthesized)(-1) (n = 16); (2) that synthesis cost is fixed and independent of synthesis rate; and (3) that a low synthesis cost permits high rates of protein turnover at -1 degrees C, at rates comparable to those of temperate species of sea urchin embryos developing at 15 degrees C. With a low synthesis cost, even at the highest synthesis rates measured (gastrulae), the proportion of total metabolism accounted for by protein synthesis in the Antarctic sea urchin was 54%-a value similar to that of temperate sea urchin embryos. In the Antarctic sea urchin, up to 87% of metabolic rate can be accounted for by the combined energy costs of protein synthesis and the sodium pump. We conclude that, in Antarctic sea urchin embryos, high rates of protein synthesis can be supported in extreme-cold environments while still maintaining low rates of respiration.

  5. Amyloid precursor protein (APP) affects global protein synthesis in dividing human cells.

    PubMed

    Sobol, Anna; Galluzzo, Paola; Liang, Shuang; Rambo, Brittany; Skucha, Sylvia; Weber, Megan J; Alani, Sara; Bocchetta, Maurizio

    2015-05-01

    Hypoxic non-small cell lung cancer (NSCLC) is dependent on Notch-1 signaling for survival. Targeting Notch-1 by means of γ-secretase inhibitors (GSI) proved effective in killing hypoxic NSCLC. Post-mortem analysis of GSI-treated, NSCLC-burdened mice suggested enhanced phosphorylation of 4E-BP1 at threonines 37/46 in hypoxic tumor tissues. In vitro dissection of this phenomenon revealed that Amyloid Precursor Protein (APP) inhibition was responsible for a non-canonical 4E-BP1 phosphorylation pattern rearrangement-a process, in part, mediated by APP regulation of the pseudophosphatase Styx. Upon APP depletion we observed modifications of eIF-4F composition indicating increased recruitment of eIF-4A to the mRNA cap. This phenomenon was supported by the observation that cells with depleted APP were partially resistant to silvestrol, an antibiotic that interferes with eIF-4A assembly into eIF-4F complexes. APP downregulation in dividing human cells increased the rate of global protein synthesis, both cap- and IRES-dependent. Such an increase seemed independent of mTOR inhibition. After administration of Torin-1, APP downregulation and Mechanistic Target of Rapamycin Complex 1 (mTORC-1) inhibition affected 4E-BP1 phosphorylation and global protein synthesis in opposite fashions. Additional investigations indicated that APP operates independently of mTORC-1. Key phenomena described in this study were reversed by overexpression of the APP C-terminal domain. The presented data suggest that APP may be a novel regulator of protein synthesis in dividing human cells, both cancerous and primary. Furthermore, APP appears to affect translation initiation using mechanisms seemingly dissimilar to mTORC-1 regulation of cap-dependent protein synthesis. © 2014 Wiley Periodicals, Inc.

  6. Amyloid Precursor Protein (APP) Affects Global Protein Synthesis in Dividing Human Cells

    PubMed Central

    Sobol, Anna; Galluzzo, Paola; Liang, Shuang; Rambo, Brittany; Skucha, Sylvia; Weber, Megan J.; Alani, Sara

    2015-01-01

    Hypoxic non‐small cell lung cancer (NSCLC) is dependent on Notch‐1 signaling for survival. Targeting Notch‐1 by means of γ‐secretase inhibitors (GSI) proved effective in killing hypoxic NSCLC. Post‐mortem analysis of GSI‐treated, NSCLC‐burdened mice suggested enhanced phosphorylation of 4E‐BP1 at threonines 37/46 in hypoxic tumor tissues. In vitro dissection of this phenomenon revealed that Amyloid Precursor Protein (APP) inhibition was responsible for a non‐canonical 4E‐BP1 phosphorylation pattern rearrangement—a process, in part, mediated by APP regulation of the pseudophosphatase Styx. Upon APP depletion we observed modifications of eIF‐4F composition indicating increased recruitment of eIF‐4A to the mRNA cap. This phenomenon was supported by the observation that cells with depleted APP were partially resistant to silvestrol, an antibiotic that interferes with eIF‐4A assembly into eIF‐4F complexes. APP downregulation in dividing human cells increased the rate of global protein synthesis, both cap‐ and IRES‐dependent. Such an increase seemed independent of mTOR inhibition. After administration of Torin‐1, APP downregulation and Mechanistic Target of Rapamycin Complex 1 (mTORC‐1) inhibition affected 4E‐BP1 phosphorylation and global protein synthesis in opposite fashions. Additional investigations indicated that APP operates independently of mTORC‐1. Key phenomena described in this study were reversed by overexpression of the APP C‐terminal domain. The presented data suggest that APP may be a novel regulator of protein synthesis in dividing human cells, both cancerous and primary. Furthermore, APP appears to affect translation initiation using mechanisms seemingly dissimilar to mTORC‐1 regulation of cap‐dependent protein synthesis. J. Cell. Physiol. 230: 1064–1074, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:25283437

  7. Microbial population dynamics in an anaerobic CSTR treating a chemical synthesis-based pharmaceutical wastewater.

    PubMed

    Oz, Nilgun Ayman; Ince, Orhan; Ince, Bahar Kasapgil; Akarsubasi, Alper Tunga; Eyice, Ozge

    2003-01-01

    Effects of a chemical synthesis based pharmaceutical wastewater on performance of an anaerobic completely stirred tank reactor (CSTR), activity of acetoclastic methanogens and microbial composition were evaluated under various influent compositions. Initially, the CSTR was fed with glucose up to an organic loading rate (OLR) of 6 kg COD/m3 x d corresponding to an F/M ratio of 0.43 with a hydraulic retention time (HRT) of 2.5 days. A COD removal efficiency of 92% and a methane yield of 0.32 m3 CH4/kg COD(removed) were achieved whilst specific methanogenic activity (SMA) was found to be 336mL CH4/gTVS x d. After the CSTR was fed with pre-aerated wastewater diluted by glucose in different dilution ratios of 10% (w/v), 30% (w/v), 70% (w/v), and 100% (w/v) pre-aerated wastewater, gradual decreases in COD removal efficiency to 71%, methane yield to 0.28 m3CH4/kg COD(removed) and SMA to 166 mL CH4/gTVS d occurred whilst volatile fatty acid concentration reached to 1474 mg/L. After the raw wastewater diluted with the pre-aerated wastewater was fed into the CSTR in increasing ratios of 10% (w/v), 30% (w/v), and 60% (w/v), there was a proportional deterioration in performance in terms of COD removal efficiency, methane yield and acetoclastic methanogenic activity. Epifluorescence microscopy of the seed sludge revealed that Methanococcus-like species, short, and medium rods were found to be equally dominant. The short and medium rod species remained equally dominant groups in the CSTR throughout the feeding regime whilst Methanococcus-like species and long rods were found to be in insignificant numbers at the end of the study. Changes in archael diversity were determined using molecular analyses such as polymerase chain reaction (PCR), and denaturent gradient gel electrophoresis (DGGE). Results showed that overall archeal diversity did not change much whereas changes in composition of eubacterial population occurred.

  8. Colostrum enhances the nutritional stimulation of vital organ protein synthesis in neonatal pigs.

    PubMed

    Burrin, D G; Davis, T A; Ebner, S; Schoknecht, P A; Fiorotto, M L; Reeds, P J

    1997-07-01

    Our objective was to determine the relative importance of the macronutrient components of colostrum in the stimulation of vital organ protein synthesis in neonatal pigs. We studied colostrum-deprived newborn pigs within 4-6 h after birth (unfed) and three groups fed for 24 h mature milk, colostrum, or a formula containing a macronutrient composition comparable to that of colostrum. We measured protein synthesis in vivo using a flooding dose of 3H-phenylalanine. The fractional rates of protein synthesis (Ks) in the brain, heart, lung, kidney and spleen were significantly higher in all fed groups than in the unfed newborns. Among the three fed groups, brain and heart protein synthesis rates were greater in colostrum-fed than in either milk- or formula-fed pigs. Kidney and spleen protein synthesis rates in colostrum- and formula-fed pigs were not significantly different, but both were higher than in milk-fed pigs. The stimulation of kidney protein synthesis in response to feeding was primarily a consequence of greater protein synthetic efficiency; however, protein synthetic capacity in the heart, lung and spleen was generally greater in colostrum- and formula-fed pigs than in unfed newborns. Our results suggest that the predominant stimulus for vital organ protein synthesis in colostrum-fed neonatal pigs is nutrient intake. However, there was a specific stimulation of both brain and heart protein synthesis in colostrum-fed pigs that cannot be attributed to macronutrients.

  9. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins

    NASA Astrophysics Data System (ADS)

    Bondalapati, Somasekhar; Jbara, Muhammad; Brik, Ashraf

    2016-05-01

    Methods to prepare proteins that include a specific modification at a desired position are essential for understanding their cellular functions and physical properties in living systems. Chemical protein synthesis, which relies on the chemoselective ligation of unprotected peptides, enables the preparation of modified proteins that are not easily fabricated by other methods. In contrast to recombinant approaches, chemical synthesis can be used to prepare protein analogues such as D-proteins, which are useful in protein structure determination and the discovery of novel therapeutics. Post-translationally modifying proteins is another example where chemical protein synthesis proved itself as a powerful approach for preparing samples with high homogeneity and in workable quantities. In this Review, we discuss the basic principles of the field, focusing on novel chemoselective peptide ligation approaches such as native chemical ligation and the recent advances based on this method with a proven record of success in the synthesis of highly important protein targets.

  10. Evolution of Protein Synthesis from an RNA World

    PubMed Central

    Noller, Harry F.

    2012-01-01

    SUMMARY Because of the molecular complexity of the ribosome and protein synthesis, it is a challenge to imagine how translation could have evolved from a primitive RNA World. Two specific suggestions are made here to help to address this, involving separate evolution of the peptidyl transferase and decoding functions. First, it is proposed that translation originally arose not to synthesize functional proteins, but to provide simple (perhaps random) peptides that bound to RNA, increasing its available structure space, and therefore its functional capabilities. Second, it is proposed that the decoding site of the ribosome evolved from a mechanism for duplication of RNA. This process involved homodimeric “duplicator RNAs,” resembling the anticodon arms of tRNAs, which directed ligation of trinucleotides in response to an RNA template. PMID:20610545

  11. Synthetic silvestrol analogues as potent and selective protein synthesis inhibitors.

    PubMed

    Liu, Tao; Nair, Somarajan J; Lescarbeau, André; Belani, Jitendra; Peluso, Stéphane; Conley, James; Tillotson, Bonnie; O'Hearn, Patrick; Smith, Sherri; Slocum, Kelly; West, Kip; Helble, Joseph; Douglas, Mark; Bahadoor, Adilah; Ali, Janid; McGovern, Karen; Fritz, Christian; Palombella, Vito J; Wylie, Andrew; Castro, Alfredo C; Tremblay, Martin R

    2012-10-25

    Misregulation of protein translation plays a critical role in human cancer pathogenesis at many levels. Silvestrol, a cyclopenta[b]benzofuran natural product, blocks translation at the initiation step by interfering with assembly of the eIF4F translation complex. Silvestrol has a complex chemical structure whose functional group requirements have not been systematically investigated. Moreover, silvestrol has limited development potential due to poor druglike properties. Herein, we sought to develop a practical synthesis of key intermediates of silvestrol and explore structure-activity relationships around the C6 position. The ability of silvestrol and analogues to selectively inhibit the translation of proteins with high requirement on the translation-initiation machinery (i.e., complex 5'-untranslated region UTR) relative to simple 5'UTR was determined by a cellular reporter assay. Simplified analogues of silvestrol such as compounds 74 and 76 were shown to have similar cytotoxic potency and better ADME characteristics relative to those of silvestrol.

  12. Porcine colostrum and milk stimulate visceral organ and skeletal muscle protein synthesis in neonatal piglets.

    PubMed

    Burrin, D G; Shulman, R J; Reeds, P J; Davis, T A; Gravitt, K R

    1992-06-01

    Our objective was to determine the relative contributions of protein synthesis and protein absorption in the rapid accretion of gastrointestinal protein in suckling piglets during the early neonatal period. We measured the rates of tissue protein synthesis using a flooding dose of L-[4-3H]phenylalanine in various visceral and peripheral tissues of neonatal piglets fed water, mature milk or colostrum for 6 h. The jejunal and ileal protein synthesis rates in piglets fed either colostrum or milk were three- to fourfold higher than in piglets fed water. The increased jejunal and ileal protein synthesis could not, however, account for the differences in protein mass between the colostrum-fed and water-fed groups. The relative abundance of IgG, a major porcine colostral protein, in jejunal tissue was markedly higher in piglets fed colostrum than in piglets fed either milk or water. The fractional protein synthesis rates in liver, kidney, spleen and skeletal muscle and the absolute protein synthesis rates in liver and spleen were also greater in piglets fed colostrum than in those fed milk or water. Increased endogenous protein synthesis made only a minor contribution to the increased intestinal protein accretion in neonatal piglets fed colostrum. A much larger proportion of this increase seemed to be a result of absorption and retention of ingested immunoglobulins.

  13. Ankyrin repeat and SOCS box protein 15 regulates protein synthesis in skeletal muscle.

    PubMed

    McDaneld, T G; Hannon, K; Moody, D E

    2006-06-01

    Ankyrin repeat and SOCS box protein 15 (ASB15) is an Asb family member expressed predominantly in skeletal muscle. We have previously reported that ASB15 mRNA abundance decreases after administration of beta-adrenergic receptor agonists. Because beta-adrenergic receptor agonists are known to stimulate muscle hypertrophy, the objective of this study was to determine whether ASB15 regulates cellular processes that contribute to muscle growth. Stable myoblast C2C12 cells expressing full-length ASB15 (ASB15-FL) and ASB15 lacking the ankyrin repeat (ASB15-Ank) or SOCS box (ASB15-SOCS) motifs were evaluated for changes in proliferation, differentiation, protein synthesis, and protein degradation. Expression of ASB15-FL caused a delay in differentiation, followed by an increase in protein synthesis of approximately 34% (P<0.05). A consistent effect of ASB15 overexpression was observed in vivo, where ectopic expression of ASB15 increased skeletal muscle fiber area (P<0.0001) after 9 days. Expression of ASB15-SOCS altered differentiation of myoblasts, resulting in detachment of cells from culture plates. Expression of ASB15-Ank increased protein degradation by 84 h of differentiation (P<0.05), and in vivo ectopic expression of an ASB15 construct lacking both the ankyrin repeat and SOCS box motifs decreased skeletal muscle fiber area (P<0.0001). Together, these results suggest ASB15 participates in the regulation of protein turnover and muscle cell development by stimulating protein synthesis and regulating differentiation of muscle cells. This is the first study to demonstrate a role for an Asb family member in skeletal muscle growth.

  14. Linking microbial and ecosystem ecology using ecological stoichiometry: a synthesis of conceptual and empirical approaches

    USGS Publications Warehouse

    Hall, E.K.; Maixner, F.; Franklin, O.; Daims, H.; Richter, A.; Battin, T.

    2011-01-01

    Currently, one of the biggest challenges in microbial and ecosystem ecology is to develop conceptual models that organize the growing body of information on environmental microbiology into a clear mechanistic framework with a direct link to ecosystem processes. Doing so will enable development of testable hypotheses to better direct future research and increase understanding of key constraints on biogeochemical networks. Although the understanding of phenotypic and genotypic diversity of microorganisms in the environment is rapidly accumulating, how controls on microbial physiology ultimately affect biogeochemical fluxes remains poorly understood. We propose that insight into constraints on biogeochemical cycles can be achieved by a more rigorous evaluation of microbial community biomass composition within the context of ecological stoichiometry. Multiple recent studies have pointed to microbial biomass stoichiometry as an important determinant of when microorganisms retain or recycle mineral nutrients. We identify the relevant cellular components that most likely drive changes in microbial biomass stoichiometry by defining a conceptual model rooted in ecological stoichiometry. More importantly, we show how X-ray microanalysis (XRMA), nanoscale secondary ion mass spectroscopy (NanoSIMS), Raman microspectroscopy, and in situ hybridization techniques (for example, FISH) can be applied in concert to allow for direct empirical evaluation of the proposed conceptual framework. This approach links an important piece of the ecological literature, ecological stoichiometry, with the molecular front of the microbial revolution, in an attempt to provide new insight into how microbial physiology could constrain ecosystem processes.

  15. Semisynthetic tRNA complement mediates in vitro protein synthesis.

    PubMed

    Cui, Zhenling; Stein, Viktor; Tnimov, Zakir; Mureev, Sergey; Alexandrov, Kirill

    2015-04-08

    Genetic code expansion is a key objective of synthetic biology and protein engineering. Most efforts in this direction are focused on reassigning termination or decoding quadruplet codons. While the redundancy of genetic code provides a large number of potentially reassignable codons, their utility is diminished by the inevitable interaction with cognate aminoacyl-tRNAs. To address this problem, we sought to establish an in vitro protein synthesis system with a simplified synthetic tRNA complement, thereby orthogonalizing some of the sense codons. This quantitative in vitro peptide synthesis assay allowed us to analyze the ability of synthetic tRNAs to decode all of 61 sense codons. We observed that, with the exception of isoacceptors for Asn, Glu, and Ile, the majority of 48 synthetic Escherichia coli tRNAs could support protein translation in the cell-free system. We purified to homogeneity functional Asn, Glu, and Ile tRNAs from the native E. coli tRNA mixture, and by combining them with synthetic tRNAs, we formulated a semisynthetic tRNA complement for all 20 amino acids. We further demonstrated that this tRNA complement could restore the protein translation activity of tRNA-depleted E. coli lysate to a level comparable to that of total native tRNA. To confirm that the developed system could efficiently synthesize long polypeptides, we expressed three different sequences coding for superfolder GFP. This novel semisynthetic translation system is a powerful tool for tRNA engineering and potentially enables the reassignment of at least 9 sense codons coding for Ser, Arg, Leu, Pro, Thr, and Gly.

  16. Molecular insights into protein synthesis with proline residues.

    PubMed

    Melnikov, Sergey; Mailliot, Justine; Rigger, Lukas; Neuner, Sandro; Shin, Byung-Sik; Yusupova, Gulnara; Dever, Thomas E; Micura, Ronald; Yusupov, Marat

    2016-12-01

    Proline is an amino acid with a unique cyclic structure that facilitates the folding of many proteins, but also impedes the rate of peptide bond formation by the ribosome. As a ribosome substrate, proline reacts markedly slower when compared with other amino acids both as a donor and as an acceptor of the nascent peptide. Furthermore, synthesis of peptides with consecutive proline residues triggers ribosome stalling. Here, we report crystal structures of the eukaryotic ribosome bound to analogs of mono- and diprolyl-tRNAs. These structures provide a high-resolution insight into unique properties of proline as a ribosome substrate. They show that the cyclic structure of proline residue prevents proline positioning in the amino acid binding pocket and affects the nascent peptide chain position in the ribosomal peptide exit tunnel. These observations extend current knowledge of the protein synthesis mechanism. They also revise an old dogma that amino acids bind the ribosomal active site in a uniform way by showing that proline has a binding mode distinct from other amino acids.

  17. PATtyFams: Protein families for the microbial genomes in the PATRIC database

    DOE PAGES

    Davis, James J.; Gerdes, Svetlana; Olsen, Gary J.; ...

    2016-02-08

    The ability to build accurate protein families is a fundamental operation in bioinformatics that influences comparative analyses, genome annotation, and metabolic modeling. For several years we have been maintaining protein families for all microbial genomes in the PATRIC database (Pathosystems Resource Integration Center, patricbrc.org) in order to drive many of the comparative analysis tools that are available through the PATRIC website. However, due to the burgeoning number of genomes, traditional approaches for generating protein families are becoming prohibitive. In this report, we describe a new approach for generating protein families, which we call PATtyFams. This method uses the k-mer-based functionmore » assignments available through RAST (Rapid Annotation using Subsystem Technology) to rapidly guide family formation, and then differentiates the function-based groups into families using a Markov Cluster algorithm (MCL). In conclusion, this new approach for generating protein families is rapid, scalable and has properties that are consistent with alignment-based methods.« less

  18. Effect of sea buckthorn protein on the intestinal microbial community in streptozotocin-induced diabetic mice.

    PubMed

    Yuan, Huaibo; Shi, Fangfang; Meng, Lina; Wang, Wenjuan

    2017-09-23

    This study investigated the intestinal microbial community distribution of Type 2 diabetic mice and discussed the effects of the sea buckthorn protein on the regulation of gut microbes. Date was collected for 12 cases of normal mice (NC group), 12 cases of Type 2 diabetic mice (DC group), and 12 cases of highly concentrated sea buckthorn seed protein dosed mice (SSPH group). This study analysed fecal samples, measured faecal pH value, and cultivated and determined intestinal bacteria count. This investigation also included the extraction of faecal samples for genomic DNA, PCR amplification of bacterial V3 16S rDNA products by denaturing gradient gel electrophoresis, DGGE map analysis of intestinal flora, determination of intestinal bacteria richness, Shannon-Wiener index and evenness index, and image similarity cluster analysis with UPGMA clustering. This study analysed and elucidated differences between the normal mice group, diabetic mice group, and sea buckthorn protein supplemented group, and the structures of respective intestinal flora. The mice supplemented with sea buckthorn protein exhibited an obvious drop in body weight and blood glucose levels. The Bifidobacterium, Lactobacillus, Bacteroides, and Clostridium coccoides populations recovered. The amplification of the 16S rDNA gene V3 region revealed that the species of intestinal microbes in the treatment group were adjusted to a certain extent. Analysis by ARDRA confirmed that sea buckthorn protein could increase type 2 diabetes in mice intestinal microorganism diversity (H) and simpson (E). Copyright © 2017. Published by Elsevier B.V.

  19. Exploitation of the host cell ubiquitin machinery by microbial effector proteins.

    PubMed

    Lin, Yi-Han; Machner, Matthias P

    2017-06-15

    Pathogenic bacteria are in a constant battle for survival with their host. In order to gain a competitive edge, they employ a variety of sophisticated strategies that allow them to modify conserved host cell processes in ways that favor bacterial survival and growth. Ubiquitylation, the covalent attachment of the small modifier ubiquitin to target proteins, is such a pathway. Ubiquitylation profoundly alters the fate of a myriad of cellular proteins by inducing changes in their stability or function, subcellular localization or interaction with other proteins. Given the importance of ubiquitylation in cell development, protein homeostasis and innate immunity, it is not surprising that this post-translational modification is exploited by a variety of effector proteins from microbial pathogens. Here, we highlight recent advances in our understanding of the many ways microbes take advantage of host ubiquitylation, along with some surprising deviations from the canonical theme. The lessons learned from the in-depth analyses of these host-pathogen interactions provide a fresh perspective on an ancient post-translational modification that we thought was well understood.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Mechanisms of regulation and diversification of deubiquitylating enzyme function' by Pawel Leznicki and Yogesh Kulathu (J. Cell Sci.130, 1997-2006). 'Cell scientist to watch - Mads Gyrd-Hansen' (J. Cell Sci.130, 1981-1983). © 2017. Published by The Company of Biologists Ltd.

  20. Acute propranolol infusion stimulates protein synthesis in rabbit skin wound.

    PubMed

    Zhang, Xiao-Jun; Meng, Chengyue; Chinkes, David L; Finnerty, Celeste C; Aarsland, Asle; Jeschke, Marc G; Herndon, David N

    2009-05-01

    Propranolol administration has been demonstrated to improve cardiac work, decrease energy expenditure, and attenuate lipolysis in burned patients; however, its effect on wound healing has not been reported. In rabbits, a partial-thickness skin donor site wound was created on the back, and catheters were placed in the carotid artery and jugular vein. A nasogastric feeding tube was placed for enteral feeding. On day 5 after injury, stable isotope tracers were infused to determine protein and DNA kinetics in the wound. Propranolol hydrochloride was injected in 1 group during the tracer infusion to decrease heart rate, and the other group without propranolol injection served as a control. The propranolol infusion decreased heart rate by 21%. The protein fractional synthetic rate in the wound was greater in the propranolol group (8.6 +/- 0.9 vs 6.1 +/- 0.5%/day, P < .05). Wound protein fractional breakdown rates were not significantly different. The rate of protein deposition (synthesis - breakdown) was increased in the propranolol group (5.0 +/- 1.2 vs 2.8 +/- 0.7%/day, P = .07). Wound DNA fractional synthetic rates were comparable. The protein fractional synthetic rate was correlated with percent decrease in heart rate, but expression of the beta-adrenergic receptors and downstream signaling cascades in local wounds were not affected after propranolol treatment. Propranolol infusion increased wound protein synthetic rate and tended to increase wound protein deposition rate, which might be beneficial to wound healing. These changes might reflect a systemic response to the beta-adrenergic blockade.

  1. Application of a Rapid Knowledge Synthesis and Transfer Approach to Assess the Microbial Safety of Low-Moisture Foods

    PubMed Central

    Young, Ian; Waddell, Lisa; Cahill, Sarah; Kojima, Mina; Clarke, Renata; Rajic, Andrijana

    2016-01-01

    Low-moisture foods (LMF) are increasingly implicated in outbreaks of foodborne illness resulting in a significant public health burden. To inform the development of a new Codex Alimentarius code of hygienic practice for LMF, we applied a rapid knowledge synthesis and transfer approach to review global research on the burden of illness, prevalence, and interventions to control nine selected microbial hazards in eight categories of LMF. Knowledge synthesis methods included an integrated scoping review (search strategy, relevance screening and confirmation, and evidence mapping), systematic review (detailed data extraction), and meta-analysis of prevalence data. Knowledge transfer of the results was achieved through multiple reporting formats, including evidence summary cards. We identified 214 unique outbreaks and 204 prevalence and 126 intervention studies. ‘Cereals and grains’ (n=142) and Salmonella spp. (n=278) were the most commonly investigated LMF and microbial hazard categories, respectively. Salmonella spp. was implicated in the most outbreaks (n=96, 45%), several of which were large and widespread, resulting in the most hospitalizations (n=895, 89%) and deaths (n=14, 74%). Salmonella spp. had a consistently low prevalence across all LMF categories (0-3%), while other hazards (e.g. B. cereus) were found at highly variable levels. A variety of interventions were investigated in small challenge trials. Key knowledge gaps included under-reporting of LMF outbreaks, limited reporting of microbial concentration data from prevalence studies, and a lack of intervention-efficacy research under commercial conditions. Summary cards were a useful knowledge transfer format to inform complementary risk ranking activities. This review builds upon previous work in this area by synthesizing a broad range of evidence using a structured, transparent, and integrated approach to provide timely evidence-informed inputs into international guidelines. PMID:26613924

  2. Application of a Rapid Knowledge Synthesis and Transfer Approach To Assess the Microbial Safety of Low-Moisture Foods.

    PubMed

    Young, Ian; Waddell, Lisa; Cahill, Sarah; Kojima, Mina; Clarke, Renata; Rajić, Andrijana

    2015-12-01

    Low-moisture foods (LMF) are increasingly implicated in outbreaks of foodborne illness, resulting in a significant public health burden. To inform the development of a new Codex Alimentarius code of hygienic practice for LMF, we applied a rapid knowledge synthesis and transfer approach to review global research on the burden of illness, prevalence, and interventions to control nine selected microbial hazards in eight categories of LMF. Knowledge synthesis methods included an integrated scoping review (search strategy, relevance screening and confirmation, and evidence mapping), systematic review (detailed data extraction), and meta-analysis of prevalence data. Knowledge transfer of the results was achieved through multiple reporting formats, including evidence summary cards. We identified 214 unique outbreaks and 204 prevalence and 126 intervention studies. Cereals and grains (n = 142) and Salmonella (n = 278) were the most commonly investigated LMF and microbial hazard categories, respectively. Salmonella was implicated in the most outbreaks (n = 96, 45%), several of which were large and widespread, resulting in the most hospitalizations (n = 895, 89%) and deaths (n = 14, 74%). Salmonella had a consistently low prevalence across all LMF categories (0 to 3%), but the prevalence of other hazards (e.g., Bacillus cereus) was highly variable. A variety of interventions were investigated in small challenge trials. Key knowledge gaps included underreporting of LMF outbreaks, limited reporting of microbial levels in prevalence studies, and a lack of intervention efficacy research under commercial conditions. Summary cards were a useful knowledge transfer format to inform complementary risk ranking activities. This review builds upon previous work in this area by synthesizing a broad range of evidence using a structured, transparent, and integrated approach to provide timely evidence informed inputs into international guidelines.

  3. Consumption of Milk Protein or Whey Protein Results in a Similar Increase in Muscle Protein Synthesis in Middle Aged Men

    PubMed Central

    Mitchell, Cameron J.; McGregor, Robin A.; D’Souza, Randall F.; Thorstensen, Eric B.; Markworth, James F.; Fanning, Aaron C.; Poppitt, Sally D.; Cameron-Smith, David

    2015-01-01

    The differential ability of various milk protein fractions to stimulate muscle protein synthesis (MPS) has been previously described, with whey protein generally considered to be superior to other fractions. However, the relative ability of a whole milk protein to stimulate MPS has not been compared to whey. Sixteen healthy middle-aged males ingested either 20 g of milk protein (n = 8) or whey protein (n = 8) while undergoing a primed constant infusion of ring 13C6 phenylalanine. Muscle biopsies were obtained 120 min prior to consumption of the protein and 90 and 210 min afterwards. Resting myofibrillar fractional synthetic rates (FSR) were 0.019% ± 0.009% and 0.021% ± 0.018% h−1 in the milk and whey groups respectively. For the first 90 min after protein ingestion the FSR increased (p < 0.001) to 0.057% ± 0.018% and 0.052% ± 0.024% h−1 in the milk and whey groups respectively with no difference between groups (p = 0.810). FSR returned to baseline in both groups between 90 and 210 min after protein ingestion. Despite evidence of increased rate of digestion and leucine availability following the ingestion of whey protein, there was similar activation of MPS in middle-aged men with either 20 g of milk protein or whey protein. PMID:26506377

  4. Consumption of Milk Protein or Whey Protein Results in a Similar Increase in Muscle Protein Synthesis in Middle Aged Men.

    PubMed

    Mitchell, Cameron J; McGregor, Robin A; D'Souza, Randall F; Thorstensen, Eric B; Markworth, James F; Fanning, Aaron C; Poppitt, Sally D; Cameron-Smith, David

    2015-10-21

    The differential ability of various milk protein fractions to stimulate muscle protein synthesis (MPS) has been previously described, with whey protein generally considered to be superior to other fractions. However, the relative ability of a whole milk protein to stimulate MPS has not been compared to whey. Sixteen healthy middle-aged males ingested either 20 g of milk protein (n = 8) or whey protein (n = 8) while undergoing a primed constant infusion of ring (13)C₆ phenylalanine. Muscle biopsies were obtained 120 min prior to consumption of the protein and 90 and 210 min afterwards. Resting myofibrillar fractional synthetic rates (FSR) were 0.019% ± 0.009% and 0.021% ± 0.018% h(-1) in the milk and whey groups respectively. For the first 90 min after protein ingestion the FSR increased (p < 0.001) to 0.057% ± 0.018% and 0.052% ± 0.024% h(-1) in the milk and whey groups respectively with no difference between groups (p = 0.810). FSR returned to baseline in both groups between 90 and 210 min after protein ingestion. Despite evidence of increased rate of digestion and leucine availability following the ingestion of whey protein, there was similar activation of MPS in middle-aged men with either 20 g of milk protein or whey protein.

  5. Effects of replacing dietary starch with neutral detergent-soluble fibre on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria using the rumen simulation technique (RUSITEC).

    PubMed

    Zhao, X H; Liu, C J; Liu, Y; Li, C Y; Yao, J H

    2013-12-01

    A rumen simulation technique (RUSITEC) apparatus with eight 800 ml fermenters was used to investigate the effects of replacing dietary starch with neutral detergent-soluble fibre (NDSF) by inclusion of sugar beet pulp in diets on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria. Experimental diets contained 12.7, 16.4, 20.1 or 23.8% NDSF substituted for starch on a dry matter basis. The experiment was conducted over two independent 15-day incubation periods with the last 8 days used for data collection. There was a tendency that 16.4% NDSF in the diet increased the apparent disappearance of organic matter (OM) and neutral detergent fibre (NDF). Increasing dietary NDSF level increased carboxymethylcellulase and xylanase activity in the solid fraction and apparent disappearance of acid detergent fibre (ADF) but reduced the 16S rDNA copy numbers of Ruminococcus albus in both liquid and solid fractions and R. flavefaciens in the solid fraction. The apparent disappearance of dietary nitrogen (N) was reduced by 29.6% with increased dietary NDSF. Substituting NDSF for starch appeared to increase the ratios of acetate/propionate and methane/volatile fatty acids (VFA) (mol/mol). Replacing dietary starch with NDSF reduced the daily production of ammonia-N and increased the growth of the solid-associated microbial pellets (SAM). Total microbial N flow and efficiency of microbial synthesis (EMS), expressed as g microbial N/kg OM fermented, tended to increase with increased dietary NDSF, but the numerical increase did not continue as dietary NDSF exceeded 20.1% of diet DM. Results suggested that substituting NDSF for starch up to 16.4% of diet DM increased digestion of nutrients (except for N) and microbial synthesis, and further increases (from 16.4% to 23.8%) in dietary NDSF did not repress microbial synthesis but did significantly reduce digestion of dietary N.

  6. Continuous cell-free protein synthesis using glycolytic intermediates as energy sources.

    PubMed

    Kim, Ho-Cheol; Kim, Tae-Wan; Park, Chang-Gil; Oh, In-Seok; Park, Kyungmoon; Kim, Dong-Myung

    2008-05-01

    In this work, we demonstrate that glycolytic intermediates can serve as efficient energy sources to regenerate ATP during continuous-exchange cell-free (CECF) protein synthesis reactions. Through the use of an optimal energy source, approximately 10 mg/ml of protein was generated from CECF protein synthesis reaction at greatly reduced reagent costs. Compared with the conventional reactions utilizing phosphoenol pyruvate as an energy source, the described method yields 10-fold higher productivity per unit reagent cost, making the techniques of CECF protein synthesis more realistic alternative for rapid protein production.

  7. Further studies on the stimulation of protein synthesis in androgen-dependent tissues by testosterone

    PubMed Central

    Mainwaring, W. I. P.; Wilce, P. A.

    1972-01-01

    1. By using centrifugation through a discontinuous sucrose gradient, four microsomal fractions are obtained from the prostate gland. 2. Administration of androgens to castrated rats stimulates protein synthesis in all fractions, particularly in the heavy rough fraction. 3. Androgens also increase the content of protein, RNA and phospholipid in the heavy rough fraction. 4. Time-course experiments in vivo show that androgens induce a rapid increase in the synthesis of ribosomal precursor RNA preceding the synthesis of new microsomal fraction and the increase in protein synthesis. PMID:4655422

  8. Catabolism of tritiated thymidine by aquatic microbial communities and incorporation of tritium into RNA and protein.

    PubMed

    Brittain, A M; Karl, D M

    1990-05-01

    The incorporation of tritiated thymidine by five microbial ecosystems and the distribution of tritium into DNA, RNA, and protein were determined. All microbial assemblages tested exhibited significant labeling of RNA and protein (i.e., nonspecific labeling), as determined by differential acid-base hydrolysis. Nonspecific labeling was greatest in sediment samples, for which >/=95% of the tritium was recovered with the RNA and protein fractions. The percentage of tritium recovered in the DNA fraction ranged from 15 to 38% of the total labeled macromolecules recovered. Nonspecific labeling was independent of both incubation time and thymidine concentration over very wide ranges. Four different RNA hydrolysis reagents (KOH, NaOH, piperidine, and enzymes) solubilized tritium from cold trichloroacetic acid precipitates. High-pressure liquid chromatography separation of piperidine hydrolysates followed by measurement of isolated monophosphates confirmed the labeling of RNA and indicated that tritium was recovered primarily in CMP and AMP residues. We also evaluated the specificity of [2-H]adenine incorporation into adenylate residues in both RNA and DNA in parallel with the [H]thymidine experiments and compared the degree of nonspecific labeling by [H]adenine with that derived from [H]thymidine. Rapid catabolism of tritiated thymidine was evaluated by determining the disappearance of tritiated thymidine from the incubation medium and the appearance of degradation products by high-pressure liquid chromatography separation of the cell-free medium. Degradation product formation, including that of both volatile and nonvolatile compounds, was much greater than the rate of incorporation of tritium into stable macromolecules. The standard degradation pathway for thymidine coupled with utilization of Krebs cycle intermediates for the biosynthesis of amino acids, purines, and pyrimidines readily accounts for the observed nonspecific labeling in environmental samples.

  9. Microbial metaproteomics: identifying the repertoire of proteins that microorganisms use to compete and cooperate in complex environmental communities.

    PubMed

    Hettich, Robert L; Sharma, Ritin; Chourey, Karuna; Giannone, Richard J

    2012-06-01

    The availability of genome information for microbial consortia, including unculturable species, from environmental samples has enabled systems-biology interrogation by providing a means to access genomic, transcriptomic, and proteomic information. This provides a unique opportunity to characterize the molecular activities and interactions of these microbial systems at a comprehensive level never before possible. Such information not only provides details about the organizational, functional, and metabolic activities of such systems, but also the untapped reserve of molecular activities that might be invoked and exploited under certain environmental conditions. Since bacteria naturally exist in complex ecosystems, it is imperative to develop and utilize analytical approaches that can provide molecular level details on systems consisting of mixed microbial membership. This is the realm of metaproteomics-the characterization of the complement of proteins expressed by a microbial community in an environmental sample.

  10. Microbial metaproteomics: Identifying the repertoire of proteins that microorganisms use to compete and cooperate in complex environmental communities

    SciTech Connect

    Hettich, Robert {Bob} L; Sharma, Ritin; Chourey, Karuna; Giannone, Richard J

    2012-01-01

    The availability of genome information for microbial consortia, including unculturable species, from environmental samples has enabled systems-biology interrogation by providing a means to access genomic, transcriptomic, and proteomic information. This provides a unique opportunity to characterize the molecular activities and interactions of these microbial systems at a comprehensive level never before possible. Such information not only provides details about the organizational, functional, and metabolic activities of such systems, but also the untapped reserve of molecular activities that might be invoked and exploited under certain environmental conditions. Since bacteria naturally exist in complex ecosystems, it is imperative to develop and utilize analytical approaches that can provide molecular level details on systems consisting of mixed microbial membership. This is the realm of metaproteomics - the characterization of the complement of proteins expressed by a microbial community in an environmental sample

  11. Engineered, highly reactive substrates of microbial transglutaminase enable protein labeling within various secondary structure elements.

    PubMed

    Rachel, Natalie M; Quaglia, Daniela; Lévesque, Éric; Charette, André B; Pelletier, Joelle N

    2017-08-31

    Microbial transglutaminase (MTG) is a practical tool to enzymatically form isopeptide bonds between peptide or protein substrates. This natural approach to crosslinking the side-chains of reactive glutamine and lysine residues is solidly rooted in food and textile processing. More recently, MTG's tolerance for various primary amines in lieu of lysine have revealed its potential for site-specific protein labeling with aminated compounds, including fluorophores. Importantly, MTG can label glutamines at accessible positions in the body of a target protein, setting it apart from most labeling enzymes that react exclusively at protein termini. To expand its applicability as a labeling tool, we engineered the B1 domain of Protein G (GB1) to probe the selectivity and enhance the reactivity of MTG towards its glutamine substrate. We built a GB1 library where each variant contained a single glutamine at positions covering all secondary structure elements. The most reactive and selective variants displayed a >100-fold increase in incorporation of a recently developed aminated benzo[a]imidazo[2,1,5-cd]indolizine-type fluorophore, relative to native GB1. None of the variants were destabilized. Our results demonstrate that MTG can react readily with glutamines in α-helical, β-sheet, and unstructured loop elements and does not favor one type of secondary structure. Introducing point mutations within MTG's active site further increased reactivity towards the most reactive substrate variant, I6Q-GB1, enhancing MTG's capacity to fluorescently label an engineered, highly reactive glutamine substrate. This work demonstrates that MTG-reactive glutamines can be readily introduced into a protein domain for fluorescent labeling. This article is protected by copyright. All rights reserved. © 2017 The Protein Society.

  12. Going against the Tide: Selective Cellular Protein Synthesis during Virally Induced Host Shutoff.

    PubMed

    Cao, Shuai; Dhungel, Pragyesh; Yang, Zhilong

    2017-09-01

    Many viral infections cause host shutoff, a state in which host protein synthesis is globally inhibited. Emerging evidence from vaccinia and influenza A virus infections indicates that subsets of cellular proteins are resistant to host shutoff and continue to be synthesized. Remarkably, the proteins of oxidative phosphorylation, the cellular-energy-generating machinery, are selectively synthesized in both cases. Identifying mechanisms that drive selective protein synthesis should facilitate understanding both viral replication and fundamental cell biology. Copyright © 2017 American Society for Microbiology.

  13. Comparison of protein synthesis and degradation in incubated and perfused muscle.

    PubMed Central

    Clark, A S; Mitch, W E

    1983-01-01

    Rates of muscle protein synthesis and degradation measured in the perfused hindquarter were compared with those in incubated epitrochlearis muscles. With fed or starved mature rats, results without insulin treatment were identical. With insulin treatment, protein synthesis in perfused hindquarters was greater, though protein degradation was the same. Thus rates of muscle protein degradation estimated by these two methods in vitro correspond closely. PMID:6349623

  14. Integrating gene synthesis and microfluidic protein analysis for rapid protein engineering

    PubMed Central

    Blackburn, Matthew C.; Petrova, Ekaterina; Correia, Bruno E.; Maerkl, Sebastian J.

    2016-01-01

    The capability to rapidly design proteins with novel functions will have a significant impact on medicine, biotechnology and synthetic biology. Synthetic genes are becoming a commodity, but integrated approaches have yet to be developed that take full advantage of gene synthesis. We developed a solid-phase gene synthesis method based on asymmetric primer extension (APE) and coupled this process directly to high-throughput, on-chip protein expression, purification and characterization (via mechanically induced trapping of molecular interactions, MITOMI). By completely circumventing molecular cloning and cell-based steps, APE-MITOMI reduces the time between protein design and quantitative characterization to 3–4 days. With APE-MITOMI we synthesized and characterized over 400 zinc-finger (ZF) transcription factors (TF), showing that although ZF TFs can be readily engineered to recognize a particular DNA sequence, engineering the precise binding energy landscape remains challenging. We also found that it is possible to engineer ZF–DNA affinity precisely and independently of sequence specificity and that in silico modeling can explain some of the observed affinity differences. APE-MITOMI is a generic approach that should facilitate fundamental studies in protein biophysics, and protein design/engineering. PMID:26704969

  15. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    PubMed

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  16. Integrating gene synthesis and microfluidic protein analysis for rapid protein engineering.

    PubMed

    Blackburn, Matthew C; Petrova, Ekaterina; Correia, Bruno E; Maerkl, Sebastian J

    2016-04-20

    The capability to rapidly design proteins with novel functions will have a significant impact on medicine, biotechnology and synthetic biology. Synthetic genes are becoming a commodity, but integrated approaches have yet to be developed that take full advantage of gene synthesis. We developed a solid-phase gene synthesis method based on asymmetric primer extension (APE) and coupled this process directly to high-throughput, on-chip protein expression, purification and characterization (via mechanically induced trapping of molecular interactions, MITOMI). By completely circumventing molecular cloning and cell-based steps, APE-MITOMI reduces the time between protein design and quantitative characterization to 3-4 days. With APE-MITOMI we synthesized and characterized over 400 zinc-finger (ZF) transcription factors (TF), showing that although ZF TFs can be readily engineered to recognize a particular DNA sequence, engineering the precise binding energy landscape remains challenging. We also found that it is possible to engineer ZF-DNA affinity precisely and independently of sequence specificity and that in silico modeling can explain some of the observed affinity differences. APE-MITOMI is a generic approach that should facilitate fundamental studies in protein biophysics, and protein design/engineering.

  17. MannDB - a microbial database of automated protein sequence analyses and evidence integration for protein characterization.

    PubMed

    Zhou, Carol L Ecale; Lam, Marisa W; Smith, Jason R; Zemla, Adam T; Dyer, Matthew D; Kuczmarski, Thomas A; Vitalis, Elizabeth A; Slezak, Thomas R

    2006-10-17

    MannDB was created to meet a need for rapid, comprehensive automated protein sequence analyses to support selection of proteins suitable as targets for driving the development of reagents for pathogen or protein toxin detection. Because a large number of open-source tools were needed, it was necessary to produce a software system to scale the computations for whole-proteome analysis. Thus, we built a fully automated system for executing software tools and for storage, integration, and display of automated protein sequence analysis and annotation data. MannDB is a relational database that organizes data resulting from fully automated, high-throughput protein-sequence analyses using open-source tools. Types of analyses provided include predictions of cleavage, chemical properties, classification, features, functional assignment, post-translational modifications, motifs, antigenicity, and secondary structure. Proteomes (lists of hypothetical and known proteins) are downloaded and parsed from Genbank and then inserted into MannDB, and annotations from SwissProt are downloaded when identifiers are found in the Genbank entry or when identical sequences are identified. Currently 36 open-source tools are run against MannDB protein sequences either on local systems or by means of batch submission to external servers. In addition, BLAST against protein entries in MvirDB, our database of microbial virulence factors, is performed. A web client browser enables viewing of computational results and downloaded annotations, and a query tool enables structured and free-text search capabilities. When available, links to external databases, including MvirDB, are provided. MannDB contains whole-proteome analyses for at least one representative organism from each category of biological threat organism listed by APHIS, CDC, HHS, NIAID, USDA, USFDA, and WHO. MannDB comprises a large number of genomes and comprehensive protein sequence analyses representing organisms listed as high

  18. Effect of Acyclovir on Viral Protein Synthesis in Cells Infected with Herpes Simplex Virus Type 1

    PubMed Central

    Furman, Phillip A.; McGuirt, Paul V.

    1983-01-01

    The effect of the antiviral agent 9-(2-hydroxyethoxymethyl)guanine (acyclovir) on herpes simplex virus type 1 protein synthesis during virus replication was examined. Treatment of infected cells with acyclovir markedly affected the amounts of the four major glycosylated and certain non-glycosylated viral polypeptides synthesized; other viral polypeptides were made in normal amounts. The reduced amount of late protein synthesis was most likely due to the inhibition of progeny viral DNA synthesis by acyclovir. Images PMID:6301368

  19. Examination of protein degradation in continuous flow, microbial electrolysis cells treating fermentation wastewater.

    PubMed

    Nam, Joo-Youn; Yates, Matthew D; Zaybak, Zehra; Logan, Bruce E

    2014-11-01

    Cellulose fermentation wastewaters (FWWs) contain short chain volatile fatty acids and alcohols, but they also have high concentrations of proteins. Hydrogen gas production from FWW was examined using continuous flow microbial electrolysis cells (MECs), with a focus on fate of the protein. H2 production rates were 0.49±0.05 m(3)/m(3)-d for the FWW, compared to 0.63±0.02 m(3)/m(3)-d using a synthetic wastewater containing only acetate (applied potential of 0.9 V). Total organic matter removal was 76±6% for the FWW, compared to 87±5% for acetate. The MEC effluent became relatively enriched in protein (69%) compared to that in the original FWW (19%). Protein was completely removed using higher applied voltages (1.0 or 1.2 V), but current generation was erratic due to more positive anode potentials (-113±38 mV, Eap=1.2V; -338±38 mV, 1.0 V; -0.426±4 mV, 0.9V). Bacteria on the anodes with FWW were primarily Deltaproteobacteria, while Archaea were predominantly Methanobacterium. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Optimization of the production of shrimp waste protein hydrolysate using microbial proteases adopting response surface methodology.

    PubMed

    Dey, Satya S; Dora, Krushna Chandra

    2014-01-01

    Protein hydrolysates were produced from shrimp waste mainly comprising head and shell of Penaeus monodon by enzymatic hydrolysis for 90 min using four microbial proteases (Alcalase, Neutrase, Protamex, Flavourzyme) where PR(%) and DH (%) of respective enzymes were compared to select best of the lot. Alcalase, which showed the best result, was used to optimize hydrolysis conditions for shrimp waste hydrolysis by response surface methodology using a central composite design. A model equation was proposed to determine effects of temperature, pH, enzyme/substrate ratio and time on DH where optimum values found to be 59.37 °C, 8.25, 1.84% and 84.42 min. for maximum degree of hydrolysis 33.13% respectively. The model showed a good fit in experimental data because 92.13% of the variability within the range of values studied could be explained by it. The protein hydrolysate obtained contained high protein content (72.3%) and amino acid (529.93 mg/gm) of which essential amino acid and flavour amino acid were was 54.67-55.93% and 39.27-38.32% respectively. Protein efficiency ratio (PER) (2.99) and chemical score (1.05) of hydrolysate was suitable enough to recommend as a functional food additive.

  1. Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis

    PubMed Central

    Hong, Seok Hoon; Kwon, Yong-Chan; Jewett, Michael C.

    2014-01-01

    Incorporating non-standard amino acids (NSAAs) into proteins enables new chemical properties, new structures, and new functions. In recent years, improvements in cell-free protein synthesis (CFPS) systems have opened the way to accurate and efficient incorporation of NSAAs into proteins. The driving force behind this development has been three-fold. First, a technical renaissance has enabled high-yielding (>1 g/L) and long-lasting (>10 h in batch operation) CFPS in systems derived from Escherichia coli. Second, the efficiency of orthogonal translation systems (OTSs) has improved. Third, the open nature of the CFPS platform has brought about an unprecedented level of control and freedom of design. Here, we review recent developments in CFPS platforms designed to precisely incorporate NSAAs. In the coming years, we anticipate that CFPS systems will impact efforts to elucidate structure/function relationships of proteins and to make biomaterials and sequence-defined biopolymers for medical and industrial applications. PMID:24959531

  2. On the Role of Hippocampal Protein Synthesis in the Consolidation and Reconsolidation of Object Recognition Memory

    ERIC Educational Resources Information Center

    Rossato, Janine I.; Bevilaqua, Lia R. M.; Myskiw, Jociane C.; Medina, Jorge H.; Izquierdo, Ivan; Cammarota, Martin

    2007-01-01

    Upon retrieval, consolidated memories are again rendered vulnerable to the action of metabolic blockers, notably protein synthesis inhibitors. This has led to the hypothesis that memories are reconsolidated at the time of retrieval, and that this depends on protein synthesis. Ample evidence indicates that the hippocampus plays a key role both in…

  3. Recalling an Aversive Experience by Day-Old Chicks Is Not Dependent on Somatic Protein Synthesis

    ERIC Educational Resources Information Center

    Mileusnic, Radmila; Lancashire, Christine L.; Rose, Steven P. R.

    2005-01-01

    Long-term memory is dependent on protein synthesis and inhibiting such synthesis following training results in amnesia for the task. Proteins synthesized during training must be transported to the synapse and disrupting microtubules with Colchicines, and hence, blocking transport, results in transient amnesia. Reactivating memory for a previously…

  4. Social Recognition Memory Requires Two Stages of Protein Synthesis in Mice

    ERIC Educational Resources Information Center

    Wolf, Gerald; Engelmann, Mario; Richter, Karin

    2005-01-01

    Olfactory recognition memory was tested in adult male mice using a social discrimination task. The testing was conducted to begin to characterize the role of protein synthesis and the specific brain regions associated with activity in this task. Long-term olfactory recognition memory was blocked when the protein synthesis inhibitor anisomycin was…

  5. Translate to divide: сontrol of the cell cycle by protein synthesis

    PubMed Central

    Polymenis, Michael; Aramayo, Rodolfo

    2015-01-01

    Protein synthesis underpins much of cell growth and, consequently, cell multiplication. Understanding how proliferating cells commit and progress into the cell cycle requires knowing not only which proteins need to be synthesized, but also what determines their rate of synthesis during cell division. PMID:28357283

  6. Feeding rapidly stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing translation initiation

    USDA-ARS?s Scientific Manuscript database

    Food consumption increases protein synthesis in most tissues by promoting translation initiation, and in the neonate, this increase is greatest in skeletal muscle. In this study, we aimed to identify the currently unknown time course of changes in the rate of protein synthesis and the activation of ...

  7. On the Role of Hippocampal Protein Synthesis in the Consolidation and Reconsolidation of Object Recognition Memory

    ERIC Educational Resources Information Center

    Rossato, Janine I.; Bevilaqua, Lia R. M.; Myskiw, Jociane C.; Medina, Jorge H.; Izquierdo, Ivan; Cammarota, Martin

    2007-01-01

    Upon retrieval, consolidated memories are again rendered vulnerable to the action of metabolic blockers, notably protein synthesis inhibitors. This has led to the hypothesis that memories are reconsolidated at the time of retrieval, and that this depends on protein synthesis. Ample evidence indicates that the hippocampus plays a key role both in…

  8. Recalling an Aversive Experience by Day-Old Chicks Is Not Dependent on Somatic Protein Synthesis

    ERIC Educational Resources Information Center

    Mileusnic, Radmila; Lancashire, Christine L.; Rose, Steven P. R.

    2005-01-01

    Long-term memory is dependent on protein synthesis and inhibiting such synthesis following training results in amnesia for the task. Proteins synthesized during training must be transported to the synapse and disrupting microtubules with Colchicines, and hence, blocking transport, results in transient amnesia. Reactivating memory for a previously…

  9. Social Recognition Memory Requires Two Stages of Protein Synthesis in Mice

    ERIC Educational Resources Information Center

    Wolf, Gerald; Engelmann, Mario; Richter, Karin

    2005-01-01

    Olfactory recognition memory was tested in adult male mice using a social discrimination task. The testing was conducted to begin to characterize the role of protein synthesis and the specific brain regions associated with activity in this task. Long-term olfactory recognition memory was blocked when the protein synthesis inhibitor anisomycin was…

  10. Post-prandial changes in protein synthesis in red drum (Sciaenops ocellatus) larvae.

    PubMed

    McCarthy, Ian D; Fuiman, Lee A

    2011-06-01

    Protein synthesis is one of the major energy-consuming processes in all living organisms. Post-prandial changes in protein synthesis have been studied in a range of animal taxa but have been little studied in fish larvae. Using the flooding-dose method, we measured post-prandial changes in whole-body rates of protein synthesis in regularly fed red drum Sciaenops ocellatus (Linnaeus) larvae for 24-28 h following their daily meal. Fractional rates of protein synthesis increased from a baseline (pre-feeding) rate of 16% day(-1) to a post-prandial peak of 48% day(-1) ca. 8 h after feeding before declining to 12% day(-1) after 24-28 h. The overall mean daily rate of protein synthesis was calculated as 27% day(-1). Although suggested as energetically impossible in larval poikilotherms, our results show that rates in excess of 30% day(-1) can be attained by larval fishes for a few hours but are not sustained. The average daily energetic cost of protein synthesis was estimated as 34% of daily total oxygen consumption, ranging from 19% immediately before feeding to 61% during the post-prandial peak in protein synthesis. This suggests that during the post-prandial peak, protein synthesis will require a large proportion of the hourly energy production, which, given the limited metabolic scope in fish larvae, may limit the energy that could otherwise be allocated to other energy-costly functions, such as foraging and escape responses.

  11. Differential effects of long-term leucine infusion on tissue protein synthesis in neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Leucine is unique among the amino acids in its ability to promote protein synthesis by activating translation initiation via the mammalian target of rapamycin (mTOR) pathway. Previously, we showed that leucine infusion acutely stimulates protein synthesis in fast-twitch glycolytic muscle of neonatal...

  12. Long-term leucine induced stimulation of muscle protein synthesis is amino acid dependent

    USDA-ARS?s Scientific Manuscript database

    Infusing leucine for 1 h increases skeletal muscle protein synthesis in the neonate, but this is not sustained for 2 h unless the corresponding fall in amino acids is prevented. This study aimed to determine whether a continuous leucine infusion can stimulate protein synthesis for a prolonged period...

  13. Prolonged leucine infusion differentially affects tissue protein synthesis in neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Leucine (Leu) acutely stimulates protein synthesis by activating the mammalian target of rapamycin complex 1 (mTORC1) pathway. To determine whether Leu can stimulate protein synthesis in muscles of different fiber types and visceral tissues of the neonate for a prolonged period and to determine the ...

  14. Effects of aging and life-prolonging diet on thyroid regulation of protein synthesis.

    PubMed

    Gromakova, I A; Konovalenko, O A

    2004-03-01

    The effect of thyroxin on the intensity of protein synthesis in rats of different age was studied during natural aging and in rats maintained on a low-caloric diet inhibiting aging. The intensity of protein synthesis decreased and the reaction to hormonal stimulus was absent in animals fed life-prolonging diet.

  15. Effect of dietary protein quality and feeding level on milk secretion and mammary protein synthesis in the rat

    SciTech Connect

    Sampson, D.A.; Jansen, G.R.

    1985-04-01

    Protein synthesis was studied in mammary tissue of rats fed diets deficient in protein quality and/or restricted in food intake throughout gestation and lactation. Diets containing 25% wheat gluten (WG), wheat gluten plus lysine and threonine (WGLT), or casein (C) were pair-fed from conception until day 15 of lactation at 100% or 85% of WG ad libitum consumption (PF100 and PF85, respectively). A seventh group was fed C ad libitum. Rates of protein synthesis were measured in vivo at day 15 of lactation from incorporation of (3-/sup 3/H)phenylalanine. At both PF100 and PF85, fractional and absolute rates of mammary gland protein synthesis were two- to three-fold higher in rats fed C than in those fed WG. Pup weights showed similar treatment effects. Both mammary protein synthesis rates and pup weights were significantly higher in rats fed C at PF85 than rats fed WG ad libitum. Food restriction from PF100 to PF85 depressed pup weights and mammary protein synthesis rates in rats fed WGLT, but had no effect in rats fed WG. These results demonstrate that when food intake is restricted, improvement of protein quality of the maternal diet increases milk output in the rat in association with increased rates of mammary protein synthesis.

  16. Short-Term Protein Stable Isotope Probing of Microbial Communities to Associate Functions with Taxa (Invited)

    NASA Astrophysics Data System (ADS)

    Lipton, M. S.; Slysz, G. W.; Steinke, L. A.; Ward, D. M.; Klatt, C. G.; Clauss, T. R.; Purvine, S. O.; Anderson, G. A.; Payne, S. H.; Bryant, D. A.

    2013-12-01

    Determining which taxa in a community perform which functions is essential for understanding metabolite fluxes and metabolic interactions among community members. Specific taxa will alter their metabolism in order to acclimate to changing environmental factors such as light through the diel cycle, changing temperature and other factors. Monitoring which proteins are being expressed, and the quantitative protein expression patterns in the individual taxa as a response to external stimuli is key to understanding these mechanisms. Protein stable isotope probing (Pro-SIP) has strong potential for revealing key metabolizing taxa in complex microbial communities. In Pro-SIP studies, label incorporation is determined by the extent of the change in the isotopic profile of peptides when measured by mass spectrometry. While most Pro-SIP work to date has been performed under controlled laboratory conditions to allow extensive isotope labeling of the target organism(s), these techniques have not been applied to short term in situ studies due to the small degree of partial labeling of the proteins. We have applied Pro-SIP to study the assimilation of a labeled substrate into proteins to determine which taxa are responsible for sequestration of dissolved inorganic carbon in microbial mats associated with the alkaline siliceous hot springs of Yellowstone National Park. This community is fueled by sunlight as it transitions from dark to light; the aim was to understand the light-dependent pathway of inorganic carbon incorporation into different taxa during the early morning hours when the mat was in low light and anoxic. Each mat sample was incubated with 13C-bicarbonate for 3 h. Substrate assimilation was determined through standard proteomic techniques along with the use of SIPPER, a collection of algorithms that sensitively measure small changes in peptide isotopic patterns, allowing the determination of which taxa assimilated the substrate during this period. For the

  17. Assessment of protein synthesis in highly aerobic canine species at the onset and during exercise training

    PubMed Central

    Ehrlicher, Sarah E.; Drake, Joshua C.; Peelor, Frederick F.; Biela, Laurie M.; Pratt-Phillips, Shannon; Davis, Michael; Hamilton, Karyn L.

    2015-01-01

    Canis lupus familiaris, the domesticated dog, is capable of extreme endurance performance. The ability to perform sustained aerobic exercise is dependent on a well-developed mitochondrial reticulum. In this study we examined the cumulative muscle protein and DNA synthesis in groups of athletic dogs at the onset of an exercise training program and following a strenuous exercise training program. We hypothesized that both at the onset and during an exercise training program there would be greater mitochondrial protein synthesis rates compared with sedentary control with no difference in mixed or cytoplasmic protein synthesis rates. Protein synthetic rates of three protein fractions and DNA synthesis were determined over 1 wk using 2H2O in competitive Alaskan Huskies and Labrador Retrievers trained for explosive device detection. Both groups of dogs had very high rates of skeletal muscle protein synthesis in the sedentary state [Alaskan Huskies: Mixed = 2.28 ± 0.12, cytoplasmic (Cyto) = 2.91 ± 0.10, and mitochondrial (Mito) = 2.62 ± 0.07; Labrador Retrievers: Mixed = 3.88 ± 0.37, Cyto = 3.85 ± 0.06, and Mito = 2.92 ± 0.20%/day]. Mitochondrial (Mito) protein synthesis rates did not increase at the onset of an exercise training program. Exercise-trained dogs maintained Mito protein synthesis during exercise training when mixed (Mixed) and cytosolic (Cyto) fractions decreased, and this coincided with a decrease in p-RpS6 but also a decrease in p-ACC signaling. Contrary to our hypothesis, canines did not have large increases in mitochondrial protein synthesis at the onset or during an exercise training program. However, dogs have a high rate of protein synthesis compared with humans that perhaps does not necessitate an extra increase in protein synthesis at the onset of aerobic exercise training. PMID:25614602

  18. Assessment of protein synthesis in highly aerobic canine species at the onset and during exercise training.

    PubMed

    Miller, Benjamin F; Ehrlicher, Sarah E; Drake, Joshua C; Peelor, Frederick F; Biela, Laurie M; Pratt-Phillips, Shannon; Davis, Michael; Hamilton, Karyn L

    2015-04-01

    Canis lupus familiaris, the domesticated dog, is capable of extreme endurance performance. The ability to perform sustained aerobic exercise is dependent on a well-developed mitochondrial reticulum. In this study we examined the cumulative muscle protein and DNA synthesis in groups of athletic dogs at the onset of an exercise training program and following a strenuous exercise training program. We hypothesized that both at the onset and during an exercise training program there would be greater mitochondrial protein synthesis rates compared with sedentary control with no difference in mixed or cytoplasmic protein synthesis rates. Protein synthetic rates of three protein fractions and DNA synthesis were determined over 1 wk using (2)H2O in competitive Alaskan Huskies and Labrador Retrievers trained for explosive device detection. Both groups of dogs had very high rates of skeletal muscle protein synthesis in the sedentary state [Alaskan Huskies: Mixed = 2.28 ± 0.12, cytoplasmic (Cyto) = 2.91 ± 0.10, and mitochondrial (Mito) = 2.62 ± 0.07; Labrador Retrievers: Mixed = 3.88 ± 0.37, Cyto = 3.85 ± 0.06, and Mito = 2.92 ± 0.20%/day]. Mitochondrial (Mito) protein synthesis rates did not increase at the onset of an exercise training program. Exercise-trained dogs maintained Mito protein synthesis during exercise training when mixed (Mixed) and cytosolic (Cyto) fractions decreased, and this coincided with a decrease in p-RpS6 but also a decrease in p-ACC signaling. Contrary to our hypothesis, canines did not have large increases in mitochondrial protein synthesis at the onset or during an exercise training program. However, dogs have a high rate of protein synthesis compared with humans that perhaps does not necessitate an extra increase in protein synthesis at the onset of aerobic exercise training. Copyright © 2015 the American Physiological Society.

  19. Robust Chemical Synthesis of Membrane Proteins through a General Method of Removable Backbone Modification.

    PubMed

    Zheng, Ji-Shen; He, Yao; Zuo, Chao; Cai, Xiao-Ying; Tang, Shan; Wang, Zhipeng A; Zhang, Long-Hua; Tian, Chang-Lin; Liu, Lei

    2016-03-16

    Chemical protein synthesis can provide access to proteins with post-translational modifications or site-specific labelings. Although this technology is finding increasing applications in the studies of water-soluble globular proteins, chemical synthesis of membrane proteins remains elusive. In this report, a general and robust removable backbone modification (RBM) method is developed for the chemical synthesis of membrane proteins. This method uses an activated O-to-N acyl transfer auxiliary to install in the Fmoc solid-phase peptide synthesis process a RBM group with switchable reactivity toward trifluoroacetic acid. The method can be applied to versatile membrane proteins because the RBM group can be placed at any primary amino acid. With RBM, the membrane proteins and their segments behave almost as if they were water-soluble peptides and can be easily handled in the process of ligation, purification, and mass characterizations. After the full-length protein is assembled, the RBM group can be readily removed by trifluoroacetic acid. The efficiency and usefulness of the new method has been demonstrated by the successful synthesis of a two-transmembrane-domain protein (HCV p7 ion channel) with site-specific isotopic labeling and a four-transmembrane-domain protein (multidrug resistance transporter EmrE). This method enables practical synthesis of small- to medium-sized membrane proteins or membrane protein domains for biochemical and biophysical studies.

  20. Whey protein isolate edible films with essential oils incorporated to improve the microbial quality of poultry.

    PubMed

    Fernández-Pan, Idoya; Mendoza, Mauricio; Maté, Juan I

    2013-09-01

    Whey protein isolate edible films with oregano or clove essential oils (EOs) incorporated as natural antimicrobials have been developed, with the aim of enhancing the microbial quality of poultry. The effectiveness of the films was determined against both the whole and selected microbiota developed during different periods of cold storage on the surface of skinless chicken breast. Tests were conducted by using both turbidimetric and agar disc diffusion methods. The antimicrobial edible films developed showed high effectiveness against the main spoilers developed on the surface of skinless chicken breasts cold-stored for 8 days. The films based on oregano EO showed greater effectiveness than those based on clove EO. Still, clove EO could be part of an effective antimicrobial edible film. Enterobacteriaceae was the most susceptible to the effect of the films when lower concentrations of EO were incorporated. The largest inhibition surfaces obtained were provoked by films with the highest concentration of oregano EO incorporated against lactic acid bacteria. The antimicrobial edible films developed in this study inhibited the growth of the microbial populations that developed through storage of the chicken breast and caused its spoilage. The results of this research have direct application in the food industry to enhance the control of the development of spoilers such as Pseudomonas spp. or lactic acid bacteria. © 2013 Society of Chemical Industry.

  1. Effects of Amino Acids on Protein Synthesis by Cellular and Subcellular Preparations from Ischaemic Livers

    PubMed Central

    Cajone, F.; Schiaffonati, L.

    1974-01-01

    The effects of liver ischaemia on protein synthesis have been studied in tissue slices from ischaemic livers, incubated in vitro. There is a rapid decrease in protein synthesis after the onset of ischaemia, which is more severe in slices than in any cell-free preparation. Liver slices from ischaemic livers do not respond to the presence of a full complement of amino acids with an increase in protein synthesis. The presence of amino acids in the incubation medium does not protect the state of aggregation of the polysomes in the slices from ischaemic livers, as occurs in normal liver slices. Isolated ribosomes, obtained from ischaemic livers and incubated with normal purified factors, show a reduced—but still evident—increase in their protein synthesis in the presence of a full complement of amino acids. This suggests that the decay of cell sap factors also plays a role in the impairment of protein synthesis caused by ischaemia. PMID:4447791

  2. Purification of eukaryotic translation factors from wheat germ for reconstitution of protein synthesis.

    PubMed

    Nagano, Hikaru; Sugihara, Shouhei; Takagi, Hisanori; Ogasawara, Tomio; Endo, Yaeta; Takai, Kazuyuki

    2008-01-01

    The wheat germ cell-free protein synthesis is a powerful and versatile method for preparation of proteins based on the accumulated DNA sequence information. As the cell extract used for it contains many factors that are unknown or do not directly involve in protein synthesis, details of the translation reaction is yet to be understood. Therefore, we have decided to try reconstitution of protein synthesis, which would be useful for better understanding of the mechanisms supporting eukaryotic protein synthesis and translational regulation and probably applicable to synthetic biology. In the present study, we fractionated an extract from crude wheat germ according to published protocols to obtain the fractions containing the eukaryotic elongation factors (eEFs) 1A, 1B, and 2. The eEF1A and eEF2 fractions supported polyphenylalanine synthesis.

  3. In vivo downregulation of protein synthesis in the snail Helix apersa during estivation.

    PubMed

    Pakay, Julian L; Withers, Philip C; Hobbs, Andrew A; Guppy, Michael

    2002-07-01

    Protein synthesis is downregulated during metabolic depression in a number of systems where the metabolic depression is effected by obvious extrinsic cues. The metabolic depression of the estivating land snail Helix apersa occurs in the absence of any obvious physiological stress and has an intrinsic component independent of temperature, pH, O(2) status, or osmolality. We show that this metabolic depression is accompanied by a downregulation of protein synthesis in vivo. The rate of protein synthesis decreases in two major tissues during estivation: to 23% and 53% of the awake rate in hepatopancreas and foot muscle, respectively. We show from calculations of the theoretical contribution of protein synthesis to total O(2) consumption that the depression of protein synthesis must be a significant, obligate, in vivo component of metabolic depression in H. aspersa.

  4. N-terminally truncated GADD34 proteins are convenient translation enhancers in a human cell-derived in vitro protein synthesis system.

    PubMed

    Mikami, Satoshi; Kobayashi, Tominari; Machida, Kodai; Masutani, Mamiko; Yokoyama, Shigeyuki; Imataka, Hiroaki

    2010-07-01

    Human cell-derived in vitro protein synthesis systems are useful for the production of recombinant proteins. Productivity can be increased by supplementation with GADD34, a protein that is difficult to express in and purify from E. coli. Deletion of the N-terminal 120 or 240 amino acids of GADD34 improves recovery of this protein from E. coli without compromising its ability to boost protein synthesis in an in vitro protein synthesis system. The use of N-terminally truncated GADD34 proteins in place of full-length GADD34 should improve the utility of human cell-based cell-free protein synthesis systems.

  5. Repressed synthesis of ribosomal proteins generates protein-specific cell cycle and morphological phenotypes

    PubMed Central

    Thapa, Mamata; Bommakanti, Ananth; Shamsuzzaman, Md.; Gregory, Brian; Samsel, Leigh; Zengel, Janice M.; Lindahl, Lasse

    2013-01-01

    The biogenesis of ribosomes is coordinated with cell growth and proliferation. Distortion of the coordinated synthesis of ribosomal components affects not only ribosome formation, but also cell fate. However, the connection between ribosome biogenesis and cell fate is not well understood. To establish a model system for inquiries into these processes, we systematically analyzed cell cycle progression, cell morphology, and bud site selection after repression of 54 individual ribosomal protein (r-protein) genes in Saccharomyces cerevisiae. We found that repression of nine 60S r-protein genes results in arrest in the G2/M phase, whereas repression of nine other 60S and 22 40S r-protein genes causes arrest in the G1 phase. Furthermore, bud morphology changes after repression of some r-protein genes. For example, very elongated buds form after repression of seven 60S r-protein genes. These genes overlap with, but are not identical to, those causing the G2/M cell cycle phenotype. Finally, repression of most r-protein genes results in changed sites of bud formation. Strikingly, the r-proteins whose repression generates similar effects on cell cycle progression cluster in the ribosome physical structure, suggesting that different topological areas of the precursor and/or mature ribosome are mechanistically connected to separate aspects of the cell cycle. PMID:24109599

  6. Repressed synthesis of ribosomal proteins generates protein-specific cell cycle and morphological phenotypes.

    PubMed

    Thapa, Mamata; Bommakanti, Ananth; Shamsuzzaman, Md; Gregory, Brian; Samsel, Leigh; Zengel, Janice M; Lindahl, Lasse

    2013-12-01

    The biogenesis of ribosomes is coordinated with cell growth and proliferation. Distortion of the coordinated synthesis of ribosomal components affects not only ribosome formation, but also cell fate. However, the connection between ribosome biogenesis and cell fate is not well understood. To establish a model system for inquiries into these processes, we systematically analyzed cell cycle progression, cell morphology, and bud site selection after repression of 54 individual ribosomal protein (r-protein) genes in Saccharomyces cerevisiae. We found that repression of nine 60S r-protein genes results in arrest in the G2/M phase, whereas repression of nine other 60S and 22 40S r-protein genes causes arrest in the G1 phase. Furthermore, bud morphology changes after repression of some r-protein genes. For example, very elongated buds form after repression of seven 60S r-protein genes. These genes overlap with, but are not identical to, those causing the G2/M cell cycle phenotype. Finally, repression of most r-protein genes results in changed sites of bud formation. Strikingly, the r-proteins whose repression generates similar effects on cell cycle progression cluster in the ribosome physical structure, suggesting that different topological areas of the precursor and/or mature ribosome are mechanistically connected to separate aspects of the cell cycle.

  7. Optimizing the measurement of mitochondrial protein synthesis in human skeletal muscle.

    PubMed

    Burd, Nicholas A; Tardif, Nicolas; Rooyackers, Olav; van Loon, Luc J C

    2015-01-01

    The measurement of mitochondrial protein synthesis after food ingestion, contractile activity, and/or disease is often used to provide insight into skeletal muscle adaptations that occur in the longer term. Studies have shown that protein ingestion stimulates mitochondrial protein synthesis in human skeletal muscle. Minor differences in the stimulation of mitochondrial protein synthesis occur after a single bout of resistance or endurance exercise. There appear to be no measurable differences in mitochondrial protein synthesis between critically ill patients and aged-matched controls. However, the mitochondrial protein synthetic response is reduced at a more advanced age. In this paper, we discuss the challenges involved in the measurement of human skeletal muscle mitochondrial protein synthesis rates based on stable isotope amino acid tracer methods. Practical guidelines are discussed to improve the reliability of the measurement of mitochondrial protein synthesis rates. The value of the measurement of mitochondrial protein synthesis after a single meal or exercise bout on the prediction of the longer term skeletal muscle mass and performance outcomes in both the healthy and disease populations requires more work, but we emphasize that the measurements need to be reliable to be of any value to the field.

  8. Alphavirus RNA synthesis and non-structural protein functions

    PubMed Central

    Rupp, Jonathan C.; Sokoloski, Kevin J.; Gebhart, Natasha N.

    2015-01-01

    The members of the genus Alphavirus are positive-sense RNA viruses, which are predominantly transmitted to vertebrates by a mosquito vector. Alphavirus disease in humans can be severely debilitating, and depending on the particular viral species, infection may result in encephalitis and possibly death. In recent years, alphaviruses have received significant attention from public health authorities as a consequence of the dramatic emergence of chikungunya virus in the Indian Ocean islands and the Caribbean. Currently, no safe, approved or effective vaccine or antiviral intervention exists for human alphavirus infection. The molecular biology of alphavirus RNA synthesis has been well studied in a few species of the genus and represents a general target for antiviral drug development. This review describes what is currently understood about the regulation of alphavirus RNA synthesis, the roles of the viral non-structural proteins in this process and the functions of cis-acting RNA elements in replication, and points to open questions within the field. PMID:26219641

  9. Arginine depletion by arginine deiminase does not affect whole protein metabolism or muscle fractional protein synthesis rate in mice.

    PubMed

    Marini, Juan C; Didelija, Inka Cajo

    2015-01-01

    Due to the absolute need for arginine that certain cancer cells have, arginine depletion is a therapy in clinical trials to treat several types of cancers. Arginine is an amino acids utilized not only as a precursor for other important molecules, but also for protein synthesis. Because arginine depletion can potentially exacerbate the progressive loss of body weight, and especially lean body mass, in cancer patients we determined the effect of arginine depletion by pegylated arginine deiminase (ADI-PEG 20) on whole body protein synthesis and fractional protein synthesis rate in multiple tissues of mice. ADI-PEG 20 successfully depleted circulating arginine (<1 μmol/L), and increased citrulline concentration more than tenfold. Body weight and body composition, however, were not affected by ADI-PEG 20. Despite the depletion of arginine, whole body protein synthesis and breakdown were maintained in the ADI-PEG 20 treated mice. The fractional protein synthesis rate of muscle was also not affected by arginine depletion. Most tissues (liver, kidney, spleen, heart, lungs, stomach, small and large intestine, pancreas) were able to maintain their fractional protein synthesis rate; however, the fractional protein synthesis rate of brain, thymus and testicles was reduced due to the ADI-PEG 20 treatment. Furthermore, these results were confirmed by the incorporation of ureido [14C]citrulline, which indicate the local conversion into arginine, into protein. In conclusion, the intracellular recycling pathway of citrulline is able to provide enough arginine to maintain protein synthesis rate and prevent the loss of lean body mass and body weight.

  10. Advancing understanding of microbial bioenergy conversion processes by activity-based protein profiling

    SciTech Connect

    Liu, Yun; Fredrickson, James K.; Sadler, Natalie C.; Nandhikonda, Premchendar; Smith, Richard D.; Wright, Aaron T.

    2015-09-25

    Here, the development of renewable biofuels is a global priority, but success will require novel technologies that greatly improve our understanding of microbial systems biology. An approach with great promise in enabling functional characterization of microbes is activity-based protein profiling (ABPP), which employs chemical probes to directly measure enzyme function in discrete enzyme classes in vivo and/or in vitro, thereby facilitating the rapid discovery of new biocatalysts and enabling much improved biofuel production platforms. We review general design strategies in ABPP, and highlight recent advances that are or could be pivotal to biofuels processes including applications of ABPP to cellulosic bioethanol, biodiesel, and phototrophic production of hydrocarbons. We also examine the key challenges and opportunities of ABPP in renewable biofuels research. The integration of ABPP with molecular and systems biology approaches will shed new insight on the catalytic and regulatory mechanisms of functional enzymes and their synergistic effects in the field of biofuels production.

  11. Altered Protein Synthesis is a Trigger for Long-term Memory Formation

    PubMed Central

    Klann, Eric; Sweatt, J. David

    2008-01-01

    Summary There is ongoing debate concerning whether new protein synthesis is necessary for, or even contributes to, memory formation and storage. This review summarizes a contemporary model proposing a role for altered protein synthesis in memory formation and its subsequent stabilization. One defining aspect of the model is that altered protein synthesis serves as a trigger for memory consolidation. Thus, we propose that specific alterations in the pattern of neuronal protein translation serve as an initial event in long-term memory formation. These specific alterations in protein read-out result in the formation of a protein complex that then serves as a nidus for subsequent perpetuating reinforcement by a positive feedback mechanism. The model proposes this scenario as a minimal but requisite component for long-term memory formation. Our description specifies three aspects of prevailing scenarios for the role of altered protein synthesis in memory that we feel will help clarify what, precisely, is typically proposed as the role for protein translation in memory formation. First, that a relatively short initial time window exists wherein specific alterations in the pattern of proteins translated (not overall protein synthesis) is involved in initializing the engram. Second, that a self-perpetuating positive feedback mechanism maintains the altered pattern of protein expression (synthesis or recruitment) locally. Third, that other than the formation and subsequent perpetuation of the unique initializing proteins, ongoing constitutive protein synthesis is all that is minimally necessary for formation and maintenance of the engram. We feel that a clear delineation of these three principles will assist in interpreting the available experimental data, and propose that the available data are consistent with a role for protein synthesis in memory. PMID:17919940

  12. Cryopreservation of Plant Mitochondria as a Tool for Protein Import or in Organello Protein Synthesis Studies.

    PubMed Central

    Schieber, O.; Dietrich, A.; Marechal-Drouard, L.

    1994-01-01

    Cryopreserved chloroplasts and thylakoids have recently been proven to be suitable for protein import and integration assays. The possibility of recovering intact plant mitochondria after storage would also facilitate a wide range of investigations that are currently underway on the molecular biology of these organelles, e.g. mitochondrial transcription, RNA editing, in organello protein synthesis, and protein or transfer RNA import. Therefore, we addressed the question whether cryopreservation of isolated plant mitochondria was also possible. Tobacco (Nicotiana tabacum) or broad bean (Vicia faba) mitochondria were quick frozen and stored in liquid nitrogen in the presence of various concentrations of ethylene glycol as a cryoprotectant. After thawing, up to 90% of the mitochondria stored in 5 to 10% ethylene glycol appeared to retain an intact outer membrane and normal oxidative phosphorylation activity. Their ultrastructural aspect, observed by electron microscopy, was similar to that of freshly prepared mitochondria. Furthermore, efficient in organello protein synthesis was carried out with mitochondria stored in the presence of 7.5% ethylene glycol. Finally, the precursor of the [beta] subunit of the mitochondrial F1-ATPase from Nicotiana plumbaginifolia was successfully translocated into V. faba cryopreserved mitochondria and processed. These data demonstrate that plant mitochondria cryopreserved under the conditions described here remain functional and can be used for a variety of physiological and biochemical studies. PMID:12232314

  13. Design, synthesis, and evaluation of an alpha-helix mimetic library targeting protein-protein interactions.

    PubMed

    Shaginian, Alex; Whitby, Landon R; Hong, Sukwon; Hwang, Inkyu; Farooqi, Bilal; Searcey, Mark; Chen, Jiandong; Vogt, Peter K; Boger, Dale L

    2009-04-22

    The design and solution-phase synthesis of an alpha-helix mimetic library as an integral component of a small-molecule library targeting protein-protein interactions are described. The iterative design, synthesis, and evaluation of the candidate alpha-helix mimetic was initiated from a precedented triaryl template and refined by screening the designs for inhibition of MDM2/p53 binding. Upon identifying a chemically and biologically satisfactory design and consistent with the screening capabilities of academic collaborators, the corresponding complete library was assembled as 400 mixtures of 20 compounds (20 x 20 x 20-mix), where the added subunits are designed to mimic all possible permutations of the naturally occurring i, i + 4, i + 7 amino acid side chains of an alpha-helix. The library (8000 compounds) was prepared using a solution-phase synthetic protocol enlisting acid/base liquid-liquid extractions for purification on a scale that insures its long-term availability for screening campaigns. Screening of the library for inhibition of MDM2/p53 binding not only identified the lead alpha-helix mimetic upon which the library was based, but also suggests that a digestion of the initial screening results that accompany the use of such a comprehensive library can provide insights into the nature of the interaction (e.g., an alpha-helix mediated protein-protein interaction) and define the key residues and their characteristics responsible for recognition.

  14. A unified view of the initiation of protein synthesis.

    PubMed

    Nakamoto, Tokumasa

    2006-03-17

    The mechanism of the initiation of protein synthesis is discussed in terms of two different hypotheses in which each emphasized a different possible element of the process: the Shine-Dalgarno (SD) hypothesis ascribed an essential role to recognition of the SD segment by the ribosomal RNA; it is supported by a variety of experiments but conflicting evidence negates its obligatory nature. In contrast, our hypothesis highlighted the role of the structure of the mRNA and proposes that the initiation codon is selected by virtue of its unique accessibility. The rationale for the importance of accessibility in the selection of the initiation site is discussed. An analysis and a recapitulation of the initiation process and ribosomal specificity are presented. The apparent conflicts with the SD hypothesis are resolved in a unified mechanism where accessibility is the dominant factor.

  15. Testicular proteins, nucleic acids and their synthesis following gamma irradiation

    SciTech Connect

    Bansal, M.R.; Kaul, A.; Nehru, B. )

    1989-01-01

    The effects of two doses (250 and 1000 rads) of local gamma irradiation on testes of adult rats are reported after 1, 2, 4 and 16 weeks. There was a significant increase in DNA content per gm testes at 1 weeks; a gradual decrease at 2 and 4 week intervals was followed by a trend towards recovery at 16 weeks post-irradiation. The rate of synthesis of both DNA and RNA as studied by the incorporation of (3H)- thymidine and (3H)-uridine, showed similar results. Total protein content per gm testis declined with both doses and at all post-irradiation intervals. Histological observation showed loss of spermatogenic cells suggestive of DNA loss.

  16. Design and synthesis of a protein. beta. -turn mimetic

    SciTech Connect

    Olson, G.L.; Voss, M.E.; Hill, D.E.; Kahn, M.; Madison, V.S.; Cook, C.M. )

    1990-01-03

    A nine-membered-ring lactam system (1) has been chosen as a framework for the development of non-peptide molecules to mimic structural features of peptide and protein {beta}-turns. The synthesis of model di- and tetrapeptide mimetics starting from 1,5-cyclooctadiene derivatives is reported. In the model dipeptide mimetic (9), the amide linkages is trans (NMR, X-ray) and functional groups at positions adjacent to the lactam amide bond correspond closely to the side-chain positions of residues i + 1 and i + 2 of classical type II{prime} {beta}-turns. In the model tetrapeptide mimetic (30), all four side chains of low-energy trans amide conformers of the mimetic are well matched to their peptide counterparts.

  17. Competition For Resources in a Model for Protein Synthesis

    NASA Astrophysics Data System (ADS)

    Cook, Larry; Zia, Royce

    2009-03-01

    The Totally Asymmetric Simple Exclusion Process (TASEP) is often used to explore translation during protein synthesis. The particles represent ribosomes that move along mRNA, which is represented by the one-dimensional lattice. Unlike ordinary TASEP where the supply of particles is unlimited, there is a finite number of ribosome in a cell. In addition, there are many genes which compete for this pool of ribosomes. Thus, we are motivated to consider the effects of multiple TASEPs (of varying lengths) coupled to a single, finite reservoir of particles. In particular, the total occupation numbers, the density profiles and the particle currents of individual TASEPs are studied, as the overall reservoir of particles is varied. Both Monte Carlo simulation results and analytic considerations will be presented.

  18. Production of Microbial Biomass Protein from Potato Processing Wastes by Cephalosporium eichhorniae

    PubMed Central

    Stevens, Coleen A.; Gregory, Kenneth F.

    1987-01-01

    The use of Cephalosporium eichhorniae 152 (ATCC 38255) (reclassified as Acremonium alabamense; see Addendum in Proof), a thermophilic, acidophilic, amylolytic fungus, for the conversion of potato processing wastes into microbial protein for use as animal feed was studied. The fungus was not inhibited by α-solanine or β-2-chaconine, antimicrobial compounds in potatoes, or by morpholine or cyclohexylamine (additives to steam used in the peeling process) at levels likely to be encountered in this substrate. Mixed effluent from holding tanks at a potato-processing plant contained about 109 bacteria per ml and inhibited fungal growth. The fungus grew well on fresh potato wastes containing up to 5% total carbohydrate and utilized both starch and protein at 45°C and pH 3.75. On potato homogenate medium containing 2% carbohydrate (about 14% fresh potato) supplemented with monoammonium phosphate (0.506 g/liter) and ferric iron (0.1 g/liter), with pH control (at 3.75) and additional nitrogen supplied by the automatic addition of ammonium hydroxide, typical yields were 0.61 g (dry weight) of product and 0.3 g of crude protein per g of carbohydrate supplied. An aerobic, spore-forming bacterium, related to Bacillus brevis, commonly contaminated nonsterilized batch cultures but was destroyed by heating for 15 min at 100°C. PMID:16347277

  19. ChemCell : a particle-based model of protein chemistry and diffusion in microbial cells.

    SciTech Connect

    Plimpton, Steven James; Slepoy, Alexander

    2003-12-01

    Prokaryotic single-cell microbes are the simplest of all self-sufficient living organisms. Yet microbes create and use much of the molecular machinery present in more complex organisms, and the macro-molecules in microbial cells interact in regulatory, metabolic, and signaling pathways that are prototypical of the reaction networks present in all cells. We have developed a simple simulation model of a prokaryotic cell that treats proteins, protein complexes, and other organic molecules as particles which diffuse via Brownian motion and react with nearby particles in accord with chemical rate equations. The code models protein motion and chemistry within an idealized cellular geometry. It has been used to simulate several simple reaction networks and compared to more idealized models which do not include spatial effects. In this report we describe an initial version of the simulation code that was developed with FY03 funding. We discuss the motivation for the model, highlight its underlying equations, and describe simulations of a 3-stage kinase cascade and a portion of the carbon fixation pathway in the Synechococcus microbe.

  20. Enzymatically catalyzed conjugation of a biodegradable polymer to proteins and small molecules using microbial transglutaminase.

    PubMed

    Besheer, Ahmed; Hertel, Thomas C; Kressler, Jörg; Mäder, Karsten; Pietzsch, Markus

    2011-01-01

    Hydroxyethyl starch (HES) is a water-soluble, biodegradable derivative of starch that is widely used in biomedicine as a plasma volume expander. Due to its favorable properties, HES is currently being investigated at the industrial and academic levels as a biodegradable polymer substitute for polyethylene glycol. To date, only chemical methods have been suggested for HESylation; unfortunately, however, these may have negative effects on protein stability. To address this issue, we have developed an enzymatic method for protein HESylation using recombinant microbial transglutaminase (rMTG). rMTG enzyme is able to catalyze the replacement of the amide ammonia at the γ-position in glutamine residues (acyl donors) with a variety of primary amines (acyl acceptors), including the amino group of lysine (Lys). To convert HES into a suitable substrate for rMTG, the polymer was derivatized with either N-carbobenzyloxy glutaminyl glycine (Z-QG) or hexamethylenediamine to act as an acyl donor or acyl acceptor, respectively. Using SDS-PAGE, it was possible to show that the modified HES successfully coupled to test compounds, proving that it is accepted as a substrate by rMTG. Overall, the enzymatic approach described in this chapter provides a facile route to produce biodegradable polymer-drug and polymer-protein conjugates under relatively mild reaction conditions.

  1. Protein synthesis during the initial phase of the temperature-induced bleaching response in Euglena gracilis

    SciTech Connect

    Ortiz, W. )

    1990-05-01

    Growing cultures of photoheterotrophic Euglena gracilis experience an increase in chlorophyll accumulation during the initial phase of the temperature-induced bleaching response suggesting an increase in the synthesis of plastid components at the bleaching temperature of 33{degree}C. A primary goal of this work was to establish whether an increase in the synthesis of plastid proteins accompanies the observed increase in chlorophyll accumulation. In vivo pulse-labeling experiments with ({sup 35}S)sodium sulfate were carried out with cells grown at room temperature or at 33{degree}C. The synthesis of a number of plastid polypeptides of nucleocytoplasmic origin, including some presumably novel polypeptides, increased in cultures treated for 15 hours at 33{degree}C. In contrast, while synthesis of thylakoid proteins by the plastid protein synthesis machinery decreased modestly, synthesis of the large subunit of the enzyme ribulosebisphosphate carboxylase was strongly affected at the elevated temperature. Synthesis of novel plastid-encoded polypeptides was not induced at the bleaching temperature. It is concluded that protein synthesis in plastids declines during the initial phase of the temperature response in Euglena despite an overall increase in cellular protein synthesis and an increase in chlorophyll accumulation per cell.

  2. Differential effects of insulin on peripheral and visceral tissue protein synthesis in neonatal pigs.

    PubMed

    Davis, T A; Fiorotto, M L; Beckett, P R; Burrin, D G; Reeds, P J; Wray-Cahen, D; Nguyen, H V

    2001-05-01

    We recently demonstrated in neonatal pigs that, with amino acids and glucose maintained at fasting levels, the stimulation of protein synthesis in longissimus dorsi muscle with feeding can be reproduced by a physiological rise in insulin alone. In the current report, we determine whether the response of protein synthesis to insulin in the neonatal pig is 1) present in muscles of different fiber types, 2) proportional in myofibrillar and sarcoplasmic proteins, 3) associated with increased translational efficiency and ribosome number, and 4) present in other peripheral tissues and in viscera. Hyperinsulinemic-euglycemic-amino acid clamps were performed in 7- and 26-day-old pigs infused with 0, 30, 100, or 1,000 ng. kg(-0.66). min(-1) of insulin to reproduce insulin levels present in fasted, fed, refed, and supraphysiological conditions, respectively. Tissue protein synthesis was measured using a flooding dose of L-[4-(3)H]phenylalanine. Insulin increased protein synthesis in gastrocnemius muscle and, to a lesser degree, masseter muscle. The degree of stimulation of protein synthesis by insulin was similar in myofibrillar and sarcoplasmic proteins. Insulin increased translational efficiency but had no effect on ribosome number in muscle. All of these insulin-induced changes in muscle protein synthesis decreased with age. Insulin also stimulated protein synthesis in cardiac muscle and skin but not in liver, intestine, spleen, pancreas, or kidney. The results support the hypothesis that insulin mediates the feeding-induced stimulation of myofibrillar and sarcoplasmic protein synthesis in muscles of different fiber types in the neonate by increasing the efficiency of translation. However, insulin does not appear to be involved in the feeding-induced stimulation of protein synthesis in visceral tissues. Thus different mechanisms regulate the growth of peripheral and visceral tissues in the neonate.

  3. Comparative proteomic analysis in pea treated with microbial consortia of beneficial microbes reveals changes in the protein network to enhance resistance against Sclerotinia sclerotiorum.

    PubMed

    Jain, Akansha; Singh, Akanksha; Singh, Surendra; Singh, Vinay; Singh, Harikesh Bahadur

    2015-06-15

    Microbial consortia may provide protection against pathogenic ingress via enhancing plant defense responses. Pseudomonas aeruginosa PJHU15, Trichoderma harzianum TNHU27 and Bacillus subtilis BHHU100 were used either singly or in consortia in the pea rhizosphere to observe proteome level changes upon Sclerotinia sclerotiorum challenge. Thirty proteins were found to increase or decrease differentially in 2-DE gels of pea leaves, out of which 25 were identified by MALDI-TOF MS or MS/MS. These proteins were classified into several functional categories including photosynthesis, respiration, phenylpropanoid metabolism, protein synthesis, stress regulation, carbohydrate and nitrogen metabolism and disease/defense-related processes. The respective homologue of each protein identified was trapped in Pisum sativum and a phylogenetic tree was constructed to check the ancestry. The proteomic view of the defense response to S. sclerotiorum in pea, in the presence of beneficial microbes, highlights the enhanced protection that can be provided by these microbes in challenged plants. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. A hybrid clustering approach to recognition of protein families in 114 microbial genomes

    PubMed Central

    Harlow, Timothy J; Gogarten, J Peter; Ragan, Mark A

    2004-01-01

    Background Grouping proteins into sequence-based clusters is a fundamental step in many bioinformatic analyses (e.g., homology-based prediction of structure or function). Standard clustering methods such as single-linkage clustering capture a history of cluster topologies as a function of threshold, but in practice their usefulness is limited because unrelated sequences join clusters before biologically meaningful families are fully constituted, e.g. as the result of matches to so-called promiscuous domains. Use of the Markov Cluster algorithm avoids this non-specificity, but does not preserve topological or threshold information about protein families. Results We describe a hybrid approach to sequence-based clustering of proteins that combines the advantages of standard and Markov clustering. We have implemented this hybrid approach over a relational database environment, and describe its application to clustering a large subset of PDB, and to 328577 proteins from 114 fully sequenced microbial genomes. To demonstrate utility with difficult problems, we show that hybrid clustering allows us to constitute the paralogous family of ATP synthase F1 rotary motor subunits into a single, biologically interpretable hierarchical grouping that was not accessible using either single-linkage or Markov clustering alone. We describe validation of this method by hybrid clustering of PDB and mapping SCOP families and domains onto the resulting clusters. Conclusion Hybrid (Markov followed by single-linkage) clustering combines the advantages of the Markov Cluster algorithm (avoidance of non-specific clusters resulting from matches to promiscuous domains) and single-linkage clustering (preservation of topological information as a function of threshold). Within the individual Markov clusters, single-linkage clustering is a more-precise instrument, discerning sub-clusters of biological relevance. Our hybrid approach thus provides a computationally efficient approach to the automated

  5. Supplementation of cattle fed tropical grasses with microalgae increases microbial protein production and average daily gain.

    PubMed

    Costa, D F A; Quigley, S P; Isherwood, P; McLennan, S R; Poppi, D P

    2016-05-01

    A series of 3 experiments were conducted to evaluate the use of microalgae as supplements for ruminants consuming low-CP tropical grasses. In Exp. 1, the chemical composition and in vitro protein degradability of 9 algae species and 4 protein supplements were determined. In Exp. 2, rumen function and microbial protein (MCP) production were determined in steers fed speargrass hay alone or supplemented with , , , or cottonseed meal (CSM). In Exp. 3, DMI and ADG were determined in steers fed speargrass hay alone or supplemented with increasing amounts of NPN (urea combined with ammonia sulfate), CSM, or . In Exp. 1, the CP content of and (675 and 580 g/kg DM) was highest among the algae species and higher than the other protein supplements evaluated, and sp. had the highest crude lipid (CL) content (198 g/kg DM). In Exp. 2, supplementation increased speargrass hay intake, the efficiency of MCP production, the fractional outflow rate of digesta from the rumen, the concentration of NHN, and the molar proportion of branched-chain fatty acids in the rumen fluid of steers above all other treatments. acceptance by steers was low and this resulted in no significant difference to unsupplemented steers for all parameters measured for this algae supplement. In Exp. 3, ADG linearly increased with increasing supplementary N intake from both and NPN, with no difference between the 2 supplements. In contrast, ADG quadratically increased with increasing supplementary N intake from CSM. It was concluded that and may potentially be used as protein sources for cattle grazing low-CP pastures.

  6. Cross-linking and rheological changes of whey proteins treated with microbial transglutaminase.

    PubMed

    Truong, Van-Den; Clare, Debra A; Catignani, George L; Swaisgood, Harold E

    2004-03-10

    Modification of the functionality of whey proteins using microbial transglutaminase (TGase) has been the subject of recent studies. However, changes in rheological properties of whey proteins as affected by extensive cross-linking with TGase are not well studied. The factors affecting cross-linking of whey protein isolate (WPI) using both soluble and immobilized TGase were examined, and the rheological properties of the modified proteins were characterized. The enzyme was immobilized on aminopropyl glass beads (CPG-3000) by selective adsorption of the biotinylated enzyme on avidin that had been previously immobilized. WPI (4 and 8% w/w) in deionized water, pH 7.5, containing 10 mM dithiothreitol was cross-linked using enzyme/substrate ratios of 0.12-10 units of activity/g WPI. The reaction was carried out in a jacketed bioreactor for 8 h at 40 degrees C with continuous circulation. The gel point temperature of WPI solutions treated with 0.12 unit of immobilized TGase/g was slightly decreased, but the gel strength was unaffected. However, increasing the enzyme/substrate ratio resulted in extensive cross-linking of WPI that was manifested by increases in apparent viscosity and changes in the gelation properties. For example, using 10 units of soluble TGase/g resulted in extensive cross-linking of alpha-lactalbumin and beta-lactoglobulin in WPI, as evidenced by SDS-PAGE and Western blotting results. Interestingly, the gelling point of WPI solutions increased from 68 to 94 degrees C after a 4-h reaction, and the gel strength was drastically decreased (lower storage modulus, G'). Thus, extensive intra- and interchain cross-linking probably caused formation of polymers that were too large for effective network development. These results suggest that a process could be developed to produce heat-stable whey proteins for various food applications.

  7. Microwave-assisted cross-linking of milk proteins induced by microbial transglutaminase

    PubMed Central

    Chen, Chun-Chi; Hsieh, Jung-Feng

    2016-01-01

    We investigated the combined effects of microbial transglutaminase (MTGase, 7.0 units/mL) and microwave irradiation (MI) on the polymerization of milk proteins at 30 °C for 3 h. The addition of MTGase caused the milk proteins to become polymerized, which resulted in the formation of components with a higher molecular-weight (>130 kDa). SDS-PAGE analysis revealed reductions in the protein content of β-lactoglobulin (β-LG), αS-casein (αS-CN), κ-casein (κ-CN) and β-casein (β-CN) to 50.4 ± 2.9, 33.5 ± 3.0, 4.2 ± 0.5 and 1.2 ± 0.1%, respectively. The use of MTGase in conjunction MI with led to a 3-fold increase in the rate of milk protein polymerization, compared to a sample that contained MTGase but did not undergo MI. Results of two-dimensional gel electrophoresis (2-DE) indicated that κ-CN, β-CN, a fraction of serum albumin (SA), β-LG, α-lactalbumin (α-LA), αs1-casein (αs1-CN), and αs2-casein (αs2-CN) were polymerized in the milk, following incubation with MTGase and MI at 30 °C for 1 h. Based on this result, the combined use of MTGase and MI appears to be a better way to polymerize milk proteins. PMID:27966639

  8. Microwave-assisted cross-linking of milk proteins induced by microbial transglutaminase

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chi; Hsieh, Jung-Feng

    2016-12-01

    We investigated the combined effects of microbial transglutaminase (MTGase, 7.0 units/mL) and microwave irradiation (MI) on the polymerization of milk proteins at 30 °C for 3 h. The addition of MTGase caused the milk proteins to become polymerized, which resulted in the formation of components with a higher molecular-weight (>130 kDa). SDS-PAGE analysis revealed reductions in the protein content of β-lactoglobulin (β-LG), αS-casein (αS-CN), κ-casein (κ-CN) and β-casein (β-CN) to 50.4 ± 2.9, 33.5 ± 3.0, 4.2 ± 0.5 and 1.2 ± 0.1%, respectively. The use of MTGase in conjunction MI with led to a 3-fold increase in the rate of milk protein polymerization, compared to a sample that contained MTGase but did not undergo MI. Results of two-dimensional gel electrophoresis (2-DE) indicated that κ-CN, β-CN, a fraction of serum albumin (SA), β-LG, α-lactalbumin (α-LA), αs1-casein (αs1-CN), and αs2-casein (αs2-CN) were polymerized in the milk, following incubation with MTGase and MI at 30 °C for 1 h. Based on this result, the combined use of MTGase and MI appears to be a better way to polymerize milk proteins.

  9. Ingestion of Wheat Protein Increases In Vivo Muscle Protein Synthesis Rates in Healthy Older Men in a Randomized Trial.

    PubMed

    Gorissen, Stefan Hm; Horstman, Astrid Mh; Franssen, Rinske; Crombag, Julie Jr; Langer, Henning; Bierau, Jörgen; Respondek, Frederique; van Loon, Luc Jc

    2016-09-01

    Muscle mass maintenance is largely regulated by basal muscle protein synthesis and the capacity to stimulate muscle protein synthesis after food intake. The postprandial muscle protein synthetic response is modulated by the amount, source, and type of protein consumed. It has been suggested that plant-based proteins are less potent in stimulating postprandial muscle protein synthesis than animal-derived proteins. However, few data support this contention. We aimed to assess postprandial plasma amino acid concentrations and muscle protein synthesis rates after the ingestion of a substantial 35-g bolus of wheat protein hydrolysate compared with casein and whey protein. Sixty healthy older men [mean ± SEM age: 71 ± 1 y; body mass index (in kg/m(2)): 25.3 ± 0.3] received a primed continuous infusion of l-[ring-(13)C6]-phenylalanine and ingested 35 g wheat protein (n = 12), 35 g wheat protein hydrolysate (WPH-35; n = 12), 35 g micellar casein (MCas-35; n = 12), 35 g whey protein (Whey-35; n = 12), or 60 g wheat protein hydrolysate (WPH-60; n = 12). Plasma and muscle samples were collected at regular intervals. The postprandial increase in plasma essential amino acid concentrations was greater after ingesting Whey-35 (2.23 ± 0.07 mM) than after MCas-35 (1.53 ± 0.08 mM) and WPH-35 (1.50 ± 0.04 mM) (P < 0.01). Myofibrillar protein synthesis rates increased after ingesting MCas-35 (P < 0.01) and were higher after ingesting MCas-35 (0.050% ± 0.005%/h) than after WPH-35 (0.032% ± 0.004%/h) (P = 0.03). The postprandial increase in plasma leucine concentrations was greater after ingesting Whey-35 than after WPH-60 (peak value: 580 ± 18 compared with 378 ± 10 μM, respectively; P < 0.01), despite similar leucine contents (4.4 g leucine). Nevertheless, the ingestion of WPH-60 increased myofibrillar protein synthesis rates above basal rates (0.049% ± 0.007%/h; P = 0.02). The myofibrillar protein synthetic response to the ingestion of 35 g casein is greater than after an

  10. Proteomic and functional analyses reveal MAPK1 regulates milk protein synthesis.

    PubMed

    Lu, Li-Min; Li, Qing-Zhang; Huang, Jian-Guo; Gao, Xue-Jun

    2012-12-27

    L-Lysine (L-Lys) is an essential amino acid that plays fundamental roles in protein synthesis. Many nuclear phosphorylated proteins such as Stat5 and mTOR regulate milk protein synthesis. However, the details of milk protein synthesis control at the transcript and translational levels are not well known. In this current study, a two-dimensional gel electrophoresis (2-DE)/MS-based proteomic technology was used to identify phosphoproteins responsible for milk protein synthesis in dairy cow mammary epithelial cells (DCMECs). The effect of L-Lys on DCMECs was analyzed by CASY technology and reversed phase high performance liquid chromatography (RP-HPLC). The results showed that cell proliferation ability and β-casein expression were enhanced in DCMECs treated with L-Lys. By phosphoproteomics analysis, six proteins, including MAPK1, were identified up-expressed in DCMECs treated with 1.2 mM L-Lys for 24 h, and were verified by quantitative real-time PCR (qRT-PCR) and western blot. Overexpression and siRNA inhibition of MAPK1 experiments showed that MAPK1 upregulated milk protein synthesis through Stat5 and mTOR pathway. These findings that MAPK1 involves in regulation of milk synthesis shed new insights for understanding the mechanisms of milk protein synthesis.

  11. IL-1R signaling enables bystander cells to overcome bacterial blockade of host protein synthesis

    PubMed Central

    Copenhaver, Alan M.; Casson, Cierra N.; Nguyen, Hieu T.; Duda, Matthew M.; Shin, Sunny

    2015-01-01

    The innate immune system is critical for host defense against microbial pathogens, yet many pathogens express virulence factors that impair immune function. Here, we used the bacterial pathogen Legionella pneumophila to understand how the immune system successfully overcomes pathogen subversion mechanisms. L. pneumophila replicates within macrophages by using a type IV secretion system to translocate bacterial effectors into the host cell cytosol. As a consequence of effector delivery, host protein synthesis is blocked at several steps, including translation initiation and elongation. Despite this translation block, infected cells robustly produce proinflammatory cytokines, but the basis for this is poorly understood. By using a reporter system that specifically discriminates between infected and uninfected cells within a population, we demonstrate here that infected macrophages produced IL-1α and IL-1β, but were poor producers of IL-6, TNF, and IL-12, which are critical mediators of host protection. Uninfected bystander cells robustly produced IL-6, TNF, and IL-12, and this bystander response required IL-1 receptor (IL-1R) signaling during early pulmonary infection. Our data demonstrate functional heterogeneity in production of critical protective cytokines and suggest that collaboration between infected and uninfected cells enables the immune system to bypass pathogen-mediated translation inhibition to generate an effective immune response. PMID:26034289

  12. IL-1R signaling enables bystander cells to overcome bacterial blockade of host protein synthesis.

    PubMed

    Copenhaver, Alan M; Casson, Cierra N; Nguyen, Hieu T; Duda, Matthew M; Shin, Sunny

    2015-06-16

    The innate immune system is critical for host defense against microbial pathogens, yet many pathogens express virulence factors that impair immune function. Here, we used the bacterial pathogen Legionella pneumophila to understand how the immune system successfully overcomes pathogen subversion mechanisms. L. pneumophila replicates within macrophages by using a type IV secretion system to translocate bacterial effectors into the host cell cytosol. As a consequence of effector delivery, host protein synthesis is blocked at several steps, including translation initiation and elongation. Despite this translation block, infected cells robustly produce proinflammatory cytokines, but the basis for this is poorly understood. By using a reporter system that specifically discriminates between infected and uninfected cells within a population, we demonstrate here that infected macrophages produced IL-1α and IL-1β, but were poor producers of IL-6, TNF, and IL-12, which are critical mediators of host protection. Uninfected bystander cells robustly produced IL-6, TNF, and IL-12, and this bystander response required IL-1 receptor (IL-1R) signaling during early pulmonary infection. Our data demonstrate functional heterogeneity in production of critical protective cytokines and suggest that collaboration between infected and uninfected cells enables the immune system to bypass pathogen-mediated translation inhibition to generate an effective immune response.

  13. [Protein and RNA synthesis during the transition of potato tuber meristematic tissue from rest to growth].

    PubMed

    Korableva, N P; Ladyzhenskaia, E P; Metlitskiĭ, L V

    1976-01-01

    The rate of RNA and protein synthesis in resting and growing meristem tissues from isolated tuber growth points under their incubation with labelled precursors is studied. It is found that the label incorporation into RNA is low during deep resting, protein synthesis being rather intensive. Both RNA and protein synthesis is intensified with the beginning of growth period. More homogenous in their metabolic rate set of RNAs is found in resting tissues in contrast with growing ones. The data on fractionation of total RNA preparation on MAK column and in sucrose density gradient showed that synthesis of high molecular weight RNA with metabolic period of 4 hours is stimulated in growing meristems. It is possible that synthesis of certain fractions of RNA and protein is one of regulation mechanisms for resting in meristem tissues.

  14. Effect of undegradable intake protein supplementation on intake, digestion, microbial efficiency, in situ disappearance, and plasma hormones and metabolites in steers fed low-quality grass hay.

    PubMed

    Reed, J J; O'Neil, M R; Lardy, G P; Vonnahme, K A; Reynolds, L P; Caton, J S

    2007-04-01

    Four ruminally and duodenally cannulated beef steers (492 +/- 30 kg) were used in a 4 x 4 Latin square design to evaluate the effect of undegradable intake protein (UIP) supplementation on intake, digestion, microbial efficiency, in situ disappearance, and plasma hormones and metabolites in steers fed low-quality grass hay. The steers were offered chopped (10.2 cm in length) grass hay (6.0% CP) ad libitum and 1 of 4 supplements. Supplemental treatments (1,040 g of DM daily), offered daily at 0800, were control (no supplement) or low, medium, or high levels of UIP (the supplements provided 8.3, 203.8, and 422.2 g of UIP/ d, respectively). The supplements were formulated to provide similar amounts of degradable intake protein (22%) and energy (1.77 Mcal of NE(m)/kg). Blood samples were taken at -2, -0.5, 1, 2, 4, 8, 12, and 24 h after supplementation on d 1 (intensive sampling) and at -0.5 h before supplementation on d 2, 3, 4, and 5 (daily sampling) of each collection period. Contrasts comparing control vs. low, medium, and high; low vs. medium and high; and medium vs. high levels of UIP were conducted. Apparent and true ruminal OM and N digestion increased (P < 0.03) in steers fed supplemental protein compared with controls, but there were no differences (P > 0.26) among supplemental protein treatments. There were no differences (P > 0.11) among treatments for NDF or ADF digestion, or total ruminal VFA or microbial protein synthesis. Ruminal pH was not different (P = 0.32) between control and protein-supplemented treatments; however, ruminal pH was greater (P = 0.02) for supplementation with medium and high compared with low UIP. Daily plasma insulin concentrations were increased (P = 0.004) in protein-supplemented steers compared with controls and were reduced (P = 0.003) in steers fed low UIP compared with steers fed greater levels of UIP. Intensive and daily plasma urea N concentrations were increased (P < 0.01) in protein-supplemented steers compared with

  15. Cell-free synthesis system suitable for disulfide-containing proteins.

    PubMed

    Matsuda, Takayoshi; Watanabe, Satoru; Kigawa, Takanori

    2013-02-08

    Many important therapeutic targets are secreted proteins with multiple disulfide bonds, such as antibodies, cytokines, hormones, and proteases. The preparation of these proteins for structural and functional analyses using cell-based expression systems still suffers from several issues, such as inefficiency, low yield, and difficulty in stable-isotope labeling. The cell-free (or in vitro) protein synthesis system has become a useful protein production method. The openness of the cell-free system allows direct control of the reaction environment to promote protein folding, making it well suited for the synthesis of disulfide-containing proteins. In this study, we developed the Escherichia coli (E. coli) cell lysate-based cell-free synthesis system for disulfide-containing proteins, which can produce sufficient amounts of functional proteins for NMR analyses. Disulfide bond formation was facilitated by the use of glutathione buffer. In addition, disulfide isomerase, DsbC, catalyzed the efficient shuffling of incorrectly formed disulfide bonds during the protein synthesis reaction. We successfully synthesized milligram quantities of functional (15)N-labeled higher eukaryotic proteins, bovine pancreatic trypsin inhibitor (BPTI) and human lysozyme C (LYZ). The NMR spectra and functional analyses indicated that the synthesized proteins are both catalytically functional and properly folded. Thus, the cell-free system is useful for the synthesis of disulfide-containing proteins for structural and functional analyses. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Age-related changes in the synthesis and phosphorylation of proteins

    SciTech Connect

    Butler, J.A.; Heydari, A.; Richardson, A.

    1986-03-01

    It is well documented that the protein synthetic activity of liver tissue decreases significantly with age. However, very little information is available on the effect of age on the synthesis or phosphorylation of individual proteins. Hepatocytes were isolated from 5- to 30-month-old male Fischer F344 rats, and proteins were labeled with either (/sup 3/H)-valine or (/sup 32/P)-phosphate. Two-dimensional polyacrylamide gel electrophoresis was used to monitor the synthesis and phosphorylation of a wide variety of proteins. A dramatic increase or decrease in the synthesis of approximately 2 to 3% of the proteins was observed. Most of the proteins whose synthesis increased with age were found to be plasma proteins, e.g., acute phase proteins, synthesized by the liver. In general, the synthesis of most proteins decreased 20 to 40% with age. The phosphorylation of most proteins (over 200) did not appear to change with age. However the phosphorylation of two acidic proteins (molecular weights of 148 Kd and 130 Kd and pIs of 5.4 and 5.36, respectively) decreased with age while the phosphorylation of a basic protein (molecular weight of 57 Kd and pI of 8.09) increased with age.

  17. Leucine acts as a nutrient signal to stimulate protein synthesis in neonatal pigs

    PubMed Central

    Suryawan, A.; Orellana, R. A.; Fiorotto, M. L.; Davis, T. A.

    2012-01-01

    The postprandial rise in amino acids and insulin independently stimulate protein synthesis in skeletal muscle of piglets. Leucine is an important mediator of the response to amino acids. We have shown that the postprandial rise in leucine, but not isoleucine or valine, acutely stimulates muscle protein synthesis in piglets. Leucine increases muscle protein synthesis by modulating the activation of mammalian target of rapamycin complex 1 (mTORC1) and signaling components of translation initiation. Leucine increases the phosphorylation of mTOR, 70-kDa ribosomal protein S6 kinase-1 (S6K1), eukaryotic initiation factor (eIF) 4E-binding protein-1 (4EBP1), and eIF4G, decreases eIF2α phosphorylation, and increases the association of eIF4E with eIF4G. However, leucine does not affect the upstream activators of mTOR, that is, protein kinase B (PKB), adenosine monophosphate (AMP)-activated protein kinase (AMPK), and tuberous sclerosis complex 1/2 (TSC1/2), or the activation translation of elongation regulator, eukaryotic elongation factor 2 (eEF2). Leucine’s action can be replicated by α-ketoisocaproate (KIC) but not by norleucine. Interference by rapamycin with the raptor-mTOR interaction blocks leucine-induced muscle protein synthesis. The acute leucine-induced stimulation of muscle protein synthesis is not maintained for prolonged periods, despite continued activation of mTOR signaling, because circulating amino acids fall as they are utilized for protein synthesis. However, when circulating amino acid levels are maintained, the leucine-induced stimulation of muscle protein synthesis is maintained for prolonged periods. Thus, leucine acts as a nutrient signal to stimulate translation initiation but whether this translates into a prolonged increase in protein synthesis depends on the sustained availability of all amino acids. PMID:20935141

  18. Imidazolium tagged acridines: Synthesis, characterization and applications in DNA binding and anti-microbial activities

    NASA Astrophysics Data System (ADS)

    Raju, Gembali; Vishwanath, S.; Prasad, Archana; Patel, Basant K.; Prabusankar, Ganesan

    2016-03-01

    New water soluble 4,5-bis imidazolium tagged acridines have been synthesized and structurally characterized by multinuclear NMR and single crystal X-ray diffraction techniques. The DNA binding and anti-microbial activities of these acridine derivatives were investigated by fluorescence and far-UV circular dichroism studies.

  19. Microbial hydroxylation of o-bromophenylacetic acid: synthesis of 4-substituted-2,3-dihydrobenzofurans.

    PubMed

    Deshpande, Prashant P; Nanduri, Venkata B; Pullockaran, Annie; Christie, Hamish; Mueller, Richard H; Patel, Ramesh N

    2008-08-01

    Microbial hydroxylation of o-bromophenylacetic acid provided 2-bromo-5-hydroxyphenylacetic acid. This enabled a route to the key intermediate 4-bromo-2,3-dihydrobenzofuran for synthesizing a melatonin receptor agonist and sodium hydrogen exchange compounds. Pd-mediated coupling reactions of 4-bromo-2,3-dihydrobenzofuran provided easy access to the 4-substituted-2,3-dihydrobenzofurans.

  20. Design, synthesis, and characterization of protein-based nanostructures

    NASA Astrophysics Data System (ADS)

    Modica, Justin Alan

    This thesis outlines a modular method for the bottom-up fabrication of molecular architectures and functional molecular assemblies too large for common organic synthesis and too small for current lithographic techniques. The construction of these assemblies relies on the reactions of bifunctional recombinant proteins with small molecule linkers that exploit the rapid kinetics and superior selectivity of enzymes. The selectivity of the bond forming reactions yield precisely-defined covalent assemblies with dimensions on the order of 10 - 100 nm. Preequilibration of reactants ensure rapid kinetics at nano- to low micromolar concentrations even as the molecules approach MDa molecular weights. Consequently, this 'dock-and-lock' strategy offers a superior alternative to standard bioconjugation chemistries available to fabricate biomolecular assemblies. Using this strategy, we are able to prepare and isolate discrete, monodisperse molecules that have linear, cyclic and star geometries. Our ability to isolate these discreet molecular objects offers a distinct advantage over non-covalent biomolecular self-assembly systems as the sizes, and therefore structures, of our assemblies are not concentration dependant. Furthermore, the modularity of our approach allows the incorporation of functional protein domains into architectures that retain their native functionality even in the context of a very complex molecular environment. We show that oligomers of the functional domains and their contraction upon treatment with a calcium stimulus is linearly proportional to the degree of oligomerization thus providing a means toward rational functional nanomaterials design.

  1. Bacterial Obg proteins: GTPases at the nexus of protein and DNA synthesis.

    PubMed

    Kint, Cyrielle; Verstraeten, Natalie; Hofkens, Johan; Fauvart, Maarten; Michiels, Jan

    2014-08-01

    Obg proteins (also known as ObgE, YhbZ and CgtA) are conserved P-loop GTPases, essential for growth in bacteria. Like other GTPases, Obg proteins cycle between a GTP-bound ON and a GDP-bound OFF state, thereby controlling cellular processes. Interestingly, the in vitro biochemical properties of Obg proteins suggest that they act as sensors for the cellular GDP/GTP pools and adjust their activity according to the cellular energy status. Obg proteins have been attributed a host of cellular functions, including roles in essential cellular processes (DNA replication, ribosome maturation) and roles in different stress adaptation pathways (stringent response, sporulation, general stress response). This review summarizes the current knowledge on Obg activity and function. Furthermore, we present a model that integrates the different functions of Obg by assigning it a fundamental role in cellular physiology, at the hub of protein and DNA synthesis. In particular, we believe that Obg proteins might provide a connection between different global pathways in order to fine-tune cellular processes in response to a given energy status.

  2. Intestinal mucosa in diabetes: synthesis of total proteins and sucrase-isomaltase

    SciTech Connect

    Olsen, W.A.; Perchellet, E.; Malinowski, R.L.

    1986-06-01

    The effects of insulin deficiency on nitrogen metabolism in muscle and liver have been extensively studied with recent in vivo demonstration of impaired protein synthesis in rats with streptozotocin-induced diabetes. Despite the significant contribution of small intestinal mucosa to overall protein metabolism, the effect of insulin deficiency on intestinal protein synthesis have not been completely defined. The authors studied the effects of streptozotocin-induced diabetes on total protein synthesis by small intestinal mucosa and on synthesis of a single enzyme protein of the enterocyte brush-border membrane sucrase-isomaltase. They used the flood-dose technique to minimize the difficulties of measuring specific radioactivity of precursor phenylalanine and determined incorporation into mucosal proteins and sucrase-isomaltase 20 min after injection of the labeled amino acid. Diabetes did not alter mucosal mass as determined by weight and content of protein and DNA during the 5 days after injection of streptozotocin. Increased rates of sucrase-isomaltase synthesis developed beginning on day 3, and those of total protein developed on day 5. Thus intestinal mucosal protein synthesis is not an insulin-sensitive process.

  3. On the role of protein synthesis in the circadian clock of Neurospora crassa.

    PubMed Central

    Dunlap, J C; Feldman, J F

    1988-01-01

    Inhibitors of protein synthesis reset the biological clocks of many organisms. This has been interpreted to mean either that the synthesis per se of proteins is a step in the oscillatory feedback loop or merely that certain unstable protein(s) are required at certain times of the cycle to complete the feedback loop. We report here that Neurospora strains bearing the clock mutation frq-7 are relatively insensitive to the resetting action of the protein-synthesis-inhibitor cycloheximide. Protein synthesis itself in this mutant is inhibited by the drug to the same extent as in wild type. Since the clock of frq-7 continues to run relatively unimpeded even in the virtual absence of protein synthesis, it is unlikely that synthesis per se can be a part of the feedback cycle. Rather, we suggest that for normal operation of the Neurospora clock, certain protein(s) with a high turnover rate are required daily and, thus, must be resynthesized each day (at least) during discrete times in the cycle. The frq-7 mutation simultaneously alters several distinct clock characteristics--period length, temperature compensation, and resetting by cycloheximide. A model is presented to unify these observations. PMID:2963337

  4. The role of protein synthesis in memory consolidation: Progress amid decades of debate

    PubMed Central

    Hernandez, Pepe J.; Abel, Ted

    2009-01-01

    A major component of consolidation theory holds that protein synthesis is required to produce the synaptic modification needed for long-term memory storage. Protein synthesis inhibitors have played a pivotal role in the development of this theory. However, these commonly used drugs have unintended effects that have prompted some to reevaluate the role of protein synthesis in memory consolidation. Here we review the role of protein synthesis in memory formation as proposed by consolidation theory calling special attention to the controversy involving the non-specific effects of a group of protein synthesis inhibitors commonly used to study memory formation in vivo. We argue that molecular and genetic approaches that were subsequently applied to the problem of memory formation confirm the results of less selective pharmacological studies. Thus, to a certain extent, the debate over the role of protein synthesis in memory based on interpretational difficulties inherent to the use of protein synthesis inhibitors may be somewhat moot. We conclude by presenting avenues of research we believe will best provide answers to both long-standing and more recent questions facing field of learning and memory. PMID:18053752

  5. The effect of insulin infusion and food intake on muscle protein synthesis in postabsorptive rats.

    PubMed Central

    Garlick, P J; Fern, M; Preedy, V R

    1983-01-01

    1. Insulin was infused into young male rats in the postabsorptive state. Rates of protein synthesis in skeletal muscle were determined during the final 10 min of infusion from the incorporation of label into protein after intravenous injection of a massive dose of [3H]phenylalanine. Rates of synthesis were not altered during the first 10 min of insulin infusion, but were increased significantly between 10 and 60 min. 2. Rats were infused with different amounts of insulin for 30 min. When concentrations were increased from 10 to 40 microunits/ml of plasma there was no change in muscle protein synthesis, but concentrations higher than 70 microunits/ml caused a significant stimulation. Concentrations below 10 microunits/ml, obtained by infusion of anti-insulin serum, did not depress synthesis below that found in the postabsorptive rat. 3. Infusion of glucose for 30 or 60 min led to an increase in plasma insulin to 40 microunits/ml, but this also failed to stimulate muscle protein synthesis. 4. Rates of synthesis in postabsorptive rats, even when stimulated maximally by insulin, were not so high as those in fed rats or in postabsorptive rats refed for 60 min. However, in fed and refed rats insulin concentrations were below that required to stimulate synthesis in postabsorptive animals. Despite this, infusion of large amounts of insulin into fed rats did not increase synthesis further. 5. The sensitivity of plasma glucose to insulin infusion was different from that of protein synthesis. A decrease in glucose concentration preceded the increase in synthesis and occurred at lower insulin concentrations. 6. It is concluded that changes in circulating insulin may have been partly responsible for the increase in muscle protein synthesis brought about by feeding, but that other factors must also play a part. PMID:6347182

  6. Protein synthesis in a solitary benthic cephalopod, the Southern dumpling squid (Euprymna tasmanica).

    PubMed

    Carter, Chris G; Lynch, Kerri A; Moltschaniwskyj, Natalie A

    2009-06-01

    Rates of protein synthesis were measured in the whole body and tissues of southern dumpling squid Euprymna tasmanica to validate the use of a flooding-dose of (3)H phenylalanine for the measurement of protein synthesis with different size squid and to make a preliminary investigation into the effects of feeding regime. In smaller (2.8+/-0.5 g, mean+/-SE) and larger (14.8+/-2.2 g) squid whole body fractional rates of protein synthesis were 9.45+/-1.21 and 1.49+/-0.29% d(-1), respectively. Differences in total whole body protein content meant there was no difference in absolute rates of whole body protein synthesis between the larger and smaller squid. In larger squid, fractional rates of protein synthesis were significantly higher in the digestive gland (9.24+/-1.63% d(-1)) than in the arm tissue (1.43+/-0.31% d(-1)), which were significantly higher than in the anterior (0.56+/-0.13% d(-1)) and posterior (0.36+/-0.04% d(-1)) mantle. In smaller squid there were no differences in protein synthesis between tissues and high individual variation, due to differences in feeding, was a likely cause. Consequently, the effect of feeding regime on protein synthesis was compared between two groups of individually held squid: daily-feeding and minimal-feeding squid. The daily-feeding squid had significantly higher feed intake, gained mass and had a significantly higher growth rate than the minimal-feeding squid which lost mass. Whole body protein synthesis was significantly higher in the daily-feeding squid as was the protein content of the digestive gland, anterior and posterior mantle. There were few other differences in indices of protein metabolism. Individual squid showed differences in growth and protein metabolism, and there were significant relationships between growth rate and both rates of protein synthesis and protein degradation. Thus, higher individual growth was a consequence of increased protein synthesis, decreased protein degradation and, therefore, increased

  7. Synthesis of Silver Nanoparticles from Microbial Source-A Green Synthesis Approach, and Evaluation of its Antimicrobial Activity against Escherichia coli

    NASA Astrophysics Data System (ADS)

    Behera, S. S.; Jha, S.; Arakha, M.; Panigrahi, T. K.

    2012-03-01

    TRACT Nanoparticles synthesis by biological methods using various microorganisms, plants, and plant extracts and enzymes have attracted a great attention as these are cost effective, nontoxic, eco-friendly and an alternative to physical and chemical methods. In this research, Silver nanoparticles (Ag-NPs) were synthesized from AgNO3 solution by green synthesis process with the assistance of microbial source only. The detailed characterization of the Ag NPs were carried out using UV-visible spectroscopy, Scanning electron microscopy (SEM), Energy dispersive X-ray Spectroscopy (EDS), Dynamic light scattering (DLS) analysis, and their antimicrobial evaluation was done against Escherichia coli. The UV-visible spectroscopy analysis showed the surface plasmon resonance property of nanoparticles. The DLS analysis showed the particle distribution of synthesized silver nanoparticles in solution, and SEM analysis showed the morphology of nanoparticles. The elemental composition of synthesized sample was confirmed by EDS analysis. Antibacterial assay of synthesized Ag NP was carried out in solid (Nutrient Agar) growth medium against E.coli. The presence of zone of inhibition clearly indicated the antibacterial activity of silver nanoparticles.

  8. The diurnal response of muscle and liver protein synthesis in vivo in meal-fed rats

    PubMed Central

    Garlick, P. J.; Millward, D. J.; James, W. P. T.

    1973-01-01

    1. The rate of protein synthesis in rat tissues was measured by constant intravenous infusion of [14C]tyrosine. A modification has been developed for the method of calculating the rate of protein synthesis in individual tissues from the specific radioactivity of the free and protein-bound amino acid in tissue at the end of the infusion. This technique gives greater accuracy and allows a greater choice of labelled amino acids. The specific radioactivity of free tyrosine in plasma was used to calculate the plasma tyrosine flux, an index of the rate of protein synthesis in the whole body. 2. Young male Wistar rats were allowed access to food for only 4h in every 24h. The tyrosine flux and the rate of protein synthesis in liver and muscle at different periods of time after a single feed were estimated. 3. The tyrosine flux did not alter after feeding nor even after starvation for 48h. 4. The average fractional rate of protein synthesis in muscle was 7.2%/day, i.e. the proportion of the protein mass which is replaced each day. The rate rose after eating and declined during starvation for 48h. In addition the rate of muscle protein synthesis correlated with the growth rate of the rat. 5. In liver the average fractional rate of protein synthesis was 50%/day. There was no change in the rate after eating nor after starvation for 48h. In contrast with muscle this suggests that the changes in protein mass were accompanied by changes in the rate of protein breakdown rather than synthesis. PMID:4786539

  9. Arabinoxylan‐oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the Simulator of Human Intestinal Microbial Ecosystem

    PubMed Central

    Sanchez, J. I.; Marzorati, M.; Grootaert, C.; Baran, M.; Van Craeyveld, V.; Courtin, C. M.; Broekaert, W. F.; Delcour, J. A.; Verstraete, W.; Van de Wiele, T.

    2009-01-01

    Summary Arabinoxylan‐oligosaccharides (AXOS) are a recently newly discovered class of candidate prebiotics as – depending on their structure – they are fermented in different regions of gastrointestinal tract. This can have an impact on the protein/carbohydrate fermentation balance in the large intestine and, thus, affect the generation of potentially toxic metabolites in the colon originating from proteolytic activity. In this study, we screened different AXOS preparations for their impact on the in vitro intestinal fermentation activity and microbial community structure. Short‐term fermentation experiments with AXOS with an average degree of polymerization (avDP) of 29 allowed part of the oligosaccharides to reach the distal colon, and decreased the concentration of proteolytic markers, whereas AXOS with lower avDP were primarily fermented in the proximal colon. Additionally, prolonged supplementation of AXOS with avDP 29 to the Simulator of Human Intestinal Microbial Ecosystem (SHIME) reactor decreased levels of the toxic proteolytic markers phenol and p‐cresol in the two distal colon compartments and increased concentrations of beneficial short‐chain fatty acids (SCFA) in all colon vessels (25–48%). Denaturant gradient gel electrophoresis (DGGE) analysis indicated that AXOS supplementation only slightly modified the total microbial community, implying that the observed effects on fermentation markers are mainly caused by changes in fermentation activity. Finally, specific quantitative PCR (qPCR) analysis showed that AXOS supplementation significantly increased the amount of health‐promoting lactobacilli as well as of Bacteroides–Prevotella and Clostridium coccoides–Eubacterium rectale groups. These data allow concluding that AXOS are promising candidates to modulate the microbial metabolism in the distal colon. PMID:21261885

  10. Effect of cowpea hay, groundnut hay, cotton seed meal and maize meal supplementation to maize stover on intake, digestibility, microbial protein supply and acetate kinetics in weaner lambs.

    PubMed

    Chakeredza, S; ter Meulen, U; Ndlovu, L R

    2002-02-01

    Ten weaner lambs were used in a double 5 x 5 Latin square design to evaluate the effect of supplementing maize stover (MS) with cowpea hay (CW), groundnut hay (GN), cotton seed meal (CSM) or maize meal (MM) on the intake, digestion kinetics and acetate clearance rate. CW and GN were offered at 30% w/w to MS, while CSM and MM were given at 15 g/kg0.75 per day. Supplementation reduced (p < 0.01) MS intake but enhanced (p < 0.01) total dry matter intake. There were no significant differences (p > 0.05) in digestibility. However, the estimated ME intake was significantly (p < 0.05) improved by supplementation. The estimated microbial protein supply was almost significantly (p < 0.06) improved by 22.68%, 5.35%, 17.58% and 47.90% on the CW-, GN-, CSM- and MM-supplemented diets, compared to the control (7.85 g/day). Microbial protein synthesis efficiency was not significantly affected (p > 0.05) by diet, and nor were the acetate clearance rates (p > 0.05), which averaged 0.0475 +/- 0.0078/min. The improvement in ME intake may have been due to a faster flow rate of digesta and a better balance of nutrients in the end-products of digestion. These results demonstrate that small amounts of forage supplements can improve nutrient intake when animals consume low-quality forages and provide a basis for comparing such supplements with bought-in protein and energy supplements.

  11. Development of probiotic carriers using microbial transglutaminase-crosslinked soy protein isolate incorporated with agrowastes.

    PubMed

    Lew, Lee-Ching; Bhat, Rajeev; Easa, Azhar Mat; Liong, Min-Tze

    2011-06-01

    Probiotics are live micro-organisms that exert beneficial effects on their host. A high survival rate during gastrointestinal transit and storage is often desirable. The main aim of this study was to develop protective carriers for probiotics via the use of enzymatically crosslinked soy protein isolate incorporated with agrowastes such as banana peel, banana pulp, cempedak rind and cocoa rind. Addition of agrowastes significantly (P < 0.05) reduced the strength and pH and darkened the colour of the gel. Sodium dodecyl sulfate polyacrylamide gel electrophoresis indicated that microbial transglutaminase induced crosslinking in the carrier network, while scanning electron microscopy showed that agrowaste addition resulted in a denser, finer and thinner protein network. Controlled release and swelling tests of the carriers in simulated gastric and intestinal fluids showed a low release under gastric conditions but a high release under intestinal conditions. The viability of Lactobacillus acidophilus FTDC 1331 incorporated in carriers containing agrowastes was more stable during storage at 4 °C for 28 days compared with the control (P < 0.05). The results of this study showed that agrowastes could be utilised as new probiotic carriers for enhanced gastrointestinal transit and storage. Copyright © 2011 Society of Chemical Industry.

  12. Catabolism of tritiated thymidine by aquatic microbial communities and incorporation of tritium into RNA and protein

    SciTech Connect

    Brittain, A.M.; Karl, D.M. )

    1990-05-01

    The incorporation of tritiated thymidine by five microbial ecosystems and the distribution of tritium into DNA, RNA, and protein were determined. Nonspecific labeling was greatest in sediment samples, for which {>=}95% of the tritium was recovered with the RNA and protein fractions. The percentage of tritium recovered in the DNA fraction ranged from 15 to 38% of the total labeled macromolecules recovered. Nonspecific labeling was independent of both incubation time and thymidine concentration over very wide ranges. We also evaluated the specificity of (2-{sup 3}H) adenine incorporation into adenylate residues in both RNA and DNA in parallel with the ({sup 3}H) thymidine experiments and compared the degree of nonspecific labeling by ({sup 3}H) adenine with that derived from ({sup 3}H)thymidine. Rapid catabolism of tritiated thymidine was evaluated by determining the disappearance of tritiated thymidine from the incubation medium and the appearance of degradation products. Degradation product formation, including that of both volatile and nonvolatile compounds, was much greater than the rate of incorporation of tritium into stable macromolecules. The standard degradation pathway for thymidine coupled with utilization of Krebs cycle intermediates for the biosynthesis of amino acids, purines, and pyrimidines readily accounts for the observed nonspecific labeling in environmental samples.

  13. Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production.

    PubMed

    George, Kevin W; Chen, Amy; Jain, Aakriti; Batth, Tanveer S; Baidoo, Edward E K; Wang, George; Adams, Paul D; Petzold, Christopher J; Keasling, Jay D; Lee, Taek Soon

    2014-08-01

    The ability to rapidly assess and optimize heterologous pathway function is critical for effective metabolic engineering. Here, we develop a systematic approach to pathway analysis based on correlations between targeted proteins and metabolites and apply it to the microbial production of isopentenol, a promising biofuel. Starting with a seven-gene pathway, we performed a correlation analysis to reduce pathway complexity and identified two pathway proteins as the primary determinants of efficient isopentenol production. Aided by the targeted quantification of relevant pathway intermediates, we constructed and subsequently validated a conceptual model of isopentenol pathway function. Informed by our analysis, we assembled a strain which produced isopentenol at a titer 1.5 g/L, or 46% of theoretical yield. Our engineering approach allowed us to accurately identify bottlenecks and determine appropriate pathway balance. Paired with high-throughput cloning techniques and analytics, this strategy should prove useful for the analysis and optimization of increasingly complex heterologous pathways. © 2014 Wiley Periodicals, Inc.

  14. Habituation to low or high protein intake does not modulate basal or postprandial muscle protein synthesis rates: a randomized trial.

    PubMed

    Gorissen, Stefan Hm; Horstman, Astrid Mh; Franssen, Rinske; Kouw, Imre Wk; Wall, Benjamin T; Burd, Nicholas A; de Groot, Lisette Cpgm; van Loon, Luc Jc

    2017-02-01

    Muscle mass maintenance is largely regulated by basal muscle protein synthesis rates and the ability to increase muscle protein synthesis after protein ingestion. To our knowledge, no previous studies have evaluated the impact of habituation to either low protein intake (LOW PRO) or high protein intake (HIGH PRO) on the postprandial muscle protein synthetic response. We assessed the impact of LOW PRO compared with HIGH PRO on basal and postprandial muscle protein synthesis rates after the ingestion of 25 g whey protein. Twenty-four healthy, older men [age: 62 ± 1 y; body mass index (in kg/m(2)): 25.9 ± 0.4 (mean ± SEM)] participated in a parallel-group randomized trial in which they adapted to either a LOW PRO diet (0.7 g · kg(-1) · d(-1); n = 12) or a HIGH PRO diet (1.5 g · kg(-1) · d(-1); n = 12) for 14 d. On day 15, participants received primed continuous l-[ring-(2)H5]-phenylalanine and l-[1-(13)C]-leucine infusions and ingested 25 g intrinsically l-[1-(13)C]-phenylalanine- and l-[1-(13)C]-leucine-labeled whey protein. Muscle biopsies and blood samples were collected to assess muscle protein synthesis rates as well as dietary protein digestion and absorption kinetics. Plasma leucine concentrations and exogenous phenylalanine appearance rates increased after protein ingestion (P < 0.01) with no differences between treatments (P > 0.05). Plasma exogenous phenylalanine availability over the 5-h postprandial period was greater after LOW PRO than after HIGH PRO (61% ± 1% compared with 56% ± 2%, respectively; P < 0.05). Muscle protein synthesis rates increased from 0.031% ± 0.004% compared with 0.039% ± 0.007%/h in the fasted state to 0.062% ± 0.005% compared with 0.057% ± 0.005%/h in the postprandial state after LOW PRO compared with HIGH PRO, respectively (P < 0.01), with no differences between treatments (P = 0.25). Habituation to LOW PRO (0.7 g · kg(-1) · d(-1)) compared with HIGH PRO (1.5 g · kg(-1) · d(-1)) augments the postprandial

  15. The heat shock protein 60 promotes progesterone synthesis in mitochondria of JEG-3 cells.

    PubMed

    Monreal-Flores, Jessica; Espinosa-García, María Teresa; García-Regalado, Alejandro; Arechavaleta-Velasco, Fabian; Martínez, Federico

    2017-06-01

    Progesterone synthesis in human placenta is essential to maintain pregnancy. The limiting step in placental progesterone synthesis is cholesterol transport from the cytoplasm to the inner mitochondrial membrane. Multiple proteins located in mitochondrial contact sites seem to play a key role in this process. Previously, our group identified the heat shock protein 60 (HSP60) as part of mitochondrial contact sites in human placenta, suggesting its participation in progesterone synthesis. Here, we examined the role of HSP60 in progesterone synthesis. Our results show that over-expression of HSP60 in human placental choriocarcinoma cells (JEG-3) and human embryonic kidney 293 cells (HEK293) promotes progesterone synthesis. Furthermore, incubation of the HSP60 recombinant protein with intact isolated mitochondria from JEG-3 cells also promotes progesterone synthesis in a dose-related fashion. We also show that HSP60 interacts with STARD3 and P450scc proteins from mitochondrial membrane contact sites. Finally, we show that the HSP60 recombinant protein binds cholesterol. Ours results demonstrate that HSP60 participates in mitochondrial progesterone synthesis. These findings provide novel insights into progesterone synthesis in the human placenta and its role in maintaining pregnancy. Copyright © 2017 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  16. Lovastatin corrects excess protein synthesis and prevents epileptogenesis in a mouse model of fragile X syndrome

    PubMed Central

    Osterweil, Emily K.; Chuang, Shih-Chieh; Chubykin, Alexander A.; Sidorov, Michael; Bianchi, Riccardo; Wong, Robert K. S.; Bear, Mark F.

    2013-01-01

    Summary Many neuropsychiatric symptoms of fragile X syndrome (FXS) are believed to be a consequence of altered regulation of protein synthesis at synapses. We discovered that lovastatin, a drug that is widely prescribed for treatment of high cholesterol, can correct excess hippocampal protein synthesis in themouse model of FXS and can prevent one of the robust functional consequences of increased protein synthesis in FXS, epileptogenesis. These data suggest that lovastatin is potentially disease modifying, and could be a viable prophylactic treatment for epileptogenesis in FXS. PMID:23352161

  17. Muscle and liver protein synthesis in growing rats fed diets containing raw legumes as the main source of protein

    SciTech Connect

    Goena, M.; Santidrian, S.; Cuevillas, F.; Larralde, J.

    1986-03-01

    Although legumes are widely used as protein sources, their effects on protein metabolism remain quite unexplored. The authors have measured the rates of gastrocnemius muscle and liver protein synthesis in growing rats fed ad libitum over periods of 12 days on diets containing raw field bean (Vicia faba L.), raw kidney bean (Phaseolus vulgaris L.), and raw bitter vetch (Vicia ervilia L.) as the major sources of protein. Diets were isocaloric and contained about 12% protein. Protein synthesis was evaluated by the constant-intravenous-infusion method, using L-//sup 14/C/-tyrosine, as well as by the determination of the RNA-activity (g of newly synthesized protein/day/g RNA). Results showed that, as compared to well-fed control animals, those fed the raw legume diets exhibited a marked reduction in the rate of growth with no changes in the amount of food intake (per 100 g b.wt.). These changes were accompanied by a significant reduction in the rate of muscle protein synthesis in all legume-treated rats, being this reduction greater in the animals fed the Ph. vulgaris and V. ervilia diets. Liver protein synthesis was slightly higher in the rats fed the V. faba and V. ervilia diets, and smaller in the Ph. vulgaris-fed rats. It is suggested that both sulfur amino acid deficiency and the presence of different anti-nutritive factors in raw legumes may account for these effects.

  18. Altered response of protein synthesis to nutritional state and endurance training in old rats.

    PubMed

    Mosoni, L; Valluy, M C; Serrurier, B; Prugnaud, J; Obled, C; Guezennec, C Y; Mirand, P P

    1995-02-01

    This study was undertaken to determine whether the loss of muscle protein mass during aging could be explained by a reduced sensitivity of muscle protein synthesis to feeding and exercise. Male Wistar rats aged 12 and 24 mo were exercised by treadmill running for 4 mo. Protein synthesis was measured by the flooding dose method in tibialis anterior, soleus, and liver of conscious rested, trained rats and age-matched controls in the postprandial or in the postabsorptive state. No marked change with age could be detected in basal muscle protein synthesis. In contrast, protein synthesis was stimulated in adult but not in old rats by feeding in tibialis anterior and by exercise in soleus. In liver, protein synthesis was not modified by age but was stimulated by feeding and by exercise, which improved the response to feeding. We conclude that the impact of nutrition on muscle protein synthesis is blunted in old age, which could contribute to the age-related loss of nutrition-sensitive muscle proteins.

  19. Selective inhibition of virus protein synthesis by prostaglandin A1: a translational block associated with HSP70 synthesis.

    PubMed Central

    Amici, C; Giorgi, C; Rossi, A; Santoro, M G

    1994-01-01

    Cyclopentenone prostaglandins are potent inhibitors of virus replication. The antiviral activity has been associated with the induction of 70-kDa heat shock protein (HSP70) synthesis. In this report, we describe that in African green monkey kidney cells infected with Sendai virus (SV) and treated with prostaglandin A1 (PGA1), SV protein synthesis was selectively blocked as long as HSP70 was being synthesized by the host cell. The block appeared to be at the translational level, as indicated by the following (i) PGA1 had no effect on SV primary transcription, and a dramatic decrease in the abundance of SV mRNA occurred only at later stages of infection; and (ii) treatment with PGA1 started at 6 h postinfection, at which time SV mRNA had already accumulated in infected cells, did not suppress the levels of NP mRNA, but it reduced the amount of ribosome-bound NP mRNA and caused a dramatic decrease in the level of genomic RNA. The PGA1-induced block of SV protein synthesis appeared to be cell mediated, since it was prevented by actinomycin D, while PGA1 had no effect on SV mRNA translation in vitro. The possibility that HSP70 could be a mediator of the antiviral effect is suggested by the fact that treatment with other classical inducers of HSP70, including sodium arsenite, cadmium, and heat shock at 42 degrees C for 5 h, also selectively prevented SV protein synthesis as long as heat shock protein synthesis occurred. Moreover, SV protein synthesis was not inhibited by PGA1 in murine Friend erythroleukemic cells, which lack the ability to induce HSP70 expression in response to PGA1. Images PMID:7933069

  20. Basal lamina inhibition suppresses synthesis of calcium-dependent proteins associated with mammary epithelial cell spreading.

    PubMed

    Rocha, V; Hom, Y K; Marinkovich, M P

    1986-08-01

    Spreading of mouse mammary epithelial cells on collagen gels is closely correlated with the synthesis of a group of putative calcium-binding proteins (CBP) (Braslau et al., Exp cell res 155 (1984) 213). Collagen synthesis was shown to occur during cell spreading, while omission of serum prevented cell spreading and the synthesis of collagen. The proline analogues cis-hydroxyproline and L-azetidine-2-carboxylic acid were shown to inhibit epithelial cell spreading and to suppress the collagen synthesis that occurs during serum-supported cell spreading. Inhibition of collagen synthesis resulted in the inhibition of CBP synthesis associated with cell spreading. In contrast, the collagen cross-linking inhibitor B-aminopropionitrile did not inhibit cell spreading nor did it suppress collagen synthesis; CBP synthesis was also normal during treatment with this inhibitor. Thus, mammary epithelial cell spreading on collagen gels and CBP synthesis can both be suppressed by inhibition of collagen synthesis indicating that they may be integrated in some manner. It is suggested that inhibition of cell spreading during inhibition of collagen synthesis results from failure to assemble a normal basal lamina; this may in turn signal suppression of CBP synthesis.

  1. The natural non-protein amino acid N-β-methylamino-L-alanine (BMAA) is incorporated into protein during synthesis.

    PubMed

    Glover, W Broc; Mash, Deborah C; Murch, Susan J

    2014-11-01

    N-β-methylamino-L-alanine (BMAA) is an amino acid produced by cyanobacteria and accumulated through trophic levels in the environment and natural food webs. Human exposure to BMAA has been linked to progressive neurodegenerative diseases, potentially due to incorporation of BMAA into protein. The insertion of BMAA and other non-protein amino acids into proteins may trigger protein misfunction, misfolding and/or aggregation. However, the specific mechanism by which BMAA is associated with proteins remained unidentified. Such studies are challenging because of the complexity of biological systems and samples. A cell-free in vitro protein synthesis system offers an excellent approach for investigation of changing amino acid composition in protein. In this study, we report that BMAA incorporates into protein as an error in synthesis when a template DNA sequence is used. Bicinchoninic acid assay of total protein synthesis determined that BMAA effectively substituted for alanine and serine in protein product. LC-MS/MS confirmed that BMAA was selectively inserted into proteins in place of other amino acids, but isomers N-(2-aminoethyl)glycine (AEG) and 2,4-diaminobutyric acid (DAB) did not share this characteristic. Incorporation of BMAA into proteins was significantly higher when genomic DNA from post-mortem brain was the template. About half of BMAA in the synthetic proteins was released with denaturation with sodium dodecylsulfonate and dithiothreitol, but the remaining BMAA could only be released by acid hydrolysis. Together these data demonstrate that BMAA is incorporated into the amino acid backbone of proteins during synthesis and also associated with proteins through non-covalent bonding.

  2. Death-associated Protein 3 Regulates Mitochondrial-encoded Protein Synthesis and Mitochondrial Dynamics.

    PubMed

    Xiao, Lin; Xian, Hongxu; Lee, Kit Yee; Xiao, Bin; Wang, Hongyan; Yu, Fengwei; Shen, Han-Ming; Liou, Yih-Cherng

    2015-10-09

    Mitochondrial morphologies change over time and are tightly regulated by dynamic machinery proteins such as dynamin-related protein 1 (Drp1), mitofusion 1/2, and optic atrophy 1 (OPA1). However, the detailed mechanisms of how these molecules cooperate to mediate fission and fusion remain elusive. DAP3 is a mitochondrial ribosomal protein that involves in apoptosis, but its biological function has not been well characterized. Here, we demonstrate that DAP3 specifically localizes in the mitochondrial matrix. Knockdown of DAP3 in mitochondria leads to defects in mitochondrial-encoded protein synthesis and abnormal mitochondrial dynamics. Moreover, depletion of DAP3 dramatically decreases the phosphorylation of Drp1 at Ser-637 on mitochondria, enhancing the retention time of Drp1 puncta on mitochondria during the fission process. Furthermore, autophagy is inhibited in the DAP3-depleted cells, which sensitizes cells to different types of death stimuli. Together, our results suggest that DAP3 plays important roles in mitochondrial function and dynamics, providing new insights into the mechanism of a mitochondrial ribosomal protein function in cell death. © 2015 by The Ameri