Sample records for microbial subsurface metal

  1. Trajectories of Microbial Community Function in Response to Accelerated Remediation of Subsurface Metal Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firestone, Mary

    Objectives of proposed research were to; Determine if the trajectories of microbial community composition and function following organic carbon amendment can be related to, and predicted by, key environmental determinants; Assess the relative importance of the characteristics of the indigenous microbial community, sediment, groundwater, and concentration of organic carbon amendment as the major determinants of microbial community functional response and bioremediation capacity; and Provide a fundamental understanding of the microbial community ecology underlying subsurface metal remediation requisite to successful application of accelerated remediation and long-term stewardship of DOE-IFC sites.

  2. Final Technical Report: Viral Infection of Subsurface Microorganisms and Metal/Radionuclide Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Karrie A.; Bender, Kelly S.; Li, Yusong

    Microbially mediated metabolisms have been identified as a significant factor either directly or indirectly impacting the fate and transport of heavy metal/radionuclide contaminants. To date microorganisms have been isolated from contaminated environments. Examination of annotated finished genome sequences of many of these subsurface isolates from DOE sites, revealed evidence of prior viral infection. To date the role that viruses play influencing microbial mortality and the resulting community structure which directly influences biogeochemical cycling in soils and sedimentary environments remains poorly understood. The objective of this exploratory study was to investigate the role of viral infection of subsurface bacteria and themore » formation of contaminant-bearing viral particles. This objective was approached by examining the following working hypotheses: (i) subsurface microorganisms are susceptible to viral infections by the indigenous subsurface viral community, and (ii) viral surfaces will adsorb heavy metals and radionuclides. Our results have addressed basic research needed to accomplish the BER Long Term Measure to provide sufficient scientific understanding such that DOE sites would be able to incorporate coupled physical, chemical and biological processes into decision making for environmental remediation or natural attenuation and long-term stewardship by establishing viral-microbial relationships on the subsequent fate and transport of heavy metals and radionuclides. Here we demonstrated that viruses play a significant role in microbial mortality and community structure in terrestrial subsurface sedimentary systems. The production of viral-like particles within subsurface sediments in response to biostimulation with dissolved organic carbon and a terminal electron acceptor resulted in the production of viral-like particles. Organic carbon alone did not result in significant viral production and required the addition of a terminal electron acceptor (nitrate), indicating that nutrients are not limiting viral production, but rather substrates that can be converted into energy for host metabolism. Our results also revealed that cell abundance was not correlated to the mineralization of organic carbon, but rather viruses were positively correlated with carbon mineralization. This is a result of viral-mediated cell lysis and demonstrates that viruses are sensitive indicators of microbial activity. Viruses as an indicator of microbial activity was not unique to batch culture studies as results obtained from an in situ field experiment conducted at the DOE Old Rifle Field site. This study revealed that viral abundance increased in response to the injection of oxygenated groundwater and influx of dissolved organic carbon whereas cell abundance changes were minimal. However, the extent to which viral-mediated cell lysis alters organic matter pools subsequently influencing microbial community structure and biogeochemical function remains a critical question in subsurface biogeochemical cycling. The production of significant numbers of viruses in groundwater has implications for nanoparticulate metal as well as carbon transport in groundwater. We have demonstrated that the virus surface is reactive and will adsorb heavy metals. Thus viruses can promote colloidal contaminant mobility. Interestingly, the presence of heavy metals has a positive effect on infectivity of the phage, increasing phage infection which could lead to further production of viruses. Together, the results indicate that the sorption of metals to the surface of viruses could not only contribute to nanoparticulate metal as well as carbon transport but could also enhance infectivity further contributing to cell lysis which could subsequently influence biogeochemical cycling. As more viruses infect host microbial populations the high concentration of metals would enhance infection, resulting in cell lysis, and decreasing the metabolically active host population while yielding greater numbers of viruses capable of transporting contaminats. Additional studies will be necessary to further establish the potential relationship(s) between viruses, cells, carbon, and metals/radionuclides to provide sufficient scientific understanding to incorporate coupled physical, chemical, and biological processes into agent based and reactive transport models.« less

  3. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface

    USGS Publications Warehouse

    Lovely, Derek R.; Anderson, Robert T.

    2000-01-01

    Geobacter become dominant members of the microbial community when Fe(III)-reducing conditions develop as the result of organic contamination, or when Fe(III) reduction is artificially stimulated. These results suggest that further understanding of the ecophysiology of Geobacter species would aid in better prediction of the natural attenuation of organic contaminants under anaerobic conditions and in the design of strategies for the bioremediation of subsurface metal contamination.

  4. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobecky, Patricia A; Taillefert, Martial

    This final technical report describes results and findings from a research project to examine the role of microbial phosphohydrolase enzymes in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of the radionuclide uranium through the production of insoluble uranium phosphate minerals. The research project investigated the microbial mechanisms and the physical and chemical processes promoting uranium biomineralization and sequestration in oxygenated subsurface soils. Uranium biomineralization under aerobic conditions can provide a secondary biobarrier strategy to immobilize radionuclides should the metal precipitates formed by microbial dissimilatory mechanisms remobilize due to a change in redox state.

  5. The Study of Microbial Environmental Processes Related to the Natural Attenuation of Uranium at the Rifle Site using Systems-level Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Methe, Barbara; Lipton, Mary; Mahadevan, Krishna

    Microbes exist in communities in the environment where they are fundamental drivers of global carbon, nutrient and metal cycles. In subsurface environments, they possess significant metabolic potential to affect these global cycles including the transformation of radionuclides. This study examined the influence of microbial communities in sediment zones undergoing biogeochemical cycling of carbon, nutrients and metals including natural attenuation of uranium. This study examined the relationship of both the microbiota (taxonomy) and their metabolic capacity (function) in driving carbon, nutrient and metal cycles including uranium reduction at the Department of Energy (DOE) Rifle Integrated Field Research Challenge (RIFRC). Objectives ofmore » this project were: 1) to apply systems-level biology through application of ‘metaomics’ approaches (collective analyses of whole microbial community DNA, RNA and protein) to the study of microbial environmental processes and their relationship to C, N and metals including the influence of microbial communities on uranium contaminant mobility in subsurface settings undergoing natural attenuation, 2) improve methodologies for data generation using metaomics (collectively metagenomics, metatranscriptomics and proteomics) technologies and analysis and interpretation of that data and 3) use the data generated from these studies towards microbial community-scale metabolic modeling. The strategy for examining these subsurface microbial communities was to generate sequence reads from microbial community DNA (metagenomics or whole genome shotgun sequencing (WGS)) and RNA (metatranscriptomcs or RNAseq) and protein information using proteomics. Results were analyzed independently and through computational modeling. Overall, the community model generated information on the microbial community structure that was observed using metaomic approaches at RIFRC sites and thus provides an important framework for continued community modeling development. The model as created is capable of predicting the response of the community structure in changing environments such as anoxic/oxic conditions or limitations by carbon or nutrients. The ability to more accurately model these responses is critical to understanding carbon and energy flows in an ecosystem is critical towards improving our ability to make predictions that can be used to design more efficient remediation and management strategies, and better understand the implications of environmental perturbations on these ecosystems.« less

  6. Horizontal gene transfer as adaptive response to heavy metal stress in subsurface microbial communities. Final report for period October 15, 1997 - October 15, 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smets, B. F.

    Horizontal gene transfer as adaptive response to heavy metal stress in the presence of heavy metal stress was evaluated in oligotrophic subsurface soil laboratory scale microcosms. Increasing levels of cadmium (10, 100 and 1000 mM) were applied and an E. coli donor was used to deliver the target plasmids, pMOL187 and pMOL222, which contained the czc and ncc operons, and the helper plasmid RP4. Plasmid transfer was evaluated through monitoring of the heavy metal resistance and presence of the genes. The interactive, clearly revealed, effect of biological and chemical external factors on the extent of plasmid-DNA propagation in microbial communitiesmore » in contaminated soil environments was observed in this study. Additionally, P.putida LBJ 415 carrying a suicide construct was used to evaluate selective elimination of a plasmid donor.« less

  7. Methods for microbial filtration of fluids

    DOEpatents

    Carman, Margaret L.; Jackson, Kenneth J.; Knapp, Richard B.; Knezovich, John P.; Shah, Nilesh N.; Taylor, Robert T.

    1996-01-01

    Novel methods for purifying contaminated subsurface groundwater are disclosed. The method is involves contacting the contaminated subsurface groundwater with methanotrophic or heterotrophic microorganisms which produce contaminant-degrading enzymes. The microorganisms are derived from surface cultures and are injected into the ground so as to act as a biofilter. The contaminants which may be treated include organic or metallic materials and radionuclides.

  8. The Use of Molecular and Genomic Techniques Applied to Microbial Diversity, Community Structure, and Activities at DNAPL and Metal Contaminated Sites

    EPA Science Inventory

    A wide variety of in situ subsurface remediation strategies have been developed to mitigate contamination by chlorinated solvent dense non-aqueous phase liquids (DNAPLS) and metals. Geochemical methods include: zerovalent iron emplacement, various electrolytic applications, elec...

  9. Methods for microbial filtration of fluids

    DOEpatents

    Carman, M.L.; Jackson, K.J.; Knapp, R.B.; Knezovich, J.P.; Shah, N.N.; Taylor, R.T.

    1996-01-30

    Novel methods for purifying contaminated subsurface groundwater are disclosed. The method is involves contacting the contaminated subsurface groundwater with methanotrophic or heterotrophic microorganisms which produce contaminant-degrading enzymes. The microorganisms are derived from surface cultures and are injected into the ground so as to act as a biofilter. The contaminants which may be treated include organic or metallic materials and radionuclides. 8 figs.

  10. Subsurface microbial diversity in deep-granitic-fracture water in Colorado

    USGS Publications Warehouse

    Sahl, J.W.; Schmidt, R.; Swanner, E.D.; Mandernack, K.W.; Templeton, A.S.; Kieft, Thomas L.; Smith, R.L.; Sanford, W.E.; Callaghan, R.L.; Mitton, J.B.; Spear, J.R.

    2008-01-01

    A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This "Henderson candidate division" dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. Copyright ?? 2008, American Society for Microbiology. All Rights Reserved.

  11. Subsurface Microbial Diversity in Deep-Granitic-Fracture Water in Colorado▿

    PubMed Central

    Sahl, Jason W.; Schmidt, Raleigh; Swanner, Elizabeth D.; Mandernack, Kevin W.; Templeton, Alexis S.; Kieft, Thomas L.; Smith, Richard L.; Sanford, William E.; Callaghan, Robert L.; Mitton, Jeffry B.; Spear, John R.

    2008-01-01

    A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This “Henderson candidate division” dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. PMID:17981950

  12. Structure and function of subsurface microbial communities affecting radionuclide transport and bioimmobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostka, Joel E.; Prakash, Om; Green, Stefan J.

    2012-05-01

    Our objectives were to: 1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), 2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and 3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations. Field sampling was conducted at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee. Themore » ORFRC subsurface is exposed to mixed contamination predominated by uranium and nitrate. In short, we effectively addressed all 3 stated objectives of the project. In particular, we isolated and characterized a large number of novel anaerobes with a high bioremediation potential that can be used as model organisms, and we are now able to quantify the function of subsurface sedimentary microbial communities in situ using state-of-the-art gene expression methods (molecular proxies).« less

  13. Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates

    USGS Publications Warehouse

    Roger, Jennifer Roberts; Bennett, Philip C.

    2004-01-01

    Microorganisms play an important role in the weathering of silicate minerals in many subsurface environments, but an unanswered question is whether the mineral plays an important role in the microbial ecology. Silicate minerals often contain nutrients necessary for microbial growth, but whether the microbial community benefits from their release during weathering is unclear. In this study, we used field and laboratory approaches to investigate microbial interactions with minerals and glasses containing beneficial nutrients and metals. Field experiments from a petroleum-contaminated aquifer, where silicate weathering is substantially accelerated in the contaminated zone, revealed that phosphorus (P) and iron (Fe)-bearing silicate glasses were preferentially colonized and weathered, while glasses without these elements were typically barren of colonizing microorganisms, corroborating previous studies using feldspars. In laboratory studies, we investigated microbial weathering of silicates and the release of nutrients using a model ligand-promoted pathway. A metal-chelating organic ligand 3,4 dihydroxybenzoic acid (3,4 DHBA) was used as a source of chelated ferric iron, and a carbon source, to investigate mineral weathering rate and microbial metabolism.In the investigated aquifer, we hypothesize that microbes produce organic ligands to chelate metals, particularly Fe, for metabolic processes and also form stable complexes with Al and occasionally with Si. Further, the concentration of these ligands is apparently sufficient near an attached microorganism to destroy the silicate framework while releasing the nutrient of interest. In microcosms containing silicates and glasses with trace phosphate mineral inclusions, microbial biomass increased, indicating that the microbial community can use silicate-bound phosphate inclusions. The addition of a native microbial consortium to microcosms containing silicates or glasses with iron oxide inclusions correlated to accelerated weathering and release of Si into solution as well as the accelerated degradation of the model substrate 3,4 DHBA. We propose that silicate-bound P and Fe inclusions are bioavailable, and microorganisms may use organic ligands to dissolve the silicate matrix and access these otherwise limiting nutrients.

  14. Unique microbial community in drilling fluids from Chinese continental scientific drilling

    USGS Publications Warehouse

    Zhang, Gengxin; Dong, Hailiang; Jiang, Hongchen; Xu, Zhiqin; Eberl, Dennis D.

    2006-01-01

    Circulating drilling fluid is often regarded as a contamination source in investigations of subsurface microbiology. However, it also provides an opportunity to sample geological fluids at depth and to study contained microbial communities. During our study of deep subsurface microbiology of the Chinese Continental Scientific Deep drilling project, we collected 6 drilling fluid samples from a borehole from 2290 to 3350 m below the land surface. Microbial communities in these samples were characterized with cultivation-dependent and -independent techniques. Characterization of 16S rRNA genes indicated that the bacterial clone sequences related to Firmicutes became progressively dominant with increasing depth. Most sequences were related to anaerobic, thermophilic, halophilic or alkaliphilic bacteria. These habitats were consistent with the measured geochemical characteristics of the drilling fluids that have incorporated geological fluids and partly reflected the in-situ conditions. Several clone types were closely related to Thermoanaerobacter ethanolicus, Caldicellulosiruptor lactoaceticus, and Anaerobranca gottschalkii, an anaerobic metal-reducer, an extreme thermophile, and an anaerobic chemoorganotroph, respectively, with an optimal growth temperature of 50–68°C. Seven anaerobic, thermophilic Fe(III)-reducing bacterial isolates were obtained and they were capable of reducing iron oxide and clay minerals to produce siderite, vivianite, and illite. The archaeal diversity was low. Most archaeal sequences were not related to any known cultivated species, but rather to environmental clone sequences recovered from subsurface environments. We infer that the detected microbes were derived from geological fluids at depth and their growth habitats reflected the deep subsurface conditions. These findings have important implications for microbial survival and their ecological functions in the deep subsurface.

  15. Characterization of microbial communities in subsurface nuclear blast cavities of the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Duane P; Czerwinski, Ken; Russell, Charles E

    2010-07-13

    This US Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program's Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse andmore » divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.« less

  16. Characterization of Microbial Communities in Subsurface Nuclear Blast Cavities of the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Duane P.; Bruckner, Jim; Fisher, Jen

    2010-09-01

    This U.S. Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program’s Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse andmore » divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.« less

  17. Formation of recent Pb-Ag-Au mineralization by potential sub-surface microbial activity

    NASA Astrophysics Data System (ADS)

    Tornos, Fernando; Velasco, Francisco; Menor-Salván, César; Delgado, Antonio; Slack, John F.; Escobar, Juan Manuel

    2014-08-01

    Las Cruces is a base-metal deposit in the Iberian Pyrite Belt, one of the world’s best-known ore provinces. Here we report the occurrence of major Pb-Ag-Au mineralization resulting from recent sub-surface replacement of supergene oxyhydroxides by carbonate and sulphide minerals. This is probably the largest documented occurrence of recent microbial activity producing an ore assemblage previously unknown in supergene mineralizing environments. The presence of microbial features in the sulphides suggests that these may be the first-described natural bacteriomorphs of galena. The low δ13C values of the carbonate minerals indicate formation by deep anaerobic microbial processes. Sulphur isotope values of sulphides are interpreted here as reflecting microbial reduction in a system impoverished in sulphate. We suggest that biogenic activity has produced around 3.1 × 109 moles of reduced sulphur and 1010 moles of CO2, promoting the formation of ca. 1.19 Mt of carbonates, 114,000 t of galena, 638 t of silver sulphides and 6.5 t of gold.

  18. Performance Indicators for Uranium Bioremediation in the Subsurface: Basis and Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Philip E.; Yabusaki, Steven B.

    2006-12-29

    The purpose of this letter report is to identify performance indicators for in situ engineered bioremediation of subsurface uranium (U) contamination. This report focuses on in situ treatment of groundwater by biostimulation of extant in situ microbial populations (see http://128.3.7.51/NABIR/generalinfo/primers_guides/03_NABIR_primer.pdf for background information on bioremediation of metals and radionuclides). The treatment process involves amendment of the subsurface with an electron donor such as acetate, lactate, ethanol or other organic compound such that in situ microorganisms mediate the reduction of U(VI) to U(IV). U(VI) precipitates as uraninite or other insoluble U phase. Uranium is thus immobilized in place by such processesmore » and is subject to reoxidation that may remobilize the reduced uranium. Related processes include augmenting the extant subsurface microbial populations, addition of electron acceptors, and introduction of chemically reducing materials such as zero-valent Fe. While metrics for such processes may be similar to those for in situ biostimulation, these related processes are not directly in the scope of this letter report.« less

  19. The Limits of Life in the Deep Subsurface - Implications for the Origin of Life

    NASA Astrophysics Data System (ADS)

    Baross, John

    2013-06-01

    There are very few environments on Earth where life is absent. Microbial life has proliferated into habitats that span nearly every imaginable physico-chemical variable. Only the availability of liquid water and temperature are known to prevent the growth of organisms. The other extreme physical and chemical variables, such as pH, pressure, high concentrations of solutes, damaging radiation, and toxic metals, are life-prohibiting factors for most organisms but not for all. The deep subsurface environments span all of the extreme conditions encountered by life including habitat conditions not yet explored, such as those that combine high temperature, high and low pH and extreme pressures. Some of the ``extremophile'' microorganisms inhabiting the deep subsurface environments have been shown to be among the most ``ancient'' of extant life. Their genomes and physiologies have led to a broader understanding of the geological settings of early life, the most ancient energy pathways, and the importance of water/rock interactions and tectonics in the origin and early evolution of life. The case can now be made that deep subsurface environments contributed to life's origin and provided the habitat(s) for the earliest microbial communities. However, there is much more to be done to further our understanding on the role of moderate to high pressures and temperatures on the chemical and biochemical ``steps'' leading to life, and on the evolution and physiology of both ancient and present-day subsurface microbial communities.

  20. Linking Specific Heterotrophic Bacterial Populations to Bioreduction of Uranium and Nitrate in Contaminated Subsurface Sediments by Using Stable Isotope Probing▿†

    PubMed Central

    Akob, Denise M.; Kerkhof, Lee; Küsel, Kirsten; Watson, David B.; Palumbo, Anthony V.; Kostka, Joel E.

    2011-01-01

    Shifts in terminal electron-accepting processes during biostimulation of uranium-contaminated sediments were linked to the composition of stimulated microbial populations using DNA-based stable isotope probing. Nitrate reduction preceded U(VI) and Fe(III) reduction in [13C]ethanol-amended microcosms. The predominant, active denitrifying microbial groups were identified as members of the Betaproteobacteria, whereas Actinobacteria dominated under metal-reducing conditions. PMID:21948831

  1. Microbial Community Responses to Organophosphate Substrate Additions in Contaminated Subsurface Sediments

    PubMed Central

    Martinez, Robert J.; Wu, Cindy H.; Beazley, Melanie J.; Andersen, Gary L.; Conrad, Mark E.; Hazen, Terry C.; Taillefert, Martial; Sobecky, Patricia A.

    2014-01-01

    Background Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments. Methodology/Principal Findings Uranium-contaminated sediments from the U.S. Department of Energy Oak Ridge Field Research Center (ORFRC) Area 2 site were used in slurry experiments to identify microbial communities involved in hydrolysis of 10 mM organophosphate amendments [i.e., glycerol-2-phosphate (G2P) or glycerol-3-phosphate (G3P)] in synthetic groundwater at pH 5.5 and pH 6.8. Following 36 day (G2P) and 20 day (G3P) amended treatments, maximum phosphate (PO4 3−) concentrations of 4.8 mM and 8.9 mM were measured, respectively. Use of the PhyloChip 16S rRNA microarray identified 2,120 archaeal and bacterial taxa representing 46 phyla, 66 classes, 110 orders, and 186 families among all treatments. Measures of archaeal and bacterial richness were lowest under G2P (pH 5.5) treatments and greatest with G3P (pH 6.8) treatments. Members of the phyla Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria demonstrated the greatest enrichment in response to organophosphate amendments and the OTUs that increased in relative abundance by 2-fold or greater accounted for 9%–50% and 3%–17% of total detected Archaea and Bacteria, respectively. Conclusions/Significance This work provided a characterization of the distinct ORFRC subsurface microbial communities that contributed to increased concentrations of extracellular phosphate via hydrolysis of organophosphate substrate amendments. Within subsurface environments that are not ideal for reductive precipitation of uranium, strategies that harness microbial phosphate metabolism to promote uranium phosphate precipitation could offer an alternative approach for in situ sequestration. PMID:24950228

  2. Microbial populations in contaminant plumes

    USGS Publications Warehouse

    Haack, S.K.; Bekins, B.A.

    2000-01-01

    Efficient biodegradation of subsurface contaminants requires two elements: (1) microbial populations with the necessary degradative capabilities, and (2) favorable subsurface geochemical and hydrological conditions. Practical constraints on experimental design and interpretation in both the hydrogeological and microbiological sciences have resulted in limited knowledge of the interaction between hydrogeological and microbiological features of subsurface environments. These practical constraints include: (1) inconsistencies between the scales of investigation in the hydrogeological and microbiological sciences, and (2) practical limitations on the ability to accurately define microbial populations in environmental samples. However, advances in application of small-scale sampling methods and interdisciplinary approaches to site investigations are beginning to significantly improve understanding of hydrogeological and microbiological interactions. Likewise, culture-based and molecular analyses of microbial populations in subsurface contaminant plumes have revealed significant adaptation of microbial populations to plume environmental conditions. Results of recent studies suggest that variability in subsurface geochemical and hydrological conditions significantly influences subsurface microbial-community structure. Combined investigations of site conditions and microbial-community structure provide the knowledge needed to understand interactions between subsurface microbial populations, plume geochemistry, and contaminant biodegradation.

  3. Subsurface geomicrobiology of the Iberian Pyritic Belt, a terrestrial analogue of Mars

    NASA Astrophysics Data System (ADS)

    Amils, Ricardo

    Terrestrial subsurface geomicrobiology is a matter of growing interest on many levels. From a fundamental point of view, it seeks to determine whether life can be sustained in the absence of radiation. From an astrobiological point of view, it is an interesting model for early life on Earth, as well as a representation of life as it could occur in other planetary bodies, e.g., Mars. Ŕ Tinto is an unusual extreme acidic environment due to its size, constant acidic pH, high ıo concentration of heavy metals and high level of microbial diversity. Ŕ Tinto rises in the core of ıo the Iberian Pyritic Belt (IPB), one of the biggest sulfidic ore deposits in the world. Today it is clear that the extreme characteristics of Ŕ Tinto are not due to acid mine drainage resulting ıo from mining activity. To explore the hypothesis that a continuous underground reactor of chemolithotrophic microorganisms thriving in the rich sulfidic minerals of the IPB is responsible for the extreme conditions found in the river, a drilling project has been developed to detect evidence of subsurface microbial activity and potential resources to support these microbial communities in situ from retrieved cores (MARTE project). Preliminary results clearly show that there is an active subsurface geomicrobiology in the Iberian Pyritic Belt associated to places were ground waters intersects the sulfidic ore body.

  4. Subsurface Environment Sampler for Improved In Situ Characterization of Subsurface Microbial Communities

    NASA Astrophysics Data System (ADS)

    Barnhart, E. P.; Ruppert, L. F.; Orem, W. H.; McIntosh, J. C.; Cunningham, A. B.; Fields, M. W.; Hiebert, R.; Hyatt, R.

    2016-12-01

    There is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by the extraction and transport of fossil fuels. This threat increases the need for improved groundwater monitoring and the ability to predict the extent to which microbial activity may remediate such contamination. The characterization of subsurface microbial communities could provide an ideal biomonitoring tool for the assessment of subsurface contamination due to prokaryotes environmental ubiquity, rapidity of response to environmental perturbation and the important role they play in hydrocarbon degradation and bioremediation. New DNA sequencing technologies provide the opportunity to cost-effectively identify the vast subsurface microbial ecosystem, but use of this new technology is restricted due to issues with sampling. Prior subsurface microbiology studies have relied on core samples that are expensive to obtain hard to collect aseptically and/or ground water samples that do not reflect in situ microbial densities or activities. The development of down-well incubation of sterile sediment with a Diffusive Microbial Sampler (DMS) has emerged as an alternative method to sample subsurface microbial communities that minimizes cost and contamination issues associated with traditional methods. We have designed a Subsurface Environment Sampler with a DMS module that could enable the anaerobic transport of the in situ microbial community from the field for laboratory bioremediation studies. This sampler could provide an inexpensive and standard method for subsurface microbial sampling which would make this tool useful for Federal, State, private and local agencies interested in monitoring contamination or the effectiveness of bioremediation activities in subsurface aquifers.

  5. Microbially catalyzed nitrate-dependent metal/radionuclide oxidation in shallow subsurface sediments

    NASA Astrophysics Data System (ADS)

    Weber, K.; Healy, O.; Spanbauer, T. L.; Snow, D. D.

    2011-12-01

    Anaerobic, microbially catalyzed nitrate-dependent metal/radionuclide oxidation has been demonstrated in a variety of sediments, soils, and groundwater. To date, studies evaluating U bio-oxidation and mobilization have primarily focused on anthropogenically U contaminated sites. In the Platte River Basin U originating from weathering of uranium-rich igneous rocks in the Rocky Mountains was deposited in shallow alluvial sediments as insoluble reduced uranium minerals. These reduced U minerals are subject to reoxidation by available oxidants, such nitrate, in situ. Soluble uranium (U) from natural sources is a recognized contaminant in public water supplies throughout the state of Nebraska and Colorado. Here we evaluate the potential of anaerobic, nitrate-dependent microbially catalyzed metal/radionuclide oxidation in subsurface sediments near Alda, NE. Subsurface sediments and groundwater (20-64ft.) were collected from a shallow aquifer containing nitrate (from fertilizer) and natural iron and uranium. The reduction potential revealed a reduced environment and was confirmed by the presence of Fe(II) and U(IV) in sediments. Although sediments were reduced, nitrate persisted in the groundwater. Nitrate concentrations decreased, 38 mg/L to 30 mg/L, with increasing concentrations of Fe(II) and U(IV). Dissolved U, primarily as U(VI), increased with depth, 30.3 μg/L to 302 μg/L. Analysis of sequentially extracted U(VI) and U(IV) revealed that virtually all U in sediments existed as U(IV). The presence of U(IV) is consistent with reduced Fe (Fe(II)) and low reduction potential. The increase in aqueous U concentrations with depth suggests active U cycling may occur at this site. Tetravalent U (U(IV)) phases are stable in reduced environments, however the input of an oxidant such as oxygen or nitrate into these systems would result in oxidation. Thus co-occurrence of nitrate suggests that nitrate could be used by bacteria as a U(IV) oxidant. Most probable number enumeration of nitrate-dependent U(IV) oxidizing microorganisms demonstrated an abundant community ranging from 1.61x104 to 2.74x104 cells g-1 sediment. Enrichments initiated verified microbial U reduction and U oxidation coupled to nitrate reduction. Sediment slurries were serially diluted and incubated over a period of eight weeks and compared to uninoculated controls. Oxidation (0-4,554 μg/L) and reduction (0-55 μg/L) of U exceeded uninoculated controls further providing evidence of a U biogeochemical cycling in these subsurface sediments. The oxidation of U(IV) could contribute to U mobilization in the groundwater and result in decreased water quality. Not only could nitrate serve as an oxidant, but Fe(III) could also contribute to U mobilization. Nitrate-dependent Fe(II) oxidation is an environmentally ubiquitous process facilitated by a diversity of microorganisms. Additional research is necessary in order to establish a role of biogenic Fe(III) oxides in U geochemical cycling at this site. These microbially mediated processes could also have a confounding effect on uranium mobility in subsurface environments.

  6. An investigation of the sensitivity of low-field nuclear magnetic resonance to microbial growth and activity

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Keating, K.

    2014-12-01

    Microbes and microbial processes play a significant role in shaping subsurface environments and are involved in applications ranging from microbially enhanced oil recovery to soil and groundwater contaminant remediation. Stimulated microbial growth in such applications could cause wide variety of changes of physical/chemical properties in the subsurface; however, due to the complexity of subsurface systems,it is difficult to monitor the growth of microbes and microbial activity in porous media. The focus of this research is to determine if low-field nuclear magnetic resonance (NMR), a method used in well logging to characterize fluids in hydrocarbon reservoirs or water in aquifers, can be used to directly detect the presence and the growth of microbes in geologic media. In this laboratory study, low-field NMR (2 MHz) relaxation measurements were collected on microbial suspensions with measured densities (i.e. biomasses), microbial pellets (live and dead), and inoculated silica. We focus on the direct contribution of microbes to the NMR signals in the absence of biomineralization. Shewanella oneidensis (MR-1), a facultative metal reducer known to play an important role in subsurface environments, were used as a model organism and were inoculated under aerobic condition. Data were collected using a CPMG pulse sequence, which was to determine the T2-distribution, and using a gradient spin-echo (PGSE) plus CPMG pulse sequence, which was used to encode diffusion properties and determine the effective diffusion-spin-spin relaxation correlation (D-T2) plot. Our data show no obvious change in the T2-distribution as S. oneidensis density varied in suspension, but show a clear distinction in the T2-distribution and D-T2 plots between live and dead cell pellets. A decrease in the T2-distribution is observed in the inoculated sand column. These results will provide a basis for understanding the effect of microbes within geologic media on low-field NMR measurements. This research is necessary to determine if NMR measurements can ultimately to be used to monitor microbial growth and activity in oil reservoirs or contaminated aquifers.

  7. Geological and Geochemical Controls on Subsurface Microbial Life in the Samail Ophiolite, Oman.

    PubMed

    Rempfert, Kaitlin R; Miller, Hannah M; Bompard, Nicolas; Nothaft, Daniel; Matter, Juerg M; Kelemen, Peter; Fierer, Noah; Templeton, Alexis S

    2017-01-01

    Microbial abundance and diversity in deep subsurface environments is dependent upon the availability of energy and carbon. However, supplies of oxidants and reductants capable of sustaining life within mafic and ultramafic continental aquifers undergoing low-temperature water-rock reaction are relatively unknown. We conducted an extensive analysis of the geochemistry and microbial communities recovered from fluids sampled from boreholes hosted in peridotite and gabbro in the Tayin block of the Samail Ophiolite in the Sultanate of Oman. The geochemical compositions of subsurface fluids in the ophiolite are highly variable, reflecting differences in host rock composition and the extent of fluid-rock interaction. Principal component analysis of fluid geochemistry and geologic context indicate the presence of at least four fluid types in the Samail Ophiolite ("gabbro," "alkaline peridotite," "hyperalkaline peridotite," and "gabbro/peridotite contact") that vary strongly in pH and the concentrations of H 2 , CH 4 , Ca 2+ , Mg 2+ , [Formula: see text], [Formula: see text], trace metals, and DIC. Geochemistry of fluids is strongly correlated with microbial community composition; similar microbial assemblages group according to fluid type. Hyperalkaline fluids exhibit low diversity and are dominated by taxa related to the Deinococcus-Thermus genus Meiothermus , candidate phyla OP1, and the family Thermodesulfovibrionaceae. Gabbro- and alkaline peridotite- aquifers harbor more diverse communities and contain abundant microbial taxa affiliated with Nitrospira , Nitrosospharaceae, OP3, Parvarcheota, and OP1 order Acetothermales. Wells that sit at the contact between gabbro and peridotite host microbial communities distinct from all other fluid types, with an enrichment in betaproteobacterial taxa. Together the taxonomic information and geochemical data suggest that several metabolisms may be operative in subsurface fluids, including methanogenesis, acetogenesis, and fermentation, as well as the oxidation of methane, hydrogen and small molecular weight organic acids utilizing nitrate and sulfate as electron acceptors. Dynamic nitrogen cycling may be especially prevalent in gabbro and alkaline peridotite fluids. These data suggest water-rock reaction, as controlled by lithology and hydrogeology, constrains the distribution of life in terrestrial ophiolites.

  8. Geological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rempfert, Kaitlin R.; Miller, Hannah M.; Bompard, Nicolas

    Microbial abundance and diversity in deep subsurface environments is dependent upon the availability of energy and carbon. However, supplies of oxidants and reductants capable of sustaining life within mafic and ultramafic continental aquifers undergoing low-temperature water-rock reaction are relatively unknown. We conducted an extensive analysis of the geochemistry and microbial communities recovered from fluids sampled from boreholes hosted in peridotite and gabbro in the Tayin block of the Samail Ophiolite in the Sultanate of Oman. The geochemical compositions of subsurface fluids in the ophiolite are highly variable, reflecting differences in host rock composition and the extent of fluid-rock interaction. Principal component analysis of fluid geochemistry and geologic context indicate the presence of at least four fluid types in the Samail Ophiolite (“gabbro,” “alkaline peridotite,” “hyperalkaline peridotite,” and “gabbro/peridotite contact”) that vary strongly in pH and the concentrations of H 2, CH 4, Ca 2+, Mg 2+, NO 3 more » $-$, SO$$2-\\atop{4}$$, trace metals, and DIC. Geochemistry of fluids is strongly correlated with microbial community composition; similar microbial assemblages group according to fluid type. Hyperalkaline fluids exhibit low diversity and are dominated by taxa related to the Deinococcus-Thermus genus Meiothermus, candidate phyla OP1, and the family Thermodesulfovibrionaceae. Gabbro- and alkaline peridotite- aquifers harbor more diverse communities and contain abundant microbial taxa affiliated with Nitrospira, Nitrosospharaceae, OP3, Parvarcheota, and OP1 order Acetothermales. Wells that sit at the contact between gabbro and peridotite host microbial communities distinct from all other fluid types, with an enrichment in betaproteobacterial taxa. Together the taxonomic information and geochemical data suggest that several metabolisms may be operative in subsurface fluids, including methanogenesis, acetogenesis, and fermentation, as well as the oxidation of methane, hydrogen and small molecular weight organic acids utilizing nitrate and sulfate as electron acceptors. Dynamic nitrogen cycling may be especially prevalent in gabbro and alkaline peridotite fluids. As a result, these data suggest water-rock reaction, as controlled by lithology and hydrogeology, constrains the distribution of life in terrestrial ophiolites.« less

  9. Geological and Geochemical Controls on Subsurface Microbial Life in the Samail Ophiolite, Oman

    PubMed Central

    Rempfert, Kaitlin R.; Miller, Hannah M.; Bompard, Nicolas; Nothaft, Daniel; Matter, Juerg M.; Kelemen, Peter; Fierer, Noah; Templeton, Alexis S.

    2017-01-01

    Microbial abundance and diversity in deep subsurface environments is dependent upon the availability of energy and carbon. However, supplies of oxidants and reductants capable of sustaining life within mafic and ultramafic continental aquifers undergoing low-temperature water-rock reaction are relatively unknown. We conducted an extensive analysis of the geochemistry and microbial communities recovered from fluids sampled from boreholes hosted in peridotite and gabbro in the Tayin block of the Samail Ophiolite in the Sultanate of Oman. The geochemical compositions of subsurface fluids in the ophiolite are highly variable, reflecting differences in host rock composition and the extent of fluid-rock interaction. Principal component analysis of fluid geochemistry and geologic context indicate the presence of at least four fluid types in the Samail Ophiolite (“gabbro,” “alkaline peridotite,” “hyperalkaline peridotite,” and “gabbro/peridotite contact”) that vary strongly in pH and the concentrations of H2, CH4, Ca2+, Mg2+, NO3-, SO42-, trace metals, and DIC. Geochemistry of fluids is strongly correlated with microbial community composition; similar microbial assemblages group according to fluid type. Hyperalkaline fluids exhibit low diversity and are dominated by taxa related to the Deinococcus-Thermus genus Meiothermus, candidate phyla OP1, and the family Thermodesulfovibrionaceae. Gabbro- and alkaline peridotite- aquifers harbor more diverse communities and contain abundant microbial taxa affiliated with Nitrospira, Nitrosospharaceae, OP3, Parvarcheota, and OP1 order Acetothermales. Wells that sit at the contact between gabbro and peridotite host microbial communities distinct from all other fluid types, with an enrichment in betaproteobacterial taxa. Together the taxonomic information and geochemical data suggest that several metabolisms may be operative in subsurface fluids, including methanogenesis, acetogenesis, and fermentation, as well as the oxidation of methane, hydrogen and small molecular weight organic acids utilizing nitrate and sulfate as electron acceptors. Dynamic nitrogen cycling may be especially prevalent in gabbro and alkaline peridotite fluids. These data suggest water-rock reaction, as controlled by lithology and hydrogeology, constrains the distribution of life in terrestrial ophiolites. PMID:28223966

  10. Geological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman

    DOE PAGES

    Rempfert, Kaitlin R.; Miller, Hannah M.; Bompard, Nicolas; ...

    2017-02-07

    Microbial abundance and diversity in deep subsurface environments is dependent upon the availability of energy and carbon. However, supplies of oxidants and reductants capable of sustaining life within mafic and ultramafic continental aquifers undergoing low-temperature water-rock reaction are relatively unknown. We conducted an extensive analysis of the geochemistry and microbial communities recovered from fluids sampled from boreholes hosted in peridotite and gabbro in the Tayin block of the Samail Ophiolite in the Sultanate of Oman. The geochemical compositions of subsurface fluids in the ophiolite are highly variable, reflecting differences in host rock composition and the extent of fluid-rock interaction. Principal component analysis of fluid geochemistry and geologic context indicate the presence of at least four fluid types in the Samail Ophiolite (“gabbro,” “alkaline peridotite,” “hyperalkaline peridotite,” and “gabbro/peridotite contact”) that vary strongly in pH and the concentrations of H 2, CH 4, Ca 2+, Mg 2+, NO 3 more » $-$, SO$$2-\\atop{4}$$, trace metals, and DIC. Geochemistry of fluids is strongly correlated with microbial community composition; similar microbial assemblages group according to fluid type. Hyperalkaline fluids exhibit low diversity and are dominated by taxa related to the Deinococcus-Thermus genus Meiothermus, candidate phyla OP1, and the family Thermodesulfovibrionaceae. Gabbro- and alkaline peridotite- aquifers harbor more diverse communities and contain abundant microbial taxa affiliated with Nitrospira, Nitrosospharaceae, OP3, Parvarcheota, and OP1 order Acetothermales. Wells that sit at the contact between gabbro and peridotite host microbial communities distinct from all other fluid types, with an enrichment in betaproteobacterial taxa. Together the taxonomic information and geochemical data suggest that several metabolisms may be operative in subsurface fluids, including methanogenesis, acetogenesis, and fermentation, as well as the oxidation of methane, hydrogen and small molecular weight organic acids utilizing nitrate and sulfate as electron acceptors. Dynamic nitrogen cycling may be especially prevalent in gabbro and alkaline peridotite fluids. As a result, these data suggest water-rock reaction, as controlled by lithology and hydrogeology, constrains the distribution of life in terrestrial ophiolites.« less

  11. Porosity and Organic Carbon Controls on Naturally Reduced Zone (NRZ) Formation Creating Microbial ';Hotspots' for Fe, S, and U Cycling in Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Jones, M. E.; Janot, N.; Bargar, J.; Fendorf, S. E.

    2013-12-01

    Previous studies have illustrated the importance of Naturally Reduced Zones (NRZs) within saturated sediments for the cycling of metals and redox sensitive contaminants. NRZs can provide a source of reducing equivalents such as reduced organic compounds or hydrogen to stimulate subsurface microbial communities. These NRZ's are typically characterized by low permeability and elevated concentrations of organic carbon and trace metals. However, both the formation of NRZs and their importance to the overall aquifer carbon remineralization is not fully understood. Within NRZs the hydrolysis of particulate organic carbon (POC) and subsequent fermentation of dissolved organic carbon (DOC) to form low molecular weight dissolved organic carbon (LMW-DOC) provides electron donors necessary for the respiration of Fe, S, and in the case of the Rifle aquifer, U. Rates of POC hydrolysis and subsequent fermentation have been poorly constrained and rates in excess and deficit to the rates of subsurface anaerobic respiratory processes have been suggested. In this study, we simulate the development of NRZ sediments in diffusion-limited aggregates to investigate the physical and chemical conditions required for NRZ formation. Effects of sediment porosity and POC loading on Fe, S, and U cycling on molecular and nanoscale are investigated with synchrotron-based Near Edge X-ray Absorption Fine Structure Spectroscopy (NEXAFS). Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Fourier Transform Infrared spectroscopy (FTIR) are used to characterize the transformations in POC and DOC. Sediment aggregates are inoculated with the natural microbial biota from the Rifle aquifer and population dynamics are monitored by 16S RNA analysis. Overall, establishment of low permeability NRZs within the aquifer stimulate microbial respiration beyond the diffusion-limited zones and can limit the transport of U through a contaminated aquifer. However, the long-term stability of NRZs and the co-located U is unknown and requires further study.

  12. The biogeochemical fate of nickel during microbial ISA degradation; implications for nuclear waste disposal.

    PubMed

    Kuippers, Gina; Boothman, Christopher; Bagshaw, Heath; Ward, Michael; Beard, Rebecca; Bryan, Nicholas; Lloyd, Jonathan R

    2018-06-08

    Intermediate level radioactive waste (ILW) generally contains a heterogeneous range of organic and inorganic materials, of which some are encapsulated in cement. Of particular concern are cellulosic waste items, which will chemically degrade under the conditions predicted during waste disposal, forming significant quantities of isosaccharinic acid (ISA), a strongly chelating ligand. ISA therefore has the potential to increase the mobility of a wide range of radionuclides via complex formation, including Ni-63 and Ni-59. Although ISA is known to be metabolized by anaerobic microorganisms, the biodegradation of metal-ISA complexes remains unexplored. This study investigates the fate of a Ni-ISA complex in Fe(III)-reducing enrichment cultures at neutral pH, representative of a microbial community in the subsurface. After initial sorption of Ni onto Fe(III)oxyhydroxides, microbial ISA biodegradation resulted in >90% removal of the remaining Ni from solution when present at 0.1 mM, whereas higher concentrations of Ni proved toxic. The microbial consortium associated with ISA degradation was dominated by close relatives to Clostridia and Geobacter species. Nickel was preferentially immobilized with trace amounts of biogenic amorphous iron sulfides. This study highlights the potential for microbial activity to help remove chelating agents and radionuclides from the groundwater in the subsurface geosphere surrounding a geodisposal facility.

  13. Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments.

    PubMed

    Hernsdorf, Alex W; Amano, Yuki; Miyakawa, Kazuya; Ise, Kotaro; Suzuki, Yohey; Anantharaman, Karthik; Probst, Alexander; Burstein, David; Thomas, Brian C; Banfield, Jillian F

    2017-08-01

    Geological sequestration in deep underground repositories is the prevailing proposed route for radioactive waste disposal. After the disposal of radioactive waste in the subsurface, H 2 may be produced by corrosion of steel and, ultimately, radionuclides will be exposed to the surrounding environment. To evaluate the potential for microbial activities to impact disposal systems, we explored the microbial community structure and metabolic functions of a sediment-hosted ecosystem at the Horonobe Underground Research Laboratory, Hokkaido, Japan. Overall, we found that the ecosystem hosted organisms from diverse lineages, including many from the phyla that lack isolated representatives. The majority of organisms can metabolize H 2 , often via oxidative [NiFe] hydrogenases or electron-bifurcating [FeFe] hydrogenases that enable ferredoxin-based pathways, including the ion motive Rnf complex. Many organisms implicated in H 2 metabolism are also predicted to catalyze carbon, nitrogen, iron and sulfur transformations. Notably, iron-based metabolism is predicted in a novel lineage of Actinobacteria and in a putative methane-oxidizing ANME-2d archaeon. We infer an ecological model that links microorganisms to sediment-derived resources and predict potential impacts of microbial activity on H 2 consumption and retardation of radionuclide migration.

  14. Deep subsurface microbial processes

    USGS Publications Warehouse

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of other habitats, the study of deep subsurface microbiology is still in its infancy.

  15. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerlach, Robin; Peyton, Brent M.; Apel, William A.

    2014-01-29

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and othermore » contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic contaminants in the subsurface; a primary concern of the DOE Environmental Remediation Science Division (ERSD) and Subsurface Geochemical Research (SBR) Program.« less

  16. A hydrogen-based subsurface microbial community dominated by methanogens

    USGS Publications Warehouse

    Chapelle, F.H.; O'Neil, Kyle; Bradley, P.M.; Methe, B.A.; Ciufo, S.A.; Knobel, L.L.; Lovley, D.R.

    2002-01-01

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem1-5. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16s ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  17. Sulfur and iron cycling in deep-subsurface, coal bed-containing sediments off Shimokita (Japan)

    NASA Astrophysics Data System (ADS)

    Riedinger, N.; Smirnoff, M. N.; Gilhooly, W.; Phillips, S. C.; Lyons, T. W.; 337 Scientific Party, I.

    2013-12-01

    The main goal of IODP Expedition 337 was the identification and characterization of the deep coal bed biosphere and hydrocarbon system off the Shimokita Peninsula (Japan) in the northwestern Pacific using the D/V Chikyu. To accomplish this scientific objective, it was also necessary to investigate the inorganic biogeochemistry in order to identify possible electron acceptors and bio-essential nutrients. These biogeochemical parameters greatly influence both, the composition and abundance of microbial communities as well as the organic carbon cycle. In turn, the microbially mediated carbon cycle influences the diagenetic reactions in the subsurface, thus, altering geochemical and physical characteristics of the material. Here we present results from metal and sulfur geochemical analyses from the deep-subsurface sediments (about 1250 to 2466 mbsf) at Site C0020 off Shimokita. The measured concentrations of acid volatile sulfur (AVS) as well as chromium reducible sulfur (CRS) reflect the alteration of iron oxides to iron sulfides and indicate that the main sulfur-bearing phase in the investigated sediments is pyrite. Concentrations of intermediate sulfur species are minor and occur mainly in the coal-bearing interval. Our data show that the uppermost sediments contain higher amounts of pyrite (up to 1.2 wt.%) with an average of 0.5 wt.% compared to the deeper deposits (below about 1800 mbsf), which show an average of 0.16 wt.%. In contrast, iron oxide concentrations are highest in the deeper sediment sections (up to 0.4%), where pyrite concentrations are low. The alteration of iron oxides to sulfides in theses lower section was probably governed by the amount of available sulfide in the pore water. The occurrence of (bio-)reactive iron phases in these deeply buried sediments has implications for the deep biosphere as those minerals have the potential to serve as electron acceptors during burial, including reactions involving deep sourced electron donors, such as hydrogen and methane - related to the coal bed as the potential source. Thus, the deep subsurface coal beds off Shimokita provide an ideal environment to investigate microbial and metal interactions under extreme conditions.

  18. Phylogenetic evidence of noteworthy microflora from the subsurface of the former Homestake gold mine, Lead, South Dakota

    PubMed Central

    Waddell, Evan J.; Elliott, Terran J.; Sani, Rajesh K.; Vahrenkamp, Jefferey M.; Roggenthen, William M.; Anderson, Cynthia M.; Bang, Sookie S.

    2013-01-01

    Molecular characterization of subsurface microbial communities in the former Homestake gold mine, South Dakota, was carried out by 16S rDNA sequence analysis using a water sample and a weathered soil–like sample. Geochemical analyses indicated that both samples were high in sulfur, rich in nitrogen and salt, but with significantly different metal concentrations. Microbial diversity comparisons unexpectedly revealed three distinct operational taxonomic units (OTUs) belonging to the archaeal phylum Thaumarchaeota typically identified from marine environments, and one OTU to a potentially novel phylum that falls sister to Thaumarchaeota. To our knowledge this is only the second report of Thaumarchaeota in a terrestrial environment. The majority of the clones from Archaea sequence libraries fell into two closely related OTUs and grouped most closely to an ammonia–oxidizing, carbon–fixing and halophilic thaumarchaeote genus, Nitrosopumilus. The two samples showed neither Euryarchaeota nor Crenarchaeota members that were often identified from other subsurface terrestrial ecosystems. Bacteria OTUs containing the highest percentage of sequences were related to sulfur-oxidizing bacteria of the orders Chromatiales and Thiotrichales. Community members of Bacteria from individual Homestake ecosystems were heterogeneous and distinctive to each community with unique phylotypes identified within each sample. PMID:20662386

  19. MURMoT. Design and Application of Microbial Uranium Reduction Monitoring Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loeffler, Frank E.

    2014-12-31

    Uranium (U) contamination in the subsurface is a major remediation challenge at many DOE sites. Traditional site remedies present enormous costs to DOE; hence, enhanced bioremediation technologies (i.e., biostimulation and bioaugmentation) combined with monitoring efforts are being considered as cost-effective corrective actions to address subsurface contamination. This research effort improved understanding of the microbial U reduction process and developed new tools for monitoring microbial activities. Application of these tools will promote science-based site management decisions that achieve contaminant detoxification, plume control, and long-term stewardship in the most efficient manner. The overarching hypothesis was that the design, validation and application ofmore » a suite of new molecular and biogeochemical tools advance process understanding, and improve environmental monitoring regimes to assess and predict in situ U immobilization. Accomplishments: This project (i) advanced nucleic acid-based approaches to elucidate the presence, abundance, dynamics, spatial distribution, and activity of metal- and radionuclide-detoxifying bacteria; (ii) developed proteomics workflows for detection of metal reduction biomarker proteins in laboratory cultures and contaminated site groundwater; (iii) developed and demonstrated the utility of U isotopic fractionation using high precision mass spectrometry to quantify U(VI) reduction for a range of reduction mechanisms and environmental conditions; and (iv) validated the new tools using field samples from U-contaminated IFRC sites, and demonstrated their prognostic and diagnostic capabilities in guiding decision making for environmental remediation and long-term site stewardship.« less

  20. Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments

    PubMed Central

    Hernsdorf, Alex W; Amano, Yuki; Miyakawa, Kazuya; Ise, Kotaro; Suzuki, Yohey; Anantharaman, Karthik; Probst, Alexander; Burstein, David; Thomas, Brian C; Banfield, Jillian F

    2017-01-01

    Geological sequestration in deep underground repositories is the prevailing proposed route for radioactive waste disposal. After the disposal of radioactive waste in the subsurface, H2 may be produced by corrosion of steel and, ultimately, radionuclides will be exposed to the surrounding environment. To evaluate the potential for microbial activities to impact disposal systems, we explored the microbial community structure and metabolic functions of a sediment-hosted ecosystem at the Horonobe Underground Research Laboratory, Hokkaido, Japan. Overall, we found that the ecosystem hosted organisms from diverse lineages, including many from the phyla that lack isolated representatives. The majority of organisms can metabolize H2, often via oxidative [NiFe] hydrogenases or electron-bifurcating [FeFe] hydrogenases that enable ferredoxin-based pathways, including the ion motive Rnf complex. Many organisms implicated in H2 metabolism are also predicted to catalyze carbon, nitrogen, iron and sulfur transformations. Notably, iron-based metabolism is predicted in a novel lineage of Actinobacteria and in a putative methane-oxidizing ANME-2d archaeon. We infer an ecological model that links microorganisms to sediment-derived resources and predict potential impacts of microbial activity on H2 consumption and retardation of radionuclide migration. PMID:28350393

  1. MICROBIAL ECOLOGY OF THE SUBSURFACE AT AN ABANDONED CREOSOTE WASTE SITE

    EPA Science Inventory

    The microbial ecology of pristine, slightly contaminated, and heavily contaminated subsurface materials, and four subsurface materials on the periphery of the plume at an abandoned creosote waste site was investigated. Except for the unsaturated zone of the heavily contaminated m...

  2. Aerobic microbial taxa dominate deep subsurface cores from the Alberta oil sands.

    PubMed

    Ridley, Christina M; Voordouw, Gerrit

    2018-06-01

    Little is known about the microbial ecology of the subsurface oil sands in Northern Alberta, Canada. Biodegradation of low molecular weight hydrocarbons by indigenous microbes has enriched high molecular weight hydrocarbons, resulting in highly viscous bitumen. This extreme subsurface environment is further characterized by low nutrient availability and limited access to water, thus resulting in low microbial biomass. Improved DNA isolation protocols and increasingly sensitive sequencing methods have allowed an in-depth investigation of the microbial ecology of this unique subsurface environmental niche. Community analysis was performed on core samples (n = 62) that were retrieved from two adjacent sites located in the Athabasca Oil Sands at depths from 220 to 320 m below the surface. Microbial communities were dominated by aerobic taxa, including Pseudomonas and Acinetobacter. Only one core sample microbial community was dominated by anaerobic taxa, including the methanogen Methanoculleus, as well as Desulfomicrobium and Thauera. Although the temperature of the bitumen-containing subsurface is low (8°C), two core samples had high fractions of the potentially thermophilic taxon, Thermus. Predominance of aerobic taxa in the subsurface suggests the potential for in situ aerobic hydrocarbon degradation; however, more studies are required to determine the functional role of these taxa within this unique environment.

  3. Field and Lab-Based Microbiological Investigations of the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Wishart, J. R.; Neumann, K.; Edenborn, H. M.; Hakala, A.; Yang, J.; Torres, M. E.; Colwell, F. S.

    2013-12-01

    The recent exploration of shales for natural gas resources has provided the opportunity to study their subsurface geochemistry and microbiology. Evidence indicates that shale environments are marked by extreme conditions such as high temperature and pressure, low porosity, permeability and connectivity, and the presence of heavy metals and radionuclides. It has been postulated that many of these shales are naturally sterile due to the high pressure and temperature conditions under which they were formed. However, it has been shown in the Antrim and New Albany shales that microbial communities do exist in these environments. Here we review geochemical and microbiological evidence for the possible habitation of the Marcellus shale by microorganisms and compare these conditions to other shales in the U.S. Furthermore, we describe the development of sampling and analysis techniques used to evaluate microbial communities present in the Marcellus shale and associated hydraulic fracturing fluid. Sampling techniques thus far have consisted of collecting flowback fluids from wells and water impoundments and collecting core material from previous drilling expeditions. Furthermore, DNA extraction was performed on Marcellus shale sub-core with a MoBio PowerSoil kit to determine its efficiency. Assessment of the Marcellus shale indicates that it has low porosity and permeability that are not conducive to dense microbial populations; however, moderate temperatures and a natural fracture network may support a microbial community especially in zones where the Marcellus intersects more porous geologic formations. Also, hydraulic fracturing extends this fracture network providing more environments where microbial communities can exist. Previous research which collected flowback fluids has revealed a diverse microbial community that may be derived from hydrofrac fluid production or from the subsurface. DNA extraction from 10 g samples of Marcellus shale sub-core were unsuccessful even when samples were spiked with 8x108 cells/g of shale. This indicated that constituents of shale such as high levels of carbonates, humic acids and metals likely inhibited components of the PowerSoil kit. Future research is focused on refining sample collection and analyses to gain a full understanding of the microbiology of the Marcellus shale and associated flowback fluids. This includes the development of an in situ osmosampler, which will collect temporally relevant fluid and colonized substrate samples. The design of the osmosampler for hydraulic fracturing wells is being adapted from those used to sample marine environments. Furthermore, incubation experiments are underway to study interactions between microbial communities associated with hydraulic fracturing fluid and Marcellus shale samples. In conclusion, evidence suggests that the Marcellus shale is a possible component of the subsurface biosphere. Future studies will be valuable in determining the microbial community structure and function in relation to the geochemistry of the Marcellus shale and its future development as a natural gas resource.

  4. Plutonium Oxidation State Distribution under Aerobic and Anaerobic Subsurface Conditions for Metal-Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.

    2009-12-01

    The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration of plutonium in the subsurface.

  5. Microbial population and functional dynamics associated with surface potential and carbon metabolism

    PubMed Central

    Ishii, Shun'ichi; Suzuki, Shino; Norden-Krichmar, Trina M; Phan, Tony; Wanger, Greg; Nealson, Kenneth H; Sekiguchi, Yuji; Gorby, Yuri A; Bretschger, Orianna

    2014-01-01

    Microbial extracellular electron transfer (EET) to solid surfaces is an important reaction for metal reduction occurring in various anoxic environments. However, it is challenging to accurately characterize EET-active microbial communities and each member's contribution to EET reactions because of changes in composition and concentrations of electron donors and solid-phase acceptors. Here, we used bioelectrochemical systems to systematically evaluate the synergistic effects of carbon source and surface redox potential on EET-active microbial community development, metabolic networks and overall electron transfer rates. The results indicate that faster biocatalytic rates were observed under electropositive electrode surface potential conditions, and under fatty acid-fed conditions. Temporal 16S rRNA-based microbial community analyses showed that Geobacter phylotypes were highly diverse and apparently dependent on surface potentials. The well-known electrogenic microbes affiliated with the Geobacter metallireducens clade were associated with lower surface potentials and less current generation, whereas Geobacter subsurface clades 1 and 2 were associated with higher surface potentials and greater current generation. An association was also observed between specific fermentative phylotypes and Geobacter phylotypes at specific surface potentials. When sugars were present, Tolumonas and Aeromonas phylotypes were preferentially associated with lower surface potentials, whereas Lactococcus phylotypes were found to be closely associated with Geobacter subsurface clades 1 and 2 phylotypes under higher surface potential conditions. Collectively, these results suggest that surface potentials provide a strong selective pressure, at the species and strain level, for both solid surface respirators and fermentative microbes throughout the EET-active community development. PMID:24351938

  6. The Serpentinite Subsurface Microbiome

    NASA Astrophysics Data System (ADS)

    Schrenk, M. O.; Nelson, B. Y.; Brazelton, W. J.

    2011-12-01

    Microbial habitats hosted in ultramafic rocks constitute substantial, globally-distributed portions of the subsurface biosphere, occurring both on the continents and beneath the seafloor. The aqueous alteration of ultramafics, in a process known as serpentinization, creates energy rich, high pH conditions, with low concentrations of inorganic carbon which place fundamental constraints upon microbial metabolism and physiology. Despite their importance, very few studies have attempted to directly access and quantify microbial activities and distributions in the serpentinite subsurface microbiome. We have initiated microbiological studies of subsurface seeps and rocks at three separate continental sites of serpentinization in Newfoundland, Italy, and California and compared these results to previous analyses of the Lost City field, near the Mid-Atlantic Ridge. In all cases, microbial cell densities in seep fluids are extremely low, ranging from approximately 100,000 to less than 1,000 cells per milliliter. Culture-independent analyses of 16S rRNA genes revealed low-diversity microbial communities related to Gram-positive Firmicutes and hydrogen-oxidizing bacteria. Interestingly, unlike Lost City, there has been little evidence for significant archaeal populations in the continental subsurface to date. Culturing studies at the sites yielded numerous alkaliphilic isolates on nutrient-rich agar and putative iron-reducing bacteria in anaerobic incubations, many of which are related to known alkaliphilic and subsurface isolates. Finally, metagenomic data reinforce the culturing results, indicating the presence of genes associated with organotrophy, hydrogen oxidation, and iron reduction in seep fluid samples. Our data provide insight into the lifestyles of serpentinite subsurface microbial populations and targets for future quantitative exploration using both biochemical and geochemical approaches.

  7. STRUCTURE AND FUNCTION OF SUBSURFACE MICROBIAL COMMUNITIES AFFECTING RADIONUCLIDE TRANSPORT AND BIOIMMOBILIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin

    2011-06-15

    The objectives of this project were to: (1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), (2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and (3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee, where themore » subsurface is exposed to mixed contamination predominated by uranium and nitrate. A total of 20 publications (16 published or 'in press' and 4 in review), 10 invited talks, and 43 contributed seminars/ meeting presentations were completed during the past four years of the project. PI Kostka served on one proposal review panel each year for the U.S. DOE Office of Science during the four year project period. The PI leveraged funds from the state of Florida to purchase new instrumentation that aided the project. Support was also leveraged by the PI from the Joint Genome Institute in the form of two successful proposals for genome sequencing. Draft genomes are now available for two novel species isolated during our studies and 5 more genomes are in the pipeline. We effectively addressed each of the three project objectives and research highlights are provided. Task I - Isolation and characterization of novel anaerobes: (1) A wide range of pure cultures of metal-reducing bacteria, sulfate-reducing bacteria, and denitrifying bacteria (32 strains) were isolated from subsurface sediments of the Oak Ridge Field Research Center (ORFRC), where the subsurface is exposed to mixed contamination of uranium and nitrate. These isolates which are new to science all show high sequence identity to sequences retrieved from ORFRC subsurface. (2) Based on physiological and phylogenetic characterization, two new species of subsurface bacteria were described: the metal-reducer Geobacter daltonii, and the denitrifier Rhodanobacter denitrificans. (3) Strains isolated from the ORFRC show that Rhodanobacter species are well adapted to the contaminated subsurface. Strains 2APBS1 and 116-2 grow at high salt (3% NaCl), low pH (3.5) and tolerate high concentrations of nitrate (400mM) and nitrite (100mM). Strain 2APBS1 was demonstrated to grow at in situ acidic pHs down to 2.5. (4) R. denitrificans strain 2APBS1 is the first described Rhodanobacter species shown to denitrify. Nitrate is almost entirely converted to N2O, which may account for the large accumulation of N2O in the ORFRC subsurface. (5) G. daltonii, isolated from uranium- and hydrocarbon-contaminated subsurface sediments of the ORFRC, is the first organism from the subsurface clade of the genus Geobacter that is capable of growth on aromatic hydrocarbons. (6) High quality draft genome sequences and a complete eco-physiological description are completed for R. denitrificans strain 2APBS1 and G. daltonii strain FRC-32. (7) Given their demonstrated relevance to DOE remediation efforts and the availability of detailed genotypic/phenotypic characterization, Rhodanobacter denitrificans strain 2APBS1 and Geobacter daltonii strain FRC-32 represent ideal model organisms to provide a predictive understanding of subsurface microbial activity through metabolic modeling. Tasks II and III-Diversity and distribution of active anaerobes and Mechanisms linking electron transport and the fate of radionuclides: (1) Our study showed that members of genus Rhodanobacter and Geobacter are abundant and active in the uranium and nitrate contaminated subsurface. In the contaminant source zone of the Oak Ridge site, Rhodanobacter spp. are the predominant, active organisms detected (comprising 50% to 100% of rRNA detected). (2) We demonstrated for the first time that the function of microbial communities can be quantified in subsurface sediments using messenger RNA assays (molecular proxies) under in situ conditions. (3) Active Geobacteraceae were identified and phylogenetically characterized from the cDNA of messenger RNA extracted from ORFRC subsurface sediment cores. Multiple clone sequences were retrieved from G. uraniireducens, G. daltonii, and G. metallireducens. (4) Results show that Geobacter strain FRC-32 is capable of growth on benzoate, toluene and benzene as the electron donor, thereby providing evidence that this strain is physiologically distinct from other described members of the subsurface Geobacter clade. (5) Fe(III)-reducing bacteria transform structural Fe in clay minerals from their layer edges rather than from their basal surfaces.« less

  8. A bioenergetics-kinetics coupled modeling study on subsurface microbial metabolism in a field biostimulation experiment

    NASA Astrophysics Data System (ADS)

    Jin, Q.; Zheng, Z.; Zhu, C.

    2006-12-01

    Microorganisms in nature conserve energy by catalyzing various geochemical reactions. To build a quantitative relationship between geochemical conditions and metabolic rates, we propose a bioenergetics-kinetics coupled modeling approach. This approach describes microbial community as a metabolic network, i.e., fermenting microbes degrade organic substrates while aerobic respirer, nitrate reducer, metal reducer, sulfate reducer, and methanogen consume the fermentation products. It quantifies the control of substrate availability and biological energy conservation on the metabolic rates using thermodynamically consistent rate laws. We applied this simulation approach to study the progress of microbial metabolism during a field biostimulation experiment conducted in Oak Ridge, Tennessee. In the experiment, ethanol was injected into a monitoring well and groundwater was sampled to monitor changes in the chemistry. With time, concentrations of ethanol and SO42- decreased while those of NH4+, Fe2+, and Mn2+ increased. The simulation results fitted well to the observation, indicating simultaneous ethanol degradation and terminal electron accepting processes. The rates of aerobic respiration and denitrification were mainly controlled by substrate concentrations while those of ethanol degradation, sulfate reduction, and methanogenesis were controlled dominantly by the energy availability. The simulation results suggested two different microbial growth statuses in the subsurface. For the functional groups with significant growth, variations with time in substrate concentrations demonstrated a typical S curve. For the groups without significant growth, initial decreases in substrate concentrations were linear with time. Injecting substrates followed by monitoring environmental chemistry therefore provides a convenient approach to characterize microbial growth in the subsurface where methods for direct observation are currently unavailable. This research was funded by the NABIR program, DOE, under grant No. DE-FG02-04ER63740 to CZ. We thank J. Istok, David Watson, and Philip Jardine for their help. The views and opinions of authors expressed herein do not necessarily state or reflect those of the DOE.

  9. Recalcitrant Carbonaceous Material: A Source of Electron Donors for Anaerobic Microbial Metabolisms in the Subsurface?

    NASA Astrophysics Data System (ADS)

    Nixon, S. L.; Montgomery, W.; Sephton, M. A.; Cockell, C. S.

    2014-12-01

    More than 90% of organic material on Earth resides in sedimentary rocks in the form of kerogens; fossilized organic matter formed through selective preservation of high molecular weight biopolymers under anoxic conditions. Despite its prevalence in the subsurface, the extent to which this material supports microbial metabolisms is unknown. Whilst aerobic microorganisms are known to derive energy from kerogens within shales, utilization in anaerobic microbial metabolisms that proliferate in the terrestrial subsurface, such as microbial iron reduction, has yet to be demonstrated. Data are presented from microbial growth experiments in which kerogens and shales were supplied as the sole electron donor source for microbial iron reduction by an enrichment culture. Four well-characterized kerogens samples (representative of Types I-IV, classified by starting material), and two shale samples, were assessed. Organic analysis was carried out to investigate major compound classes present in each starting material. Parallel experiments were conducted to test inhibition of microbial iron reduction in the presence of each material when the culture was supplied with a full redox couple. The results demonstrate that iron-reducing microorganisms in this culture were unable to use kerogens and shales as a source of electron donors for energy acquisition, despite the presence of compound classes known to support this metabolism. Furthermore, the presence of these materials was found to inhibit microbial iron reduction to varying degrees, with some samples leading to complete inhibition. These results suggest that recalcitrant carbonaceous material in the terrestrial subsurface is not available for microbial iron reduction and similar metabolisms, such as sulphate-reduction. Further research is needed to investigate the inhibition exerted by these materials, and to assess whether these findings apply to other microbial consortia. These results may have significant implications for the role of anaerobic microbial metabolisms in the subsurface terrestrial carbon cycle. Kerogens are chemically similar to organic material in carbonaceous chondrites. As such, further study may provide insight into the potential availability of organic compounds for microbial metabolisms operating in the subsurface of Mars.

  10. Modeling Subsurface Behavior at the System Level: Considerations and a Path Forward

    NASA Astrophysics Data System (ADS)

    Geesey, G.

    2005-12-01

    The subsurface is an obscure but essential resource to life on Earth. It is an important region for carbon production and sequestration, a source and reservoir for energy, minerals and metals and potable water. There is a growing need to better understand subsurface possesses that control the exploitation and security of these resources. Our best models often fail to predict these processes at the field scale because of limited understanding of 1) the processes and the controlling parameters, 2) how processes are coupled at the field scale 3) geological heterogeneities that control hydrological, geochemical and microbiological processes at the field scale and 4) lack of data sets to calibrate and validate numerical models. There is a need for experimental data obtained at scales larger than those obtained at the laboratory bench that take into account the influence of hydrodynamics, geochemical reactions including complexation and chelation/adsorption/precipitation/ion exchange/oxidation-reduction/colloid formation and dissolution, and reactions of microbial origin. Furthermore, the coupling of each of these processes and reactions needs to be evaluated experimentally at a scale that produces data that can be used to calibrate numerical models so that they accurately describe field scale system behavior. Establishing the relevant experimental scale for collection of data from coupled processes remains a challenge and will likely be process-dependent and involve iterations of experimentation and data collection at different intermediate scales until the models calibrated with the appropriate date sets achieve an acceptable level of performance. Assuming that the geophysicists will soon develop technologies to define geological heterogeneities over a wide range of scales in the subsurface, geochemists need to continue to develop techniques to remotely measure abiotic reactions, while geomicrobiologists need to continue their development of complementary technologies to remotely measure microbial community parameters that define their key functions at a scale that accurately reflects their role in large scale subsurface system behavior. The practical questions that geomicrobiologist must answer in the short term are: 1) What is known about the activities of the dominant microbial populations or those of their closest relatives? 2) Which of these activities is likely to dominate under in situ conditions? In the process of answering these questions, researchers will obtain answers to questions of a more fundamental nature such as 1) How deep does "active" life extend below the surface of the seafloor and terrestrial subsurface? 2) How are electrons exchanged between microbial cells and solid phase minerals? 3) What is the metabolic state and mechanism of survival of "inactive" life forms in the subsurface? 4) What can genomes of life forms trapped in geological material tell us about evolution of life that current methods cannot? The subsurface environment represents a challenging environment to understand and model. As the need to understand subsurface processes increases and the technologies to characterize them become available, modeling subsurface behavior will approach the level of sophistication of models used today to predict behavior of other large scale systems such as the oceans.

  11. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors andmore » associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.« less

  12. Río Tinto: A Geochemical and Mineralogical Terrestrial Analogue of Mars

    NASA Astrophysics Data System (ADS)

    Amils, Ricardo; Fernández-Remolar, David

    2014-09-01

    The geomicrobiological characterization of the water column and sediments of Río Tinto (Huelva, Southwestern Spain) have proven the importance of the iron and the sulfur cycles, not only in generating the extreme conditions of the habitat (low pH, high concentration of toxic heavy metals), but also in maintaining the high level of microbial diversity detected in the basin. It has been proven that the extreme acidic conditions of Río Tinto basin are not the product of 5000 years of mining activity in the area, but the consequence of an active underground bioreactor that obtains its energy from the massive sulfidic minerals existing in the Iberian Pyrite Belt. Two drilling projects, MARTE (Mars Astrobiology Research and Technology Experiment) (2003-2006) and IPBSL (Iberian Pyrite Belt Subsurface Life Detection) (2011-2015), were developed and carried out to provide evidence of subsurface microbial activity and the potential resources that support these activities. The reduced substrates and the oxidants that drive the system appear to come from the rock matrix. These resources need only groundwater to launch diverse microbial metabolisms. The similarities between the vast sulfate and iron oxide deposits on Mars and the main sulfide bioleaching products found in the Tinto basin have given Río Tinto the status of a geochemical and mineralogical Mars terrestrial analogue.

  13. Molecular hydrogen: An abundant energy source for bacterial activity in nuclear waste repositories

    NASA Astrophysics Data System (ADS)

    Libert, M.; Bildstein, O.; Esnault, L.; Jullien, M.; Sellier, R.

    A thorough understanding of the energy sources used by microbial systems in the deep terrestrial subsurface is essential since the extreme conditions for life in deep biospheres may serve as a model for possible life in a nuclear waste repository. In this respect, H 2 is known as one of the most energetic substrates for deep terrestrial subsurface environments. This hydrogen is produced from abiotic and biotic processes but its concentration in natural systems is usually maintained at very low levels due to hydrogen-consuming bacteria. A significant amount of H 2 gas will be produced within deep nuclear waste repositories, essentially from the corrosion of metallic components. This will consequently improve the conditions for microbial activity in this specific environment. This paper discusses different study cases with experimental results to illustrate the fact that microorganisms are able to use hydrogen for redox processes (reduction of O 2, NO3-, Fe III) in several waste disposal conditions. Consequences of microbial activity include: alteration of groundwater chemistry and shift in geochemical equilibria, gas production or consumption, biocorrosion, and potential modifications of confinement properties. In order to quantify the impact of hydrogen bacteria, the next step will be to determine the kinetic rate of the reactions in realistic conditions.

  14. Methanogenesis-induced pH–Eh shifts drives aqueous metal(loid) mobility in sulfide mineral systems under CO2 enriched conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Omar R.; Qafoku, Nikolla; Cantrell, Kirk J.

    2016-01-15

    Accounting for microbially-mediated CO2 transformation is pivotal to assessing geochemical implications for elevated CO2 in subsurface environments. A series of batch-reactor experiments were conducted to decipher links between autotrophic methanogenesis, CO2 dynamics and aqueous Fe, As and Pb concentrations in the presence of sulfide minerals. Microbially-mediated solubility-trapping followed by pseudo-first order reduction of HCO3- to CH4 (k’ = 0.28-0.59 d-1) accounted for 95% of the CO2 loss from methanogenic experiments. Bicarbonate-to-methane reduction was pivotal in the mitigation of CO2-induced acidity (~1 pH unit) and enhancement of reducing conditions (Eh change from -0.215 to -0.332V ). Methanogenesis-associated shifts in pH-Eh valuesmore » showed no significant effect on aqueous Pb but favored, 1) increased aqueous As as a result of microbially-mediated dissolution of arsenopyrite and 2) decreased aqueous Fe due to mineral-trapping of CO2-mobilized Fe as Fe-carbonate. Its order of occurrence (and magnitude), relative to solubility- and mineral-trapping, highlighted the potential for autotrophic methanogenesis to modulate both carbon sequestration and contaminant mobility in CO2-impacted subsurface environments.« less

  15. Cultivating the Deep Subsurface Microbiome

    NASA Astrophysics Data System (ADS)

    Casar, C. P.; Osburn, M. R.; Flynn, T. M.; Masterson, A.; Kruger, B.

    2017-12-01

    Subterranean ecosystems are poorly understood because many microbes detected in metagenomic surveys are only distantly related to characterized isolates. Cultivating microorganisms from the deep subsurface is challenging due to its inaccessibility and potential for contamination. The Deep Mine Microbial Observatory (DeMMO) in Lead, SD however, offers access to deep microbial life via pristine fracture fluids in bedrock to a depth of 1478 m. The metabolic landscape of DeMMO was previously characterized via thermodynamic modeling coupled with genomic data, illustrating the potential for microbial inhabitants of DeMMO to utilize mineral substrates as energy sources. Here, we employ field and lab based cultivation approaches with pure minerals to link phylogeny to metabolism at DeMMO. Fracture fluids were directed through reactors filled with Fe3O4, Fe2O3, FeS2, MnO2, and FeCO3 at two sites (610 m and 1478 m) for 2 months prior to harvesting for subsequent analyses. We examined mineralogical, geochemical, and microbiological composition of the reactors via DNA sequencing, microscopy, lipid biomarker characterization, and bulk C and N isotope ratios to determine the influence of mineralogy on biofilm community development. Pre-characterized mineral chips were imaged via SEM to assay microbial growth; preliminary results suggest MnO2, Fe3O4, and Fe2O3 were most conducive to colonization. Solid materials from reactors were used as inoculum for batch cultivation experiments. Media designed to mimic fracture fluid chemistry was supplemented with mineral substrates targeting metal reducers. DNA sequences and microscopy of iron oxide-rich biofilms and fracture fluids suggest iron oxidation is a major energy source at redox transition zones where anaerobic fluids meet more oxidizing conditions. We utilized these biofilms and fluids as inoculum in gradient cultivation experiments targeting microaerophilic iron oxidizers. Cultivation of microbes endemic to DeMMO, a system locally dominated by unclassified and candidate phyla, has the potential to yield novel subsurface organisms with unique physiologies. We intend to further utilize subsurface isolates to probe the effects of geochemical perturbations on biosignatures in future studies, thus broadening our understanding of subterranean ecosystems.

  16. Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments

    USGS Publications Warehouse

    Holmes, Dawn E.; O'Neil, Regina A.; Vrionis, Helen A.; N'Guessan, Lucie A.; Ortiz-Bernad, Irene; Larrahondo, Maria J.; Adams, Lorrie A.; Ward, Joy A.; Nicoll , Julie S.; Nevin, Kelly P.; Chavan, Milind A.; Johnson, Jessica P.; Long, Philip E.; Lovely, Derek R.

    2007-01-01

    There are distinct differences in the physiology of Geobacter species available in pure culture. Therefore, to understand the ecology of Geobacter species in subsurface environments, it is important to know which species predominate. Clone libraries were assembled with 16S rRNA genes and transcripts amplified from three subsurface environments in which Geobacter species are known to be important members of the microbial community: (1) a uranium-contaminated aquifer located in Rifle, CO, USA undergoing in situ bioremediation; (2) an acetate-impacted aquifer that serves as an analog for the long-term acetate amendments proposed for in situ uranium bioremediation and (3) a petroleum-contaminated aquifer in which Geobacter species play a role in the oxidation of aromatic hydrocarbons coupled with the reduction of Fe(III). The majority of Geobacteraceae 16S rRNA sequences found in these environments clustered in a phylogenetically coherent subsurface clade, which also contains a number of Geobacter species isolated from subsurface environments. Concatamers constructed with 43 Geobacter genes amplified from these sites also clustered within this subsurface clade. 16S rRNA transcript and gene sequences in the sediments and groundwater at the Rifle site were highly similar, suggesting that sampling groundwater via monitoring wells can recover the most active Geobacter species. These results suggest that further study of Geobacter species in the subsurface clade is necessary to accurately model the behavior of Geobacter species during subsurface bioremediation of metal and organic contaminants.

  17. Microbial succession and stimulation following a test well injection simulating CO2 leakage into shallow Newark Basin aquifers

    NASA Astrophysics Data System (ADS)

    Dueker, M.; Clauson, K.; Yang, Q.; Umemoto, K.; Seltzer, A. M.; Zakharova, N. V.; Matter, J. M.; Stute, M.; Takahashi, T.; Goldberg, D.; O'Mullan, G. D.

    2012-12-01

    Despite growing appreciation for the importance of microbes in altering geochemical reactions in the subsurface, the microbial response to geological carbon sequestration injections and the role of microbes in altering metal mobilization following leakage scenarios in shallow aquifers remain poorly constrained. A Newark Basin test well was utilized in field experiments to investigate patterns of microbial succession following injection of CO2 saturated water into isolated aquifer intervals. Additionally, laboratory mesocosm experiments, including microbially-active and inactive (autoclave sterilized) treatments, were used to constrain the microbial role in mineral dissolution, trace metal release, and gas production (e.g. hydrogen and methane). Hydrogen production was detected in both sterilized and unsterilized laboratory mesocosm treatments, indicating abiotic hydrogen production may occur following CO2 leakage, and methane production was detected in unsterilized, microbially active mesocosms. In field experiments, a decrease in pH following injection of CO2 saturated aquifer water was accompanied by mobilization of trace elements (e.g. Fe and Mn), the production of hydrogen gas, and increased bacterial cell concentrations. 16S ribosomal RNA clone libraries, from samples collected before and after the test well injection, were compared in an attempt to link variability in geochemistry to changes in aquifer microbiology. Significant changes in microbial composition, compared to background conditions, were found following the test well injection, including a decrease in Proteobacteria, and an increased presence of Firmicutes, Verrucomicrobia, Acidobacteria and other microbes associated with iron reducing and syntrophic metabolism. The concurrence of increased microbial cell concentration, and rapid microbial community succession, with increased concentrations of hydrogen gas suggests that abiotically produced hydrogen may serve as an ecologically-relevant energy source stimulating changes in aquifer microbial communities immediately following CO2 leakage.

  18. Observation to Theory in Deep Subsurface Microbiology Research: Can We Piece It Together?

    NASA Astrophysics Data System (ADS)

    Colwell, F. S.; Thurber, A. R.

    2016-12-01

    Three decades of observations of microbes in deep environments have led to startling discoveries of life in the subsurface. Now, a few theoretical frameworks exist that help to define Stygian life. Temperature, redox gradients, productivity (e.g., in the overlying ocean), and microbial power requirements are thought to determine the distribution of microbes in the subsurface. Still, we struggle to comprehend the spatial and temporal spectra of Earth processes that define how deep microbe communities survive. Stommel diagrams, originally used to guide oceanographic sampling, may be useful in depicting the subsurface where microbial communities are impacted by co-occurring spatial and temporal phenomena that range across exponential scales. Spatially, the geological settings that influence the activity and distribution of microbes range from individual molecules or minerals all the way up to the planetary-scale where geological formations, occupying up to 105 km3, dictate the bio- and functional geography of microbial communities. Temporally, life in the subsurface may respond in time units familiar to humans (e.g., seconds to days) or to events that unfold over hundred millennial time periods. While surface community dynamics are underpinned by solar and lunar cycles, these cycles only fractionally dictate survival underground where phenomena like tectonic activity, isostatic rebound, and radioactive decay are plausible drivers of microbial life. Geological or planetary processes that occur on thousand or million year cycles could be uniquely important to microbial viability in the subsurface. Such an approach aims at a holistic comprehension of the interaction of Earth system dynamics with microbial ecology.

  19. Impact of CO 2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO 2 Leakage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulliver, Djuna; Gregory, Kelvin B.; Lowry, Gregorgy V.

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO 2) emissions to the atmosphere. During this process, CO 2 is injected as super critical carbon dioxide (SC-CO 2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO 2 in subsurface geologic formations could unintentionally lead to CO 2 leakage into overlying freshwater aquifers. Introduction of CO 2 into these subsurface environments will greatly increase the CO 22 concentration and will create CO 2 concentration gradients that drivemore » changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO 2 gradients will impact these communities. The overarching goal of this project is to understand how CO 2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO 2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO 2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO 2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO 2 injection/leakage plume where CO 2 concentrations are highest. At CO 2 exposures expected downgradient from the CO 2 plume, selected microorganisms emerged as dominant in the CO 2 exposed conditions. Results suggest that the altered microbial community was site specific and highly dependent on pH. The site-dependent results suggest a limited ability to predict the emerging dominant species for other CO 2 exposed environments. This study improves the understanding of how a subsurface microbial community may respond to conditions expected from GCS and CO 2 leakage. This is the first step for understanding how a CO 2-altered microbial community may impact injectivity, permanence of stored CO 2, and subsurface water quality. Future work with microbial communities from new subsurface sites would increase the current understanding of this project. Additionally, incorporation of metagenomic methods would increase understanding of potential microbial processes that may be prevalent in CO 2 exposed environments.« less

  20. Impact of CO 2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO 2 Leakage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulliver, Djuna M.; Gregory, Kelvin B.; Lowry, Gregory V.

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO 2) emissions to the atmosphere. During this process, CO 2 is injected as super critical carbon dioxide (SC-CO 2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO 2 in subsurface geologic formations could unintentionally lead to CO 2 leakage into overlying freshwater aquifers. Introduction of CO 2 into these subsurface environments will greatly increase the CO 2 concentration and will create CO 2 concentration gradients that drivemore » changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO 2 gradients will impact these communities. The overarching goal of this project is to understand how CO 2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO 2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO 2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO 2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO 2 injection/leakage plume where CO 2 concentrations are highest. At CO 2 exposures expected downgradient from the CO 2 plume, selected microorganisms emerged as dominant in the CO 2 exposed conditions. Results suggest that the altered microbial community was site specific and highly dependent on pH. The site-dependent results suggest a limited ability to predict the emerging dominant species for other CO 2-exposed environments. This study improves the understanding of how a subsurface microbial community may respond to conditions expected from GCS and CO 2 leakage. This is the first step for understanding how a CO 2-altered microbial community may impact injectivity, permanence of stored CO 2, and subsurface water quality. Future work with microbial communities from new subsurface sites would increase the current understanding of this project. Additionally, incorporation of metagenomic methods would increase understanding of potential microbial processes that may be prevalent in CO 2 exposed environments.« less

  1. Subsurface microbial habitats on Mars

    NASA Technical Reports Server (NTRS)

    Boston, P. J.; Mckay, C. P.

    1991-01-01

    We developed scenarios for shallow and deep subsurface cryptic niches for microbial life on Mars. Such habitats could have considerably prolonged the persistence of life on Mars as surface conditions became increasingly inhospitable. The scenarios rely on geothermal hot spots existing below the near or deep subsurface of Mars. Recent advances in the comparatively new field of deep subsurface microbiology have revealed previously unsuspected rich aerobic and anaerobic microbal communities far below the surface of the Earth. Such habitats, protected from the grim surface conditions on Mars, could receive warmth from below and maintain water in its liquid state. In addition, geothermally or volcanically reduced gases percolating from below through a microbiologically active zone could provide the reducing power needed for a closed or semi-closed microbial ecosystem to thrive.

  2. Comparative Study of Effects of CO 2 Concentration and pH on Microbial Communities from a Saline Aquifer, a Depleted Oil Reservoir, and a Freshwater Aquifer

    DOE PAGES

    Gulliver, Djuna M.; Lowry, Gregory V.; Gregory, Kelvin B.

    2016-08-09

    Injected CO 2 from geologic carbon storage is expected to impact the microbial communities of proposed storage sites, such as depleted oil reservoirs and deep saline aquifers, as well as overlying freshwater aquifers at risk of receiving leaking CO 2. Microbial community change in these subsurface sites may affect injectivity of CO 2, permanence of stored CO 2, and shallow subsurface water quality. The effect of CO 2 concentration on the microbial communities in fluid collected from a depleted oil reservoir and a freshwater aquifer was examined at subsurface pressures and temperatures. The community was exposed to 0%, 1%, 10%,more » and 100% pCO 2 for 56 days. Bacterial community structure was analyzed through 16S rRNA gene clone libraries, and total bacterial abundance was estimated through quantitative polymerase chain reaction. Changes in the microbial community observed in the depleted oil reservoir samples and freshwater samples were compared to previous results from CO 2-exposed deep saline aquifer fluids. Overall, results suggest that CO 2 exposure to microbial communities will result in pH-dependent population change, and the CO 2-selected microbial communities will vary among sites. In conclusion, this is the first study to compare the response of multiple subsurface microbial communities at conditions expected during geologic carbon storage, increasing the understanding of environmental drivers for microbial community changes in CO 2-exposed environments.« less

  3. Comparative Study of Effects of CO 2 Concentration and pH on Microbial Communities from a Saline Aquifer, a Depleted Oil Reservoir, and a Freshwater Aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulliver, Djuna M.; Lowry, Gregory V.; Gregory, Kelvin B.

    Injected CO 2 from geologic carbon storage is expected to impact the microbial communities of proposed storage sites, such as depleted oil reservoirs and deep saline aquifers, as well as overlying freshwater aquifers at risk of receiving leaking CO 2. Microbial community change in these subsurface sites may affect injectivity of CO 2, permanence of stored CO 2, and shallow subsurface water quality. The effect of CO 2 concentration on the microbial communities in fluid collected from a depleted oil reservoir and a freshwater aquifer was examined at subsurface pressures and temperatures. The community was exposed to 0%, 1%, 10%,more » and 100% pCO 2 for 56 days. Bacterial community structure was analyzed through 16S rRNA gene clone libraries, and total bacterial abundance was estimated through quantitative polymerase chain reaction. Changes in the microbial community observed in the depleted oil reservoir samples and freshwater samples were compared to previous results from CO 2-exposed deep saline aquifer fluids. Overall, results suggest that CO 2 exposure to microbial communities will result in pH-dependent population change, and the CO 2-selected microbial communities will vary among sites. In conclusion, this is the first study to compare the response of multiple subsurface microbial communities at conditions expected during geologic carbon storage, increasing the understanding of environmental drivers for microbial community changes in CO 2-exposed environments.« less

  4. Microbial methane formation in deep aquifers of a coal-bearing sedimentary basin, Germany

    PubMed Central

    Gründger, Friederike; Jiménez, Núria; Thielemann, Thomas; Straaten, Nontje; Lüders, Tillmann; Richnow, Hans-Hermann; Krüger, Martin

    2015-01-01

    Coal-bearing sediments are major reservoirs of organic matter potentially available for methanogenic subsurface microbial communities. In this study the specific microbial community inside lignite-bearing sedimentary basin in Germany and its contribution to methanogenic hydrocarbon degradation processes was investigated. The stable isotope signature of methane measured in groundwater and coal-rich sediment samples indicated methanogenic activity. Analysis of 16S rRNA gene sequences showed the presence of methanogenic Archaea, predominantly belonging to the orders Methanosarcinales and Methanomicrobiales, capable of acetoclastic or hydrogenotrophic methanogenesis. Furthermore, we identified fermenting, sulfate-, nitrate-, and metal-reducing, or acetogenic Bacteria clustering within the phyla Proteobacteria, complemented by members of the classes Actinobacteria, and Clostridia. The indigenous microbial communities found in the groundwater as well as in the coal-rich sediments are able to degrade coal-derived organic components and to produce methane as the final product. Lignite-bearing sediments may be an important nutrient and energy source influencing larger compartments via groundwater transport. PMID:25852663

  5. Geochemical Influence on Microbial Communities at CO2-Leakage Analog Sites.

    PubMed

    Ham, Baknoon; Choi, Byoung-Young; Chae, Gi-Tak; Kirk, Matthew F; Kwon, Man Jae

    2017-01-01

    Microorganisms influence the chemical and physical properties of subsurface environments and thus represent an important control on the fate and environmental impact of CO 2 that leaks into aquifers from deep storage reservoirs. How leakage will influence microbial populations over long time scales is largely unknown. This study uses natural analog sites to investigate the long-term impact of CO 2 leakage from underground storage sites on subsurface biogeochemistry. We considered two sites with elevated CO 2 levels (sample groups I and II) and one control site with low CO 2 content (group III). Samples from sites with elevated CO 2 had pH ranging from 6.2 to 4.5 and samples from the low-CO 2 control group had pH ranging from 7.3 to 6.2. Solute concentrations were relatively low for samples from the control group and group I but high for samples from group II, reflecting varying degrees of water-rock interaction. Microbial communities were analyzed through clone library and MiSeq sequencing. Each 16S rRNA analysis identified various bacteria, methane-producing archaea, and ammonia-oxidizing archaea. Both bacterial and archaeal diversities were low in groundwater with high CO 2 content and community compositions between the groups were also clearly different. In group II samples, sequences classified in groups capable of methanogenesis, metal reduction, and nitrate reduction had higher relative abundance in samples with relative high methane, iron, and manganese concentrations and low nitrate levels. Sequences close to Comamonadaceae were abundant in group I, while the taxa related to methanogens, Nitrospirae , and Anaerolineaceae were predominant in group II. Our findings provide insight into subsurface biogeochemical reactions that influence the carbon budget of the system including carbon fixation, carbon trapping, and CO 2 conversion to methane. The results also suggest that monitoring groundwater microbial community can be a potential tool for tracking CO 2 leakage from geologic storage sites.

  6. Geochemical Influence on Microbial Communities at CO2-Leakage Analog Sites

    PubMed Central

    Ham, Baknoon; Choi, Byoung-Young; Chae, Gi-Tak; Kirk, Matthew F.; Kwon, Man Jae

    2017-01-01

    Microorganisms influence the chemical and physical properties of subsurface environments and thus represent an important control on the fate and environmental impact of CO2 that leaks into aquifers from deep storage reservoirs. How leakage will influence microbial populations over long time scales is largely unknown. This study uses natural analog sites to investigate the long-term impact of CO2 leakage from underground storage sites on subsurface biogeochemistry. We considered two sites with elevated CO2 levels (sample groups I and II) and one control site with low CO2 content (group III). Samples from sites with elevated CO2 had pH ranging from 6.2 to 4.5 and samples from the low-CO2 control group had pH ranging from 7.3 to 6.2. Solute concentrations were relatively low for samples from the control group and group I but high for samples from group II, reflecting varying degrees of water-rock interaction. Microbial communities were analyzed through clone library and MiSeq sequencing. Each 16S rRNA analysis identified various bacteria, methane-producing archaea, and ammonia-oxidizing archaea. Both bacterial and archaeal diversities were low in groundwater with high CO2 content and community compositions between the groups were also clearly different. In group II samples, sequences classified in groups capable of methanogenesis, metal reduction, and nitrate reduction had higher relative abundance in samples with relative high methane, iron, and manganese concentrations and low nitrate levels. Sequences close to Comamonadaceae were abundant in group I, while the taxa related to methanogens, Nitrospirae, and Anaerolineaceae were predominant in group II. Our findings provide insight into subsurface biogeochemical reactions that influence the carbon budget of the system including carbon fixation, carbon trapping, and CO2 conversion to methane. The results also suggest that monitoring groundwater microbial community can be a potential tool for tracking CO2 leakage from geologic storage sites. PMID:29170659

  7. Long-Term Exposure of Tropical Soils to Pressure Treated Lumber, Barro Colorado Island, Panama: Impacts on Soil Metal Mobility and Microbial Community Structure

    NASA Astrophysics Data System (ADS)

    Marietta, M. L.; Fowle, D. A.; Roberts, J. A.

    2008-12-01

    Pressure treated lumber (CCA) has been used in a variety of structures for over seven decades, but recent concerns have been raised about leaching of metals such as chromium (Cr) and arsenic (As) into proximal soils and water supplies. Pressure treated lumber abundance and its continued use necessitate a thorough understanding of metal release and sequestration in the subsurface. To date, no long-term, in situ study on the migration of CCA compounds from lumber has been performed. Barro Colorado Island, Panama is the site of several previous CCA studies and provides an opportunity to investigate the long-term (>70 years) effects of pressure treated lumber in oxisols, where high rainfall and warm temperatures may represent an end-member condition for the leaching and mobility of these metals. Soil samples from CCA and control sites were measured for Cr, As, Cu, Zn, and Fe abundances, microbial biomass and community structure via phospholipid fatty acid analysis, along with basic soil properties. CCA lumber samples were also characterized for their metal abundance. Lumber treated with zinc meta-arsenite displayed advanced decay with elevated As, Cu, and Zn concentrations observed in the adjacent soil. Increased soil organic matter and microbial biomass correlate to decreases in Fe and Fe-associated metals compared to the control. High As concentrations persist to <1 m of the source. Lumber treated with potassium dichromate contained high chromium concentrations and displayed little decay, however, soil concentrations of Cr, Fe, and Cu were generally less than control soils. Over these same intervals, soil organic matter and microbial biomass increased, particularly the fraction of metal reducing bacteria (MRB). We hypothesize that organic carbon loading from lumber stimulates MRB, leading to mobilization of Fe and Fe-associated metals from these oxide-rich soils. Principal component analysis of PLFA data confirms a distinction between controls and samples with elevated metal abundance at each site. This study provides fundamental insight into the long-term persistence of CCA compounds in Fe-rich soils and could serve in practical applications related to CCA contamination.

  8. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Story, Sandra; Brigmon, Robin L.

    Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soilmore » resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5 mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. Finally, these results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications.« less

  9. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase

    DOE PAGES

    Story, Sandra; Brigmon, Robin L.

    2016-12-19

    Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soilmore » resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5 mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. Finally, these results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications.« less

  10. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase.

    PubMed

    Story, Sandra; Brigmon, Robin L

    2017-03-01

    Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soil resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. These results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications. Copyright © 2016. Published by Elsevier Inc.

  11. Microbial Fossils from Terrestrial Subsurface Hydrothermal Environments: Examples and Implications for Mars

    NASA Technical Reports Server (NTRS)

    Hofmann, Beda A.; Farmer, Jack; Chang, Sherwood (Technical Monitor)

    1997-01-01

    The recognition of biological signatures in ancient epithermal deposits has special relevance for studies of early blaspheme evolution and in exploring for past life on Mars. Recently, proposals for the existence of an extensive subsurface blaspheme on Earth, dominated by chemoautotrophic microbial life, has gained prominence. However, reports of fossilized microbial remains, or biosedimentary structures (e.g. stromatolites) from the deposits of ancient subsurface systems, are rare. Microbial preservation is favoured where high population densities co-exist with rapid mineral precipitation. Near-surface epithetical systems with strong gradients in temperature and redox are good candidates for the abundant growth and fossilization of microorganisms, and are also favorable environments for the precipitation of ore minerals. Therefore, we might expect microbial remain, to be particularly well preserved in various kinds of hydrothermal and diagenetic mineral precipitates that formed below the upper temperature limit for life (approx. 120 C).

  12. A Limited Microbial Consortium Is Responsible for Extended Bioreduction of Uranium in a Contaminated Aquifer ▿†

    PubMed Central

    Gihring, Thomas M.; Zhang, Gengxin; Brandt, Craig C.; Brooks, Scott C.; Campbell, James H.; Carroll, Susan; Criddle, Craig S.; Green, Stefan J.; Jardine, Phil; Kostka, Joel E.; Lowe, Kenneth; Mehlhorn, Tonia L.; Overholt, Will; Watson, David B.; Yang, Zamin; Wu, Wei-Min; Schadt, Christopher W.

    2011-01-01

    Subsurface amendments of slow-release substrates (e.g., emulsified vegetable oil [EVO]) are thought to be a pragmatic alternative to using short-lived, labile substrates for sustained uranium bioimmobilization within contaminated groundwater systems. Spatial and temporal dynamics of subsurface microbial communities during EVO amendment are unknown and likely differ significantly from those of populations stimulated by soluble substrates, such as ethanol and acetate. In this study, a one-time EVO injection resulted in decreased groundwater U concentrations that remained below initial levels for approximately 4 months. Pyrosequencing and quantitative PCR of 16S rRNA from monitoring well samples revealed a rapid decline in groundwater bacterial community richness and diversity after EVO injection, concurrent with increased 16S rRNA copy levels, indicating the selection of a narrow group of taxa rather than a broad community stimulation. Members of the Firmicutes family Veillonellaceae dominated after injection and most likely catalyzed the initial oil decomposition. Sulfate-reducing bacteria from the genus Desulforegula, known for long-chain fatty acid oxidation to acetate, also dominated after EVO amendment. Acetate and H2 production during EVO degradation appeared to stimulate NO3−, Fe(III), U(VI), and SO42− reduction by members of the Comamonadaceae, Geobacteriaceae, and Desulfobacterales. Methanogenic archaea flourished late to comprise over 25% of the total microbial community. Bacterial diversity rebounded after 9 months, although community compositions remained distinct from the preamendment conditions. These results demonstrated that a one-time EVO amendment served as an effective electron donor source for in situ U(VI) bioreduction and that subsurface EVO degradation and metal reduction were likely mediated by successive identifiable guilds of organisms. PMID:21764967

  13. A limited microbial consortium is responsible for extended bioreduction of uranium in a contaminated aquifer.

    PubMed

    Gihring, Thomas M; Zhang, Gengxin; Brandt, Craig C; Brooks, Scott C; Campbell, James H; Carroll, Susan; Criddle, Craig S; Green, Stefan J; Jardine, Phil; Kostka, Joel E; Lowe, Kenneth; Mehlhorn, Tonia L; Overholt, Will; Watson, David B; Yang, Zamin; Wu, Wei-Min; Schadt, Christopher W

    2011-09-01

    Subsurface amendments of slow-release substrates (e.g., emulsified vegetable oil [EVO]) are thought to be a pragmatic alternative to using short-lived, labile substrates for sustained uranium bioimmobilization within contaminated groundwater systems. Spatial and temporal dynamics of subsurface microbial communities during EVO amendment are unknown and likely differ significantly from those of populations stimulated by soluble substrates, such as ethanol and acetate. In this study, a one-time EVO injection resulted in decreased groundwater U concentrations that remained below initial levels for approximately 4 months. Pyrosequencing and quantitative PCR of 16S rRNA from monitoring well samples revealed a rapid decline in groundwater bacterial community richness and diversity after EVO injection, concurrent with increased 16S rRNA copy levels, indicating the selection of a narrow group of taxa rather than a broad community stimulation. Members of the Firmicutes family Veillonellaceae dominated after injection and most likely catalyzed the initial oil decomposition. Sulfate-reducing bacteria from the genus Desulforegula, known for long-chain fatty acid oxidation to acetate, also dominated after EVO amendment. Acetate and H(2) production during EVO degradation appeared to stimulate NO(3)(-), Fe(III), U(VI), and SO(4)(2-) reduction by members of the Comamonadaceae, Geobacteriaceae, and Desulfobacterales. Methanogenic archaea flourished late to comprise over 25% of the total microbial community. Bacterial diversity rebounded after 9 months, although community compositions remained distinct from the preamendment conditions. These results demonstrated that a one-time EVO amendment served as an effective electron donor source for in situ U(VI) bioreduction and that subsurface EVO degradation and metal reduction were likely mediated by successive identifiable guilds of organisms.

  14. Effects of subsurface aeration and trinexapac-ethyl application on soil microbial communities in a creeping bentgrass putting green

    USGS Publications Warehouse

    Feng, Y.; Stoeckel, D.M.; Van Santen, E.; Walker, R.H.

    2002-01-01

    The sensitivity of creeping bentgrass (Agrostis palustris Huds.) to the extreme heat found in the southeastern United States has led to the development of new greens-management methods. The purpose of this study was to examine the effects of subsurface aeration and growth regulator applications on soil microbial communities and mycorrhizal colonization rates in a creeping bentgrass putting green. Two cultivars (Crenshaw and Penncross), a growth regulator (trinexapacethyl), and subsurface aeration were evaluated in cool and warm seasons. Total bacterial counts were higher in whole (unsieved) soils than in sieved soils, indicating a richer rhizosphere soil environment. Mycorrhizal infection rates were higher in trinexapac-ethyl (TE) treated plants. High levels of hyphal colonization and relatively low arbuscule and vesicle occurrence were observed. Principal components analysis of whole-soil fatty acid methyl ester (FAME) profiles indicated that warm-season microbial populations in whole and sieved soils had similar constituents, but the populations differed in the cool season. FAME profiles did not indicate that subsurface aeration and TE application affected soil microbial community structure. This is the first reported study investigating the influences of subsurface aeration and TE application on soil microorganisms in a turfgrass putting green soil.

  15. Microbial community assembly and evolution in subseafloor sediment.

    PubMed

    Starnawski, Piotr; Bataillon, Thomas; Ettema, Thijs J G; Jochum, Lara M; Schreiber, Lars; Chen, Xihan; Lever, Mark A; Polz, Martin F; Jørgensen, Bo B; Schramm, Andreas; Kjeldsen, Kasper U

    2017-03-14

    Bacterial and archaeal communities inhabiting the subsurface seabed live under strong energy limitation and have growth rates that are orders of magnitude slower than laboratory-grown cultures. It is not understood how subsurface microbial communities are assembled and whether populations undergo adaptive evolution or accumulate mutations as a result of impaired DNA repair under such energy-limited conditions. Here we use amplicon sequencing to explore changes of microbial communities during burial and isolation from the surface to the >5,000-y-old subsurface of marine sediment and identify a small core set of mostly uncultured bacteria and archaea that is present throughout the sediment column. These persisting populations constitute a small fraction of the entire community at the surface but become predominant in the subsurface. We followed patterns of genome diversity with depth in four dominant lineages of the persisting populations by mapping metagenomic sequence reads onto single-cell genomes. Nucleotide sequence diversity was uniformly low and did not change with age and depth of the sediment. Likewise, there was no detectable change in mutation rates and efficacy of selection. Our results indicate that subsurface microbial communities predominantly assemble by selective survival of taxa able to persist under extreme energy limitation.

  16. MODELING THREE-DIMENSIONAL SUBSURFACE FLOW, FATE AND TRANSPORT OF MICROBES AND CHEMICALS (3DFATMIC)

    EPA Science Inventory

    A three-dimensional model simulating the subsurface flow, microbial growth and degradation, microbial-chemical reaction, and transport of microbes and chemicals has been developed. he model is designed to solve the coupled flow and transport equations. asically, the saturated-uns...

  17. An Evaluation of Subsurface Microbial Activity Conditional to Subsurface Temperature, Porosity, and Permeability at North American Carbon Sequestration Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, B.; Mordensky, S.; Verba, Circe

    Several nations, including the United States, recognize global climate change as a force transforming the global ecosphere. Carbon dioxide (CO 2) is a greenhouse gas that contributes to the evolving climate. Reduction of atmospheric CO 2 levels is a goal for many nations and carbon sequestration which traps CO 2 in the Earth’s subsurface is one method to reduce atmospheric CO 2 levels. Among the variables that must be considered in developing this technology to a national scale is microbial activity. Microbial activity or biomass can change rock permeability, alter artificial seals around boreholes, and play a key role inmore » biogeochemistry and accordingly may determine how CO 2 is sequestered underground. Certain physical parameters of a reservoir found in literature (e.g., temperature, porosity, and permeability) may indicate whether a reservoir can host microbial communities. In order to estimate which subsurface formations may host microbes, this report examines the subsurface temperature, porosity, and permeability of underground rock formations that have high potential to be targeted for CO 2 sequestration. Of the 268 North American wellbore locations from the National Carbon Sequestration Database (NATCARB; National Energy and Technology Laboratory, 2015) and 35 sites from Nelson and Kibler (2003), 96 sequestration sites contain temperature data. Of these 96 sites, 36 sites have temperatures that would be favorable for microbial survival, 48 sites have mixed conditions for supporting microbial populations, and 11 sites would appear to be unfavorable to support microbial populations. Future studies of microbe viability would benefit from a larger database with more formation parameters (e.g. mineralogy, structure, and groundwater chemistry), which would help to increase understanding of where CO 2 sequestration could be most efficiently implemented.« less

  18. Microbial production and oxidation of methane in deep subsurface

    NASA Astrophysics Data System (ADS)

    Kotelnikova, Svetlana

    2002-10-01

    The goal of this review is to summarize present studies on microbial production and oxidation of methane in the deep subterranean environments. Methane is a long-living gas causing the "greenhouse" effect in the planet's atmosphere. Earlier, the deep "organic carbon poor" subsurface was not considered as a source of "biogenic" methane. Evidence of active methanogenesis and presence of viable methanogens including autotrophic organisms were obtained for some subsurface environments including water-flooded oil-fields, deep sandy aquifers, deep sea hydrothermal vents, the deep sediments and granitic groundwater at depths of 10 to 2000 m below sea level. As a rule, the deep subterranean microbial populations dwell at more or less oligotrophic conditions. Molecular hydrogen has been found in a variety of subsurface environments, where its concentrations were significantly higher than in the tested surface aquatic environments. Chemolithoautotrophic microorganisms from deep aquifers that could grow on hydrogen and carbon dioxide can act as primary producers of organic carbon, initiating heterotrophic food chains in the deep subterranean environments independent of photosynthesis. "Biogenic" methane has been found all over the world. On the basis of documented occurrences, gases in reservoirs and older sediments are similar and have the isotopic character of methane derived from CO 2 reduction. Groundwater representing the methanogenic end member are characterized by a relative depletion of dissolved organic carbon (DOC) in combination with an enrichment in 13C in inorganic carbon, which is consistent with the preferential reduction of 12CO 2 by autotrophic methanogens or acetogens. The isotopic composition of methane formed via CO 2 reduction is controlled by the δ13C of the original CO 2 substrate. Literature data shows that CH 4 as heavy as -40‰ or -50‰ can be produced by the microbial reduction of isotopically heavy CO 2. Produced methane may be oxidized microbially to carbon dioxide. Microbial methane oxidation is a biogeochemical process that limits the release of methane, a greenhouse gas from anaerobic environments. Anaerobic methane oxidation plays an important role in marine sediments. Similar processes may take place in deep subsurface and thus fuel the deep microbial community. Organisms or consortia responsible for anaerobic methane oxidation have not yet been cultured, although diverse aerobic methanotrophs have been isolated from a variety of underground niches. The presence of aerobic methanotrophs in the anoxic subsurface remains to be explained. The presence of methane in the deep subsurface have been shown all over the world. The flux of gases between the deep subsurface and the atmosphere is driven by the concentration gradient from depth to the atmosphere. However, methane is consumed by methanotrophs on the way of its evolution in oxidized environments and is transformed to organic form, available for further microbial processing. When the impact of subsurface environments to global warming is estimated, it is necessary to take into account the activity of methane-producing Archaea and methane-oxidizing biofilters in groundwater. Microbial production and oxidation of methane is involved in the carbon cycle in the deep subsurface environments.

  19. Microbial Metabolic Roles in Bedrock Degradation and the Genesis of Biomineral and Biopattern Biosignatures in Caves and Mines

    NASA Astrophysics Data System (ADS)

    Boston, P. J.

    2016-12-01

    In subsurface environments like natural or anthropogenic caves (aka mines), microorganisms facilitate considerable bedrock degradation under a variety of circumstances. Mobilization of materials from these processes frequently produces distinctive biominerals, identifiable biotextures, and unique biopatterns. Microbial activities can even determine the form of speleothems (secondary mineral cave decorations), thus providing highly conspicuous macroscopic biosignatures. It is critical to understand microbial-mineral interactions, recognizing that while the lithology controls important aspects of the environment, in turn, the geochemistry is greatly affected by the biology. Microbial communities can contribute to the actual formation of cavities (speleogenesis), and subsequent enlargement of caves and vugs and the mineral deposits that enrich many subterranean spaces. A major challenge is to quantify such influences. Genetic analysis is revealing a vast but highly partitioned biodiversity in the overall rock fracture habitat of Earth's crust especially in caves and mines where the three phases of matter (solid rock, fluids, and gases) typically interact producing high niche richness. Lessons learned from the microbial/geochemical systems that we have studied include: 1) significant similarities in metabolic functions between different geochemical systems, 2) ubiquity of metal oxidation for energy, 3) ubiquity of biofilms, some highly mineralized, 4) highly interdependent, multi-species communities that can only transform materials in consortia, 5) complex ecological succession including characteristic pioneer species, 6) often very slow growth rates in culture, 7) prevalence of very small cell sizes, ( 100 - 500 nm diam.), 8) mineral reprecipitation of mobilized materials, often dependent on the presence of live microbial communities to produce initial amorphous compounds followed by gradual crystallization, and 9) resultant in situ self-fossilization. Microbial metabolism occurs against a complex backdrop of hydrology, geochemistry, and geological structures of subsurface environments. These are not static but change in response to both short term and much longer geological time scales thus presenting significant challenges in interpretation.

  20. Río Tinto: A Geochemical and Mineralogical Terrestrial Analogue of Mars

    PubMed Central

    Amils, Ricardo; Fernández-Remolar, David

    2014-01-01

    The geomicrobiological characterization of the water column and sediments of Río Tinto (Huelva, Southwestern Spain) have proven the importance of the iron and the sulfur cycles, not only in generating the extreme conditions of the habitat (low pH, high concentration of toxic heavy metals), but also in maintaining the high level of microbial diversity detected in the basin. It has been proven that the extreme acidic conditions of Río Tinto basin are not the product of 5000 years of mining activity in the area, but the consequence of an active underground bioreactor that obtains its energy from the massive sulfidic minerals existing in the Iberian Pyrite Belt. Two drilling projects, MARTE (Mars Astrobiology Research and Technology Experiment) (2003–2006) and IPBSL (Iberian Pyrite Belt Subsurface Life Detection) (2011–2015), were developed and carried out to provide evidence of subsurface microbial activity and the potential resources that support these activities. The reduced substrates and the oxidants that drive the system appear to come from the rock matrix. These resources need only groundwater to launch diverse microbial metabolisms. The similarities between the vast sulfate and iron oxide deposits on Mars and the main sulfide bioleaching products found in the Tinto basin have given Río Tinto the status of a geochemical and mineralogical Mars terrestrial analogue. PMID:25370383

  1. Is the genetic landscape of the deep subsurface biosphere affected by viruses?

    PubMed

    Anderson, Rika E; Brazelton, William J; Baross, John A

    2011-01-01

    Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability, and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host-virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus-host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems.

  2. Is the Genetic Landscape of the Deep Subsurface Biosphere Affected by Viruses?

    PubMed Central

    Anderson, Rika E.; Brazelton, William J.; Baross, John A.

    2011-01-01

    Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability, and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host–virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus–host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems. PMID:22084639

  3. Factors Effecting the Fate and Transport of CL-20 in the Vadose Zone and Groundwater: Final Report 2002 - 2004 SERDP Project CP-1255

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szecsody, James E.; Riley, Robert G.; Devary, Brooks J.

    2005-06-01

    This SERDP-funded project was initiated to investigate the fate of CL-20 in the subsurface environment, with a focus on identification and quantification of geochemical and microbial reactions of CL-20. CL-20 can be released to the surface and subsurface terrestrial environment by: a) manufacturing processes, b) munition storage, and c) use with low order detonation or unexploded ordnance. The risk of far-field subsurface migration was assessed through labora-tory experiments with a variety of sediments and subsurface materials to quantify processes that control CL-20 sorption-limited migration and degradation. Results of this study show that CL-20 will exhibit differing behavior in the subsurfacemore » terrestrial environment: 1. CL-20 on the sediment surface will photodegrade and interact with plants/animals (described in other SERDP projects CU 1254, 1256). CL-20 will exhibit greater sorption in humid sediments to organic matter. Transport will be solubility limited (i.e., low CL-20 aqueous solubility). 2. CL-20 infiltration into soils (<2 m) from spills will be subject to sorption to soil organic matter (if present), and low to high biodegradation rates (weeks to years) depending on the microbial population (greater in humid environment). 3. CL-20 in the vadose zone (>2 m) will be, in most cases, subject to low sorption and low degradation rates, so would persist in the subsurface environment and be at risk for deep migration. Low water content in arid regions will result in a decrease in both sorption and the degradation rate. Measured degradation rates in unsaturated sediments of years would result in significant subsurface migration distances. 4. CL-20 in groundwater will be subject to some sorption but likely very slow degradation rates. CL-20 sorption will be greater than RDX. Most CL-20 degradation will be abiotic (ferrous iron and other transition metals), because most deep subsurface systems have extremely low natural microbial populations. Degradation rates will range from weeks (iron reducing systems) to years. Although CL-20 will move rapidly through most sediments in the terrestrial environment, subsurface remediation can be utilized for cleanup. Transformation of CL-20 to intermediates can be rapidly accomplished under: a) reducing conditions (CL-20 4.1 min. half-life, RDX 18 min. half-life), b) alkaline (pH >10) conditions, and c) bioremediation with added nutrients. CL-20 degradation to intermediates may be insufficient to mitigate environmental impact, as the toxicity of many of these compounds is unknown. Biostimulation in oxic to reducing systems by carbon and nutrient addition can mineralize CL-20, with the most rapid rates occurring under reducing conditions.« less

  4. Evaluation of nutrient removal efficiency and microbial enzyme activity in a baffled subsurface-flow constructed wetland system

    Treesearch

    Lihua Cui; Ying Ouyang; Wenjie Gu; Weozhi Yang; Qiaoling Xu

    2013-01-01

    In this study, the enzyme activities and their relationships to domestic wastewater purification are investigated in four different types of subsurface-flow constructed wetlands (CWs), namely the traditional horizontal subsurface-flow, horizontal baffled subsurface-flow, vertical baffled subsurface-flow, and composite baffled subsurface-flow CWs. Results showed that...

  5. Methane Emission in a Specific Riparian-Zone Sediment Decreased with Bioelectrochemical Manipulation and Corresponded to the Microbial Community Dynamics

    PubMed Central

    Friedman, Elliot S.; McPhillips, Lauren E.; Werner, Jeffrey J.; Poole, Angela C.; Ley, Ruth E.; Walter, M. Todd; Angenent, Largus T.

    2016-01-01

    Dissimilatory metal-reducing bacteria are widespread in terrestrial ecosystems, especially in anaerobic soils and sediments. Thermodynamically, dissimilatory metal reduction is more favorable than sulfate reduction and methanogenesis but less favorable than denitrification and aerobic respiration. It is critical to understand the complex relationships, including the absence or presence of terminal electron acceptors, that govern microbial competition and coexistence in anaerobic soils and sediments, because subsurface microbial processes can effect greenhouse gas emissions from soils, possibly resulting in impacts at the global scale. Here, we elucidated the effect of an inexhaustible, ferrous-iron and humic-substance mimicking terminal electron acceptor by deploying potentiostatically poised electrodes in the sediment of a very specific stream riparian zone in Upstate New York state. At two sites within the same stream riparian zone during the course of 6 weeks in the spring of 2013, we measured CH4 and N2/N2O emissions from soil chambers containing either poised or unpoised electrodes, and we harvested biofilms from the electrodes to quantify microbial community dynamics. At the upstream site, which had a lower vegetation cover and highest soil temperatures, the poised electrodes inhibited CH4 emissions by ∼45% (when normalized to remove temporal effects). CH4 emissions were not significantly impacted at the downstream site. N2/N2O emissions were generally low at both sites and were not impacted by poised electrodes. We did not find a direct link between bioelectrochemical treatment and microbial community membership; however, we did find a correspondence between environment/function and microbial community dynamics. PMID:26793170

  6. Subsurface geomicrobiology in a Mars terrestrial analogue, Río Tinto (SW, Spain)

    NASA Astrophysics Data System (ADS)

    Amils, R.; Fernández-Remolar, D.; Gómez, F.; González-Toril, E.; Rodríguez, N.; Prieto-Ballesteros, O.; Sanz, J. L.; Díaz, E.; Stoker, C.

    2008-09-01

    Since its discovery, only few years ago, subsurface geomicrobiology is a matter of growing interest [1]. From a fundamental point of view, it seeks to determine whether life can be sustained in the absence of radiation. From an astrobiological point of view, it is an interesting model for life in other planetary bodies, e.g., Mars, as well as early life on Earth. Río Tinto is an unusual extreme acidic environment due to its size (around 100 km), constant acidic pH (mean pH 2.3), high concentrations of heavy metals and high level of microbial diversity [2]. Río Tinto rises in the core of the Iberian Pyritic Belt, one of the biggest sulfidic ore deposits in the world [3]. Today it is well stablished that the extreme characteristics of Río Tinto are not due to acid mine drainage from mining activity, as has been suggested in the past. To explore the hypothesis that a continuous underground reactor of chemolithotrophic microorganisms thriving in the rich sulfidic minerals of the Iberian Pyritic Belt is responsible for the extreme conditions found in the system, a drilling project has been developed to detect evidence of subsurface microbial activity and potential resources to support these microbial communities in situ (MARTE project) [4]. Here we report a search for subsurface life in volcanically hosted massive sulfidic deposits from the Iberian Pyritic Belt. Aseptic core samples were obtained within and down-gradient from the massive sulfide deposits and formation water was sampled within the resulting bore holes. Microbial activity was detected in un-contaminated samples by culture-dependent and culture-independent methods. Aerobic iron- and sulfide- oxidizing bacteria, and anaerobic denitrifying thiosulfate-oxidizing bacteria, sulfate reducing bacteria and methanogenic archaea have been identified. Potential energy fluxes detected in the system include oxidation of reduced iron and sulfur, or hydrogen gas coupled to nitrite, sulfate, ferric iron, inorganic carbon or transient oxygen. These results suggest that multiple energy sources are available from sulfide-mineral weathering to support microbial metabolism, even in the absence of atmospheric oxygen. [1] Stevens, T.O and McKinley, J.P. (1995) Scienc,, 270, 450-454. [2] Amis, R. et al. (2007) Planet Space Sci, 55, 370- 381. [3] Fernández-Remolar, D. et al. (2005) Earth Planet Sci Lett, 240, 149-167. [4] Amils, R. et al. (2008) Microbiology of Extreme Soils, 205-223.

  7. Mineral Influence on Microbial Survival During Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Santillan, E. U.; Shanahan, T. M.; Wolfe, W. W.; Bennett, P.

    2012-12-01

    CO2 sequestered in a deep saline aquifer will perturb subsurface biogeochemistry by acidifying the groundwater and accelerating mineral diagenesis. Subsurface microbial communities heavily influence geochemistry through their metabolic processes, such as with dissimilatory iron reducing bacteria (DIRB). However, CO2 also acts as a sterilant and will perturb these communities. We investigated the role of mineralogy and its effect on the survival of microbes at high PCO2 conditions using the model DIRB Shewanella oneidensis MR-1. Batch cultures of Shewanella were grown to stationary phase and exposed to high PCO2 using modified Parr reactors. Cell viability was then determined by plating cultures after exposure. Results indicate that at low PCO2 (2 bar), growth and iron reduction are decreased and cell death occurs within 1 hour when exposed to CO2 pressures of 10 bar or greater. Further, fatty acid analysis indicates microbial lipid degradation with C18 fatty acids being the slowest lipids to degrade. When cultures were grown in the presence of rocks or minerals representative of the deep subsurface such as carbonates and silicates and exposed to 25 bar CO2, survival lasted beyond 2 hours. The most effective protecting substratum was quartz sandstone, with cultures surviving beyond 8 hours of CO2 exposure. Scanning electron microscope images reveal biofilm formation on the mineral surfaces with copious amounts of extracellular polymeric substances (EPS) present. EPS from these biofilms acts as a reactive barrier to the CO2, slowing the penetration of CO2 into cells and resulting in increased survival. When biofilm cultures were grown with Al and As to simulate the release of toxic metals from minerals such as feldspars and clays, survival time decreased, indicating mineralogy may also enhance microbial death. Biofilms were then grown on iron-coated quartz sand to determine conversely what influence biofilms may have on mineral dissolution during CO2 perturbation. Growth media was allowed to flow through a sand-packed column at a constant flow rate with pulses of liquid CO2 injected directly into the column. Preliminary data of dissolved iron measured from the effluent indicates that biofilm columns show a slight increase in dissolved iron concentrations before and after CO2 exposure in comparison to abiotic columns. These findings imply the important relationship between microbes and minerals during CO2 sequestration. The ability minerals have to contribute to the selection of microbes has important consequences to the survival of different microbial populations in the subsurface and the consequent biogeochemical changes that may happen.

  8. Microbial life associated with low-temperature alteration of ultramafic rocks in the Leka ophiolite complex.

    PubMed

    Daae, F L; Økland, I; Dahle, H; Jørgensen, S L; Thorseth, I H; Pedersen, R B

    2013-07-01

    Water-rock interactions in ultramafic lithosphere generate reduced chemical species such as hydrogen that can fuel subsurface microbial communities. Sampling of this environment is expensive and technically demanding. However, highly accessible, uplifted oceanic lithospheres emplaced onto continental margins (ophiolites) are potential model systems for studies of the subsurface biosphere in ultramafic rocks. Here, we describe a microbiological investigation of partially serpentinized dunite from the Leka ophiolite (Norway). We analysed samples of mineral coatings on subsurface fracture surfaces from different depths (10-160 cm) and groundwater from a 50-m-deep borehole that penetrates several major fracture zones in the rock. The samples are suggested to represent subsurface habitats ranging from highly anaerobic to aerobic conditions. Water from a surface pond was analysed for comparison. To explore the microbial diversity and to make assessments about potential metabolisms, the samples were analysed by microscopy, construction of small subunit ribosomal RNA gene clone libraries, culturing and quantitative-PCR. Different microbial communities were observed in the groundwater, the fracture-coating material and the surface water, indicating that distinct microbial ecosystems exist in the rock. Close relatives of hydrogen-oxidizing Hydrogenophaga dominated (30% of the bacterial clones) in the oxic groundwater, indicating that microbial communities in ultramafic rocks at Leka could partially be driven by H2 produced by low-temperature water-rock reactions. Heterotrophic organisms, including close relatives of hydrocarbon degraders possibly feeding on products from Fischer-Tropsch-type reactions, dominated in the fracture-coating material. Putative hydrogen-, ammonia-, manganese- and iron-oxidizers were also detected in fracture coatings and the groundwater. The microbial communities reflect the existence of different subsurface redox conditions generated by differences in fracture size and distribution, and mixing of fluids. The particularly dense microbial communities in the shallow fracture coatings seem to be fuelled by both photosynthesis and oxidation of reduced chemical species produced by water-rock reactions. © 2013 John Wiley & Sons Ltd.

  9. Active microbial biofilms in deep poor porous continental subsurface rocks.

    PubMed

    Escudero, Cristina; Vera, Mario; Oggerin, Monike; Amils, Ricardo

    2018-01-24

    Deep continental subsurface is defined as oligotrophic environments where microorganisms present a very low metabolic rate. To date, due to the energetic cost of production and maintenance of biofilms, their existence has not been considered in poor porous subsurface rocks. We applied fluorescence in situ hybridization techniques and confocal laser scanning microscopy in samples from a continental deep drilling project to analyze the prokaryotic diversity and distribution and the possible existence of biofilms. Our results show the existence of natural microbial biofilms at all checked depths of the Iberian Pyrite Belt (IPB) subsurface and the co-occurrence of bacteria and archaea in this environment. This observation suggests that multi-species biofilms may be a common and widespread lifestyle in subsurface environments.

  10. Geochemical and microbiological characteristics during in situ chemical oxidation and in situ bioremediation at a diesel contaminated site.

    PubMed

    Sutton, Nora B; Kalisz, Mariusz; Krupanek, Janusz; Marek, Jan; Grotenhuis, Tim; Smidt, Hauke; de Weert, Jasperien; Rijnaarts, Huub H M; van Gaans, Pauline; Keijzer, Thomas

    2014-02-18

    While in situ chemical oxidation with persulfate has seen wide commercial application, investigations into the impacts on groundwater characteristics, microbial communities and soil structure are limited. To better understand the interactions of persulfate with the subsurface and to determine the compatibility with further bioremediation, a pilot scale treatment at a diesel-contaminated location was performed consisting of two persulfate injection events followed by a single nutrient amendment. Groundwater parameters measured throughout the 225 day experiment showed a significant decrease in pH and an increase in dissolved diesel and organic carbon within the treatment area. Molecular analysis of the microbial community size (16S rRNA gene) and alkane degradation capacity (alkB gene) by qPCR indicated a significant, yet temporary impact; while gene copy numbers initially decreased 1-2 orders of magnitude, they returned to baseline levels within 3 months of the first injection for both targets. Analysis of soil samples with sequential extraction showed irreversible oxidation of metal sulfides, thereby changing subsurface mineralogy and potentially mobilizing Fe, Cu, Pb, and Zn. Together, these results give insight into persulfate application in terms of risks and effective coupling with bioremediation.

  11. Respiratory interactions of soil bacteria with (semi)conductive iron-oxide minerals.

    PubMed

    Kato, Souichiro; Nakamura, Ryuhei; Kai, Fumiyoshi; Watanabe, Kazuya; Hashimoto, Kazuhito

    2010-12-01

    Pure-culture studies have shown that dissimilatory metal-reducing bacteria are able to utilize iron-oxide nanoparticles as electron conduits for reducing distant terminal acceptors; however, the ecological relevance of such energy metabolism is poorly understood. Here, soil microbial communities were grown in electrochemical cells with acetate as the electron donor and electrodes (poised at 0.2 V versus Ag/AgCl) as the electron acceptors in the presence and absence of iron-oxide nanoparticles, and respiratory current generation and community structures were analysed. Irrespective of the iron-oxide species (hematite, magnetite or ferrihydrite), the supplementation with iron-oxide minerals resulted in large increases (over 30-fold) in current, while only a moderate increase (∼10-fold) was observed in the presence of soluble ferric/ferrous irons. During the current generation, insulative ferrihydrite was transformed into semiconductive goethite. Clone-library analyses of 16S rRNA gene fragments PCR-amplified from the soil microbial communities revealed that iron-oxide supplementation facilitated the occurrence of Geobacter species affiliated with subsurface clades 1 and 2. We suggest that subsurface-clade Geobacter species preferentially thrive in soil by utilizing (semi)conductive iron oxides for their respiration. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  12. Removal of microbial pathogens in a sandy gravel aquifer under forced-gradient subsurface flow conditions

    NASA Astrophysics Data System (ADS)

    Oudega, Thomas James; Derx, Julia; van Driezum, Inge; Cisneros, Anibal; Sommer, Regina; Kirschner, Alexander; Farnleitner, Andreas; Blaschke, Alfred Paul

    2017-04-01

    Subsurface media are being used around the world as a means to mitigate microbial contamination, but vary widely in their ability to remove pathogens. To help to provide accurate risk assessments of microbial contamination of groundwaters, and establish safe setback distances between receiving waters and disposal fields, this study aims to use aquifer tracer tests to evaluate the ability of subsurface media to attenuate these pathogens. The novelty of this work is the use of a variety of different tracer substances (e.g. phages, spores, microspheres, conservative tracers) together in field experiments. This will be done by means of injecting these substances under a forced gradient in a sandy gravel aquifer in Lobau, Austria. The extraction of the tracers will be monitored in a pumping well at a distrance of 50m downgradient. This will be able to provide us with insight to the characteristics of microbial transport and how the microorganisms react to the subsurface in the study site. Subsequent numerical modelling of the experiments can tell us more about quantification of subsurface processes such as attachment/detachment, inactivation and die-off of these substances. The first field experiment with conservative tracers (NaCl) has been carried out in December 2016, and subsequent tests are being planned for the next months.

  13. Microbial community composition along a 50 000-year lacustrine sediment sequence

    PubMed Central

    Ariztegui, Daniel; Horn, Fabian; Kallmeyer, Jens; Orsi, William D

    2018-01-01

    Abstract For decades, microbial community composition in subseafloor sediments has been the focus of extensive studies. In deep lacustrine sediments, however, the taxonomic composition of microbial communities remains undercharacterized. Greater knowledge on microbial diversity in lacustrine sediments would improve our understanding of how environmental factors, and resulting selective pressures, shape subsurface biospheres in marine and freshwater sediments. Using high-throughput sequencing of 16S rRNA genes across high-resolution climate intervals covering the last 50 000 years in Laguna Potrok Aike, Argentina, we identified changes in microbial populations in response to both past environmental conditions and geochemical changes of the sediment during burial. Microbial communities in Holocene sediments were most diverse, reflecting a layering of taxa linked to electron acceptors availability. In deeper intervals, the data show that salinity, organic matter and the depositional conditions over the Last Glacial-interglacial cycle were all selective pressures in the deep lacustrine assemblage resulting in a genetically distinct biosphere from the surface dominated primarily by Bathyarchaeota and Atribacteria groups. However, similar to marine sediments, some dominant taxa in the shallow subsurface persisted into the subsurface as minor fraction of the community. The subsequent establishment of a deep subsurface community likely results from a combination of paleoenvironmental factors that have shaped the pool of available substrates, together with substrate depletion and/or reworking of organic matter with depth. PMID:29471361

  14. Some Ecological Mechanisms to Generate Habitability in Planetary Subsurface Areas by Chemolithotrophic Communities: The Ro Tinto Subsurface Ecosystem as a Model System

    NASA Astrophysics Data System (ADS)

    Fernández-Remolar, David C.; Gómez, Felipe; Prieto-Ballesteros, Olga; Schelble, Rachel T.; Rodríguez, Nuria; Amiols, Ricardo

    2008-02-01

    Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Ro Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Ro Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere.

  15. Some ecological mechanisms to generate habitability in planetary subsurface areas by chemolithotrophic communities: the Río Tinto subsurface ecosystem as a model system.

    PubMed

    Fernández-Remolar, David C; Gómez, Felipe; Prieto-Ballesteros, Olga; Schelble, Rachel T; Rodríguez, Nuria; Amils, Ricardo

    2008-02-01

    Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Río Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Río Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere.

  16. Extracellular proteins limit the dispersal of biogenic nanoparticles

    USGS Publications Warehouse

    Moreau, J.W.; Weber, P.K.; Martin, M.C.; Gilbert, B.; Hutcheon, I.D.; Banfield, J.F.

    2007-01-01

    High-spatial-resolution secondary ion microprobe spectrometry, synchrotron radiation-based Fourier-transform infrared spectroscopy, and polyacrylamide gel analysis demonstrated the intimate association of proteins with spheroidal aggregates of biogenic zinc sulfide nanocrystals, an example of extracellular biomineralization. Experiments involving synthetic zinc sulfide nanoparticles and representative amino acids indicated a driving role for cysteine in rapid nanoparticle aggregation. These findings suggest that microbially derived extracellular proteins can limit the dispersal of nanoparticulate metal-bearing phases, such as the mineral products of bioremediation, that may otherwise be transported away from their source by subsurface fluid flow.

  17. Quantification of microbial activity in subsurface environments using a hydrogenase enzyme assay

    NASA Astrophysics Data System (ADS)

    Adhikari, R. R.; Nickel, J.; Kallmeyer, J.

    2012-04-01

    The subsurface biosphere is the largest microbial ecosystem on Earth. Despite its large size and extensive industrial exploitation, very little is known about the role of microbial activity in the subsurface. Subsurface microbial activity plays a fundamental role in geochemical cycles of carbon and other biologically important elements. How the indigenous microbial communities are supplied with energy is one of the most fundamental questions in subsurface research. It is still an enigma how these communities can survive with such recalcitrant carbon over geological time scales. Despite its usually very low concentration, hydrogen is an important element in subsurface environments. Heterotrophic and chemoautotrophic microorganisms use hydrogen in their metabolic pathways; they either obtain protons from the radiolysis of water and/or cleavage of hydrogen generated by the alteration of basaltic crust, or they dispose of protons by formation of water. Hydrogenase (H2ase) is a ubiquitous intracellular enzyme that catalyzes the interconversion of molecular hydrogen and/or water into protons and electrons. The protons are used for the synthesis of ATP, thereby coupling energy-generating metabolic processes to electron acceptors such as carbon dioxide or sulfate. H2ase activity can therefore be used as a measure for total microbial activity as it targets a key metabolic compound rather than a specific turnover process. Using a highly sensitive tritium assay we measured H2ase enzyme activity in the organic-rich sediments of Lake Van, a saline, alkaline lake in eastern Turkey and in marine subsurface sediments of the Barents Sea. Additionally, sulfate reduction rates (SRRs) were measured to compare the results of the H2ase enzyme assay with the quantitatively most important electron acceptor process. H2ase activity was found at all sites, measured values and distribution of activity varied widely with depth and between sites. At the Lake Van sites H2ase activity ranged from ca. 20 mmol H2 cm-3 d-1 close to the sediment-water interface to 0.5 mmol H2 cm-3 d-1 at a depth of 0.8 m. In samples from the Barents Sea H2ase activity ranged between 0.1 to 2.5 mmol H2 cm-3 d-1 down to a depth of 1.60 m. At all sites the SRR profile followed the H2ase activity profile until SRR declined to values close to the minimum detection limit (~10 pmol cm-3 d-1). H2ase activity increased again after SRR declined, indicating that other microbial processes are becoming quantitatively more important. The H2ase and SRR data show that our assay has a potential to become a valuable tool to measure total subsurface microbial activity.

  18. Phylogenetic and Functional Diversity of Microbial Communities Associated with Subsurface Sediments of the Sonora Margin, Guaymas Basin

    PubMed Central

    Vigneron, Adrien; Cruaud, Perrine; Roussel, Erwan G.; Pignet, Patricia; Caprais, Jean-Claude; Callac, Nolwenn; Ciobanu, Maria-Cristina; Godfroy, Anne; Cragg, Barry A.; Parkes, John R.; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong; Toffin, Laurent

    2014-01-01

    Subsurface sediments of the Sonora Margin (Guaymas Basin), located in proximity of active cold seep sites were explored. The taxonomic and functional diversity of bacterial and archaeal communities were investigated from 1 to 10 meters below the seafloor. Microbial community structure and abundance and distribution of dominant populations were assessed using complementary molecular approaches (Ribosomal Intergenic Spacer Analysis, 16S rRNA libraries and quantitative PCR with an extensive primers set) and correlated to comprehensive geochemical data. Moreover the metabolic potentials and functional traits of the microbial community were also identified using the GeoChip functional gene microarray and metabolic rates. The active microbial community structure in the Sonora Margin sediments was related to deep subsurface ecosystems (Marine Benthic Groups B and D, Miscellaneous Crenarchaeotal Group, Chloroflexi and Candidate divisions) and remained relatively similar throughout the sediment section, despite defined biogeochemical gradients. However, relative abundances of bacterial and archaeal dominant lineages were significantly correlated with organic carbon quantity and origin. Consistently, metabolic pathways for the degradation and assimilation of this organic carbon as well as genetic potentials for the transformation of detrital organic matters, hydrocarbons and recalcitrant substrates were detected, suggesting that chemoorganotrophic microorganisms may dominate the microbial community of the Sonora Margin subsurface sediments. PMID:25099369

  19. Effects of Hydraulic Frac Fluids on Subsurface Microbial Communities in Gas Shales

    NASA Astrophysics Data System (ADS)

    Jiménez, Núria; Krüger, Martin

    2014-05-01

    Shale gas is being considered as a complementary energy resource to coal or other fossil fuels. The exploitation of unconventional gas reservoirs requires the use of advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemical additives) are injected at high pressures into the formations, to produce fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluids partly remain in the formation, while about 20 to 40% of the originally injected fluid flows back to the surface, together with formation waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The overall production operation will likely affect and be affected by subsurface microbial communities associated to the shale formations. On the one hand microbial activity (like growth, biofilm formation) can cause unwanted processes like corrosion, clogging, etc. On the other hand, the introduction of frac fluids could either enhance microbial growth or cause toxicity to the shale-associated microbial communities. To investigate the potential impacts of changing environmental reservoir conditions, like temperature, salinity, oxgen content and pH, as well as the introduction of frac or geogenic chemicals on subsurface microbial communities, laboratory experiments under in situ conditions (i.e. high temperatures and pressures) are being conducted. Enrichment cultures with samples from several subsurface environments (e.g. shale and coal deposits, gas reservoirs, geothermal fluids) have been set up using a variety of carbon sources, including hydrocarbons and typical frac chemicals. Classical microbiological and molecular analysis are used to determine changes in the microbial abundance, community structure and function after the exposure to different single frac chemicals, "artificial" frac fluids or production waters. On the other hand, potential transformation reactions of frac or geogenic chemicals by subsurface microbiota and their lifetime are investigated. In our "fracking simulation" experiments, an increasing number of hydrocarbon-degrading or halophilic microorganisms is to be expected after exposure of subsurface communities to artificial production waters. Whereas the introduction of freshwater and of easily biodegradable substrates might favor the proliferation of fast-growing generalistic heterotrophs in shale-associated communities. Nevertheless toxicity of some of the frac components cannot be excluded.

  20. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stegen, James C.; Konopka, Allan; McKinely, Jim

    Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies—oxidized, reduced, and transition—within one lithofacies and elucidate relationships among facies features and microbial community biomass, diversity, and community composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial diversity—the number ofmore » microbial taxa—was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions.« less

  1. Terrestrial Subsurface Ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkins, Michael J.; Fredrickson, Jim K.

    2015-10-15

    The Earth’s crust is a solid cool layer that overlays the mantle, with a varying thickness of between 30-50 km on continental plates, and 5-10 km on oceanic plates. Continental crust is composed of a variety of igneous, metamorphic, and sedimentary rocks that weather and re-form over geologic cycles lasting millions to billions of years. At the crust surface, these weathered minerals and organic material combine to produce a variety of soils types that provide suitable habitats and niches for abundant microbial diversity (see Chapter 4). Beneath this soil zone is the subsurface. Once thought to be relatively free ofmore » microorganisms, recent estimates have calculated that between 1016-1017 g C biomass (2-19% of Earth’s total biomass) may be present in this environment (Whitman et al., 1998;McMahon and Parnell, 2014). Microbial life in the subsurface exists across a wide range of habitats: in pores associated with relatively shallow unconsolidated aquifer sediments to fractures in bedrock formations that are more than a kilometer deep, where extreme lithostatic pressures and temperatures are encountered. While these different environments contain varying physical and chemical conditions, the absence of light is a constant. Despite this, diverse physiologies and metabolisms enable microorganisms to harness energy and carbon for growth in water-filled pore spaces and fractures. Carbon and other element cycles are driven by microbial activity, which has implications for both natural processes and human activities in the subsurface, e.g., bacteria play key roles in both hydrocarbon formation and degradation. Hydrocarbons are a major focus for human utilization of the subsurface, via oil and gas extraction and potential geologic CO2 sequestration. The subsurface is also utilized or being considered for sequestered storage of high-level radioactive waste from nuclear power generation and residual waste from past production of weapons grade nuclear materials. While our understanding of the subsurface is continually improving, it is clear that only a small fraction of microbial habitats have been sampled and studied. In this chapter, we will discuss these studies in the context of the distribution of microbial life in the subsurface, the stresses that microorganisms must overcome to survive in these environments, and the metabolic strategies that are employed to harness energy in a region of the planet far-removed from sunlight. Finally, we will consider both beneficial and deleterious effects of microbial activity in the subsurface on human activities in this environment.« less

  2. Microbial Biogeography on the Legacies of Historical Events in the Arctic Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Han, Dukki; Nam, Seung-Il; Hur, Hor-Gil

    2017-04-01

    The Arctic marine environment consists of various microbial habitats. The niche preference of microbial assemblages in the Arctic Ocean has been surveyed with the modern environmental change by oceanographic traits such as sea-ice dynamics, current circulation, and sedimentation. The North Pacific inflow from the shallow and narrow Bering Strait is highly susceptible to sea-level fluctuations, and thus the water mass exchange mediated by the history of sea-ice between the North Pacific and the Chukchi Sea in the Arctic Ocean. Over geological timescale, the climate change may provide putative evidences for ecological niche for the Arctic microbial assemblages as well as geological records in response to the paleoclimate change. In the present study, the multidisciplinary approach, based on microbiology, geology, and geochemistry, was applied to survey the microbial assemblages in the Arctic subsurface sediments and help further integrate the microbial biogeography and biogeochemical patterns in the Arctic subsurface biosphere. Our results describe microbial assemblages with high-resolution paleoceanographic records in the Chukchi Sea sediment core (ARA02B/01A-GC; 5.4 mbsf) to show the processes that drive microbial biogeographic patterns in the Arctic subsurface sediments. We found microbial habitat preferences closely linked to Holocene paleoclimate records as well as geological, geochemical, and microbiological evidence for the inference of the sulphate-methane transition zone (SMTZ) in the Chukchi Sea. Especially, the vertically distributed predominant populations of Gammaproteobacteria and Marine Group II Euryarchaeota in the ARA02B/01A-GC consistent with the patterns of the known global SMTZs and Holocene sedimentary records, suggesting that in-depth microbiological profiles integrated with geological records may be indirectly useful for reconstructing Arctic paleoclimate changes. In the earliest phase of Mid Holocene in the ARA02B/01A-GC with concentrated crenarchaeol (a unique biomarker for Marine Group I Thaumarchaea), the most abundant archaeal population was Marine Group II Euryarchaeota rather than Marine Group I Thaumarchaea, suggesting that the interpretation of archaeal tetraether lipids in subsurface sediments needs careful consideration for paleoceanography. In conclusion, our findings have important implications for the availability of microbial biogeography in the sedimentary record. The present study offers a deeper understanding of the legacies of historical events during the Holocene and implies that the survey of microbial biogeography may be an appropriate tool to monitor potential effects from the climate change in the Arctic Ocean.

  3. Microbial Functional Gene Diversity with a Shift of Subsurface Redox Conditions during In Situ Uranium Reduction

    PubMed Central

    Liang, Yuting; Van Nostrand, Joy D.; N′Guessan, Lucie A.; Peacock, Aaron D.; Deng, Ye; Long, Philip E.; Resch, C. Tom; Wu, Liyou; He, Zhili; Li, Guanghe; Hazen, Terry C.; Lovley, Derek R.

    2012-01-01

    To better understand the microbial functional diversity changes with subsurface redox conditions during in situ uranium bioremediation, key functional genes were studied with GeoChip, a comprehensive functional gene microarray, in field experiments at a uranium mill tailings remedial action (UMTRA) site (Rifle, CO). The results indicated that functional microbial communities altered with a shift in the dominant metabolic process, as documented by hierarchical cluster and ordination analyses of all detected functional genes. The abundance of dsrAB genes (dissimilatory sulfite reductase genes) and methane generation-related mcr genes (methyl coenzyme M reductase coding genes) increased when redox conditions shifted from Fe-reducing to sulfate-reducing conditions. The cytochrome genes detected were primarily from Geobacter sp. and decreased with lower subsurface redox conditions. Statistical analysis of environmental parameters and functional genes indicated that acetate, U(VI), and redox potential (Eh) were the most significant geochemical variables linked to microbial functional gene structures, and changes in microbial functional diversity were strongly related to the dominant terminal electron-accepting process following acetate addition. The study indicates that the microbial functional genes clearly reflect the in situ redox conditions and the dominant microbial processes, which in turn influence uranium bioreduction. Microbial functional genes thus could be very useful for tracking microbial community structure and dynamics during bioremediation. PMID:22327592

  4. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea).

    PubMed

    Wang, Yong; Li, Jiang Tao; He, Li Sheng; Yang, Bo; Gao, Zhao Ming; Cao, Hui Luo; Batang, Zenon; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2015-01-01

    In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin.

  5. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea)

    PubMed Central

    Wang, Yong; Li, Jiang Tao; He, Li Sheng; Yang, Bo; Gao, Zhao Ming; Cao, Hui Luo; Batang, Zenon; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2015-01-01

    In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin. PMID:26485717

  6. Field Deployment for In-situ Metal and Radionuclide Stabilization by Microbial Metabolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turick, C. E.; Knox, A. S.; Dixon, K. L.

    2005-09-26

    A novel biotechnology is reported here that was demonstrated at SRS that facilitates metal and actinide immobilization by incorporating the physiology and ecology of indigenous bacteria. This technology is based on our previous work with pyomelanin-producing bacteria isolated from SRS soils. Through tyrosine supplementation, overproduction of pyomelanin was achieved, which lead ultimately to metal and actinide immobilization, both in-vitro and in-situ. Pyomelanin is a recalcitrant microbial pigment and a humic type compound in the class of melanin pigments. Pyomelanin has electron shuttling and metal chelation capabilities and thus accelerates the bacterial reduction and/or immobilization of metals. Pyomelanin is produced outsidemore » the cell and either diffuses away or attaches to the cell surface. In either case, the reduced pyomelanin is capable of transferring electrons to metals as well as chelating metals. Because of its recalcitrance and redox cycling properties, pyomelanin molecules can be used over and over again for metal transformation. When produced in excess, pyomelanin produced by one bacterial species can be used by other species for metal reduction, thereby extending the utility of pyomelanin and further accelerating metal immobilization rates. Soils contaminated with Ni and U were the focus of this study in order to develop in-situ, metal bioimmobilization technologies. We have demonstrated pyomelanin production in soil from the Tims Branch area of SRS as a result of tyrosine amendments. These results were documented in laboratory soil column studies and field deployment studies. The amended soils demonstrated increased redox behavior and sequestration capacity of U and transition metals following pyomelanin production. Treatments incorporating tyrosine and lactate demonstrated the highest levels of pyomelanin production. In order to determine the potential use of this technology at other areas of SRS, pyomelanin producing bacteria were also quantified from metal contaminated soils at TNX and D areas of SRS. A bacterial culture collection from subsurface studies near P Area of SRS were also evaluated for pyomelanin production. Bacterial densities of pyomelanin producers were determined to be >10{sup 6} cells/g soil at TNX and D areas. In addition, approximately 25% of isolates from P area demonstrated pyomelanin production in the presence of tyrosine. Biogeochemical activity is an ongoing and dynamic process due, in part, to bacterial activity in the subsurface. Bacteria contribute significantly to biotransformation of metals and radionuclides. An understanding and application of the mechanisms of metal and radionuclide reduction offers tremendous potential for development into bioremedial processes and technologies. This report demonstrates the application of recent advances in bacterial physiology and soil ecology for future bioremediation activities involving metal and actinide immobilization.« less

  7. Powering microbes with electricity: direct electron transfer from electrodes to microbes.

    PubMed

    Lovley, Derek R

    2011-02-01

    The discovery of electrotrophs, microorganisms that can directly accept electrons from electrodes for the reduction of terminal electron acceptors, has spurred the investigation of a wide range of potential applications. To date, only a handful of pure cultures have been shown to be capable of electrotrophy, but this process has also been inferred in many studies with undefined consortia. Potential electron acceptors include: carbon dioxide, nitrate, metals, chlorinated compounds, organic acids, protons and oxygen. Direct electron transfer from electrodes to cells has many advantages over indirect electrical stimulation of microbial metabolism via electron shuttles or hydrogen production. Supplying electrons with electrodes for the bioremediation of chlorinated compounds, nitrate or toxic metals may be preferable to adding organic electron donors or hydrogen to the subsurface or bioreactors. The most transformative application of electrotrophy may be microbial electrosynthesis in which carbon dioxide and water are converted to multi-carbon organic compounds that are released extracellularly. Coupling photovoltaic technology with microbial electrosynthesis represents a novel photosynthesis strategy that avoids many of the drawbacks of biomass-based strategies for the production of transportation fuels and other organic chemicals. The mechanisms for direct electron transfer from electrodes to microorganisms warrant further investigation in order to optimize envisioned applications. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  8. Microbial Communities and Organic Matter Composition in Surface and Subsurface Sediments of the Helgoland Mud Area, North Sea

    PubMed Central

    Oni, Oluwatobi E.; Schmidt, Frauke; Miyatake, Tetsuro; Kasten, Sabine; Witt, Matthias; Hinrichs, Kai-Uwe; Friedrich, Michael W.

    2015-01-01

    The role of microorganisms in the cycling of sedimentary organic carbon is a crucial one. To better understand relationships between molecular composition of a potentially bioavailable fraction of organic matter and microbial populations, bacterial and archaeal communities were characterized using pyrosequencing-based 16S rRNA gene analysis in surface (top 30 cm) and subsurface/deeper sediments (30–530 cm) of the Helgoland mud area, North Sea. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) was used to characterize a potentially bioavailable organic matter fraction (hot-water extractable organic matter, WE-OM). Algal polymer-associated microbial populations such as members of the Gammaproteobacteria, Bacteroidetes, and Verrucomicrobia were dominant in surface sediments while members of the Chloroflexi (Dehalococcoidales and candidate order GIF9) and Miscellaneous Crenarchaeota Groups (MCG), both of which are linked to degradation of more recalcitrant, aromatic compounds and detrital proteins, were dominant in subsurface sediments. Microbial populations dominant in subsurface sediments (Chloroflexi, members of MCG, and Thermoplasmata) showed strong correlations to total organic carbon (TOC) content. Changes of WE-OM with sediment depth reveal molecular transformations from oxygen-rich [high oxygen to carbon (O/C), low hydrogen to carbon (H/C) ratios] aromatic compounds and highly unsaturated compounds toward compounds with lower O/C and higher H/C ratios. The observed molecular changes were most pronounced in organic compounds containing only CHO atoms. Our data thus, highlights classes of sedimentary organic compounds that may serve as microbial energy sources in methanic marine subsurface environments. PMID:26635758

  9. Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site.

    PubMed

    Lin, Xueju; Kennedy, David; Fredrickson, Jim; Bjornstad, Bruce; Konopka, Allan

    2012-02-01

    Microbial diversity in subsurface sediments at the Hanford Site 300 Area near Richland, Washington state (USA) was investigated by analysing 21 samples recovered from depths of 9-52 m. Approximately 8000 near full-length 16S rRNA gene sequences were analysed across geological strata that include a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (operational taxonomic units at the 97% identity level) respectively. Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (Chao1 estimator) was highest (> 700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic interface, richness was about 325 and declined to less than 50 in the deeper reduced zones. The deeper Ringold strata were characterized by a preponderance (c. 90%) of Proteobacteria. The bacterial community in the oxic sediments contained not only members of nine well-recognized phyla but also an unusually high proportion of three candidate divisions (GAL15, NC10 and SPAM). Additionally, 13 novel phylogenetic orders were identified within the Deltaproteobacteria, a clade rich in microbes that carry out redox transformations of metals that are important contaminants on the Hanford Site. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. Biofilm formation and potential for iron cycling in serpentinization-influenced groundwater of the Zambales and Coast Range ophiolites.

    PubMed

    Meyer-Dombard, D'Arcy R; Casar, Caitlin P; Simon, Alexander G; Cardace, Dawn; Schrenk, Matthew O; Arcilla, Carlo A

    2018-05-01

    Terrestrial serpentinizing systems harbor microbial subsurface life. Passive or active microbially mediated iron transformations at alkaline conditions in deep biosphere serpentinizing ecosystems are understudied. We explore these processes in the Zambales (Philippines) and Coast Range (CA, USA) ophiolites, and associated surface ecosystems by probing the relevance of samples acquired at the surface to in situ, subsurface ecosystems, and the nature of microbe-mineral associations in the subsurface. In this pilot study, we use microcosm experiments and batch culturing directed at iron redox transformations to confirm thermodynamically based predictions that iron transformations may be important in subsurface serpentinizing ecosystems. Biofilms formed on rock cores from the Zambales ophiolite on surface and in-pit associations, confirming that organisms from serpentinizing systems can form biofilms in subsurface environments. Analysis by XPS and FTIR confirmed that enrichment culturing utilizing ferric iron growth substrates produced reduced, magnetic solids containing siderite, spinels, and FeO minerals. Microcosms and enrichment cultures supported organisms whose near relatives participate in iron redox transformations. Further, a potential 'principal' microbial community common to solid samples in serpentinizing systems was identified. These results indicate collectively that iron redox transformations should be more thoroughly and universally considered when assessing the function of terrestrial subsurface ecosystems driven by serpentinization.

  11. Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taillefert, Martial

    This project investigated the geochemical and microbial processes associated with the biomineralization of radionuclides in subsurface soils. During this study, it was determined that microbial communities from the Oak Ridge Field Research subsurface are able to express phosphatase activities that hydrolyze exogenous organophosphate compounds and result in the non-reductive bioimmobilization of U(VI) phosphate minerals in both aerobic and anaerobic conditions. The changes of the microbial community structure associated with the biomineralization of U(VI) was determined to identify the main organisms involved in the biomineralization process, and the complete genome of two isolates was sequenced. In addition, it was determined thatmore » both phytate, the main source of natural organophosphate compounds in natural environments, and polyphosphate accumulated in cells could also be hydrolyzed by native microbial population to liberate enough orthophosphate and precipitate uranium phosphate minerals. Finally, the minerals produced during this process are stable in low pH conditions or environments where the production of dissolved inorganic carbon is moderate. These findings suggest that the biomineralization of U(VI) phosphate minerals is an attractive bioremediation strategy to uranium bioreduction in low pH uranium-contaminated environments. These efforts support the goals of the SBR long-term performance measure by providing key information on "biological processes influencing the form and mobility of DOE contaminants in the subsurface".« less

  12. Characterisation of microbial biocoenosis in vertical subsurface flow constructed wetlands.

    PubMed

    Tietz, Alexandra; Kirschner, Alexander; Langergraber, Günter; Sleytr, Kirsten; Haberl, Raimund

    2007-07-15

    In this study a quantitative description of the microbial biocoenosis in subsurface vertical flow constructed wetlands fed with municipal wastewater was carried out. Three different methods (substrate induced respiration, ATP measurement and fumigation-extraction) were applied to measure the microbial biomass at different depths of planted and unplanted systems. Additionally, bacterial biomass was determined by epifluorescence microscopy and productivity was measured via (14)C leucine incorporation into bacterial biomass. All methods showed that >50% of microbial biomass and bacterial activity could be found in the first cm and about 95% in the first 10 cm of the filter layer. Bacterial biomass in the first 10 cm of the filter body accounted only for 16-19% of the total microbial biomass. Whether fungi or methodical uncertainties are mainly responsible for the difference between microbial and bacterial biomass remains to be examined. A comparison between the purification performance of planted and unplanted pilot-scale subsurface vertical flow constructed wetlands (PSCWs) showed no significant difference with the exception of the reduction of enterococci. The microbial biomass in all depths of the filter body was also not different in planted and unplanted systems. Compared with data from soils the microbial biomass in the PSCWs was high, although the specific surface area of the used sandy filter material available for biofilm growth was lower, especially in the beginning of the set-up of the PSCWs, due to missing clay and silt fraction.

  13. Biotic and abiotic retention, recycling and remineralization of metals in the ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Philip W.; Ellwood, Michael J.; Tagliabue, Alessandro

    Trace metals shape both the biogeochemical functioning and biological structure of oceanic provinces. Trace metal biogeochemistry has primarily focused on modes of external supply of metals from aeolian, hydrothermal, sedimentary and other sources. However, metals also undergo internal transformations such as abiotic and biotic retention, recycling and remineralization. The role of these internal transformations in metal biogeochemical cycling is now coming into focus. First, the retention of metals by biota in the surface ocean for days, weeks or months depends on taxon-specific metal requirements of phytoplankton, and on their ultimate fate: that is, viral lysis, senescence, grazing and/or export tomore » depth. Rapid recycling of metals in the surface ocean can extend seasonal productivity by maintaining higher levels of metal bioavailability compared to the influence of external metal input alone. As metal-containing organic particles are exported from the surface ocean, different metals exhibit distinct patterns of remineralization with depth. These patterns are mediated by a wide range of physicochemical and microbial processes such as the ability of particles to sorb metals, and are influenced by the mineral and organic characteristics of sinking particles. We conclude that internal metal transformations play an essential role in controlling metal bioavailability, phytoplankton distributions and the subsurface resupply of metals.« less

  14. Cave speleothems as repositories of microbial biosignatures

    NASA Astrophysics Data System (ADS)

    Miller, Ana Z.; Jurado, Valme; Pereira, Manuel F. C.; Fernández, Octavio; Calaforra, José M.; Dionísio, Amélia; Saiz-Jimenez, Cesareo

    2015-04-01

    The need to better understand the biodiversity, origins of life on Earth and on other planets, and the wide applications of the microbe-mineral interactions have led to a rapid expansion of interest in subsurface environments. Recently reported results indicated signs of an early wet Mars and rather recent volcanic activity which suggest that Mars's subsurface can house organic molecules or traces of microbial life, making the search for microbial life on Earth's subsurface even more compelling. Caves on Earth are windows into the subsurface that harbor a wide variety of mineral-utilizing microorganisms, which may contribute to the formation of biominerals and unusual microstructures recognized as biosignatures. These environments contain a wide variety of redox interfaces and stable physicochemical conditions, which enhance secondary mineral precipitation and microbial growth under limited organic nutrient inputs. Enigmatic microorganisms and unusual mineral features have been found associated with secondary mineral deposits or speleothems in limestone caves and lava tubes. In this study, Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray spectroscopy (EDS) analyses were conducted on cave speleothem samples to assess microbe-mineral interactions, evaluate biogenicity, as well as to describe unusual mineral formations and microbial features. Microbial mats, extracellular polymeric substances, tubular empty sheaths, mineralized cells, filamentous fabrics, as well as "cell-sized" etch pits or microborings produced by bacterial cells were observed on minerals. These features evidence microbe-mineral interactions and may represent mineralogical signatures of life. We can thus consider that caves on Earth are plausible repositories of terrestrial biosignatures where we can look for microbial signatures. Acknowledgments: AZM acknowledges the support from the Marie Curie Intra-European Fellowship within the 7th European Community Framework Programme (PIEF-GA-2012-328689- DECAVE). The authors acknowledge the Spanish Ministry of Economy and Competitiveness (project CGL2013-41674-P) for financial support.

  15. In-Well Sediment Incubators to Evaluate Microbial Community Stability and Dynamics following Bioimmobilization of Uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, Brett R.; Peacock, Aaron D.; Gan, M.

    2009-09-23

    An in-situ incubation device (ISI) was developed in order to investigate the stability and dynamics of sediment associated microbial communities to prevailing subsurface oxidizing or reducing conditions. Here we describe the use of these devices at the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site. During the 7 month deployment oxidized Rifle aquifer background sediments (RABS) were deployed in previously biostimulated wells under iron reducing conditions, cell densities of known iron reducing bacteria including Geobacteraceae increased significantly showing the microbial community response to local subsurface conditions. PLFA profiles of RABS following in situ deployment were strikingly similar to thosemore » of adjacent sediment cores suggesting ISI results could be extrapolated to the native material of the test plots. Results for ISI deployed reduced sediments showed only slight changes in community composition and pointed toward the ability of the ISIs to monitor microbial community stability and response to subsurface conditions.« less

  16. Fungal and Prokaryotic Activities in the Marine Subsurface Biosphere at Peru Margin and Canterbury Basin Inferred from RNA-Based Analyses and Microscopy

    PubMed Central

    Pachiadaki, Maria G.; Rédou, Vanessa; Beaudoin, David J.; Burgaud, Gaëtan; Edgcomb, Virginia P.

    2016-01-01

    The deep sedimentary biosphere, extending 100s of meters below the seafloor harbors unexpected diversity of Bacteria, Archaea, and microbial eukaryotes. Far less is known about microbial eukaryotes in subsurface habitats, albeit several studies have indicated that fungi dominate microbial eukaryotic communities and fungal molecular signatures (of both yeasts and filamentous forms) have been detected in samples as deep as 1740 mbsf. Here, we compare and contrast fungal ribosomal RNA gene signatures and whole community metatranscriptomes present in sediment core samples from 6 and 95 mbsf from Peru Margin site 1229A and from samples from 12 and 345 mbsf from Canterbury Basin site U1352. The metatranscriptome analyses reveal higher relative expression of amino acid and peptide transporters in the less nutrient rich Canterbury Basin sediments compared to the nutrient rich Peru Margin, and higher expression of motility genes in the Peru Margin samples. Higher expression of genes associated with metals transporters and antibiotic resistance and production was detected in Canterbury Basin sediments. A poly-A focused metatranscriptome produced for the Canterbury Basin sample from 345 mbsf provides further evidence for active fungal communities in the subsurface in the form of fungal-associated transcripts for metabolic and cellular processes, cell and membrane functions, and catalytic activities. Fungal communities at comparable depths at the two geographically separated locations appear dominated by distinct taxa. Differences in taxonomic composition and expression of genes associated with particular metabolic activities may be a function of sediment organic content as well as oceanic province. Microscopic analysis of Canterbury Basin sediment samples from 4 and 403 mbsf produced visualizations of septate fungal filaments, branching fungi, conidiogenesis, and spores. These images provide another important line of evidence supporting the occurrence and activity of fungi in the deep subseafloor biosphere. PMID:27375571

  17. Fungal and Prokaryotic Activities in the Marine Subsurface Biosphere at Peru Margin and Canterbury Basin Inferred from RNA-Based Analyses and Microscopy.

    PubMed

    Pachiadaki, Maria G; Rédou, Vanessa; Beaudoin, David J; Burgaud, Gaëtan; Edgcomb, Virginia P

    2016-01-01

    The deep sedimentary biosphere, extending 100s of meters below the seafloor harbors unexpected diversity of Bacteria, Archaea, and microbial eukaryotes. Far less is known about microbial eukaryotes in subsurface habitats, albeit several studies have indicated that fungi dominate microbial eukaryotic communities and fungal molecular signatures (of both yeasts and filamentous forms) have been detected in samples as deep as 1740 mbsf. Here, we compare and contrast fungal ribosomal RNA gene signatures and whole community metatranscriptomes present in sediment core samples from 6 and 95 mbsf from Peru Margin site 1229A and from samples from 12 and 345 mbsf from Canterbury Basin site U1352. The metatranscriptome analyses reveal higher relative expression of amino acid and peptide transporters in the less nutrient rich Canterbury Basin sediments compared to the nutrient rich Peru Margin, and higher expression of motility genes in the Peru Margin samples. Higher expression of genes associated with metals transporters and antibiotic resistance and production was detected in Canterbury Basin sediments. A poly-A focused metatranscriptome produced for the Canterbury Basin sample from 345 mbsf provides further evidence for active fungal communities in the subsurface in the form of fungal-associated transcripts for metabolic and cellular processes, cell and membrane functions, and catalytic activities. Fungal communities at comparable depths at the two geographically separated locations appear dominated by distinct taxa. Differences in taxonomic composition and expression of genes associated with particular metabolic activities may be a function of sediment organic content as well as oceanic province. Microscopic analysis of Canterbury Basin sediment samples from 4 and 403 mbsf produced visualizations of septate fungal filaments, branching fungi, conidiogenesis, and spores. These images provide another important line of evidence supporting the occurrence and activity of fungi in the deep subseafloor biosphere.

  18. Monitoring microbial growth and activity using spectral induced polarization and low-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Keating, Kristina; Revil, Andre

    2015-04-01

    Microbes and microbial activities in the Earth's subsurface play a significant role in shaping subsurface environments and are involved in environmental applications such as remediation of contaminants in groundwater and oil fields biodegradation. Stimulated microbial growth in such applications could cause wide variety of changes of physical/chemical properties in the subsurface. It is critical to monitor and determine the fate and transportation of microorganisms in the subsurface during such applications. Recent geophysical studies demonstrate the potential of two innovative techniques, spectral induced polarization (SIP) and low-field nuclear magnetic resonance (NMR), for monitoring microbial growth and activities in porous media. The SIP measures complex dielectric properties of porous media at low frequencies of exciting electric field, and NMR studies the porous structure of geologic media and characterizes fluids subsurface. In this laboratory study, we examined both SIP and NMR responses from bacterial growth suspension as well as suspension mixed with silica sands. We focus on the direct contribution of microbes to the SIP and NMR signals in the absence of biofilm formation or biomineralization. We used Zymomonas mobilis and Shewanella oneidensis (MR-1) for SIP and NMR measurements, respectively. The SIP measurements were collected over the frequency range of 0.1 - 1 kHz on Z. mobilis growth suspension and suspension saturated sands at different cell densities. SIP data show two distinct peaks in imaginary conductivity spectra, and both imaginary and real conductivities increased as microbial density increased. NMR data were collected using both CPMG pulse sequence and D-T2 mapping to determine the T2-distribution and diffusion properties on S. oneidensis suspension, pellets (live and dead), and suspension mixed with silica sands. NMR data show a decrease in the T2-distribution in S. oneidensis suspension saturated sands as microbial density increase. A clear distinction in the T2-distribution and D-T2 plots between live and dead cell pellets was also observed. These results will provide a basis for understanding the effect of microbes within geologic media on SIP and low-field NMR measurements. This research suggests that both SIP and NMR have the potential to monitor microbial growth and activities in the subsurface and could provide spatiotemporal variations in bacterial abundance in porous media.

  19. Subsurface Biodegradation in a Fractured Basement Reservoir, Shropshire, UK

    NASA Astrophysics Data System (ADS)

    Parnell, John; Baba, Mas'ud; Bowden, Stephen; Muirhead, David

    2017-04-01

    Subsurface Biodegradation in a Fractured Basement Reservoir, Shropshire, UK. John Parnell, Mas'ud Baba, Stephen Bowden, David Muirhead Subsurface biodegradation in current oil reservoirs is well established, but there are few examples of fossil subsurface degradation. Biomarker compositions of viscous and solid oil residues ('bitumen') in fractured Precambrian and other basement rocks below the Carboniferous cover in Shropshire, UK, show that they are variably biodegraded. High levels of 25-norhopanes imply that degradation occurred in the subsurface. Lower levels of 25-norhopanes occur in active seepages. Liquid oil trapped in fluid inclusions in mineral veins in the fractured basement confirm that the oil was emplaced fresh before subsurface degradation. A Triassic age for the veins implies a 200 million year history of hydrocarbon migration in the basement rocks. The data record microbial colonization of a fractured basement reservoir, and add to evidence in modern basement aquifers for microbial activity in deep fracture systems. Buried basement highs may be especially favourable to colonization, through channelling fluid flow to shallow depths and relatively low temperatures

  20. Induced Polarization Signature of Biofilms in Porous Media: From Laboratory Experiments to Theoretical Developments and Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atekwana, Estella; Patrauchan, Marianna; Revil, Andre

    2016-10-04

    Bioremediation strategies for mitigating the transport of heavy metals and radionuclides in subsurface sediments have largely targeted the use of dissimilatory metal and sulfate-reducing bacteria. Growth and metabolic activities from these organisms can significantly influence biogeochemical processes, including mineral dissolution/precipitation, fluctuating pH and redox potential (Eh) values, development of biofilms, and decreasing hydraulic conductivity. The Spectral Induced Polarization (SIP) technique has emerged as the technique most sensitive to the presence of microbial cells and biofilms in porous media; yet it is often difficult to unambiguously distinguish the impact of multiple and often competing processes that occur during in-situ biostimulation activitiesmore » on the SIP signatures. The main goal of our project is to quantitatively characterize major components within bacterial biofilms (cells, DNA, metals, metabolites etc.) contributing to detectable SIP signatures. We specifically: (i) evaluated the contribution of biofilm components to SIP signatures, (ii) determined the contribution of biogenic minerals commonly found in biofilms to SIP signatures, (iii) determined if the SIP signatures can be used to quantify the rates of biofilm formation, (iv) developed models and a fundamental understanding of potential underlying polarization mechanisms at low frequencies (<40 kHz) resulting from the presence of microbial cells and biofilms« less

  1. Effects of Jet Fuel Spills on the Microbial Community of Soil †

    PubMed Central

    Song, Hong-Gyu; Bartha, Richard

    1990-01-01

    Hydrocarbon residues, microbial numbers, and microbial activity were measured and correlated in loam soil contaminated by jet fuel spills resulting in 50 and 135 mg of hydrocarbon g of soil−1. Contaminated soil was incubated at 27°C either as well-aerated surface soil or as poorly aerated subsurface soil. In the former case, the effects of bioremediation treatment on residues, microbial numbers, and microbial activity were also assessed. Hydrocarbon residues were measured by quantitative gas chromatography. Enumerations included direct counts of metabolically active bacteria, measurement of mycelial length, plate counts of aerobic heterotrophs, and most probable numbers of hydrocarbon degraders. Activity was assessed by fluorescein diacetate (FDA) hydrolysis. Jet fuel disappeared much more rapidly from surface soil than it did from subsurface soil. In surface soil, microbial numbers and mycelial length were increased by 2 to 2.5 orders of magnitude as a result of jet fuel contamination alone and by 3 to 4 orders of magnitude as a result of the combination of jet fuel contamination and bioremediation. FDA hydrolysis was stimulated by jet fuel and bioremediation, but was inhibited by jet fuel alone. The latter was traced to an inhibition of the FDA assay by jet fuel biodegradation products. In subsurface soil, oxygen limitation strongly attenuated microbial responses to jet fuel. An increase in the most probable numbers of hydrocarbon degraders was accompanied by a decline in other aerobic heterotrophs, so that total plate counts changed little. The correlations between hydrocarbon residues, microbial numbers, and microbial activity help in elucidating microbial contributions to jet fuel elimination from soil. PMID:16348138

  2. Microbial abundance in the deep subsurface of the Chesapeake Bay impact crater: Relationship to lithology and impact processes

    USGS Publications Warehouse

    Cockell, Charles S.; Gronstal, Aaron L.; Voytek, Mary A.; Kirshtein, Julie D.; Finster, Kai; Sanford, Ward E.; Glamoclija, Mihaela; Gohn, Gregroy S.; Powars, David S.; Horton, J. Wright

    2009-01-01

    Asteroid and comet impact events are known to cause profound disruption to surface ecosystems. The aseptic collection of samples throughout a 1.76-km-deep set of cores recovered from the deep subsurface of the Chesapeake Bay impact structure has allowed the study of the subsurface biosphere in a region disrupted by an impactor. Microbiological enumerations suggest the presence of three major microbiological zones. The upper zone (127–867 m) is characterized by a logarithmic decline in microbial abundance from the surface through the postimpact section of Miocene to Upper Eocene marine sediments and across the transition into the upper layers of the impact tsunami resurge sediments and sediment megablocks. In the middle zone (867–1397 m) microbial abundances are below detection. This zone is predominantly quartz sand, primarily composed of boulders and blocks, and it may have been mostly sterilized by the thermal pulse delivered during impact. No samples were collected from the large granite block (1096–1371 m). The lowest zone (below 1397 m) of increasing microbial abundance coincides with a region of heavily impact-fractured, hydraulically conductive suevite and fractured schist. These zones correspond to lithologies influenced by impact processes. Our results yield insights into the influence of impacts on the deep subsurface biosphere.

  3. Marine Subsurface Microbial Community Shifts Across a Hydrothermal Gradient in Okinawa Trough Sediments

    PubMed Central

    2016-01-01

    Sediments within the Okinawa back-arc basin overlay a subsurface hydrothermal network, creating intense temperature gradients with sediment depth and potential limits for microbial diversity. We investigated taxonomic changes across 45 m of recovered core with a temperature gradient of 3°C/m from the dynamic Iheya North Hydrothermal System. The interval transitions sharply from low-temperature marine mud to hydrothermally altered clay at 10 meters below seafloor (mbsf). Here, we present taxonomic results from an analysis of the 16S rRNA gene that support a conceptual model in which common marine subsurface taxa persist into the subsurface, while high temperature adapted archaeal taxa show localized peaks in abundances in the hydrothermal clay horizons. Specifically, the bacterial phylum Chloroflexi accounts for a major proportion of the total microbial community within the upper 10 mbsf, whereas high temperature archaea (Terrestrial Hot Spring Crenarchaeotic Group and methanotrophic archaea) appear in varying local abundances in deeper, hydrothermal clay horizons with higher in situ temperatures (up to 55°C, 15 mbsf). In addition, geochemical evidence suggests that methanotrophy may be occurring in various horizons. There is also relict DNA (i.e., DNA preserved after cell death) that persists in horizons where the conditions suitable for microbial communities have ceased. PMID:28096736

  4. Microbial activity in the marine deep biosphere: progress and prospects.

    PubMed

    Orcutt, Beth N; Larowe, Douglas E; Biddle, Jennifer F; Colwell, Frederick S; Glazer, Brian T; Reese, Brandi Kiel; Kirkpatrick, John B; Lapham, Laura L; Mills, Heath J; Sylvan, Jason B; Wankel, Scott D; Wheat, C Geoff

    2013-01-01

    The vast marine deep biosphere consists of microbial habitats within sediment, pore waters, upper basaltic crust and the fluids that circulate throughout it. A wide range of temperature, pressure, pH, and electron donor and acceptor conditions exists-all of which can combine to affect carbon and nutrient cycling and result in gradients on spatial scales ranging from millimeters to kilometers. Diverse and mostly uncharacterized microorganisms live in these habitats, and potentially play a role in mediating global scale biogeochemical processes. Quantifying the rates at which microbial activity in the subsurface occurs is a challenging endeavor, yet developing an understanding of these rates is essential to determine the impact of subsurface life on Earth's global biogeochemical cycles, and for understanding how microorganisms in these "extreme" environments survive (or even thrive). Here, we synthesize recent advances and discoveries pertaining to microbial activity in the marine deep subsurface, and we highlight topics about which there is still little understanding and suggest potential paths forward to address them. This publication is the result of a workshop held in August 2012 by the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) "theme team" on microbial activity (www.darkenergybiosphere.org).

  5. Microbial activity in the marine deep biosphere: progress and prospects

    PubMed Central

    Orcutt, Beth N.; LaRowe, Douglas E.; Biddle, Jennifer F.; Colwell, Frederick S.; Glazer, Brian T.; Reese, Brandi Kiel; Kirkpatrick, John B.; Lapham, Laura L.; Mills, Heath J.; Sylvan, Jason B.; Wankel, Scott D.; Wheat, C. Geoff

    2013-01-01

    The vast marine deep biosphere consists of microbial habitats within sediment, pore waters, upper basaltic crust and the fluids that circulate throughout it. A wide range of temperature, pressure, pH, and electron donor and acceptor conditions exists—all of which can combine to affect carbon and nutrient cycling and result in gradients on spatial scales ranging from millimeters to kilometers. Diverse and mostly uncharacterized microorganisms live in these habitats, and potentially play a role in mediating global scale biogeochemical processes. Quantifying the rates at which microbial activity in the subsurface occurs is a challenging endeavor, yet developing an understanding of these rates is essential to determine the impact of subsurface life on Earth's global biogeochemical cycles, and for understanding how microorganisms in these “extreme” environments survive (or even thrive). Here, we synthesize recent advances and discoveries pertaining to microbial activity in the marine deep subsurface, and we highlight topics about which there is still little understanding and suggest potential paths forward to address them. This publication is the result of a workshop held in August 2012 by the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) “theme team” on microbial activity (www.darkenergybiosphere.org). PMID:23874326

  6. Method of imaging the electrical conductivity distribution of a subsurface

    DOEpatents

    Johnson, Timothy C.

    2017-09-26

    A method of imaging electrical conductivity distribution of a subsurface containing metallic structures with known locations and dimensions is disclosed. Current is injected into the subsurface to measure electrical potentials using multiple sets of electrodes, thus generating electrical resistivity tomography measurements. A numeric code is applied to simulate the measured potentials in the presence of the metallic structures. An inversion code is applied that utilizes the electrical resistivity tomography measurements and the simulated measured potentials to image the subsurface electrical conductivity distribution and remove effects of the subsurface metallic structures with known locations and dimensions.

  7. Radiochemically-supported microbial communities. A potential mechanism for biocolloid production of importance to actinide transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Duane P.; Hamilton-Brehm, Scott D.; Fisher, Jenny C.

    The work described here revealed the presence of diverse microbial communities located across 19 subsurface sites at the NNSS/NTTR and nearby locations. Overall, the diversity of microorganisms was high for subsurface habitats and variable between sites. As of this writing, preparations are being made to combine the Illumina sequences and 16S rRNA clone libraries with other non-NNSS/NTTR well sites of Southern Nevada Regional Flow System for a publication manuscript describing our very broad landscape scale survey of subsurface microbial diversity. Isolates DRI-13 and DRI-14 remain to be fully characterized and named in accordance with the conventions established by Bergey's Manualmore » of Systematic Bacteriology. In preparation to be published, these microorganisms will be submitted to the American Type Culture Collection (ATCC) and the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ).It is anticipated that the data resulting from this study in combination with other data sets that will allow us to produce a number of publications that will be impactful to the subsurface microbiology community.« less

  8. Microfluidic Experiments Studying Pore Scale Interactions of Microbes and Geochemistry

    NASA Astrophysics Data System (ADS)

    Chen, M.; Kocar, B. D.

    2016-12-01

    Understanding how physical phenomena, chemical reactions, and microbial behavior interact at the pore-scale is crucial to understanding larger scale trends in groundwater chemistry. Recent studies illustrate the utility of microfluidic devices for illuminating pore-scale physical-biogeochemical processes and their control(s) on the cycling of iron, uranium, and other important elements 1-3. These experimental systems are ideal for examining geochemical reactions mediated by microbes, which include processes governed by complex biological phenomenon (e.g. biofilm formation, etc.)4. We present results of microfluidic experiments using a model metal reducing bacteria and varying pore geometries, exploring the limitations of the microorganisms' ability to access tight pore spaces, and examining coupled biogeochemical-physical controls on the cycling of redox sensitive metals. Experimental results will provide an enhanced understanding of coupled physical-biogeochemical processes transpiring at the pore-scale, and will constrain and compliment continuum models used to predict and describe the subsurface cycling of redox-sensitive elements5. 1. Vrionis, H. A. et al. Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl. Environ. Microbiol. 71, 6308-6318 (2005). 2. Pearce, C. I. et al. Pore-scale characterization of biogeochemical controls on iron and uranium speciation under flow conditions. Environ. Sci. Technol. 46, 7992-8000 (2012). 3. Zhang, C., Liu, C. & Shi, Z. Micromodel investigation of transport effect on the kinetics of reductive dissolution of hematite. Environ. Sci. Technol. 47, 4131-4139 (2013). 4. Ginn, T. R. et al. Processes in microbial transport in the natural subsurface. Adv. Water Resour. 25, 1017-1042 (2002). 5. Scheibe, T. D. et al. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Microb. Biotechnol. 2, 274-286 (2009).

  9. High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments.

    PubMed

    Engelhardt, Tim; Kallmeyer, Jens; Cypionka, Heribert; Engelen, Bert

    2014-07-01

    Marine sediments cover two-thirds of our planet and harbor huge numbers of living prokaryotes. Long-term survival of indigenous microorganisms within the deep subsurface is still enigmatic, as sources of organic carbon are vanishingly small. To better understand controlling factors of microbial life, we have analyzed viral abundance within a comprehensive set of globally distributed subsurface sediments. Phages were detected by electron microscopy in deep (320 m below seafloor), ancient (∼14 Ma old) and the most oligotrophic subsurface sediments of the world's oceans (South Pacific Gyre (SPG)). The numbers of viruses (10(4)-10(9) cm(-3), counted by epifluorescence microscopy) generally decreased with sediment depth, but always exceeded the total cell counts. The enormous numbers of viruses indicate their impact as a controlling factor for prokaryotic mortality in the marine deep biosphere. The virus-to-cell ratios increased in deeper and more oligotrophic layers, exhibiting values of up to 225 in the deep subsurface of the SPG. High numbers of phages might be due to absorption onto the sediment matrix and a diminished degradation by exoenzymes. However, even in the oldest sediments, microbial communities are capable of maintaining viral populations, indicating an ongoing viral production and thus, viruses provide an independent indicator for microbial life in the marine deep biosphere.

  10. Microbial redox processes in deep subsurface environments and the potential application of (per)chlorate in oil reservoirs

    PubMed Central

    Liebensteiner, Martin G.; Tsesmetzis, Nicolas; Stams, Alfons J. M.; Lomans, Bartholomeus P.

    2014-01-01

    The ability of microorganisms to thrive under oxygen-free conditions in subsurface environments relies on the enzymatic reduction of oxidized elements, such as sulfate, ferric iron, or CO2, coupled to the oxidation of inorganic or organic compounds. A broad phylogenetic and functional diversity of microorganisms from subsurface environments has been described using isolation-based and advanced molecular ecological techniques. The physiological groups reviewed here comprise iron-, manganese-, and nitrate-reducing microorganisms. In the context of recent findings also the potential of chlorate and perchlorate [jointly termed (per)chlorate] reduction in oil reservoirs will be discussed. Special attention is given to elevated temperatures that are predominant in the deep subsurface. Microbial reduction of (per)chlorate is a thermodynamically favorable redox process, also at high temperature. However, knowledge about (per)chlorate reduction at elevated temperatures is still scarce and restricted to members of the Firmicutes and the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic distribution of functional genes in (meta)genome databases and combining this knowledge with extrapolations to earlier-made physiological observations we speculate on the potential of (per)chlorate reduction in the subsurface and more precisely oil fields. In addition, the application of (per)chlorate for bioremediation, souring control, and microbial enhanced oil recovery are addressed. PMID:25225493

  11. Functional Microbial Diversity Explains Groundwater Chemistry in a Pristine Aquifer

    EPA Science Inventory

    Microbial communities inhabiting anoxic aquifers catalyze critical biogeochemical reactions in the subsurface, yet little is known about how their community structure correlates with groundwater chemistry. In this study, we described the composition of microbial communities in th...

  12. Microbially-Enhanced Coal Bed Methane: Strategies for Increased Biogenic Production

    NASA Astrophysics Data System (ADS)

    Davis, K.; Barhart, E. P.; Schweitzer, H. D.; Cunningham, A. B.; Gerlach, R.; Hiebert, R.; Fields, M. W.

    2014-12-01

    Coal is the largest fossil fuel resource in the United States. Most of this coal is deep in the subsurface making it costly and potentially dangerous to extract. However, in many of these deep coal seams, methane, the main component of natural gas, has been discovered and successfully harvested. Coal bed methane (CBM) currently accounts for approximately 7.5% of the natural gas produced in the U.S. Combustion of natural gas produces substantially less CO2 and toxic emissions (e.g. heavy metals) than combustion of coal or oil thereby making it a cleaner energy source. In the large coal seams of the Powder River Basin (PRB) in southeast Montana and northeast Wyoming, CBM is produced almost entirely by biogenic processes. The in situ conversion of coal to CBM by the native microbial community is of particular interest for present and future natural gas sources as it provides the potential to harvest energy from coal seams with lesser environmental impacts than mining and burning coal. Research at Montana State University has shown the potential for enhancing the subsurface microbial processes that produce CBM. Long-term batch enrichments have investigated the methane enhancement potential of yeast extract as well as algal and cyanobacterial biomass additions with increased methane production observed with all three additions when compared to no addition. Future work includes quantification of CBM enhancement and normalization of additions. This presentation addresses the options thus far investigated for increasing CBM production and the next steps for developing the enhanced in situ conversion of coal to CBM.

  13. From Río Tinto to Mars: the terrestrial and extraterrestrial ecology of acidophiles.

    PubMed

    Amils, R; González-Toril, E; Aguilera, A; Rodríguez, N; Fernández-Remolar, D; Gómez, F; García-Moyano, A; Malki, M; Oggerin, M; Sánchez-Andrea, I; Sanz, J L

    2011-01-01

    The recent geomicrobiological characterization of Río Tinto, Iberian Pyrite Belt (IPB), has proven the importance of the iron cycle, not only in generating the extreme conditions of the habitat (low pH, high concentration of toxic heavy metals) but also in maintaining the high level of microbial diversity, both prokaryotic and eukaryotic, detected in the water column and the sediments. The extreme conditions of the Tinto basin are not the product of industrial contamination but the consequence of the presence of an underground bioreactor that obtains its energy from the massive sulfide minerals of the IPB. To test this hypothesis, a drilling project was carried out to intersect ground waters that interact with the mineral ore in order to provide evidence of subsurface microbial activities and the potential resources to support these activities. The oxidants that drive the system appear to come from the rock matrix, contradicting conventional acid mine drainage models. These resources need only groundwater to launch microbial metabolism. There are several similarities between the vast deposits of sulfates and iron oxides on Mars and the main sulfide-containing iron bioleaching products found in the Tinto. Firstly, the short-lived methane detected both in Mars' atmosphere and in the sediments and subsurface of the IPB and secondly, the abundance of iron, common to both. The physicochemical properties of iron make it a source of energy, a shield against radiation and oxidative stress as well as a natural pH controller. These similarities have led to Río Tinto's status as a Mars terrestrial analogue. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Finding the best windows: An apparent environmental threshold determines which diffuse flows are dominated by subsurface microbes

    NASA Astrophysics Data System (ADS)

    Olins, H. C.; Rogers, D.; Scholin, C. A.; Preston, C. J.; Vidoudez, C.; Ussler, W.; Pargett, D.; Jensen, S.; Roman, B.; Birch, J. M.; Girguis, P. R.

    2014-12-01

    Hydrothermal vents are hotspots of microbial primary productivity often described as "windows into the subsurface biosphere." High temperature vents have received the majority of research attention, but cooler diffuse flows are as, if not more, important a source of heat and chemicals to the overlying ocean. We studied patterns of in situ gene expression and co-registered geochemistry in order to 1) describe the diversity and physiological poise of active microbial communities that span thermal and geochemical gradients from active diffuse flow to background vent field seawater, and 2) determine to what extent seawater or subsurface microbes were active throughout this environment. Analyses of multiple metatranscriptomes from 5 geochemically distinct sites (some from samples preserved in situ) show that proximate diffuse flows showed strikingly different transcription profiles. Specifically, caldera background and some diffuse flows were similar, both dominated by seawater-derived Gammaproteobacteria despite having distinct geochemistries. Intra-field community shows evidence of increased primary productivity throughout the entire vent field and not just at individual diffuse flows. In contrast, a more spatially limited, Epsilonproteobacteria-dominated transcription profile from the most hydrothermally-influenced diffuse flow appeared to be driven by the activity of vent-endemic microbes, likely reflecting subsurface microbial activity. We suggest that the microbial activity within many diffuse flow vents is primarily attributable to seawater derived Gammaproteobacterial sulfur oxidizers, while in certain other flows vent-endemic Epsilonproteobactiera are most active. These data reveal a diversity in microbial activity at diffuse flows that has not previously been recognized, and reshapes our thinking about the relative influence that different microbial communities may have on local processes (such as primary production) and potentially global biogeochemical cycles.

  15. Seasonal hyporheic dynamics control coupled microbiology and geochemistry in Colorado River sediments

    DOE PAGES

    Danczak, Robert E.; Sawyer, Audrey H.; Williams, Kenneth H.; ...

    2016-12-03

    Riverbed microbial communities play an oversized role in many watershed ecosystem functions, including the processing of organic carbon, cycling of nitrogen, and alterations to metal mobility. The structure and activity of microbial assemblages depend in part on geochemical conditions set by river-groundwater exchange or hyporheic exchange. In order to assess how seasonal changes in river-groundwater mixing affect these populations in a snowmelt-dominated fluvial system, vertical sediment and pore water profiles were sampled at three time points at one location in the hyporheic zone of the Colorado River and analyzed by using geochemical measurements, 16S rRNA gene sequencing, and ecological modeling.more » Oxic river water penetrated deepest into the subsurface during peak river discharge, while under base flow conditions, anoxic groundwater dominated shallower depths. Over a 70 cm thick interval, riverbed sediments were therefore exposed to seasonally fluctuating redox conditions and hosted microbial populations statistically different from those at both shallower and deeper locations. Additionally, microbial populations within this zone were shown to be the most dynamic across sampling time points, underlining the critical role that hyporheic mixing plays in constraining microbial abundances. Given such mixing effects, we anticipate that future changes in river discharge in mountainous, semiarid western U.S. watersheds may affect microbial community structure and function in riverbed environments, with potential implications for biogeochemical processes in riparian regions.« less

  16. Seasonal hyporheic dynamics control coupled microbiology and geochemistry in Colorado River sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danczak, Robert E.; Sawyer, Audrey H.; Williams, Kenneth H.

    Riverbed microbial communities play an oversized role in many watershed ecosystem functions, including the processing of organic carbon, cycling of nitrogen, and alterations to metal mobility. The structure and activity of microbial assemblages depend in part on geochemical conditions set by river-groundwater exchange or hyporheic exchange. In order to assess how seasonal changes in river-groundwater mixing affect these populations in a snowmelt-dominated fluvial system, vertical sediment and pore water profiles were sampled at three time points at one location in the hyporheic zone of the Colorado River and analyzed by using geochemical measurements, 16S rRNA gene sequencing, and ecological modeling.more » Oxic river water penetrated deepest into the subsurface during peak river discharge, while under base flow conditions, anoxic groundwater dominated shallower depths. Over a 70 cm thick interval, riverbed sediments were therefore exposed to seasonally fluctuating redox conditions and hosted microbial populations statistically different from those at both shallower and deeper locations. Additionally, microbial populations within this zone were shown to be the most dynamic across sampling time points, underlining the critical role that hyporheic mixing plays in constraining microbial abundances. Given such mixing effects, we anticipate that future changes in river discharge in mountainous, semiarid western U.S. watersheds may affect microbial community structure and function in riverbed environments, with potential implications for biogeochemical processes in riparian regions.« less

  17. Seasonal hyporheic dynamics control coupled microbiology and geochemistry in Colorado River sediments

    NASA Astrophysics Data System (ADS)

    Danczak, Robert E.; Sawyer, Audrey H.; Williams, Kenneth H.; Stegen, James C.; Hobson, Chad; Wilkins, Michael J.

    2016-12-01

    Riverbed microbial communities play an oversized role in many watershed ecosystem functions, including the processing of organic carbon, cycling of nitrogen, and alterations to metal mobility. The structure and activity of microbial assemblages depend in part on geochemical conditions set by river-groundwater exchange or hyporheic exchange. To assess how seasonal changes in river-groundwater mixing affect these populations in a snowmelt-dominated fluvial system, vertical sediment and pore water profiles were sampled at three time points at one location in the hyporheic zone of the Colorado River and analyzed by using geochemical measurements, 16S rRNA gene sequencing, and ecological modeling. Oxic river water penetrated deepest into the subsurface during peak river discharge, while under base flow conditions, anoxic groundwater dominated shallower depths. Over a 70 cm thick interval, riverbed sediments were therefore exposed to seasonally fluctuating redox conditions and hosted microbial populations statistically different from those at both shallower and deeper locations. Additionally, microbial populations within this zone were shown to be the most dynamic across sampling time points, underlining the critical role that hyporheic mixing plays in constraining microbial abundances. Given such mixing effects, we anticipate that future changes in river discharge in mountainous, semiarid western U.S. watersheds may affect microbial community structure and function in riverbed environments, with potential implications for biogeochemical processes in riparian regions.

  18. Cultivation Of Deep Subsurface Microbial Communities

    NASA Astrophysics Data System (ADS)

    Obrzut, Natalia; Casar, Caitlin; Osburn, Magdalena R.

    2018-01-01

    The potential habitability of surface environments on other planets in our solar system is limited by exposure to extreme radiation and desiccation. In contrast, subsurface environments may offer protection from these stressors and are potential reservoirs for liquid water and energy that support microbial life (Michalski et al., 2013) and are thus of interest to the astrobiology community. The samples used in this project were extracted from the Deep Mine Microbial Observatory (DeMMO) in the former Homestake Mine at depths of 800 to 2000 feet underground (Osburn et al., 2014). Phylogenetic data from these sites indicates the lack of cultured representatives within the community. We used geochemical data to guide media design to cultivate and isolate organisms from the DeMMO communities. Media used for cultivation varied from heterotrophic with oxygen, nitrate or sulfate to autotrophic media with ammonia or ferrous iron. Environmental fluid was used as inoculum in batch cultivation and strains were isolated via serial transfers or dilution to extinction. These methods resulted in isolating aerobic heterotrophs, nitrate reducers, sulfate reducers, ammonia oxidizers, and ferric iron reducers. DNA sequencing of these strains is underway to confirm which species they belong to. This project is part of the NASA Astrobiology Institute Life Underground initiative to detect and characterize subsurface microbial life; by characterizing the intraterrestrials, the life living deep within Earth’s crust, we aim to understand the controls on how and where life survives in subsurface settings. Cultivation of terrestrial deep subsurface microbes will provide insight into the survival mechanisms of intraterrestrials guiding the search for these life forms on other planets.

  19. Quantifying microbial activity in deep subsurface sediments using a tritium based hydrognease enzyme assay

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Nickel, J.; Kallmeyer, J.

    2012-12-01

    Microbial life is widespread in Earth's subsurface and estimated to represent a significant fraction of Earth's total living biomass. However, very little is known about subsurface microbial activity and its fundamental role in biogeochemical cycles of carbon and other biologically important elements. Hydrogen is one of the most important elements in subsurface anaerobic microbial metabolism. Heterotrophic and chemoautotrophic microorganisms use hydrogen in their metabolic pathways. They either consume or produce protons for ATP synthesis. Hydrogenase (H2ase) is a ubiquitous intracellular enzyme that catalyzes the interconversion of molecular hydrogen and/or water into protons and electrons. The protons are used for the synthesis of ATP, thereby coupling energy generating metabolic processes to electron acceptors such as CO2 or sulfate. H2ase enzyme targets a key metabolic compound in cellular metabolism therefore the assay can be used as a measure for total microbial activity without the need to identify any specific metabolic process. Using the highly sensitive tritium assay we measured H2ase enzyme activity in the organic-rich sediments of Lake Van, a saline, alkaline lake in eastern Turkey, in marine sediments of the Barents Sea and in deep subseafloor sediments from the Nankai Trough. H2ase activity could be quantified at all depths of all sites but the activity distribution varied widely with depth and between sites. At the Lake Van sites H2ase activity ranged from ca. 20 mmol H2 cm-3d-1 close to the sediment-water interface to 0.5 mmol H2 cm-3d-1 at a depth of 0.8 m. In samples from the Barents Sea H2ase activity ranged between 0.1 to 2.5 mmol H2 cm-3d-1 down to a depth of 1.60 m. At all sites the sulfate reduction rate profile followed the upper part of the H2ase activity profile until sulfate reduction reached the minimum detection limit (ca. 10 pmol cm-3d-1). H2ase activity could still be quantified after the decline of sulfate reduction, indicating that other microbial processes are becoming quantitatively more important. Similarly, H2ase activity could be quantified at greater depths (ca. 400 mbsf) in Nankai Trough sediments. Nankai Trough is one of the world's most geologically active accretionary wedges, where the Philippine Plate is subducting under the southwest of Japan. Due to the transient faulting, huge amounts of energy are liberated that enhance chemical transformations of organic and inorganic matter. An increase in H2ase activity could be observed at greater depth, which suggests that microbial activity is stimulated by the fault activity. Current techniques for the quantification of microbial activity in deep sediments have already reached their physical and technical limits and-in many cases- are still not sensitive enough to quantify extremely low rates of microbial activity. Additional to the quantification of specific processes, estimates of total microbial activity will provide valuable information on energy flux and microbial metabolism in the subsurface biosphere and other low-energy environments as well as help identifying hotspots of microbial activity. The tritium H2ase assay has a potential to become a valuable tool to measure total subsurface microbial activity.

  20. Optical fiber-mediated photosynthesis for enhanced subsurface oxygen delivery.

    PubMed

    Lanzarini-Lopes, Mariana; Delgado, Anca G; Guo, Yuanming; Dahlen, Paul; Westerhoff, Paul

    2018-03-01

    Remediation of polluted groundwater often requires oxygen delivery into subsurface to sustain aerobic bacteria. Air sparging or injection of oxygen containing solutions (e.g., hydrogen peroxide) into the subsurface are common. In this study visible light was delivered into the subsurface using radially emitting optical fibers. Phototrophic organisms grew near the optical fiber in a saturated sand column. When applying light in on-off cycles, dissolved oxygen (DO) varied from super saturation levels of >15 mg DO/L in presence of light to under-saturation (<5 mg DO/L) in absence of light. Non-photosynthetic bacteria dominated at longer radial distances from the fiber, presumably supported by soluble microbial products produced by the photosynthetic microorganisms. The dissolved oxygen variations alter redox condition changes in response to light demonstrate the potential to biologically deliver oxygen into the subsurface and support a diverse microbial community. The ability to deliver oxygen and modulate redox conditions on diurnal cycles using solar light may provide a sustainable, long term strategy for increasing dissolved oxygen levels in subsurface environments and maintaining diverse biological communities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Isolation and Metabolic Characteristics of Previously Uncultured Members of the Order Aquificales in a Subsurface Gold Mine

    PubMed Central

    Takai, Ken; Hirayama, Hisako; Sakihama, Yuri; Inagaki, Fumio; Yamato, Yu; Horikoshi, Koki

    2002-01-01

    Culture-dependent and -independent techniques were combined to characterize the physiological properties and the ecological impacts of culture-resistant phylotypes of thermophiles within the order Aquificales from a subsurface hot aquifer of a Japanese gold mine. Thermophilic bacteria phylogenetically associated with previously uncultured phylotypes of Aquificales were successfully isolated. 16S ribosomal DNA clone analysis of the entire microbial DNA assemblage and fluorescence in situ whole-cell hybridization analysis indicated that the isolates dominated the microbial population in the subsurface aquifer. The isolates were facultatively anaerobic, hydrogen- or sulfur/thiosulfate-oxidizing, thermophilic chemolithoautotrophs utilizing molecular oxygen, nitrate, ferric iron, arsenate, selenate, and selenite as electron acceptors. Their versatile energy-generating systems may reflect the geochemical conditions of their habitat in the geothermally active subsurface gold mine. PMID:12039766

  2. High CO2 subsurface environment enriches for novel microbial lineages capable of autotrophic carbon fixation

    NASA Astrophysics Data System (ADS)

    Probst, A. J.; Jerett, J.; Castelle, C. J.; Thomas, B. C.; Sharon, I.; Brown, C. T.; Anantharaman, K.; Emerson, J. B.; Hernsdorf, A. W.; Amano, Y.; Suzuki, Y.; Tringe, S. G.; Woyke, T.; Banfield, J. F.

    2015-12-01

    Subsurface environments span the planet but remain little understood from the perspective of the capacity of the resident organisms to fix CO2. Here we investigated the autotrophic capacity of microbial communities in range of a high-CO2 subsurface environments via analysis of 250 near-complete microbial genomes (151 of them from distinct species) that represent the most abundant organisms over a subsurface depth transect. More than one third of the genomes belonged to the so-called candidate phyla radiation (CPR), which have limited metabolic capabilities. Approximately 30% of the community members are autotrophs that comprise 70% of the microbiome with metabolism likely supported by sulfur and nitrogen respiration. Of the carbon fixation pathways, the Calvin Benson Basham Cycle was most common, but the Wood-Ljungdhal pathway was present in the greatest phylogenetic diversity of organisms. Unexpectedly, one organism from a novel phylum sibling to the CPR is predicted to fix carbon by the reverse TCA cycle. The genome of the most abundant organism, an archaeon designated "Candidatus Altiarchaeum hamiconexum", was also found in subsurface samples from other continents including Europe and Asia. The archaeon was proven to be a carbon fixer using a novel reductive acetyl-CoA pathway. These results provide evidence that carbon dioxide is the major carbon source in these environments and suggest that autotrophy in the subsurface represents a substantial carbon dioxide sink affecting the global carbon cycle.

  3. Active Marine Subsurface Bacterial Population Composition in Low Organic Carbon Environments from IODP Expedition 320

    NASA Astrophysics Data System (ADS)

    Shepard, A.; Reese, B. K.; Mills, H. J.; IODP Expedition 320 Shipboard Science Party

    2011-12-01

    The marine subsurface environment contains abundant and active microorganisms. These microbial populations are considered integral players in the marine subsurface biogeochemical system with significance in global geochemical cycles and reservoirs. However, variations in microbial community structure, activity and function associated with the wide-ranging sedimentary and geochemical environments found globally have not been fully resolved. Integrated Ocean Drilling Program Expedition 320 recovered sediments from site U1332. Two sampling depths were selected for analysis that spanned differing lithological units in the sediment core. Sediments were composed of mostly clay with zeolite minerals at 8 meters below sea floor (mbsf). At 27 mbsf, sediments were composed of alternating clayey radiolarian ooze and nannofossil ooze. The concentration of SO42- had little variability throughout the core and the concentration of Fe2+ remained close to, or below, detection limits (0.4 μM). Total organic carbon content ranged from a low of 0.03 wt% to a high of 0.07 wt% between 6 and 30 mbsf providing an opportunity to evaluate marine subsurface microbial communities under extreme electron donor limiting conditions. The metabolically active fraction of the bacterial population was isolated by the extraction and amplification of 16S ribosomal RNA. Pyrosequencing of 16S rRNA transcripts and subsequent bioinformatic analyses provided a robust data set (15,931 total classified sequences) to characterize the community at a high resolution. As observed in other subsurface environments, the overall diversity of active bacterial populations decreased with depth. The population shifted from a diverse but evenly distributed community at approximately 8 mbsf to a Firmicutes dominated population at 27 mbsf (80% of sequences). A total of 95% of the sequences at 27 mbsf were grouped into three genera: Lactobacillus (phylum Firmicutes) at 80% of the total sequences, Marinobacter (phylum Proteobacteria) at 8%, and Formosa (phylum Bacteroidetes) at 7%. These lineages support a paradigm suggesting the importance of fermentation in the subsurface. However, this study extends the predicted range for fermentation below the shallow subsurface and into organic carbon limited marine sediments. Other previously characterized subsurface active populations from environments with higher organic carbon concentrations do not show similar levels of reduced diversity or predominance of fermentative populations. This study further emphasizes the spatial variability of microbial populations in the deep subsurface and highlights the need for continued exploration.

  4. Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs.

    PubMed

    Brazelton, William J; Morrill, Penny L; Szponar, Natalie; Schrenk, Matthew O

    2013-07-01

    Reactions associated with the geochemical process of serpentinization can generate copious quantities of hydrogen and low-molecular-weight organic carbon compounds, which may provide energy and nutrients to sustain subsurface microbial communities independently of the photosynthetically supported surface biosphere. Previous microbial ecology studies have tested this hypothesis in deep sea hydrothermal vents, such as the Lost City hydrothermal field. This study applied similar methods, including molecular fingerprinting and tag sequencing of the 16S rRNA gene, to ultrabasic continental springs emanating from serpentinizing ultramafic rocks. These molecular surveys were linked with geochemical measurements of the fluids in an interdisciplinary approach designed to distinguish potential subsurface organisms from those derived from surface habitats. The betaproteobacterial genus Hydrogenophaga was identified as a likely inhabitant of transition zones where hydrogen-enriched subsurface fluids mix with oxygenated surface water. The Firmicutes genus Erysipelothrix was most strongly correlated with geochemical factors indicative of subsurface fluids and was identified as the most likely inhabitant of a serpentinization-powered subsurface biosphere. Both of these taxa have been identified in multiple hydrogen-enriched subsurface habitats worldwide, and the results of this study contribute to an emerging biogeographic pattern in which Betaproteobacteria occur in near-surface mixing zones and Firmicutes are present in deeper, anoxic subsurface habitats.

  5. Bacterial Communities Associated with Subsurface Geochemical Processes in Continental Serpentinite Springs

    PubMed Central

    Morrill, Penny L.; Szponar, Natalie; Schrenk, Matthew O.

    2013-01-01

    Reactions associated with the geochemical process of serpentinization can generate copious quantities of hydrogen and low-molecular-weight organic carbon compounds, which may provide energy and nutrients to sustain subsurface microbial communities independently of the photosynthetically supported surface biosphere. Previous microbial ecology studies have tested this hypothesis in deep sea hydrothermal vents, such as the Lost City hydrothermal field. This study applied similar methods, including molecular fingerprinting and tag sequencing of the 16S rRNA gene, to ultrabasic continental springs emanating from serpentinizing ultramafic rocks. These molecular surveys were linked with geochemical measurements of the fluids in an interdisciplinary approach designed to distinguish potential subsurface organisms from those derived from surface habitats. The betaproteobacterial genus Hydrogenophaga was identified as a likely inhabitant of transition zones where hydrogen-enriched subsurface fluids mix with oxygenated surface water. The Firmicutes genus Erysipelothrix was most strongly correlated with geochemical factors indicative of subsurface fluids and was identified as the most likely inhabitant of a serpentinization-powered subsurface biosphere. Both of these taxa have been identified in multiple hydrogen-enriched subsurface habitats worldwide, and the results of this study contribute to an emerging biogeographic pattern in which Betaproteobacteria occur in near-surface mixing zones and Firmicutes are present in deeper, anoxic subsurface habitats. PMID:23584766

  6. Preliminary biological sampling of GT3 and BT1 cores and the microbial community dynamics of existing subsurface wells

    NASA Astrophysics Data System (ADS)

    Kraus, E. A.; Stamps, B. W.; Rempfert, K. R.; Ellison, E. T.; Nothaft, D. B.; Boyd, E. S.; Templeton, A. S.; Spear, J. R.

    2017-12-01

    Subsurface microbial life is poorly understood but potentially very important to the search for life on other planets as well as increasing our understanding of Earth's geobiological processes. Fluids and rocks of actively serpentinizing subsurface environments are a recent target of biological study due to their apparent ubiquity across the solar system. Areas of serpentinization can contain high concentrations of molecular hydrogen, H2, that can serve as the dominant fuel source for subsurface microbiota. Working with the Oman Drilling Project, DNA and RNA were extracted from fluids of seven alkaline wells and two rock cores from drill sites GT3 and BT1 within the Samail ophiolite. DNA and cDNA (produced via reverse transcription from the recovered RNA) were sequenced using universal primers to identify microbial life across all three domains. Alkaline subsurface fluids support a microbial community that changes with pH and host-rock type. In peridotite with pH values of >11, wells NSHQ 14 and WAB 71 have high relative abundances of Meiothermus, Methanobacterium, the family Nitrospiraceae, and multiple types of the class Dehalococcoidia. While also hosted in peridotite but at pH 8.5, wells WAB 104 and 105 have a distinct, more diverse microbial community. This increased variance in community make-up is seen in wells that sit near/at the contact of gabbro and peridotite formations as well. Core results indicate both sampled rock types host a very low biomass environment subject to multiple sources of contamination during the drilling process. Suggestions for contaminant reduction, such as having core handlers wear nitrile gloves and flame-sterilizing the outer surfaces of core rounds for biological sampling, would have minimal impact to overall ODP coreflow and maximize the ability to better understand in situ microbiota in this low-biomass serpentinizing subsurface environment. While DNA extraction was successful with gram amounts of crushed rock, much can be done to improve yields and reduce contamination sources for Phase II drilling.

  7. Serpentinization-Influenced Groundwater Harbors Extremely Low Diversity Microbial Communities Adapted to High pH

    PubMed Central

    Twing, Katrina I.; Brazelton, William J.; Kubo, Michael D. Y.; Hyer, Alex J.; Cardace, Dawn; Hoehler, Tori M.; McCollom, Tom M.; Schrenk, Matthew O.

    2017-01-01

    Serpentinization is a widespread geochemical process associated with aqueous alteration of ultramafic rocks that produces abundant reductants (H2 and CH4) for life to exploit, but also potentially challenging conditions, including high pH, limited availability of terminal electron acceptors, and low concentrations of inorganic carbon. As a consequence, past studies of serpentinites have reported low cellular abundances and limited microbial diversity. Establishment of the Coast Range Ophiolite Microbial Observatory (California, U.S.A.) allowed a comparison of microbial communities and physicochemical parameters directly within serpentinization-influenced subsurface aquifers. Samples collected from seven wells were subjected to a range of analyses, including solute and gas chemistry, microbial diversity by 16S rRNA gene sequencing, and metabolic potential by shotgun metagenomics, in an attempt to elucidate what factors drive microbial activities in serpentinite habitats. This study describes the first comprehensive interdisciplinary analysis of microbial communities in hyperalkaline groundwater directly accessed by boreholes into serpentinite rocks. Several environmental factors, including pH, methane, and carbon monoxide, were strongly associated with the predominant subsurface microbial communities. A single operational taxonomic unit (OTU) of Betaproteobacteria and a few OTUs of Clostridia were the almost exclusive inhabitants of fluids exhibiting the most serpentinized character. Metagenomes from these extreme samples contained abundant sequences encoding proteins associated with hydrogen metabolism, carbon monoxide oxidation, carbon fixation, and acetogenesis. Metabolic pathways encoded by Clostridia and Betaproteobacteria, in particular, are likely to play important roles in the ecosystems of serpentinizing groundwater. These data provide a basis for further biogeochemical studies of key processes in serpentinite subsurface environments. PMID:28298908

  8. Serpentinization-Influenced Groundwater Harbors Extremely Low Diversity Microbial Communities Adapted to High pH.

    PubMed

    Twing, Katrina I; Brazelton, William J; Kubo, Michael D Y; Hyer, Alex J; Cardace, Dawn; Hoehler, Tori M; McCollom, Tom M; Schrenk, Matthew O

    2017-01-01

    Serpentinization is a widespread geochemical process associated with aqueous alteration of ultramafic rocks that produces abundant reductants (H 2 and CH 4 ) for life to exploit, but also potentially challenging conditions, including high pH, limited availability of terminal electron acceptors, and low concentrations of inorganic carbon. As a consequence, past studies of serpentinites have reported low cellular abundances and limited microbial diversity. Establishment of the Coast Range Ophiolite Microbial Observatory (California, U.S.A.) allowed a comparison of microbial communities and physicochemical parameters directly within serpentinization-influenced subsurface aquifers. Samples collected from seven wells were subjected to a range of analyses, including solute and gas chemistry, microbial diversity by 16S rRNA gene sequencing, and metabolic potential by shotgun metagenomics, in an attempt to elucidate what factors drive microbial activities in serpentinite habitats. This study describes the first comprehensive interdisciplinary analysis of microbial communities in hyperalkaline groundwater directly accessed by boreholes into serpentinite rocks. Several environmental factors, including pH, methane, and carbon monoxide, were strongly associated with the predominant subsurface microbial communities. A single operational taxonomic unit (OTU) of Betaproteobacteria and a few OTUs of Clostridia were the almost exclusive inhabitants of fluids exhibiting the most serpentinized character. Metagenomes from these extreme samples contained abundant sequences encoding proteins associated with hydrogen metabolism, carbon monoxide oxidation, carbon fixation, and acetogenesis. Metabolic pathways encoded by Clostridia and Betaproteobacteria, in particular, are likely to play important roles in the ecosystems of serpentinizing groundwater. These data provide a basis for further biogeochemical studies of key processes in serpentinite subsurface environments.

  9. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    NASA Astrophysics Data System (ADS)

    Martinez, R.; Wu, C. H.; Beazley, M. J.; Andersen, G. L.; Hazen, T. C.; Taillefert, M.; Sobecky, P. A.

    2011-12-01

    Soils and groundwater contaminated with heavy metals and radionuclides remain a legacy of Cold War nuclear weapons development. Due to the scale of environmental contamination, in situ sequestration of heavy metals and radionuclides remain the most cost-effective strategy for remediation. We are currently investigating a remediation approach that utilizes periplasmic and extracellular microbial phosphatase activity of soil bacteria capable promoting in situ uranium phosphate sequestration. Our studies focus on the contaminated soils from the DOE Field Research Center (ORFRC) in Oak Ridge, TN. We have previously demonstrated that ORFRC strains with phosphatase-positive phenotypes were capable of promoting the precpitation of >95% U(VI) as a low solubility phosphate mineral during growth on glycerol phosphate as a sole carbon and phosphorus source. Here we present culture-independent soil slurry studies aimed at understanding microbial community dynamics resulting from exogenous organophosphate additions. Soil slurries containing glycerol-2-phosphate (G2P) or glycerol-3-phosphate (G3P) and nitrate as the sole C, P and N sources were incubated under oxic growth conditions at pH 5.5 or pH 6.8. Following treatments, total DNA was extracted and prokaryotic diversity was assessed using high-density 16S oligonucleotide microarray (PhyloChip) analysis. Treatments at pH 5.5 and pH 6.8 amended with G2P required 36 days to accumulate 4.8mM and 2.2 mM phosphate, respectively. In contrast, treatments at pH 5.5 and pH 6.8 amended with G3P accumulated 8.9 mM and 8.7 mM phosphate, respectively, after 20 days. A total of 2120 unique taxa representing 46 phyla, 66 classes, 110 orders, and 186 families were detected among all treatment conditions. The phyla that significantly (P<0.05) increased in abundance relative to incubations lacking organophosphate amendments included: Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria. Members from the classes Bacteroidetes, Sphingobacteria, α-proteobacteria, and γ-proteobacteria increased in relative abundance by 10 to 406-fold. These are the first PhyloChip studies that identify unique subsurface community responses to organophosphate substrates as well as demonstrate the diversity of the extant ORFRC microbial community capable of promoting in situ uranium phosphate sequestration. These studies also indicate that concentrations of phosphate released into extracellular space can be controlled by the type of substrate supplied to soil microbial communities. Additionally, we will present data summarizing the two Rahnella genome sequencing projects (Rahnella sp. Y9602 and the Rahnella aquatilis ATCC 33071) completed by the Joint Genome Institute.

  10. Nitrogen Stimulates the Growth of Subsurface Basalt-associated Microorganisms at the Western Flank of the Mid-Atlantic Ridge

    PubMed Central

    Zhang, Xinxu; Fang, Jing; Bach, Wolfgang; Edwards, Katrina J.; Orcutt, Beth N.; Wang, Fengping

    2016-01-01

    Oceanic crust constitutes the largest aquifer system on Earth, and microbial activity in this environment has been inferred from various geochemical analyses. However, empirical documentation of microbial activity from subsurface basalts is still lacking, particularly in the cool (<25°C) regions of the crust, where are assumed to harbor active iron-oxidizing microbial communities. To test this hypothesis, we report the enrichment and isolation of crust-associated microorganisms from North Pond, a site of relatively young and cold basaltic basement on the western flank of the Mid-Atlantic Ridge that was sampled during Expedition 336 of the Integrated Ocean Drilling Program. Enrichment experiments with different carbon (bicarbonate, acetate, methane) and nitrogen (nitrate and ammonium) sources revealed significant cell growth (one magnitude higher cell abundance), higher intracellular DNA content, and increased Fe3+/ΣFe ratios only when nitrogen substrates were added. Furthermore, a Marinobacter strain with neutrophilic iron-oxidizing capabilities was isolated from the basalt. This work reveals that basalt-associated microorganisms at North Pond had the potential for activity and that microbial growth could be stimulated by in vitro nitrogen addition. Furthermore, iron oxidation is supported as an important process for microbial communities in subsurface basalts from young and cool ridge flank basement. PMID:27199959

  11. 2500 high-quality genomes reveal that the biogeochemical cycles of C, N, S and H are cross-linked by metabolic handoffs in the terrestrial subsurface

    NASA Astrophysics Data System (ADS)

    Anantharaman, K.; Brown, C. T.; Hug, L. A.; Sharon, I.; Castelle, C. J.; Shelton, A.; Bonet, B.; Probst, A. J.; Thomas, B. C.; Singh, A.; Wilkins, M.; Williams, K. H.; Tringe, S. G.; Beller, H. R.; Brodie, E.; Hubbard, S. S.; Banfield, J. F.

    2015-12-01

    Microorganisms drive the transformations of carbon compounds in the terrestrial subsurface, a key reservoir of carbon on earth, and impact other linked biogeochemical cycles. Our current knowledge of the microbial ecology in this environment is primarily based on 16S rRNA gene sequences that paint a biased picture of microbial community composition and provide no reliable information on microbial metabolism. Consequently, little is known about the identity and metabolic roles of the uncultivated microbial majority in the subsurface. In turn, this lack of understanding of the microbial processes that impact the turnover of carbon in the subsurface has restricted the scope and ability of biogeochemical models to capture key aspects of the carbon cycle. In this study, we used a culture-independent, genome-resolved metagenomic approach to decipher the metabolic capabilities of microorganisms in an aquifer adjacent to the Colorado River, near Rifle, CO, USA. We sequenced groundwater and sediment samples collected across fifteen different geochemical regimes. Sequence assembly, binning and manual curation resulted in the recovery of 2,542 high-quality genomes, 27 of which are complete. These genomes represent 1,300 non-redundant organisms comprising both abundant and rare community members. Phylogenetic analyses involving ribosomal proteins and 16S rRNA genes revealed the presence of up to 34 new phyla that were hitherto unknown. Less than 11% of all genomes belonged to the 4 most commonly represented phyla that constitute 93% of all currently available genomes. Genome-specific analyses of metabolic potential revealed the co-occurrence of important functional traits such as carbon fixation, nitrogen fixation and use of electron donors and electron acceptors. Finally, we predict that multiple organisms are often required to complete redox pathways through a complex network of metabolic handoffs that extensively cross-link subsurface biogeochemical cycles.

  12. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobecky, Patricia A.

    2015-04-06

    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Areamore » 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.« less

  13. Microbial Life in the Deep Subsurface: Deep, Hot and Radioactive

    NASA Technical Reports Server (NTRS)

    DeStefano, Andrea L.; Ford, Jill C.; Winsor, Seana K.; Allen, Carlton C.; Miller, Judith; McNamara, Karen M.; Gibson, Everett K., Jr.

    2000-01-01

    Recent studies, motivated in part by the search for extraterrestrial life, continue to expand the recognized limits of Earth's biosphere. This work explored evidence for life a high-temperature, radioactive environment in the deep subsurface.

  14. Exploration of a Subsurface Biosphere in a Volcanic Massive Sulfide: Results of the Mars Analog Rio Tinto Drilling Experiment

    NASA Astrophysics Data System (ADS)

    Stoker, C. R.; Stevens, T.; Amils, R.; Fernandez, D.

    2005-12-01

    Biological systems on Earth require three key ingredients-- liquid water, an energy source, and a carbon source, that are found in very few extraterrestrial environments. Previous examples of independent subsurface ecosystems have been found only in basalt aquifers. Such lithotrophic microbial ecosystems (LME) have been proposed as models for steps in the early evolution of Earth's biosphere and for potential biospheres on other planets where the surface is uninhabitable, such as Mars and Europa.. The Mars Analog Rio Tinto Experiment (MARTE) has searched in a volcanic massive sulfide deposit in Rio Tinto Spain for a subsurface biosphere capable of living without sunlight or oxygen and found a subsurface ecosystem driven by the weathering of the massive sulfide deposit (VMS) in which the rock matrix provides sufficient resources to support microbial metabolism, including the vigorous production of H2 by water-rock interactions. Microbial production of methane and sulfate occurred in the sulfide orebody and microbial production of methane and hydrogen sulfide continued in an anoxic plume downgradient from the sulfide ore. Organic carbon concentrations in the parent rock were too low to support microbes. The Rio Tinto system thus represents a new type of subsurface ecosystem with strong relevance for exobiological studies. Commercial drilling was used to reach the aquifer system at 100 m depth and conventional laboratory techniques were used to identify and characterize the biosphere. Then, the life search strategy that led to successful identification of this biosphere was applied to the development of a robotic drilling, core handling, inspection, subsampling, and life detection system built on a prototype planetary lander that was deployed in Rio Tinto Spain in September 2005 to test the capability of a robotic drilling system to search for subsurface life. A remote science team directed the simulation and analyzed the data from the MARTE robotic drill. The results of this experiment have important implications for the strategy for searching for life on Mars.

  15. A New Sensitive GC-MS-based Method for Analysis of Dipicolinic Acid and Quantifying Bacterial Endospores in Deep Marine Subsurface Sediment

    NASA Astrophysics Data System (ADS)

    Fang, J.

    2015-12-01

    Marine sediments cover more than two-thirds of the Earth's surface and represent a major part of the deep biosphere. Microbial cells and microbial activity appear to be widespread in these sediments. Recently, we reported the isolation of gram-positive anaerobic spore-forming piezophilic bacteria and detection of bacterial endospores in marine subsurface sediment from the Shimokita coalbed, Japan. However, the modern molecular microbiological methods (e.g., DNA-based microbial detection techniques) cannot detect bacterial endospore, because endospores are impermeable and are not stained by fluorescence DNA dyes or by ribosomal RNA staining techniques such as catalysed reporter deposition fluorescence in situ hybridization. Thus, the total microbial cell abundance in the deep biosphere may has been globally underestimated. This emphasizes the need for a new cultivation independent approach for the quantification of bacterial endospores in the deep subsurface. Dipicolinic acid (DPA, pyridine-2,6-dicarboxylic acid) is a universal and specific component of bacterial endospores, representing 5-15wt% of the dry spore, and therefore is a useful indicator and quantifier of bacterial endospores and permits to estimate total spore numbers in the subsurface biosphere. We developed a sensitive analytical method to quantify DPA content in environmental samples using gas chromatography-mass spectrometry. The method is sensitive and more convenient in use than other traditional methods. We applied this method to analyzing sediment samples from the South China Sea (obtained from IODP Exp. 349) to determine the abundance of spore-forming bacteria in the deep marine subsurface sediment. Our results suggest that gram-positive, endospore-forming bacteria may be the "unseen majority" in the deep biosphere.

  16. Genomic variation of subseafloor archaeal and bacterial populations from venting fluids at the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Anderson, R. E.; Eren, A. M.; Stepanauskas, R.; Huber, J. A.; Reveillaud, J.

    2015-12-01

    Deep-sea hydrothermal vent systems serve as windows to a dynamic, gradient-dominated deep biosphere that is home to a wide diversity of archaea, bacteria, and viruses. Until recently the majority of these microbial lineages were uncultivated, resulting in a poor understanding of how the physical and geochemical context shapes microbial evolution in the deep subsurface. By comparing metagenomes, metatranscriptomes and single-cell genomes between geologically distinct vent fields, we can better understand the relationship between the environment and the evolution of subsurface microbial communities. An ideal setting in which to use this approach is the Mid-Cayman Rise, located on the world's deepest and slowest-spreading mid-ocean ridge, which hosts both the mafic-influenced Piccard and ultramafic-influenced Von Damm vent fields. Previous work has shown that Von Damm has higher taxonomic and metabolic diversity than Piccard, consistent with geochemical model expectations, and the fluids from all vents are enriched in hydrogen (Reveillaud et al., submitted). Mapping of both metagenomes and metatranscriptomes to a combined assembly showed very little overlap among the Von Damm samples, indicating substantial variability that is consistent with the diversity of potential metabolites in this ultramafic vent field. In contrast, the most consistently abundant and active lineage across the Piccard samples was Sulfurovum, a sulfur-oxidizing chemolithotroph that uses nitrate or oxygen as an electron acceptor. Moreover, analysis of point mutations within individual lineages suggested that Sulfurovumat Piccard is under strong selection, whereas microbial genomes at Von Damm were more variable. These results are consistent with the hypothesis that the subsurface environment at Piccard supports the emergence of a dominant lineage that is under strong selection pressure, whereas the more geochemically diverse microbial habitat at Von Damm creates a wider variety of stable ecological niches, facilitating higher diversity both within and between microbial lineages. By examining how the environment is imprinted into microbial genomes, we hope to gain insight into how subsurface microbial communities co-evolve with their environment in both the present and the deep past.

  17. Reactivation of Deep Subsurface Microbial Community in Response to Methane or Methanol Amendment

    PubMed Central

    Rajala, Pauliina; Bomberg, Malin

    2017-01-01

    Microbial communities in deep subsurface environments comprise a large portion of Earth’s biomass, but the microbial activity in these habitats is largely unknown. Here, we studied how microorganisms from two isolated groundwater fractures at 180 and 500 m depths of the Outokumpu Deep Drillhole (Finland) responded to methane or methanol amendment, in the presence or absence of sulfate as an additional electron acceptor. Methane is a plausible intermediate in the deep subsurface carbon cycle, and electron acceptors such as sulfate are critical components for oxidation processes. In fact, the majority of the available carbon in the Outokumpu deep biosphere is present as methane. Methanol is an intermediate of methane oxidation, but may also be produced through degradation of organic matter. The fracture fluid samples were incubated in vitro with methane or methanol in the presence or absence of sulfate as electron acceptor. The metabolic response of microbial communities was measured by staining the microbial cells with fluorescent redox sensitive dye combined with flow cytometry, and DNA or cDNA-derived amplicon sequencing. The microbial community of the fracture zone at the 180 m depth was originally considerably more respiratory active and 10-fold more numerous (105 cells ml-1 at 180 m depth and 104 cells ml-1 at 500 m depth) than the community of the fracture zone at the 500 m. However, the dormant microbial community at the 500 m depth rapidly reactivated their transcription and respiration systems in the presence of methane or methanol, whereas in the shallower fracture zone only a small sub-population was able to utilize the newly available carbon source. In addition, the composition of substrate activated microbial communities differed at both depths from original microbial communities. The results demonstrate that OTUs representing minor groups of the total microbial communities play an important role when microbial communities face changes in environmental conditions. PMID:28367144

  18. Using Nitrogen Limiting Growth Conditions to Remove Atrazine from Groundwater: Laboratory Studies

    USDA-ARS?s Scientific Manuscript database

    In the past microbial redox reactions have been the driving mechanism behind in situ bioremediations that use a carbon substrate. This is because subsurface microbial activity is generally restricted by electron (e-) donor availability and microbial activity, growth and respiration, can be stimulat...

  19. Active fungi amidst a marine subsurface RNA paleome

    NASA Astrophysics Data System (ADS)

    Orsi, W.; Biddle, J.; Edgcomb, V.

    2012-12-01

    The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Since extracellular DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA) is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA signatures by amplicon pyrosequencing, metazoan, plant, and diatom rRNA signatures were recovered from marine sediments up to 2.7 million years old, suggesting that rRNA may be much more stable than previously considered in the marine subsurface. This finding confirms the concept of a paleome, extending it to include rRNA. Within the same dataset, unique profiles of fungi were found across a range of marine subsurface provinces exhibiting statistically significant correlations with total organic carbon (TOC), sulfide, and dissolved inorganic carbon (DIC). Sequences from metazoans, plants and diatoms showed different correlation patterns, consistent with a depth-controlled paleome. The fungal correlations with geochemistry allow the inference that some fungi are active and adapted for survival in the marine subsurface. A metatranscriptomic analysis of fungal derived mRNA confirms that fungi are metabolically active and utilize a range of organic and inorganic substrates in the marine subsurface.

  20. Energy Gradients Structure Microbial Communities Across Sediment Horizons in Deep Marine Sediments of the South China Sea

    PubMed Central

    Graw, Michael F.; D'Angelo, Grace; Borchers, Matthew; Thurber, Andrew R.; Johnson, Joel E.; Zhang, Chuanlun; Liu, Haodong; Colwell, Frederick S.

    2018-01-01

    The deep marine subsurface is a heterogeneous environment in which the assembly of microbial communities is thought to be controlled by a combination of organic matter deposition, electron acceptor availability, and sedimentology. However, the relative importance of these factors in structuring microbial communities in marine sediments remains unclear. The South China Sea (SCS) experiences significant variability in sedimentation across the basin and features discrete changes in sedimentology as a result of episodic deposition of turbidites and volcanic ashes within lithogenic clays and siliceous or calcareous ooze deposits throughout the basin's history. Deep subsurface microbial communities were recently sampled by the International Ocean Discovery Program (IODP) at three locations in the SCS with sedimentation rates of 5, 12, and 20 cm per thousand years. Here, we used Illumina sequencing of the 16S ribosomal RNA gene to characterize deep subsurface microbial communities from distinct sediment types at these sites. Communities across all sites were dominated by several poorly characterized taxa implicated in organic matter degradation, including Atribacteria, Dehalococcoidia, and Aerophobetes. Sulfate-reducing bacteria comprised only 4% of the community across sulfate-bearing sediments from multiple cores and did not change in abundance in sediments from the methanogenic zone at the site with the lowest sedimentation rate. Microbial communities were significantly structured by sediment age and the availability of sulfate as an electron acceptor in pore waters. However, microbial communities demonstrated no partitioning based on the sediment type they inhabited. These results indicate that microbial communities in the SCS are structured by the availability of electron donors and acceptors rather than sedimentological characteristics. PMID:29696012

  1. Relative contributions of microbial and infrastructure heat at a crude oil-contaminated site

    NASA Astrophysics Data System (ADS)

    Warren, Ean; Bekins, Barbara A.

    2018-04-01

    Biodegradation of contaminants can increase the temperature in the subsurface due to heat generated from exothermic reactions, making temperature observations a potentially low-cost approach for determining microbial activity. For this technique to gain more widespread acceptance, it is necessary to better understand all the factors affecting the measured temperatures. Biodegradation has been occurring at a crude oil-contaminated site near Bemidji, Minnesota for 39 years, creating a quasi-steady-state plume of contaminants and degradation products. A model of subsurface heat generation and transport helps elucidate the contribution of microbial and infrastructure heating to observed temperature increases at this site. We created a steady-state, two-dimensional, heat transport model using previous-published parameter values for physical, chemical and biodegradation properties. Simulated temperature distributions closely match the observed average annual temperatures measured in the contaminated area at the site within less than 0.2 °C in the unsaturated zone and 0.4 °C in the saturated zone. The model results confirm that the observed subsurface heat from microbial activity is due primarily to methane oxidation in the unsaturated zone resulting in a 3.6 °C increase in average annual temperature. Another important source of subsurface heat is from the active, crude-oil pipelines crossing the site. The pipelines impact temperatures for a distance of 200 m and contribute half the heat. Model results show that not accounting for the heat from the pipelines leads to overestimating the degradation rates by a factor of 1.7, demonstrating the importance of identifying and quantifying all heat sources. The model results also highlighted a zone where previously unknown microbial activity is occurring at the site.

  2. Relative contributions of microbial and infrastructure heat at a crude oil-contaminated site.

    PubMed

    Warren, Ean; Bekins, Barbara A

    2018-04-01

    Biodegradation of contaminants can increase the temperature in the subsurface due to heat generated from exothermic reactions, making temperature observations a potentially low-cost approach for determining microbial activity. For this technique to gain more widespread acceptance, it is necessary to better understand all the factors affecting the measured temperatures. Biodegradation has been occurring at a crude oil-contaminated site near Bemidji, Minnesota for 39 years, creating a quasi-steady-state plume of contaminants and degradation products. A model of subsurface heat generation and transport helps elucidate the contribution of microbial and infrastructure heating to observed temperature increases at this site. We created a steady-state, two-dimensional, heat transport model using previous-published parameter values for physical, chemical and biodegradation properties. Simulated temperature distributions closely match the observed average annual temperatures measured in the contaminated area at the site within less than 0.2 °C in the unsaturated zone and 0.4 °C in the saturated zone. The model results confirm that the observed subsurface heat from microbial activity is due primarily to methane oxidation in the unsaturated zone resulting in a 3.6 °C increase in average annual temperature. Another important source of subsurface heat is from the active, crude-oil pipelines crossing the site. The pipelines impact temperatures for a distance of 200 m and contribute half the heat. Model results show that not accounting for the heat from the pipelines leads to overestimating the degradation rates by a factor of 1.7, demonstrating the importance of identifying and quantifying all heat sources. The model results also highlighted a zone where previously unknown microbial activity is occurring at the site. Published by Elsevier B.V.

  3. Depleted δ13C Values in Salt Dome Cap Rock Organic Matter and Implications for Microbial Metabolism and Fixation

    NASA Astrophysics Data System (ADS)

    Loyd, S. J.; Lu, L.; Caesar, K. H.; Kyle, R.

    2015-12-01

    Salt domes occur throughout the Gulf Coast Region USA and are often associated with trapped hydrocarbons. These salt domes can be capped by sulfate and carbonate minerals that result from complex digenetic interactions in the subsurface. The specific natures of these interactions are poorly understood, in particular the role of microbes in facilitating mineralization and element cycling. Carbon isotope compositions of cap rock calcites (δ13Ccarb) are highly variable and range from near neutral to less than -40‰ (VPDB) indicative of methane-sourced carbon. These low values and the common coexistence of elemental sulfur and metal sulfides have spurred hypotheses invoking microbial sulfate reduction as driving carbonate mineral authigenesis. Here, we present new organic carbon isotope (δ13Corg) data that, similar to δ13Ccarb, exhibit depletions below -30 to -25‰. These δ13Corg values are lower than local liquid hydrocarbons and "normal" marine organic matter reflecting either microbial fixation of methane-sourced carbon or microbial fractionation from liquid hydrocarbon sources. The combined carbon isotope data (δ13Ccarb and δ13Corg) indicate that methane likely plays an important role in microbial cycling in salt domes. The δ13Corg values are similar to those of anaerobic oxidation of methane (AOM) related communities from methane-sulfate controlled marine sediments. Ultimately, salt dome environments may share some important characteristics with AOM systems.

  4. Subsurface high resolution definition of subsurface heterogeneity for understanding the biodynamics of natural field systems: Advancing the ability for scaling to field conditions. 1998 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majer, E.L.; Brockman, F.J.

    1998-06-01

    'This research is an integrated physical (geophysical and hydrologic) and microbial study using innovative geophysical imaging and microbial characterization methods to identify key scales of physical heterogeneities that affect the biodynamics of natural subsurface environments. Data from controlled laboratory and in-situ experiments at the INEEL Test Area North (TAN) site are being used to determine the dominant physical characteristics (lithologic, structural, and hydrologic) that can be imaged in-situ and correlated with microbial properties. The overall goal of this research is to contribute to the understanding of the interrelationships between transport properties and spatially varying physical, chemical, and microbiological heterogeneity. Themore » outcome will be an improved understanding of the relationship between physical and microbial heterogeneity, thus facilitating the design of bioremediation strategies in similar environments. This report summarizes work as of May 1998, the second year of the project. This work is an extension of basic research on natural heterogeneity first initiated within the DOE/OHER Subsurface Science Program (SSP) and is intended to be one of the building blocks of an integrated and collaborative approach with an INEEL/PNNL effort aimed at understanding the effect of physical heterogeneity on transport properties and biodynamics in natural systems. The work is closely integrated with other EMSP projects at INEEL (Rick Colwell et al.) and PNNL (Fred Brockman and Jim Fredrickson).'« less

  5. Microbial exudate promoted dissolution and transformation of chromium containing minerals

    NASA Astrophysics Data System (ADS)

    Saad, E. M.; Sun, J.; Tang, Y.

    2015-12-01

    Because of its utility in many industrial processes, chromium has become the second most common metal contaminant in the United States. The two most common oxidation states of chromium in nature are Cr(III), which is highly immobile, and Cr(VI), which is highly mobile and toxic. In both natural and engineered environments, the most common remediation of Cr(VI) is through reduction, which results in chromium sequestration in the low solubility mixed Cr(III)-Fe(III) (oxy)hydroxide phases. Consequently, the stability of these minerals must be examined to assess the fate of chromium in the subsurface. We examined the dissolution of mixed Cr(III)-Fe(III) (oxy)hydroxides in the presence of common microbial exudates, including the siderophore desferrioxamine B (DFOB; a common organic ligand secreted by most microbes with high affinity for ferric iron and other trivalent metal ions) and oxalate (a common organic acid produced by microbes). The solids exhibited incongruent dissolution with preferential leaching of Fe from the solid phase. Over time, this leads to a more Cr rich mineral, which is known to be more soluble than the corresponding mixed mineral phase. We are currently investigating the structure of the reacted mineral phases and soluble Cr(III) species, as well as the potential oxidation and remobilization of the soluble Cr species. Results from this study will provide insights regarding the long term transport and fate of chromium in the natural environment in the presence of microbial activities.

  6. Investigating Microbial Biofilm Formations on Crustal Rock Substrates

    NASA Astrophysics Data System (ADS)

    Weiser, M.; D'Angelo, T.; Carr, S. A.; Orcutt, B.

    2017-12-01

    Ocean crust hosts microbial life that, in some cases, alter the component rocks as a means of obtaining energy. Variations in crust lithology, included trace metal and mineral content, as well as the chemistry of the fluids circulating through them, provide substrates for some microbes to metabolize, leading to formation of biofilm community structures. Microbes have different parameters for the situations in which they will form biofilms, but they must have some source of energy in excess at the site of biofilm formation for them to become stationary and form the carbohydrate-rich structures connecting the cells to one another and the substrate. Generally, the requirements for microbes to form biofilms on crustal minerals are unclear. We designed two experiments to test (1) mineral preference and biofilm formation rates by natural seawater microbial communities, and (2) biofilm development as a function of phosphate availability for an organism isolated from subseafloor ocean crust. In Experiment 1, we observed that phyric basalt groundmass is preferentially colonized over aphyric basalt or metal sulfides in a shallow water and oxic seawater environment. In experiment 2, tests of the anaerobic heterotroph Thalassospira bacteria isolated from oceanic crustal fluids showed that they preferentially form biofilms, lose motility, and increase exponentially in number over time in higher-PO4 treatments (50 micromolar), including with phosphate-doped basalts, than in treatments with low phosphate concentrations (0.5 micromolar) often found in crustal fluids. These observations suggest phosphate as a main driver of biofilm formation in subsurface crust. Overall, these data suggest that the drivers of microbial biofilm formation on crustal substrates are selective to the substrate conditions, which has important implications for estimating the global biomass of life harbored in oceanic crust.

  7. Exploring the Deep Biosphere in Ophiolite-hosted Systems: What Can Metabolic Processes in Surface Seeps Tell Us About Subsurface Ecosystems in Serpentinizing Fluids?

    NASA Astrophysics Data System (ADS)

    Meyer-Dombard, D. R.; Cardace, D.; Woycheese, K. M.; Vallalar, B.; Casar, C.; Simon, A.; Arcilla, C. A.

    2016-12-01

    Serpentinization in the subsurface produces highly reduced, high pH fluids that provide microbial habitats. It is assumed that these deep subsurface fluids contain copious H2 and CH4 gas, little/no inorganic carbon, and limited electron acceptors. As serpentinized fluids reach the oxygenated surface environment, microbial biomes shift and organisms capable of metabolizing O2 thrive (Woycheese et al., 2015). However, the relationship of microbial communities found in surface expressions of serpentinizing fluids to the subsurface biosphere is still a target of exploration. Our work in the Zambales ophiolite (Philippines) defines surface microbial habitats with geochemistry, targeted culturing efforts, and community analysis (Cardace et al., 2015; Woycheese et al., 2015). Springs range from pH 9-11.5, and contain 0.06-2 ppm DO, 0-3.7 ppm sulfide, 30-800 ppm silica. Gases include H2 and CH4 > 10uM, CO2 > 1 mM, and trace amounts of CO. These surface data allow prediction of the subsurface metabolic landscape. For example, Cardace et al., (2015) predicted that metabolism of iron is important in both biospheres. Growth media were designed to target iron reduction yielding heterotrophic and autotrophic iron reducers at high pH. Reduced iron minerals were produced in several cultures (Casar et al., sub.), and isolation efforts are underway. Shotgun metagenomic analysis shows the metabolic capacity for methanogenesis, suggesting microbial origins for some CH4 present. The enzymes methyl coenzyme M reductase, and formylmethanofuran dehydrogenase were detected, and relative abundance increased near the near-anoxic spring source. The metagenomes indicate carbon cycling at these sites is reliant on methanogenesis, acetogenesis, sulfate reduction, and H2 and CH4 oxidation. In this tropical climate, cellulose is also a likely carbon source; cellulose degrading isolates have been obtained. These results indicate a metabolically flexible community at the surface where serpentinizing fluids are expressed. The next step is to understand what these surface systems might tell us about the subsurface biosphere. References: Cardace et al., 2015 Frontiers in Extreme Microbiology 6: doi: 10.3389/fmicb.2015.00010 Woycheese et al., 2015 Frontiers in Extreme Microbiology 6: doi: 10.3389/fmicb.2015.00044

  8. Actinobacterial diversity across a marine transgression in the deep subsurface off Shimokita Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Harrison, B. K.; Bailey, J. V.

    2013-12-01

    Sediment horizons represent a significant - but not permanent - barrier to microbial transport. Cells commonly attach to mineral surfaces in unconsolidated sediments. However, by taxis, growth, or passive migration under advecting fluids, some portion of the microbial community may transgress sedimentary boundaries. Few studies have attempted to constrain such transport of community signatures in the marine subsurface and its potential impact on biogeography. Integrated Ocean Drilling Program (IODP) Expedition 337 off the Shimokita Peninsula recovered sediments over a greater than 1km interval representing a gradual decrease of terrestrial influence, from tidal to continental shelf depositional settings. This sequence represents a key opportunity to link subsurface microbial communities to lithological variability and investigate the permanence of community signatures characteristic of distinct depositional regimes. The phylogenetic connectivity between marine and terrestrially-influenced deposits may demonstrate to what degree sediments offer a substantial barrier to cell transport in the subsurface. Previous work has demonstrated that the Actinobacterial phylum is broadly distributed in marine sediments (Maldonado et al., 2005), present and active in the deep subsurface (Orsi et al., 2013), and that marine and terrestrial lineages may potentially be distinguished by 16S rRNA gene sequencing (e.g. Prieto-Davó et al., 2013). We report on Actinobacteria-specific 16S rRNA gene diversity recovered between 1370 and 2642 mbsf with high-throughput sequencing using the Illumina MiSeq platform, as well as selective assembly and analysis of environmental clone libraries.

  9. Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens.

    PubMed

    Horton, Rene' N; Apel, William A; Thompson, Vicki S; Sheridan, Peter P

    2006-01-25

    Chromium is a transition metal most commonly found in the environment in its trivalent [Cr(III)] and hexavalent [Cr(VI)] forms. The EPA maximum total chromium contaminant level for drinking water is 0.1 mg/l (0.1 ppm). Many water sources, especially underground sources, are at low temperatures (less than or equal to 15 Centigrade) year round. It is important to evaluate the possibility of microbial remediation of Cr(VI) contamination using microorganisms adapted to these low temperatures (psychrophiles). Core samples obtained from a Cr(VI) contaminated aquifer at the Hanford facility in Washington were enriched in Vogel Bonner medium at 10 Centigrade with 0, 25, 50, 100, 200, 400 and 1000 mg/l Cr(VI). The extent of Cr(VI) reduction was evaluated using the diphenyl carbazide assay. Resistance to Cr(VI) up to and including 1000 mg/l Cr(VI) was observed in the consortium experiments. Reduction was slow or not observed at and above 100 mg/l Cr(VI) using the enrichment consortium. Average time to complete reduction of Cr(VI) in the 30 and 60 mg/l Cr(VI) cultures of the consortium was 8 and 17 days, respectively at 10 Centigrade. Lyophilized consortium cells did not demonstrate adsorption of Cr(VI) over a 24 hour period. Successful isolation of a Cr(VI) reducing organism (designated P4) from the consortium was confirmed by 16S rDNA amplification and sequencing. Average time to complete reduction of Cr(VI) at 10 Centigrade in the 25 and 50 mg/l Cr(VI) cultures of the isolate P4 was 3 and 5 days, respectively. The 16S rDNA sequence from isolate P4 identified this organism as a strain of Arthrobacter aurescens, a species that has not previously been shown to be capable of low temperature Cr(VI) reduction. A. aurescens, indigenous to the subsurface, has the potential to be a predominant metal reducer in enhanced, in situ subsurface bioremediation efforts involving Cr(VI) and possibly other heavy metals and radionuclides.

  10. Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens

    PubMed Central

    Horton, Rene' N; Apel, William A; Thompson, Vicki S; Sheridan, Peter P

    2006-01-01

    Background Chromium is a transition metal most commonly found in the environment in its trivalent [Cr(III)] and hexavalent [Cr(VI)] forms. The EPA maximum total chromium contaminant level for drinking water is 0.1 mg/l (0.1 ppm). Many water sources, especially underground sources, are at low temperatures (less than or equal to 15 Centigrade) year round. It is important to evaluate the possibility of microbial remediation of Cr(VI) contamination using microorganisms adapted to these low temperatures (psychrophiles). Results Core samples obtained from a Cr(VI) contaminated aquifer at the Hanford facility in Washington were enriched in Vogel Bonner medium at 10 Centigrade with 0, 25, 50, 100, 200, 400 and 1000 mg/l Cr(VI). The extent of Cr(VI) reduction was evaluated using the diphenyl carbazide assay. Resistance to Cr(VI) up to and including 1000 mg/l Cr(VI) was observed in the consortium experiments. Reduction was slow or not observed at and above 100 mg/l Cr(VI) using the enrichment consortium. Average time to complete reduction of Cr(VI) in the 30 and 60 mg/l Cr(VI) cultures of the consortium was 8 and 17 days, respectively at 10 Centigrade. Lyophilized consortium cells did not demonstrate adsorption of Cr(VI) over a 24 hour period. Successful isolation of a Cr(VI) reducing organism (designated P4) from the consortium was confirmed by 16S rDNA amplification and sequencing. Average time to complete reduction of Cr(VI) at 10 Centigrade in the 25 and 50 mg/l Cr(VI) cultures of the isolate P4 was 3 and 5 days, respectively. The 16S rDNA sequence from isolate P4 identified this organism as a strain of Arthrobacter aurescens, a species that has not previously been shown to be capable of low temperature Cr(VI) reduction. Conclusion A. aurescens, indigenous to the subsurface, has the potential to be a predominant metal reducer in enhanced, in situ subsurface bioremediation efforts involving Cr(VI) and possibly other heavy metals and radionuclides. PMID:16436214

  11. Microbial Community Shifts due to Hydrofracking: Observations from Field-Scale Observations and Laboratory-Scale Incubations

    NASA Astrophysics Data System (ADS)

    Mouser, P. J.; Ansari, M.; Hartsock, A.; Lui, S.; Lenhart, J.

    2012-12-01

    The use of fluids containing chemicals and variable water sources during the hydrofracking of unconventional shale is the source of considerable controversy due to perceived risks from altered subsurface biogeochemistry and the potential for contaminating potable water supplies. Rapid shifts in subsurface biogeochemistry are often driven by available macronutrients combined with the abundance and metabolic condition of the subsurface microbiota. While the depth that fracturing occurs in the Marcellus formation is reasonably deep to pose little risk to groundwater supplies, no published studies have systematically characterized the indigenous microbial population and how this community is altered through variable fluid management practices (e.g., chemical composition, source water makeup). In addition, limited information is available on how shallower microbial communities and geochemical conditions might be affected through the accidental release of these fluids to groundwater aquifers. Our measurements indicate field-applied and laboratory-generated fracking fluids contain levels of organic carbon greater than 300 mg/l and nitrogen concentrations greater than 80 mg/l that may differentially stimulate microbial growth in subsurface formations. In contrast to certain inorganic constituents (e.g., chloride) which increase in concentration through the flowback period; dissolved organic carbon levels decrease with time after the fracturing process through multiple attenuation processes (dilution, sorption, microbial utilization). Pyrosequencing data of the 16S rRNA gene indicate a shift from a more diverse source water microbial community to a less diverse community typical of a brine formation as time after fracturing increases. The introduction of varying percentages of a laboratory-generated fracking fluid to microcosm bottles containing groundwater and aquifer media stimulated biogeochemical changes similar to the introduction of landfill leachate, another wastewater containing elevated carbon, nitrogen, and complex organic constituents (e.g., decreased redox conditions, stepwise utilization of available terminal electron acceptors, enriched Fe(II) and sulfide concentrations). These research findings are important for understanding how fluids used during shale energy development may alter in situ microbial communities and provide insight into processes that attenuate the migration of these fluids in shallow aquifers and deep shale formations.

  12. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock.

    PubMed

    Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L; de Bruijn, Ino; Andersson, Anders F; Leupin, Olivier X; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-10-14

    The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present.

  13. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock

    PubMed Central

    Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L.; de Bruijn, Ino; Andersson, Anders F.; Leupin, Olivier X.; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-01-01

    The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present. PMID:27739431

  14. Comparison of bacterial communities from lava cave microbial mats to overlying surface soils from Lava Beds National Monument, USA

    PubMed Central

    Read, Kaitlyn J. H.; Hughes, Evan M.; Spilde, Michael N.

    2017-01-01

    Subsurface habitats harbor novel diversity that has received little attention until recently. Accessible subsurface habitats include lava caves around the world that often support extensive microbial mats on ceilings and walls in a range of colors. Little is known about lava cave microbial diversity and how these subsurface mats differ from microbial communities in overlying surface soils. To investigate these differences, we analyzed bacterial 16S rDNA from 454 pyrosequencing from three colors of microbial mats (tan, white, and yellow) from seven lava caves in Lava Beds National Monument, CA, USA, and compared them with surface soil overlying each cave. The same phyla were represented in both surface soils and cave microbial mats, but the overlap in shared OTUs (operational taxonomic unit) was only 11.2%. Number of entrances per cave and temperature contributed to observed differences in diversity. In terms of species richness, diversity by mat color differed, but not significantly. Actinobacteria dominated in all cave samples, with 39% from caves and 21% from surface soils. Proteobacteria made up 30% of phyla from caves and 36% from surface soil. Other major phyla in caves were Nitrospirae (7%) followed by minor phyla (7%), compared to surface soils with Bacteroidetes (8%) and minor phyla (8%). Many of the most abundant sequences could not be identified to genus, indicating a high degree of novelty. Surface soil samples had more OTUs and greater diversity indices than cave samples. Although surface soil microbes immigrate into underlying caves, the environment selects for microbes able to live in the cave habitats, resulting in very different cave microbial communities. This study is the first comprehensive comparison of bacterial communities in lava caves with the overlying soil community. PMID:28199330

  15. Reply to 'Comment on kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry' by J. Griffioen

    NASA Astrophysics Data System (ADS)

    Hunter, K. S.; Van Cappellen, P.

    2000-01-01

    Our paper, 'Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry' (Hunter et al., 1998), presents a theoretical exploration of biogeochemical reaction networks and their importance to the biogeochemistry of groundwater systems. As with any other model, the kinetic reaction-transport model developed in our paper includes only a subset of all physically, biologically and chemically relevant processes in subsurface environments. It considers aquifer systems where the primary energy source driving microbial activity is the degradation of organic matter. In addition to the primary biodegradation pathways of organic matter (i.e. respiration and fermentation), the redox chemistry of groundwaters is also affected by reactions not directly involving organic matter oxidation. We refer to the latter as secondary reactions. By including secondary redox reactions which consume reduced reaction products (e.g., Mn2+, FeS, H2S), and in the process compete with microbial heterotrophic populations for available oxidants (i.e. O2, NO3-, Mn(IV), Fe(III), SO42-), we predict spatio-temporal distributions of microbial activity which differ significantly from those of models which consider only the biodegradation reactions. That is, the secondary reactions have a significant impact on the distributions of the rates of heterotrophic and chemolithotrophic metabolic pathways. We further show that secondary redox reactions, as well as non-redox reactions, significantly influence the acid-base chemistry of groundwaters. The distributions of dissolved inorganic redox species along flowpaths, however, are similar in simulations with and without secondary reactions (see Figs. 3(b) and 7(b) in Hunter et al., 1998), indicating that very different biogeochemical reaction dynamics may lead to essentially the same chemical redox zonation of a groundwater system.

  16. Stable, geochemically mediated biospheres in the Deep Mine Microbial Observatory, SD, USA

    NASA Astrophysics Data System (ADS)

    Osburn, M. R.; Casar, C. P.; Kruger, B.; Flynn, T. M.

    2017-12-01

    The terrestrial subsurface is a vast reservoir of life, hosting diverse microbial ecosystems with varying levels of connectivity to surface inputs. Understanding long term ecosystem dynamics within the subsurface biosphere is very challenging due to limitations in accessibility, sample availability, and slow microbial growth rates. The establishment of the Deep Mine Microbial Observatory (DeMMO) at the Sanford Underground Research Facility, SD, USA has allowed for bimonthly sampling for nearly two years at six sites spanning 250 to 1500 m below the surface. Here we present a time-resolved analysis of the geomicrobiology of the six DeMMO sites, which have been created from legacy mine boreholes modified to allow for controlled sampling. Our interdisciplinary approach includes analysis of passively draining fracture fluid for aqueous and gas geochemistry, DNA sequencing, microscopy, and isotopic measurements of organic and inorganic substrates. Fluid geochemistry varies significantly between sites, but is relatively stable over time for a given site, even through significant external perturbations such as drilling and installation of permanent sampling devices into the boreholes. The fluid-hosted microbial diversity follows these trends, with consistent populations present at each site through time, even through drilling events. For instance, the shallowest site (DeMMO 1) consistently hosts >30% uncharacterized phyla and >25% Omnitrophica whereas the deepest site (DeMMO 6) is dominated by Firmicutes and Bacterioidetes. Microbial diversity appears to respond to the availability of energy sources such as organic carbon, sulfate, sulfide, hydrogen, and iron. Carbon isotopic measurements reveal closed system behavior with significant recycling of organic carbon into the DIC pool. Together these observations suggest DeMMO hosts isolated subsurface microbial populations adapted to local geochemistry that are stable on yearlong timescales.

  17. Subsurface conditions in hydrothermal vents inferred from diffuse flow composition, and models of reaction and transport

    NASA Astrophysics Data System (ADS)

    Larson, B. I.; Houghton, J. L.; Lowell, R. P.; Farough, A.; Meile, C. D.

    2015-08-01

    Chemical gradients in the subsurface of mid-ocean ridge hydrothermal systems create an environment where minerals precipitate and dissolve and where chemosynthetic organisms thrive. However, owing to the lack of easy access to the subsurface, robust knowledge of the nature and extent of chemical transformations remains elusive. Here, we combine measurements of vent fluid chemistry with geochemical and transport modeling to give new insights into the under-sampled subsurface. Temperature-composition relationships from a geochemical mixing model are superimposed on the subsurface temperature distribution determined using a heat flow model to estimate the spatial distribution of fluid composition. We then estimate the distribution of Gibb's free energies of reaction beneath mid oceanic ridges and by combining flow simulations with speciation calculations estimate anhydrite deposition rates. Applied to vent endmembers observed at the fast spreading ridge at the East Pacific Rise, our results suggest that sealing times due to anhydrite formation are longer than the typical time between tectonic and magmatic events. The chemical composition of the neighboring low temperature flow indicates relatively uniform energetically favorable conditions for commonly inferred microbial processes such as methanogenesis, sulfate reduction and numerous oxidation reactions, suggesting that factors other than energy availability may control subsurface microbial biomass distribution. Thus, these model simulations complement fluid-sample datasets from surface venting and help infer the chemical distribution and transformations in subsurface flow.

  18. Subsurface Nitrogen-Cycling Microbial Communities at Uranium Contaminated Sites in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Cardarelli, E.; Bargar, J.; Williams, K. H.; Dam, W. L.; Francis, C.

    2015-12-01

    Throughout the Colorado River Basin (CRB), uranium (U) persists as a relic contaminant of former ore processing activities. Elevated solid-phase U levels exist in fine-grained, naturally-reduced zone (NRZ) sediments intermittently found within the subsurface floodplain alluvium of the following Department of Energy-Legacy Management sites: Rifle, CO; Naturita, CO; and Grand Junction, CO. Coupled with groundwater fluctuations that alter the subsurface redox conditions, previous evidence from Rifle, CO suggests this resupply of U may be controlled by microbially-produced nitrite and nitrate. Nitrification, the two-step process of archaeal and bacterial ammonia-oxidation followed by bacterial nitrite oxidation, generates nitrate under oxic conditions. Our hypothesis is that when elevated groundwater levels recede and the subsurface system becomes anoxic, the nitrate diffuses into the reduced interiors of the NRZ and stimulates denitrification, the stepwise anaerobic reduction of nitrate/nitrite to dinitrogen gas. Denitrification may then be coupled to the oxidation of sediment-bound U(IV) forming mobile U(VI), allowing it to resupply U into local groundwater supplies. A key step in substantiating this hypothesis is to demonstrate the presence of nitrogen-cycling organisms in U-contaminated, NRZ sediments from the upper CRB. Here we investigate how the diversity and abundances of nitrifying and denitrifying microbial populations change throughout the NRZs of the subsurface by using functional gene markers for ammonia-oxidation (amoA, encoding the α-subunit of ammonia monooxygenase) and denitrification (nirK, nirS, encoding nitrite reductase). Microbial diversity has been assessed via clone libraries, while abundances have been determined through quantitative polymerase chain reaction (qPCR), elucidating how relative numbers of nitrifiers (amoA) and denitrifiers (nirK, nirS) vary with depth, vary with location, and relate to uranium release within NRZs in sediment cores spanning the upper CRB. Early findings from Rifle, CO indicate elevated abundances of ammonia-oxidizers seem to correlate with elevated uranium concentrations emphasizing the critical need to understand how nitrogen-cycling organisms influence subsurface U redox chemistry and mobility.

  19. Field Experiment to Stimulate Microbial Urease Activity in Groundwater for in situ Calcite Precipitation

    NASA Astrophysics Data System (ADS)

    Fujita, Y.; Taylor, J. L.; Tyler, T. L.; Banta, A. B.; Reysenbach, A. L.; Delwiche, M. E.; McLing, T. L.; Colwell, F. S.; Smith, R. W.

    2003-12-01

    Groundwater contamination by radionuclides and metals from past weapons processing activities is a significant problem for the United States Department of Energy. Removal of these pollutants from the subsurface can be prohibitively expensive and result in worker exposure, and therefore in situ containment and stabilization is an attractive remediation alternative. One potential approach for the immobilization of certain radionuclides and metals (e.g., 90Sr, 60Co, Pb, Cd) is to induce geochemical conditions that promote co-precipitation in calcite. Many aquifers in the arid western US are calcite-saturated, and calcite precipitated under an engineered remediation scheme in such aquifers should remain stable even after return to ambient conditions. We have proposed that an effective way to promote calcite precipitation is to utilize native microorganisms that hydrolyze urea. Urea hydrolysis results in carbonate and ammonium production, and an increase in pH. The increased carbonate alkalinity favors calcite precipitation, and the ammonium serves the additional role of promoting desorption of sorbed metal ions from the aquifer matrix by ion exchange. The desorbed metals are then accessible to co-precipitation in calcite, which can be a longer-term immobilization mechanism than sorption. The ability to hydrolyze urea is common among environmental microorganisms, and we have shown in the laboratory that microbial urea hydrolysis can be linked to calcite precipitation and co-precipitation of the trace metal strontium. As a next step in the development of our remediation approach, we aimed to demonstrate that we can stimulate the native microbial community to express urease in the field. In 2002 we conducted a preliminary field trial of our approach, using a well in the Eastern Snake River Plain Aquifer in Idaho Falls, Idaho, USA. A dilute molasses solution (0.00075%) was injected to promote overall biological growth, and then urea (50 mM) was added to the aquifer. Results from the field experiment indicated that following the molasses addition, total cell counts and ureolytic cell numbers increased by one to two orders of magnitude. Ureolysis rates increased from <100 pmol L-1hr-1 to >25,000 pmol L-1hr-1. DNA extracted from groundwater was analyzed for 16S rRNA and urease gene diversity, and indicated that distinct changes in the microbial community resulted from our substrate additions. Following urea injection, calcite precipitation in the formation occurred. These results are promising with respect to the potential of this approach for remediation of radionuclides and metals in groundwater.

  20. Heavy metal immobilization via microbially induced carbonate precipitation and co-precipitation

    NASA Astrophysics Data System (ADS)

    Lauchnor, E. G.; Stoick, E.

    2017-12-01

    Microbially induced CaCO3 precipitation (MICP) has been successfully used in applications such as porous media consolidation and sealing of leakage pathways in the subsurface, and it has the potential to be used for remediation of metal and radionuclide contaminants in surface and groundwater. In this work, MICP is investigated for removal of dissolved heavy metals from contaminated mine discharge water via co-precipitation in CaCO3 or formation of other metal carbonates. The bacterially catalyzed hydrolysis of urea produces inorganic carbon and ammonium and increases pH and the saturation index of carbonate minerals to promote precipitation of CaCO3. Other heavy metal cations can be co-precipitated in CaCO3 as impurities or by replacing Ca2+ in the crystal lattice. We performed laboratory batch experiments of MICP in alkaline mine drainage sampled from an abandoned mine site in Montana and containing a mixture of heavy metals at near neutral pH. Both a model bacterium, Sporosarcina pasteurii, and a ureolytic bacterium isolated from sediments on the mine site were used to promote MICP. Removal of dissolved metals from the aqueous phase was determined via inductively coupled plasma mass spectrometry and resulting precipitates were analyzed via electron microscopy and energy dispersive x-ray spectroscopy (EDX). Both S. pasteurii and the native ureolytic isolate demonstrated ureolysis, increased the pH and promoted precipitation of CaCO3 in batch tests. MICP by the native bacterium reduced concentrations of the heavy metals zinc, copper, cadmium, nickel and manganese in the water. S. pasteurii was also able to promote MICP, but with less removal of dissolved metals. Analysis of precipitates revealed calcium carbonate and phosphate minerals were likely present. The native isolate is undergoing identification via 16S DNA sequencing. Ongoing work will evaluate biofilm formation and MICP by the isolate in continuous flow, gravel-filled laboratory columns. This research demonstrates that MICP can be promoted in natural, contaminated water containing a mixture of potentially toxic heavy metals and native bacteria adapted to the environment may be more successful in driving removal of heavy metals via MICP.

  1. US Air Force 1989 Research Initiation Program . Volume 1.

    DTIC Science & Technology

    1992-06-25

    microbial ecology of contaminated soils. 27-5 Thomas and coworkers (1989) studied microbial activity at a creosote waste site and demonstrated that...provide information essential for an understanding of the microbial ecology of contaminated soils, they do not address the microbiology of...substrates. Appl. Environ. Microbiol. 49:711-713. Thomas, J. M., M. D. Lee, M. J. Scott and C. H. Ward. 1989. Microbial ecology of the subsurface Lt an

  2. Energy Requirements of Hydrogen-utilizing Microbes: A Boundary Condition for Subsurface Life

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.

    2003-01-01

    Microbial ecosystems based on the energy supplied by water-rock chemistry carry particular significance in the context of geo- and astrobiology. With no direct dependence on solar energy, lithotrophic microbes could conceivably penetrate a planetary crust to a depth limited only by temperature or pressure constraints (several kilometers or more). The deep lithospheric habitat is thereby potentially much greater in volume than its surface counterpart, and in addition offers a stable refuge against inhospitable surface conditions related to climatic or atmospheric evolution (e.g., Mars) or even high-energy impacts (e.g., early in Earth's history). The possibilities for a deep microbial biosphere are, however, greatly constrained by life s need to obtain energy at a certain minimum rate (the maintenance energy requirement) and of a certain minimum magnitude (the energy quantum requirement). The mere existence of these requirements implies that a significant fraction of the chemical free energy available in the subsurface environment cannot be exploited by life. Similar limits may also apply to the usefulness of light energy at very low intensities or long wavelengths. Quantification of these minimum energy requirements in terrestrial microbial ecosystems will help to establish a criterion of energetic habitability that can significantly constrain the prospects for life in Earth's subsurface, or on other bodies in the solar system. Our early work has focused on quantifying the biological energy quantum requirement for methanogenic archaea, as representatives of a plausible subsurface metabolism, in anoxic sediments (where energy availability is among the most limiting factors in microbial population growth). In both field and laboratory experiments utilizing these sediments, methanogens retain a remarkably consistent free energy intake, in the face of fluctuating environmental conditions that affect energy availability. The energy yields apparently required by methanogens in these sediment systems for sustained metabolism are about half that previously thought necessary. Lowered energy requirements would imply that a correspondingly greater proportion of the planetary subsurface could represent viable habitat for microorganisms.

  3. Impact disruption and recovery of the deep subsurface biosphere

    USGS Publications Warehouse

    Cockell, Charles S.; Voytek, Mary A.; Gronstal, Aaron L.; Finster, Kai; Kirshtein, Julie D.; Howard, Kieren; Reitner, Joachim; Gohn, Gregory S.; Sanford, Ward E.; Horton, J. Wright; Kallmeyer, Jens; Kelly, Laura; Powars, David S.

    2012-01-01

    Although a large fraction of the world's biomass resides in the subsurface, there has been no study of the effects of catastrophic disturbance on the deep biosphere and the rate of its subsequent recovery. We carried out an investigation of the microbiology of a 1.76 km drill core obtained from the ~35 million-year-old Chesapeake Bay impact structure, USA, with robust contamination control. Microbial enumerations displayed a logarithmic downward decline, but the different gradient, when compared to previously studied sites, and the scatter of the data are consistent with a microbiota influenced by the geological disturbances caused by the impact. Microbial abundance is low in buried crater-fill, ocean-resurge, and avalanche deposits despite the presence of redox couples for growth. Coupled with the low hydraulic conductivity, the data suggest the microbial community has not yet recovered from the impact ~35 million years ago. Microbial enumerations, molecular analysis of microbial enrichment cultures, and geochemical analysis showed recolonization of a deep region of impact-fractured rock that was heated to above the upper temperature limit for life at the time of impact. These results show how, by fracturing subsurface rocks, impacts can extend the depth of the biosphere. This phenomenon would have provided deep refugia for life on the more heavily bombarded early Earth, and it shows that the deeply fractured regions of impact craters are promising targets to study the past and present habitability of Mars.

  4. Impact disruption and recovery of the deep subsurface biosphere.

    PubMed

    Cockell, Charles S; Voytek, Mary A; Gronstal, Aaron L; Finster, Kai; Kirshtein, Julie D; Howard, Kieren; Reitner, Joachim; Gohn, Gregory S; Sanford, Ward E; Horton, J Wright; Kallmeyer, Jens; Kelly, Laura; Powars, David S

    2012-03-01

    Although a large fraction of the world's biomass resides in the subsurface, there has been no study of the effects of catastrophic disturbance on the deep biosphere and the rate of its subsequent recovery. We carried out an investigation of the microbiology of a 1.76 km drill core obtained from the ∼35 million-year-old Chesapeake Bay impact structure, USA, with robust contamination control. Microbial enumerations displayed a logarithmic downward decline, but the different gradient, when compared to previously studied sites, and the scatter of the data are consistent with a microbiota influenced by the geological disturbances caused by the impact. Microbial abundance is low in buried crater-fill, ocean-resurge, and avalanche deposits despite the presence of redox couples for growth. Coupled with the low hydraulic conductivity, the data suggest the microbial community has not yet recovered from the impact ∼35 million years ago. Microbial enumerations, molecular analysis of microbial enrichment cultures, and geochemical analysis showed recolonization of a deep region of impact-fractured rock that was heated to above the upper temperature limit for life at the time of impact. These results show how, by fracturing subsurface rocks, impacts can extend the depth of the biosphere. This phenomenon would have provided deep refugia for life on the more heavily bombarded early Earth, and it shows that the deeply fractured regions of impact craters are promising targets to study the past and present habitability of Mars.

  5. Evaluation of positron emission tomography as a method to visualize subsurface microbial processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinsella K.; Schlyer D.; Kinsella, K.

    2012-01-18

    Positron emission tomography (PET) provides spatiotemporal monitoring in a nondestructive manner and has higher sensitivity and resolution relative to other tomographic methods. Therefore, this technology was evaluated for its application to monitor in situ subsurface bacterial activity. To date, however, it has not been used to monitor or image soil microbial processes. In this study, PET imaging was applied as a 'proof-of-principle' method to assess the feasibility of visualizing a radiotracer labeled subsurface bacterial strain (Rahnella sp. Y9602), previously isolated from uranium contaminated soils and shown to promote uranium phosphate precipitation. Soil columns packed with acid-purified simulated mineral soils weremore » seeded with 2-deoxy-2-[{sup 18}F]fluoro-d-glucose ({sup 18}FDG) labeled Rahnella sp. Y9602. The applicability of [{sup 18}F]fluoride ion as a tracer for measuring hydraulic conductivity and {sup 18}FDG as a tracer to identify subsurface metabolically active bacteria was successful in our soil column studies. Our findings indicate that positron-emitting isotopes can be utilized for studies aimed at elucidating subsurface microbiology and geochemical processes important in contaminant remediation.« less

  6. The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation

    PubMed Central

    Teske, Andreas; de Beer, Dirk; McKay, Luke J.; Tivey, Margaret K.; Biddle, Jennifer F.; Hoer, Daniel; Lloyd, Karen G.; Lever, Mark A.; Røy, Hans; Albert, Daniel B.; Mendlovitz, Howard P.; MacGregor, Barbara J.

    2016-01-01

    The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region. PMID:26925032

  7. Potential for Nitrogen Fixation and Nitrification in the Granite-Hosted Subsurface at Henderson Mine, CO

    PubMed Central

    Swanner, Elizabeth D.; Templeton, Alexis S.

    2011-01-01

    The existence of life in the deep terrestrial subsurface is established, yet few studies have investigated the origin of nitrogen that supports deep life. Previously, 16S rRNA gene surveys cataloged a diverse microbial community in subsurface fluids draining from boreholes 3000 feet deep at Henderson Mine, CO, USA (Sahl et al., 2008). The prior characterization of the fluid chemistry and microbial community forms the basis for the further investigation here of the source of NH4+. The reported fluid chemistry included N2, NH4+ (5–112 μM), NO2− (27–48 μM), and NO3− (17–72 μM). In this study, the correlation between low NH4+ concentrations in dominantly meteoric fluids and higher NH4+ in rock-reacted fluids is used to hypothesize that NH4+ is sourced from NH4+-bearing biotite. However, biotite samples from the host rocks and ore-body minerals were analyzed by Fourier transform infrared (FTIR) microscopy and none-contained NH4+. However, the nitrogenase-encoding gene nifH was successfully amplified from DNA of the fluid sample with high NH4+, suggesting that subsurface microbes have the capability to fix N2. If so, unregulated nitrogen fixation may account for the relatively high NH4+ concentrations in the fluids. Additionally, the amoA and nxrB genes for archaeal ammonium monooxygenase and nitrite oxidoreductase, respectively, were amplified from the high NH4+ fluid DNA, while bacterial amoA genes were not. Putative nitrifying organisms are closely related to ammonium-oxidizing Crenarchaeota and nitrite-oxidizing Nitrospira detected in other subsurface sites based upon 16S rRNA sequence analysis. Thermodynamic calculations underscore the importance of NH4+ as an energy source in a subsurface nitrification pathway. These results suggest that the subsurface microbial community at Henderson is adapted to the low nutrient and energy environment by their capability of fixing nitrogen, and that fixed nitrogen may support subsurface biomass via nitrification. PMID:22190904

  8. Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.

    Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site`s microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog {reg_sign} evaluation of enzyme activity in collected water samples.more » Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog{reg_sign} activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.« less

  9. Molecular Phylogenetic Analysis of Archaeal Intron-Containing Genes Coding for rRNA Obtained from a Deep-Subsurface Geothermal Water Pool

    PubMed Central

    Takai, Ken; Horikoshi, Koki

    1999-01-01

    Molecular phylogenetic analysis of a naturally occurring microbial community in a deep-subsurface geothermal environment indicated that the phylogenetic diversity of the microbial population in the environment was extremely limited and that only hyperthermophilic archaeal members closely related to Pyrobaculum were present. All archaeal ribosomal DNA sequences contained intron-like sequences, some of which had open reading frames with repeated homing-endonuclease motifs. The sequence similarity analysis and the phylogenetic analysis of these homing endonucleases suggested the possible phylogenetic relationship among archaeal rRNA-encoded homing endonucleases. PMID:10584021

  10. Microbial transport and fate in the subsurface: An introduction to the special collection

    USDA-ARS?s Scientific Manuscript database

    Microorganisms constitute the almost exclusive form of life in the earth’s subsurface (not including caves), particularly at depths exceeding the soil horizon. While of broad interest to ecology and geology, scientific interest in the fate and transport of microorganisms, particularly those introduc...

  11. ADAPTATION OF SUBSURFACE MICROBIAL BIOFILM COMMUNITIES IN RESPONSE TO CHEMICAL STRESSORS

    EPA Science Inventory

    The impact of this work will help improve our understanding of how subsurface biofilm communities respond to chemical stressors that are likely to be present at hazardous waste sites. Ultimately, these results can be used to determine more effective ways to insure proper envir...

  12. Metagenomic Evidence for H2 Oxidation and H2 Production by Serpentinite-Hosted Subsurface Microbial Communities

    PubMed Central

    Brazelton, William J.; Nelson, Bridget; Schrenk, Matthew O.

    2012-01-01

    Ultramafic rocks in the Earth’s mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H2). In order to assess the potential for microbial H2 utilization fueled by serpentinization, we conducted metagenomic surveys of a marine serpentinite-hosted hydrothermal chimney (at the Lost City hydrothermal field) and two continental serpentinite-hosted alkaline seeps (at the Tablelands Ophiolite, Newfoundland). Novel [NiFe]-hydrogenase sequences were identified at both the marine and continental sites, and in both cases, phylogenetic analyses indicated aerobic, potentially autotrophic Betaproteobacteria belonging to order Burkholderiales as the most likely H2-oxidizers. Both sites also yielded metagenomic evidence for microbial H2 production catalyzed by [FeFe]-hydrogenases in anaerobic Gram-positive bacteria belonging to order Clostridiales. In addition, we present metagenomic evidence at both sites for aerobic carbon monoxide utilization and anaerobic carbon fixation via the Wood–Ljungdahl pathway. In general, our results point to H2-oxidizing Betaproteobacteria thriving in shallow, oxic–anoxic transition zones and the anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These data demonstrate the feasibility of metagenomic investigations into novel subsurface habitats via surface-exposed seeps and indicate the potential for H2-powered primary production in serpentinite-hosted subsurface habitats. PMID:22232619

  13. Metagenomic evidence for h(2) oxidation and h(2) production by serpentinite-hosted subsurface microbial communities.

    PubMed

    Brazelton, William J; Nelson, Bridget; Schrenk, Matthew O

    2012-01-01

    Ultramafic rocks in the Earth's mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H(2)). In order to assess the potential for microbial H(2) utilization fueled by serpentinization, we conducted metagenomic surveys of a marine serpentinite-hosted hydrothermal chimney (at the Lost City hydrothermal field) and two continental serpentinite-hosted alkaline seeps (at the Tablelands Ophiolite, Newfoundland). Novel [NiFe]-hydrogenase sequences were identified at both the marine and continental sites, and in both cases, phylogenetic analyses indicated aerobic, potentially autotrophic Betaproteobacteria belonging to order Burkholderiales as the most likely H(2)-oxidizers. Both sites also yielded metagenomic evidence for microbial H(2) production catalyzed by [FeFe]-hydrogenases in anaerobic Gram-positive bacteria belonging to order Clostridiales. In addition, we present metagenomic evidence at both sites for aerobic carbon monoxide utilization and anaerobic carbon fixation via the Wood-Ljungdahl pathway. In general, our results point to H(2)-oxidizing Betaproteobacteria thriving in shallow, oxic-anoxic transition zones and the anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These data demonstrate the feasibility of metagenomic investigations into novel subsurface habitats via surface-exposed seeps and indicate the potential for H(2)-powered primary production in serpentinite-hosted subsurface habitats.

  14. Utilization of subsurface microbial electrochemical systems to elucidate the mechanisms of competition between methanogenesis and microbial iron(III)/humic acid reduction in Arctic peat soils

    NASA Astrophysics Data System (ADS)

    Friedman, E. S.; Miller, K.; Lipson, D.; Angenent, L. T.

    2012-12-01

    High-latitude peat soils are a major carbon reservoir, and there is growing concern that previously dormant carbon from this reservoir could be released to the atmosphere as a result of continued climate change. Microbial processes, such as methanogenesis and carbon dioxide production via iron(III) or humic acid reduction, are at the heart of the carbon cycle in Arctic peat soils [1]. A deeper understanding of the factors governing microbial dominance in these soils is crucial for predicting the effects of continued climate change. In previous years, we have demonstrated the viability of a potentiostatically-controlled subsurface microbial electrochemical system-based biosensor that measures microbial respiration via exocellular electron transfer [2]. This system utilizes a graphite working electrode poised at 0.1 V NHE to mimic ferric iron and humic acid compounds. Microbes that would normally utilize these compounds as electron acceptors donate electrons to the electrode instead. The resulting current is a measure of microbial respiration with the electrode and is recorded with respect to time. Here, we examine the mechanistic relationship between methanogenesis and iron(III)- or humic acid-reduction by using these same microbial-three electrode systems to provide an inexhaustible source of alternate electron acceptor to microbes in these soils. Chamber-based carbon dioxide and methane fluxes were measured from soil collars with and without microbial three-electrode systems over a period of four weeks. In addition, in some collars we simulated increased fermentation by applying acetate treatments to understand possible effects of continued climate change on microbial processes in these carbon-rich soils. The results from this work aim to increase our fundamental understanding of competition between electron acceptors, and will provide valuable data for climate modeling scenarios. 1. Lipson, D.A., et al., Reduction of iron (III) and humic substances plays a major role in anaerobic respiration in an Arctic peat soil. Journal of Geophysical Research-Biogeosciences, 2010. 115. 2. Friedman, E.S., et al., A cost-effective and field-ready potentiostat that poises subsurface electrodes to monitor bacterial respiration. Biosensors and Bioelectronics, 2012. 32(1): p. 309-313.

  15. Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation.

    PubMed

    Braunschweig, Juliane; Bosch, Julian; Meckenstock, Rainer U

    2013-09-25

    Iron oxides are important constituents of soils and sediments and microbial iron reduction is considered to be a significant anaerobic respiration process in the subsurface, however low microbial reduction rates of macroparticulate Fe oxides in laboratory studies led to an underestimation of the role of Fe oxides in the global Fe redox cycle. Recent studies show the high potential of nano-sized Fe oxides in the environment as, for example, electron acceptor for microbial respiration, electron shuttle between different microorganisms, and scavenger for heavy metals. Biotic and abiotic reactivity of iron macroparticles differ significantly from nano-sized Fe oxides, which are usually much more reactive. Factors such as particle size, solubility, ferrous iron, crystal structure, and organic molecules were identified to influence the reactivity. This review discusses factors influencing the microbial reactivity of Fe oxides. It highlights the differences between natural and synthetic Fe oxides especially regarding the presence of organic molecules such as humic acids and natural organic matter. Attention is given to the transport behavior of Fe oxides in laboratory systems and in the environment, because of the high affinity of different contaminants to Fe oxide surfaces and associated co-transport of pollutants. The high reactivity of Fe oxides and their potential as adsorbents for different pollutants are discussed with respect to application and development of remediation technologies. Copyright © 2013. Published by Elsevier B.V.

  16. Biogeochemistry of microbial coal-bed methane

    USGS Publications Warehouse

    Strc, D.; Mastalerz, Maria; Dawson, K.; MacAlady, J.; Callaghan, A.V.; Wawrik, B.; Turich, C.; Ashby, M.

    2011-01-01

    Microbial methane accumulations have been discovered in multiple coal-bearing basins over the past two decades. Such discoveries were originally based on unique biogenic signatures in the stable isotopic composition of methane and carbon dioxide. Basins with microbial methane contain either low-maturity coals with predominantly microbial methane gas or uplifted coals containing older, thermogenic gas mixed with more recently produced microbial methane. Recent advances in genomics have allowed further evaluation of the source of microbial methane, through the use of high-throughput phylogenetic sequencing and fluorescent in situ hybridization, to describe the diversity and abundance of bacteria and methanogenic archaea in these subsurface formations. However, the anaerobic metabolism of the bacteria breaking coal down to methanogenic substrates, the likely rate-limiting step in biogenic gas production, is not fully understood. Coal molecules are more recalcitrant to biodegradation with increasing thermal maturity, and progress has been made in identifying some of the enzymes involved in the anaerobic degradation of these recalcitrant organic molecules using metagenomic studies and culture enrichments. In recent years, researchers have attempted lab and subsurface stimulation of the naturally slow process of methanogenic degradation of coal. Copyright ?? 2011 by Annual Reviews. All rights reserved.

  17. Performance assessment and microbial diversity of two pilot scale multi-stage sub-surface flow constructed wetland systems.

    PubMed

    Babatunde, A O; Miranda-CasoLuengo, Raul; Imtiaz, Mehreen; Zhao, Y Q; Meijer, Wim G

    2016-08-01

    This study assessed the performance and diversity of microbial communities in multi-stage sub-surface flow constructed wetland systems (CWs). Our aim was to assess the impact of configuration on treatment performance and microbial diversity in the systems. Results indicate that at loading rates up to 100gBOD5/(m(2)·day), similar treatment performances can be achieved using either a 3 or 4 stage configuration. In the case of phosphorus (P), the impact of configuration was less obvious and a minimum of 80% P removal can be expected for loadings up to 10gP/(m(2)·day) based on the performance results obtained within the first 16months of operation. Microbial analysis showed an increased bacterial diversity in stage four compared to the first stage. These results indicate that the design and configuration of multi-stage constructed wetland systems may have an impact on the treatment performance and the composition of the microbial community in the systems, and such knowledge can be used to improve their design and performance. Copyright © 2016. Published by Elsevier B.V.

  18. Seasonal Patterns in Microbial Community Composition in Denitrifying Bioreactors Treating Subsurface Agricultural Drainage.

    PubMed

    Porter, Matthew D; Andrus, J Malia; Bartolerio, Nicholas A; Rodriguez, Luis F; Zhang, Yuanhui; Zilles, Julie L; Kent, Angela D

    2015-10-01

    Denitrifying bioreactors, consisting of water flow control structures and a woodchip-filled trench, are a promising approach for removing nitrate from agricultural subsurface or tile drainage systems. To better understand the seasonal dynamics and the ecological drivers of the microbial communities responsible for denitrification in these bioreactors, we employed microbial community "fingerprinting" techniques in a time-series examination of three denitrifying bioreactors over 2 years, looking at bacteria, fungi, and the denitrifier functional group responsible for the final step of complete denitrification. Our analysis revealed that microbial community composition responds to depth and seasonal variation in moisture content and inundation of the bioreactor media, as well as temperature. Using a geostatistical analysis approach, we observed recurring temporal patterns in bacterial and denitrifying bacterial community composition in these bioreactors, consistent with annual cycling. The fungal communities were more stable, having longer temporal autocorrelations, and did not show significant annual cycling. These results suggest a recurring seasonal cycle in the denitrifying bioreactor microbial community, likely due to seasonal variation in moisture content.

  19. Mechanisms for Electron Transfer Through Pili to Fe(III) Oxide in Geobacter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovley, Derek R.

    The purpose of these studies was to aid the Department of Energy in its goal of understanding how microorganisms involved in the bioremediation of metals and radionuclides sustain their activity in the subsurface. This information is required in order to incorporate biological processes into decision making for environmental remediation and long-term stewardship of contaminated sites. The proposed research was designed to elucidate the mechanisms for electron transfer to Fe(III) oxides in Geobacter species because Geobacter species are abundant dissimilatory metal-reducing microorganisms in a diversity of sites in which uranium is undergoing natural attenuation via the reduction of soluble U(VI) tomore » insoluble U(IV) or when this process is artificially stimulated with the addition of organic electron donors. This study investigated the novel, but highly controversial, concept that the final conduit for electron transfer to Fe(III) oxides are electrically conductive pili. The specific objectives were to: 1) further evaluate the conductivity along the pili of Geobacter sulfurreducens and related organisms; 2) determine the mechanisms for pili conductivity; and 3) investigate the role of pili in Fe(III) oxide reduction. The studies demonstrated that the pili of G. sulfurreducens are conductive along their length. Surprisingly, the pili possess a metallic-like conductivity similar to that observed in synthetic organic conducting polymers such as polyaniline. Detailed physical analysis of the pili, as well as studies in which the structure of the pili was genetically modified, demonstrated that the metallic-like conductivity of the pili could be attributed to overlapping pi-pi orbitals of aromatic amino acids. Other potential mechanisms for conductivity, such as electron hopping between cytochromes associated with the pili were definitively ruled out. Pili were also found to be essential for Fe(III) oxide reduction in G. metallireducens. Ecological studies demonstrated that electron conduction along pili is a better strategy for Fe(III) oxide reduction under conditions found in the subsurface than producing an electron shuttle. The role of pili in uranium reduction was also elucidated. Our results are the first example of metallic-like conductivity in a biological protein and represent a paradigm shift in the understanding of long-range biological electron transport. The results are of importance not only for understanding subsurface microbial processes involved in the mobility of metal contaminants and carbon cycling, but also make a basic contribution to microbiology and the emerging field of bioelectronics.« less

  20. LIPID ANALYSIS TO DETERMINE THE EFFECT OF A SOURCE REMEDIAL TECHNOLOGY IN MICROBIAL ECOLOGY

    EPA Science Inventory

    Microbial community structures and related changes in the subsurface environment were investigated following in situ chemical oxidation (ISCO) treatment at Launch Complex 34, Cape Canaveral Air Station, Florida. The site has dense non-aqueous phase (DNAPL) concentrations of TCE ...

  1. Using N-Limiting Growth Conditions to Remove Atrazine from Groundwater: Laboratory Studies.

    USDA-ARS?s Scientific Manuscript database

    Typically, respiratory redox reactions are the driving mechanism behind in situ bioremediations that use a carbon substrate. This is because electron (e-) donor availability generally restricts subsurface microbial activity. Thus, microbial growth and respiration can be greatly stimulated by the a...

  2. Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales.

    PubMed

    Daly, Rebecca A; Borton, Mikayla A; Wilkins, Michael J; Hoyt, David W; Kountz, Duncan J; Wolfe, Richard A; Welch, Susan A; Marcus, Daniel N; Trexler, Ryan V; MacRae, Jean D; Krzycki, Joseph A; Cole, David R; Mouser, Paula J; Wrighton, Kelly C

    2016-09-05

    Hydraulic fracturing is the industry standard for extracting hydrocarbons from shale formations. Attention has been paid to the economic benefits and environmental impacts of this process, yet the biogeochemical changes induced in the deep subsurface are poorly understood. Recent single-gene investigations revealed that halotolerant microbial communities were enriched after hydraulic fracturing. Here, the reconstruction of 31 unique genomes coupled to metabolite data from the Marcellus and Utica shales revealed that many of the persisting organisms play roles in methylamine cycling, ultimately supporting methanogenesis in the deep biosphere. Fermentation of injected chemical additives also sustains long-term microbial persistence, while thiosulfate reduction could produce sulfide, contributing to reservoir souring and infrastructure corrosion. Extensive links between viruses and microbial hosts demonstrate active viral predation, which may contribute to the release of labile cellular constituents into the extracellular environment. Our analyses show that hydraulic fracturing provides the organismal and chemical inputs for colonization and persistence in the deep terrestrial subsurface.

  3. Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, Rebecca A.; Borton, Mikayla A.; Wilkins, Michael J.

    Hydraulic fracturing is the industry standard for extracting hydrocarbons from shale formations. Attention has been paid to the economic benefits and environmental impacts of this process, yet the biogeochemical changes induced in the deep subsurface are poorly understood. Recent single-gene investigations revealed that halotolerant microbial communities were enriched after hydraulic fracturing. Here the reconstruction of 31 unique genomes coupled to metabolite data from the Marcellus and Utica shales revealed that methylamine cycling supports methanogenesis in the deep biosphere. Fermentation of injected chemical additives also sustains long-term microbial persistence, while sulfide generation from thiosulfate represents a poorly recognized corrosion mechanism inmore » shales. Extensive links between viruses and microbial hosts demonstrate active viral predation, which may contribute to the release of labile cellular constituents into the extracellular environment. Our analyses show that hydraulic fracturing provides the organismal and chemical inputs for colonization and persistence in the deep terrestrial subsurface.« less

  4. Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir: Microbial life in the deep carbonated biosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freedman, Adam J. E.; Tan, BoonFei; Thompson, Janelle R.

    Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected super-critical (sc) CO 2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO 2 reservoirs, which serve as analogs for the long-term fate of sequestered scCO 2 harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO 2- water separators at a natural scCO 2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four membersmore » of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO 2 and N 2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. In conclusion, the existence of a microbial ecosystem associated with the McElmo Dome scCO 2 reservoir indicates that potential impacts of the deep biosphere on CO 2 fate and transport should be taken into consideration as a component of GCS planning and modelling.« less

  5. Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir: Microbial life in the deep carbonated biosphere

    DOE PAGES

    Freedman, Adam J. E.; Tan, BoonFei; Thompson, Janelle R.

    2017-05-02

    Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected super-critical (sc) CO 2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO 2 reservoirs, which serve as analogs for the long-term fate of sequestered scCO 2 harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO 2- water separators at a natural scCO 2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four membersmore » of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO 2 and N 2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. In conclusion, the existence of a microbial ecosystem associated with the McElmo Dome scCO 2 reservoir indicates that potential impacts of the deep biosphere on CO 2 fate and transport should be taken into consideration as a component of GCS planning and modelling.« less

  6. Deep and Ultra-deep Underground Observatory for In Situ Stress, Fluids, and Life

    NASA Astrophysics Data System (ADS)

    Boutt, D. F.; Wang, H.; Kieft, T. L.

    2008-12-01

    The question 'How deeply does life extend into the Earth?' forms a single, compelling vision for multidisciplinary science opportunities associated with physical and biological processes occurring naturally or in response to construction in the deep and ultra-deep subsurface environment of the Deep Underground Science and Engineering Laboratory (DUSEL) in the former Homestake mine. The scientific opportunity is to understand the interaction between the physical environment and microbial life, specifically, the coupling among (1) stress state and deformation; (2) flow and transport and origin of fluids; and (3) energy and nutrient sources for microbial life; and (4) microbial identity, diversity and activities. DUSEL-Homestake offers the environment in which these questions can be addressed unencumbered by competing human activities. Associated with the interaction among these variables are a number of questions that will be addressed at variety of depths and scales in the facility: What factors control the distribution of life as a function of depth and temperature? What patterns in microbial diversity, microbial activity and nutrients are found along this gradient? How do state variables (stress, strain, temperature, and pore pressure) and constitutive properties (permeability, porosity, modulus, etc.) vary with scale (space, depth, time) in a large 4D heterogeneous system: core - borehole - drift - whole mine - regional? How are fluid flow and stress coupled in a low-permeability, crystalline environment dominated by preferential flow paths? How does this interaction influence the distribution of fluids, solutes, gases, colloids, and biological resources (e.g. energy and nutritive substrates) in the deep continental subsurface? What is the interaction between geomechanics/geohydrology and microbiology (microbial abundance, diversity, distribution, and activities)? Can relationships elucidated within the mechanically and hydrologically altered subsurface habitat of the Homestake DUSEL be extrapolated to the pristine subsurface biosphere? In the absence of extensive intrusive investigations (drifts, mines, etc), can we characterize hydrogeologic and geomechanical processes in the subsurface? To what depth can we effectively characterize such processes, and what is the confidence in our interpretations? In addition to addressing these question in the 10-km3 of mine volume, the Homestake facility offers the deepest drilling platform in North America. The extant depth of 8000 feet can be doubled by drilling. An array of three or more 8,200 ft. boreholes, wire-line drilled from the 8,000 ft. level at Homestake will probe to at least 16,200 ft. below land surface, a depth at this location approaching the expected lower biosphere limit (e.g. the 120°C isotherm). Cores will be collected aseptically and then fracture patterns (e.g., orientation, aperture, etc.) will be determined and fracture fluids will be intensively sampled over time. Cores and fracture fluids will be analyzed for indigenous microbial communities, including their genetic elements, metabolic processes, and biosignatures.

  7. Microbial structures in an Alpine Thermal Spring - Microscopic techniques for the examination of Biofilms in a Subsurface Environment

    NASA Astrophysics Data System (ADS)

    Dornmayr-Pfaffenhuemer, Marion; Pierson, Elisabeth; Janssen, Geert-Jan; Stan-Lotter, Helga

    2010-05-01

    The research into extreme environments hast important implications for biology and other sciences. Many of the organisms found there provide insights into the history of Earth. Life exists in all niches where water is present in liquid form. Isolated environments such as caves and other subsurface locations are of interest for geomicrobiological studies. And because of their "extra-terrestrial" conditions such as darkness and mostly extreme physicochemical state they are also of astrobiological interest. The slightly radioactive thermal spring at Bad Gastein (Austria) was therefore examined for the occurrence of subsurface microbial communities. The surfaces of the submerged rocks in this warm spring were overgrown by microbial mats. Scanning electron microscopy (SEM) performed by the late Dr. Wolfgang Heinen revealed an interesting morphological diversity in biofilms found in this environment (1, 2). Molecular analysis of the community structure of the radioactive subsurface thermal spring was performed by Weidler et al. (3). The growth of these mats was simulated using sterile glass slides which were exposed to the water stream of the spring. Those mats were analysed microscopically. Staining, using fluorescent dyes such as 4',6-Diamidino-2-phenylindol (DAPI), gave an overview of the microbial diversity of these biofilms. Additional SEM samples were prepared using different fixation protocols. Scanning confocal laser microscopy (SCLM) allowed a three dimensional view of the analysed biofilms. This work presents some electron micrographs of Dr. Heinen and additionally new microscopic studies of the biofilms formed on the glass slides. The appearances of the new SEM micrographs were compared to those of Dr. Heinen that were done several years ago. The morphology and small-scale distribution in the microbial mat was analyzed by fluorescence microscopy. The examination of natural biomats and biofilms grown on glass slides using several microscopical techniques suggest that the thermal springs in the Central Alps near Bad Gastein represent a novel and unique habitat for microbial life. Results obtained during these studies revealed reproducibility of Dr. Heinen's micrographs. Hollow reticulated filaments and flat ribbons with parallel hexagonal chambers (web-structures) were found repeatedly. Given the chance that subsurface environments represent a potent opportunity to detect life on planetary bodies it is of big interest to search for representative biosignatures found on earth today. References: 1. Lauwers A. M. & Heinen W. (1985) Mikroskopie (Wien) 42, 94-101. 2. Heinen W. & Lauwers A. M. (1985) Mikroskopie (Wien) 42, 124-134. 3. Weidler G. W., Dornmayr-Pfaffenhuemer M., Gerbl F. W., Heinen W., Stan-Lotter H. (2007) AEM 73, 259-270.

  8. Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.

    2006-01-01

    This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.

  9. Bioremediation of uranium-contaminated groundwater: a systems approach to subsurface biogeochemistry.

    PubMed

    Williams, Kenneth H; Bargar, John R; Lloyd, Jonathan R; Lovley, Derek R

    2013-06-01

    Adding organic electron donors to stimulate microbial reduction of highly soluble U(VI) to less soluble U(IV) is a promising strategy for immobilizing uranium in contaminated subsurface environments. Studies suggest that diagnosing the in situ physiological status of the subsurface community during uranium bioremediation with environmental transcriptomic and proteomic techniques can identify factors potentially limiting U(VI) reduction activity. Models which couple genome-scale in silico representations of the metabolism of key microbial populations with geochemical and hydrological models may be able to predict the outcome of bioremediation strategies and aid in the development of new approaches. Concerns remain about the long-term stability of sequestered U(IV) minerals and the release of co-contaminants associated with Fe(III) oxides, which might be overcome through targeted delivery of electrons to select microorganisms using in situ electrodes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Microbial degradation of crude oil and some model hydrocarbons

    USGS Publications Warehouse

    Chang, Fu-Hsian; Noben, N.N.; Brand, Danny; Hult, Marc F.

    1988-01-01

    Research on microbial degradation of crude oil in the shallow subsurface at a spill site near Bemidji, Minn. (fig. C-l), began in 1983 (Hull, 1984; Chang and Ehrlich, 1984). The rate and extent of crude oil and model hydrocarbon biodegradation by the indigenous microbial community was measured in the laboratory at several concentrations of inorganic nutrients, conditions of oxygen availability, incubation temperatures, and incubation time.

  11. Abundance and Distribution of Microbial Cells and Viruses in an Alluvial Aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Donald; Nolan, Jason; Williams, Kenneth H.

    Viruses are the most abundant biological entity on Earth and their interactions with microbial communities are recognized to influence microbial ecology and impact biogeochemical cycling in various ecosystems. While the factors that control the distribution of viruses in surface aquatic environments are well-characterized, the abundance and distribution of continental subsurface viruses with respect to microbial abundance and biogeochemical parameters have not yet been established. In order to begin to understand the factors governing virus distribution in subsurface environments, we assessed microbial cell and virus abundance in groundwater concurrent with groundwater chemistry in a uranium impacted alluvial aquifer adjoining the Coloradomore » River near Rifle, CO. Virus abundance ranged from 8.0 × 10 4 to 1.0 × 10 6 mL -1 and exceeded cell abundance in all samples (cell abundance ranged from 5.8 × 10 4 to 6.1 × 10 5 mL -1). The virus to microbial cell ratio ranged from 1.1 to 8.1 and averaged 3.0 ± 1.6 with virus abundance most strongly correlated to cell abundance (Spearman's ρ = 0.73, p < 0.001). Both viruses and cells were positively correlated to dissolved organic carbon (DOC) with cells having a slightly stronger correlation (Spearman's ρ = 0.46, p < 0.05 and ρ = 0.54, p < 0.05; respectively). Groundwater uranium was also strongly correlated with DOC and virus and cell abundance (Spearman's ρ = 0.62, p < 0.05; ρ = 0.46, p < 0.05; and ρ = 0.50, p < 0.05; respectively). Together the data indicate that microbial cell and virus abundance are correlated to the geochemical conditions in the aquifer. As such local geochemical conditions likely control microbial host cell abundance which in turn controls viral abundance. Given the potential impacts of viral-mediated cell lysis such as liberation of labile organic matter from lysed cells and changes in microbial community structure, viral interactions with the microbiota should be considered in an effort to understand subsurface biogeochemical cycling and contaminant mobility.« less

  12. Abundance and Distribution of Microbial Cells and Viruses in an Alluvial Aquifer

    DOE PAGES

    Pan, Donald; Nolan, Jason; Williams, Kenneth H.; ...

    2017-07-11

    Viruses are the most abundant biological entity on Earth and their interactions with microbial communities are recognized to influence microbial ecology and impact biogeochemical cycling in various ecosystems. While the factors that control the distribution of viruses in surface aquatic environments are well-characterized, the abundance and distribution of continental subsurface viruses with respect to microbial abundance and biogeochemical parameters have not yet been established. In order to begin to understand the factors governing virus distribution in subsurface environments, we assessed microbial cell and virus abundance in groundwater concurrent with groundwater chemistry in a uranium impacted alluvial aquifer adjoining the Coloradomore » River near Rifle, CO. Virus abundance ranged from 8.0 × 10 4 to 1.0 × 10 6 mL -1 and exceeded cell abundance in all samples (cell abundance ranged from 5.8 × 10 4 to 6.1 × 10 5 mL -1). The virus to microbial cell ratio ranged from 1.1 to 8.1 and averaged 3.0 ± 1.6 with virus abundance most strongly correlated to cell abundance (Spearman's ρ = 0.73, p < 0.001). Both viruses and cells were positively correlated to dissolved organic carbon (DOC) with cells having a slightly stronger correlation (Spearman's ρ = 0.46, p < 0.05 and ρ = 0.54, p < 0.05; respectively). Groundwater uranium was also strongly correlated with DOC and virus and cell abundance (Spearman's ρ = 0.62, p < 0.05; ρ = 0.46, p < 0.05; and ρ = 0.50, p < 0.05; respectively). Together the data indicate that microbial cell and virus abundance are correlated to the geochemical conditions in the aquifer. As such local geochemical conditions likely control microbial host cell abundance which in turn controls viral abundance. Given the potential impacts of viral-mediated cell lysis such as liberation of labile organic matter from lysed cells and changes in microbial community structure, viral interactions with the microbiota should be considered in an effort to understand subsurface biogeochemical cycling and contaminant mobility.« less

  13. Workshop to develop deep-life continental scientific drilling projects

    DOE PAGES

    Kieft, T. L.; Onstott, T. C.; Ahonen, L.; ...

    2015-05-29

    The International Continental Scientific Drilling Program (ICDP) has long espoused studies of deep subsurface life, and has targeted fundamental questions regarding subsurface life, including the following: "(1) What is the extent and diversity of deep microbial life and what are the factors limiting it? (2) What are the types of metabolism/carbon/energy sources and the rates of subsurface activity? (3) How is deep microbial life adapted to subsurface conditions? (4) How do subsurface microbial communities affect energy resources? And (5) how does the deep biosphere interact with the geosphere and atmosphere?" (Horsfield et al., 2014) Many ICDP-sponsored drilling projects have includedmore » a deep-life component; however, to date, not one project has been driven by deep-life goals, in part because geomicrobiologists have been slow to initiate deep biosphere-driven ICDP projects. Therefore, the Deep Carbon Observatory (DCO) recently partnered with the ICDP to sponsor a workshop with the specific aim of gathering potential proponents for deep-life-driven ICDP projects and ideas for candidate drilling sites. Twenty-two participants from nine countries proposed projects and sites that included compressional and extensional tectonic environments, evaporites, hydrocarbon-rich shales, flood basalts, Precambrian shield rocks, subglacial and subpermafrost environments, active volcano–tectonic systems, megafan deltas, and serpentinizing ultramafic environments. The criteria and requirements for successful ICDP applications were presented. Deep-life-specific technical requirements were discussed and it was concluded that, while these procedures require adequate planning, they are entirely compatible with the sampling needs of other disciplines. As a result of this workshop, one drilling workshop proposal on the Basin and Range Physiographic Province (BRPP) has been submitted to the ICDP, and several other drilling project proponents plan to submit proposals for ICDP-sponsored drilling workshops in 2016.« less

  14. Chemolithotrophy in the continental deep subsurface: Sanford Underground Research Facility (SURF), USA

    PubMed Central

    Osburn, Magdalena R.; LaRowe, Douglas E.; Momper, Lily M.; Amend, Jan P.

    2014-01-01

    The deep subsurface is an enormous repository of microbial life. However, the metabolic capabilities of these microorganisms and the degree to which they are dependent on surface processes are largely unknown. Due to the logistical difficulty of sampling and inherent heterogeneity, the microbial populations of the terrestrial subsurface are poorly characterized. In an effort to better understand the biogeochemistry of deep terrestrial habitats, we evaluate the energetic yield of chemolithotrophic metabolisms and microbial diversity in the Sanford Underground Research Facility (SURF) in the former Homestake Gold Mine, SD, USA. Geochemical data, energetic modeling, and DNA sequencing were combined with principle component analysis to describe this deep (down to 8100 ft below surface), terrestrial environment. SURF provides access into an iron-rich Paleoproterozoic metasedimentary deposit that contains deeply circulating groundwater. Geochemical analyses of subsurface fluids reveal enormous geochemical diversity ranging widely in salinity, oxidation state (ORP 330 to −328 mV), and concentrations of redox sensitive species (e.g., Fe2+ from near 0 to 6.2 mg/L and Σ S2- from 7 to 2778μg/L). As a direct result of this compositional buffet, Gibbs energy calculations reveal an abundance of energy for microorganisms from the oxidation of sulfur, iron, nitrogen, methane, and manganese. Pyrotag DNA sequencing reveals diverse communities of chemolithoautotrophs, thermophiles, aerobic and anaerobic heterotrophs, and numerous uncultivated clades. Extrapolated across the mine footprint, these data suggest a complex spatial mosaic of subsurface primary productivity that is in good agreement with predicted energy yields. Notably, we report Gibbs energy normalized both per mole of reaction and per kg fluid (energy density) and find the later to be more consistent with observed physiologies and environmental conditions. Further application of this approach will significantly expand our understanding of the deep terrestrial biosphere. PMID:25429287

  15. Geophysical Monitoring of Coupled Microbial and Geochemical Processes During Stimulated Subsurface Bioremediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Kenneth H.; Kemna, Andreas; Wilkins, Michael J.

    2009-08-05

    Understanding how microorganisms alter their physical and chemical environment during bioremediation is hindered by our inability to resolve subsurface microbial activity with high spatial resolution. Here we demonstrate the use of a minimally invasive geophysical technique to monitor stimulated microbial activity during acetate amendment in an aquifer near Rifle, Colorado. During electrical induced polarization (IP) measurements, spatiotemporal variations in the phase response between imposed electric current and the resultant electric field correlated with changes in groundwater geochemistry accompanying stimulated iron and sulfate reduction and sulfide mineral precipitation. The magnitude of the phase response varied with measurement frequency (0.125 and 1more » Hz) andwasdependent upon the dominant metabolic process. The spectral effect was corroborated using a biostimulated column experiment containing Rifle sediments and groundwater. Fluids and sediments recovered from regions exhibiting an anomalous phase response were enriched in Fe(II), dissolved sulfide, and cell-associated FeS nanoparticles. The accumulation of mineral precipitates and electroactive ions altered the ability of pore fluids to conduct electrical charge, accounting for the anomalous IP response and revealing the usefulness of multifrequency IP measurements for monitoring mineralogical and geochemical changes accompanying stimulated subsurface bioremediation.« less

  16. Looking For a Needle in the Haystack: Deciphering Indigenous 1.79 km Deep Subsurface Microbial Communities from Drilling Mud Contaminants Using 454 Pyrotag Sequencing

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Cann, I.; Mackie, R.; Price, N.; Flynn, T. M.; Sanford, R.; Miller, P.; Chia, N.; Kumar, C. G.; Kim, P.; Sivaguru, M.; Fouke, B. W.

    2010-12-01

    Knowledge of the composition, structure and activity of microbial communities that live in deeply buried sedimentary rocks is fundamental to the future of subsurface biosphere stewardship as it relates to hydrocarbon exploration and extraction, carbon sequestration, gas storage and groundwater management. However, the study of indigenous subsurface microorganisms has been limited by the technical challenges of collecting deep formation water samples that have not been heavily contaminated by the mud used to drill the wells. To address this issue, a “clean-sampling method” deploying the newly developed Schlumberger Quicksilver MDT probe was used to collect a subsurface sample at a depth of 1.79 km (5872 ft) from an exploratory well within Cambrian-age sandstones in the Illinois Basin. This yielded a formation water sample that was determined to have less than 4% drilling mud contamination based on tracking changes in the aqueous geochemistry of the formation water during ~3 hours of pumping at depth prior to sample collection. A suite of microscopy and culture-independent molecular analyses were completed using the DNA extracted from microbial cells in the formation water, which included 454 amplicon pyrosequencing that targeted the V1-V3 hypervariable region of bacterial 16S rRNA gene sequences. Results demonstrated an extremely low diversity microbial community living in formation water at 1.79 km-depth. More than 95 % of the total V1-V3 pyrosequencing reads (n=11574) obtained from the formation water were affiliated with a halophilic γ-proteobacterium and most closely related to the genus Halomonas. In contrast, about 3 % of the V1-V3 sequences in the drilling mud library (n=13044) were classified as genus Halomonas but were distinctly different and distantly related to the formation water Halomonas detected at 1.79 km-depth. These results were consistent with those obtained using a suite of other molecular screens (e.g., Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and the initial full length 16S rRNA amplicon libraries) and bioinformatic analyses (e.g., 16S rRNA and Open Reading Frame (ORF) calls established from the 454 metagenomic community analyses). Functional pathway modeling is underway to evaluate the adaptation of this indigenous microbial community to the hydrologic and geologic history of the deep subsurface environment of the Illinois Basin.

  17. [Effects of intensive management on soil C and N pools and soil enzyme activities in Moso bamboo plantations.

    PubMed

    Yang, Meng; Li, Yong Fu; Li, Yong Chun; Xiao, Yong Heng; Yue, Tian; Jiang, Pei Kun; Zhou, Guo Mo; Liu, Juan

    2016-11-18

    In order to elucidate the effects of intensive management on soil carbon pool, nitrogen pool, enzyme activities in Moso bamboo (Phyllostachys pubescens) plantations, we collected soil samples from the soil surface (0-20 cm) and subsurface (20-40 cm) layers in the adjacent Moso bamboo plantations with extensive and intensive managements in Sankou Township, Lin'an City, Zhejiang Province. We determined different forms of C, N and soil invertase, urease, catalase and acid phosphatase activities. The results showed that long-term intensive management of Moso bamboo plantations significantly decreased the content and storage of soil organic carbon (SOC), with the SOC storage in the soil surface and subsurface layers decreased by 13.2% and 18.0%, respectively. After 15 years' intensive management of Masoo bamboo plantations, the contents of soil water soluble carbon (WSOC), hot water soluble carbon (HWSOC), microbial carbon (MBC) and readily oxidizable carbon (ROC) were significantly decreased in the soil surface and subsurface layers. The soil N storage in the soil surface and subsurface layers in intensively managed Moso bamboo plantations increased by 50.8% and 36.6%, respectively. Intensive management significantly increased the contents of nitrate-N (NO 3 - -N) and ammonium-N (NH 4 + -N), but decreased the contents of water-soluble nitrogen (WSON) and microbial biomass nitrogen (MBN). After 15 years' intensive management of Masoo bamboo plantations, the soil invertase, urease, catalase and acid phosphatase activities in the soil surface layer were significantly decreased, the soil acid phosphatase activity in the soil subsurface layer were significantly decreased, and other enzyme activities in the soil subsurface layer did not change. In conclusion, long-term intensive management led to a significant decline of soil organic carbon storage, soil labile carbon and microbial activity in Moso bamboo plantations. Therefore, we should consider the use of organic fertilizer in the intensive mana-gement process for the sustainable management of Moso bamboo plantations in the future.

  18. Biological low pH Mn(II) oxidation in a manganese deposit influenced by metal-rich groundwater

    USGS Publications Warehouse

    Bohu, Tsing; Akob, Denise M.; Abratis, Michael; Lazar, Cassandre S.; Küsel, Kirsten

    2016-01-01

    The mechanisms, key organisms, and geochemical significance of biological low-pH Mn(II) oxidation are largely unexplored. Here, we investigated the structure of indigenous Mn(II)-oxidizing microbial communities in a secondary subsurface Mn oxide deposit influenced by acidic (pH 4.8) metal-rich groundwater in a former uranium mining area. Microbial diversity was highest in the Mn deposit compared to the adjacent soil layers and included the majority of known Mn(II)-oxidizing bacteria (MOB) and two genera of known Mn(II)-oxidizing fungi (MOF). Electron X-ray microanalysis showed that romanechite [(Ba,H2O)2(Mn4+,Mn3+)5O10] was conspicuously enriched in the deposit. Canonical correspondence analysis revealed that certain fungal, bacterial, and archaeal groups were firmly associated with the autochthonous Mn oxides. Eight MOB within the Proteobacteria, Actinobacteria, and Bacteroidetes and one MOF strain belonging to Ascomycota were isolated at pH 5.5 or 7.2 from the acidic Mn deposit. Soil-groundwater microcosms demonstrated 2.5-fold-faster Mn(II) depletion in the Mn deposit than adjacent soil layers. No depletion was observed in the abiotic controls, suggesting that biological contribution is the main driver for Mn(II) oxidation at low pH. The composition and species specificity of the native low-pH Mn(II) oxidizers were highly adapted to in situ conditions, and these organisms may play a central role in the fundamental biogeochemical processes (e.g., metal natural attenuation) occurring in the acidic, oligotrophic, and metalliferous subsoil ecosystems.

  19. Characterizing Microbial Diversity and Function in Natural Subsurface CO2 Reservoir Systems for Applied Use in Geologic Carbon Sequestration Environments

    NASA Astrophysics Data System (ADS)

    Freedman, A.; Thompson, J. R.

    2013-12-01

    The injection of CO2 into geological formations at quantities necessary to significantly reduce CO2 emissions will represent an environmental perturbation on a continental scale. The extent to which biological processes may play a role in the fate and transport of CO2 injected into geological formations has remained an open question due to the fact that at temperatures and pressures associated with reservoirs targeted for sequestration CO2 exists as a supercritical fluid (scCO2), which has generally been regarded as a sterilizing agent. Natural subsurface accumulations of CO2 serve as an excellent analogue for studying the long-term effects, implications and benefits of CO2 capture and storage (CCS). While several geologic formations bearing significant volumes of nearly pure scCO2 phases have been identified in the western United States, no study has attempted to characterize the microbial community present in these systems. Because the CO2 in the region is thought to have first accumulated millions of years ago, it is reasonable to assume that native microbial populations have undergone extensive and unique physiological and behavioral adaptations to adjust to the exceedingly high scCO2 content. Our study focuses on the microbial communities associated with the dolomite limestone McElmo Dome scCO2 Field in the Colorado Plateau region, approximately 1,000 m below the surface. Fluid samples were collected from 10 wells at an industrial CO2 production facility outside Cortez, CO. Subsamples preserved on site in 3.7% formaldehyde were treated in the lab with Syto 9 green-fluorescent nucleic acid stain, revealing 3.2E6 to 1.4E8 microbial cells per liter of produced fluid and 8.0E9 cells per liter of local pond water used in well drilling fluids. Extracted DNAs from sterivex 0.22 um filters containing 20 L of sample biomass were used as templates for PCR targeting the 16S rRNA gene. 16S rRNA amplicons from these samples were cloned, sequenced and subjected to microbial community analysis to test the hypothesis that a low but non-zero diversity that includes taxa from other subsurface environments will be present, reflecting the extreme ecological selective pressures of scCO2. A wide range of phylogenies have been identified, including genera that fall within the Proteobacteria, Bacilli, and Clostridial classes. Several species identified by 16S BLAST best hits are also known to inhabit deep subsurface environments, preliminarily confirming that a non-zero diversity has been able to survive, and possibly thrive, in the extreme scCO2-exposed deep subsurface environment at McElmo Dome. It thus appears that at least a subsection of native subsurface community biota may withstand the severe stresses associated with the injection of scCO2 for long-term geologic carbon sequestration efforts.

  20. EVALUATION OF COMMERCIAL, MICROBIAL-BASED PRODUCTS TO TREAT PARAFFIN DEPOSITION IN TANK BOTTOMS AND OIL PRODUCTION EQUIPMENT

    EPA Science Inventory

    Introduction:

    Paraffins are naturally-occurring components of crude oils, but often form solids within oil reservoirs and on oil production equipment when oil is harvested from hot subsurface temperatures to the cooler surface environments. Microbial t...

  1. Pilot-scale vadose zone microbial biobarriers removed nitrate leaching from a cattle corral

    USDA-ARS?s Scientific Manuscript database

    activities that involve animal wastes can result in the contamination of subsurface soils by nitrates. In saturated or nearly saturated soils microbial biobarriers are a common method used to remove contaminants from water. This field study was conducted beneath a cattle pen in northeast Colorado a...

  2. Deep subsurface microbiology of 64-71 million year old inactive seamounts along the Louisville Seamount Chain

    NASA Astrophysics Data System (ADS)

    Sylvan, J. B.; Morono, Y.; Grim, S.; Inagaki, F.; Edwards, K. J.

    2013-12-01

    One of the objectives of IODP Expedition 330, Louisville Seamount Trail, was to sample and learn about the subsurface biosphere in the Louisville Seamount Chain (LSC). Seamounts are volcanic constructs that are ubiquitous along the seafloor - models suggest there are >100,000 seamounts of >1 km in height globally (Wessel et al., 2010). Therefore, knowledge about microbiology in the LSC subsurface can broadly be interpreted as representative of much the seafloor. In addition, despite the fact that the vast majority of the sea floor is comprised of crust >10 Ma, the majority of work to date has focused on young sites with active hydrology. Our presentation summarizes work focusing on subsurface microbiology from two different LSC seamounts: holes U1374A (65-71 Ma) and U1376A (64 Ma). We here present data for microbial biomass in the LSC subsurface using a method we developed to quantify microbial biomass in subseafloor ocean crust. We also present results from pyrotag analysis of 15 samples from holes U1374A and holes U1376A, representing several different lithologies from 40-491 meters below seafloor (mbsf) in hole U1374A and from 29-174 mbsf in hole U1376A. Finally, we present preliminary analysis of metagenomic sequencing from three of the samples from Hole U1376A. Biomass was low in the subsurface of both seamounts, ranging from below detection to ~104 cells cm-3. Bacteria comprised >99% of the prokaryotic community in LSC subsurface samples, therefore, bacterial diversity was assessed through 454 pyrosequencing of the V4V6 region of the 16S rRNA gene. Rarefaction analysis indicates that bacterial communities from the LSC subsurface are low diversity, on the order of a few hundred operational taxonomic units per sample. The phyla Actinobacteria, Bacteroidetes, Firmicutes and the classes α-, β- and γ-Proteobacteria are most abundant in the LSC subsurface. Within these, the orders Actinomycetales, Sphingobacteriales, Bacillales and Burkholderiales are the most common. Samples from different lithologies in hole U1374A grouped together, indicating more similarity to each other than to samples from hole U1376A. However, samples from different lithologies in hole U1376A were not similar to other samples from the same site, indicating some differences in the microbial communities between the two seamounts. Preliminary analysis of the metagenomic data will provide further assessment of community structure and reveal likely metabolisms present in the LSC subsurface. Altogether, the biomass data, pyrotag analysis and metagenomic sequencing provide a well-balanced analysis of subsurface microbiology in an old oceanic crustal environment. Wessel, P., Sandwell, D. T. & Kim, S. S. (2010). The Global Seamount Census. Oceanography 23, 24-33.

  3. A minimalistic microbial food web in an excavated deep subsurface clay rock.

    PubMed

    Bagnoud, Alexandre; de Bruijn, Ino; Andersson, Anders F; Diomidis, Nikitas; Leupin, Olivier X; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-01-01

    Clay rocks are being considered for radioactive waste disposal, but relatively little is known about the impact of microbes on the long-term safety of geological repositories. Thus, a more complete understanding of microbial community structure and function in these environments would provide further detail for the evaluation of the safety of geological disposal of radioactive waste in clay rocks. It would also provide a unique glimpse into a poorly studied deep subsurface microbial ecosystem. Previous studies concluded that microorganisms were present in pristine Opalinus Clay, but inactive. In this work, we describe the microbial community and assess the metabolic activities taking place within borehole water. Metagenomic sequencing and genome-binning of a porewater sample containing suspended clay particles revealed a remarkably simple heterotrophic microbial community, fueled by sedimentary organic carbon, mainly composed of two organisms: a Pseudomonas sp. fermenting bacterium growing on organic macromolecules and releasing organic acids and H2, and a sulfate-reducing Peptococcaceae able to oxidize organic molecules to CO(2). In Opalinus Clay, this microbial system likely thrives where pore space allows it. In a repository, this may occur where the clay rock has been locally damaged by excavation or in engineered backfills. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2.

    PubMed

    Jin, Qusheng; Kirk, Matthew F

    2016-01-01

    Geological carbon sequestration captures CO 2 from industrial sources and stores the CO 2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO 2 concentration. This study uses biogeochemical modeling to explore the influence of CO 2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO 2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO 2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO 2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO 2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  5. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2

    PubMed Central

    Jin, Qusheng; Kirk, Matthew F.

    2016-01-01

    Geological carbon sequestration captures CO2 from industrial sources and stores the CO2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO2 concentration. This study uses biogeochemical modeling to explore the influence of CO2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses. PMID:27909425

  6. Search for life on Mars.

    PubMed

    Brack, A; Clancy, P; Fitton, B; Hoffmann, B; Horneck, G; Kurat, G; Maxwell, J; Ori, G; Pillinger, C; Raulin, F; Thomas, N; Westall, F

    1998-06-01

    A multi-user integrated suite of instruments designed to optimize the search for evidence of life on Mars is described. The package includes: -Surface inspection and surface environment analysis to identify the potential Mars landing sites, to inspect the surface geology and mineralogy, to search for visible surficial microbial macrofossils, to study the surface radiation budget and surface oxidation processes, to search for niches for extant life. -Subsurface sample acquisition by core drilling -Analysis of surface and subsurface minerals and organics to characterize the surface mineralogy, to analyse the surface and subsurface oxidants, to analyse the mineralogy of subsurface aliquots, to analyse the organics present in the subsurface aliquots (elemental and molecular composition, isotopes, chirality). -Macroscopic and microscopic inspection of subsurface aliquots to search for life's indicators (paleontological, biological, mineralogical) and to characterize the mineralogy of the subsurface aliquots. The study is led by ESA Manned Spaceflight and Microgravity Directorate.

  7. Modelling coupled microbial processes in the subsurface: Model development, verification, evaluation and application

    NASA Astrophysics Data System (ADS)

    Masum, Shakil A.; Thomas, Hywel R.

    2018-06-01

    To study subsurface microbial processes, a coupled model which has been developed within a Thermal-Hydraulic-Chemical-Mechanical (THCM) framework is presented. The work presented here, focuses on microbial transport, growth and decay mechanisms under the influence of multiphase flow and bio-geochemical reactions. In this paper, theoretical formulations and numerical implementations of the microbial model are presented. The model has been verified and also evaluated against relevant experimental results. Simulated results show that the microbial processes have been accurately implemented and their impacts on porous media properties can be predicted either qualitatively or quantitatively or both. The model has been applied to investigate biofilm growth in a sandstone core that is subjected to a two-phase flow and variable pH conditions. The results indicate that biofilm growth (if not limited by substrates) in a multiphase system largely depends on the hydraulic properties of the medium. When the change in porewater pH which occurred due to dissolution of carbon dioxide gas is considered, growth processes are affected. For the given parameter regime, it has been shown that the net biofilm growth is favoured by higher pH; whilst the processes are considerably retarded at lower pH values. The capabilities of the model to predict microbial respiration in a fully coupled multiphase flow condition and microbial fermentation leading to production of a gas phase are also demonstrated.

  8. Connectivity to the surface determines diversity patterns in subsurface aquifers of the Fennoscandian shield.

    PubMed

    Hubalek, Valerie; Wu, Xiaofen; Eiler, Alexander; Buck, Moritz; Heim, Christine; Dopson, Mark; Bertilsson, Stefan; Ionescu, Danny

    2016-10-01

    Little research has been conducted on microbial diversity deep under the Earth's surface. In this study, the microbial communities of three deep terrestrial subsurface aquifers were investigated. Temporal community data over 6 years revealed that the phylogenetic structure and community dynamics were highly dependent on the degree of isolation from the earth surface biomes. The microbial community at the shallow site was the most dynamic and was dominated by the sulfur-oxidizing genera Sulfurovum or Sulfurimonas at all-time points. The microbial community in the meteoric water filled intermediate aquifer (water turnover approximately every 5 years) was less variable and was dominated by candidate phylum OD1. Metagenomic analysis of this water demonstrated the occurrence of key genes for nitrogen and carbon fixation, sulfate reduction, sulfide oxidation and fermentation. The deepest water mass (5000 year old waters) had the lowest taxon richness and surprisingly contained Cyanobacteria. The high relative abundance of phylogenetic groups associated with nitrogen and sulfur cycling, as well as fermentation implied that these processes were important in these systems. We conclude that the microbial community patterns appear to be shaped by the availability of energy and nutrient sources via connectivity to the surface or from deep geological processes.

  9. Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil.

    PubMed

    Xu, Yilu; Seshadri, Balaji; Sarkar, Binoy; Wang, Hailong; Rumpel, Cornelia; Sparks, Donald; Farrell, Mark; Hall, Tony; Yang, Xiaodong; Bolan, Nanthi

    2018-04-15

    Soil organic carbon is essential to improve soil fertility and ecosystem functioning. Soil microorganisms contribute significantly to the carbon transformation and immobilisation processes. However, microorganisms are sensitive to environmental stresses such as heavy metals. Applying amendments, such as biochar, to contaminated soils can alleviate the metal toxicity and add carbon inputs. In this study, Cd and Pb spiked soils treated with macadamia nutshell biochar (5% w/w) were monitored during a 49days incubation period. Microbial phospholipid fatty acids (PLFAs) were extracted and analysed as biomarkers in order to identify the microbial community composition. Soil properties, metal bioavailability, microbial respiration, and microbial biomass carbon were measured after the incubation period. Microbial carbon use efficiency (CUE) was calculated from the ratio of carbon incorporated into microbial biomass to the carbon mineralised. Total PLFA concentration decreased to a greater extent in metal contaminated soils than uncontaminated soils. Microbial CUE also decreased due to metal toxicity. However, biochar addition alleviated the metal toxicity, and increased total PLFA concentration. Both microbial respiration and biomass carbon increased due to biochar application, and CUE was significantly (p<0.01) higher in biochar treated soils than untreated soils. Heavy metals reduced the microbial carbon sequestration in contaminated soils by negatively influencing the CUE. The improvement of CUE through biochar addition in the contaminated soils could be attributed to the decrease in metal bioavailability, thereby mitigating the biotoxicity to soil microorganisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Biogeochemical Modeling of In Situ U(VI) Reduction and Immobilization with Emulsified Vegetable Oil as the Electron Donor at a Field Site in Oak Ridge, Tennessee

    NASA Astrophysics Data System (ADS)

    Tang, G.; Parker, J.; Wu, W.; Schadt, C. W.; Watson, D. B.; Brooks, S. C.; Orifrc Team

    2011-12-01

    A comprehensive biogeochemical model was developed to quantitatively describe the coupled hydrologic, geochemical and microbiological processes that occurred following injection of emulsified vegetable oil (EVO) as the electron donor to immobilize U(VI) at the Oak Ridge Integrated Field Research Challenge site (ORIFRC) in Tennessee. The model couples the degradation of EVO, production and oxidation of long-chain fatty acids (LCFA), glycerol, hydrogen and acetate, reduction of nitrate, manganese, ferrous iron, sulfate and uranium, and methanoganesis with growth of multiple microbial groups. The model describes the evolution of geochemistry and microbial populations not only in the aqueous phase as typically observed, but also in the mineral phase and therefore enables us to evaluate the applicability of rates from the literature for field scale assessment, estimate the retention and degradation rates of EVO and LCFA, and assess the influence of the coupled processes on fate and transport of U(VI). Our results suggested that syntrophic bacteria or metal reducers might catalyze LCFA oxidation in the downstream locations when sulfate was consumed, and competition between methanogens and others for electron donors and slow growth of methanogen might contribute to the sustained reducing condition. Among the large amount of hydrologic, geochemical and microbiological parameter values, the initial biomass, and the interactions (e.g., inhibition) of the microbial functional groups, and the rate and extent of Mn and Fe oxide reduction appear as the major sources of uncertainty. Our model provides a platform to conduct numerical experiments to study these interactions, and could be useful for further iterative experimental and modeling investigations into the bioreductive immobiliztion of radionuclide and metal contaminants in the subsurface.

  11. Feeding a subsurface biosphere: radiolysis and abiogenic energy sources

    NASA Astrophysics Data System (ADS)

    Onstott, T.

    Noble gas analyses of ground water collected from the deep, fractured, basaltic andesite and quartzite Archean strata in South Africa suggest subsurface residence times ranging from tens to hundreds of millions of years. Hydraulically isolated compartments of highly saline water contain hundreds of μM concentrations of gas comprised primarily of C1-4 hydrocarbons, H2 and He, with minor Ar and N .2 Carbon and hydrogen isotopic analyses of the hydrocarbons suggest an abiogenic origin com atible with surface catalysed reductive assimilation (i.e. Fischer-Tropschp synthesis). H2 and He data suggest that the H2 is generated by subsurface radiolysis of water. One sample of a saline, isolated water/gas pocket agrees exactly with that predicted by radioactive decay of U, Th, K in the host rock and indicates a subsurface H2 production rate of 0.1 to 1 nM/yr. Other samples yielded less H2 than predicted and require a sink for this H2 . Possible sinks include microbial H2 oxidation and abiotic formation of hydrocarbons at rates slightly less than the H2 production rate. Highly diffusive H2 is essential for life in deep subsurface environments where only trace amounts of organic carbon exist. Lithoautotrophic microbes can acquire energy from the redox reactions involving H2 with other electron acceptors (Fe3 +, SO4 2 - or CO2 ), to synthesis organic carbon and can be fully independent of solar-driven photosynthesis. The microbial abundance in many of these ground water samples, however, is below our detection limit (<5000 cells/ml). This contrasts with shallow sedimentary aquifers where H2 levels of tens of nM are regulated by the coexistence of autotrophs/lithotrophs and heterotrophs for maximum efficiency of H2 utilization. The excessive H2 found in deep crustal environments implies that these microbial ecosystems are electron-acceptor and or substrate limited. The oxidants generated by water radiolysis interact with the reduced solid phases in the rock matrix, e.g. pyrite, producing potential electron acceptors, e.g. Fe3 +, that may be readily available for consumption by microbial communities than H . Nitrogen doesn't appear to be2 limited, because ammonia concentrations range upwards to tens of μM, but its origin remains a mystery. The unused H2 , CH4 and He continue to migrate upward to shallow aquifers. Microbial H2 oxidation may dominate over Fischer-Tropsch reactions in crustal environments where formation temperatures are <120o C; and vice versa for deeper crustal environments. This H2 cycle should be present on extraterrestrial bodies, producing potential chemical energy and crustal scale diffusive fluxes from the interaction subsurface ice/water and radiogenic decay.

  12. Orenia metallireducens sp. nov. strain Z6, a Novel Metal-reducing [member of the Phylum] Firmicute from the Deep Subsurface

    DOE PAGES

    Dong, Yiran; Sanford, Robert A.; Boyanov, Maxim I.; ...

    2016-08-26

    A novel halophilic and metal-reducing bacterium, Orenia metallireducens strain Z6, was isolated from briny groundwater extracted from a 2.02 km-deep borehole in the Illinois Basin, IL. This organism shared 96% 16S rRNA gene similarity with Orenia marismortui but demonstrated physiological properties previously unknown for this genus. In addition to exhibiting a fermentative metabolism typical of the genus Orenia, strain Z6 reduces various metal oxides [Fe(III), Mn(IV), Co(III), and Cr(VI)], using H 2 as the electron donor. Strain Z6 actively reduced ferrihydrite over broad ranges of pH (6 to 9.6), salinity (0.4 to 3.5 M NaCl), and temperature (20 to 60°C).more » At pH 6.5, strain Z6 also reduced more crystalline iron oxides, such as lepidocrocite (γ-FeOOH), goethite (α-FeOOH), and hematite (α-Fe 2O 3). Analysis of X-ray absorption fine structure (XAFS) following Fe(III) reduction by strain Z6 revealed spectra from ferrous secondary mineral phases consistent with the precipitation of vivianite [Fe 3(PO 4) 2] and siderite (FeCO 3). The draft genome assembled for strain Z6 is 3.47 Mb in size and contains 3,269 protein-coding genes. Unlike the well-understood iron-reducing Shewanella and Geobacter species, this organism lacks the c-type cytochromes for typical Fe(III) reduction. Strain Z6 represents the first bacterial species in the genus Orenia (order Halanaerobiales) reported to reduce ferric iron minerals and other metal oxides. This microbe expands both the phylogenetic and physiological scopes of iron-reducing microorganisms known to inhabit the deep subsurface and suggests new mechanisms for microbial iron reduction. In conclusion, these distinctions from other Orenia spp. support the designation of strain Z6 as a new species, Orenia metallireducens sp. nov.« less

  13. Deep aquifer prokaryotic community responses to CO2 geosequestration

    NASA Astrophysics Data System (ADS)

    Mu, A.; Moreau, J. W.

    2015-12-01

    Little is known about potential microbial responses to supercritical CO2 (scCO2) injection into deep subsurface aquifers, a currently experimental means for mitigating atmospheric CO2 pollution being trialed at several locations around the world. One such site is the Paaratte Formation of the Otway Basin (~1400 m below surface; 60°C; 2010 psi), Australia. Microbial responses to scCO2 are important to understand as species selection may result in changes to carbon and electron flow. A key aim is to determine if biofilm may form in aquifer pore spaces and reduce aquifer permeability and storage. This study aimed to determine in situ, using 16S rRNA gene, and functional metagenomic analyses, how the microbial community in the Otway Basin geosequestration site responded to experimental injection of 150 tons of scCO2. We demonstrate an in situ sampling approach for detecting deep subsurface microbial community changes associated with geosequestration. First-order level analyses revealed a distinct shift in microbial community structure following the scCO2 injection event, with proliferation of genera Comamonas and Sphingobium. Similarly, functional profiling of the formation revealed a marked increase in biofilm-associated genes (encoding for poly-β-1,6-N-acetyl-D-glucosamine). Global analysis of the functional gene profile highlights that scCO2 injection potentially degraded the metabolism of CH4 and lipids. A significant decline in carboxydotrophic gene abundance (cooS) and an anaerobic carboxydotroph OTU (Carboxydocella), was observed in post-injection samples. The potential impacts on the flow networks of carbon and electrons to heterotrophs are discussed. Our findings yield insights for other subsurface systems, such as hydrocarbon-rich reservoirs and high-CO2 natural analogue sites.

  14. Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions

    DOE PAGES

    Kwon, Man Jae; O’Loughlin, Edward J.; Boyanov, Maxim I.; ...

    2016-01-22

    Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over timemore » revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. As a result, these data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.« less

  15. Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Man Jae; O’Loughlin, Edward J.; Boyanov, Maxim I.

    Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over timemore » revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. As a result, these data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.« less

  16. Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions.

    PubMed

    Kwon, Man Jae; O'Loughlin, Edward J; Boyanov, Maxim I; Brulc, Jennifer M; Johnston, Eric R; Kemner, Kenneth M; Antonopoulos, Dionysios A

    2016-01-01

    Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over time revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. These data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.

  17. Microbiological-enhanced mixing across scales during in-situ bioreduction of metals and radionuclides at Department of Energy Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valocchi, Albert; Werth, Charles; Liu, Wen-Tso

    Bioreduction is being actively investigated as an effective strategy for subsurface remediation and long-term management of DOE sites contaminated by metals and radionuclides (i.e. U(VI)). These strategies require manipulation of the subsurface, usually through injection of chemicals (e.g., electron donor) which mix at varying scales with the contaminant to stimulate metal reducing bacteria. There is evidence from DOE field experiments suggesting that mixing limitations of substrates at all scales may affect biological growth and activity for U(VI) reduction. Although current conceptual models hold that biomass growth and reduction activity is limited by physical mixing processes, a growing body of literaturemore » suggests that reaction could be enhanced by cell-to-cell interaction occurring over length scales extending tens to thousands of microns. Our project investigated two potential mechanisms of enhanced electron transfer. The first is the formation of single- or multiple-species biofilms that transport electrons via direct electrical connection such as conductive pili (i.e. ‘nanowires’) through biofilms to where the electron acceptor is available. The second is through diffusion of electron carriers from syntrophic bacteria to dissimilatory metal reducing bacteria (DMRB). The specific objectives of this work are (i) to quantify the extent and rate that electrons are transported between microorganisms in physical mixing zones between an electron donor and electron acceptor (e.g. U(IV)), (ii) to quantify the extent that biomass growth and reaction are enhanced by interspecies electron transport, and (iii) to integrate mixing across scales (e.g., microscopic scale of electron transfer and macroscopic scale of diffusion) in an integrated numerical model to quantify these mechanisms on overall U(VI) reduction rates. We tested these hypotheses with five tasks that integrate microbiological experiments, unique micro-fluidics experiments, flow cell experiments, and multi-scale numerical models. Continuous fed-batch reactors were used to derive kinetic parameters for DMRB, and to develop an enrichment culture for elucidation of syntrophic relationships in a complex microbial community. Pore and continuum scale experiments using microfluidic and bench top flow cells were used to evaluate the impact of cell-to-cell and microbial interactions on reaction enhancement in mixing-limited bioactive zones, and the mechanisms of this interaction. Some of the microfluidic experiments were used to develop and test models that considers direct cell-to-cell interactions during metal reduction. Pore scale models were incorporated into a multi-scale hybrid modeling framework that combines pore scale modeling at the reaction interface with continuum scale modeling. New computational frameworks for combining continuum and pore-scale models were also developed« less

  18. Community Characterization of Microbial Populations Found at a Cold Water Sulfidic Spring in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Trivedi, C.; Lau, G. E.; Templeton, A. S.; Grasby, S. E.; Spear, J. R.

    2015-12-01

    The unique environment on Europa makes it an ideal target for astrobiological investigation. One such earth-based analogue to aid in this investigation is the sulfur-dominated glacial spring system found at Borup Fiord Pass (BFP), Ellesmere Island, Nunavut, Canada. In this system, subsurface microbial sulfate reduction produces hydrogen sulfide, which is transported through the glacier along spring channels [1]. As the surface oxidation of H2S occurs, resultant deposition of elemental sulfur (S0) and other minerals becomes visible (attached image). The energy released from these reactions can support potential microbial metabolisms and may be a valuable representation of microbial processes occurring on Europa. The resulting sulfur minerals provide sensitive records of dynamic atmospheric, geological, hydrological, chemical, and biological processes on planetary surfaces. Moreover, we expect that the S0-rich deposits of this glacial spring system will serve as a mineralogical record for biological activity and will provide a valuable tool for recognizing potential sulfur-based life on Europa. During a recent collaborative expedition (2014) to BFP, samples were taken from the toe of the glacier in an area called the 'Blister Crust' (attached image). At this location, glacial channels reach the surface, representing an active interface between subsurface and surface processes. Initial geochemical characterization at the site revealed high amounts of aqueous sulfide (1.8 mM) and hydrogen (29 nM), which likely serve as the electron donation potential in the system. Furthermore, preliminary 16S rRNA gene sequencing has shown a high abundance of the genus Sulfurimonas, which is a known sulfur metabolizer. Our research seeks to further characterize microbial communities found at this interface in order to elucidate information regarding in situ sulfur cycling and the potential to tie this into subsurface/surface processes on Europa. Continued work will provide guidance into potential astrobiological targets on the surface of Europa, predominantly in regions where subsurface fluids interact with surface icings. References: [1] Grasby S. E. et al. (2003) Astrobiology, 3(3), 583-596.

  19. Iberian Pyrite Belt Subsurface Life (IPBSL), a drilling project in a geochemical Mars terrestrial analogue

    NASA Astrophysics Data System (ADS)

    Amils, R.; Fernández-Remolar, D. C.; Parro, V.; Manfredi, J. A.; Timmis, K.; Oggerin, M.; Sánchez-Román, M.; López, F. J.; Fernández, J. P.; Omoregie, E.; Gómez-Ortiz, D.; Briones, C.; Gómez, F.; García, M.; Rodríguez, N.; Sanz, J. L.

    2012-09-01

    Iberian Pyrite Belt Subsurface Life (IPBSL) is a drilling project specifically designed to characterize the subsurface ecosystems operating in the Iberian Pyrite Belt (IPB), in the area of Peña de Hierro, and responsible of the extreme acidic conditions existing in the Rio Tinto basin [1]. Rio Tinto is considered a good geochemical terrestrial analogue of Mars [2, 3]. A dedicated geophysical characterization of the area selected two drilling sites (4) due to the possible existence of water with high ionic content (low resistivity). Two wells have been drilled in the selected area, BH11 and BH10, of depths of 340 and 620 meters respectively, with recovery of cores and generation of samples in anaerobic and sterile conditions. Preliminary results showed an important alteration of mineral structures associated with the presence of water, with production of expected products from the bacterial oxidation of pyrite (sulfates and ferric iron). Ion chromatography of water soluble compounds from uncontaminated samples showed the existence of putative electron donors (ferrous iron, nitrite in addition of the metal sulfides), electron acceptors (sulfate, nitrate, ferric iron) as well as variable concentration of metabolic organic acids (mainly acetate, formate, propionate and oxalate), which are strong signals of the presence of active subsurface ecosystem associated to the high sulfidic mineral content of the IPB. The system is driven by oxidants that appear to be provided by the rock matrix, only groundwater is needed to launch microbial metabolism. The geological, geomicrobiological and molecular biology analysis which are under way, should allow the characterization of this ecosystem of paramount interest in the design of an astrobiological underground Mars exploration mission in the near future.

  20. Evaluation of a genome-scale in silico metabolic model for Geobacter metallireducens by using proteomic data from a field biostimulation experiment.

    PubMed

    Fang, Yilin; Wilkins, Michael J; Yabusaki, Steven B; Lipton, Mary S; Long, Philip E

    2012-12-01

    Accurately predicting the interactions between microbial metabolism and the physical subsurface environment is necessary to enhance subsurface energy development, soil and groundwater cleanup, and carbon management. This study was an initial attempt to confirm the metabolic functional roles within an in silico model using environmental proteomic data collected during field experiments. Shotgun global proteomics data collected during a subsurface biostimulation experiment were used to validate a genome-scale metabolic model of Geobacter metallireducens-specifically, the ability of the metabolic model to predict metal reduction, biomass yield, and growth rate under dynamic field conditions. The constraint-based in silico model of G. metallireducens relates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637 G. metallireducens proteins detected during the 2008 experiment were associated with specific metabolic reactions in the in silico model. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through the in silico model reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low abundances of proteins associated with amino acid transport and metabolism, revealed pathways or flux constraints in the in silico model that could be updated to more accurately predict metabolic processes that occur in the subsurface environment.

  1. A Benchmarking Initiative for Reactive Transport Modeling Applied to Subsurface Environmental Applications

    NASA Astrophysics Data System (ADS)

    Steefel, C. I.

    2015-12-01

    Over the last 20 years, we have seen the evolution of multicomponent reactive transport modeling and the expanding range and increasing complexity of subsurface environmental applications it is being used to address. Reactive transport modeling is being asked to provide accurate assessments of engineering performance and risk for important issues with far-reaching consequences. As a result, the complexity and detail of subsurface processes, properties, and conditions that can be simulated have significantly expanded. Closed form solutions are necessary and useful, but limited to situations that are far simpler than typical applications that combine many physical and chemical processes, in many cases in coupled form. In the absence of closed form and yet realistic solutions for complex applications, numerical benchmark problems with an accepted set of results will be indispensable to qualifying codes for various environmental applications. The intent of this benchmarking exercise, now underway for more than five years, is to develop and publish a set of well-described benchmark problems that can be used to demonstrate simulator conformance with norms established by the subsurface science and engineering community. The objective is not to verify this or that specific code--the reactive transport codes play a supporting role in this regard—but rather to use the codes to verify that a common solution of the problem can be achieved. Thus, the objective of each of the manuscripts is to present an environmentally-relevant benchmark problem that tests the conceptual model capabilities, numerical implementation, process coupling, and accuracy. The benchmark problems developed to date include 1) microbially-mediated reactions, 2) isotopes, 3) multi-component diffusion, 4) uranium fate and transport, 5) metal mobility in mining affected systems, and 6) waste repositories and related aspects.

  2. Subsurface Microbes Expanding the Tree of Life

    ScienceCinema

    Banfield, Jillian

    2018-02-14

    Jillian Banfield, Ph.D., UC Berkeley Professor and Berkeley Lab Earth Sciences Division staff scientist and long-time user of the DOE Joint Genome Institute’s resources shares her perspective on how the DOE JGI helps advance her research addressing knowledge gaps related to the roles of subsurface microbial communities in biogeochemical cycling. The video was filmed near the town of Rifle, Colorado at the primary field site for Phase I of the Subsurface Systems Scientific Focus Area 2.0 sponsored by the DOE Office of Biological and Environmental Research.

  3. Microbial Metagenomics Reveals Climate-Relevant Subsurface Biogeochemical Processes.

    PubMed

    Long, Philip E; Williams, Kenneth H; Hubbard, Susan S; Banfield, Jillian F

    2016-08-01

    Microorganisms play key roles in terrestrial system processes, including the turnover of natural organic carbon, such as leaf litter and woody debris that accumulate in soils and subsurface sediments. What has emerged from a series of recent DNA sequencing-based studies is recognition of the enormous variety of little known and previously unknown microorganisms that mediate recycling of these vast stores of buried carbon in subsoil compartments of the terrestrial system. More importantly, the genome resolution achieved in these studies has enabled association of specific members of these microbial communities with carbon compound transformations and other linked biogeochemical processes-such as the nitrogen cycle-that can impact the quality of groundwater, surface water, and atmospheric trace gas concentrations. The emerging view also emphasizes the importance of organism interactions through exchange of metabolic byproducts (e.g., within the carbon, nitrogen, and sulfur cycles) and via symbioses since many novel organisms exhibit restricted metabolic capabilities and an associated extremely small cell size. New, genome-resolved information reshapes our view of subsurface microbial communities and provides critical new inputs for advanced reactive transport models. These inputs are needed for accurate prediction of feedbacks in watershed biogeochemical functioning and their influence on the climate via the fluxes of greenhouse gases, CO2, CH4, and N2O. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Significant contribution of Archaea to extant biomass in marine subsurface sediments.

    PubMed

    Lipp, Julius S; Morono, Yuki; Inagaki, Fumio; Hinrichs, Kai-Uwe

    2008-08-21

    Deep drilling into the marine sea floor has uncovered a vast sedimentary ecosystem of microbial cells. Extrapolation of direct counts of stained microbial cells to the total volume of habitable marine subsurface sediments suggests that between 56 Pg (ref. 1) and 303 Pg (ref. 3) of cellular carbon could be stored in this largely unexplored habitat. From recent studies using various culture-independent techniques, no clear picture has yet emerged as to whether Archaea or Bacteria are more abundant in this extensive ecosystem. Here we show that in subsurface sediments buried deeper than 1 m in a wide range of oceanographic settings at least 87% of intact polar membrane lipids, biomarkers for the presence of live cells, are attributable to archaeal membranes, suggesting that Archaea constitute a major fraction of the biomass. Results obtained from modified quantitative polymerase chain reaction and slot-blot hybridization protocols support the lipid-based evidence and indicate that these techniques have previously underestimated archaeal biomass. The lipid concentrations are proportional to those of total organic carbon. On the basis of this relationship, we derived an independent estimate of amounts of cellular carbon in the global marine subsurface biosphere. Our estimate of 90 Pg of cellular carbon is consistent, within an order of magnitude, with previous estimates, and underscores the importance of marine subsurface habitats for global biomass budgets.

  5. Microbial Ecosystems from the Deepest Regions of the Terrestrial Deep Biosphere

    NASA Astrophysics Data System (ADS)

    Moser, D. P.

    2011-12-01

    Although recent discoveries from four continents support the existence of microbial ecosystems across vast regions of our planet's inner space, very little is known about the abundance, distribution, diversity, or ultimate depth limit of subsurface microbial life. These deep lithospheric inhabitants must contend with a variety of potential challenges including high temperature, pressure and salinity, extreme isolation, and low energy flux. Interestingly, although deep microbial ecosystems are assumed to be energy and nutrient limited, it is often difficult to identify any one limiting substrate and the energy for deep life is often present in relative abundance (e.g. as geologically-produced hydrogen or other reduced gases). Recently, the concept of radiation-supported deep microbial ecosystems has gained traction in the literature. In particular, one bacterium, a Firmicute denoted Candidatus Desulforudis audaxviator, has been shown to be prominent, and in cases dominate, in deep fracture fluids from across the Witwatersrand basin of South Africa, where it appears to persist by utilizing H2 and SO42- derived from radiochemical reactions in U-rich host rock. Until recently, these mines were thought to define the geographic limit of this genus and species; however, our recent North American detection of D. audaxviator in radioactive subsurface water resulting from underground nuclear tests both supports earlier assertions concerning the radiochemical lifestyle of D. audaxviator and greatly expands its range. Results such as these suggest that novel modes of life operating without inputs from the photosphere are possible, and thus may have implications for the likelihood of detecting life off the Earth (e.g. in the Martian subsurface). In addition to underground nuclear detonation cavities, this talk will consider insights gained from ongoing microbial ecology assessments from several to date unexplored deep ecosystems accessed via deep mines in the Black Hills (USA) and Canadian Shield (Canada) and exploratory boreholes in the Southern Great Basin (USA). The tantalizing possibility that several of these new potential habitats have exceeded some limit for life will be also be explored.

  6. Phylogeny and phylogeography of functional genes shared among seven terrestrial subsurface metagenomes reveal N-cycling and microbial evolutionary relationships

    PubMed Central

    Lau, Maggie C. Y.; Cameron, Connor; Magnabosco, Cara; Brown, C. Titus; Schilkey, Faye; Grim, Sharon; Hendrickson, Sarah; Pullin, Michael; Sherwood Lollar, Barbara; van Heerden, Esta; Kieft, Thomas L.; Onstott, Tullis C.

    2014-01-01

    Comparative studies on community phylogenetics and phylogeography of microorganisms living in extreme environments are rare. Terrestrial subsurface habitats are valuable for studying microbial biogeographical patterns due to their isolation and the restricted dispersal mechanisms. Since the taxonomic identity of a microorganism does not always correspond well with its functional role in a particular community, the use of taxonomic assignments or patterns may give limited inference on how microbial functions are affected by historical, geographical and environmental factors. With seven metagenomic libraries generated from fracture water samples collected from five South African mines, this study was carried out to (1) screen for ubiquitous functions or pathways of biogeochemical cycling of CH4, S, and N; (2) to characterize the biodiversity represented by the common functional genes; (3) to investigate the subsurface biogeography as revealed by this subset of genes; and (4) to explore the possibility of using metagenomic data for evolutionary study. The ubiquitous functional genes are NarV, NPD, PAPS reductase, NifH, NifD, NifK, NifE, and NifN genes. Although these eight common functional genes were taxonomically and phylogenetically diverse and distinct from each other, the dissimilarity between samples did not correlate strongly with geographical or environmental parameters or residence time of the water. Por genes homologous to those of Thermodesulfovibrio yellowstonii detected in all metagenomes were deep lineages of Nitrospirae, suggesting that subsurface habitats have preserved ancestral genetic signatures that inform the study of the origin and evolution of prokaryotes. PMID:25400621

  7. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    PubMed Central

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  8. RESISTANCE OF MICROBIAL COMMUNITIES FROM ECUADOR ECOSYSTEMS TO REPRESENTATIVE TOXIC METALS - CrO4(2-), Co2+, Ni2+, Cu2+, Hg2+.

    PubMed

    Tashyrev, O B; Prekrasna, Ie P; Tashyreva, G O; Bielikova, O Iu

    2015-01-01

    Microbial communities of the Ecuadorian Andes and volcano Tungurahua were shown to be super resistant to representative toxic metals. Maximum permissible concentrations of toxic metals were 100 ppm of Hg2+, 500 ppm of Co2+ and Ni2+, 1000 and 1500 ppm of Cr(VI), 10000 and 20000 ppm of Cu2+. The effect of metal concentration increasing on the biomass growth, CO2 and H2 synthesis was investigated. Two types of response of microbial communities on the increasing of toxic metals concentrations were discovered. The first type of response is the catastrophic inhibition of microbial growth. The second type of response is the absence of microbial growth inhibition at certain metal concentration gradient. The succession of qualitative structure of Ecuadorian microbial communities was shown for the first time. Bacteria, yeasts and finally fungi consistently dominate in the microbial community at the Cu2+ concentration raising. Microorganisms resistant to ultra-high concentrations of toxic metals (e.g., 3000 ... 20000 ppm of Cu2+) were isolated from Ecuadorian ecosystems. These microorganisms are able to accumulate toxic metals.

  9. NABIR Assessment Element, Expanded Rapid, Comprehensive, Lipid Biomarker Analysis for Subsurface, Community Composition and Nutritional/Physiological Status as Monitors of Remediation and Detoxification Effectiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David C. White

    2005-09-14

    NABIR funding at the University of Tennessee Center for Biomarker Analysis (CBA) has led to several key contributions to the investigation of bioremediation of metals and radionuclides. This lab has played an integral part in assessing microbial communities at the field scale at the ORNL FRC (Istok et al., 2004) and two UMTRA sites (Anderson et al., 2003, Chang et al., 2001). Our work over the period of the grant has resulted in 42-peer reviewed publications, 62 presentations (14 of which were international), and one patent pending. Currently CBA has 2 papers in press. The main objectives relating to themore » field portion of this program were to provide comprehensive biomarker analysis for NABIR collaborators to enhance the understanding of microbial geo-bioprocesses involved in the effective immobilization of metals (We have worked with and published or currently are publishing with 10 groups of NAIBR investigators). The laboratory portion of our research centered on methods development and has led to three major innovations that could result in a systematic way of evaluating sites for potential bioremediation. The first of these is the development of an in situ sampling device (Peacock et al., 2004, Anderson et al., 2003, Istok et al., 2004) for the collection and concentration of microbial biomass. The second is the development of expanded lipid analysis based on the significantly greater sensitivity and selectivity of the LC/MS/MS that allows the analysis of respiratory quinones, diglycerides, sterols, intact phospholipids, poly-hydroxyalkonates, and potentially archaeol, and caldarchaeols from archea. These new analyses are accomplished more rapidly and with increased sensitivities and resolution than in the past (Lytle et al., 2000a, 2000b, 2001a, Geyer et al., 2004). The third advance is the coupling of lipid analysis with 13C enrichment experiments (Lytle et al., 2001b, Geyer et al. 2005). With this technique it is now possible to follow the active portion of the in situ microbial community with a resolution heretofore not possible. These three advances in technology have been initially demonstrated at the NABIR Field Research Center (FRC) in Oak Ridge, TN and at the UMTRA Old Rifle site in Colorado. Microbial communities are of primary importance in the use of bioimmobilization strategies for metals and radionuclides from contaminated groundwater and sediments. These communities represent a potentially transformable agent that is able to affect virtually all biogeochemical pathways. Microorganisms can alter metal chemistry and mobility through reduction, accumulation, and immobilization and have been shown to be responsible for mineral formation and dissolution. Research is directed to provide collaborating NABIR investigators a rapid, comprehensive, and cost-effective suite of biomarker measurements to quantify microbial community structure, activity, and effectiveness, thereby providing defensible evidence that a desired bioprocess is occurring or may occur at a given site.« less

  10. Effects of heavy metals on soil microbial community

    NASA Astrophysics Data System (ADS)

    Chu, Dian

    2018-02-01

    Soil is one of the most important environmental natural resources for human beings living, which is of great significance to the quality of ecological environment and human health. The study of the function of arable soil microbes exposed to heavy metal pollution for a long time has a very important significance for the usage of farmland soil. In this paper, the effects of heavy metals on soil microbial community were reviewed. The main contents were as follows: the effects of soil microbes on soil ecosystems; the effects of heavy metals on soil microbial activity, soil enzyme activities and the composition of soil microbial community. In addition, a brief description of main methods of heavy metal detection for soil pollution is given, and the means of researching soil microbial community composition are introduced as well. Finally, it is concluded that the study of soil microbial community can well reflect the degree of soil heavy metal pollution and the impact of heavy metal pollution on soil ecology.

  11. Denitrifying Bacteria from the Genus Rhodanobacter Dominate Bacterial Communities in the Highly Contaminated Subsurface of a Nuclear Legacy Waste Site

    PubMed Central

    Green, Stefan J.; Prakash, Om; Jasrotia, Puja; Overholt, Will A.; Cardenas, Erick; Hubbard, Daniela; Tiedje, James M.; Watson, David B.; Schadt, Christopher W.; Brooks, Scott C.

    2012-01-01

    The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of rRNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure and that denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower-pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as the concentration of nitrogen species, oxygen level, and sampling season, did not appear to strongly influence the distribution of Rhodanobacter bacteria. The results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment. PMID:22179233

  12. Arsenic Detoxification by Geobacter Species.

    PubMed

    Dang, Yan; Walker, David J F; Vautour, Kaitlin E; Dixon, Steven; Holmes, Dawn E

    2017-02-15

    Insight into the mechanisms for arsenic detoxification by Geobacter species is expected to improve the understanding of global cycling of arsenic in iron-rich subsurface sedimentary environments. Analysis of 14 different Geobacter genomes showed that all of these species have genes coding for an arsenic detoxification system (ars operon), and several have genes required for arsenic respiration (arr operon) and methylation (arsM). Genes encoding four arsenic repressor-like proteins were detected in the genome of G. sulfurreducens; however, only one (ArsR1) regulated transcription of the ars operon. Elimination of arsR1 from the G. sulfurreducens chromosome resulted in enhanced transcription of genes coding for the arsenic efflux pump (Acr3) and arsenate reductase (ArsC). When the gene coding for Acr3 was deleted, cells were not able to grow in the presence of either the oxidized or reduced form of arsenic, while arsC deletion mutants could grow in the presence of arsenite but not arsenate. These studies shed light on how Geobacter influences arsenic mobility in anoxic sediments and may help us develop methods to remediate arsenic contamination in the subsurface. This study examines arsenic transformation mechanisms utilized by Geobacter, a genus of iron-reducing bacteria that are predominant in many anoxic iron-rich subsurface environments. Geobacter species play a major role in microbially mediated arsenic release from metal hydroxides in the subsurface. This release raises arsenic concentrations in drinking water to levels that are high enough to cause major health problems. Therefore, information obtained from studies of Geobacter should shed light on arsenic cycling in iron-rich subsurface sedimentary environments, which may help reduce arsenic-associated illnesses. These studies should also help in the development of biosensors that can be used to detect arsenic contaminants in anoxic subsurface environments. We examined 14 different Geobacter genomes and found that all of these species possess genes coding for an arsenic detoxification system (ars operon), and some also have genes required for arsenic respiration (arr operon) and arsenic methylation (arsM). Copyright © 2017 American Society for Microbiology.

  13. Arsenic Detoxification by Geobacter Species

    PubMed Central

    Walker, David J. F.; Vautour, Kaitlin E.; Dixon, Steven

    2016-01-01

    ABSTRACT Insight into the mechanisms for arsenic detoxification by Geobacter species is expected to improve the understanding of global cycling of arsenic in iron-rich subsurface sedimentary environments. Analysis of 14 different Geobacter genomes showed that all of these species have genes coding for an arsenic detoxification system (ars operon), and several have genes required for arsenic respiration (arr operon) and methylation (arsM). Genes encoding four arsenic repressor-like proteins were detected in the genome of G. sulfurreducens; however, only one (ArsR1) regulated transcription of the ars operon. Elimination of arsR1 from the G. sulfurreducens chromosome resulted in enhanced transcription of genes coding for the arsenic efflux pump (Acr3) and arsenate reductase (ArsC). When the gene coding for Acr3 was deleted, cells were not able to grow in the presence of either the oxidized or reduced form of arsenic, while arsC deletion mutants could grow in the presence of arsenite but not arsenate. These studies shed light on how Geobacter influences arsenic mobility in anoxic sediments and may help us develop methods to remediate arsenic contamination in the subsurface. IMPORTANCE This study examines arsenic transformation mechanisms utilized by Geobacter, a genus of iron-reducing bacteria that are predominant in many anoxic iron-rich subsurface environments. Geobacter species play a major role in microbially mediated arsenic release from metal hydroxides in the subsurface. This release raises arsenic concentrations in drinking water to levels that are high enough to cause major health problems. Therefore, information obtained from studies of Geobacter should shed light on arsenic cycling in iron-rich subsurface sedimentary environments, which may help reduce arsenic-associated illnesses. These studies should also help in the development of biosensors that can be used to detect arsenic contaminants in anoxic subsurface environments. We examined 14 different Geobacter genomes and found that all of these species possess genes coding for an arsenic detoxification system (ars operon), and some also have genes required for arsenic respiration (arr operon) and arsenic methylation (arsM). PMID:27940542

  14. Diagnosis of In Situ Metabolic State and Rates of Microbial Metabolism During In Situ Uranium Bioremediation with Molecular Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovley, Derek R.

    2012-11-28

    The goal of these projects was to develop molecule tools to tract the metabolic activity and physiological status of microorganisms during in situ uranium bioremediation. Such information is important in able to design improved bioremediation strategies. As summarized below, the research was highly successful with new strategies developed for estimating in situ rates of metabolism and diagnosing the physiological status of the predominant subsurface microorganisms. This is a first not only for groundwater bioremediation studies, but also for subsurface microbiology in general. The tools and approaches developed in these studies should be applicable to the study of microbial communities inmore » a diversity of soils and sediments.« less

  15. Use of an uncertainty analysis for genome-scale models as a prediction tool for microbial growth processes in subsurface environments.

    PubMed

    Klier, Christine

    2012-03-06

    The integration of genome-scale, constraint-based models of microbial cell function into simulations of contaminant transport and fate in complex groundwater systems is a promising approach to help characterize the metabolic activities of microorganisms in natural environments. In constraint-based modeling, the specific uptake flux rates of external metabolites are usually determined by Michaelis-Menten kinetic theory. However, extensive data sets based on experimentally measured values are not always available. In this study, a genome-scale model of Pseudomonas putida was used to study the key issue of uncertainty arising from the parametrization of the influx of two growth-limiting substrates: oxygen and toluene. The results showed that simulated growth rates are highly sensitive to substrate affinity constants and that uncertainties in specific substrate uptake rates have a significant influence on the variability of simulated microbial growth. Michaelis-Menten kinetic theory does not, therefore, seem to be appropriate for descriptions of substrate uptake processes in the genome-scale model of P. putida. Microbial growth rates of P. putida in subsurface environments can only be accurately predicted if the processes of complex substrate transport and microbial uptake regulation are sufficiently understood in natural environments and if data-driven uptake flux constraints can be applied.

  16. Comparison of Bacterial Diversity in Azorean and Hawai’ian Lava Cave Microbial Mats

    PubMed Central

    MARSHALL HATHAWAY, JENNIFER J.; GARCIA, MATTHEW G.; BALASCH, MONICA MOYA; SPILDE, MICHAEL N.; STONE, FRED D.; DAPKEVICIUS, MARIA DE LURDES N. E.; AMORIM, ISABEL R.; GABRIEL, ROSALINA; BORGES, PAULO A. V.; NORTHUP, DIANA E.

    2015-01-01

    Worldwide, lava caves host colorful microbial mats. However, little is known about the diversity of these microorganisms, or what role they may play in the subsurface ecosystem. White and yellow microbial mats were collected from four lava caves each on the Azorean island of Terceira and the Big Island of Hawai’i, to compare the bacterial diversity found in lava caves from two widely separated archipelagos in two different oceans at different latitudes. Scanning electron microscopy of mat samples showed striking similarities between Terceira and Hawai’ian microbial morphologies. 16S rRNA gene clone libraries were constructed to determine the diversity within these lava caves. Fifteen bacterial phyla were found across the samples, with more Actinobacteria clones in Hawai’ian communities and greater numbers of Acidobacteria clones in Terceira communities. Bacterial diversity in the subsurface was correlated with a set of factors. Geographical location was the major contributor to differences in community composition (at the OTU level), together with differences in the amounts of organic carbon, nitrogen and copper available in the lava rock that forms the cave. These results reveal, for the first time, the similarity among the extensive bacterial diversity found in lava caves in two geographically separate locations and contribute to the current debate on the nature of microbial biogeography. PMID:26924866

  17. Biogeographic congruency among bacterial communities from terrestrial sulfidic springs

    PubMed Central

    Headd, Brendan; Engel, Annette S.

    2014-01-01

    Terrestrial sulfidic springs support diverse microbial communities by serving as stable conduits for geochemically diverse and nutrient-rich subsurface waters. Microorganisms that colonize terrestrial springs likely originate from groundwater, but may also be sourced from the surface. As such, the biogeographic distribution of microbial communities inhabiting sulfidic springs should be controlled by a combination of spring geochemistry and surface and subsurface transport mechanisms, and not necessarily geographic proximity to other springs. We examined the bacterial diversity of seven springs to test the hypothesis that occurrence of taxonomically similar microbes, important to the sulfur cycle, at each spring is controlled by geochemistry. Complementary Sanger sequencing and 454 pyrosequencing of 16S rRNA genes retrieved five proteobacterial classes, and Bacteroidetes, Chlorobi, Chloroflexi, and Firmicutes phyla from all springs, which suggested the potential for a core sulfidic spring microbiome. Among the putative sulfide-oxidizing groups (Epsilonproteobacteria and Gammaproteobacteria), up to 83% of the sequences from geochemically similar springs clustered together. Abundant populations of Hydrogenimonas-like or Sulfurovum-like spp. (Epsilonproteobacteria) occurred with abundant Thiothrix and Thiofaba spp. (Gammaproteobacteria), but Arcobacter-like and Sulfurimonas spp. (Epsilonproteobacteria) occurred with less abundant gammaproteobacterial populations. These distribution patterns confirmed that geochemistry rather than biogeography regulates bacterial dominance at each spring. Potential biogeographic controls were related to paleogeologic sedimentation patterns that could control long-term microbial transport mechanisms that link surface and subsurface environments. Knowing the composition of a core sulfidic spring microbial community could provide a way to monitor diversity changes if a system is threatened by anthropogenic processes or climate change. PMID:25250021

  18. Microbial community assembly patterns under incipient conditions in a basaltic soil system

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Stegen, J.; Alves Meira Neto, A.; Wang, Y.; Chorover, J.; Troch, P. A. A.; Maier, R. M.

    2017-12-01

    In sub-surface environments, the biotic components are critically linked to the abiotic processes. However, there is limited understanding of community establishment, functional associations, and community assembly processes of such microbes in sub-surface environments. This study presents the first analysis of microbial signatures in an incipient terrestrial basalt soil system conducted under controlled conditions. A sub-meter scale sampling of a soil mesocosm revealed the contrasting distribution patterns of simple soil parameters such as bulk density and electrical conductivity. Phylogenetic analysis of 16S rRNA gene indicated the presence of a total 40 bacterial and archaeal phyla, with high relative abundance of Actinobacteria on the surface and highest abundance of Proteobacteria throughout the system. Community diversity patterns were inferred to be dependent on depth profile and average water content in the system. Predicted functional gene analysis suggested mixotrophy lifestyles with both autotrophic and heterotrophic metabolisms, likelihood of a unique salt tolerant methanogenic pathway with links to novel Euryarchea, signatures of an incomplete nitrogen cycle, and predicted enzymes of extracellular iron (II) to iron (III) conversion followed by intracellular uptake, transport and regulation. Null modeling revealed microbial community assembly was predominantly governed by variable selection, but the influence of the variable selection did not show systematic spatial structure. The presence of significant heterogeneity in predicted functions and ecologically deterministic shifts in community composition in a homogeneous incipient basalt highlights the complexity exhibited by microorganisms even in the simplest of environmental systems. This presents an opportunity to further develop our understanding of how microbial communities establish, evolve, impact, and respond in sub-surface environments.

  19. Microbial Community and Biochemical Dynamics of Biological Soil Crusts across a Gradient of Surface Coverage in the Central Mojave Desert.

    PubMed

    Mogul, Rakesh; Vaishampayan, Parag; Bashir, Mina; McKay, Chris P; Schubert, Keith; Bornaccorsi, Rosalba; Gomez, Ernesto; Tharayil, Sneha; Payton, Geoffrey; Capra, Juliana; Andaya, Jessica; Bacon, Leonard; Bargoma, Emily; Black, David; Boos, Katie; Brant, Michaela; Chabot, Michael; Chau, Danny; Cisneros, Jessica; Chu, Geoff; Curnutt, Jane; DiMizio, Jessica; Engelbrecht, Christian; Gott, Caroline; Harnoto, Raechel; Hovanesian, Ruben; Johnson, Shane; Lavergne, Britne; Martinez, Gabriel; Mans, Paul; Morales, Ernesto; Oei, Alex; Peplow, Gary; Piaget, Ryan; Ponce, Nicole; Renteria, Eduardo; Rodriguez, Veronica; Rodriguez, Joseph; Santander, Monica; Sarmiento, Khamille; Scheppelmann, Allison; Schroter, Gavin; Sexton, Devan; Stephenson, Jenin; Symer, Kristin; Russo-Tait, Tatiane; Weigel, Bill; Wilhelm, Mary B

    2017-01-01

    In this study, we expand upon the biogeography of biological soil crusts (BSCs) and provide molecular insights into the microbial community and biochemical dynamics along the vertical BSC column structure, and across a transect of increasing BSC surface coverage in the central Mojave Desert, CA, United States. Next generation sequencing reveals a bacterial community profile that is distinct among BSCs in the southwestern United States. Distribution of major phyla in the BSC topsoils included Cyanobacteria (33 ± 8%), Proteobacteria (26 ± 6%), and Chloroflexi (12 ± 4%), with Phormidium being the numerically dominant genus. Furthermore, BSC subsurfaces contained Proteobacteria (23 ± 5%), Actinobacteria (20 ± 5%), and Chloroflexi (18 ± 3%), with an unidentified genus from Chloroflexi (AKIW781, order) being numerically dominant. Across the transect, changes in distribution at the phylum ( p < 0.0439) and genus ( p < 0.006) levels, including multiple biochemical and geochemical trends ( p < 0.05), positively correlated with increasing BSC surface coverage. This included increases in (a) Chloroflexi abundance, (b) abundance and diversity of Cyanobacteria, (b) OTU-level diversity in the topsoil, (c) OTU-level differentiation between the topsoil and subsurface, (d) intracellular ATP abundances and catalase activities, and (e) enrichments in clay, silt, and varying elements, including S, Mn, Co, As, and Pb, in the BSC topsoils. In sum, these studies suggest that BSCs from regions of differing surface coverage represent early successional stages, which exhibit increasing bacterial diversity, metabolic activities, and capacity to restructure the soil. Further, these trends suggest that BSC successional maturation and colonization across the transect are inhibited by metals/metalloids such as B, Ca, Ti, Mn, Co, Ni, Mo, and Pb.

  20. Microbial Community and Biochemical Dynamics of Biological Soil Crusts across a Gradient of Surface Coverage in the Central Mojave Desert

    PubMed Central

    Mogul, Rakesh; Vaishampayan, Parag; Bashir, Mina; McKay, Chris P.; Schubert, Keith; Bornaccorsi, Rosalba; Gomez, Ernesto; Tharayil, Sneha; Payton, Geoffrey; Capra, Juliana; Andaya, Jessica; Bacon, Leonard; Bargoma, Emily; Black, David; Boos, Katie; Brant, Michaela; Chabot, Michael; Chau, Danny; Cisneros, Jessica; Chu, Geoff; Curnutt, Jane; DiMizio, Jessica; Engelbrecht, Christian; Gott, Caroline; Harnoto, Raechel; Hovanesian, Ruben; Johnson, Shane; Lavergne, Britne; Martinez, Gabriel; Mans, Paul; Morales, Ernesto; Oei, Alex; Peplow, Gary; Piaget, Ryan; Ponce, Nicole; Renteria, Eduardo; Rodriguez, Veronica; Rodriguez, Joseph; Santander, Monica; Sarmiento, Khamille; Scheppelmann, Allison; Schroter, Gavin; Sexton, Devan; Stephenson, Jenin; Symer, Kristin; Russo-Tait, Tatiane; Weigel, Bill; Wilhelm, Mary B.

    2017-01-01

    In this study, we expand upon the biogeography of biological soil crusts (BSCs) and provide molecular insights into the microbial community and biochemical dynamics along the vertical BSC column structure, and across a transect of increasing BSC surface coverage in the central Mojave Desert, CA, United States. Next generation sequencing reveals a bacterial community profile that is distinct among BSCs in the southwestern United States. Distribution of major phyla in the BSC topsoils included Cyanobacteria (33 ± 8%), Proteobacteria (26 ± 6%), and Chloroflexi (12 ± 4%), with Phormidium being the numerically dominant genus. Furthermore, BSC subsurfaces contained Proteobacteria (23 ± 5%), Actinobacteria (20 ± 5%), and Chloroflexi (18 ± 3%), with an unidentified genus from Chloroflexi (AKIW781, order) being numerically dominant. Across the transect, changes in distribution at the phylum (p < 0.0439) and genus (p < 0.006) levels, including multiple biochemical and geochemical trends (p < 0.05), positively correlated with increasing BSC surface coverage. This included increases in (a) Chloroflexi abundance, (b) abundance and diversity of Cyanobacteria, (b) OTU-level diversity in the topsoil, (c) OTU-level differentiation between the topsoil and subsurface, (d) intracellular ATP abundances and catalase activities, and (e) enrichments in clay, silt, and varying elements, including S, Mn, Co, As, and Pb, in the BSC topsoils. In sum, these studies suggest that BSCs from regions of differing surface coverage represent early successional stages, which exhibit increasing bacterial diversity, metabolic activities, and capacity to restructure the soil. Further, these trends suggest that BSC successional maturation and colonization across the transect are inhibited by metals/metalloids such as B, Ca, Ti, Mn, Co, Ni, Mo, and Pb. PMID:29109701

  1. Quantification of Microbial Communities in Subsurface Marine Sediments of the Black Sea and off Namibia.

    PubMed

    Schippers, Axel; Kock, Dagmar; Höft, Carmen; Köweker, Gerrit; Siegert, Michael

    2012-01-01

    Organic-rich subsurface marine sediments were taken by gravity coring up to a depth of 10 m below seafloor at six stations from the anoxic Black Sea and the Benguela upwelling system off Namibia during the research cruises Meteor 72-5 and 76-1, respectively. The quantitative microbial community composition at various sediment depths was analyzed using total cell counting, catalyzed reporter deposition - fluorescence in situ hybridization (CARD-FISH) and quantitative real-time PCR (Q-PCR). Total cell counts decreased with depths from 10(9) to 10(10) cells/mL at the sediment surface to 10(7)-10(9) cells/mL below one meter depth. Based on CARD-FISH and Q-PCR analyses overall similar proportions of Bacteria and Archaea were found. The down-core distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes (16S and 18S rRNA) as well as functional genes involved in different biogeochemical processes was quantified using Q-PCR. Crenarchaeota and the bacterial candidate division JS-1 as well as the classes Anaerolineae and Caldilineae of the phylum Chloroflexi were highly abundant. Less abundant but detectable in most of the samples were Eukarya as well as the metal and sulfate-reducing Geobacteraceae (only in the Benguela upwelling influenced sediments). The functional genes cbbL, encoding for the large subunit of RuBisCO, the genes dsrA and aprA, indicative of sulfate-reducers as well as the mcrA gene of methanogens were detected in the Benguela upwelling and Black Sea sediments. Overall, the high organic carbon content of the sediments goes along with high cell counts and high gene copy numbers, as well as an equal abundance of Bacteria and Archaea.

  2. Linking Metabolism, Elemental Cycles, and Environmental Conditions in the Deep Biosphere: Growth of a Model Extremophile, Archaeoglobus fulgidus, Under High-Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Oliver, G. C. M.; Cario, A.; Rogers, K. L.

    2015-12-01

    A majority of Earth's biosphere is hosted in subsurface environments where global-scale biogeochemical and energy cycles are driven by diverse microbial communities that operate on and are influenced by micro-scale environmental variables. While the subsurface hosts a variety of geochemical and geothermal conditions, elevated pressures are common to all subsurface ecosystems. Understanding how microbes adapt to and thrive in high-pressure environments is essential to linking microbial subsurface processes with global-scale cycles. Here we are using a model extremophile, Archaeoglobus fulgidus, to determine how elevated pressures affect the growth, metabolism, and physiology of subsurface microorganisms. A. fulgidus cycles carbon and sulfur via heterotrophic and autotrophic sulfate reduction in various high temperature and high-pressure niches including shallow marine vents, deep-sea hydrothermal vents, and deep oil reservoirs. Here we report the results of A. fulgidus growth experiments at optimum temperature, 83°C, and pressures up to 600 bars. Exponential growth was observed over the entire pressure range, though growth rates were diminished at 500 and 600 bars compared to ambient pressure experimental controls. At pressures up to 400 bars, cell density yields and growth rates were at least as high as ambient pressure controls. Elevated pressures and extended incubation times stimulated cell flocculation, a common stress response in this strain, and cellular morphology was affected at pressures exceeding 400 bars. These results suggest that A. fulgidus continues carbon, sulfur and energy cycling unaffected by elevated pressures up to 400 bars, representing a variety of subsurface environments. The ability of subsurface organisms to drive biogeochemical cycles at elevated pressures is a critical link between the surface and subsurface biospheres and understanding how species-scale processes operate under these conditions is a vital part of global-scale biogeochemical models.

  3. A novel microbial habitat in the mid-ocean ridge subseafloor

    PubMed Central

    Summit, Melanie; Baross, John A.

    2001-01-01

    The subseafloor at the mid-ocean ridge is predicted to be an excellent microbial habitat, because there is abundant space, fluid flow, and geochemical energy in the porous, hydrothermally influenced oceanic crust. These characteristics also make it a good analog for potential subsurface extraterrestrial habitats. Subseafloor environments created by the mixing of hot hydrothermal fluids and seawater are predicted to be particularly energy-rich, and hyperthermophilic microorganisms that broadly reflect such predictions are ejected from these systems in low-temperature (≈15°C), basalt-hosted diffuse effluents. Seven hyperthermophilic heterotrophs isolated from low-temperature diffuse fluids exiting the basaltic crust in and near two hydrothermal vent fields on the Endeavour Segment, Juan de Fuca Ridge, were compared phylogenetically and physiologically to six similarly enriched hyperthermophiles from samples associated with seafloor metal sulfide structures. The 13 organisms fell into four distinct groups: one group of two organisms corresponding to the genus Pyrococcus and three groups corresponding to the genus Thermococcus. Of these three groups, one was composed solely of sulfide-derived organisms, and the other two related groups were composed of subseafloor organisms. There was no evidence of restricted exchange of organisms between sulfide and subseafloor habitats, and therefore this phylogenetic distinction indicates a selective force operating between the two habitats. Hypotheses regarding the habitat differences were generated through comparison of the physiology of the two groups of hyperthermophiles; some potential differences between these habitats include fluid flow stability, metal ion concentrations, and sources of complex organic matter. PMID:11226209

  4. Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ

    USGS Publications Warehouse

    Bargar, J.R.; Fuller, C.C.; Marcus, M.A.; Brearley, A.J.; Perez De la Rosa, M.; Webb, S.M.; Caldwell, W.A.

    2009-01-01

    The microbial catalysis of Mn(II) oxidation is believed to be a dominant source of abundant sorption- and redox-active Mn oxides in marine, freshwater, and subsurface aquatic environments. In spite of their importance, environmental oxides of known biogenic origin have generally not been characterized in detail from a structural perspective. Hyporheic zone Mn oxide grain coatings at Pinal Creek, Arizona, a metals-contaminated stream, have been identified as being dominantly microbial in origin and are well studied from bulk chemistry and contaminant hydrology perspectives. This site thus presents an excellent opportunity to study the structures of terrestrial microbial Mn oxides in detail. XRD and EXAFS measurements performed in this study indicate that the hydrated Pinal Creek Mn oxide grain coatings are layer-type Mn oxides with dominantly hexagonal or pseudo-hexagonal layer symmetry. XRD and TEM measurements suggest the oxides to be nanoparticulate plates with average dimensions on the order of 11 nm thick ?? 35 nm diameter, but with individual particles exhibiting thickness as small as a single layer and sheets as wide as 500 nm. The hydrated oxides exhibit a 10-?? basal-plane spacing and turbostratic disorder. EXAFS analyses suggest the oxides contain layer Mn(IV) site vacancy defects, and layer Mn(III) is inferred to be present, as deduced from Jahn-Teller distortion of the local structure. The physical geometry and structural details of the coatings suggest formation within microbial biofilms. The biogenic Mn oxides are stable with respect to transformation into thermodynamically more stable phases over a time scale of at least 5 months. The nanoparticulate layered structural motif, also observed in pure culture laboratory studies, appears to be characteristic of biogenic Mn oxides and may explain the common occurrence of this mineral habit in soils and sediments. ?? 2008 Elsevier Ltd.

  5. Landfill leachate treatment by an experimental subsurface flow constructed wetland in tropical climate countries.

    PubMed

    Ujang, Z; Soedjono, E; Salim, M R; Shutes, R B

    2005-01-01

    Municipal leachate was treated in an experimental unit of constructed wetlands of subsurface flow type. The parameters studied were organics (BOD and COD), solids and heavy metals (Zn, Ni, Cu, Cr and Pb). Using two types of emergent plants of Scirpus globulosus and Eriocaulon sexangulare, more than 80% removal was achieved for all the parameters. E. sexangulare removed organics and heavy metals better than Scirpus globulosus. A higher concentration of heavy metals in the influent did not change the removal efficiency.

  6. Subsurface metabolic potential on the Costa Rican Margin

    NASA Astrophysics Data System (ADS)

    Biddle, J.; Leon, Z. R.; Martino, A. J.; Bousses, K.; House, C. H.

    2017-12-01

    The distribution of archaea and bacteria and their associated metabolic abilities in the deep subseafloor are poorly understood. In order to explore this, we focused on samples from the Costa Rica margin IODP Expedition 334. The microbial community was analyzed via metagenomics in two different sites at multiple depths. At Site 1378, samples are from 2 meters below the sea floor (mbsf), 33 mbsf and 93 mbsf, and at Site 1379 from 22 mbsf to 45 mbsf. Whole community analysis of conserved gene markers in the metagenome show that the microbial community varies with depth, and drastically differs between the two geographically close sites. Thirty-two genomes were recovered from the metagenomic data with more than 30% completion. Archaea make 49% of all genomes recovered and over 90% of these recovered genomes belong to recently discovered and poorly characterized groups of Archaea. This study explored the relative dynamics of microbial communities in the deep biosphere and presents the metabolic potential of distinct subsurface biosphere archaeal groups.

  7. Remote Sensing of Subsurface Microbial Transformations

    NASA Astrophysics Data System (ADS)

    Williams, K. H.; Ntarlagiannis, D.; Slater, L.; Long, P.; Dohnalkova, A.; Hubbard, S. S.; Banfield, J. F.

    2004-12-01

    Understanding how microorganisms influence the physical and chemical properties of the subsurface is hindered by our inability to detect microbial dynamics in real time with high spatial resolution. Here we have used non-invasive geophysical methods to monitor biomineralization and related processes during biostimulation at both laboratory and field scales. Alterations in saturated sediment characteristics resulting from microbe-mediated transformations were concomitant with changes in complex resistivity, spontaneous potential, and acoustic wave signatures. Variability in complex resistivity and acoustic wave amplitudes appears tied to the nucleation, growth, and development of nanoparticulate precipitates along grain surfaces and within the pore space. In contrast, time-varying spontaneous potentials appear primarily sensitive to the electrochemical gradients resulting from metabolic pathways, such as iron- and sulfate-reduction. Furthermore, they enable us to track mobile fronts of active respiration that arise due to microbial chemotaxis. In this way, geophysical data may be used to image the distribution of mineral precipitates, biomass, and biogeochemical fronts evolving over time and suggest the ability to remotely monitor contaminated aquifers undergoing bioremediation.

  8. Molecular analysis of phosphate limitation in Geobacteraceae during the bioremediation of a uranium-contaminated aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N'Guessan, L.A.; Elifantz, H.; Nevin, K.P.

    2009-09-01

    Nutrient limitation is an environmental stress that may reduce the effectiveness of bioremediation strategies, especially when the contaminants are organic compounds or when organic compounds are added to promote microbial activities such as metal reduction. Genes indicative of phosphate-limitation were identified via microarray analysis of chemostat cultures of Geobacter sulfureducens. This analysis revealed that genes in the pst-pho operon, which is associated with a high affinity phosphate uptake system in other microorganisms, had significantly higher transcript abundance under phosphate-limiting conditions, with the genes pstB and phoU the most up-regulated. Quantitative PCR analysis of pstB and phoU transcript levels in G.more » sulfurreducens grown in chemostats demonstrated that the expression of these genes increased when phosphate was removed from the culture medium. Transcripts of pstB and phoU within the subsurface Geobacter species predominating during an in situ uranium bioremediation field experiment were more abundant than in chemostat cultures of G. sulfurreducens that were not limited for phosphate. Addition of phosphate to incubations of subsurface sediments did not stimulate dissimilatory metal reduction. The added phosphate was rapidly adsorbed onto the sediments. The results demonstrate that Geobacter species can effectively reduce U(VI) even when experiencing suboptimal phosphate concentrations and that increasing phosphate availability with phosphate additions is difficult to achieve due to the high reactivity of this compound. This transcript-based approach developed for diagnosing phosphate limitation should be applicable to assessing the potential need for additional phosphate in other bioremediation processes.« less

  9. Molecular Analysis of Phosphate Limitation in Geobacteraceae During the Bioremediation of a Uranium-Contaminated Aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N'Guessan, A. Lucie; Elifantz, H.; Nevin, Kelly P.

    2010-02-01

    Nutrient limitation is an environmental stress that may reduce the effectiveness of bioremediation strategies, especially when the contaminants are organic compounds or when organic compounds are added to promote microbial activities such as metal reduction. Genes indicative of phosphate-limitation were identified via microarray analysis of chemostat cultures of Geobacter sulfureducens. This analysis revealed that genes in the pst-pho operon, which is associated with a high affinity phosphate uptake system in other microorganisms, had significantly higher transcript abundance under phosphate-limiting conditions, with the genes pstB and phoU the most up-regulated. Quantitative PCR analysis of pstB and phoU transcript levels in G.more » sulfurreducens grown in chemostats demonstrated that the expression of these genes increased when phosphate was removed from the culture medium. Transcripts of pstB and phoU within the subsurface Geobacter species predominating during an in situ uranium bioremediation field experiment were more abundant than in chemostat cultures of G. sulfurreducens that were not limited for phosphate. Addition of phosphate to incubations of subsurface sediments did not stimulate dissimilatory metal reduction. The added phosphate was rapidly adsorbed onto the sediments. The results demonstrate that Geobacter species can effectively reduce U(VI) even when experiencing suboptimal phosphate concentrations and that increasing phosphate availability with phosphate additions is difficult to achieve due to the high reactivity of this compound. This transcript-based approach developed for diagnosing phosphate limitation should be applicable to assessing the potential need for additional phosphate in other bioremediation processes.« less

  10. Molecular analysis of phosphate limitation in Geobacteraceae during the bioremediation of a uranium-contaminated aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N'Guessan, A. Lucie; Elifantz, H.; Nevin, Kelly P.

    2010-01-10

    Nutrient limitation is an environmental stress that may reduce the effectiveness of bioremediation strategies, especially when the contaminants are organic compounds or when organic compounds are added to promote microbial activities such as metal reduction. Genes indicative of phosphatelimitation were identified by microarray analysis of chemostat cultures of Geobacter sulfureducens. This analysis revealed that genes in the pst-pho operon, which is associated with a high-affinity phosphate uptake system in other microorganisms, had significantly higher transcript abundance under phosphate-limiting conditions, with the genes pstB and phoU upregulated the most. Quantitative PCR analysis of pstB and phoU transcript levels in G. sulfurreducensmore » grown in chemostats demonstrated that the expression of these genes increased when phosphate was removed from the culture medium. Transcripts of pstB and phoU within the subsurface Geobacter species predominating during an in situ uranium-bioremediation field experiment were more abundant than in chemostat cultures of G. sulfurreducens that were not limited for phosphate. Addition of phosphate to incubations of subsurface sediments did not stimulate dissimilatory metal reduction. The added phosphate was rapidly adsorbed onto the sediments. The results demonstrate that Geobacter species can effectively reduce U(VI) even when experiencing suboptimal phosphate concentrations and that increasing phosphate availability with phosphate additions is difficult to achieve because of the high reactivity of this compound. This transcript-based approach developed for diagnosing phosphate limitation should be applicable to assessing the potential need for additional phosphate in other bioremediation processes.« less

  11. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Probst, Alexander J.; Ladd, Bethany; Jarett, Jessica K.

    An enormous diversity of previously unknown bacteria and archaea has been discovered recently, yet their functional capacities and distributions in the terrestrial subsurface remain uncertain. Here, we continually sampled a CO 2-driven geyser (Colorado Plateau, Utah, USA) over its 5-day eruption cycle to test the hypothesis that stratified, sandstone-hosted aquifers sampled over three phases of the eruption cycle have microbial communities that differ both in membership and function. Genome-resolved metagenomics, single-cell genomics and geochemical analyses confirmed this hypothesis and linked microorganisms to groundwater compositions from different depths. Autotrophic Candidatus “Altiarchaeum sp.” and phylogenetically deep-branching nanoarchaea dominate the deepest groundwater. Amore » nanoarchaeon with limited metabolic capacity is inferred to be a potential symbiont of the Ca. “Altiarchaeum”. Candidate Phyla Radiation bacteria are also present in the deepest groundwater and they are relatively abundant in water from intermediate depths. During the recovery phase of the geyser, microaerophilic Fe- and S-oxidizers have high in situ genome replication rates. Autotrophic Sulfurimonas sustained by aerobic sulfide oxidation and with the capacity for N 2 fixation dominate the shallow aquifer. Overall, 104 different phylum-level lineages are present in water from these subsurface environments, with uncultivated archaea and bacteria partitioned to the deeper subsurface.« less

  12. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface

    DOE PAGES

    Probst, Alexander J.; Ladd, Bethany; Jarett, Jessica K.; ...

    2018-01-29

    An enormous diversity of previously unknown bacteria and archaea has been discovered recently, yet their functional capacities and distributions in the terrestrial subsurface remain uncertain. Here, we continually sampled a CO 2-driven geyser (Colorado Plateau, Utah, USA) over its 5-day eruption cycle to test the hypothesis that stratified, sandstone-hosted aquifers sampled over three phases of the eruption cycle have microbial communities that differ both in membership and function. Genome-resolved metagenomics, single-cell genomics and geochemical analyses confirmed this hypothesis and linked microorganisms to groundwater compositions from different depths. Autotrophic Candidatus “Altiarchaeum sp.” and phylogenetically deep-branching nanoarchaea dominate the deepest groundwater. Amore » nanoarchaeon with limited metabolic capacity is inferred to be a potential symbiont of the Ca. “Altiarchaeum”. Candidate Phyla Radiation bacteria are also present in the deepest groundwater and they are relatively abundant in water from intermediate depths. During the recovery phase of the geyser, microaerophilic Fe- and S-oxidizers have high in situ genome replication rates. Autotrophic Sulfurimonas sustained by aerobic sulfide oxidation and with the capacity for N 2 fixation dominate the shallow aquifer. Overall, 104 different phylum-level lineages are present in water from these subsurface environments, with uncultivated archaea and bacteria partitioned to the deeper subsurface.« less

  13. Active subsurface cellular function in the Baltic Sea Basin, IODP Exp 347

    NASA Astrophysics Data System (ADS)

    Reese, B. K.; Zinke, L. A.; Bird, J. T.; Lloyd, K. G.; Marshall, I.; Amend, J.; Jørgensen, B. B.

    2016-12-01

    The Baltic Sea Basin is a unique depositional setting that has experienced periods of glaciation and deglaciation as a result of global temperature fluctuations over the course of several hundred thousand years. This has resulted in laminated sediments formed during periods with strong permanent salinity stratification. The high sedimentation rates (100-500 cm/1000 y) make this an ideal setting to understand the microbial structure of a deep biosphere community in a high-organic matter environment. The responses of deep sediment microbial communities to variations in conditions during and after deposition are poorly understood. Samples were collected through scientific drilling during the International Ocean Discovery Program (IODP) Expedition 347 on board the Greatship Manisha, September-November 2013. We examined the active microbial community structure using the 16S rRNA gene transcript and active functional genes through metatranscriptome sequencing. Major biogeochemical shifts have been observed in response to the depositional history between the limnic, brackish, and marine phases. The microbial community structure in the BSB is diverse and reflective of the unique changes in the geochemical profile. These data further define the existence life in the deep subsurface and the survival mechanisms required for this extreme environment.

  14. Microbial physiology-based model of ethanol metabolism in subsurface sediments

    NASA Astrophysics Data System (ADS)

    Jin, Qusheng; Roden, Eric E.

    2011-07-01

    A biogeochemical reaction model was developed based on microbial physiology to simulate ethanol metabolism and its influence on the chemistry of anoxic subsurface environments. The model accounts for potential microbial metabolisms that degrade ethanol, including those that oxidize ethanol directly or syntrophically by reducing different electron acceptors. Out of the potential metabolisms, those that are active in the environment can be inferred by fitting the model to experimental observations. This approach was applied to a batch sediment slurry experiment that examined ethanol metabolism in uranium-contaminated aquifer sediments from Area 2 at the U.S. Department of Energy Field Research Center in Oak Ridge, TN. According to the simulation results, complete ethanol oxidation by denitrification, incomplete ethanol oxidation by ferric iron reduction, ethanol fermentation to acetate and H 2, hydrogenotrophic sulfate reduction, and acetoclastic methanogenesis: all contributed significantly to the degradation of ethanol in the aquifer sediments. The assemblage of the active metabolisms provides a frame work to explore how ethanol amendment impacts the chemistry of the environment, including the occurrence and levels of uranium. The results can also be applied to explore how diverse microbial metabolisms impact the progress and efficacy of bioremediation strategies.

  15. Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano.

    PubMed

    Cheng, Ting-Wen; Chang, Yung-Hsin; Tang, Sen-Lin; Tseng, Ching-Hung; Chiang, Pei-Wen; Chang, Kai-Ti; Sun, Chih-Hsien; Chen, Yue-Gau; Kuo, Hung-Chi; Wang, Chun-Ho; Chu, Pao-Hsuan; Song, Sheng-Rong; Wang, Pei-Ling; Lin, Li-Hung

    2012-12-01

    Terrestrial mud volcanism represents the prominent surface geological feature, where fluids and hydrocarbons are discharged along deeply rooted structures in tectonically active regimes. Terrestrial mud volcanoes (MVs) directly emit the major gas phase, methane, into the atmosphere, making them important sources of greenhouse gases over geological time. Quantification of methane emission would require detailed insights into the capacity and efficiency of microbial metabolisms either consuming or producing methane in the subsurface, and establishment of the linkage between these methane-related metabolisms and other microbial or abiotic processes. Here we conducted geochemical, microbiological and genetic analyses of sediments, gases, and pore and surface fluids to characterize fluid processes, community assemblages, functions and activities in a methane-emitting MV of southwestern Taiwan. Multiple lines of evidence suggest that aerobic/anaerobic methane oxidation, sulfate reduction and methanogenesis are active and compartmentalized into discrete, stratified niches, resembling those in marine settings. Surface evaporation and oxidation of sulfide minerals are required to account for the enhanced levels of sulfate that fuels subsurface sulfate reduction and anaerobic methanotrophy. Methane flux generated by in situ methanogenesis appears to alter the isotopic compositions and abundances of thermogenic methane migrating from deep sources, and to exceed the capacity of microbial consumption. This metabolic stratification is sustained by chemical disequilibria induced by the mixing between upward, anoxic, methane-rich fluids and downward, oxic, sulfate-rich fluids.

  16. Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir

    PubMed Central

    Freedman, Adam J.E.; Tan, BoonFei

    2017-01-01

    Summary Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO2 reservoirs, which serve as analogs for the long‐term fate of sequestered scCO2, harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO2‐water separators at a natural scCO2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO2 and N2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO2 reservoir indicates that potential impacts of the deep biosphere on CO2 fate and transport should be taken into consideration as a component of GCS planning and modelling. PMID:28229521

  17. Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano

    PubMed Central

    Cheng, Ting-Wen; Chang, Yung-Hsin; Tang, Sen-Lin; Tseng, Ching-Hung; Chiang, Pei-Wen; Chang, Kai-Ti; Sun, Chih-Hsien; Chen, Yue-Gau; Kuo, Hung-Chi; Wang, Chun-Ho; Chu, Pao-Hsuan; Song, Sheng-Rong; Wang, Pei-Ling; Lin, Li-Hung

    2012-01-01

    Terrestrial mud volcanism represents the prominent surface geological feature, where fluids and hydrocarbons are discharged along deeply rooted structures in tectonically active regimes. Terrestrial mud volcanoes (MVs) directly emit the major gas phase, methane, into the atmosphere, making them important sources of greenhouse gases over geological time. Quantification of methane emission would require detailed insights into the capacity and efficiency of microbial metabolisms either consuming or producing methane in the subsurface, and establishment of the linkage between these methane-related metabolisms and other microbial or abiotic processes. Here we conducted geochemical, microbiological and genetic analyses of sediments, gases, and pore and surface fluids to characterize fluid processes, community assemblages, functions and activities in a methane-emitting MV of southwestern Taiwan. Multiple lines of evidence suggest that aerobic/anaerobic methane oxidation, sulfate reduction and methanogenesis are active and compartmentalized into discrete, stratified niches, resembling those in marine settings. Surface evaporation and oxidation of sulfide minerals are required to account for the enhanced levels of sulfate that fuels subsurface sulfate reduction and anaerobic methanotrophy. Methane flux generated by in situ methanogenesis appears to alter the isotopic compositions and abundances of thermogenic methane migrating from deep sources, and to exceed the capacity of microbial consumption. This metabolic stratification is sustained by chemical disequilibria induced by the mixing between upward, anoxic, methane-rich fluids and downward, oxic, sulfate-rich fluids. PMID:22739492

  18. Molecular-Scale Characterization of Natural Organic Matter From A Uranium Contaminated Aquifer and its Utilization by Native Microbial Communities

    NASA Astrophysics Data System (ADS)

    Mouser, P. J.; Wilkins, M. J.; Williams, K. H.; Smith, D. F.; Paša-Tolić, L.

    2011-12-01

    The availability and form of natural organic matter (NOM) strongly influences rates of microbial metabolism and associated redox processes in subsurface environments. This is an important consideration in metal-contaminated aquifers, such as the DOE's Rifle Integrated Field Research Challenge (IFRC) site, where naturally occurring suboxic conditions in groundwater may play an important function in controlling uranium mobility, and therefore the long-term stewardship of the site. Currently, the biophysiochemical processes surrounding the nature of the aquifer and its role in controlling the fate and transport of uranium are poorly understood. Using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) with electrospray ionization (ESI), we characterized dissolved organic matter (DOM) chemistry for three surface and groundwater sources at Rifle and assessed microbial utilization in batch incubation experiments. FT-ICR-MS uniquely offers ultrahigh mass measurement accuracy and resolving power for polar organics, in addition to enabling elemental composition assignments of these compounds. Samples were collected from the Colorado River, a shallow groundwater aquifer adjacent to the river, and a spring/seep discharge point upgradient from the aquifer. DOM was concentrated and purified from each source and analyzed using FT-ICR-MS with ESI. We identified between 6,000 and 7,000 formulae at each location, with the river sample having the smallest and the spring sample having the largest number of identified peaks. The groundwater and spring samples contained DOM with a large percentage of formulae containing nitrogen and sulfur species, while the river sample was dominated by carbon, hydrogen, and oxygen species. Less than 38% of the formulae were shared between any two samples, indicating a significant level of uniqueness across the samples. Unsaturated hydrocarbons, cellulose, and lipids were rapidly utilized by indigenous bacteria during a 24-day incubation period, and presumably transformed to more recalcitrant lignins and protein-type molecules. These findings indicate that FT-ICR-MS with ESI is an effective method for characterizing molecular-scale differences in DOM from complex environments. We also provide preliminary evidence that certain DOM fractions are more efficiently utilized by indigenous microbial communities and likely play an important role in controlling reducing conditions in heterogeneous subsurface environments.

  19. Microbial Methanogenesis In Laboratory Incubations Of Coal: Implications For A Sustainable Energy Resource In Subsurface Coalbeds

    NASA Astrophysics Data System (ADS)

    Harris, S. H.; Barker, C. E.; Smith, R. L.

    2005-12-01

    Methane desorbed from subsurface coalseams contributes about 8% of the total natural gas produced in the US. This value is expected to increase over the next several years as a growing proportion of energy demands are supplied from unconventional reservoirs. Isotopic analyses of gas samples from several geographically separate coalbeds indicates a substantial proportion of the sorbed methane is biogenic in origin. Furthermore, previous studies have shown the ability of microbial consortia to degrade coal in aerobic laboratory incubations. These findings suggests the stimulation of microbial methane production in subsurface coals may provide a sustainable source of domestic energy. To address this prospect, we assessed the ability of indigenous microbial populations to produce methane in coal maintained under anaerobic conditions in the laboratory and investigated factors that influenced the rate and extent of the process. Several freshly collected coals of different rank were examined for their ability to support methanogenesis in mineral medium alone or amended with different nutrients such as hydrogen (4 kPa), formate (20 mM), or acetate (25mM). Microbial methane production was distinguished from abiotic desorption by subtracting methane generated in replicate incubations that contained bromoethanesulfonic acid (5 mM), an inhibitor of methanogenesis. The extent and rate of methane production varied among the different coals. A relatively shallow (400 m), immature coal exhibited a rate of 700 nmole CH4*day-1*g coal-1, a value comparable to previous observations of contaminated sediments. Methane production was negligible in a deeper, relatively mature (650 m) coal obtained from the same borehole although the same material exhibited a rate of about 80 nmole CH4*day-1*g coal-1 after a formate amendment. In contrast, hydrogen proved to be ineffective as a methanogenic substrate, although this electron donor was rapidly consumed in coal incubations. A filter-sterilized warm water extract of spent coal renewed methanogenesis in incubations no longer generating methane, suggesting the cessation of methane production was not due to moribund cells or the accumulation of an inhibitory compound, but rather the lack of suitable electron donor. Viable methanogenic consortia were present in most of the coal samples examined in this study and their activity could be enhanced by electron donor amendment, which presumably supports microbial growth. Furthermore, the observation of rapid hydrogen consumption uncoupled from methanogenesis suggests competition exists for this compound. The success of efforts to stimulate methanogenesis in subsurface coalbeds will likely be influenced by the nature of the electron donor.

  20. Microbial reduction of structural Fe3+ in nontronite by a thermophilic bacterium and its role in promoting the smectite to illite reaction

    USGS Publications Warehouse

    Zhang, G.; Dong, H.; Kim, J.; Eberl, D.D.

    2007-01-01

    The illitization process of Fe-rich smectite (nontronite NAu-2) promoted by microbial reduction of structural Fe3+ was investigated by using a thermophilic metal-reducing bacterium, Thermoanaerobacter ethanolicus, isolated from the deep subsurface. T. ethanolicus was incubated with lactate as the sole electron donor and structural Fe3+ in nontronite as the sole electron acceptor, and anthraquinone-2, 6-disulfonate (AQDS) as an electron shuttle in a growth medium (pH 6.2 and 9.2, 65 ??C) with or without an external supply of Al and K sources. With an external supply of Al and K, the extent of reduction of Fe3+ in NAu-2 was 43.7 and 40.4% at pH 6.2 and 9.2, respectively. X-ray diffraction and scanning and transmission electron microscopy revealed formation of discrete illite at pH 9.2 with external Al and K sources, while mixed layers of illite/smectite or highly charged smectite were detected under other conditions. The morphology of biogenic illite evolved from lath and flake to pseudo-hexagonal shape. An external supply of Al and K under alkaline conditions enhances the smectite-illite reaction during microbial Fe3+ reduction of smectite. Biogenic SiO2 was observed as a result of bioreduction under all conditions. The microbially promoted smectite-illite reaction proceeds via dissolution of smectite and precipitation of illite. Thermophilic iron reducing bacteria have a significant role in promoting the smectite to illite reaction under conditions common in sedimentary basins.

  1. Microbes in Heavy Metal Remediation: A Review on Current Trends and Patents.

    PubMed

    Mishra, Geetesh Kumar

    2017-01-01

    Heavy metal pollution in the environmental samples like soil, water and runoff water is a worldwide problem. Such contamination of environmental matrices by the heavy metals accumulates due to various activities involving human driven sources and industries, although agriculture and sewage disposal are the largest source for the heavy metal contamination. Disposal of heavy metals or waste products containing heavy metals in the environment postures a trivial threat to public safety and health. Heavy metals are persistence and they can also cause biomagnifications and accumulate in food chain. Microbial bioremediation of heavy metal is emerging as an effective technique. Microbial bioremediation is a highly efficient environmental friendly procedure which also reduces the cost of cleanup process associated with heavy metal contamination. New methods for removal of heavy metals from the environmental samples are under development and most recent advancements have been made in exploring the knowledge of metal-microbes interactions and its use for heavy metal remediation. This review paper will focus on the microbial bioremediation process and highlight some of the newly developed patented methods for microbial bioremediation of the heavy metals from the environmental samples using microbial populations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Coupling Genetic and Chemical Microbiome Profiling Reveals Heterogeneity of Archaeome and Bacteriome in Subsurface Biofilms That Are Dominated by the Same Archaeal Species

    PubMed Central

    Holman, Hoi-Ying N.; DeSantis, Todd Z.; Wanner, Gerhard; Andersen, Gary L.; Perras, Alexandra K.; Meck, Sandra; Völkel, Jörg; Bechtel, Hans A.; Wirth, Reinhard; Moissl-Eichinger, Christine

    2014-01-01

    Earth harbors an enormous portion of subsurface microbial life, whose microbiome flux across geographical locations remains mainly unexplored due to difficult access to samples. Here, we investigated the microbiome relatedness of subsurface biofilms of two sulfidic springs in southeast Germany that have similar physical and chemical parameters and are fed by one deep groundwater current. Due to their unique hydrogeological setting these springs provide accessible windows to subsurface biofilms dominated by the same uncultivated archaeal species, called SM1 Euryarchaeon. Comparative analysis of infrared imaging spectra demonstrated great variations in archaeal membrane composition between biofilms of the two springs, suggesting different SM1 euryarchaeal strains of the same species at both aquifer outlets. This strain variation was supported by ultrastructural and metagenomic analyses of the archaeal biofilms, which included intergenic spacer region sequencing of the rRNA gene operon. At 16S rRNA gene level, PhyloChip G3 DNA microarray detected similar biofilm communities for archaea, but site-specific communities for bacteria. Both biofilms showed an enrichment of different deltaproteobacterial operational taxonomic units, whose families were, however, congruent as were their lipid spectra. Consequently, the function of the major proportion of the bacteriome appeared to be conserved across the geographic locations studied, which was confirmed by dsrB-directed quantitative PCR. Consequently, microbiome differences of these subsurface biofilms exist at subtle nuances for archaea (strain level variation) and at higher taxonomic levels for predominant bacteria without a substantial perturbation in bacteriome function. The results of this communication provide deep insight into the dynamics of subsurface microbial life and warrant its future investigation with regard to metabolic and genomic analyses. PMID:24971452

  3. Complete genome sequence of Anaeromyxobacter sp. Fw109-5, an Anaerobic, Metal-Reducing Bacterium Isolated from a Contaminated Subsurface Environment

    DOE PAGES

    Hwang, C.; Copeland, A.; Lucas, Susan; ...

    2015-01-22

    We report the genome sequence of Anaeromyxobacter sp. Fw109-5, isolated from nitrate- and uranium-contaminated subsurface sediment of the Oak Ridge Integrated Field-Scale Subsurface Research Challenge (IFC) site, Oak Ridge Reservation, TN. The bacterium’s genome sequence will elucidate its physiological potential in subsurface sediments undergoing in situ uranium bioremediation and natural attenuation.

  4. Adsorption of Pb(ll) and Eu(III) by oxide minerals in the presence of natural and synthetic hydroxamate siderophores.

    PubMed

    Kraemer, Stephan M; Xu, Jide; Raymond, Kenneth N; Sposito, Garrison

    2002-03-15

    Trihydroxamate siderophores have been proposed for use as mediators of actinide and heavy metal mobility in contaminated subsurface zones. These microbially produced ligands, common in terrestrial and marine environments, recently have been derivatized synthetically to enhance their affinity for transuranic metal cations. However, the interactions between these synthetic derivative and adsorbed trace metals have not been characterized. In this paper we compare a natural siderophore, desferrioxamine-B (DFO-B), with its actinide-specific catecholate derivative, N-(2,3-dihydroxy-4-(methylamido)benzoyl)desferrioxamine-B (DFOMTA), as to their effect on the adsorption of Pb(II) and Eu(III) by goethite and boehmite. In the presence of 240 microM DFO-B, a strongly depleting effect on Eu(III) adsorption by goethite and boehmite occurred above pH 6. By contrast, almost total removal of Eu(III) from solution in the neutral to slightly acidic pH range was observed in the presence of either 10 or 100 microM DFOMTA, due primarilyto the formation of metal-DFOMTA precipitates. Addition of DFOMTA caused an increase in Pb(II) adsorption by goethite below pH 5, but a decrease above pH 5, such that the Pb(II) adsorption edge in the presence of DFOMTA strongly resembled the DFOMTA adsorption envelope, which showed a maximum near pH 5 and decreasing adsorption toward lower and higher pH.

  5. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock

    DOE PAGES

    Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L.; ...

    2016-10-14

    A significant fraction (~ 20%) of microbial life is found in the terrestrial deep subsurface, yet the metabolic processes extant in those environments are poorly understood. Here we show that H 2, injected into the Opalinus Clay formation in a borehole located 300 meters below the surface, fuels a community of microorganisms with interconnected metabolisms. Metagenomic binning and metaproteomic analysis reveal a complete carbon cycle, driven by autotrophic hydrogen oxidizers. Dead biomass from these organisms is a substrate for a fermenting bacterium that produces acetate as a product. In turn, complete oxidizer heterotrophic sulfate- reducing bacteria utilize acetate and oxidizemore » it to CO 2, closing the cycle. This metabolic reconstruction sheds light onto a hydrogen-driven carbon cycle, and a sunlight-independent ecosystem in the deep subsurface.« less

  6. Spatial variation in the bacterial and denitrifying bacterial community in a biofilter treating subsurface agricultural drainage.

    PubMed

    Andrus, J Malia; Porter, Matthew D; Rodríguez, Luis F; Kuehlhorn, Timothy; Cooke, Richard A C; Zhang, Yuanhui; Kent, Angela D; Zilles, Julie L

    2014-02-01

    Denitrifying biofilters can remove agricultural nitrates from subsurface drainage, reducing nitrate pollution that contributes to coastal hypoxic zones. The performance and reliability of natural and engineered systems dependent upon microbially mediated processes, such as the denitrifying biofilters, can be affected by the spatial structure of their microbial communities. Furthermore, our understanding of the relationship between microbial community composition and function is influenced by the spatial distribution of samples.In this study we characterized the spatial structure of bacterial communities in a denitrifying biofilter in central Illinois. Bacterial communities were assessed using automated ribosomal intergenic spacer analysis for bacteria and terminal restriction fragment length polymorphism of nosZ for denitrifying bacteria.Non-metric multidimensional scaling and analysis of similarity (ANOSIM) analyses indicated that bacteria showed statistically significant spatial structure by depth and transect,while denitrifying bacteria did not exhibit significant spatial structure. For determination of spatial patterns, we developed a package of automated functions for the R statistical environment that allows directional analysis of microbial community composition data using either ANOSIM or Mantel statistics.Applying this package to the biofilter data, the flow path correlation range for the bacterial community was 6.4 m at the shallower, periodically in undated depth and 10.7 m at the deeper, continually submerged depth. These spatial structures suggest a strong influence of hydrology on the microbial community composition in these denitrifying biofilters. Understanding such spatial structure can also guide optimal sample collection strategies for microbial community analyses.

  7. Field Evidence for Magnetite Formation by a Methanogenic Microbial Community

    NASA Astrophysics Data System (ADS)

    Rossbach, S.; Beaver, C. L.; Williams, A.; Atekwana, E. A.; Slater, L. D.; Ntarlagiannis, D.; Lund, A.

    2015-12-01

    The aged, subsurface petroleum spill in Bemidji, Minnesota, has been surveyed with magnetic susceptibility (MS) measurements. High MS values were found in the free-product phase around the fluctuating water table. Although we had hypothesized that high MS values are related to the occurrence of the mineral magnetite resulting from the activity of iron-reducing bacteria, our microbial analysis pointed to the presence of a methanogenic microbial community at the locations and depths of the highest MS values. Here, we report on a more detailed microbial analysis based on high-throughput sequencing of the 16S rRNA gene of sediment samples from four consecutive years. In addition, we provide geochemical data (FeII/FeIII concentrations) to refine our conceptual model of methanogenic hydrocarbon degradation at aged petroleum spills and demonstrate that the microbial induced changes of sediment properties can be monitored with MS. The methanogenic microbial community at the Bemidji site consisted mainly of the syntrophic, hydrocarbon-degrading Smithella and the hydrogenotrophic, methane-generating Methanoregula. There is growing evidence in the literature that not only Bacteria, but also some methanogenic Archaea are able to reduce iron. In fact, a recent study reported that the methanogen Methanosarcina thermophila produced magnetite during the reduction of ferrihydrite in a laboratory experiment when hydrogen was present. Therefore, our finding of high MS values and the presence of magnetite in the methanogenic zone of an aged, subsurface petroleum spill could very well be the first field evidence for magnetite formation during methanogenic hydrocarbon degradation.

  8. Biological Low-pH Mn(II) Oxidation in a Manganese Deposit Influenced by Metal-Rich Groundwater

    PubMed Central

    Bohu, Tsing; Akob, Denise M.; Abratis, Michael; Lazar, Cassandre S.

    2016-01-01

    ABSTRACT The mechanisms, key organisms, and geochemical significance of biological low-pH Mn(II) oxidation are largely unexplored. Here, we investigated the structure of indigenous Mn(II)-oxidizing microbial communities in a secondary subsurface Mn oxide deposit influenced by acidic (pH 4.8) metal-rich groundwater in a former uranium mining area. Microbial diversity was highest in the Mn deposit compared to the adjacent soil layers and included the majority of known Mn(II)-oxidizing bacteria (MOB) and two genera of known Mn(II)-oxidizing fungi (MOF). Electron X-ray microanalysis showed that romanechite [(Ba,H2O)2(Mn4+,Mn3+)5O10] was conspicuously enriched in the deposit. Canonical correspondence analysis revealed that certain fungal, bacterial, and archaeal groups were firmly associated with the autochthonous Mn oxides. Eight MOB within the Proteobacteria, Actinobacteria, and Bacteroidetes and one MOF strain belonging to Ascomycota were isolated at pH 5.5 or 7.2 from the acidic Mn deposit. Soil-groundwater microcosms demonstrated 2.5-fold-faster Mn(II) depletion in the Mn deposit than adjacent soil layers. No depletion was observed in the abiotic controls, suggesting that biological contribution is the main driver for Mn(II) oxidation at low pH. The composition and species specificity of the native low-pH Mn(II) oxidizers were highly adapted to in situ conditions, and these organisms may play a central role in the fundamental biogeochemical processes (e.g., metal natural attenuation) occurring in the acidic, oligotrophic, and metalliferous subsoil ecosystems. IMPORTANCE This study provides multiple lines of evidence to show that microbes are the main drivers of Mn(II) oxidation even at acidic pH, offering new insights into Mn biogeochemical cycling. A distinct, highly adapted microbial community inhabits acidic, oligotrophic Mn deposits and mediates biological Mn oxidation. These data highlight the importance of biological processes for Mn biogeochemical cycling and show the potential for new bioremediation strategies aimed at enhancing biological Mn oxidation in low-pH environments for contaminant mitigation. PMID:26969702

  9. The nature and function of microbial enzymes in subsurface marine sediments

    NASA Astrophysics Data System (ADS)

    Steen, A. D.; Schmidt, J.

    2016-02-01

    Isotopic and genomic evidence indicates that marine sediments contain populations of active heterotrophic microorganisms which appear to metabolize old, detrital, apparently recalcitrant organic matter. In surface communities, heterotrophs use extracellular enzymes to access complex organic matter. In subsurface sediments, in which microbial doubling times can be on the order of hundreds or thousands of years, it is not clear whether extracellular enzymes could remain stable and active long enough to constitute a 'profitable' stragtegy for accessing complex organic carbon. Here we present evidence that a wide range of extracellular enzyme are active in subsurface sediments from two different environments: the White Oak River, NC, and deep (up to 80 m) sediments of the Baltic Sea Basin recovered from IODP Expedition 347. In the White Oak River, enzymes from deeper sediments appear to be better-adapted to highly-degraded organic matter than enzymes from surface sediments. In the Baltic Sea, preliminary data suggest that enzymes related to nitrogen acquisition are preferentially expressed. By characterizing the extracellular enzymes present in marine sediments, we hope to achieve a better understanding of the mechanisms that control sedimentary organic matter remineralization and preservation.

  10. Community dynamics of anaerobic bacteria in deep petroleum reservoirs

    NASA Astrophysics Data System (ADS)

    Hallmann, Christian; Schwark, Lorenz; Grice, Kliti

    2008-09-01

    The nature, activity and metabolism of microbes that inhabit the deep subsurface environment are a matter of ongoing debate. Primarily limited by temperature, little is known about secondary factors that restrict or enhance microbial activity or about the extent of a habitable environment deep below the surface. In particular, the degraders of chemically inert organic substrates remain elusive. Petroleum reservoirs can be regarded as natural bioreactors and are ideally suited for the study of microbial metabolism in the deep subsurface. Here we analyse series of oil samples that were biodegraded to different degrees. We find fatty acids after hydrolysis of purified crude oil fractions, indicating the presence of intact phospholipids and suggesting that indigenous bacteria inhabit petroleum reservoirs in sediment depths of up to 2,000m. A major change in bacterial community structure occurs after the removal of n-alkanes, indicating that more than one consortium is responsible for petroleum degradation. Our results suggest that further study of petroleum fluids will help understand bacterial metabolism and diversity in this habitat of the deep subsurface.

  11. Orenia metallireducens sp. nov. Strain Z6, a Novel Metal-Reducing Member of the Phylum Firmicutes from the Deep Subsurface

    PubMed Central

    Sanford, Robert A.; Boyanov, Maxim I.; Kemner, Kenneth M.; O'Loughlin, Edward J.; Chang, Yun-juan; Locke, Randall A.; Weber, Joseph R.; Egan, Sheila M.; Mackie, Roderick I.; Cann, Isaac; Fouke, Bruce W.

    2016-01-01

    ABSTRACT A novel halophilic and metal-reducing bacterium, Orenia metallireducens strain Z6, was isolated from briny groundwater extracted from a 2.02 km-deep borehole in the Illinois Basin, IL. This organism shared 96% 16S rRNA gene similarity with Orenia marismortui but demonstrated physiological properties previously unknown for this genus. In addition to exhibiting a fermentative metabolism typical of the genus Orenia, strain Z6 reduces various metal oxides [Fe(III), Mn(IV), Co(III), and Cr(VI)], using H2 as the electron donor. Strain Z6 actively reduced ferrihydrite over broad ranges of pH (6 to 9.6), salinity (0.4 to 3.5 M NaCl), and temperature (20 to 60°C). At pH 6.5, strain Z6 also reduced more crystalline iron oxides, such as lepidocrocite (γ-FeOOH), goethite (α-FeOOH), and hematite (α-Fe2O3). Analysis of X-ray absorption fine structure (XAFS) following Fe(III) reduction by strain Z6 revealed spectra from ferrous secondary mineral phases consistent with the precipitation of vivianite [Fe3(PO4)2] and siderite (FeCO3). The draft genome assembled for strain Z6 is 3.47 Mb in size and contains 3,269 protein-coding genes. Unlike the well-understood iron-reducing Shewanella and Geobacter species, this organism lacks the c-type cytochromes for typical Fe(III) reduction. Strain Z6 represents the first bacterial species in the genus Orenia (order Halanaerobiales) reported to reduce ferric iron minerals and other metal oxides. This microbe expands both the phylogenetic and physiological scopes of iron-reducing microorganisms known to inhabit the deep subsurface and suggests new mechanisms for microbial iron reduction. These distinctions from other Orenia spp. support the designation of strain Z6 as a new species, Orenia metallireducens sp. nov. IMPORTANCE A novel iron-reducing species, Orenia metallireducens sp. nov., strain Z6, was isolated from groundwater collected from a geological formation located 2.02 km below land surface in the Illinois Basin, USA. Phylogenetic, physiologic, and genomic analyses of strain Z6 found it to have unique properties for iron reducers, including (i) active microbial iron-reducing capacity under broad ranges of temperatures (20 to 60°C), pHs (6 to 9.6), and salinities (0.4 to 3.5 M NaCl), (ii) lack of c-type cytochromes typically affiliated with iron reduction in Geobacter and Shewanella species, and (iii) being the only member of the Halanaerobiales capable of reducing crystalline goethite and hematite. This study expands the scope of phylogenetic affiliations, metabolic capacities, and catalytic mechanisms for iron-reducing microbes. PMID:27565620

  12. Non-viable Microbial Community Structure and Geochemistry of Deep Subsurface Shales at Marcellus Shale Energy and Environment Laboratory

    NASA Astrophysics Data System (ADS)

    Akondi, R.; Trexler, R.; Sharma, S.; Mouser, P. J.; Pfiffner, S. M.

    2016-12-01

    The deep subsurface is known to harbor diverse communities of living microbes, and can therefore be expected to also harbor an equally diverse and likely different set of non-viable microbial populations. In this study, diglyceride fatty acids, (DGFA, biomarkers for non-viable microbes) as well as their compound specific isotopes (CSIA) were used to study the yield and variety of DGFAs in deep subsurface mid-Devonian sediments of different lithologies. Pristine sidewall cores were obtained from intervals in the Marcellus, Mahantango, and the Marcellus/Mahantango formation interface. The biomarkers were extracted and DGFAs were methylated to fatty acid methyl esters (FAMEs) and analyzed using GC-MS, while the CSIAs were performed using GC-irMS. Sediments were also analyzed for total organic carbon (TOC), stable carbon isotopic composition of organic carbon (δ13Corg), inorganic carbon (δ13Ccarb), and nitrogen (δ15Norg). TOC concentration was highest in the Marcellus and there was a general trend of increasing TOC from Mahantango to the Marcellus. The δ13Corg and δ13Ccarb increased and decreased respectively from Mahantango to the Marcellus while δ15Norg did not show any trend. The FAME profiles consisted of normal saturated, monounsaturated, polyunsaturated, branched, epoxy, terminally branched, hydroxyl, and dimethyl esters. The total biomass yield and variety of DGFA-FAME profiles were higher in the Mahantango compared to the samples from the Marcellus formation and Marcellus/Mahantango interface, suggesting the presence of more paleo-microbial activity in the less consolidated Mahantango formation. We attribute this to the smaller pore throat sizes within the Marcellus formation compared to the Mahantango formation. Since organic matter in the sediments is also one of the key sources of energy for microbial metabolism, bulk 13C and CSIA of the lipids will be used to understand the source(s) and pathways of the carbon cycling within the microbial communities.

  13. Spatial Autocorrelation, Source Water and the Distribution of Total and Viable Microbial Abundances within a Crystalline Formation to a Depth of 800 m

    PubMed Central

    Beaton, E. D.; Stuart, Marilyne; Stroes-Gascoyne, Sim; King-Sharp, Karen J.; Gurban, Ioana; Festarini, Amy; Chen, Hui Q.

    2017-01-01

    Proposed radioactive waste repositories require long residence times within deep geological settings for which we have little knowledge of local or regional subsurface dynamics that could affect the transport of hazardous species over the period of radioactive decay. Given the role of microbial processes on element speciation and transport, knowledge and understanding of local microbial ecology within geological formations being considered as host formations can aid predictions for long term safety. In this relatively unexplored environment, sampling opportunities are few and opportunistic. We combined the data collected for geochemistry and microbial abundances from multiple sampling opportunities from within a proposed host formation and performed multivariate mixing and mass balance (M3) modeling, spatial analysis and generalized linear modeling to address whether recharge can explain how subsurface communities assemble within fracture water obtained from multiple saturated fractures accessed by boreholes drilled into the crystalline formation underlying the Chalk River Laboratories site (Deep River, ON, Canada). We found that three possible source waters, each of meteoric origin, explained 97% of the samples, these are: modern recharge, recharge from the period of the Laurentide ice sheet retreat (ca. ∼12000 years before present) and a putative saline source assigned as Champlain Sea (also ca. 12000 years before present). The distributed microbial abundances and geochemistry provide a conceptual model of two distinct regions within the subsurface associated with bicarbonate – used as a proxy for modern recharge – and manganese; these regions occur at depths relevant to a proposed repository within the formation. At the scale of sampling, the associated spatial autocorrelation means that abundances linked with geochemistry were not unambiguously discerned, although fine scale Moran’s eigenvector map (MEM) coefficients were correlated with the abundance data and suggest the action of localized processes possibly associated with the manganese and sulfate content of the fracture water. PMID:28974945

  14. Fe-oxide grain coatings support bacterial Fe-reducing metabolisms in 1.7−2.0 km-deep subsurface quartz arenite sandstone reservoirs of the Illinois Basin (USA)

    PubMed Central

    Dong, Yiran; Sanford, Robert A.; Locke, Randall A.; Cann, Isaac K.; Mackie, Roderick I.; Fouke, Bruce W.

    2014-01-01

    The Cambrian-age Mt. Simon Sandstone, deeply buried within the Illinois Basin of the midcontinent of North America, contains quartz sand grains ubiquitously encrusted with iron-oxide cements and dissolved ferrous iron in pore-water. Although microbial iron reduction has previously been documented in the deep terrestrial subsurface, the potential for diagenetic mineral cementation to drive microbial activity has not been well studied. In this study, two subsurface formation water samples were collected at 1.72 and 2.02 km, respectively, from the Mt. Simon Sandstone in Decatur, Illinois. Low-diversity microbial communities were detected from both horizons and were dominated by Halanaerobiales of Phylum Firmicutes. Iron-reducing enrichment cultures fed with ferric citrate were successfully established using the formation water. Phylogenetic classification identified the enriched species to be related to Vulcanibacillus from the 1.72 km depth sample, while Orenia dominated the communities at 2.02 km of burial depth. Species-specific quantitative analyses of the enriched organisms in the microbial communities suggest that they are indigenous to the Mt. Simon Sandstone. Optimal iron reduction by the 1.72 km enrichment culture occurred at a temperature of 40°C (range 20–60°C) and a salinity of 25 parts per thousand (range 25–75 ppt). This culture also mediated fermentation and nitrate reduction. In contrast, the 2.02 km enrichment culture exclusively utilized hydrogen and pyruvate as the electron donors for iron reduction, tolerated a wider range of salinities (25–200 ppt), and exhibited only minimal nitrate- and sulfate-reduction. In addition, the 2.02 km depth community actively reduces the more crystalline ferric iron minerals goethite and hematite. The results suggest evolutionary adaptation of the autochthonous microbial communities to the Mt. Simon Sandstone and carries potentially important implications for future utilization of this reservoir for CO2 injection. PMID:25324834

  15. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment

    DOE PAGES

    Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.; ...

    2016-02-12

    Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Modelmore » simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO 2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe +2 and S -2 oxidation) to match locally-observed high CO 2 concentrations above reduced zones. Observed seasonal variations in CO 2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m -2 d -1, while including water table variations resulted in an overall decrease in the simulated fluxes. We thus conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations.« less

  16. The role microbial sulfate reduction in the direct mediation of sedimentary authigenic carbonate precipitation

    NASA Astrophysics Data System (ADS)

    Turchyn, A. V.; Walker, K.; Sun, X.

    2016-12-01

    The majority of modern deep marine sediments are bathed in water that is undersaturated with respect to calcium carbonate. However, within marine sediments changing chemical conditions, driven largely by the microbial oxidation of organic carbon in the absence of oxygen, lead to supersaturated conditions and drive calcium carbonate precipitation. This sedimentary calcium carbonate is often called `authigenic carbonate', and is found in the form of cements and disseminated crystals within the marine sedimentary pile. As this precipitation of this calcium carbonate is microbially mediated, identifying authigenic carbonate within the geological record and understanding what information its geochemical and/or isotopic signature may hold is key for understanding its importance and what information it may contain past life. However, the modern controls on authigenic carbonate precipitation remain enigmatic because the myriad of microbially mediated reactions occurring within sediments both directly and indirectly impact the proton balance. In this submission we present data from 25 ocean sediment cores spanning the globe where we explore the deviation from the stoichiometrically predicted relationships among alkalinity, calcium and sulfate concentrations. In theory for every mol of organic carbon reduced by sulfate, two mol of alkalinity is produced, and to precipitate subsurface calcium carbonate one mol of calcium is used to consume two mol of alkalinity. We use this data with a model to explore changes in carbonate saturation state with depth below the seafloor. Alkalinity changes in the subsurface are poorly correlated with changes in calcium concentrations, however calcium concentrations are directly and tightly coupled to changes in sulfate concentrations in all studied sites. This suggests a direct role for sulfate reducing bacteria in the precipitation of subsurface carbonate cements.

  17. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.

    2016-02-01

    Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Modelmore » simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe?2 and S-2 oxidation) to match locally-observed high CO2 concentrations above reduced zones. Observed seasonal variations in CO2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m-2 d-1, while including water table variations resulted in an overall decrease in the simulated fluxes. We conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations.« less

  18. Quantification of hydrophobic interaction affinity of colloids

    NASA Astrophysics Data System (ADS)

    Saini, G.; Nasholm, N.; Wood, B. D.

    2009-12-01

    Colloids play an important role in a wide variety of disciplines, including water and wastewater treatment, subsurface transport of metals and organic contaminants, migration of fines in oil reservoirs, biocolloid (virus and bacteria) transport in subsurface, and are integral to laboratory transport studies. Although the role of hydrophobicity in adhesion and transport of colloids, particularly bacteria, is well known; there is scarcity of literature regarding hydrophobicity measurement of non-bacterial colloids and other micron-sized particles. Here we detail an experimental approach based on differential partitioning of colloids between two liquid phases (hydrocarbon and buffer) as a measure of the hydrophobic interaction affinity of colloids. This assay, known as Microbial adhesion to hydrocarbons or MATH, is frequently used in microbiology and bacteriology for quantifying the hydrophobicity of microbes. Monodispersed colloids and particles, with sizes ranging from 1 micron to 33 micron, were used for the experiments. A range of hydrophobicity values were observed for different particles. The hydrophobicity results are also verified against water contact angle measurements of these particles. This liquid-liquid partitioning assay is quick, easy-to-perform and requires minimal instrumentation. Estimation of the hydrophobic interaction affinity of colloids would lead to a better understanding of their adhesion to different surfaces and subsequent transport in porous media.

  19. Lunar and Planetary Science XXXV: Astrobiology: Analogs and Applications to the Search for Life

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Astrobiology: Analogs and Applications to the Search for Life" included the folowing reports:The Search for Life on Mars Using Macroscopically Visible Microbial Mats (Stromatolites) in 3.5/3.3 Ga Cherts from the Pilbara in Australia and Barberton in South Africa as Analogues; Life in a Mars Analog: Microbial Activity Associated with Carbonate Cemented Lava Breccias from NW Spitsbergen; Groundwater-fed Iron-rich Microbial Mats in a Freshwater Creek: Growth Cycles and Fossilization Potential of Microbial Features; Episodic Fossilization of Microorganisms on an Annual Timescale in an Anthropogenically Modified Natural Environment: Geochemical Controls and Implications for Astrobiology; Proterozoic Microfossils and Their Implications for Recognizing Life on Mars; Microbial Alteration of Volcanic Glass in Modern and Ancient Oceanic Crust as a Proxy for Studies of Extraterrestrial Material ; Olivine Alteration on Earth and Mars; Searching for an Acidic Aquifer in the R!o Tinto Basin. First Geobiology Results of MARTE Project; In-Field Testing of Life Detection Instruments and Protocols in a Mars Analogue Arctic Environment; Habitability of the Shallow Subsurface on Mars: Clues from the Meteorites; Mars Analog Rio Tinto Experiment (MARTE): 2003 Drilling Campaign to Search for a Subsurface Biosphere at Rio Tinto Spain; Characterization of the Organic Matter in an Archean Chert (Warrawoona, Australia); and The Solfatara Crater, Italy: Characterization of Hydrothermal Deposits, Biosignatures and Their Astrobiological Implication.

  20. Something new from something old? Fracking stimulated microbial processes

    NASA Astrophysics Data System (ADS)

    Wrighton, K. C.; Daly, R. A.; Hoyt, D.; Trexler, R.; McRae, J.; Wilkins, M.; Mouser, P. J.

    2015-12-01

    Hydraulic fracturing, colloquially known as "fracking", is employed for effective gas and oil recovery in deep shales. This process injects organisms and liquids from the surface into the deep subsurface (~2500 m), exposing microorganisms to high pressures, elevated temperatures, chemical additives, and brine-level salinities. Here we use assembly-based metagenomics to create a metabolic blueprint from an energy-producing Marcellus shale well over a 328-day period. Using this approach we ask the question: What abiotic and biotic factors drive microbial metabolism and thus biogeochemical cycling during natural gas extraction? We found that after 49 days, increased salinity in produced waters corresponded to a shift in the microbial community, with only organisms that encode salinity adaptations detected. We posit that organic compatible solutes, produced by organisms adapting to increased salinity, fuels a methylamine-driven ecosystem in fractured shale. This metabolic network ultimately results in biogenic methane production from members of Methanohalophilus and Methanolobus. Proton NMR validated these genomic hypotheses, with mono-methylamine being highest in the input material, but detected throughout the sampling. Beyond abiotic constraints, our genomic investigations revealed that viruses can be linked to key members of the microbial community, potentially releasing methylamine osmoprotectants and impacting bacterial strain variation. Collectively our results indicate that adaptation to high salinity, metabolism in the absence of oxidized electron acceptors, and viral predation are controlling factors mediating microbial community metabolism during hydraulic fracturing of the deep subsurface.

  1. Limitations of microbial hydrocarbon degradation at the Amon mud volcano (Nile deep-sea fan)

    NASA Astrophysics Data System (ADS)

    Felden, J.; Lichtschlag, A.; Wenzhöfer, F.; de Beer, D.; Feseker, T.; Pop Ristova, P.; de Lange, G.; Boetius, A.

    2013-05-01

    The Amon mud volcano (MV), located at 1250 m water depth on the Nile deep-sea fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the Amon MV center in the presence of sulfate and hydrocarbons in the seeping subsurface fluids. By comparing spatial and temporal patterns of in situ biogeochemical fluxes, temperature gradients, pore water composition, and microbial activities over 3 yr, we investigated why the activity of anaerobic hydrocarbon degraders can be low despite high energy supplies. We found that the central dome of the Amon MV, as well as a lateral mud flow at its base, showed signs of recent exposure of hot subsurface muds lacking active hydrocarbon degrading communities. In these highly disturbed areas, anaerobic degradation of methane was less than 2% of the methane flux. Rather high oxygen consumption rates compared to low sulfide production suggest a faster development of more rapidly growing aerobic hydrocarbon degraders in highly disturbed areas. In contrast, the more stabilized muds surrounding the central gas and fluid conduits hosted active anaerobic hydrocarbon-degrading microbial communities. The low microbial activity in the hydrocarbon-vented areas of Amon MV is thus a consequence of kinetic limitations by heat and mud expulsion, whereas most of the outer MV area is limited by hydrocarbon transport.

  2. Following The Money: Characterizing the Dynamics of Microbial Ecosystems and Labile Organic Matter in Grassland Soils

    NASA Astrophysics Data System (ADS)

    Herbert, B. E.; McNeal, K. S.

    2006-12-01

    The dynamics of soil microbial ecosystems and labile fractions of soil organic matter in grasslands have important implications for the response of these critical ecosystems to perturbations. Organic, inorganic and genetic biomarkers in the solid (e.g. lipids, microbial DNA), liquid (e.g. porewater ions) or gaseous phases (e.g. carbon dioxide) have been used to characterize carbon cycling and soil microbial ecology. These proxies are generally limited in the amount of temporal information that they can provide (i.e., solid-phase proxies) or the amount of specific information they can provide about carbon sources or microbial community processes (e.g. inorganic gases). It is the aim of this research to validate the use of soil volatile organic carbon emissions (VOCs) as useful indicators of subsurface microbial community shifts and processes as a function of ecosystem perturbations. We present results of method validation using laboratory microcosm, where VOC metabolites as characterized by gas chromatography and mass spectrometry (GC-MS), were related to other proxies including carbon dioxide (CO2) via infra-red technology, and microbial community shifts as measured by Biolog© and fatty acid methyl ester (FAME) techniques. Experiments with soil collected from grasslands along the coastal margin region in southern Texas were preformed where environmental factors such as soil water content, soil type, and charcoal content are manipulated. Results indicate that over fifty identifiable VOC metabolites are produced from the soils, where many (~15) can be direct indicators of microbial ecology. Principle component analysis (PCA) evidences these trends through similar cluster patterns for the VOC results, the Biolog© results, and FAME. Regression analysis further shows that VOCs are significant (p < 0.05) indicators of microbial stress. Our results are encouraging that characterizing VOCs production in grassland soils are easy to measure, relatively inexpensive method, and useful proxies of subsurface microbial ecosystems and the dynamics of labile carbon in these systems.

  3. Some New Windows into Terrestrial Deep Subsurface Microbial Ecosystems

    NASA Astrophysics Data System (ADS)

    Moser, D. P.

    2011-12-01

    Over the past several years, our group has surveyed the microbial ecology and biogeochemistry of a range of fracture rock subsurface ecosystems via deep mine boreholes in South Africa, the United States, and Canada; and boreholes from surface or deeply-sourced natural springs of the U.S. Great Basin. Collectively, these mostly unexplored habitats represent a wide range of geologic provinces, host rock types, aquatic chemistries, and the vast potential for biogeographic isolation. Thus, patterns of microbial diversity are of interest from the perspective of filling a fundamental knowledge gap; and while not necessarily expected, the detection of closely related microorganisms from geographically isolated settings would be noteworthy. Across these sample sets, microbial communities were invariably very low in biomass (e.g. 10e3 - 10e4 cells per mL) and dominated by deeply-branching bacterial lineages, particularly from the phyla Firmicutes and Nitrospira. In several cases, the Firmicutes have shown very close phylogenetic affiliations to lineages detected at divergent locations. For example, one abundant lineage from a new artesian well drilled into the Furnace Creek Fault of Death Valley, CA bears a very close phylogenetic relatedness to environmental DNA sequences (SSU rRNA gene) detected in one of the world's deepest mines (Tau Tona of South Africa) and what was North America's deepest gold mine (Homestake of South Dakota). Several radioactive wells from the Nevada National Security Site have produced rRNA gene sequences very close (e.g. greater than 99% identity) to that of Desulforudis audaxviator, a rarely detected microorganism thought to subsist as a single species ecosystem on the products of radiochemical reactions in deep crustal rocks from the South African Witwatersrand Basin. These sequences, along with more distantly related sequences from the marine subsurface (ridge flank basalt and mud volcanoes) and groundwater in Europe, hint at a role in certain hydrogen-rich subsurface settings for this group. Likewise, patterns of archaeal diversity across many of our Great Basin sites suggest shared deep lineages, particularly with the phylum, Thaumarchaeota. Here we will explore the possible significance of these patterns of diversity and discuss future research plans involving high throughput molecular techniques.

  4. Isotopic identification of the source of methane in subsurface sediments of an area surrounded by waste disposal facilities

    USGS Publications Warehouse

    Hackley, Keith C.; Liu, Chao-Li; Trainor, D.

    1999-01-01

    The major source of methane (CH4) in subsurface sediments on the property of a former hazardous waste treatment facility was determined using isotopic analyses measured on CH4 and associated groundwater. The site, located on an earthen pier built into a shallow wetland lake, has had a history of waste disposal practices and is surrounded by landfills and other waste management facilities. Concentrations of CH4 up to 70% were found in the headspace gases of several piezometers screened at 3 different depths (ranging from 8 to 17 m) in lacustrine and glacial till deposits. Possible sources of the CH4 included a nearby landfill, organic wastes from previous impoundments and microbial gas derived from natural organic matter in the sediments. Isotopic analyses included ??13C, ??D, 14C, and 3H on select CH4 samples and ??D and ??18O on groundwater samples. Methane from the deepest glacial till and intermediate lacustrine deposits had ??13C values from -79 to -82???, typical of natural 'drift gas' generated by microbial CO2-reduction. The CH4 from the shallow lacustrine deposits had ??13C values from -63 to -76???, interpreted as a mixture between CH4 generated by microbial fermentation and the CO2-reduction processes within the subsurface sediments. The ??D values of all the CH4 samples were quite negative ranging from -272 to -299???. Groundwater sampled from the deeper zones also showed quite negative ??D values that explained the light ??D observed for the CH4. Radiocarbon analyses of the CH4 showed decreasing 14C activity with depth, from a high of 58 pMC in the shallow sediments to 2 pMC in the deeper glacial till. The isotopic data indicated the majority of CH4 detected in the fill deposits of this site was microbial CH4 generated from naturally buried organic matter within the subsurface sediments. However, the isotopic data of CH4 from the shallow piezometers was more variable and the possibility of some mixing with oxidized landfill CH4 could not be completely ruled out.

  5. Exploring Microbial Life in Oxic Sediments Underlying Oligotrophic Ocean Gyres

    NASA Astrophysics Data System (ADS)

    Ziebis, W.; Orcutt, B.; Wankel, S. D.; D'Hondt, S.; Szubin, R.; Kim, J. N.; Zengler, K.

    2015-12-01

    Oxygen, carbon and nutrient availability are defining parameters for microbial life. In contrast to organic-rich sediments of the continental margins, where high respiration rates lead to a depletion of O2 within a thin layer at the sediment surface, it was discovered that O2 penetrates several tens of meters into organic-poor sediments underlying oligotrophic ocean gyres. In addition, nitrate, another important oxidant, which usually disappears rapidly with depth in anoxic sediments, tends to accumulate above seawater concentrations in the oxic subsurface, reflecting the importance of nitrogen cycling processes, including both nitrification and denitrification. Two IODP drilling expeditions were vital for exploring the nature of the deep subsurface beneath oligotrophic ocean gyres, expedition 329 to the South Pacific Gyre (SPG) and expedition 336 to North Pond, located on the western flank of the Mid-Atlantic ridge beneath the North Atlantic Gyre. Within the ultra-oligotrophic SPG O2 penetrates the entire sediment column from the sediment-water interface to the underlying basement to depths of > 75 m. At North Pond, a topographic depression filled with sediment and surrounded by steep basaltic outcrops, O2 penetrates deeply into the sediment (~ 30 m) until it eventually becomes depleted. O2 also diffuses upward into the sediment from seawater circulating within the young crust underlying the sediment, resulting in a deep oxic layer several meters above the basalt. Despite low organic carbon contents microbial cells persist throughout the entire sediment column within the SPG (> 75 m) and at North Pond, albeit at low abundances. We explored the nature of the subsurface microbial communities by extracting intact cells from large volumes of sediment obtained from drill cores of the two expeditions. By using CARD-FiSH, amplicon (16s rRNA) and metagenome sequencing we shed light on the phylogenetic and functional diversity of the elusive communities residing in the deep oxic sediments of these two different areas. Given the global extent of this oxic subsurface studies of the diversity and metabolic potential of its biome, together with the analyses of porewater geochemical and isotopic composition, are beginning to reveal its role in global biogeochemical cycles.

  6. Genome-Based Models to Optimize In Situ Bioremediation of Uranium and Harvesting Electrical Energy from Waste Organic Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovley, Derek R

    2012-12-28

    The goal of this research was to provide computational tools to predictively model the behavior of two microbial communities of direct relevance to Department of Energy interests: 1) the microbial community responsible for in situ bioremediation of uranium in contaminated subsurface environments; and 2) the microbial community capable of harvesting electricity from waste organic matter and renewable biomass. During this project the concept of microbial electrosynthesis, a novel form of artificial photosynthesis for the direct production of fuels and other organic commodities from carbon dioxide and water was also developed and research was expanded into this area as well.

  7. Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt3M (where M = 3d transition metals) alloy catalyst from first-principles.

    PubMed

    Kim, Chang-Eun; Lim, Dong-Hee; Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo; Hong, Seong-Ahn; Soon, Aloysius; Ham, Hyung Chul

    2015-01-21

    The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt3M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt3M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt3M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt3M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.

  8. Differences in Hyporheic-Zone Microbial Community Structure along a Heavy-Metal Contamination Gradient

    PubMed Central

    Feris, Kevin; Ramsey, Philip; Frazar, Chris; Moore, Johnnie N.; Gannon, James E.; Holben, William E.

    2003-01-01

    The hyporheic zone of a river is nonphotic, has steep chemical and redox gradients, and has a heterotrophic food web based on the consumption of organic carbon entrained from downwelling surface water or from upwelling groundwater. The microbial communities in the hyporheic zone are an important component of these heterotrophic food webs and perform essential functions in lotic ecosystems. Using a suite of methods (denaturing gradient gel electrophoresis, 16S rRNA phylogeny, phospholipid fatty acid analysis, direct microscopic enumeration, and quantitative PCR), we compared the microbial communities inhabiting the hyporheic zone of six different river sites that encompass a wide range of sediment metal loads resulting from large base-metal mining activity in the region. There was no correlation between sediment metal content and the total hyporheic microbial biomass present within each site. However, microbial community structure showed a significant linear relationship with the sediment metal loads. The abundances of four phylogenetic groups (groups I, II, III, and IV) most closely related to α-, β-, and γ-proteobacteria and the cyanobacteria, respectively, were determined. The sediment metal content gradient was positively correlated with group III abundance and negatively correlated with group II abundance. No correlation was apparent with regard to group I or IV abundance. This is the first documentation of a relationship between fluvially deposited heavy-metal contamination and hyporheic microbial community structure. The information presented here may be useful in predicting long-term effects of heavy-metal contamination in streams and provides a basis for further studies of metal effects on hyporheic microbial communities. PMID:12957946

  9. Heavy Metal Resistant, Alkalitolerant Bacteria Isolated From Serpentinizing Springs in the Zambales Ophiolite, Philippines

    NASA Astrophysics Data System (ADS)

    Vallalar, B.; Meyer-Dombard, D. R.; Cardace, D.; Arcilla, C. A.

    2016-12-01

    Serpentinization involves hydrologic alteration of ultramafic mantle rocks containing olivine and pyroxene to produce serpentine minerals. The fluids resulting from this reaction are reduced, extremely depleted in dissolved inorganic carbon, and are highly alkaline with pH values typically exceeding 10. Major byproducts of the serpentinizing reaction include iron oxides, hydrogen, methane, and small amounts of organic molecules that provide chemosynthetic energy for subsurface microbial communities. In addition, weathering of serpentine rocks often produces fluids and sediments that have elevated concentrations of various toxic heavy metals such as chromium, nickel, cobalt, copper, and zinc. Thus, microorganisms inhabiting these unique ecological niches must be adapted to a variety of physicochemical extremes. The purpose of this study is to isolate bacteria that are capable of withstanding extremely high concentrations of multiple heavy metals from serpentine fluid-associated sediments. Fluid and sediment samples for microbial culturing were collected from Manleluag Spring National Park located on the island of Luzon, Philippines. The area is part of the Zambales ophiolite range, and hosts several serpentinizing fluid seeps. Fluid emanating from the source pool of the spring, designated Manleluag 2 (ML2), has a pH of 10.83 and temperature of 34.4 °C. Luria-Bertani agar medium was supplemented with varying concentrations of five trace elements - Cu, Cr, Co, Ni, and Zn. Environmental samples were spread on each of these media and colony forming units were subsequently chosen for isolation. In all, over 20 isolates were obtained from media with concentrations ranging from 25 mg/L - 400 mg/L of each metal. Taxonomic identity of each isolate was determined using 16S rRNA gene sequences. The isolates were then tested for tolerance to alkaline conditions by altering LB medium to pH values of 8, 9, 10, 11, and 12. The majority of strains exhibit growth at the highest pH tested, demonstrating that alkalitolerant, highly metal resistant organisms are found in this serpentinizing system. These organisms are of great interest as they may be exploited for bioremediation, enzyme production, and other biotechnological applications.

  10. Mapping Microbial Populations Relative to Sites of Ongoing Serpentinization: Results from the Tablelands Ophiolite Complex, Canada

    NASA Astrophysics Data System (ADS)

    Schrenk, M. O.; Brazelton, W. J.; Woodruff, Q.; Szponar, N.; Morrill, P. L.

    2010-12-01

    The aqueous alteration of ultramafic rocks (serpentinization) has been suggested to be a favorable process for the habitability of astrobodies in our solar system including subsurface environments of Mars and Europa. Serpentinization produces copious quantities of hydrogen and small organic molecules, and leads to highly reducing, highly alkaline conditions (up to pH 12) and a lack of dissolved inorganic carbon, which both stimulates and challenges microbial activities. Several environments on Earth provide insight into the relationships between serpentinization and microbial life including slow-spreading mid-ocean ridges, subduction zones, and ophiolite materials emplaced along continental margins. The Tablelands, an ophiolite in western Newfoundland, Canada provides an opportunity to carefully document and map the relationships between geochemical energy, microbial growth, and physiology. Alkaline fluids at the Tablelands originate from 500-million year old oceanic crust and accumulate in shallow pools or seep from beneath serpentinized talus. Fluids, rocks, and gases were collected from the Tablelands during a series of field excursions in 2009 and 2010, and geochemical, microscopic, molecular, and cultivation-based approaches were used to study the serpentinite microbial ecosystem. These samples provide an opportunity to generate a comprehensive map of microbial communities and their activities in space and time. Data indicate that a low but detectable stock of microorganisms inhabit high pH pools associated with end-member serpentinite fluids. Enrichment cultures yielded brightly pigmented colonies related to Alphaproteobacteria, presumably carrying out anoxygenic photosynthesis, and Firmicutes, presumably catalyzing the fermentation of organic matter. Culture-independent analyses of SSU rRNA using T-RFLP indicated low diversity communities of Firmicutes and Archaea in standing alkaline pools, communities of Beta- and Gammaproteobacteria at high pH seeps, and assemblages consisting of diverse taxa at neutral pH background sites. Terrestrial serpentinite-hosted microbial ecosystems with their accessibility, their low phylogenetic diversity, and limited range of energetic resources provide an excellent opportunity to explore the interplay between geochemical energy and life and to elucidate the native serpentinite subsurface biosphere. From the perspective of Mars exploration, studies of serpentinite ecosystems provide the opportunity to pinpoint the organisms and physiological adaptations specifically associated with serpentinization and to directly measure their geochemical impacts. Both of these results will inform modeling and life detection efforts of the Martian subsurface environment.

  11. Vertical distribution of the subsurface microorganisms in Sagara oil reservoir

    NASA Astrophysics Data System (ADS)

    Nunoura, T.; Oida, H.; Masui, N.; Ingaki, F.; Takai, K.; Nealson, K. H.; Horikoshi, K.

    2002-12-01

    The recent microbiological studies reported that active microbial habitat for methanogen, sulfate reducers (Archaeoglobus, d-Proteobacteria, gram positives), fermenters (Thermococcus, Thermotogales, gram positives etc.) and other heterotrophs (g-Proteobacteria etc.) are in subsurface petroleum oil reservoirs. However, microbial distribution at vertical distances in depth has not been demonstrated since the samples in previous studies are only to use oil and the formation water. Here, we show the vertical profile of microbial community structure in Japanese terrestrial oil reservoir by a combination of molecular ecological analyses and culture dependent studies. The sequential WRC (Whole Round Core) samples (200 mbsf) were recovered from a drilling project for Sagara oil reservoir, Shizuoka Prefecture, Japan, conducted in Jar. -Mar. 2002. The lithology of the core samples was composed of siltstone, sandstone, or partially oil containing sand. The major oil components were gasoline, kerosene and light oil, that is a unique feature observed in the Sagara oil reservoir. The direct count of DAPI-stained cells suggested that the biomass was relatively constant, 1.0x104cells/g through the core of the non-oil layers, whereas the oil-bearing layers had quite higher population density at a range of 1.0x105 ? 3.7x107cells/g. The vertical profile of microbial community structures was analyzed by the sequence similarity analysis, phylogenetic analysis and T-RFLP fingerprinting of PCR-amplified 16S rDNA. From bacterial rDNA clone libraries, most of the examined rDNA were similar with the sequence of genera Pseudomanas, Stenotrophomonas and Sphingomonas within g-Proteobacteria. Especially, Pseudomonas stutzeri was predominantly present in all oil-bearing layers. From archaeal rDNA clone libraries, all rDNA clone sequences were phylogenetically associated with uncultured soil group in Crenarchaeota. We detected none of the sequences of sulfate reducers, sulfur dependent fermenters and methanogens that have been previously detected as dominant microbial components in other oil reservoir environments. The absence of methanogen was consistent with the results from the stable isotopic analysis that major hydrocarbon components including methane in Sagara oil reservoir are thermogenic origin. In this presentation, we will also show the activity of the subsurface microbial components by the cultivation assays and discuss about the relationship between the microbial community structure and the formation process of petroleum in Sagara oil reservoir.

  12. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers

    PubMed Central

    Kieft, Thomas L.; Kuloyo, Olukayode; Linage-Alvarez, Borja; van Heerden, Esta; Lindsay, Melody R.; Magnabosco, Cara; Wang, Wei; Wiggins, Jessica B.; Guo, Ling; Perlman, David H.; Kyin, Saw; Shwe, Henry H.; Harris, Rachel L.; Oh, Youmi; Yi, Min Joo; Purtschert, Roland; Slater, Greg F.; Ono, Shuhei; Wei, Siwen; Li, Long; Sherwood Lollar, Barbara; Onstott, Tullis C.

    2016-01-01

    Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H2. Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH4 to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H2 oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface. PMID:27872277

  13. Effects of Cd and Pb on soil microbial community structure and activities.

    PubMed

    Khan, Sardar; Hesham, Abd El-Latif; Qiao, Min; Rehman, Shafiqur; He, Ji-Zheng

    2010-02-01

    Soil contamination with heavy metals occurs as a result of both anthropogenic and natural activities. Heavy metals could have long-term hazardous impacts on the health of soil ecosystems and adverse influences on soil biological processes. Soil enzymatic activities are recognized as sensors towards any natural and anthropogenic disturbance occurring in the soil ecosystem. Similarly, microbial biomass carbon (MBC) is also considered as one of the important soil biological activities frequently influenced by heavy metal contamination. The polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) has recently been used to investigate changes in soil microbial community composition in response to environmental stresses. Soil microbial community structure and activities are difficult to elucidate using single monitoring approach; therefore, for a better insight and complete depiction of the soil microbial situation, different approaches need to be used. This study was conducted in a greenhouse for a period of 12 weeks to evaluate the changes in indigenous microbial community structure and activities in the soil amended with different application rates of Cd, Pb, and Cd/Pb mix. In a field environment, soil is contaminated with single or mixed heavy metals; so that, in this research, we used the selected metals in both single and mixed forms at different application rates and investigated their toxic effects on microbial community structure and activities, using soil enzyme assays, plate counting, and advanced molecular DGGE technique. Soil microbial activities, including acid phosphatase (ACP), urease (URE), and MBC, and microbial community structure were studied. A soil sample (0-20 cm) with an unknown history of heavy metal contamination was collected and amended with Cd, Pb, and Cd/Pb mix using the CdSO(4) and Pb(NO(3))(2) solutions at different application rates. The amended soils were incubated in the greenhouse at 25 +/- 4 degrees C and 60% water-holding capacity for 12 weeks. During the incubation period, samples were collected from each pot at 0, 2, 9, and 12 weeks for enzyme assays, MBC, numeration of microbes, and DNA extraction. Fumigation-extraction method was used to measure the MBC, while plate counting techniques were used to numerate viable heterotrophic bacteria, fungi, and actinomycetes. Soil DNAs were extracted from the samples and used for DGGE analysis. ACP, URE, and MBC activities of microbial community were significantly lower (p < 0.05) in the metal-amended samples than those in the control. The enzyme inhibition extent was obvious between different incubation periods and varied as the incubation proceeded, and the highest rate was detected in the samples after 2 weeks. However, the lowest values of ACP and URE activities (35.6% and 36.6% of the control, respectively) were found in the Cd(3)/Pb(3)-treated sample after 2 weeks. Similarly, MBC was strongly decreased in both Cd/Pb-amended samples and highest reduction (52.4%) was detected for Cd(3)/Pb(3) treatment. The number of bacteria and actinomycetes were significantly decreased in the heavy metal-amended samples compared to the control, while fungal cells were not significantly different (from 2.3% to 23.87%). In this study, the DGGE profile indicated that the high dose of metal amendment caused a greater change in the number of bands. DGGE banding patterns confirmed that the addition of metals had a significant impact on microbial community structure. In soil ecosystem, heavy metals exhibit toxicological effects on soil microbes which may lead to the decrease of their numbers and activities. This study demonstrated that toxicological effects of heavy metals on soil microbial community structure and activities depend largely on the type and concentration of metal and incubation time. The inhibition extent varied widely among different incubation periods for these enzymes. Furthermore, the rapid inhibition in microbial activities such as ACP, URE, and MBC were observed in the 2 weeks, which should be related to the fact that the microbes were suddenly exposed to heavy metals. The increased inhibition of soil microbial activities is likely to be related to tolerance and adaptation of the microbial community, concentration of pollutants, and mechanisms of heavy metals. The DGGE profile has shown that the structure of the bacterial community changed in amended heavy metal samples. In this research, the microbial community structure was highly affected, consistent with the lower microbial activities in different levels of heavy metals. Furthermore, a great community change in this study, particularly at a high level of contamination, was probably a result of metal toxicity and also unavailability of nutrients because no nutrients were supplied during the whole incubation period. The added concentrations of heavy metals have changed the soil microbial community structure and activities. The highest inhibitory effects on soil microbial activities were observed at 2 weeks of incubation. The bacteria were more sensitive than actinomycetes and fungi. The DGGE profile indicated that bacterial community structure was changed in the Cd/Pb-amended samples, particularly at high concentrations. The investigation of soil microbial community structure and activities together could give more reliable and accurate information about the toxic effects of heavy metals on soil health.

  14. Estimating and mapping ecological processes influencing microbial community assembly

    PubMed Central

    Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.; Konopka, Allan E.

    2015-01-01

    Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recently developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth. PMID:25983725

  15. Spatial and Temporal Scales of Surface Water-Groundwater Interactions

    NASA Astrophysics Data System (ADS)

    Boano, F.

    2016-12-01

    The interfaces between surface water and groundwater (i.e., river and lake sediments) represent hotspots for nutrient transformation in watersheds. This intense biochemical activity stems from the peculiar physicochemical properties of these interface areas. Here, the exchange of water and nutrients between surface and subsurface environments creates an ecotone region that can support the presence of different microbial species responsible for nutrient transformation. Previous studies have elucidated that water exchange between rivers and aquifers is organized in a complex system of nested flow cells. Each cell entails a range of residence timescales spanning multiple order of magnitudes, providing opportunities for different biochemical reactions to occur. Physically-bases models represent useful tools to deal with the wide range of spatial and temporal scales that characterize surface-subsurface water exchange. This contribution will present insights about how hydrodynamic processes control scale organization for surface water - groundwater interactions. The specific focus will be the influence of exchange processes on microbial activity and nutrient transformation, discussing how groundwater flow at watershed scale controls flow conditions and hence constrain microbial reactions at much smaller scales.

  16. Oxidation of aromatic contaminants coupled to microbial iron reduction

    USGS Publications Warehouse

    Lovley, D.R.; Baedecker, M.J.; Lonergan, D.J.; Cozzarelli, I.M.; Phillips, E.J.P.; Siegel, D.I.

    1989-01-01

    THE contamination of sub-surface water supplies with aromatic compounds is a significant environmental concern1,2. As these contaminated sub-surface environments are generally anaerobic, the microbial oxidation of aromatic compounds coupled to nitrate reduction, sulphate reduction and methane production has been studied intensively1-7. In addition, geochemical evidence suggests that Fe(III) can be an important electron acceptor for the oxidation of aromatic compounds in anaerobic groundwater. Until now, only abiological mechanisms for the oxidation of aromatic compounds with Fe(III) have been reported8-12. Here we show that in aquatic sediments, microbial activity is necessary for the oxidation of model aromatic compounds coupled to Fe(III) reduction. Furthermore, a pure culture of the Fe(III)-reducing bacterium GS-15 can obtain energy for growth by oxidizing benzoate, toluene, phenol or p-cresol with Fe(III) as the sole electron acceptor. These results extend the known physiological capabilities of Fe(III)-reducing organisms and provide the first example of an organism of any type which can oxidize an aromatic hydrocarbon anaerobically. ?? 1989 Nature Publishing Group.

  17. Functional environmental proteomics: elucidating the role of a c-type cytochrome abundant during uranium bioremediation

    PubMed Central

    Yun, Jiae; Malvankar, Nikhil S; Ueki, Toshiyuki; Lovley, Derek R

    2016-01-01

    Studies with pure cultures of dissimilatory metal-reducing microorganisms have demonstrated that outer-surface c-type cytochromes are important electron transfer agents for the reduction of metals, but previous environmental proteomic studies have typically not recovered cytochrome sequences from subsurface environments in which metal reduction is important. Gel-separation, heme-staining and mass spectrometry of proteins in groundwater from in situ uranium bioremediation experiments identified a putative c-type cytochrome, designated Geobacter subsurface c-type cytochrome A (GscA), encoded within the genome of strain M18, a Geobacter isolate previously recovered from the site. Homologs of GscA were identified in the genomes of other Geobacter isolates in the phylogenetic cluster known as subsurface clade 1, which predominates in a diversity of Fe(III)-reducing subsurface environments. Most of the gscA sequences recovered from groundwater genomic DNA clustered in a tight phylogenetic group closely related to strain M18. GscA was most abundant in groundwater samples in which Geobacter sp. predominated. Expression of gscA in a strain of Geobacter sulfurreducens that lacked the gene for the c-type cytochrome OmcS, thought to facilitate electron transfer from conductive pili to Fe(III) oxide, restored the capacity for Fe(III) oxide reduction. Atomic force microscopy provided evidence that GscA was associated with the pili. These results demonstrate that a c-type cytochrome with an apparent function similar to that of OmcS is abundant when Geobacter sp. are abundant in the subsurface, providing insight into the mechanisms for the growth of subsurface Geobacter sp. on Fe(III) oxide and suggesting an approach for functional analysis of other Geobacter proteins found in the subsurface. PMID:26140532

  18. Functional environmental proteomics: elucidating the role of a c-type cytochrome abundant during uranium bioremediation.

    PubMed

    Yun, Jiae; Malvankar, Nikhil S; Ueki, Toshiyuki; Lovley, Derek R

    2016-02-01

    Studies with pure cultures of dissimilatory metal-reducing microorganisms have demonstrated that outer-surface c-type cytochromes are important electron transfer agents for the reduction of metals, but previous environmental proteomic studies have typically not recovered cytochrome sequences from subsurface environments in which metal reduction is important. Gel-separation, heme-staining and mass spectrometry of proteins in groundwater from in situ uranium bioremediation experiments identified a putative c-type cytochrome, designated Geobacter subsurface c-type cytochrome A (GscA), encoded within the genome of strain M18, a Geobacter isolate previously recovered from the site. Homologs of GscA were identified in the genomes of other Geobacter isolates in the phylogenetic cluster known as subsurface clade 1, which predominates in a diversity of Fe(III)-reducing subsurface environments. Most of the gscA sequences recovered from groundwater genomic DNA clustered in a tight phylogenetic group closely related to strain M18. GscA was most abundant in groundwater samples in which Geobacter sp. predominated. Expression of gscA in a strain of Geobacter sulfurreducens that lacked the gene for the c-type cytochrome OmcS, thought to facilitate electron transfer from conductive pili to Fe(III) oxide, restored the capacity for Fe(III) oxide reduction. Atomic force microscopy provided evidence that GscA was associated with the pili. These results demonstrate that a c-type cytochrome with an apparent function similar to that of OmcS is abundant when Geobacter sp. are abundant in the subsurface, providing insight into the mechanisms for the growth of subsurface Geobacter sp. on Fe(III) oxide and suggesting an approach for functional analysis of other Geobacter proteins found in the subsurface.

  19. Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir.

    PubMed

    Freedman, Adam J E; Tan, BoonFei; Thompson, Janelle R

    2017-06-01

    Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO 2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO 2 reservoirs, which serve as analogs for the long-term fate of sequestered scCO 2 , harbor a 'deep carbonated biosphere' with carbon cycling potential. We sampled subsurface fluids from scCO 2 -water separators at a natural scCO 2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO 2 and N 2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO 2 reservoir indicates that potential impacts of the deep biosphere on CO 2 fate and transport should be taken into consideration as a component of GCS planning and modelling. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Responses of microbial tolerance to heavy metals along a century-old metal ore pollution gradient in a subarctic birch forest.

    PubMed

    Rousk, Johannes; Rousk, Kathrin

    2018-05-07

    Heavy metals are some of the most persistent and potent anthropogenic environmental contaminants. Although heavy metals may compromise microbial communities and soil fertility, it is challenging to causally link microbial responses to heavy metals due to various confounding factors, including correlated soil physicochemistry or nutrient availability. A solution is to investigate whether tolerance to the pollutant has been induced, called Pollution Induced Community Tolerance (PICT). In this study, we investigated soil microbial responses to a century-old gradient of metal ore pollution in an otherwise pristine subarctic birch forest generated by a railway source of iron ore transportation. To do this, we determined microbial biomass, growth, and respiration rates, and bacterial tolerance to Zn and Cu in replicated distance transects (1 m-4 km) perpendicular to the railway. Microbial biomass, growth and respiration rates were stable across the pollution gradient. The microbial community structure could be distinguished between sampled distances, but most of the variation was explained by soil pH differences, and it did not align with distance from the railroad pollution source. Bacterial tolerance to Zn and Cu started from background levels at 4 km distance from the pollution source, and remained at background levels for Cu throughout the gradient. Yet, bacterial tolerance to Zn increased 10-fold 100 m from the railway source. Our results show that the microbial community structure, size and performance remained unaffected by the metal ore exposure, suggesting no impact on ecosystem functioning. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. In situ hydrogen consumption kinetics as an indicator of subsurface microbial activity

    USGS Publications Warehouse

    Harris, S.H.; Smith, R.L.; Suflita, J.M.

    2007-01-01

    There are few methods available for broadly assessing microbial community metabolism directly within a groundwater environment. In this study, hydrogen consumption rates were estimated from in situ injection/withdrawal tests conducted in two geochemically varying, contaminated aquifers as an approach towards developing such a method. The hydrogen consumption first-order rates varied from 0.002 nM h-1 for an uncontaminated, aerobic site to 2.5 nM h-1 for a contaminated site where sulfate reduction was a predominant process. The method could accommodate the over three orders of magnitude range in rates that existed between subsurface sites. In a denitrifying zone, the hydrogen consumption rate (0.02 nM h-1) was immediately abolished in the presence of air or an antibiotic mixture, suggesting that such measurements may also be sensitive to the effects of environmental perturbations on field microbial activities. Comparable laboratory determinations with sediment slurries exhibited hydrogen consumption kinetics that differed substantially from the field estimates. Because anaerobic degradation of organic matter relies on the rapid consumption of hydrogen and subsequent maintenance at low levels, such in situ measures of hydrogen turnover can serve as a key indicator of the functioning of microbial food webs and may be more reliable than laboratory determinations. ?? 2007 Federation of European Microbiological Societies.

  2. Microbially Mediated Kinetic Sulfur Isotope Fractionation: Reactive Transport Modeling Benchmark

    NASA Astrophysics Data System (ADS)

    Wanner, C.; Druhan, J. L.; Cheng, Y.; Amos, R. T.; Steefel, C. I.; Ajo Franklin, J. B.

    2014-12-01

    Microbially mediated sulfate reduction is a ubiquitous process in many subsurface systems. Isotopic fractionation is characteristic of this anaerobic process, since sulfate reducing bacteria (SRB) favor the reduction of the lighter sulfate isotopologue (S32O42-) over the heavier isotopologue (S34O42-). Detection of isotopic shifts have been utilized as a proxy for the onset of sulfate reduction in subsurface systems such as oil reservoirs and aquifers undergoing uranium bioremediation. Reactive transport modeling (RTM) of kinetic sulfur isotope fractionation has been applied to field and laboratory studies. These RTM approaches employ different mathematical formulations in the representation of kinetic sulfur isotope fractionation. In order to test the various formulations, we propose a benchmark problem set for the simulation of kinetic sulfur isotope fractionation during microbially mediated sulfate reduction. The benchmark problem set is comprised of four problem levels and is based on a recent laboratory column experimental study of sulfur isotope fractionation. Pertinent processes impacting sulfur isotopic composition such as microbial sulfate reduction and dispersion are included in the problem set. To date, participating RTM codes are: CRUNCHTOPE, TOUGHREACT, MIN3P and THE GEOCHEMIST'S WORKBENCH. Preliminary results from various codes show reasonable agreement for the problem levels simulating sulfur isotope fractionation in 1D.

  3. Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust

    PubMed Central

    Robador, Alberto; Jungbluth, Sean P.; LaRowe, Douglas E.; Bowers, Robert M.; Rappé, Michael S.; Amend, Jan P.; Cowen, James P.

    2015-01-01

    The basaltic ocean crust is the largest aquifer system on Earth, yet the rates of biological activity in this environment are unknown. Low-temperature (<100°C) fluid samples were investigated from two borehole observatories in the Juan de Fuca Ridge (JFR) flank, representing a range of upper oceanic basement thermal and geochemical properties. Microbial sulfate reduction rates (SRR) were measured in laboratory incubations with 35S-sulfate over a range of temperatures and the identity of the corresponding sulfate-reducing microorganisms (SRM) was studied by analyzing the sequence diversity of the functional marker dissimilatory (bi)sulfite reductase (dsrAB) gene. We found that microbial sulfate reduction was limited by the decreasing availability of organic electron donors in higher temperature, more altered fluids. Thermodynamic calculations indicate energetic constraints for metabolism, which together with relatively higher cell-specific SRR reveal increased maintenance requirements, consistent with novel species-level dsrAB phylotypes of thermophilic SRM. Our estimates suggest that microbially-mediated sulfate reduction may account for the removal of organic matter in fluids within the upper oceanic crust and underscore the potential quantitative impact of microbial processes in deep subsurface marine crustal fluids on marine and global biogeochemical carbon cycling. PMID:25642212

  4. Hydraulic fracturing offers view of microbial life in the deep terrestrial subsurface.

    PubMed

    Mouser, Paula J; Borton, Mikayla; Darrah, Thomas H; Hartsock, Angela; Wrighton, Kelly C

    2016-11-01

    Horizontal drilling and hydraulic fracturing are increasingly used for recovering energy resources in black shales across the globe. Although newly drilled wells are providing access to rocks and fluids from kilometer depths to study the deep biosphere, we have much to learn about microbial ecology of shales before and after 'fracking'. Recent studies provide a framework for considering how engineering activities alter this rock-hosted ecosystem. We first provide data on the geochemical environment and microbial habitability in pristine shales. Next, we summarize data showing the same pattern across fractured shales: diverse assemblages of microbes are introduced into the subsurface, eventually converging to a low diversity, halotolerant, bacterial and archaeal community. Data we synthesized show that the shale microbial community predictably shifts in response to temporal changes in geochemistry, favoring conservation of key microorganisms regardless of inputs, shale location or operators. We identified factors that constrain diversity in the shale and inhibit biodegradation at the surface, including salinity, biocides, substrates and redox. Continued research in this engineered ecosystem is required to assess additive biodegradability, quantify infrastructure biocorrosion, treat wastewaters that return to the surface and potentially enhance energy production through in situ methanogenesis. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Biogeography of serpentinite-hosted microbial ecosystems

    NASA Astrophysics Data System (ADS)

    Brazelton, W.; Cardace, D.; Fruh-Green, G.; Lang, S. Q.; Lilley, M. D.; Morrill, P. L.; Szponar, N.; Twing, K. I.; Schrenk, M. O.

    2012-12-01

    Ultramafic rocks in the Earth's mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H2). To date, however, the "serpentinite microbiome" is poorly constrained- almost nothing is known about the microbial diversity endemic to rocks actively undergoing serpentinization. Through the Census of Deep Life, we have obtained 16S rRNA gene pyrotag sequences from fluids and rocks from serpentinizing ophiolites in California, Canada, and Italy. The samples include high pH serpentinite springs, presumably representative of deeper environments within the ophiolite complex, wells which directly access subsurface aquifers, and rocks obtained from drill cores into serpentinites. These data represent a unique opportunity to examine biogeographic patterns among a restricted set of microbial taxa that are adapted to similar environmental conditions and are inhabiting sites with related geological histories. In general, our results point to potentially H2-utilizing Betaproteobacteria thriving in shallow, oxic-anoxic transition zones and anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These general taxonomic and biogeochemical trends were also observed in seafloor Lost City hydrothermal chimneys, indicating that we are beginning to identify a core serpentinite microbial community that spans marine and continental settings.

  6. Stimulation of Microbially Mediated Arsenic Release in Bangladesh Aquifers by Young Carbon Indicated by Radiocarbon Analysis of Sedimentary Bacterial Lipids.

    PubMed

    Whaley-Martin, K J; Mailloux, B J; van Geen, A; Bostick, B C; Silvern, R F; Kim, C; Ahmed, K M; Choudhury, I; Slater, G F

    2016-07-19

    The sources of reduced carbon driving the microbially mediated release of arsenic to shallow groundwater in Bangladesh remain poorly understood. Using radiocarbon analysis of phospholipid fatty acids (PLFAs) and potential carbon pools, the abundance and carbon sources of the active, sediment-associated, in situ bacterial communities inhabiting shallow aquifers (<30 m) at two sites in Araihazar, Bangladesh, were investigated. At both sites, sedimentary organic carbon (SOC) Δ(14)C signatures of -631 ± 54‰ (n = 12) were significantly depleted relative to dissolved inorganic carbon (DIC) of +24 ± 30‰ and dissolved organic carbon (DOC) of -230 ± 100‰. Sediment-associated PLFA Δ(14)C signatures (n = 10) at Site F (-167‰ to +20‰) and Site B (-163‰ to +21‰) were highly consistent and indicated utilization of carbon sources younger than the SOC, likely from the DOC pool. Sediment-associated PLFA Δ(14)C signatures were consistent with previously determined Δ(14)C signatures of microbial DNA sampled from groundwater at Site F indicating that the carbon source for these two components of the subsurface microbial community is consistent and is temporally stable over the two years between studies. These results demonstrate that the utilization of relatively young carbon sources by the subsurface microbial community occurs at sites with varying hydrology. Further they indicate that these young carbon sources drive the metabolism of the more abundant sediment-associated microbial communities that are presumably more capable of Fe reduction and associated release of As. This implies that an introduction of younger carbon to as of yet unaffected sediments (such as those comprising the deeper Pleistocene aquifer) could stimulate microbial communities and result in arsenic release.

  7. Genome-enabled Modeling of Microbial Biogeochemistry using a Trait-based Approach. Does Increasing Metabolic Complexity Increase Predictive Capabilities?

    NASA Astrophysics Data System (ADS)

    King, E.; Karaoz, U.; Molins, S.; Bouskill, N.; Anantharaman, K.; Beller, H. R.; Banfield, J. F.; Steefel, C. I.; Brodie, E.

    2015-12-01

    The biogeochemical functioning of ecosystems is shaped in part by genomic information stored in the subsurface microbiome. Cultivation-independent approaches allow us to extract this information through reconstruction of thousands of genomes from a microbial community. Analysis of these genomes, in turn, gives an indication of the organisms present and their functional roles. However, metagenomic analyses can currently deliver thousands of different genomes that range in abundance/importance, requiring the identification and assimilation of key physiologies and metabolisms to be represented as traits for successful simulation of subsurface processes. Here we focus on incorporating -omics information into BioCrunch, a genome-informed trait-based model that represents the diversity of microbial functional processes within a reactive transport framework. This approach models the rate of nutrient uptake and the thermodynamics of coupled electron donors and acceptors for a range of microbial metabolisms including heterotrophs and chemolithotrophs. Metabolism of exogenous substrates fuels catabolic and anabolic processes, with the proportion of energy used for cellular maintenance, respiration, biomass development, and enzyme production based upon dynamic intracellular and environmental conditions. This internal resource partitioning represents a trade-off against biomass formation and results in microbial community emergence across a fitness landscape. Biocrunch was used here in simulations that included organisms and metabolic pathways derived from a dataset of ~1200 non-redundant genomes reflecting a microbial community in a floodplain aquifer. Metagenomic data was directly used to parameterize trait values related to growth and to identify trait linkages associated with respiration, fermentation, and key enzymatic functions such as plant polymer degradation. Simulations spanned a range of metabolic complexities and highlight benefits originating from simulations including a larger number of organisms that more appropriately reflect the in situ microbial community.

  8. Resistance of Terrestrial Microbial Communities to Impack of Physical Conditinos of Subsurface Layers of Martian Regolith

    NASA Astrophysics Data System (ADS)

    Cheptsov, V. S.; Vorobyova, E. A.

    2017-05-01

    Currently, astrobiology is focused on Mars as one of the most perspective objects in the Solar System to search for microbial life. It was assumed that the putative biosphere of Mars could be cryopreserved and had been stored for billions of years in anabiotic state like microbial communities of Arctic and Antarctic permafrost deposits have been preserved till now for millions of years. In this case microbial cells should be not able to repair the damages or these processes have to be significantly depressed, and the main factor causing cell's death should be ionizing radiation. In a series of experiments we simulated the effects of combination of physical factors known as characteristics of the Martian regolith (and close to the space environment) on the natural microbial communities inhabiting xerophytic harsh habitats with extreme temperature conditions: polar permafrost and desert soils. The aim of the study was to examine the cumulative effect of factors (gamma radiation, low temperature, low pressure) to assess the possibility of metabolic reactions, and to find limits of the viability of natural microbial communities after exposure to the given conditions. It was found that microbial biomarkers could be reliably detected in soil samples after radiation dose accumulation up to 1 MGy (not further investigated) in combination with exposure to low temperature and low pressure. Resistance to extremely high doses of radiation in simulated conditions proves that if there was an Earth-like biosphere on the early Mars microorganisms could survive in the surface or subsurface layers of the Martian regolith for more than tens of millions of years after climate change. The study gives also some new grounds for the approval of transfer of viable microorganisms in space.

  9. Microbial acceleration of aerobic pyrite oxidation at circumneutral pH.

    PubMed

    Percak-Dennett, E; He, S; Converse, B; Konishi, H; Xu, H; Corcoran, A; Noguera, D; Chan, C; Bhattacharyya, A; Borch, T; Boyd, E; Roden, E E

    2017-09-01

    Pyrite (FeS 2 ) is the most abundant sulfide mineral on Earth and represents a significant reservoir of reduced iron and sulfur both today and in the geologic past. In modern environments, oxidative transformations of pyrite and other metal sulfides play a key role in terrestrial element partitioning with broad impacts to contaminant mobility and the formation of acid mine drainage systems. Although the role of aerobic micro-organisms in pyrite oxidation under acidic-pH conditions is well known, to date there is very little known about the capacity for aerobic micro-organisms to oxidize pyrite at circumneutral pH. Here, we describe two enrichment cultures, obtained from pyrite-bearing subsurface sediments, that were capable of sustained cell growth linked to pyrite oxidation and sulfate generation at neutral pH. The cultures were dominated by two Rhizobiales species (Bradyrhizobium sp. and Mesorhizobium sp.) and a Ralstonia species. Shotgun metagenomic sequencing and genome reconstruction indicated the presence of Fe and S oxidation pathways in these organisms, and the presence of a complete Calvin-Benson-Bassham CO 2 fixation system in the Bradyrhizobium sp. Oxidation of pyrite resulted in thin (30-50 nm) coatings of amorphous Fe(III) oxide on the pyrite surface, with no other secondary Fe or S phases detected by electron microscopy or X-ray absorption spectroscopy. Rates of microbial pyrite oxidation were approximately one order of magnitude higher than abiotic rates. These results demonstrate the ability of aerobic microbial activity to accelerate pyrite oxidation and expand the potential contribution of micro-organisms to continental sulfide mineral weathering around the time of the Great Oxidation Event to include neutral-pH environments. In addition, our findings have direct implications for the geochemistry of modern sedimentary environments, including stimulation of the early stages of acid mine drainage formation and mobilization of pyrite-associated metals. © 2017 John Wiley & Sons Ltd.

  10. Groundwater chemistry and occurrence of arsenic in the Meghna floodplain aquifer, southeastern Bangladesh

    USGS Publications Warehouse

    Zahid, A.; Hassan, M.Q.; Balke, K.-D.; Flegr, M.; Clark, D.W.

    2008-01-01

    Dissolved major ions and important heavy metals including total arsenic and iron were measured in groundwater from shallow (25-33 m) and deep (191-318 m) tube-wells in southeastern Bangladesh. These analyses are intended to help describe geochemical processes active in the aquifers and the source and release mechanism of arsenic in sediments for the Meghna Floodplain aquifer. The elevated Cl- and higher proportions of Na+ relative to Ca2+, Mg2+, and K+ in groundwater suggest the influence by a source of Na+ and Cl-. Use of chemical fertilizers may cause higher concentrations of NH 4+ and PO 43- in shallow well samples. In general, most ions are positively correlated with Cl-, with Na+ showing an especially strong correlation with Cl-, indicating that these ions are derived from the same source of saline waters. The relationship between Cl-/HCO 3- ratios and Cl- also shows mixing of fresh groundwater and seawater. Concentrations of dissolved HCO 3- reflect the degree of water-rock interaction in groundwater systems and integrated microbial degradation of organic matter. Mn and Fe-oxyhydroxides are prominent in the clayey subsurface sediment and well known to be strong adsorbents of heavy metals including arsenic. All five shallow well samples had high arsenic concentration that exceeded WHO recommended limit for drinking water. Very low concentrations of SO 42- and NO 3- and high concentrations of dissolved Fe and PO 43- and NH 4+ ions support the reducing condition of subsurface aquifer. Arsenic concentrations demonstrate negative co-relation with the concentrations of SO 42- and NO 3- but correlate weakly with Mo, Fe concentrations and positively with those of P, PO 43- and NH 4+ ions. ?? 2007 Springer-Verlag.

  11. Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments

    USGS Publications Warehouse

    Snoeyenbos-West, O.L.; Nevin, K.P.; Anderson, R.T.; Lovely, D.R.

    2000-01-01

    Engineered stimulation of Fe(III) has been proposed as a strategy to enhance the immobilization of radioactive and toxic metals in metal-contaminated subsurface environments. Therefore, laboratory and field studies were conducted to determine which microbial populations would respond to stimulation of Fe(III) reduction in the sediments of sandy aquifers. In laboratory studies, the addition of either various organic electron donors or electron shuttle compounds stimulated Fe(III) reduction and resulted in Geobacter sequences becoming important constituents of the Bacterial 16S rDNA sequences that could be detected with PCR amplification and denaturing gradient gel electrophoresis (DGGE). Quantification of Geobacteraceae sequences with a PCR most-probable-number technique indicated that the extent to which numbers of Geobacter increased was related to the degree of stimulation of Fe(III) reduction. Geothrix species were also enriched in some instances, but were orders of magnitude less numerous than Geobacter species. Shewanella species were not detected, even when organic compounds known to be electron donors for Shewanella species were used to stimulate Fe(III) reduction in the sediments. Geobacter species were also enriched in two field experiments in which Fe(III) reduction was stimulated with the addition of benzoate or aromatic hydrocarbons. The apparent growth of Geobacter species concurrent with increased Fe(III) reduction suggests that Geobacter species were responsible for much of the Fe(III) reduction in all of the stimulation approaches evaluated in three geographically distinct aquifers. Therefore, strategies for subsurface remediation that involve enhancing the activity of indigenous Fe(III)-reducing populations in aquifers should consider the physiological properties of Geobacter species in their treatment design.

  12. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, Susan; Personna, Y.R.; Ntarlagiannis, D.

    2008-02-15

    Stimulated sulfate-reduction is a bioremediation technique utilized for the sequestration of heavy metals in the subsurface.We performed laboratory column experiments to investigate the geoelectrical response of iron sulfide transformations by Desulfo vibriovulgaris. Two geoelectrical methods, (1) spectral induced polarization (SIP), and (2) electrodic potential measurements, were investigated. Aqueous geochemistry (sulfate, lactate, sulfide, and acetate), observations of precipitates (identified from electron microscopy as iron sulfide), and electrodic potentials on bisulfide ion (HS) sensitive silver-silver chloride (Ag-AgCl) electrodes (630 mV) were diagnostic of induced transitions between an aerobic iron sulfide forming conditions and aerobic conditions promoting iron sulfide dissolution. The SIP datamore » showed 10m rad anomalies during iron sulfide mineralization accompanying microbial activity under an anaerobic transition. These anomalies disappeared during iron sulfide dissolution under the subsequent aerobic transition. SIP model parameters based on a Cole-Cole relaxation model of the polarization at the mineral-fluid interface were converted to (1) estimated biomineral surface area to pore volume (Sp), and (2) an equivalent polarizable sphere diameter (d) controlling the relaxation time. The temporal variation in these model parameters is consistent with filling and emptying of pores by iron sulfide biofilms, as the system transitions between anaerobic (pore filling) and aerobic (pore emptying) conditions. The results suggest that combined SIP and electrodic potential measurements might be used to monitor spatiotemporal variability in microbial iron sulfide transformations in the field.« less

  13. Residual organic matter and microbial respiration in bottom ash: Effects on metal leaching and eco-toxicity.

    PubMed

    Ilyas, A; Persson, K M; Persson, M

    2015-09-01

    A common assumption regarding the residual organic matter, in bottom ash, is that it does not represent a significant pool of organic carbon and, beyond metal-ion complexation process, it is of little consequence to evolution of ash/leachate chemistry. This article evaluates the effect of residual organic matter and associated microbial respiratory processes on leaching of toxic metals (i.e. arsenic, copper, chromium, molybdenum, nickel, lead, antimony and zinc), eco-toxicity of ash leachates. Microbial respiration was quantified with help of a respirometric test equipment OXITOP control system. The effect of microbial respiration on metal/residual organic matter leaching and eco-toxicity was quantified with the help of batch leaching tests and an eco-toxicity assay - Daphnia magna. In general, the microbial respiration process decreased the leachate pH and eco-toxicity, indicating modification of bioavailability of metal species. Furthermore, the leaching of critical metals, such as copper and chromium, decreased after the respiration in both ash types (fresh and weathered). It was concluded that microbial respiration, if harnessed properly, could enhance the stability of fresh bottom ash and may promote its reuse. © The Author(s) 2015.

  14. Isolation and Characterization of Electrochemically Active Subsurface Delftia and Azonexus Species

    PubMed Central

    Jangir, Yamini; French, Sarah; Momper, Lily M.; Moser, Duane P.; Amend, Jan P.; El-Naggar, Mohamed Y.

    2016-01-01

    Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Extracellular electron transfer (EET) is a metabolic strategy that microorganisms can deploy to meet the challenges of interacting with redox-active surfaces. Though mechanistically characterized in a few metal-reducing bacteria, the role, extent, and diversity of EET in subsurface ecosystems remains unclear. Since this process can be mimicked on electrode surfaces, it opens the door to electrochemical techniques to enrich for and quantify the activities of environmental microorganisms in situ. Here, we report the electrochemical enrichment of microorganisms from a deep fractured-rock aquifer in Death Valley, CA, USA. In experiments performed in mesocosms containing a synthetic medium based on aquifer chemistry, four working electrodes (WEs) were poised at different redox potentials (272, 373, 472, 572 mV vs. SHE) to serve as electron acceptors, resulting in anodic currents coupled to the oxidation of acetate during enrichment. The anodes were dominated by Betaproteobacteria from the families Comamonadaceae and Rhodocyclaceae. A representative of each dominant family was subsequently isolated from electrode-associated biomass. The EET abilities of the isolated Delftia strain (designated WE1-13) and Azonexus strain (designated WE2-4) were confirmed in electrochemical reactors using WEs poised at 522 mV vs. SHE. The rise in anodic current upon inoculation was correlated with a modest increase in total protein content. Both genera have been previously observed in mixed communities of microbial fuel cell enrichments, but this is the first direct measurement of their electrochemical activity. While alternate metabolisms (e.g., nitrate reduction) by these organisms were previously known, our observations suggest that additional ‘hidden’ interactions with external electron acceptors are also possible. Electrochemical approaches are well positioned to dissect such extracellular interactions that may be prevalent in the subsurface. PMID:27242768

  15. Microbial Stimulation and Succession following a Test Well Injection Simulating CO₂ Leakage into a Shallow Newark Basin Aquifer

    PubMed Central

    O’Mullan, Gregory; Dueker, M. Elias; Clauson, Kale; Yang, Qiang; Umemoto, Kelsey; Zakharova, Natalia; Matter, Juerg; Stute, Martin; Takahashi, Taro; Goldberg, David

    2015-01-01

    In addition to efforts aimed at reducing anthropogenic production of greenhouse gases, geological storage of CO2 is being explored as a strategy to reduce atmospheric greenhouse gas emission and mitigate climate change. Previous studies of the deep subsurface in North America have not fully considered the potential negative effects of CO2 leakage into shallow drinking water aquifers, especially from a microbiological perspective. A test well in the Newark Rift Basin was utilized in two field experiments to investigate patterns of microbial succession following injection of CO2-saturated water into an isolated aquifer interval, simulating a CO2 leakage scenario. A decrease in pH following injection of CO2 saturated aquifer water was accompanied by mobilization of trace elements (e.g. Fe and Mn), and increased bacterial cell concentrations in the recovered water. 16S ribosomal RNA gene sequence libraries from samples collected before and after the test well injection were compared to link variability in geochemistry to changes in aquifer microbiology. Significant changes in microbial composition, compared to background conditions, were found following the test well injections, including a decrease in Proteobacteria, and an increased presence of Firmicutes, Verrucomicrobia and microbial taxa often noted to be associated with iron and sulfate reduction. The concurrence of increased microbial cell concentrations and rapid microbial community succession indicate significant changes in aquifer microbial communities immediately following the experimental CO2 leakage event. Samples collected one year post-injection were similar in cell number to the original background condition and community composition, although not identical, began to revert toward the pre-injection condition, indicating microbial resilience following a leakage disturbance. This study provides a first glimpse into the in situ successional response of microbial communities to CO2 leakage after subsurface injection in the Newark Basin and the potential microbiological impact of CO2 leakage on drinking water resources. PMID:25635675

  16. DUSEL and the future of deep terrestrial microbiology (Invited)

    NASA Astrophysics Data System (ADS)

    Onstott, T. C.; Peters, C. A.; Murdoch, L. C.; Elsworth, D.; Sonnenthal, E. L.; Kieft, T.; Boutt, D. F.; Germanovich, L.; Glaser, S. D.; Wang, H. F.; Roggenthen, B.; Lesko, K.; Cushman, P.; Stetler, L. D.; Bang, S.; Anderson, C.

    2009-12-01

    DUSEL will take advantage of the existing subsurface architecture of the deepest mine in the U.S. to provide a platform for launching new exploration into the deep terrestrial biosphere. Multi-year experiments are currently being designed to delineate the relationships between microbial diversity and activity and hydraulic connectivity, temperature, pressure, strain rate and multiphase fluids. Unlike the physics experiments, which will be located close to the center of the mine, most of these experiments will be located at the periphery in existing tunnels at 100 to 2400 m depth in order to access fluid fill fractures with boreholes. Hydrological models suggest that DUSEL could sample ~100 km3 volume for microbial biogeographic and transport studies. The high-capacity underground water filtration plant used to generate ultrapure water for neutrino detectors will readily supply water for microbiology coring projects reducing microbial contamination. This will be essential for the drilling platform located at 2400 m depth that will drill down to 7+ km and 120oC in search of the upper temperature limit for life. Another advantage of underground coring is that the drilling fluid pressure will be much less than that of the fracture water, which means that when the coring bit intersects a water-filled fracture, the fracture water will flow into the core barrel reducing the contamination of fracture surfaces in the cores. The ultra-low radiation background counting facility to be located at 1475 m depth will potentially enable 106 times improvement in the detection limit for subsurface microbial respiration rates using radioactive tracers. The Coupled Thermal-Hydrological-Mechanical-Chemical-Biological, block-heating experiment will examine how the microbial communities within fractures respond to the increased thermal and fluid flux. The Fracture Processes Facility is not only designed to determine what controls rock strength, but could also determine to what extent subsurface chemoautotrophic activity is regulated by tectonic episodicity. The DUSEL CO2 Facility will investigate how microbial activity is impacted by CO2 injection and whether microbial activity has a significant impact upon long-term sequestration of CO2. These three experiments represent a subset of the integrated suite of experiments planned for the first 5 years, but many more microbial experiments can be accommodated within DUSEL. With its unique experimental assets, km-scale spatial access and multi-decade observational lifetime, DUSEL will usher in the next generation of exploration into the deep terrestrial biosphere and not only reveal the answers to many of its well-hidden secrets, but perhaps to the origin of life itself.

  17. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination.

    PubMed

    Li, Xiaoqi; Meng, Delong; Li, Juan; Yin, Huaqun; Liu, Hongwei; Liu, Xueduan; Cheng, Cheng; Xiao, Yunhua; Liu, Zhenghua; Yan, Mingli

    2017-12-01

    Due to the persistence of metals in the ecosystem and their threat to all living organisms, effects of heavy metal on soil microbial communities were widely studied. However, little was known about the interactions among microorganisms in heavy metal-contaminated soils. In the present study, microbial communities in Non (CON), moderately (CL) and severely (CH) contaminated soils were investigated through high-throughput Illumina sequencing of 16s rRNA gene amplicons, and networks were constructed to show the interactions among microbes. Results showed that the microbial community composition was significantly, while the microbial diversity was not significantly affected by heavy metal contamination. Bacteria showed various response to heavy metals. Bacteria that positively correlated with Cd, e.g. Acidobacteria_Gp and Proteobacteria_thiobacillus, had more links between nodes and more positive interactions among microbes in CL- and CH-networks, while bacteria that negatively correlated with Cd, e.g. Longilinea, Gp2 and Gp4 had fewer network links and more negative interactions in CL and CH-networks. Unlike bacteria, members of the archaeal domain, i.e. phyla Crenarchaeota and Euryarchaeota, class Thermoprotei and order Thermoplasmatales showed only positive correlation with Cd and had more network interactions in CH-networks. The present study indicated that (i) the microbial community composition, as well as network interactions was shift to strengthen adaptability of microorganisms to heavy metal contamination, (ii) archaea were resistant to heavy metal contamination and may contribute to the adaption to heavy metals. It was proposed that the contribution might be achieved either by improving environment conditions or by cooperative interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Resilience of Soil Microbial Communities to Metals and Additional Stressors: DNA-Based Approaches for Assessing “Stress-on-Stress” Responses

    PubMed Central

    Azarbad, Hamed; van Gestel, Cornelis A. M.; Niklińska, Maria; Laskowski, Ryszard; Röling, Wilfred F. M.; van Straalen, Nico M.

    2016-01-01

    Many microbial ecology studies have demonstrated profound changes in community composition caused by environmental pollution, as well as adaptation processes allowing survival of microbes in polluted ecosystems. Soil microbial communities in polluted areas with a long-term history of contamination have been shown to maintain their function by developing metal-tolerance mechanisms. In the present work, we review recent experiments, with specific emphasis on studies that have been conducted in polluted areas with a long-term history of contamination that also applied DNA-based approaches. We evaluate how the “costs” of adaptation to metals affect the responses of metal-tolerant communities to other stress factors (“stress-on-stress”). We discuss recent studies on the stability of microbial communities, in terms of resistance and resilience to additional stressors, focusing on metal pollution as the initial stress, and discuss possible factors influencing the functional and structural stability of microbial communities towards secondary stressors. There is increasing evidence that the history of environmental conditions and disturbance regimes play central roles in responses of microbial communities towards secondary stressors. PMID:27314330

  19. Differential Bacterial Colonization of Volcanic Minerals in Deep Thermal Basalts

    NASA Astrophysics Data System (ADS)

    Smith, A. R.; Popa, R.; Fisk, M. R.; Nielsen, M.; Wheat, G.; Jannasch, H.; Fisher, A.; Sievert, S.

    2010-04-01

    There are reports of microbial weathering patterns in volcanic glass and minerals of both terrestrial and Martian origin. Volcanic minerals are colonized differentially in subsurface hydrothermal environments by a variety of physiological types.

  20. Succession in the petroleum reservoir microbiome through an oil field production lifecycle.

    PubMed

    Vigneron, Adrien; Alsop, Eric B; Lomans, Bartholomeus P; Kyrpides, Nikos C; Head, Ian M; Tsesmetzis, Nicolas

    2017-09-01

    Subsurface petroleum reservoirs are an important component of the deep biosphere where indigenous microorganisms live under extreme conditions and in isolation from the Earth's surface for millions of years. However, unlike the bulk of the deep biosphere, the petroleum reservoir deep biosphere is subject to extreme anthropogenic perturbation, with the introduction of new electron acceptors, donors and exogenous microbes during oil exploration and production. Despite the fundamental and practical significance of this perturbation, there has never been a systematic evaluation of the ecological changes that occur over the production lifetime of an active offshore petroleum production system. Analysis of the entire Halfdan oil field in the North Sea (32 producing wells in production for 1-15 years) using quantitative PCR, multigenic sequencing, comparative metagenomic and genomic bins reconstruction revealed systematic shifts in microbial community composition and metabolic potential, as well as changing ecological strategies in response to anthropogenic perturbation of the oil field ecosystem, related to length of time in production. The microbial communities were initially dominated by slow growing anaerobes such as members of the Thermotogales and Clostridiales adapted to living on hydrocarbons and complex refractory organic matter. However, as seawater and nitrate injection (used for secondary oil production) delivered oxidants, the microbial community composition progressively changed to fast growing opportunists such as members of the Deferribacteres, Delta-, Epsilon- and Gammaproteobacteria, with energetically more favorable metabolism (for example, nitrate reduction, H 2 S, sulfide and sulfur oxidation). This perturbation has profound consequences for understanding the microbial ecology of the system and is of considerable practical importance as it promotes detrimental processes such as reservoir souring and metal corrosion. These findings provide a new conceptual framework for understanding the petroleum reservoir biosphere and have consequences for developing strategies to manage microbiological problems in the oil industry.

  1. Enhancement of in situ microbial remediation of aquifers

    DOEpatents

    Fredrickson, James K.; Brockman, Fred J.; Streile, Gary P.; Cary, John W.; McBride, John F.

    1993-01-01

    Methods are provided for remediating subsurface areas contaminated by toxic organic compounds. An innocuous oil, such as vegetable oil, mineral oil, or other immiscible organic liquid, is introduced into the contaminated area and permitted to move therethrough. The oil concentrates or strips the organic contaminants, such that the concentration of the contaminants is reduced and such contaminants are available to be either pumped out of the subsurface area or metabolized by microorganisms. Microorganisms may be introduced into the contaminated area to effect bioremediation of the contamination. The methods may be adapted to deliver microorganisms, enzymes, nutrients and electron donors to subsurface zones contaminated by nitrate in order to stimulate or enhance denitrification.

  2. Enhancement of in situ microbial remediation of aquifers

    DOEpatents

    Fredrickson, J.K.; Brockman, F.J.; Streile, G.P.; Cary, J.W.; McBride, J.F.

    1993-11-30

    Methods are provided for remediating subsurface areas contaminated by toxic organic compounds. An innocuous oil, such as vegetable oil, mineral oil, or other immiscible organic liquid, is introduced into the contaminated area and permitted to move therethrough. The oil concentrates or strips the organic contaminants, such that the concentration of the contaminants is reduced and such contaminants are available to be either pumped out of the subsurface area or metabolized by microorganisms. Microorganisms may be introduced into the contaminated area to effect bioremediation of the contamination. The methods may be adapted to deliver microorganisms, enzymes, nutrients and electron donors to subsurface zones contaminated by nitrate in order to stimulate or enhance denitrification. 4 figures.

  3. Microbial transformations of arsenic: Mobilization from glauconitic sediments to water

    USGS Publications Warehouse

    Mumford, Adam C.; Barringer, Julia L.; Benzel, William M.; Reilly, Pamela A.; Young, L.Y.

    2012-01-01

    In the Inner Coastal Plain of New Jersey, arsenic (As) is released from glauconitic sediment to carbon- and nutrient-rich shallow groundwater. This As-rich groundwater discharges to a major area stream. We hypothesize that microbes play an active role in the mobilization of As from glauconitic subsurface sediments into groundwater in the Inner Coastal Plain of New Jersey. We have examined the potential impact of microbial activity on the mobilization of arsenic from subsurface sediments into the groundwater at a site on Crosswicks Creek in southern New Jersey. The As contents of sediments 33–90 cm below the streambed were found to range from 15 to 26.4 mg/kg, with siderite forming at depth. Groundwater beneath the streambed contains As at concentrations up to 89 μg/L. Microcosms developed from site sediments released 23 μg/L of As, and active microbial reduction of As(V) was observed in microcosms developed from site groundwater. DNA extracted from site sediments was amplified with primers for the 16S rRNA gene and the arsenate respiratory reductase gene, arrA, and indicated the presence of a diverse anaerobic microbial community, as well as the presence of potential arsenic-reducing bacteria. In addition, high iron (Fe) concentrations in groundwater and the presence of iron-reducing microbial genera suggests that Fe reduction in minerals may provide an additional mechanism for release of associated As, while arsenic-reducing microorganisms may serve to enhance the mobility of As in groundwater at this site.

  4. Limitations of microbial hydrocarbon degradation at the Amon Mud Volcano (Nile Deep Sea Fan)

    NASA Astrophysics Data System (ADS)

    Felden, J.; Lichtschlag, A.; Wenzhöfer, F.; de Beer, D.; Feseker, T.; Pop Ristova, P.; de Lange, G.; Boetius, A.

    2013-01-01

    The Amon mud volcano (MV), located at 1250 m water depth on the Nile Deep Sea Fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the Amon MV center in the presence of sulphate and hydrocarbons in the seeping subsurface fluids. By comparing spatial and temporal patterns of in situ biogeochemical fluxes, temperature gradients, pore water composition and microbial activities over three years, we investigated why the activity of anaerobic hydrocarbon degraders can be low despite high energy supplies. We found that the central dome of the Amon MV, as well as a lateral mud flow at its base, showed signs of recent exposure of hot subsurface muds lacking active hydrocarbon degrading communities. In these highly disturbed areas, anaerobic degradation of methane was less than 2% of the methane flux. Rather high oxygen consumption rates compared to low sulphide production suggest a faster development of more rapidly growing aerobic hydrocarbon degraders in highly disturbed areas. In contrast, the more stabilized muds surrounding the central gas and fluid conduits hosted active anaerobic hydrocarbon-degrading microbial communities. Furthermore, within three years, cell numbers and hydrocarbon degrading activity increased at the gas-seeping sites. The low microbial activity in the hydrocarbon-vented areas of Amon mud volcano is thus a consequence of kinetic limitations by heat and mud expulsion, whereas most of the outer mud volcano area is limited by hydrocarbon transport.

  5. Interplay between microorganisms and geochemistry in geological carbon storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altman, Susan J.; Kirk, Matthew Fletcher; Santillan, Eugenio-Felipe U.

    Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO 2 conditions and identify factors that may influence survival of cells to CO 2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO 2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure tomore » acidic water, biomass can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO 2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO 2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. Furthermore, we conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research.« less

  6. Interplay between microorganisms and geochemistry in geological carbon storage

    DOE PAGES

    Altman, Susan J.; Kirk, Matthew Fletcher; Santillan, Eugenio-Felipe U.; ...

    2016-02-28

    Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO 2 conditions and identify factors that may influence survival of cells to CO 2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO 2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure tomore » acidic water, biomass can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO 2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO 2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. Furthermore, we conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research.« less

  7. Improved measurement of extracellular enzymatic activities in subsurface sediments using competitive desorption treatment

    NASA Astrophysics Data System (ADS)

    Hoarfrost, Adrienne; Snider, Rachel; Arnosti, Carol

    2017-02-01

    Extracellular enzymatic activities initiate microbially-driven heterotrophic carbon cycling in subsurface sediments. While measurement of hydrolytic activities in sediments is fundamental to our understanding of carbon cycling, these measurements are often technically difficult due to sorption of organic substrates to the sediment matrix. Most methods that measure hydrolysis of organic substrates in sediments rely on recovery of a fluorophore or fluorescently-labeled target substrate from a sediment incubation. The tendency for substrates to sorb to sediments results in lower recovery of an added substrate, and can result in data that are unusable or difficult to interpret. We developed a treatment using competitive desorption of a fluorescently-labeled, high molecular weight organic substrate that improves recovery of the labeled substrate from sediment subsamples. Competitive desorption treatment improved recovery of the fluorescent substrate by a median of 66%, expanded the range of sediments for which activity measurements could be made, and was effective in sediments from a broad range of geochemical contexts. More reliable measurements of hydrolytic activities in sediments will yield usable and more easily interpretable data from a wider range of sedimentary environments, enabling better understanding of microbially-catalyzed carbon cycling in subsurface environments.

  8. Microbial populations in contaminant plumes

    NASA Astrophysics Data System (ADS)

    Haack, Sheridan K.; Bekins, Barbara A.

    Efficient biodegradation of subsurface contaminants requires two elements: (1) microbial populations with the necessary degradative capabilities, and (2) favorable subsurface geochemical and hydrological conditions. Practical constraints on experimental design and interpretation in both the hydrogeological and microbiological sciences have resulted in limited knowledge of the interaction between hydrogeological and microbiological features of subsurface environments. These practical constraints include: (1) inconsistencies between the scales of investigation in the hydrogeological and microbiological sciences, and (2) practical limitations on the ability to accurately define microbial populations in environmental samples. However, advances in application of small-scale sampling methods and interdisciplinary approaches to site investigations are beginning to significantly improve understanding of hydrogeological and microbiological interactions. Likewise, culture-based and molecular analyses of microbial populations in subsurface contaminant plumes have revealed significant adaptation of microbial populations to plume environmental conditions. Results of recent studies suggest that variability in subsurface geochemical and hydrological conditions significantly influences subsurface microbial-community structure. Combined investigations of site conditions and microbial-community structure provide the knowledge needed to understand interactions between subsurface microbial populations, plume geochemistry, and contaminant biodegradation. La biodégradation efficace des polluants souterrains requiert deux éléments: des populations microbiennes possédant les aptitudes nécessaires à la dégradation, et des conditions géochimiques et hydrologiques souterraines favorables. Des contraintes pratiques sur la conception et l'interprétation des expériences à la fois en microbiologie et en hydrogéologie ont conduit à une connaissance limitée des interactions entre les phénomènes hydrogéologiques et microbiologiques des environnements souterrains. Ces contraintes pratiques sont dues à des contradictions entre les échelles d'étude de l'hydrogéologie et de la microbiologie et à des limitations pratiques sur la capacitéà définir avec précision les populations microbiennes dans les échantillons. Cependant, des progrès dans l'application de méthodes d'échantillonnage à l'échelle locale et des approches pluridisciplinaires des études de terrain ont commencéà améliorer de façon significative notre compréhension des interactions hydrogéologiques et microbiologiques. De plus, les analyses moléculaires et sur les cultures des populations microbiennes présentes dans les panaches de pollution souterraine ont mis en évidence une adaptation significative de ces populations aux conditions environnementales du panache. Les résultats d'études récentes laissent penser que la variabilité des conditions géochimiques et hydrologiques souterraines influence significativement la structure des communautés microbiennes souterraines. Des recherches combinées sur les conditions de terrain et sur la structure des communautés microbiennes apportent les informations nécessaires à la compréhension des interactions entre les populations microbiennes souterraines, la géochimie du panache et la biodégradation du polluant. Para que la biodegradación de los contaminantes en el subsuelo sea eficiente se requiere: (1) una población microbiana con capacidad de degradación y (2) unas condiciones hidrológicas y geoquímicas favorables. Las restricciones de tipo práctico en los diseños y la interpretación de experimentos, tanto hidrogeológicos como microbiológicos, han dado lugar a un conocimiento limitado de la interrelación entre estas dos ciencias por lo que respecta al subsuelo. Estas restricciones incluyen: (1) inconsistencias entre las escalas de investigación en ambas ciencias (hidrogeología y microbiología) y (2) limitaciones prácticas para definir poblaciones microbianas en las muestras. Sin embargo, los avances en la aplicación de métodos de muestreo a pequeña escala y las investigaciones de campo con equipos interdisciplinares están mejorando significativamente el conocimiento de las interacciones entre hidrogeología y microbiología. Del mismo modo, los análisis moleculares y de cultivos sobre poblaciones microbianas en penachos contaminados han mostrado la adaptación de los microbios a las condiciones naturales. Estudios recientes sugieren que la variabilidad en las condiciones geoquímicas e hidrogeológicas del subsuelo afecta enormemente la estructura de la comunidad microbiana. Las investigaciones que combinan las condiciones del medio con la estructura de la comunidad microbiana proporcionarán el conocimiento necesario para entender las complejas relaciones entre las poblaciones microbianas subsuperficiales, la geoquímica de los penachos de contaminación y la biodegradación de los contaminantes.

  9. Accurate modeling and inversion of electrical resistivity data in the presence of metallic infrastructure with known location and dimension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Timothy C.; Wellman, Dawn M.

    2015-06-26

    Electrical resistivity tomography (ERT) has been widely used in environmental applications to study processes associated with subsurface contaminants and contaminant remediation. Anthropogenic alterations in subsurface electrical conductivity associated with contamination often originate from highly industrialized areas with significant amounts of buried metallic infrastructure. The deleterious influence of such infrastructure on imaging results generally limits the utility of ERT where it might otherwise prove useful for subsurface investigation and monitoring. In this manuscript we present a method of accurately modeling the effects of buried conductive infrastructure within the forward modeling algorithm, thereby removing them from the inversion results. The method ismore » implemented in parallel using immersed interface boundary conditions, whereby the global solution is reconstructed from a series of well-conditioned partial solutions. Forward modeling accuracy is demonstrated by comparison with analytic solutions. Synthetic imaging examples are used to investigate imaging capabilities within a subsurface containing electrically conductive buried tanks, transfer piping, and well casing, using both well casings and vertical electrode arrays as current sources and potential measurement electrodes. Results show that, although accurate infrastructure modeling removes the dominating influence of buried metallic features, the presence of metallic infrastructure degrades imaging resolution compared to standard ERT imaging. However, accurate imaging results may be obtained if electrodes are appropriately located.« less

  10. Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil.

    PubMed

    Deng, Linjing; Zeng, Guangming; Fan, Changzheng; Lu, Lunhui; Chen, Xunfeng; Chen, Ming; Wu, Haipeng; He, Xiaoxiao; He, Yan

    2015-10-01

    Due to the emerging environmental issues related to heavy metals, concern about the soil quality of farming lands near manufacturing district is increasing. Investigating the function of soil microorganisms exposed to long-term heavy metal contamination is meaningful and important for agricultural soil utilization. This article studied the potential influence of several heavy metals on microbial biomass, activity, abundance, and community composition in arable soil near industrial estate in Zhuzhou, Hunan province, China. The results showed that soil organic contents (SOC) were significantly positive correlated with heavy metals, whereas dehydrogenase activity (DHA) was greatly depressed by the heavy metal stress. Negative correlation was found between heavy metals and basal soil respiration (BSR), and no correlation was found between heavy metals and microbial biomass content (MBC). The quantitative PCR (QPCR) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis could suggest that heavy metal pollution has significantly decreased abundance of bacteria and fungi and also changed their community structure. The results could contribute to evaluate heavy metal pollution level in soil. By combining different environmental parameters, it would promote the better understanding of heavy metal effect on the size, structure, and activity of microbial community in arable soil.

  11. Interactions between metals and microbial communities in New Bedford Harbor, Massachusetts.

    PubMed Central

    Ford, T; Sorci, J; Ika, R; Shine, J

    1998-01-01

    The fate of toxic metals in marine sediments depends on a combination of the physical, chemical, and biologic conditions encountered in any given environment. These conditions may vary dramatically, both spatially and temporally, in response to factors ranging from seasonal changes and storm events to human activities such as dredging or remediation efforts. This paper describes a program designed to evaluate the interrelationships between the microbial community and pollutants in the New Bedford Harbor, Massachusetts, area, a U.S. Environmental Protection Agency designated Superfund site. Research has focused on establishing distributional relationships between contaminant metals, fluxes of metals between sediments and the overlying water, changes in microbial diversity in response to metals, and potential use of the microbial community as a biomarker of contaminant availability. This research has shown that a significant flux of metals to the water column is mediated by benthic biologic activity, and that microbial communities may be a responsive marker of contaminant stress. A combination of biogeochemical studies and the use of molecular tools can be used to improve our understanding of the fate and effect of heavy metals released to aquatic systems. Images Figure 1 Figure 3 Figure 4 PMID:9703489

  12. Comparison of microbial taxonomic and functional shift pattern along contamination gradient.

    PubMed

    Ren, Youhua; Niu, Jiaojiao; Huang, Wenkun; Peng, Deliang; Xiao, Yunhua; Zhang, Xian; Liang, Yili; Liu, Xueduan; Yin, Huaqun

    2016-06-14

    The interaction mechanism between microbial communities and environment is a key issue in microbial ecology. Microbial communities usually change significantly under environmental stress, which has been studied both phylogenetically and functionally, however which method is more effective in assessing the relationship between microbial communities shift and environmental changes still remains controversial. By comparing the microbial taxonomic and functional shift pattern along heavy metal contamination gradient, we found that both sedimentary composition and function shifted significantly along contamination gradient. For example, the relative abundance of Geobacter and Fusibacter decreased along contamination gradient (from high to low), while Janthinobacterium and Arthrobacter increased their abundances. Most genes involved in heavy metal resistance (e.g., metc, aoxb and mer) showed higher intensity in sites with higher concentration of heavy metals. Comparing the two shift patterns, there were correlations between them, because functional and phylogenetic β-diversities were significantly correlated, and many heavy metal resistance genes were derived from Geobacter, explaining their high abundance in heavily contaminated sites. However, there was a stronger link between functional composition and environmental drivers, while stochasticity played an important role in formation and succession of phylogenetic composition demonstrated by null model test. Overall our research suggested that the responses of functional traits depended more on environmental changes, while stochasticity played an important role in formation and succession of phylogenetic composition for microbial communities. So profiling microbial functional composition seems more appropriate to study the relationship between microbial communities and environment, as well as explore the adaptation and remediation mechanism of microbial communities to heavy metal contamination.

  13. Modern Subsurface Bacteria in Pristine 2.7 Ga-Old Fossil Stromatolite Drillcore Samples from the Fortescue Group, Western Australia

    PubMed Central

    Gérard, Emmanuelle; Moreira, David; Philippot, Pascal; Van Kranendonk, Martin J.; López-García, Purificación

    2009-01-01

    Background Several abiotic processes leading to the formation of life-like signatures or later contamination with actual biogenic traces can blur the interpretation of the earliest fossil record. In recent years, a large body of evidence showing the occurrence of diverse and active microbial communities in the terrestrial subsurface has accumulated. Considering the time elapsed since Archaean sedimentation, the contribution of subsurface microbial communities postdating the rock formation to the fossil biomarker pool and other biogenic remains in Archaean rocks may be far from negligible. Methodology/Principal Findings In order to evaluate the degree of potential contamination of Archean rocks by modern microorganisms, we looked for the presence of living indigenous bacteria in fresh diamond drillcores through 2,724 Myr-old stromatolites (Tumbiana Formation, Fortescue Group, Western Australia) using molecular methods based on the amplification of small subunit ribosomal RNA genes (SSU rDNAs). We analyzed drillcore samples from 4.3 m and 66.2 m depth, showing signs of meteoritic alteration, and also from deeper “fresh” samples showing no apparent evidence for late stage alteration (68 m, 78.8 m, and 99.3 m). We also analyzed control samples from drilling and sawing fluids and a series of laboratory controls to establish a list of potential contaminants introduced during sample manipulation and PCR experiments. We identified in this way the presence of indigenous bacteria belonging to Firmicutes, Actinobacteria, and Alpha-, Beta-, and Gammaproteobacteria in aseptically-sawed inner parts of drillcores down to at least 78.8 m depth. Conclusions/Significance The presence of modern bacterial communities in subsurface fossil stromatolite layers opens the possibility that a continuous microbial colonization had existed in the past and contributed to the accumulation of biogenic traces over geological timescales. This finding casts shadow on bulk analyses of early life remains and makes claims for morphological, chemical, isotopic, and biomarker traces syngenetic with the rock unreliable in the absence of detailed contextual analyses at microscale. PMID:19396360

  14. A Microbial Oasis in the Hypersaline Atacama Subsurface Discovered by a Life Detector Chip: Implications for the Search for Life on Mars

    PubMed Central

    de Diego-Castilla, Graciela; Moreno-Paz, Mercedes; Blanco, Yolanda; Cruz-Gil, Patricia; Rodríguez-Manfredi, José A.; Fernández-Remolar, David; Gómez, Felipe; Gómez, Manuel J.; Rivas, Luis A.; Demergasso, Cecilia; Echeverría, Alex; Urtuvia, Viviana N.; Ruiz-Bermejo, Marta; García-Villadangos, Miriam; Postigo, Marina; Sánchez-Román, Mónica; Chong-Díaz, Guillermo; Gómez-Elvira, Javier

    2011-01-01

    Abstract The Atacama Desert has long been considered a good Mars analogue for testing instrumentation for planetary exploration, but very few data (if any) have been reported about the geomicrobiology of its salt-rich subsurface. We performed a Mars analogue drilling campaign next to the Salar Grande (Atacama, Chile) in July 2009, and several cores and powder samples from up to 5 m deep were analyzed in situ with LDChip300 (a Life Detector Chip containing 300 antibodies). Here, we show the discovery of a hypersaline subsurface microbial habitat associated with halite-, nitrate-, and perchlorate-containing salts at 2 m deep. LDChip300 detected bacteria, archaea, and other biological material (DNA, exopolysaccharides, some peptides) from the analysis of less than 0.5 g of ground core sample. The results were supported by oligonucleotide microarray hybridization in the field and finally confirmed by molecular phylogenetic analysis and direct visualization of microbial cells bound to halite crystals in the laboratory. Geochemical analyses revealed a habitat with abundant hygroscopic salts like halite (up to 260 g kg−1) and perchlorate (41.13 μg g−1 maximum), which allow deliquescence events at low relative humidity. Thin liquid water films would permit microbes to proliferate by using detected organic acids like acetate (19.14 μg g−1) or formate (76.06 μg g−1) as electron donors, and sulfate (15875 μg g−1), nitrate (13490 μg g−1), or perchlorate as acceptors. Our results correlate with the discovery of similar hygroscopic salts and possible deliquescence processes on Mars, and open new search strategies for subsurface martian biota. The performance demonstrated by our LDChip300 validates this technology for planetary exploration, particularly for the search for life on Mars. Key Words: Atacama Desert—Life detection—Biosensor—Biopolymers—In situ measurement. Astrobiology 11, 969–996. PMID:22149750

  15. A microbial oasis in the hypersaline Atacama subsurface discovered by a life detector chip: implications for the search for life on Mars.

    PubMed

    Parro, Victor; de Diego-Castilla, Graciela; Moreno-Paz, Mercedes; Blanco, Yolanda; Cruz-Gil, Patricia; Rodríguez-Manfredi, José A; Fernández-Remolar, David; Gómez, Felipe; Gómez, Manuel J; Rivas, Luis A; Demergasso, Cecilia; Echeverría, Alex; Urtuvia, Viviana N; Ruiz-Bermejo, Marta; García-Villadangos, Miriam; Postigo, Marina; Sánchez-Román, Mónica; Chong-Díaz, Guillermo; Gómez-Elvira, Javier

    2011-12-01

    The Atacama Desert has long been considered a good Mars analogue for testing instrumentation for planetary exploration, but very few data (if any) have been reported about the geomicrobiology of its salt-rich subsurface. We performed a Mars analogue drilling campaign next to the Salar Grande (Atacama, Chile) in July 2009, and several cores and powder samples from up to 5 m deep were analyzed in situ with LDChip300 (a Life Detector Chip containing 300 antibodies). Here, we show the discovery of a hypersaline subsurface microbial habitat associated with halite-, nitrate-, and perchlorate-containing salts at 2 m deep. LDChip300 detected bacteria, archaea, and other biological material (DNA, exopolysaccharides, some peptides) from the analysis of less than 0.5 g of ground core sample. The results were supported by oligonucleotide microarray hybridization in the field and finally confirmed by molecular phylogenetic analysis and direct visualization of microbial cells bound to halite crystals in the laboratory. Geochemical analyses revealed a habitat with abundant hygroscopic salts like halite (up to 260 g kg(-1)) and perchlorate (41.13 μg g(-1) maximum), which allow deliquescence events at low relative humidity. Thin liquid water films would permit microbes to proliferate by using detected organic acids like acetate (19.14 μg g(-1)) or formate (76.06 μg g(-1)) as electron donors, and sulfate (15875 μg g(-1)), nitrate (13490 μg g(-1)), or perchlorate as acceptors. Our results correlate with the discovery of similar hygroscopic salts and possible deliquescence processes on Mars, and open new search strategies for subsurface martian biota. The performance demonstrated by our LDChip300 validates this technology for planetary exploration, particularly for the search for life on Mars.

  16. Microbial colonization in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    NASA Astrophysics Data System (ADS)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2015-02-01

    Colonization of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focused on the settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associated vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soil types on the surface of the island. Total viable bacterial counts were performed with the plate count method at 22, 30 and 37 °C for all soil samples, and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms and aerobic and anaerobic bacteria. The subsurface biosphere was investigated by collecting liquid subsurface samples from a 181 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between nutrient deficits and the number of microorganisms in surface soil samples. The lowest number of bacteria (1 × 104-1 × 105 cells g-1) was detected in almost pure pumice but the count was significantly higher (1 × 106-1 × 109 cells g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated samples and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 and 172 m depth at 80 and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  17. Microbial colonisation in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    NASA Astrophysics Data System (ADS)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2014-09-01

    Colonisation of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focusing on settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associate vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soils types on the surface of the island. Total viable bacterial counts were performed with plate count at 22, 30 and 37 °C for all soils samples and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms aerobic and anaerobic bacteria. The deep subsurface biosphere was investigated by collecting liquid subsurface samples from a 182 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between N deficits and the number of microorganisms in surface soils samples. The lowest number of bacteria (1 × 104-1 × 105 g-1) was detected in almost pure pumice but the count was significant higher (1 × 106-1 × 109 g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 m and 172 m depth at 80 °C and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  18. Microbial Influences on Trace Metal Cycling in a Meromictic Lake, Fayetteville Green Lake, NY

    NASA Astrophysics Data System (ADS)

    Zerkle, A. L.; House, C.; Kump, L.

    2002-12-01

    Microorganisms can exist in aquatic environments at very high cell densities of up to 1011 cells/L, and can accumulate significant quantities of trace metals. Bacteria actively take up bioactive trace metals, including Fe, Zn, Mn, Co, Ni, Cu, and Mo, which function as catalytic centers in metalloproteins and metal-activated enzymes involved in virtually all cellular functions. In addition, bacteria may catalyze the release of trace metals from inorganic substrates by processes such as the reduction of iron and manganese oxides, suggesting that trace metal distributions within a natural environment dominated by microbial processes may be controlled primarily by microbial ecology. Fayetteville Green Lake (FGL), NY, is a permanently stratified meromictic lake that has a well-oxygenated surface water mass (mixolimnion) overlying a relatively stagnant, anoxic deep water mass (monimolimnion). A chemocline separates the water masses at around 20m depth, where oxygen concentrations decrease and sulfate and methane concentrations increase. In addition, previous studies have indicated that trace metals such as V, Cr, Co, Mn, and Fe reach elevated concentrations at the chemocline. Using fluorescent in situ hybridization (FISH) of FGL samples from depths of up to 40m with bacterial and archaeal probes, we have shown that fluctuating redox conditions within the FGL water column correlate with significant variations in the composition and distribution of microbial populations with depth. The mixolimnion is dominated by Eubacteria, with increasing concentrations of Archaea in the lower anoxic zone. Increases in microbial cell densities coincide with increases in trace metals at the chemocline, suggesting microbial activity may be responsible for trace metal release at this boundary. 16S rRNA PCR cloning techniques are currently being used to identify dominant microbial populations at various levels within the FGL water column. Future studies will focus on the potential for these dominant microorganisms to influence trace metal cycling and bioavailability in the FGL water column.

  19. Multiple sulphur and oxygen isotopes reveal microbial sulphur cycling in spring waters in the Lower Engadin, Switzerland.

    PubMed

    Strauss, Harald; Chmiel, Hannah; Christ, Andreas; Fugmann, Artur; Hanselmann, Kurt; Kappler, Andreas; Königer, Paul; Lutter, Andreas; Siedenberg, Katharina; Teichert, Barbara M A

    2016-01-01

    Highly mineralized springs in the Scuol-Tarasp area of the Lower Engadin and in the Albula Valley near Alvaneu, Switzerland, display distinct differences with respect to the source and fate of their dissolved sulphur species. High sulphate concentrations and positive sulphur (δ(34)S) and oxygen (δ(18)O) isotopic compositions argue for the subsurface dissolution of Mesozoic evaporitic sulphate. In contrast, low sulphate concentrations and less positive or even negative δ(34)S and δ(18)O values indicate a substantial contribution of sulphate sulphur from the oxidation of sulphides in the crystalline basement rocks or the Jurassic sedimentary cover rocks. Furthermore, multiple sulphur (δ(34)S, Δ(33)S) isotopes support the identification of microbial sulphate reduction and sulphide oxidation in the subsurface, the latter is also evident through the presence of thick aggregates of sulphide-oxidizing Thiothrix bacteria.

  20. Metagenomic identification of active methanogens and methanotrophs in serpentinite springs of the Voltri Massif, Italy.

    PubMed

    Brazelton, William J; Thornton, Christopher N; Hyer, Alex; Twing, Katrina I; Longino, August A; Lang, Susan Q; Lilley, Marvin D; Früh-Green, Gretchen L; Schrenk, Matthew O

    2017-01-01

    The production of hydrogen and methane by geochemical reactions associated with the serpentinization of ultramafic rocks can potentially support subsurface microbial ecosystems independent of the photosynthetic biosphere. Methanogenic and methanotrophic microorganisms are abundant in marine hydrothermal systems heavily influenced by serpentinization, but evidence for methane-cycling archaea and bacteria in continental serpentinite springs has been limited. This report provides metagenomic and experimental evidence for active methanogenesis and methanotrophy by microbial communities in serpentinite springs of the Voltri Massif, Italy. Methanogens belonging to family Methanobacteriaceae and methanotrophic bacteria belonging to family Methylococcaceae were heavily enriched in three ultrabasic springs (pH 12). Metagenomic data also suggest the potential for hydrogen oxidation, hydrogen production, carbon fixation, fermentation, and organic acid metabolism in the ultrabasic springs. The predicted metabolic capabilities are consistent with an active subsurface ecosystem supported by energy and carbon liberated by geochemical reactions within the serpentinite rocks of the Voltri Massif.

  1. Genome-to-Watershed Predictive Understanding of Terrestrial Environments

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Agarwal, D.; Banfield, J. F.; Beller, H. R.; Brodie, E.; Long, P.; Nico, P. S.; Steefel, C. I.; Tokunaga, T. K.; Williams, K. H.

    2014-12-01

    Although terrestrial environments play a critical role in cycling water, greenhouse gasses, and other life-critical elements, the complexity of interactions among component microbes, plants, minerals, migrating fluids and dissolved constituents hinders predictive understanding of system behavior. The 'Sustainable Systems 2.0' project is developing genome-to-watershed scale predictive capabilities to quantify how the microbiome affects biogeochemical watershed functioning, how watershed-scale hydro-biogeochemical processes affect microbial functioning, and how these interactions co-evolve with climate and land-use changes. Development of such predictive capabilities is critical for guiding the optimal management of water resources, contaminant remediation, carbon stabilization, and agricultural sustainability - now and with global change. Initial investigations are focused on floodplains in the Colorado River Basin, and include iterative model development, experiments and observations with an early emphasis on subsurface aspects. Field experiments include local-scale experiments at Rifle CO to quantify spatiotemporal metabolic and geochemical responses to O2and nitrate amendments as well as floodplain-scale monitoring to quantify genomic and biogeochemical response to natural hydrological perturbations. Information obtained from such experiments are represented within GEWaSC, a Genome-Enabled Watershed Simulation Capability, which is being developed to allow mechanistic interrogation of how genomic information stored in a subsurface microbiome affects biogeochemical cycling. This presentation will describe the genome-to-watershed scale approach as well as early highlights associated with the project. Highlights include: first insights into the diversity of the subsurface microbiome and metabolic roles of organisms involved in subsurface nitrogen, sulfur and hydrogen and carbon cycling; the extreme variability of subsurface DOC and hydrological controls on carbon and nitrogen cycling; geophysical identification of floodplain hotspots that are useful for model parameterization; and GEWaSC demonstration of how incorporation of identified microbial metabolic processes improves prediction of the larger system biogeochemical behavior.

  2. Influence of microorganisms on the oxidation state distribution of multivalent actinides under anoxic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, Donald Timothy; Borkowski, Marian; Lucchini, Jean - Francois

    2010-12-10

    The fate and potential mobility of multivalent actinides in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium, uranium and neptunium are the near-surface multivalent contaminants of concern and are also key contaminants for the deep geologic disposal of nuclear waste. Their mobility is highly dependent on their redox distribution at their contamination source as well as along their potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity.more » Under anoxic conditions, indirect and direct bioreduction mechanisms exist that promote the prevalence of lower-valent species for multivalent actinides. Oxidation-state-specific biosorption is also an important consideration for long-term migration and can influence oxidation state distribution. Results of ongoing studies to explore and establish the oxidation-state specific interactions of soil bacteria (metal reducers and sulfate reducers) as well as halo-tolerant bacteria and Archaea for uranium, neptunium and plutonium will be presented. Enzymatic reduction is a key process in the bioreduction of plutonium and uranium, but co-enzymatic processes predominate in neptunium systems. Strong sorptive interactions can occur for most actinide oxidation states but are likely a factor in the stabilization of lower-valent species when more than one oxidation state can persist under anaerobic microbiologically-active conditions. These results for microbiologically active systems are interpreted in the context of their overall importance in defining the potential migration of multivalent actinides in the subsurface.« less

  3. Response of a salt marsh microbial community to metal contamination

    NASA Astrophysics Data System (ADS)

    Mucha, Ana P.; Teixeira, Catarina; Reis, Izabela; Magalhães, Catarina; Bordalo, Adriano A.; Almeida, C. Marisa R.

    2013-09-01

    Salt marshes are important sinks for contaminants, namely metals that tend to accumulate around plant roots and could eventually be taken up in a process known as phytoremediation. On the other hand, microbial communities display important roles in the salt marsh ecosystems, such as recycling of nutrients and/or degradation of organic contaminants. Thus, plants can benefit from the microbial activity in the phytoremediation process. Nevertheless, above certain levels, metals are known to be toxic to microorganisms, fact that can eventually compromise their ecological functions. In this vein, the aim of present study was to investigate, in the laboratory, the effect of selected metals (Cd, Cu and Pb) on the microbial communities associated to the roots of two salt marsh plants. Sediments colonized by Juncus maritimus and Phragmites australis were collected in the River Lima estuary (NW Portugal), and spiked with each of the metals at three different Effects Range-Median (ERM) concentrations (1, 10×, 50×), being ERM the sediment quality guideline that indicates the concentration above which adverse biological effects may frequently occur. Spiked sediments were incubated with a nutritive saline solution, being left in the dark under constant agitation for 7 days. The results showed that, despite the initial sediments colonized by J. maritimus and P. australis displayed significant (p < 0.05) differences in terms of microbial community structure (evaluated by ARISA), they presented similar microbial abundances (estimated by DAPI). Also, in terms of microbial abundance, both sediments showed a similar response to metal addition, with a decrease in number of cells only observed for the higher addition of Cu. Nevertheless, both Cu and Pb, at intermediate metals levels promote a shift in the microbial community structure, with possibly effect on the ecological function of these microbial communities in salt marshes. These changes may affect plants phytoremediation potential and further work on this subject is in need.

  4. Pore-scale characterization of biogeochemical controls on iron and uranium speciation under flow conditions.

    PubMed

    Pearce, Carolyn I; Wilkins, Michael J; Zhang, Changyong; Heald, Steve M; Fredrickson, Jim K; Zachara, John M

    2012-08-07

    Etched silicon microfluidic pore network models (micromodels) with controlled chemical and redox gradients, mineralogy, and microbiology under continuous flow conditions are used for the incremental development of complex microenvironments that simulate subsurface conditions. We demonstrate the colonization of micromodel pore spaces by an anaerobic Fe(III)-reducing bacterial species (Geobacter sulfurreducens) and the enzymatic reduction of a bioavailable Fe(III) phase within this environment. Using both X-ray microprobe and X-ray absorption spectroscopy, we investigate the combined effects of the precipitated Fe(III) phases and the microbial population on uranium biogeochemistry under flow conditions. Precipitated Fe(III) phases within the micromodel were most effectively reduced in the presence of an electron shuttle (AQDS), and Fe(II) ions adsorbed onto the precipitated mineral surface without inducing any structural change. In the absence of Fe(III), U(VI) was effectively reduced by the microbial population to insoluble U(IV), which was precipitated in discrete regions associated with biomass. In the presence of Fe(III) phases, however, both U(IV) and U(VI) could be detected associated with biomass, suggesting reoxidation of U(IV) by localized Fe(III) phases. These results demonstrate the importance of the spatial localization of biomass and redox active metals, and illustrate the key effects of pore-scale processes on contaminant fate and reactive transport.

  5. Biogeochemical dynamics of pollutants in Insitu groundwater remediation systems

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Millot, R.; Rose, J.; Négrel, P.; Battaglia-Brunnet, F.; Diels, L.

    2010-12-01

    Insitu (bio) remediation of groundwater contaminants has been area of potential research interest in last few decades as the nature of contaminant encountered has also changed drastically. This gives tough challenge to researchers in finding a common solution for all contaminants together in one plume. Redox processes play significant role in pollutant dynamics and mobility in such systems. Arsenic particularly in reduced environments can get transformed into its reduced form (As3+), which is apparently more mobile and highly toxic. Also parallel sulfate reduction can lead to sulfide production and formation of thioarsenic species. On the other hand heavy metals (Zn, Fe, and Cd) in similar conditions will favour more stable metal sulfide precipitation. In the present work, we tested Zero Valent Iron (ZVI) in handling such issues and found promising results. Although it has been well known for contaminants like arsenic and chlorinated compounds but not much explored for heavy metals. Its high available surface area supports precipitation and co -precipitation of contaminants and its highly oxidizing nature and water born hydrogen production helps in stimulation of microbial activities in sediment and groundwater. These sulfate and Iron reducing bacteria can further fix heavy metals as stable metal sulfides by using hydrogen as potential electron donor. In the present study flow through columns (biotic and control) were set up in laboratory to understand the behaviour of contaminants in subsurface environments, also the impact of microbiology on performance of ZVI was studied. These glass columns (30 x 4cm) with intermediate sampling points were monitored over constant temperature (20°C) and continuous groundwater (up)flow at ~1ml/hr throughout the experiment. Simulated groundwater was prepared in laboratory containing sulfate, metals (Zn,Cd) and arsenic (AsV). While chemical and microbial parameters were followed regularly over time, solid phase has been characterized at the end of experiment using synchrotron and other microscopic techniques (SEM, µXRF). Stable isotope signatures have been proved as a critical tool in understanding the redox and microbial processes. We monitored ∂34S, ∂66Zn and ∂56Fe isotope evolution with time to understand the relationship between biogeochemical process and isotope fractionation. We observed Δ34S biotic - abiotic ~6‰ and ∂56Fe variation up to 1.5‰ in our study. ZVI was very efficient in metal removal and also in enhancing sulfate reduction in column sediment. Arsenic reduction and thiarsenic species were also detected in biotic columns showing a positive correlation with sulfide production and Fe speciation. Latest results will be presented with integration of different processes. This multidisciplinary approach will help in deep understanding of contaminants behaviour and also to constrain the efficiency and longitivity of treatment system for different contaminants. “This is contribution of the AquaTrain MRTN (Contract No. MRTN-CT-2006-035420) funded under the European Commission sixth framework programme (2002-2006) Marie Curie Actions, Human Resources & Mobility Activity Area- Research Training Networks”

  6. Methane and nitrous oxide cycling microbial communities in soils above septic leach fields: Abundances with depth and correlations with net surface emissions.

    PubMed

    Fernández-Baca, Cristina P; Truhlar, Allison M; Omar, Amir-Eldin H; Rahm, Brian G; Walter, M Todd; Richardson, Ruth E

    2018-05-31

    Onsite septic systems use soil microbial communities to treat wastewater, in the process creating potent greenhouse gases (GHGs): methane (CH 4 ) and nitrous oxide (N 2 O). Subsurface soil dispersal systems of septic tank overflow, known as leach fields, are an important part of wastewater treatment and have the potential to contribute significantly to GHG cycling. This study aimed to characterize soil microbial communities associated with leach field systems and quantify the abundance and distribution of microbial populations involved in CH 4 and N 2 O cycling. Functional genes were used to target populations producing and consuming GHGs, specifically methyl coenzyme M reductase (mcrA) and particulate methane monooxygenase (pmoA) for CH 4 and nitric oxide reductase (cnorB) and nitrous oxide reductase (nosZ) for N 2 O. All biomarker genes were found in all soil samples regardless of treatment (leach field, sand filter, or control) or depth (surface or subsurface). In general, biomarker genes were more abundant in surface soils than subsurface soils suggesting the majority of GHG cycling is occurring in near-surface soils. Ratios of production to consumption gene abundances showed a positive relationship with CH 4 emissions (mcrA:pmoA, p < 0.001) but not with N 2 O emission (cnorB:nosZ, p > 0.05). Of the three measured soil parameters (volumetric water content (VWC), temperature, and conductivity), only VWC was significantly correlated to a biomarker gene, mcrA (p = 0.0398) but not pmoA or either of the N 2 O cycling genes (p > 0.05 for cnorB and nosZ). 16S rRNA amplicon library sequencing results revealed soil VWC, CH 4 flux and N 2 O flux together explained 64% of the microbial community diversity between samples. Sequencing of mcrA and pmoA amplicon libraries revealed treatment had little effect on diversity of CH 4 cycling organisms. Overall, these results suggest GHG cycling occurs in all soils regardless of whether or not they are associated with a leach field system. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Comparison and Correlation of Subsurface Media Properties Reflected in Both Extracted Soil Pore Water From Sectioned Cores and Homogenized Groundwater From Monitoring Wells

    NASA Astrophysics Data System (ADS)

    Moon, J. W.; Paradis, C. J.; von Netzer, F.; Dixon, E.; Majumder, E.; Joyner, D.; Zane, G.; Fitzgerald, K.; Xiaoxuan, G.; Thorgersen, M. P.; Lui, L.; Adams, B.; Brewer, S. S.; Williams, D.; Lowe, K. A.; Rodriguez, M., Jr.; Mehlhorn, T. L.; Pfiffner, S. M.; Chakraborty, R.; Arkin, A. P.; Terry, A. Y.; Wall, J. D.; Stahl, D. A.; Elias, D. A.; Hazen, T. C.

    2017-12-01

    Conventional monitoring wells have produced useful long-term data about the contaminants, carbon flux, microbial population and their evolution. The averaged homogenized groundwater matrix from these wells is insufficient to represent all media properties in subsurface. This pilot study investigated the solid, liquid and gas phases from soil core samples from both uncontaminated and contaminated areas of the ENIGMA field research site at Oak Ridge, Tennessee. We focused on a site-specific assessment with depth perspective that included soil structure, soil minerals, major and trace elements and biomass for the solid phase; centrifuged soil pore water including cations, anions, organic acid, pH and conductivity for the liquid phase; and gas (CO2, CH4, N2O) evolution over a 4 week incubation with soil and unfiltered groundwater. Pore water from soil core sections showed a correlation between contamination levels with depth and the potential abundance of sulfate- and nitrate-reducing bacteria based on the 2-order of magnitude decreased concentration. A merged interpretation with mineralogical consideration revealed a more complicated correlation among contaminants, soil texture, clay minerals, groundwater levels, and biomass. This sampling campaign emphasized that subsurface microbial activity and metabolic reactions can be influenced by a variety of factors but can be understood by considering the influence of multiple geochemical factors from all subsurface phases including water, air, and solid along depth rather than homogenized groundwater.

  8. Estimating and mapping ecological processes influencing microbial community assembly

    DOE PAGES

    Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.; ...

    2015-05-01

    Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recentlymore » developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth.« less

  9. Microbial Life of North Pacific Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Schumann, G.; Koos, R.; Manz, W.; Reitner, J.

    2003-12-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed reactions that influence the geophysical properties of these environments. Drilling into 45-Ma oceanic basaltic crust in a deepwater environment during ODP Leg 200 provided a promising opportunity to explore the abundance, diversity and activity of micro-organisms. The combined use of culture-independent molecular phylogenetic analyses and enrichment culture techniques is an advantageous approach in investigating subsurface microbial ecosystems. Enrichment culture methods allow the evaluation of potential activities and functions. Microbiological investigations revealed few aerobic cultivable, in part hitherto unknown, micro-organisms in deep submarine sediments and basaltic lava flows. 16S rDNA sequencing of isolates from sediment revealed the next relatives to be members of the genera Halomonas, Pseudomonas, and Lactobacillus. Within the Pseudomonadaceae the closest relative is Acinetobacter sp., which was isolated from a deep subsurface environment. The next phylogenetical relatives within the Halomonadaceae are bacteria typically isolated from Soda lakes, which are considered as model of early life conditions. Interestingly, not only sediment bacteria could be obtained in pure culture. Aerobic strains could also be successfully isolated from the massive tholeiitic basalt layer at a depth of 76.16 mbsf (46 m below the sediment/basement contact). These particular isolates are gram-positive with low G+C content of DNA, phylogenetically affiliated to the phylum Firmicutes. The closest neighbors are e.g. a marine Bacillus isolated from the Gulf of Mexico and a low G+C gram-positive bacterium, which belongs to the microbial flora in the deepest sea mud of the Mariana Trench, isolated from a depth of 10,897 m. Based on the similarity values, the isolates represent hitherto undescribed species of the deep biosphere. Molecular microbial diversity is currently determined by cloning und comparative 16S rRNA gene analyses. The first results will also be presented. In summary, the low number of isolates, cultivated under aerobic conditions, is in good agreement with the common opinion that most of the bacteria within the deep biosphere are anaerobic. Thus, studies of microbial community structure in solid geological materials are feasible and constitute further evidence that continuing microbiological activity in the challenging exploration of the deep sub-seafloor biosphere environment is absolutely promising.

  10. Stable and Variable Parts of Microbial Community in Siberian Deep Subsurface Thermal Aquifer System Revealed in a Long-Term Monitoring Study

    PubMed Central

    Frank, Yulia A.; Kadnikov, Vitaly V.; Gavrilov, Sergey N.; Banks, David; Gerasimchuk, Anna L.; Podosokorskaya, Olga A.; Merkel, Alexander Y.; Chernyh, Nikolai A.; Mardanov, Andrey V.; Ravin, Nikolai V.; Karnachuk, Olga V.; Bonch-Osmolovskaya, Elizaveta A.

    2016-01-01

    The goal of this work was to study the diversity of microorganisms inhabiting a deep subsurface aquifer system in order to understand their functional roles and interspecies relations formed in the course of buried organic matter degradation. A microbial community of a deep subsurface thermal aquifer in the Tomsk Region, Western Siberia was monitored over the course of 5 years via a 2.7 km deep borehole 3P, drilled down to a Palaeozoic basement. The borehole water discharges with a temperature of ca. 50°C. Its chemical composition varies, but it steadily contains acetate, propionate, and traces of hydrocarbons and gives rise to microbial mats along the surface flow. Community analysis by PCR-DGGE 16S rRNA genes profiling, repeatedly performed within 5 years, revealed several dominating phylotypes consistently found in the borehole water, and highly variable diversity of prokaryotes, brought to the surface with the borehole outflow. The major planktonic components of the microbial community were Desulfovirgula thermocuniculi and Methanothermobacter spp. The composition of the minor part of the community was unstable, and molecular analysis did not reveal any regularity in its variations, except some predominance of uncultured Firmicutes. Batch cultures with complex organic substrates inoculated with water samples were set in order to enrich prokaryotes from the variable part of the community. PCR-DGGE analysis of these enrichments yielded uncultured Firmicutes, Chloroflexi, and Ignavibacteriae. A continuous-flow microaerophilic enrichment culture with a water sample amended with acetate contained Hydrogenophilus thermoluteolus, which was previously detected in the microbial mat developing at the outflow of the borehole. Cultivation results allowed us to assume that variable components of the 3P well community are hydrolytic organotrophs, degrading buried biopolymers, while the constant planktonic components of the community degrade dissolved fermentation products to methane and CO2, possibly via interspecies hydrogen transfer. Occasional washout of minor community components capable of oxygen respiration leads to the development of microbial mats at the outflow of the borehole where residual dissolved fermentation products are aerobically oxidized. Long-term community analysis with the combination of molecular and cultivation techniques allowed us to characterize stable and variable parts of the community and propose their environmental roles. PMID:28082967

  11. Long-term fluid expulsion revealed by carbonate crusts and pockmarks connected to subsurface gas anomalies and palaeo-channels in the central North Sea

    NASA Astrophysics Data System (ADS)

    Chand, Shyam; Crémière, Antoine; Lepland, Aivo; Thorsnes, Terje; Brunstad, Harald; Stoddart, Daniel

    2017-06-01

    Gas seepage through the seafloor into the water column is inferred based on acoustic mapping, video observations and geochemical analyses at multiple locations in the Viking Graben and Utsira High areas of the central North Sea. Flares in the Viking Graben occur both inside and along the periphery of a submarine melt water channel where pockmarks (up to 500 m in diameter) and methane-derived carbonate crusts are found on the seafloor, indicating focussing of fluid flow in the vicinity of the channel. The flares can be related to gas accumulations close to the seafloor as well as in Quaternary and deeper strata, observed as high-amplitude reflections on seismic data. Many palaeo-channels, which act as accumulation zones, are observed in the subsurface of both the Viking Graben and Utsira High areas. The deeper origin of gas is partially supported by results of isotope analyses of headspace gas collected from sediment samples of the Viking Graben, which show a mixed microbial/thermogenic origin whereas isotope data on free seeping gas in the Viking Graben indicate a predominantly microbial origin. Based on these lines of evidence, a structure-controlled fluid flow model is proposed whereby hydrocarbons migrate in limited amount from deep thermogenic reservoirs along faults, and these deep fluids are strongly diluted by microbial methane. Moreover, the existence of subsurface pockmarks at several stratigraphic levels indicates long-term fluid flow, interpreted to be caused by gas hydrate destabilisation and stress-related high overpressures.

  12. Genomic evidence for the Wood-Ljungdahl pathway for carbon fixation in warm basaltic ocean crust

    NASA Astrophysics Data System (ADS)

    Smith, A. R.; Fisk, M. R.; Mueller, R.; Colwell, F. S.; Mason, O. U.; Popa, R.

    2016-12-01

    Microbial life in the deep suboceanic aquifer can harness geochemical energy resulting from water-rock reactions and contribute to carbon cycling in the ocean via primary production, or chemosynthesis. Iron-bearing minerals such as olivine in oceanic crust can produce molecular hydrogen, small molecular weight hydrocarbons, and hydrogen sulfide as they react with seawater. Although this generally occurs in serpentinizing systems at very high temperatures deep in the subsurface, it has also been hypothesized to drive the subseafloor microbial ecosystems present in shallower basaltic aquifers. We present genome-based evidence for chemolithoautotrophic microbes present on the surface of olivine incubated in Juan de Fuca Ridge basaltic ocean crust for a 4-year period. These metagenome-derived genomes show dominant taxa capable of using both branches of the Wood-Ljungdahl pathway for carbon fixation and energy generation. This pathway uses molecular hydrogen potentially derived from the olivine surface as it reacts with seawater and CO2 which is inherent to seawater. These taxa were not reported from aquifer fluid samples, but have been found only in association with mineral surfaces in this study location. Most taxa in this simple community are distant relatives of cultured taxa; therefore this genome information is crucial to understanding how the subseafloor aquifer community is structured, how it obtains energy, how it cycles carbon, and gives us keys to help cultivate these organisms in the laboratory. Our findings also support the Subsurface Lithoautotrophic Microbial Ecosystem (SLiME) hypothesis and have implications for understanding life on early Earth and the potential for life in the Martian subsurface.

  13. Insights into environmental controls on microbial communities in a continental serpentinite aquifer using a microcosm-based approach

    PubMed Central

    Crespo-Medina, Melitza; Twing, Katrina I.; Kubo, Michael D. Y.; Hoehler, Tori M.; Cardace, Dawn; McCollom, Tom; Schrenk, Matthew O.

    2014-01-01

    Geochemical reactions associated with serpentinization alter the composition of dissolved organic compounds in circulating fluids and potentially liberate mantle-derived carbon and reducing power to support subsurface microbial communities. Previous studies have identified Betaproteobacteria from the order Burkholderiales and bacteria from the order Clostridiales as key components of the serpentinite–hosted microbiome, however there is limited knowledge of their metabolic capabilities or growth characteristics. In an effort to better characterize microbial communities, their metabolism, and factors limiting their activities, microcosm experiments were designed with fluids collected from several monitoring wells at the Coast Range Ophiolite Microbial Observatory (CROMO) in northern California during expeditions in March and August 2013. The incubations were initiated with a hydrogen atmosphere and a variety of carbon sources (carbon dioxide, methane, acetate, and formate), with and without the addition of nutrients and electron acceptors. Growth was monitored by direct microscopic counts; DNA yield and community composition was assessed at the end of the 3 month incubation. For the most part, results indicate that bacterial growth was favored by the addition of acetate and methane, and that the addition of nutrients and electron acceptors had no significant effect on microbial growth, suggesting no nutrient- or oxidant-limitation. However, the addition of sulfur amendments led to different community compositions. The dominant organisms at the end of the incubations were closely related to Dethiobacter sp. and to the family Comamonadaceae, which are also prominent in culture-independent gene sequencing surveys. These experiments provide one of first insights into the biogeochemical dynamics of the serpentinite subsurface environment and will facilitate experiments to trace microbial activities in serpentinizing ecosystems. PMID:25452748

  14. Insights into environmental controls on microbial communities in a continental serpentinite aquifer using a microcosm-based approach.

    PubMed

    Crespo-Medina, Melitza; Twing, Katrina I; Kubo, Michael D Y; Hoehler, Tori M; Cardace, Dawn; McCollom, Tom; Schrenk, Matthew O

    2014-01-01

    Geochemical reactions associated with serpentinization alter the composition of dissolved organic compounds in circulating fluids and potentially liberate mantle-derived carbon and reducing power to support subsurface microbial communities. Previous studies have identified Betaproteobacteria from the order Burkholderiales and bacteria from the order Clostridiales as key components of the serpentinite-hosted microbiome, however there is limited knowledge of their metabolic capabilities or growth characteristics. In an effort to better characterize microbial communities, their metabolism, and factors limiting their activities, microcosm experiments were designed with fluids collected from several monitoring wells at the Coast Range Ophiolite Microbial Observatory (CROMO) in northern California during expeditions in March and August 2013. The incubations were initiated with a hydrogen atmosphere and a variety of carbon sources (carbon dioxide, methane, acetate, and formate), with and without the addition of nutrients and electron acceptors. Growth was monitored by direct microscopic counts; DNA yield and community composition was assessed at the end of the 3 month incubation. For the most part, results indicate that bacterial growth was favored by the addition of acetate and methane, and that the addition of nutrients and electron acceptors had no significant effect on microbial growth, suggesting no nutrient- or oxidant-limitation. However, the addition of sulfur amendments led to different community compositions. The dominant organisms at the end of the incubations were closely related to Dethiobacter sp. and to the family Comamonadaceae, which are also prominent in culture-independent gene sequencing surveys. These experiments provide one of first insights into the biogeochemical dynamics of the serpentinite subsurface environment and will facilitate experiments to trace microbial activities in serpentinizing ecosystems.

  15. Microbial community structure in a shallow hydrocarbon-contaminated aquifer associated with high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Duris, J. W.; Rossbach, S.; Atekwana, E. A.; Werkema, D., Jr.

    2003-04-01

    Little is known about the complex interactions between microbial communities and electrical properties in contaminated aquifers. In order to investigate possible connections between these parameters a study was undertaken to investigate the hypothesis that the degradation of hydrocarbons by resident microbial communities causes a local increase in organic acid concentrations, which in turn cause an increase in native mineral weathering and a concurrent increase in the bulk electrical conductivity of soil. Microbial community structure was analyzed using a 96-well most probable number (MPN) method and rDNA intergenic spacer region analysis (RISA). Microbial community structure was found to change in the presence of hydrocarbon contaminants and these changes were consistently observed in regions of high electrical conductivity. We infer from this relationship that geophysical methods for monitoring the subsurface are a promising new technology for monitoring changes in microbial community structure and simultaneous changes in geochemistry that are associated with hydrocarbon degradation.

  16. MECHANISMS OF MICROBIAL MOVEMENT IN SUBSURFACE MATERIALS

    EPA Science Inventory

    The biological factors important in the penetration of Escherichia coli through anaerobic, nutrient-saturated, Ottawa sand-packed cores were studied under static conditions. In cores saturated with galactose-peptone medium, motile strains of E. coli penetrated four times faster t...

  17. MASS BALANCE ANALYSIS FOR MICROBIAL DECHLORINATION OF TETRACHLOROETHENE

    EPA Science Inventory

    Contamination of subsurface environments by chlorinated aliphatic solvents and petroleum hydrocarbons is a significant public health concern because groundwater is one of the major drinking water resources in the United States. Biotic and abiotic techniques have been widely exam...

  18. Microbial DNA; a possible tracer of groundwater

    NASA Astrophysics Data System (ADS)

    Sugiyama, Ayumi; Segawa, Takuya; Furuta, Tsuyumi; Nagaosa, Kazuyo; Tsujimura, Maki; Kato, Kenji

    2017-04-01

    Though chemical analysis of groundwater shows an averaged value of chemistry of the examined water which was blended by various water with different sources and routes in subsurface environment, microbial DNA analysis may suggest the place where they originated, which may give information of the source and transport routes of the water examined. A huge amount of groundwater is stored in lava layer with maximum depth of 300m in Mt. Fuji (3,776m asl ), the largest volcanic mountain in Japan. Although the density of prokaryotes was low in the examined groundwater of Mt. Fuji, thermophilic prokaryotes as Thermoanaerobacterales, Gaiellales and Thermoplasmatales were significantly detected. They are optimally adapted to the temperature higher than 40oC. This finding suggests that at least some of the source of the examined groundwater was subsurface environment with 600m deep or greater, based on a temperature gradient of 4oC/100m and temperature of spring water ranges from 10 to 15oC in the foot of Mt. Fuji. This depth is far below the lava layer. Thus, the groundwater is not simply originated from the lava layer. In addition to those findings, we observed a very fast response of groundwater just a couple of weeks after the heavy rainfall exceeding 2 or 300 mm/event in Mt. Fuji. The fast response was suggested by a sharp increase in bacterial abundance in spring water located at 700m in height in the west foot of Mt. Fuji, where the average recharge elevation of groundwater was estimated to be 1,500m - 1,700m (Kato et. al. EGU 2016). This increase was mainly provided by soil bacteria as Burkholderiales, which might be detached from soil by strengthened subsurface flow caused by heavy rainfall. This suggests that heavy rainfall promotes shallow subsurface flow contributing to the discharge in addition to the groundwater in the deep aquifer. Microbial DNA, thus could give information about the route of the examined groundwater, which was never elucidated by analysis of chemical materials dissolved in groundwater. Though viral particle was employed as a tracer to chase the movement of groundwater, it doesn't tell the chemical and physical environmental condition where the particle was incorporated into groundwater. Thus, we propose microbial DNA as a new tracer to track the route of groundwater.

  19. Final Report Real Time Monitoring of Rates of Subsurface Microbial Activity Associated with Natural Attenuation and Electron Donor Availability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovley, Derek R.

    The project was successful in developing new sensing technologies for monitoring rates of microbial activity in soils and sediments and also developed a novel proof-of-concept for monitoring the presence of bioavailable concentrations of a diversity of metabolites and toxic components in sedimentary environments. These studies led not only to publications in the peer-reviewed literature, but also two patent applications and a start-up company.

  20. Mineral Ecology: Surface Specific Colonization and Geochemical Drivers of Biofilm Accumulation, Composition, and Phylogeny

    PubMed Central

    Jones, Aaron A.; Bennett, Philip C.

    2017-01-01

    This study tests the hypothesis that surface composition influences microbial community structure and growth of biofilms. We used laboratory biofilm reactors (inoculated with a diverse subsurface community) to explore the phylogenetic and taxonomic variability in microbial communities as a function of surface type (carbonate, silicate, aluminosilicate), media pH, and carbon and phosphate availability. Using high-throughput pyrosequencing, we found that surface type significantly controlled ~70–90% of the variance in phylogenetic diversity regardless of environmental pressures. Consistent patterns also emerged in the taxonomy of specific guilds (sulfur-oxidizers/reducers, Gram-positives, acidophiles) due to variations in media chemistry. Media phosphate availability was a key property associated with variation in phylogeny and taxonomy of whole reactors and was negatively correlated with biofilm accumulation and α-diversity (species richness and evenness). However, mineral-bound phosphate limitations were correlated with less biofilm. Carbon added to the media was correlated with a significant increase in biofilm accumulation and overall α-diversity. Additionally, planktonic communities were phylogenetically distant from those in biofilms. All treatments harbored structurally (taxonomically and phylogenetically) distinct microbial communities. Selective advantages within each treatment encouraged growth and revealed the presence of hundreds of additional operational taxonomix units (OTU), representing distinct consortiums of microorganisms. Ultimately, these results provide evidence that mineral/rock composition significantly influences microbial community structure, diversity, membership, phylogenetic variability, and biofilm growth in subsurface communities. PMID:28400754

  1. Groundwater mixing at fracture intersections triggers massive iron-rich microbial mats

    NASA Astrophysics Data System (ADS)

    Bochet, O.; Le Borgne, T.; Bethencourt, L.; Aquilina, L.; Dufresne, A.; Pédrot, M.; Farasin, J.; Abbott, B. W.; Labasque, T.; Chatton, E.; Lavenant, N.; Petton, C.

    2017-12-01

    While most freshwater on Earth resides and flows in groundwater systems, these deep subsurface environments are often assumed to have little biogeochemical activity compared to surface environments. Here we report a massive microbial mat of iron-oxidizing bacteria, flourishing 60 meters below the surface, far below the mixing zone where most microbial activity is believed to occur. The abundance of microtubular structures in the mat hinted at the prevalence of of Leptothrix ochracea, but metagenomic analysis revealed a diverse consortium of iron-oxidizing bacteria dominated by unknown members of the Gallionellaceae family. This deep biogeochemical hot spot formed at the intersection of bedrock fractures, which maintain redox gradients by mixing water with different residence times and chemical compositions. Using measured fracture properties and hydrological conditions we developed a quantitative model to simulate the reactive zone where such deep hot spots could occur. While seasonal fluctuations are generally thought to decrease with depth, we found that meter-scale changes in water table level moved the depth of the reactive zone hundreds of meters because the microaerophilic threshold for ironoxidizers is highly sensitive to changes in mixing rates at fracture intersections. These results demonstrate that dynamic microbial communities can be sustained deep below the surface in bedrock fractures. Given the ubiquity of fractures at multiple scales in Earth's subsurface, such deep hot spots may strongly influence global biogeochemical cycles.

  2. Novel microbial assemblages inhabiting crustal fluids within mid-ocean ridge flank subsurface basalt

    PubMed Central

    Jungbluth, Sean P; Bowers, Robert M; Lin, Huei-Ting; Cowen, James P; Rappé, Michael S

    2016-01-01

    Although little is known regarding microbial life within our planet's rock-hosted deep subseafloor biosphere, boreholes drilled through deep ocean sediment and into the underlying basaltic crust provide invaluable windows of access that have been used previously to document the presence of microorganisms within fluids percolating through the deep ocean crust. In this study, the analysis of 1.7 million small subunit ribosomal RNA genes amplified and sequenced from marine sediment, bottom seawater and basalt-hosted deep subseafloor fluids that span multiple years and locations on the Juan de Fuca Ridge flank was used to quantitatively delineate a subseafloor microbiome comprised of distinct bacteria and archaea. Hot, anoxic crustal fluids tapped by newly installed seafloor sampling observatories at boreholes U1362A and U1362B contained abundant bacterial lineages of phylogenetically unique Nitrospirae, Aminicenantes, Calescamantes and Chloroflexi. Although less abundant, the domain Archaea was dominated by unique, uncultivated lineages of marine benthic group E, the Terrestrial Hot Spring Crenarchaeotic Group, the Bathyarchaeota and relatives of cultivated, sulfate-reducing Archaeoglobi. Consistent with recent geochemical measurements and bioenergetic predictions, the potential importance of methane cycling and sulfate reduction were imprinted within the basalt-hosted deep subseafloor crustal fluid microbial community. This unique window of access to the deep ocean subsurface basement reveals a microbial landscape that exhibits previously undetected spatial heterogeneity. PMID:26872042

  3. Microbiology of Ultrabasic Groundwaters of the Coast Range Ophiolite, California

    NASA Astrophysics Data System (ADS)

    Schrenk, M. O.; Brazelton, W. J.; Twing, K. I.; Kubo, M.; Cardace, D.; Hoehler, T. M.; McCollom, T. M.

    2013-12-01

    Upon exposure to water, ultramafic rocks characteristic of the Earth's mantle undergo a process known as serpentinization. These water-rock reactions lead to highly reducing conditions and some of the highest pH values reported in nature. In contrast to alkaline soda lakes, actively serpentinizing environments exposed on land are commonly associated with low salinity freshwaters, imparting unique challenges upon their resident microbial communities. These environments are especially prevalent along continental margins, and cover extensive portions of the west coast of North America. Most studies of serpentinizing environments have focused upon springs that emanate from fractures in the subsurface. Here, we present microbiological data from a series of groundwater wells associated with active serpentinization in the California Coast Range, an ophiolite complex near Lower Lake, California. Waters from ultrabasic wells had lower microbial cell concentrations and diversity than were found in moderate pH wells in the same area. Bacteria consistently made up a higher proportion of the microbial communities compared to Archaea as determined by qPCR. High pH wells were dominated by taxa within the Betaproteobacteria and Clostridia, whereas moderate pH wells predominantly contained common soil taxa related to Gammaproteobacteria and Bacilli. Multivariate statistical analyses incorporating key environmental parameters supported these observations and also highlighted correlations between the high-pH taxa and the abundance of hydrogen and methane gas. Similarly, colony forming units of alkaliphilic microorganisms were consistently 1-2 orders of magnitude higher in the ultrabasic wells and were taxonomically distinct from the moderate pH groundwaters. Together, these results show that distinct populations inhabit subsurface environments associated with active serpentinization, consistent with previous observations, and suggest that Betaproteobacteria and Clostridia probably play significant roles in the microbiology of these ecosystems. The low diversity microbial communities of serpentinizing subsurface habitats are likely sustained by the high hydrogen and methane fluxes that emanate from such systems and further investigations will directly test their roles in mediating biogeochemical cycles in these environments.

  4. Influence of chlorothalonil on the removal of organic matter in horizontal subsurface flow constructed wetlands.

    PubMed

    Casas-Zapata, Juan C; Ríos, Karina; Florville-Alejandre, Tomás R; Morató, Jordi; Peñuela, Gustavo

    2013-01-01

    This study investigates the effects of chlorothalonil (CLT) on chemical oxygen demand (COD) and dissolved organic carbon (DOC) in pilot-scale horizontal subsurface flow constructed wetlands (HSSFCW) planted with Phragmites australis. Physicochemical parameters of influent and effluent water samples, microbial population counting methods and statistical analysis were used to evaluate the influence of CLT on organic matter removal efficiency. The experiments were conducted on four planted replicate wetlands (HSSFCW-Pa) and one unplanted control wetland (HSSFCW-NPa). The wetlands exhibited high average organic matter removal efficiencies (HSSFCW-Pa: 80.6% DOC, 98.0% COD; HSSFCW-NPa: 93.2% DOC, 98.4% COD). The addition of CLT did not influence organic removal parameters. In all cases CLT concentrations in the effluent occurred in concentrations lower than the detection limit of the analytical method. Microbial population counts from HSSFCW-Pa showed significant correlations among different microbial groups and with different physicochemical variables. The apparent independence of organic matter removal and CLT inputs, along with the CLT depletion observed in effluent samples demonstrated that HSSFCW are a viable technology for the treatment of agricultural effluents contaminated with organo-chloride pesticides like CLT.

  5. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

  6. Geochemical bioenergetics during low-temperature serpentinization: An example from the Samail ophiolite, Sultanate of Oman

    NASA Astrophysics Data System (ADS)

    Canovas, Peter A.; Hoehler, Tori; Shock, Everett L.

    2017-07-01

    Various classes of microbial and biomolecular evidence from global studies in marine and continental settings are used to identify a set of reactions that appear to support microbial metabolism during serpentinization of ultramafic rocks. Geochemical data from serpentinizing ecosystems in the Samail ophiolite of Oman are used to evaluate the extent of disequilibria that can support this set of microbial metabolisms and to provide a ranking of potential metabolic energy sources in hyperalkaline fluids that are direct products of serpentinization. Results are used to construct hypotheses for how microbial metabolism may be supported in the subsurface for two cases: ecosystems hosted in rocks that have already undergone significant serpentinization and those hosted by deeper, active serpentinization processes.

  7. Microbial Life Under Extreme Energy Limitation

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Jorgensen, Bo Barker

    2013-01-01

    A great number of the bacteria and archaea on Earth are found in subsurface environments in a physiological state that is poorly represented or explained by laboratory cultures. Microbial cells in these very stable and oligotrophic settings catabolize 104- to 106-fold more slowly than model organisms in nutrient-rich cultures, turn over biomass on timescales of centuries to millennia rather than hours to days, and subsist with energy fluxes that are 1,000-fold lower than the typical culture-based estimates of maintenance requirements. To reconcile this disparate state of being with our knowledge of microbial physiology will require a revised understanding of microbial energy requirements, including identifying the factors that comprise true basal maintenance and the adaptations that might serve to minimize these factors.

  8. Bioremediation of Metals and Radionuclides: What It Is and How It Works (2nd Edition)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmisano, Anna; Hazen, Terry

    2003-09-30

    This primer is intended for people interested in environmental problems of the U.S. Department of Energy (DOE) and in their potential solutions. It will specifically look at some of the more hazardous metal and radionuclide contaminants found on DOE lands and at the possibilities for using bioremediation technology to clean up these contaminants. The second edition of the primer incorporates recent findings by researchers in DOE's Natural and Accelerated Bioremediation Research (NABIR) Program. Bioremediation is a technology that can be used to reduce, eliminate, or contain hazardous waste. Over the past two decades, it has become widely accepted that microorganisms,more » and to a lesser extent plants, can transform and degrade many types of contaminants. These transformation and degradation processes vary, depending on the physical-chemical environment, microbial communities, and nature of the contaminant. This technology includes intrinsic bioremediation, which relies on naturally occurring processes, and accelerated bioremediation, which enhances microbial degradation or transformation through the addition of nutrients (biostimulation) or inoculation with microorganisms (bioaugmentation). Over the past few years, interest in bioremediation has increased. It has become clear that many organic contaminants such as hydrocarbon fuels can be degraded to relatively harmless products such as CO{sub 2} (the end result of the degradation process). Waste water managers and scientists have also found that microorganisms can interact with metals and convert them from one chemical form to another. Laboratory tests and ex situ bioremediation applications have shown that microorganisms can change the valence, or oxidation state, of some heavy metals (e.g., chromium and mercury) and radionuclides (e.g., uranium) by using them as electron acceptors. In some cases, the solubility of the altered species decreases and the contaminant is immobilized in situ, i.e., precipitated into an insoluble salt in the sediment. In other cases, the opposite occurs--the solubility of the altered species increases, increasing the mobility of the contaminant and allowing it to be more easily flushed from the environment. Both of these kinds of transformations present opportunities for bioremediation of metals and radionuclides--either to lock them in place, or to accelerate their removal. DOE's goal is to reduce the risk and related exposure to ground water, sediment, and soil contamination at Department of Energy facilities. Subsurface bioremediation of metals and radionuclides at the site of contamination (in situ bioremediation) is not yet in widespread use. However, successful in situ applications of bioremediation to petroleum products and chlorinated solvents provide experience from which scientists can draw. Taken together, the accomplishments in these areas have led scientists and engineers to be optimistic about applying this technology to the mixtures of metals and radionuclides that are found at some of the most contaminated DOE sites. This primer examines some of the basic microbial and chemical processes that are a part of bioremediation, specifically the bioremediation of metals and radionuclides. The primer is divided into six sections, with the information in each building on that of the previous. The sections include features that highlight topics of interest and provide background information on specific biological and chemical processes and reactions. The first section briefly examines the scope of the contamination problem at DOE facilities. The second section gives a summary of some of the most commonly used bioremediation technologies, including successful in situ and ex situ techniques. The third discusses chemical and physical properties of metals and radionuclides found in contaminant mixtures at DOE sites, including solubility and the most common oxidation states in which these materials are found. The fourth section is an overview of the basic microbial processes that occur in bioremediation. The fifth section looks at specific in situ bioremediation processes that can be used on these contaminant mixtures. The primer concludes with examples of field research on bioremediation of metals and radionuclides.« less

  9. Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine.

    PubMed

    Epelde, Lur; Lanzén, Anders; Blanco, Fernando; Urich, Tim; Garbisu, Carlos

    2015-01-01

    Toxicity of metals released from mine tailings may cause severe damage to ecosystems. A diversity of microorganisms, however, have successfully adapted to such sites. In this study, our objective was to advance the understanding of the indigenous microbial communities of mining-impacted soils. To this end, a metatranscriptomic approach was used to study a heavily metal-contaminated site along a metal concentration gradient (up to 3220 000 and 97 000 mg kg(-1) of Cd, Pb and Zn, respectively) resulting from previous mining. Metal concentration, soil pH and amount of clay were the most important factors determining the structure of soil microbial communities. Interestingly, evenness of the microbial communities, but not its richness, increased with contamination level. Taxa with high metabolic plasticity like Ktedonobacteria and Chloroflexi were found with higher relative abundance in more contaminated samples. However, several taxa belonging to the phyla Actinobacteria and Acidobacteria followed opposite trends in relation to metal pollution. Besides, functional transcripts related to transposition or transfer of genetic material and membrane transport, potentially involved in metal resistance mechanisms, had a higher expression in more contaminated samples. Our results provide an insight into microbial communities in long-term metal-contaminated environments and how they contrast to nearby sites with lower contamination. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Detection of microbes in the subsurface

    NASA Technical Reports Server (NTRS)

    White, David C.; Tunlid, Anders

    1989-01-01

    The search for evidence of microbial life in the deep subsurface of Earth has implications for the Mars Rover Sampling Return Missions program. If suitably protected environments can be found on Mars then the instrumentation to detect biomarkers could be used to examine the molecular details. Finding a lipid in Martian soil would represent possibly the simplest test for extant or extinct life. A device that could do a rapid extraction possibly using the supercritical fluid technology under development now with a detection of the carbon content would clearly indicate a sample to be returned.

  11. Effects of Praxelis clematidea invasion on soil nitrogen fractions and transformation rates in a tropical savanna.

    PubMed

    Wei, Hui; Xu, Jialin; Quan, Guoming; Zhang, Jiaen; Qin, Zhong

    2017-02-01

    Plant invasion has been reported to affect a mass of soil ecological processes and functions, although invasion effects are often context-, species- and ecosystem- specific. This study was conducted to explore potential impacts of Praxelis clematidea invasion on contents of total and available soil nitrogen (N) and microbial N transformations in a tropical savanna. Soil samples were collected from the surface and sub-surface layers in plots with non-, slight, or severe P. clematidea invasion in Hainan Province of southern China, which remains less studied, and analyzed for contents of the total and available N fractions and microbial N transformations. Results showed that total N content significantly increased in the surface soil but trended to decrease in the sub-surface soil in the invaded plots relative to the non-invaded control. Slight invasion significantly increased soil alkali-hydrolysable N content in the two soil layers. Soil net N mineralization rate was not significantly changed in both the soil layers, although soil microbial biomass N was significantly higher in plots with severe invasion than the control. There was no significant difference in content of soil N fractions between plots with slight and severe invasion. Our results suggest that invasion of P. clematidea promotes soil N accumulation in the surface soil layer, which is associated with increased microbial biomass N. However, the invasion-induced ecological impacts did not increase with further invasion. Significantly higher microbial biomass N was maintained in plots with severe invasion, implying that severe P. clematidea invasion may accelerate nutrient cycling in invaded ecosystems.

  12. Evaluation of the factors governing metal biosorption and metal toxicity in acidic soil isolates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, A.A.

    1992-06-09

    This research project was designed to determine the feasibility of microbial biosorption processes for removing metal ions from aqueous systems. A culture of acidic soil actinomycetes, grown in an aerobic environment in a completely mixed, semibatch culture reactor, was used for the study. The experiments were based on removal of copper and lead from test solutions. The anionic systems tested were nitrate, sulfate, and chloride. To determine the factors influencing biosorption and to characterize metal uptake by cellular and extracellular components of the microbial system, a dialysis testing procedure was developed. The effectiveness of biosorption was influenced by pH, initialmore » concentration of metals, type of anionic system, and organic content of the system. respirometric runs were carried out to identify potential inhibitory effects of metal accumulation on microbial activities. In general, metal accumulation resulted in a decrease in the microbial oxygen uptake rate. Also, a lag phase was observed before the onset of the respiratory activity particularly at concentrations of copper and lead greater than 100 ppM.« less

  13. Biogeochemical Cycle of Methanol in Anoxic Deep-Sea Sediments

    PubMed Central

    Yanagawa, Katsunori; Tani, Atsushi; Yamamoto, Naoya; Hachikubo, Akihiro; Kano, Akihiro; Matsumoto, Ryo; Suzuki, Yohey

    2016-01-01

    The biological flux and lifetime of methanol in anoxic marine sediments are largely unknown. We herein reported, for the first time, quantitative methanol removal rates in subsurface sediments. Anaerobic incubation experiments with radiotracers showed high rates of microbial methanol consumption. Notably, methanol oxidation to CO2 surpassed methanol assimilation and methanogenesis from CO2/H2 and methanol. Nevertheless, a significant decrease in methanol was not observed after the incubation, and this was attributed to the microbial production of methanol in parallel with its consumption. These results suggest that microbial reactions play an important role in the sources and sinks of methanol in subseafloor sediments. PMID:27301420

  14. Photothermal Imaging of Defects in Metals and Ceramics.

    DTIC Science & Technology

    1986-10-01

    24] G. Busse and A. Rosencwaig, " Subsurface imaging with photoacoustics," Appl. Phys. Lett., Vol. 36, p. 815, 1980. [25] G. S. Cargill, "Electron...and A. Rosencwaig, Subsurface imaging with photoacoustics, Appl. Phys. Lett. 36:815 (1980). 12. G. S. Cargill, Electron-acoustic microscopy, in...1979. different orientations." Harwell AERE Report. RI 1686. Apr. 1985. [35] G. Busse and A. Rosencwaig, " Subsurface imaging with photo- [641 R. J

  15. Microbial fuel cells: From fundamentals to applications. A review.

    PubMed

    Santoro, Carlo; Arbizzani, Catia; Erable, Benjamin; Ieropoulos, Ioannis

    2017-07-15

    In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.

  16. Microbial fuel cells: From fundamentals to applications. A review

    NASA Astrophysics Data System (ADS)

    Santoro, Carlo; Arbizzani, Catia; Erable, Benjamin; Ieropoulos, Ioannis

    2017-07-01

    In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.

  17. Ocean Drilling Program Contributions to the Understanding of the Deep Subsurface Biosphere

    NASA Astrophysics Data System (ADS)

    Fisk, M. R.

    2003-12-01

    Tantalizing evidence for microbes in oceanic basalts has been reported for a few decades, but it was from rocks cored on Ocean Drilling Program (ODP) Leg 148 in 1993 that the first clear-cut evidence of microbial invasion of ocean basalts was obtained. (Work on ODP legs, starting with Leg 112 in 1986, had already revealed the presence of significant microbial biomass in sediments.) In 1997 ODP created the Deep Biosphere Program Planning Group to promote the investigation of the microbiology of the ocean crust. In 1999 ODP built a microbiology lab on the JOIDES Resolution, and used the lab that year (Legs 185 and 187) to test the amount of microbial contamination introduced into rocks during drilling and to establish cultures from cored basalts. These experiments have been repeated on several legs since then. The development of CORKs has permitted long-term sampling of subseafloor fluids, and microorganisms have been recovered from CORKed holes. Thus, ODP made it possible for the scientific community to address major questions about the biology of the igneous crust, such as, (1) What microbes are present? (2) How abundant are they? (3) How are they distributed? DNA from basalts and subseafloor fluids reveal what types of organisms are present. Cell abundance and biomass have been estimated based on cell counts and on organic content of basalts. Surveys of basalts in DSDP/ODP repositories indicate that microorganisms are ubiquitous in the igneous crust. Microorganisms are found in rocks that are close to 100° C. They are found as deep as 1500 m below the sea floor, and in rocks as young as a few years and as old as 170 million years. Because of the vast size of the habitat, microorganism, even if present in small numbers, could be a significant fraction of the Earth's biomass. In a short time ODP contributed to advances in our understanding of the oceanic subsurface biosphere. Answers to other significant questions such as: (1) How do the microorganisms live?, (2) What impact do subsurface microorganisms have on the surface biosphere? (3) And, what roles do the subsurface biosphere play in element cycling? will be answered by future drilling. The International Ocean Drilling Program (IODP) is in the enviable position of providing support to address these key questions about the Earth's subsurface biosphere.

  18. Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles.

    PubMed

    Sathiyanarayanan, Ganesan; Dineshkumar, Krishnamoorthy; Yang, Yung-Hun

    2017-11-01

    Exopolysaccharides (EPSs) are structurally and functionally valuable biopolymer secreted by different prokaryotic and eukaryotic microorganisms in response to biotic/abiotic stresses and to survive in extreme environments. Microbial EPSs are fascinating in various industrial sectors due to their excellent material properties and less toxic, highly biodegradable, and biocompatible nature. Recently, microbial EPSs have been used as a potential template for the rapid synthesis of metallic nanoparticles and EPS-mediated metal reduction processes are emerging as simple, harmless, and environmentally benign green chemistry approaches. EPS-mediated synthesis of metal nanoparticles is a distinctive metabolism-independent bio-reduction process due to the formation of interfaces between metal cations and the polyanionic functional groups (i.e. hydroxyl, carboxyl and amino groups) of the EPS. In addition, the range of physicochemical features which facilitates the EPS as an efficient stabilizing or capping agents to protect the primary structure of the metal nanoparticles with an encapsulation film in order to separate the nanoparticle core from the mixture of composites. The EPS-capping also enables the further modification of metal nanoparticles with expected material properties for multifarious applications. The present review discusses the microbial EPS-mediated green synthesis/stabilization of metal nanoparticles, possible mechanisms involved in EPS-mediated metal reduction, and application prospects of EPS-based metal nanoparticles.

  19. Searching for Life Underground: An Analysis of Remote Sensing Observations of a Drill Core from Rio Tinto, Spain for Mineralogical Indications of Biological Activity

    NASA Technical Reports Server (NTRS)

    Battler, M.; Stoker, C.

    2005-01-01

    Water is unstable on the surface of Mars, and therefore the Martian surface is not likely to support life. It is possible, however, that liquid water exists beneath the surface of Mars, and thus life might also be found in the subsurface. Subsurface life would most likely be microbial, anaerobic, and chemoautotrophic; these types of biospheres on Earth are rare, and not well understood. Finding water and life are high priorities for Mars exploration, and therefore it is important that we learn to explore the subsurface robotically, by drilling. The Mars Analog Rio Tinto Experiment (MARTE), has searched successfully for a subsurface biosphere at Rio Tinto, Spain [1,2,3,4]. The Rio Tinto study site was selected to search for a subsurface biosphere because the extremely low pH and high concentrations of elements such as iron and copper in the Tinto River suggest the presence of a chemoautotrophic biosphere in the subsurface beneath the river. The Rio Tinto has been recognized as an important mineralogical analog to the Sinus Meridiani site on Mars [5].

  20. Behavior of Metals in Soils

    EPA Pesticide Factsheets

    One of the major issues of concern to the Forum is the mobility of metals in soils as related to subsurface remediation. For the purposes of this Issue Paper, those metals most commonly found at Superfund sites will be discussed in terms of the processes..

  1. Microbial communities in the deep subsurface

    NASA Astrophysics Data System (ADS)

    Krumholz, Lee R.

    The diversity of microbial populations and microbial communities within the earth's subsurface is summarized in this review. Scientists are currently exploring the subsurface and addressing questions of microbial diversity, the interactions among microorganisms, and mechanisms for maintenance of subsurface microbial communities. Heterotrophic anaerobic microbial communities exist in relatively permeable sandstone or sandy sediments, located adjacent to organic-rich deposits. These microorganisms appear to be maintained by the consumption of organic compounds derived from adjacent deposits. Sources of organic material serving as electron donors include lignite-rich Eocene sediments beneath the Texas coastal plain, organic-rich Cretaceous shales from the southwestern US, as well as Cretaceous clays containing organic materials and fermentative bacteria from the Atlantic Coastal Plain. Additionally, highly diverse microbial communities occur in regions where a source of organic matter is not apparent but where igneous rock is present. Examples include the basalt-rich subsurface of the Columbia River valley and the granitic subsurface regions of Sweden and Canada. These subsurface microbial communities appear to be maintained by the action of lithotrophic bacteria growing on H2 that is chemically generated within the subsurface. Other deep-dwelling microbial communities exist within the deep sediments of oceans. These systems often rely on anaerobic metabolism and sulfate reduction. Microbial colonization extends to the depths below which high temperatures limit the ability of microbes to survive. Energy sources for the organisms living in the oceanic subsurface may originate as oceanic sedimentary deposits. In this review, each of these microbial communities is discussed in detail with specific reference to their energy sources, their observed growth patterns, and their diverse composition. This information is critical to develop further understanding of subsurface geochemical processes and to develop new approaches to subsurface remediation. Résumé La diversité des populations et des communautés microbiennes dans le sol et le sous-sol est présentée dans cet article. Les chercheurs s'interrogent fréquemment sur la diversité microbienne du sous-sol, sur les interactions entre organismes et sur les mécanismes qui permettent le maintien des communautés microbiennes souterraines. Il existe des communautés microbiennes anérobies hétérotrophes dans des grès ou dans des sédiments sableux relativement perméables, à proximité de dépôts riches en matières organiques. Ces micro-organismes semblent se maintenir grâce à la consommation de composés organiques provenant des dépôts organiques voisins. Les sources de matériel organique jouant le rôle de donneur d'électrons sont constituées par des sédiments éocènes riches en lignite situés sous la plaine littorale du Texas, les schistes riches en matières organiques du Crétacé du sud-ouest des États-Unis, ainsi que les argiles contenant des matériaux organiques et des bactéries de fermentation de la plaine littorale atlantique. En outre, il existe des communautés fortement diversifiées dans des régions où aucune source de matière organique n'existe, mais où sont présentes des roches ignées. Le sous-sol riche en basalte de la vallée de la Columbia au Canada et les régions granitiques de Suède en sont des exemples. Ces communautés microbiennes souterraines semblent se maintenir par l'action de bactéries lithotrophes se développant grâce à l'hydrogène qui est produit par réactions chimiques dans le sous-sol. Il existe d'autres communautés microbiennes de profondeur dans les sédiments profonds des océans. Ces systèmes sont souvent associés à un métabolisme anérobie et à une réduction des sulfates. La colonisation microbienne s'étend jusqu'à des profondeurs où les températures élevées limitent leur capacité de survie. Les sources d'énergie pour ces organismes vivant dans les fonds des océans peuvent être les dépôts sédimentaires océaniques. Dans cette revue, chacune des communautés microbiennes est discutée en détail en se référant spécifiquement à leurs sources d'énergie, au schéma observé de leur développement et à leur composition diversifiée. Cette information est donnée de façon critique dans le but d'améliorer la compréhension des processus géochimiques intervenant dans le sous-sol et de développer de nouvelles approches pour la dépollution souterraine. Resumen En este artículo se resume la diversidad de las poblaciones y comunidades microbianas en el subsuelo. A partir de exploraciones realizadas en el subsuelo, los científicos se están cuestionando en la actualidad aspectos relativos a la diversidad microbiana, las interacciones entre los distintos microorganismos y los mecanismos para el mantenimiento de las comunidades de microbios. Se ha comprobado la presencia de comunidades microbianas anaerobias y heterótrofas en areniscas relativamente permeables y en sedimentos arenosos ubicados cerca de depósitos ricos en materia orgánica, de la cual se alimentan. Algunas fuentes de material orgánico, que actúan como donantes de electrones, son: sedimentos del Eoceno ricos en lignito, bajo la planicie costera de Texas; pizarras del Cretácico ricas en materia orgánica, al sudoeste del país y arcillas cretácicas con materia orgánica y bacterias fermentativas, en la llanura Atlántica. También existen comunidades microbianas de gran diversidad en rocas ígneas, aunque la fuente de materia orgánica no es tan evidente. Algunos ejemplos son la subsuperficie del valle del Río Columbia, rico en basaltos, y las regiones graníticas de Suecia y Canadá. Estas comunidades microbianas subsuperficiales se mantienen por la acción de bacterias litotrópicas, que crecen en ambiente de H2, generado en la subsuperficie. También existen comunidades microbianas a gran profundidad, como por ejemplo en los sedimentos oceánicos. Estos sistemas subsisten con un metabolismo anaerobio en un ambiente sulfato-reductor. La colonización microbiana se extiende hasta profundidades tales que las altas temperaturas limitan su supervivencia. Las fuentes de energía para estos organismos pueden ser los depósitos sedimentarios oceánicos. En este artículo se discute cada una de estas comunidades en detalle, en particular sus fuentes de energía, su esquema de crecimiento y la diversidad de su composición. Esta información es de gran interés para permitir un mayor entendimiento de los procesos geoquímicos en profundidad y para desarrollar nuevos métodos de rehabilitación.

  2. SEQUESTRATION OF SUBSURFACE ELEMENTAL MERCURY (HG0)

    EPA Science Inventory

    Elemental mercury (Hg0) is a metal with a number of atypical properties, which has resulted in its use in myriad anthropogenic processes. However, these same properties have also led to severe local subsurface contamination at many places where it has been used. As...

  3. Probing Metabolic Activity of Deep Subseafloor Life with NanoSIMS

    NASA Astrophysics Data System (ADS)

    Morono, Y.; Terada, T.; Itoh, M.; Inagaki, F.

    2014-12-01

    There are very few natural environments where life is absent in the Earth's surface biosphere. However, uninhabitable region is expected to be exist in the deep subsurface biosphere, of which extent and constraining factor(s) have still remained largly unknown. Scientific ocean drilling have revealed that microbial communities in sediments are generally phylogenetically distinct from known spieces isolated from the Earth's surface biosphere, and hence metabolic functions of the deep subseafloor life remain unknown. In addition, activity of subseafloor microbial cells are thought to be extraordinally slow, as indicated by limited supply of neutrient and energy substrates. To understand the limits of the Earth's subseafloor biosphere and metabolic functions of microbial populations, detection and quantification of the deeply buried microbial cells in geological habitats are fundamentary important. Using newly developed cell separation techniques as well as an discriminative cell detection system, the current quantification limit of sedimentary microbial cells approaches to 102 cells/cm3. These techniques allow not only to assess very small microbial population close to the subsurface biotic fringe, but also to separate and sort the target cells using flow cytometric cell sorter. Once the deep subseafloor microbial cells are detached from mineral grains and sorted, it opens new windows to subsequent molecular ecological and element/isotopic analyses. With a combined use of nano-scale secondary ion masspectrometry (NanoSIMS) and stable isotope-probing techniques, it is possible to detect and measure activity of substrate incorporation into biomass, even for extremely slow metabolic processes such as uncharacteriszed deep subseafloor life. For example, it was evidenced by NanoSIMS that at least over 80% of microbial cells at ~200 meters-deep, 460,000-year-old sedimentary habitat are indeed live, which substrate incooporation was found to be low (10-15 gC/cell/day) even under the lab incubation condition. Also microbial activity in ultraoligotrophic biosphere samples such as the South Pacific Gyre (i.e., IODP Expeditions 329) will be shown. Our results demonstrates metabolic potential of microbes that have been survived for geological timescale in extremely starved condition.

  4. Bacterial community structure and dissolved organic matter in repeatedly flooded subsurface karst water pools.

    PubMed

    Shabarova, Tanja; Villiger, Jörg; Morenkov, Oleg; Niggemann, Jutta; Dittmar, Thorsten; Pernthaler, Jakob

    2014-07-01

    Bacterial diversity, community assembly, and the composition of the dissolved organic matter (DOM) were studied in three temporary subsurface karst pools with different flooding regimes. We tested the hypothesis that microorganisms introduced to the pools during floods faced environmental filtering toward a 'typical' karst water community, and we investigated whether DOM composition was related to floodings and the residence time of water in stagnant pools. As predicted, longer water residence consistently led to a decline of bacterial diversity. The microbial assemblages in the influx water harbored more 'exotic' lineages with large distances to known genotypes, yet these initial communities already appeared to be shaped by selective processes. β-Proteobacterial operational taxonomic units (OTUs) closely related to microbes from subsurface or surface aquatic environments were mainly responsible for the clustering of samples according to water residence time in the pools. By contrast, several Cytophagaceae and Flavobacteriaceae OTUs were related to different floodings, which were also the main determinants of DOM composition. A subset of compounds distinguishable by molecular mass and O/C content were characteristic for individual floods. Moreover, there was a transformation of DOM in stagnant pools toward smaller and more aromatic compounds, potentially also reflecting microbial utilization. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldron, P.J.; Wu, L.; Van Nostrand, J.D.

    2009-06-15

    To understand how contaminants affect microbial community diversity, heterogeneity, and functional structure, six groundwater monitoring wells from the Field Research Center of the U.S. Department of Energy Environmental Remediation Science Program (ERSP; Oak Ridge, TN), with a wide range of pH, nitrate, and heavy metal contamination were investigated. DNA from the groundwater community was analyzed with a functional gene array containing 2006 probes to detect genes involved in metal resistance, sulfate reduction, organic contaminant degradation, and carbon and nitrogen cycling. Microbial diversity decreased in relation to the contamination levels of the wells. Highly contaminated wells had lower gene diversity butmore » greater signal intensity than the pristine well. The microbial composition was heterogeneous, with 17-70% overlap between different wells. Metal-resistant and metal-reducing microorganisms were detected in both contaminated and pristine wells, suggesting the potential for successful bioremediation of metal-contaminated groundwaters. In addition, results of Mantel tests and canonical correspondence analysis indicate that nitrate, sulfate, pH, uranium, and technetium have a significant (p < 0.05) effect on microbial community structure. This study provides an overall picture of microbial community structure in contaminated environments with functional gene arrays by showing that diversity and heterogeneity can vary greatly in relation to contamination.« less

  6. Pilot scale application of nanosized iron oxides as electron acceptors for bioremediation

    NASA Astrophysics Data System (ADS)

    Bosch, Julian; Fritzsche, Andreas; Frank-Fahle, Beatrice; Lüders, Tilmann; Höss, Sebastian; Eisenmann, Heinrich; Held, Thomas; Totsche, Kai U.; Meckenstock, Rainer U.

    2014-05-01

    Microbial reduction of ferric iron is a major biogeochemical process in groundwater aquifer ecosystems and often associated with the degradation of organic contaminants, as bacteria couple iron reduction to the oxidation reduced carbon like e.g. BTEX. Yet in general the low bioavailability of natural iron oxides limits microbial reduction rates. However, nanosized iron oxides have an unequally enhanced bioavailability and reactivity compared to their respective bulk, macro-sized, and more crystalline materials. At the same time, nanosized iron oxides can be produced in stable colloidal suspensions, permitting efficient injections into contaminated aquifers. We examined the reactivity of nanosized synthetic colloidal iron oxides in microbial iron reduction. Application of colloidal nanoparticles led to a strong and sustainable enhancement of microbial reaction rates in batch experiments and sediment columns. Toluene oxidation was increased five-fold as compared to bulk, non-colloidal ferrihydrite as electron acceptor. Furthermore, we developed a unique approach for custom-tailoring the subsurface mobility of these particles after being injected into a contaminant plume. In a field pilot application, we injected 18 m3 of an iron oxide nanoparticle solution into a BTEX contaminated aquifer with a maximum excess pressure as low as 0.2 bar. The applied suspension showed a superior subsurface mobility, creating a reactive zone of 4 m height (corresponding to the height of the confined aquifer) and 6 m in diameter. Subsequent monitoring of BTEX, microbial BTEX degradation metabolites, ferrous iron generation, stable isotopes fractionation, microbial populations, and methanogenesis demonstrated the strong impact of our approach. Mathematic processed X-ray diffractograms and FTIR spectra provided a semi-quantitatively estimate of the long-term fate of the iron oxide colloids in the aquifer. Potential environmental risks of the injection itself were monitored with ecotoxicological investigations. Our data suggest that the injection of ferric iron nanoparticles as electron acceptors into contaminated aquifers for the enhancement of microbial contaminant degradation might develop into a novel bioremediation strategy.

  7. Main factors controlling microbial community structure, growth and activity after reclamation of a tailing pond with aided phytostabilization

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Acosta, José A.; Martínez-Martínez, Silvia; Faz, Ángel; Bååth, Erland

    2015-04-01

    Reclamation on bare tailing ponds has the potential to represent soil genesis in Technosols favoring the understanding of the changes of microbial communities and function. In this study we used phytostabilization aided with calcium carbonate and pig slurry/manure to reclaim an acidic bare tailing pond with the aim of investigating the effect of amending and different species on microbial community structure and function. We sampled after two years of amending and planting: unamended tailing soil (UTS), non-rhizospheric amended tailing soil (ATS), rhizospheric soil from four species, and non-rhizospheric native forest soil (NS), which acted as reference. The application of amendments increased pH up to neutrality, organic carbon (Corg), C/N and aggregate stability, while decreased salinity and heavy metals availability. No effect of rhizosphere was observed on physicochemical properties, metals immobilization and microbial community structure and function. To account for confounding effects due to soil organic matter, microbial properties were expressed per Corg. The high increments in pH and Corg have been the main factors driving changes in microbial community structure and function. Bacterial biomass was higher in UTS, without significant differences among the rest of soils. Fungal biomass followed the trend UTS < ATS = rhizospheric soils < NS. Bacterial growth increased and fungal growth decreased with increasing pH, despite the high availability of metals at low pH. Enzyme activities were lower in UTS, being β-glucosidase and β-glucosaminidase activities highly correlated with bacterial growth. Microbial activities were not correlated with the exchangeable fraction of heavy metals, indicating that microbial function is not strongly affected by these metals, likely due to the efficiency of the reclamation procedure to reduce metals toxicity. Changes in microbial community composition were largely explained by changes in pH, heavy metals availability and Corg, with increments in fungal and actinobacterial proportions with soil amending. Acknowledgements R. Zornoza acknowledges the financial support to Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia (Spain).

  8. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents

    PubMed Central

    Ayangbenro, Ayansina Segun; Babalola, Olubukola Oluranti

    2017-01-01

    Persistent heavy metal pollution poses a major threat to all life forms in the environment due to its toxic effects. These metals are very reactive at low concentrations and can accumulate in the food web, causing severe public health concerns. Remediation using conventional physical and chemical methods is uneconomical and generates large volumes of chemical waste. Bioremediation of hazardous metals has received considerable and growing interest over the years. The use of microbial biosorbents is eco-friendly and cost effective; hence, it is an efficient alternative for the remediation of heavy metal contaminated environments. Microbes have various mechanisms of metal sequestration that hold greater metal biosorption capacities. The goal of microbial biosorption is to remove and/or recover metals and metalloids from solutions, using living or dead biomass and their components. This review discusses the sources of toxic heavy metals and describes the groups of microorganisms with biosorbent potential for heavy metal removal. PMID:28106848

  9. Effects of Potassium Permanganate Oxidation on Subsurface Microbial Activity

    NASA Technical Reports Server (NTRS)

    Rowland, Martin A.; Brubaker, Gaylen R.; Westray, Mark; Morris, Damon; Kohler, Keisha; McCool, Alex (Technical Monitor)

    2001-01-01

    In situ chemical oxidation has the potential for degrading large quantities of organic contaminants and can be more effective and timely than traditional ex situ treatment methods. However, there is a need to better characterize the potential effects of this treatment on natural processes. This study focuses on potential inhibition to anaerobic dechlorination of trichloroethene (TCE) in soils from a large manufacturing facility as a result of in situ oxidation using potassium permanganate (KMn04)Previous microcosm studies established that natural attenuation occurs on-site and that it is enhanced by the addition of ethanol to the system. A potential remediation scheme for the site involves the use of potassium permanganate to reduce levels of TCE in heavily contaminated areas, then to inject ethanol into the system to "neutralize" excess oxidant and enhance microbial degradation. However, it is currently unknown whether the exposure of indigenous microbial populations to potassium permanganate may adversely affect biological reductive dechlorination by these microorganisms. Consequently, additional microcosm studies were conducted to evaluate this remediation scheme and assess the effect of potassium permanganate addition on biological reductive dechlorination of TCE. Samples of subsurface soil and groundwater were collected from a TCE-impacted area of the site. A portion of the soil was pretreated with nutrients and ethanol to stimulate microbial activity, while the remainder of the soil was left unamended. Soil/groundwater microcosms were prepared in sealed vials using the nutrient-amended and unamended soils, and the effects of potassium permanganate addition were evaluated using two permanganate concentrations (0.8 and 2.4 percent) and two contact times (1 and 3 weeks). TCE was then re-added to each microcosm and TCE and dichloroethene (DCE) concentrations were monitored to determine the degree to which microbial dechlorination occurred following chemical oxidation. Evidence of microbial degradation was generally detected within four weeks after TCE addition. Increases in DCE concentrations were consistent with decreases in TCE. The concentration of TCE in the nutrient-amended samples exposed to 2.4% KMnO4 for one week degraded somewhat more slowly than the samples exposed to the 0.8% KMnO4. The rates of degradation did not correlate with the length of KMn04 exposure for the nutrient-amended microcosms. Microbial degradation of TCE in the unamended microcosms was generally similar to that observed in the nutrient-amended microcosms. One treatment condition (unamended, one week exposure, 2.4% KMnO4) was exposed to elevated levels of ethanol and showed little evidence of degradation. It is suspected that the high levels of ethanol were toxic to the microorganisms. The results of the study indicate that exposure of indigenous soil and groundwater microbial populations to KMnO4 at concentrations of 0.8 to 2.4% do not impair the ability of the microbial populations to dechlorinate TCE. Consequently, the combination of chemical oxidation followed by enhanced biological reductive dechlorination appears to be a viable remedial strategy for highly-impacted subsurface areas of the site.

  10. NIGHTHAWK - A Program for Modeling Saturated Batch and Column Experiments Incorporating Equilibrium and Kinetic Biogeochemistry

    EPA Science Inventory

    NIGHTHAWK simulates the fate and transport of biogeochemically reactive contaminants in the saturated subsurface. Version 1.2 supports batch and one- dimensional advective-dispersive-reactive transport involving a number of biogeochemical processes, including: microbially-mediate...

  11. ISCO'S LONG-TERM IMPACT ON AQUIFER CONDITIONS AND MICROBIAL ACTIVITY

    EPA Science Inventory

    Potential for lasting negative environmental effects has clouded remediation programs using permanganate and other oxidants. A major concern about using In-Situ Chemical Oxidation (ISCO) for remediation of CVOCs is that application of strong oxidants to subsurface systems may pe...

  12. COUPLED IRON CORROSION AND CHROMATE REDUCTION: MECHANISMS FOR SUBSURFACE REMEDIATION

    EPA Science Inventory

    The reduction of chromium from the Cr(VI) to the Cr- (Ill) state by the presence of elemental, or zero-oxidation-state, iron metal was studied to evaluate the feasibility of such a process for subsurface chromate remediation. Reactions were studied in systems of natural aquifer m...

  13. Photosynthesis below the surface in a cryptic microbial mat

    NASA Astrophysics Data System (ADS)

    Rothschild, Lynn J.; Giver, Lorraine J.

    2002-10-01

    The discovery of subsurface communities has encouraged speculation that such communities might be present on planetary bodies exposed to harsh surface conditions, including the early Earth. While the astrobiology community has focused on the deep subsurface, near-subsurface environments are unique in that they provide some protection while allowing partial access to photosynthetically active radiation. Previously we identified near-surface microbial communities based on photosynthesis. Here we assess the productivity of such an ecosystem by measuring in situ carbon fixation rates in an intertidal marine beach through a diurnal cycle, and find them surprisingly productive. Gross fixation along a transect (99×1 m) perpendicular to the shore was highly variable and depended on factors such as moisture and mat type, with a mean of ~41 mg C fixed m[minus sign]2 day[minus sign]1. In contrast, an adjacent well-established cyanobacterial mat dominated by Lyngbya aestuarii was ~12 times as productive (~500 mg C fixed m[minus sign]2 day[minus sign]1). Measurements made of the Lyngbya mat at several times per year revealed a correlation between total hours of daylight and gross daily production. From these data, annual gross fixation was estimated for the Lyngbya mat and yielded a value of ~1.3×105 g m[minus sign]2 yr[minus sign]1. An analysis of pulse-chase data obtained in the study in conjunction with published literature on similar ecosystems suggests that subsurface interstitial mats may be an overlooked endogenous source of organic carbon, mostly in the form of excreted fixed carbon.

  14. Impact of mercury on denitrification and denitrifying microbial communities in nitrate enrichments of subsurface sediments.

    PubMed

    Wang, Yanping; Wiatrowski, Heather A; John, Ria; Lin, Chu-Ching; Young, Lily Y; Kerkhof, Lee J; Yee, Nathan; Barkay, Tamar

    2013-02-01

    The contamination of groundwater with mercury (Hg) is an increasing problem worldwide. Yet, little is known about the interactions of Hg with microorganisms and their processes in subsurface environments. We tested the impact of Hg on denitrification in nitrate reducing enrichment cultures derived from subsurface sediments from the Oak Ridge Integrated Field Research Challenge site, where nitrate is a major contaminant and where bioremediation efforts are in progress. We observed an inverse relationship between Hg concentrations and onset and rates of denitrification in nitrate enrichment cultures containing between 53 and 1.1 μM of inorganic Hg; higher Hg concentrations increasingly extended the time to onset of denitrification and inhibited denitrification rates. Microbial community complexity, as indicated by terminal restriction fragment length polymorphism (tRFLP) analysis of the 16S rRNA genes, declined with increasing Hg concentrations; at the 312 nM Hg treatment, a single tRFLP peak was detected representing a culture of Bradyrhizobium sp. that possessed the merA gene indicating a potential for Hg reduction. A culture identified as Bradyrhizobium sp. strain FRC01 with an identical 16S rRNA sequence to that of the enriched peak in the tRFLP patterns, reduced Hg(II) to Hg(0) and carried merA whose amino acid sequence has 97 % identity to merA from the Proteobacteria and Firmicutes. This study demonstrates that in subsurface sediment incubations, Hg may inhibit denitrification and that inhibition may be alleviated when Hg resistant denitrifying Bradyrhizobium spp. detoxify Hg by its reduction to the volatile elemental form.

  15. Microbial Life Driving Low-Temperature Basalt Alteration in the Subsurface: Decoupling Abiotic Processes from Biologically-Mediated Rock Alteration

    NASA Astrophysics Data System (ADS)

    Moore, R.; Lecoeuvre, A.; Stephant, S.; Dupraz, S.; Ranchou-Peyruse, M.; Ranchou-Peyruse, A.; Gérard, E.; Ménez, B.

    2017-12-01

    Microorganisms are involved with specific rock alteration processes in the deep subsurface. It is a challenge to link any contribution microbial life may have on rock alteration with specific functions or phyla because many alteration features and secondary minerals produced by metabolic processes can also produce abiotically. Here, two flow-through experiments were designed to mimic the circulation of a CO2-rich fluid through crystalline basalt. In order to identify microbially-mediated alteration and be able to link it with specific metabolisms represented in the subsurface, a relatively fresh crystalline basalt substrate was subsampled, sterilized and used as the substrate for both experiments. In one experiment, the substrate was left sterile, and in the other it was inoculated with an enrichment culture derived from the same aquifer as the rock substrate. Initial results show that the inoculum contained Proteobacteria and Firmicutes, which have diverse metabolic potentials. Fluid and rock analyses before, during, and after the experiments show that mineralogy, fluid chemistry, and dissolution processes differ between the sterile and inoculated systems. In the inoculated experiment iron-rich orthopyroxenes were preferentially dissolved while in the sterile system clinopyroxenes and plagioclases both exhibited a higher degree of dissolution. Additionally, the patterns of CO2 consumption and production over the duration of both experiments is different. This suggest that in a low-temperature basalt system with microorganisms CO2 is either consumed to produce biomass, or that carbonates are produced and then subsequently preserved. This suite of results combined with molecular ecology analyses can be used to conclude that in low-temperature basalts microorganisms play an intrinsic role in rock alteration.

  16. Exploring Genomic Diversity Using Metagenomics of Deep-Sea Subsurface Microbes from the Louisville Seamount and the South Pacific Gyre

    NASA Astrophysics Data System (ADS)

    Tully, B. J.; Sylvan, J. B.; Heidelberg, J. F.; Huber, J. A.

    2014-12-01

    There are many limitations involved with sampling microbial diversity from deep-sea subsurface environments, ranging from physical sample collection, low microbial biomass, culturing at in situ conditions, and inefficient nucleic acid extractions. As such, we are continually modifying our methods to obtain better results and expanding what we know about microbes in these environments. Here we present analysis of metagenomes sequences from samples collected from 120 m within the Louisville Seamount and from the top 5-10cm of the sediment in the center of the south Pacific gyre (SPG). Both systems are low biomass with ~102 and ~104 cells per cm3 for Louisville Seamount samples analyzed and the SPG sediment, respectively. The Louisville Seamount represents the first in situ subseafloor basalt and the SPG sediments represent the first in situ low biomass sediment microbial metagenomes. Both of these environments, subseafloor basalt and sediments underlying oligotrophic ocean gyres, represent large provinces of the seafloor environment that remain understudied. Despite the low biomass and DNA generated from these samples, we have generated 16 near complete genomes (5 from Louisville and 11 from the SPG) from the two metagenomic datasets. These genomes are estimated to be between 51-100% complete and span a range of phylogenetic groups, including the Proteobacteria, Actinobacteria, Firmicutes, Chloroflexi, and unclassified bacterial groups. With these genomes, we have assessed potential functional capabilities of these organisms and performed a comparative analysis between the environmental genomes and previously sequenced relatives to determine possible adaptations that may elucidate survival mechanisms for these low energy environments. These methods illustrate a baseline analysis that can be applied to future metagenomic deep-sea subsurface datasets and will help to further our understanding of microbiology within these environments.

  17. The Microbiology of Subsurface, Salt-Based Nuclear Waste Repositories: Using Microbial Ecology, Bioenergetics, and Projected Conditions to Help Predict Microbial Effects on Repository Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, Juliet S.; Cherkouk, Andrea; Arnold, Thuro

    This report summarizes the potential role of microorganisms in salt-based nuclear waste repositories using available information on the microbial ecology of hypersaline environments, the bioenergetics of survival under high ionic strength conditions, and “repository microbiology” related studies. In areas where microbial activity is in question, there may be a need to shift the research focus toward feasibility studies rather than studies that generate actual input for performance assessments. In areas where activity is not necessary to affect performance (e.g., biocolloid transport), repository-relevant data should be generated. Both approaches will lend a realistic perspective to a safety case/performance scenario that willmore » most likely underscore the conservative value of that case.« less

  18. Sorting Out the Ocean Crust Deep Biosphere with Single Cell Omics Approaches

    NASA Astrophysics Data System (ADS)

    Orcutt, B.; D'Angelo, T.; Goordial, J.; Jones, R. M.; Carr, S. A.

    2017-12-01

    Although oceanic crust comprises a large habitat for subsurface life, the structure, function, and dynamics of microbial communities living on rocks in the subsurface are poorly understood. Single cell level approaches can overcome limitations of low biomass in subsurface systems. Coupled with incubation experiments with amino acid orthologs, single cell level sorting can reveal high resolution information about identity, functional potential, and growth. Leveraging collaboration with the Single Cell Genomics Center and the Facility for Aquatic Cytometry at Bigelow Laboratory, we present recent results from single cell level sorting and -omics sequencing from several crustal environments, including the Atlantis Massif and the Juan de Fuca Ridge flank. We will also highlight new experiments conducted with samples recovered from the flank of the Mid-Atlantic Ridge.

  19. Gene expression in the deep biosphere.

    PubMed

    Orsi, William D; Edgcomb, Virginia P; Christman, Glenn D; Biddle, Jennifer F

    2013-07-11

    Scientific ocean drilling has revealed a deep biosphere of widespread microbial life in sub-seafloor sediment. Microbial metabolism in the marine subsurface probably has an important role in global biogeochemical cycles, but deep biosphere activities are not well understood. Here we describe and analyse the first sub-seafloor metatranscriptomes from anaerobic Peru Margin sediment up to 159 metres below the sea floor, represented by over 1 billion complementary DNA (cDNA) sequence reads. Anaerobic metabolism of amino acids, carbohydrates and lipids seem to be the dominant metabolic processes, and profiles of dissimilatory sulfite reductase (dsr) transcripts are consistent with pore-water sulphate concentration profiles. Moreover, transcripts involved in cell division increase as a function of microbial cell concentration, indicating that increases in sub-seafloor microbial abundance are a function of cell division across all three domains of life. These data support calculations and models of sub-seafloor microbial metabolism and represent the first holistic picture of deep biosphere activities.

  20. Isolation and Genomic Characterization of ‘Desulfuromonas soudanensis WTL’, a Metal- and Electrode-Respiring Bacterium from Anoxic Deep Subsurface Brine

    PubMed Central

    Badalamenti, Jonathan P.; Summers, Zarath M.; Chan, Chi Ho; Gralnick, Jeffrey A.; Bond, Daniel R.

    2016-01-01

    Reaching a depth of 713 m below the surface, the Soudan Underground Iron Mine (Soudan, MN, USA) transects a massive Archaean (2.7 Ga) banded iron formation, providing a remarkably accessible window into the terrestrial deep biosphere. Despite organic carbon limitation, metal-reducing microbial communities are present in potentially ancient anoxic brines continuously emanating from exploratory boreholes on Level 27. Using graphite electrodes deposited in situ as bait, we electrochemically enriched and isolated a novel halophilic iron-reducing Deltaproteobacterium, ‘Desulfuromonas soudanensis’ strain WTL, from an acetate-fed three-electrode bioreactor poised at +0.24 V (vs. standard hydrogen electrode). Cyclic voltammetry revealed that ‘D. soudanensis’ releases electrons at redox potentials approximately 100 mV more positive than the model freshwater surface isolate Geobacter sulfurreducens, suggesting that its extracellular respiration is tuned for higher potential electron acceptors. ‘D. soudanensis’ contains a 3,958,620-bp circular genome, assembled to completion using single-molecule real-time (SMRT) sequencing reads, which encodes a complete TCA cycle, 38 putative multiheme c-type cytochromes, one of which contains 69 heme-binding motifs, and a LuxI/LuxR quorum sensing cassette that produces an unidentified N-acyl homoserine lactone. Another cytochrome is predicted to lie within a putative prophage, suggesting that horizontal gene transfer plays a role in respiratory flexibility among metal reducers. Isolation of ‘D. soudanensis’ underscores the utility of electrode-based approaches for enriching rare metal reducers from a wide range of habitats. PMID:27445996

  1. Soil fertility and plant diversity enhance microbial performance in metal-polluted soils.

    PubMed

    Stefanowicz, Anna M; Kapusta, Paweł; Szarek-Łukaszewska, Grażyna; Grodzińska, Krystyna; Niklińska, Maria; Vogt, Rolf D

    2012-11-15

    This study examined the effects of soil physicochemical properties (including heavy metal pollution) and vegetation parameters on soil basal respiration, microbial biomass, and the activity and functional richness of culturable soil bacteria and fungi. In a zinc and lead mining area (S Poland), 49 sites were selected to represent all common plant communities and comprise the area's diverse soil types. Numerous variables describing habitat properties were reduced by PCA to 7 independent factors, mainly representing subsoil type (metal-rich mining waste vs. sand), soil fertility (exchangeable Ca, Mg and K, total C and N, organic C), plant species richness, phosphorus content, water-soluble heavy metals (Zn, Cd and Pb), clay content and plant functional diversity (based on graminoids, legumes and non-leguminous forbs). Multiple regression analysis including these factors explained much of the variation in most microbial parameters; in the case of microbial respiration and biomass, it was 86% and 71%, respectively. The activity of soil microbes was positively affected mainly by soil fertility and, apparently, by the presence of mining waste in the subsoil. The mining waste contained vast amounts of trace metals (total Zn, Cd and Pb), but it promoted microbial performance due to its inherently high content of macronutrients (total Ca, Mg, K and C). Plant species richness had a relatively strong positive effect on all microbial parameters, except for the fungal component. In contrast, plant functional diversity was practically negligible in its effect on microbes. Other explanatory variables had only a minor positive effect (clay content) or no significant influence (phosphorus content) on microbial communities. The main conclusion from this study is that high nutrient availability and plant species richness positively affected the soil microbes and that this apparently counteracted the toxic effects of metal contamination. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    PubMed Central

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  3. Recovery of valuable metals from polymetallic mine tailings by natural microbial consortium.

    PubMed

    Vardanyan, Narine; Sevoyan, Garegin; Navasardyan, Taron; Vardanyan, Arevik

    2018-05-28

    Possibilities for the recovery of non-ferrous and precious metals from Kapan polymetallic mine tailings (Armenia) were studied. The aim of this paper was to study the possibilities of bioleaching of samples of concentrated tailings by the natural microbial consortium of drainage water. The extent of extraction of metals from the samples of concentrated tailings by natural microbial consortium reached 41-55% and 53-73% for copper and zinc, respectively. Metal leaching efficiencies of pure culture Leptospirillum ferrooxidans Teg were higher, namely 47-93% and 73-81% for copper and zinc, respectively. The content of gold in solid phase of tailings increased about 7-16% and 2-9% after bio-oxidation process by L. ferrooxidans Teg and natural microbial consortium, respectively. It was shown that bioleaching of the samples of tailings could be performed using the natural consortium of drainage water. However, to increase the intensity of the recovery of valuable metals, natural consortium of drainage water combined with iron-oxidizing L. ferrooxidans Teg has been proposed.

  4. Searching for an Acidic Aquifer in the Rio Tinto Basin: First Geobiology Results of MARTE Project

    NASA Technical Reports Server (NTRS)

    Fernandez-Remolar, D. C.; Prieto-Ballesteros, O.; Stoker, C.

    2004-01-01

    Among the conceivable modern habitats to be explored for searching life on Mars are those potentially developed underground. Subsurface habitats are currently environments that, under certain physicochemical circumstances, have high thermal and hydrochemical stability [1, 2]. In planets like Mars lacking an atmospheric shield, such systems are obviously protected against radiation, which strongly alters the structure of biological macromolecules. Low porosity but fractured aquifers currently emplaced inside ancient volcano/sedimentary and hydrothermal systems act as excellent habitats [3] due to its thermal and geochemical properties. In these aquifers the temperature is controlled by a thermal balance between conduction and advection processes, which are driven by the rock composition, geological structure, water turnover of aquifers and heat generation from geothermal processes or chemical reactions [4]. Moreover, microbial communities based on chemolithotrophy can obtain energy by the oxidation of metallic ores that are currently associated to these environments. Such a community core may sustain a trophic web composed of non-autotrophic forms like heterotrophic bacteria, fungi and protozoa.

  5. Aqueous Geochemical Dynamics at the Coast Range Ophiolite Microbial Observatory and The Case for Subsurface Mixing of Regional Groundwaters

    NASA Astrophysics Data System (ADS)

    Cardace, D.; Schrenk, M. O.; McCollom, T. M.; Hoehler, T. M.

    2017-12-01

    Serpentinization is the aqueous alteration (or hydration) of olivine and pyroxene minerals in ultramafic rocks, occurring in the seabed and ultramafic units on continents, such as at the Coast Range Ophiolite (CRO) in northern California, USA. Mineral products of serpentinization include serpentine, magnetite, brucite, talc, oxyhydroxides, carbonates, and diverse clay minerals. Such mineral transformations generate extremely high pH solutions with characteristic cation and dissolved metal loads, transmitting CH4, H2, and CO gas mixtures from depth; deep life in ultramafic terrains is thought to be fueled by chemical energy derived from these geochemical reactions. The installation of 8 groundwater monitoring wells in the CRO has allowed frequent monitoring since 2011. Influx of deeply sourced, serpentinization-influenced waters is evidenced by related geochemical shifts (e.g., pH, oxidation-reduction potential), but is apparently mixing with other, regionally important groundwater types. Evaluation salinity loads in concert with other parameters, we model the mixing scenario of this site of ongoing scientific study and experimentation.

  6. MICROBIAL DEGRADATION OF TOLUENE UNDER SULFATE- REDUCING CONDITIONS AND THE INFLUENCE OF IRON ON THE PROCESS

    EPA Science Inventory

    Toluene degradation occurred concomitantly with sulfate reduction in anaerobic microcosms inoculated with contaminated subsurface soil from an aviation fuel storage facility near the Patuxent River (Md.). Similar results were obtained for enrichment cultures in which toluene was ...

  7. CARBON AND SULFUR ACCUMULATION AND IRON MINERAL TRANSFORMATION IN PERMEABLE REACTIVE BARRIERS CONTAINING ZERO-VALENT IRON

    EPA Science Inventory

    Permeable reactive barrier technology is an in-situ approach for remediating groundwater contamination that combines subsurface fluid flow management with passive chemical treatment. Factors such as the buildup of mineral precipitates, buildup of microbial biomass (bio-fouling...

  8. Dynamics of the Genetic Diversity of Subsurface Microbial Communities and Their Applications to Contaminated Site Cleanups

    EPA Science Inventory

    When compared to traditional approaches, the utilization of molecular and genomic techniques to soil and groundwater cleanup investigations can reduce inherent parameter variability when conducting bench and pilot-scale investigations or carrying out full-scale field applications...

  9. Microbes of deep marine sediments as viewed by metagenomics

    NASA Astrophysics Data System (ADS)

    Biddle, J.

    2015-12-01

    Ten years after the first deep marine sediment metagenome was produced, questions still exist about the nucleic acid sequences we have retrieved. Current data sets, including the Peru Margin, Costa Rica Margin and Iberian Margin show that consistently, data forms larger assemblies at depth due to the reduced complexity of the microbial community. But are these organisms active or preserved? At SMTZs, a change in the assembly statistics is noted, as well as an increase in cell counts, suggesting that cells are truly active. As depth increases, genome sizes are consistently large, suggesting that much like soil microbes, sedimentary microbes may maintain a larger reportorie of genomic potential. Functional changes are seen with depth, but at many sites are not correlated to specific geochemistries. Individual genomes show changes with depth, which raises interesting questions on how the subsurface is settled and maintained. The subsurface does have a distinct genomic signature, including unusual microbial groups, which we are now able to analyze for total genomic content.

  10. Metagenomic identification of active methanogens and methanotrophs in serpentinite springs of the Voltri Massif, Italy

    PubMed Central

    Thornton, Christopher N.; Hyer, Alex; Twing, Katrina I.; Longino, August A.; Lang, Susan Q.; Lilley, Marvin D.; Früh-Green, Gretchen L.; Schrenk, Matthew O.

    2017-01-01

    The production of hydrogen and methane by geochemical reactions associated with the serpentinization of ultramafic rocks can potentially support subsurface microbial ecosystems independent of the photosynthetic biosphere. Methanogenic and methanotrophic microorganisms are abundant in marine hydrothermal systems heavily influenced by serpentinization, but evidence for methane-cycling archaea and bacteria in continental serpentinite springs has been limited. This report provides metagenomic and experimental evidence for active methanogenesis and methanotrophy by microbial communities in serpentinite springs of the Voltri Massif, Italy. Methanogens belonging to family Methanobacteriaceae and methanotrophic bacteria belonging to family Methylococcaceae were heavily enriched in three ultrabasic springs (pH 12). Metagenomic data also suggest the potential for hydrogen oxidation, hydrogen production, carbon fixation, fermentation, and organic acid metabolism in the ultrabasic springs. The predicted metabolic capabilities are consistent with an active subsurface ecosystem supported by energy and carbon liberated by geochemical reactions within the serpentinite rocks of the Voltri Massif. PMID:28149702

  11. Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment

    DOE PAGES

    Castelle, Cindy J.; Hug, Laura A.; Wrighton, Kelly C.; ...

    2013-08-27

    Microorganisms in the subsurface represent a substantial but poorly understood component of the Earth’s biosphere. Subsurface environments are complex and difficult to characterize; thus, their microbiota have remained as a ‘dark matter’ of the carbon and other biogeochemical cycles. Here we deeply sequence two sediment-hosted microbial communities from an aquifer adjacent to the Colorado River, CO, USA. No single organism represents more than ~1% of either community. Remarkably, many bacteria and archaea in these communities are novel at the phylum level or belong to phyla lacking a sequenced representative. The dominant organism in deeper sediment, RBG-1, is a member ofmore » a new phylum. On the basis of its reconstructed complete genome, RBG-1 is metabolically versatile. Its wide respiration-based repertoire may enable it to respond to the fluctuating redox environment close to the water table. We document extraordinary microbial novelty and the importance of previously unknown lineages in sediment biogeochemical transformations.« less

  12. Biomineralization of metal-containing ores and concentrates.

    PubMed

    Rawlings, Douglas E; Dew, David; du Plessis, Chris

    2003-01-01

    Biomining is the use of microorganisms to extract metals from sulfide and/or iron-containing ores and mineral concentrates. The iron and sulfide is microbially oxidized to produce ferric iron and sulfuric acid, and these chemicals convert the insoluble sulfides of metals such as copper, nickel and zinc to soluble metal sulfates that can be readily recovered from solution. Although gold is inert to microbial action, microbes can be used to recover gold from certain types of minerals because as they oxidize the ore, they open its structure, thereby allowing gold-solubilizing chemicals such as cyanide to penetrate the mineral. Here, we review a strongly growing microbially-based metal extraction industry, which uses either rapid stirred-tank or slower irrigation technology to recover metals from an increasing range of minerals using a diversity of microbes that grow at a variety of temperatures.

  13. Effect of electrochemical corrosion on the subsurface microstructure evolution of a CoCrMo alloy in albumin containing environment

    NASA Astrophysics Data System (ADS)

    Wang, Zhongwei; Yan, Yu; Su, Yanjing; Qiao, Lijie

    2017-06-01

    The subsurface microstructures of metallic implants play a key role in bio-tribocorrosion. Due to wear or change of local environment, the implant surface can have inhomogeneous electrochemical corrosion properties. In this work, the effect of electrochemical corrosion conditions on the subsurface microstructure evolution of CoCrMo alloys for artificial joints was investigated. Transmission electron microscope (TEM) was employed to observe the subsurface microstructures of worn areas at different applied potentials in a simulated physiological solution. The results showed that applied potentials could affect the severity of the subsurface deformation not only by changing the surface passivation but also affecting the adsorption of protein on the alloy surface.

  14. Barrier-free subsurface incorporation of 3 d metal atoms into Bi(111) films

    DOE PAGES

    Klein, C.; Vollmers, N. J.; Gerstmann, U.; ...

    2015-05-27

    By combining scanning tunneling microscopy with density functional theory it is shown that the Bi(111) surface provides a well-defined incorporation site in the first bilayer that traps highly coordinating atoms such as transition metals (TMs) or noble metals. All deposited atoms assume exactly the same specific sevenfold coordinated subsurface interstitial site while the surface topography remains nearly unchanged. Notably, 3 d TMs show a barrier-free incorporation. The observed surface modification by barrier-free subsorption helps to suppress aggregation in clusters. Thus, it allows a tuning of the electronic properties not only for the pure Bi(111) surface, but may also be observedmore » for topological insulators formed by substrate-stabilized Bi bilayers.« less

  15. Quantification of mine-drainage inflows to Little Cottonwood Creek, Utah, using a tracer-injection and synoptic-sampling study

    USGS Publications Warehouse

    Kimball, B.; Runkel, R.; Gerner, L.

    2001-01-01

    Historic mining in Little Cottonwood Canyon in Utah has left behind many mine drainage tunnels that discharge water to Little Cottonwood Creek. To quantify the major sources of mine drainage to the stream, synoptic sampling was conducted during a tracer injection under low flow conditions (September 1998). There were distinct increases in discharge downstream from mine drainage and major tributary inflows that represented the total surface and subsurface contributions. The chemistry of stream water determined from synoptic sampling was controlled by the weathering of carbonate rocks and mine drainage inflows. Buffering by carbonate rocks maintained a high pH throughout the study reach. Most of the metal loading was from four surface-water inflows and three subsurface inflows. The main subsurface inflow was from a mine pool in the Wasatch Tunnel. Natural attenuation of all the metals resulted in the formation of colloidal solids, sorption of some metals, and accumulation onto the streambed. The deposition on the streambed could contribute to chronic toxicity for aquatic organisms. Information from the study will help to make decisions about environmental restoration.

  16. The East German Research Landscape in Transition. Part B. Non-University Institutes

    DTIC Science & Technology

    1993-03-02

    struc- tures and metal ions: Basic research of the biosorption , bioaccumulation and metal desorption mechanisms Influence and increase of the sorption...microbial corrosion problems - Investigation of che interaction between microbial structures and metal ions: Basic research of the biosorption ...Additional work has been undertaken on the response of the cell at the molecular level to various stresses, including heat and heavy metals . In both cases

  17. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil.

    PubMed

    Chen, Junhui; He, Feng; Zhang, Xuhui; Sun, Xuan; Zheng, Jufeng; Zheng, Jinwei

    2014-01-01

    Chemical and microbial characterisations of particle-size fractions (PSFs) from a rice paddy soil subjected to long-term heavy metal pollution (P) and nonpolluted (NP) soil were performed to investigate whether the distribution of heavy metals (Cd, Cu, Pb and Zn) regulates microbial community activity, abundance and diversity at the microenvironment scale. The soils were physically fractionated into coarse sand, fine sand, silt and clay fractions. Long-term heavy metal pollution notably decreased soil basal respiration (a measurement of the total activity of the soil microbial community) and microbial biomass carbon (MBC) across the fractions by 3-45% and 21-53%, respectively. The coarse sand fraction was more affected by pollution than the clay fraction and displayed a significantly lower MBC content and respiration and dehydrogenase activity compared with the nonpolluted soils. The abundances and diversities of bacteria were less affected within the PSFs under pollution. However, significant decreases in the abundances and diversities of fungi were noted, which may have strongly contributed to the decrease in MBC. Sequencing of denaturing gradient gel electrophoresis bands revealed that the groups Acidobacteria, Ascomycota and Chytridiomycota were clearly inhibited under pollution. Our findings suggest that long-term heavy metal pollution decreased the microbial biomass, activity and diversity in PSFs, particularly in the large-size fractions. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Microbiome composition and geochemical characteristics of deep subsurface high-pressure environment, Pyhäsalmi mine Finland

    PubMed Central

    Miettinen, Hanna; Kietäväinen, Riikka; Sohlberg, Elina; Numminen, Mikko; Ahonen, Lasse; Itävaara, Merja

    2015-01-01

    Pyhäsalmi mine in central Finland provides an excellent opportunity to study microbial and geochemical processes in a deep subsurface crystalline rock environment through near-vertical drill holes that reach to a depth of more than two kilometers below the surface. However, microbial sampling was challenging in this high-pressure environment. Nucleic acid yields obtained were extremely low when compared to the cell counts detected (1.4 × 104 cells mL−1) in water. The water for nucleic acid analysis went through high decompression (60–130 bar) during sampling, whereas water samples for detection of cell counts by microscopy could be collected with slow decompression. No clear cells could be identified in water that went through high decompression. The high-pressure decompression may have damaged part of the cells and the nucleic acids escaped through the filter. The microbial diversity was analyzed from two drill holes by pyrosequencing amplicons of the bacterial and archaeal 16S rRNA genes and from the fungal ITS regions from both DNA and RNA fractions. The identified prokaryotic diversity was low, dominated by Firmicute, Beta- and Gammaproteobacteria species that are common in deep subsurface environments. The archaeal diversity consisted mainly of Methanobacteriales. Ascomycota dominated the fungal diversity and fungi were discovered to be active and to produce ribosomes in the deep oligotrophic biosphere. The deep fluids from the Pyhäsalmi mine shared several features with other deep Precambrian continental subsurface environments including saline, Ca-dominated water and stable isotope compositions positioning left from the meteoric water line. The dissolved gas phase was dominated by nitrogen but the gas composition clearly differed from that of atmospheric air. Despite carbon-poor conditions indicated by the lack of carbon-rich fracture fillings and only minor amounts of dissolved carbon detected in formation waters, some methane was found in the drill holes. No dramatic differences in gas compositions were observed between different gas sampling methods tested. For simple characterization of gas composition the most convenient way to collect samples is from free flowing fluid. However, compared to a pressurized method a relative decrease in the least soluble gases may appear. PMID:26579109

  19. Application of Freeze-Dried Powders of Genetically Engineered Microbial Strains as Adsorbents for Rare Earth Metal Ions.

    PubMed

    Moriwaki, Hiroshi; Masuda, Reiko; Yamazaki, Yuki; Horiuchi, Kaoru; Miyashita, Mari; Kasahara, Jun; Tanaka, Tatsuhito; Yamamoto, Hiroki

    2016-10-12

    The adsorption behaviors of the rare earth metal ions onto freeze-dried powders of genetically engineered microbial strains were compared. Cell powders obtained from four kinds of strains, Bacillus subtilis 168 wild type (WT), lipoteichoic acid-defective (ΔLTA), wall teichoic acid-defective (ΔWTA), and cell wall hydrolases-defective (EFKYOJLp) strains, were used as an adsorbent of the rare earth metal ions at pH 3. The adsorption ability of the rare earth metal ions was in the order of EFKYOJLp > WT > ΔLTA > ΔWTA. The order was the same as the order of the phosphorus quantity of the strains. This result indicates that the main adsorption sites for the ions are the phosphate groups and the teichoic acids, LTA and WTA, that contribute to the adsorption of the rare earth metal ions onto the cell walls. The contribution of WTA was clearly greater than that of LTA. Each microbial powder was added to a solution containing 16 kinds of rare earth metal ions, and the removals (%) of each rare earth metal ion were obtained. The scandium ion showed the highest removal (%), while that of the lanthanum ion was the lowest for all the microbial powders. Differences in the distribution coefficients between the kinds of lanthanide ions by the EFKYOJLp and ΔWTA powders were greater than those of the other strains. Therefore, the EFKYOJLp and ΔWTA powders could be applicable for the selective extraction of the lanthanide ions. The ΔLTA powder coagulated by mixing with a rare earth metal ion, although no sedimentation of the WT or ΔWTA powder with a rare earth metal ion was observed under the same conditions. The EFKYOJLp powder was also coagulated, but its flocculating activity was lower than that of ΔLTA. The ΔLTA and EFKYOJLp powders have a long shape compared to those of the WT or ΔWTA strain. The shapes of the cells will play an important role in the sedimentation of the microbial powders with rare earth metal ions. As the results, three kinds of the genetically engineered microbial powders revealed unique adsorption behaviors of the rare earth metal ions.

  20. Non-Equilibrium Thermodynamic Chemistry and the Composition of the Atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Summers, M. E.

    2003-01-01

    A high priority objective of the Mars Exploration Program is to Determine if life exists today (MEPAG Goal I, Objective A). The measurement of gases of biogenic origin may be an approach to detect the presence of microbial life on the surface or subsurface of Mars. Chemical thermodynamic calculations indicate that on both Earth and Mars, certain gases should exist in extremely low concentrations, if at all. Microbial metabolic activity is an important non-equilibrium chemistry process on Earth, and if microbial life exists on Mars, may be an important nonequilibrium chemistry process on Mars. The non-equilibrium chemistry of the atmosphere of Mars is discussed in this paper.

  1. Interactions between microbial iron reduction and metal geochemistry: effect of redox cycling on transition metal speciation in iron bearing sediments.

    PubMed

    Cooper, D Craig; Picardal, Flynn F; Coby, Aaron J

    2006-03-15

    Microbial iron reduction is an important biogeochemical process that can affect metal geochemistry in sediments through direct and indirect mechanisms. With respectto Fe(III) (hydr)oxides bearing sorbed divalent metals, recent reports have indicated that (1) microbial reduction of goethite/ferrihydrite mixtures preferentially removes ferrihydrite, (2) this process can incorporate previously sorbed Zn(II) into an authigenic crystalline phase that is insoluble in 0.5 M HCl, (3) this new phase is probably goethite, and (4) the presence of nonreducible minerals can inhibit this transformation. This study demonstrates that a range of sorbed transition metals can be selectively sequestered into a 0.5 M HCl insoluble phase and that the process can be stimulated through sequential steps of microbial iron reduction and air oxidation. Microbial reduction experiments with divalent Cd, Co, Mn, Ni, Pb, and Zn indicate that all metals save Mn experienced some sequestration, with the degree of metal incorporation into the 0.5 M HCl insoluble phase correlating positively with crystalline ionic radius at coordination number = 6. Redox cycling experiments with Zn adsorbed to synthetic goethite/ferrihydrite or iron-bearing natural sediments indicate that redox cycling from iron reducing to iron oxidizing conditions sequesters more Zn within authigenic minerals than microbial iron reduction alone. In addition, the process is more effective in goethite/ferrihydrite mixtures than in iron-bearing natural sediments. Microbial reduction alone resulted in a -3x increase in 0.5 M HCl insoluble Zn and increased aqueous Zn (Zn-aq) in goethite/ferrihydrite, but did not significantly affect Zn speciation in natural sediments. Redox cycling enhanced the Zn sequestration by approximately 12% in both goethite/ferrihydrite and natural sediments and reduced Zn-aq to levels equal to the uninoculated control in goethite/ferrihydrite and less than the uninoculated control in natural sediments. These data suggest that in situ redox cycling may serve as an effective method for

  2. Grenade Range Management Using Lime for Metals Immobilization and Explosives Transformation Treatability Study

    DTIC Science & Technology

    2007-06-01

    of metals and explo- sives from HGR soil are transport in surface water and subsurface trans- port in leachate or pore water. Simple, innovative, and...and II.................................................................................... 41 RDX in leachate and runoff...44 Significant metals in leachate and runoff from Lysimeter Study I

  3. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium.

    PubMed

    Teixeira, Catarina; Almeida, C Marisa R; Nunes da Silva, Marta; Bordalo, Adriano A; Mucha, Ana P

    2014-09-15

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A New Approach to Predict Microbial Community Assembly and Function Using a Stochastic, Genome-Enabled Modeling Framework

    NASA Astrophysics Data System (ADS)

    King, E.; Brodie, E.; Anantharaman, K.; Karaoz, U.; Bouskill, N.; Banfield, J. F.; Steefel, C. I.; Molins, S.

    2016-12-01

    Characterizing and predicting the microbial and chemical compositions of subsurface aquatic systems necessitates an understanding of the metabolism and physiology of organisms that are often uncultured or studied under conditions not relevant for one's environment of interest. Cultivation-independent approaches are therefore important and have greatly enhanced our ability to characterize functional microbial diversity. The capability to reconstruct genomes representing thousands of populations from microbial communities using metagenomic techniques provides a foundation for development of predictive models for community structure and function. Here, we discuss a genome-informed stochastic trait-based model incorporated into a reactive transport framework to represent the activities of coupled guilds of hypothetical microorganisms. Metabolic pathways for each microbe within a functional guild are parameterized from metagenomic data with a unique combination of traits governing organism fitness under dynamic environmental conditions. We simulate the thermodynamics of coupled electron donor and acceptor reactions to predict the energy available for cellular maintenance, respiration, biomass development, and enzyme production. While `omics analyses can now characterize the metabolic potential of microbial communities, it is functionally redundant as well as computationally prohibitive to explicitly include the thousands of recovered organisms into biogeochemical models. However, one can derive potential metabolic pathways from genomes along with trait-linkages to build probability distributions of traits. These distributions are used to assemble groups of microbes that couple one or more of these pathways. From the initial ensemble of microbes, only a subset will persist based on the interaction of their physiological and metabolic traits with environmental conditions, competing organisms, etc. Here, we analyze the predicted niches of these hypothetical microbes and assess the ability of a stochastically assembled community of organisms to predict subsurface biogeochemical dynamics.

  5. Fluctuations in Species-Level Protein Expression Occur during Element and Nutrient Cycling in the Subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkins, Michael J.; Wrighton, Kelly C.; Nicora, Carrie D.

    2013-03-05

    While microbial activities in environmental systems play a key role in the utilization and cycling of essential elements and compounds, microbial activity and growth frequently fluctuates in response to environmental stimuli and perturbations. To investigate these fluctuations within a saturated aquifer system, we monitored a carbon-stimulated in situ Geobacter population while iron reduction was occurring, using 16S rRNA abundances and high-resolution tandem mass spectrometry proteome measurements. Following carbon amendment, 16S rRNA analysis of temporally separated samples revealed the rapid enrichment of Geobacter-like environmental strains with strong similarity to G. bemidjiensis. Tandem mass spectrometry proteomics measurements suggest high carbon flux throughmore » Geobacter respiratory pathways, and the synthesis of anapleurotic four carbon compounds from acetyl-CoA via pyruvate ferredoxin oxidoreductase activity. Across a 40-day period where Fe(III) reduction was occurring, fluctuations in protein expression reflected changes in anabolic versus catabolic reactions, with increased levels of biosynthesis occurring soon after acetate arrival in the aquifer. In addition, localized shifts in nutrient limitation were inferred based on expression of nitrogenase enzymes and phosphate uptake proteins. These temporal data offer the first example of differing microbial protein expression associated with changing geochemical conditions in a subsurface environment.« less

  6. Disturbed subsurface microbial communities follow equivalent trajectories despite different structural starting points: Microbial community succession and disturbance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handley, Kim M.; Wrighton, Kelly C.; Miller, Christopher S.

    2014-04-18

    Microbial community structure, and niche and neutral processes can all influence response to disturbance. Here, we provide experimental evidence for niche versus neutral and founding community effects during a bioremediation-related organic carbon disturbance. Subsurface sediment, partitioned into 22 flow-through columns, was stimulated in situ by the addition of acetate as a carbon and electron donor source. This drove the system into a new transient biogeochemical state characterized by iron reduction and enriched Desulfuromonadales, Comamonadaceae and Bacteroidetes lineages. After approximately 1 month conditions favoured sulfate reduction, and were accompanied by a substantial increase in the relative abundance of Desulfobulbus, Desulfosporosinus, Desulfitobacteriummore » and Desulfotomaculum. Two subsets of four to five columns each were switched from acetate to lactate amendment during either iron (earlier) or sulfate (later) reduction. Hence, subsets had significantly different founding communities. All lactate treatments exhibited lower relative abundances of Desulfotomaculum and Bacteroidetes, enrichments of Clostridiales and Psychrosinus species, and a temporal succession from highly abundant Clostridium sensu stricto to Psychrosinus. Regardless of starting point, lactate-switch communities followed comparable structural trajectories, whereby convergence was evident 9 to 16 days after each switch, and significant after 29 to 34 days of lactate addition. Results imply that neither the founding community nor neutral processes influenced succession following perturbation.« less

  7. Linking Spectral Induced Polarization (SIP) and Subsurface Microbial Processes: Results from Sand Column Incubation Experiments.

    PubMed

    Mellage, Adrian; Smeaton, Christina M; Furman, Alex; Atekwana, Estella A; Rezanezhad, Fereidoun; Van Cappellen, Philippe

    2018-02-20

    Geophysical techniques, such as spectral induced polarization (SIP), offer potentially powerful approaches for in situ monitoring of subsurface biogeochemistry. The successful implementation of these techniques as monitoring tools for reactive transport phenomena, however, requires the deconvolution of multiple contributions to measured signals. Here, we present SIP spectra and complementary biogeochemical data obtained in saturated columns packed with alternating layers of ferrihydrite-coated and pure quartz sand, and inoculated with Shewanella oneidensis supplemented with lactate and nitrate. A biomass-explicit diffusion-reaction model is fitted to the experimental biogeochemical data. Overall, the results highlight that (1) the temporal response of the measured imaginary conductivity peaks parallels the microbial growth and decay dynamics in the columns, and (2) SIP is sensitive to changes in microbial abundance and cell surface charging properties, even at relatively low cell densities (<10 8 cells mL -1 ). Relaxation times (τ) derived using the Cole-Cole model vary with the dominant electron accepting process, nitrate or ferric iron reduction. The observed range of τ values, 0.012-0.107 s, yields effective polarization diameters in the range 1-3 μm, that is, 2 orders of magnitude smaller than the smallest quartz grains in the columns, suggesting that polarization of the bacterial cells controls the observed chargeability and relaxation dynamics in the experiments.

  8. EMSL Geochemistry, Biogeochemistry and Subsurface Science-Science Theme Advisory Panel Meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Gordon E.; Chaka, Anne; Shuh, David K.

    2011-08-01

    This report covers the topics of discussion and the recommendations of the panel members. On December 8 and 9, 2010, the Geochemistry, Biogeochemistry, and Subsurface Science (GBSS) Science Theme Advisory Panel (STAP) convened for a more in-depth exploration of the five Science Theme focus areas developed at a similar meeting held in 2009. The goal for the fiscal year (FY) 2011 meeting was to identify potential topical areas for science campaigns, necessary experimental development needs, and scientific members for potential research teams. After a review of the current science in each of the five focus areas, the 2010 STAP discussionsmore » successfully led to the identification of one well focused campaign idea in pore-scale modeling and five longer-term potential research campaign ideas that would likely require additional workshops to identify specific research thrusts. These five campaign areas can be grouped into two categories: (1) the application of advanced high-resolution, high mass accuracy experimental techniques to elucidate the interplay between geochemistry and microbial communities in terrestrial ecosystems and (2) coupled computation/experimental investigations of the electron transfer reactions either between mineral surfaces and outer membranes of microbial cells or between the outer and inner membranes of microbial cells.« less

  9. Long-term performance of anaerobic digestion for crop residues containing heavy metals and response of microbial communities.

    PubMed

    Lee, Jongkeun; Kim, Joonrae Roger; Jeong, Seulki; Cho, Jinwoo; Kim, Jae Young

    2017-01-01

    In order to investigate the long-term stability on the performance of the anaerobic digestion process, a laboratory-scale continuous stirred-tank reactor (CSTR) was operated for 1100 days with sunflower harvested in a heavy metal contaminated site. Changes of microbial communities during digestion were identified using pyrosequencing. According to the results, soluble heavy metal concentrations were lower than the reported inhibitory level and the reactor performance remained stable up to OLR of 2.0g-VS/L/day at HRT of 20days. Microbial communities commonly found in anaerobic digestion for cellulosic biomass were observed and stably established with respect to the substrate. Thus, the balance of microbial metabolism was maintained appropriately and anaerobic digestion seems to be feasible for disposal of heavy metal-containing crop residues from phytoremediation sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Mineralogical Control on Microbial Diversity in a Weathered Granite?

    NASA Astrophysics Data System (ADS)

    Gleeson, D.; Clipson, N.; McDermott, F.

    2003-12-01

    Mineral transformation reactions and the behaviour of metals in rock and soils are affected not only by physicochemical parameters but also by biological factors, particularly by microbial activity. Microbes inhabit a wide range of niches in surface and subsurface environments, with mineral-microbe interactions being generally poorly understood. The focus of this study is to elucidate the role of microbial activity in the weathering of common silicate minerals in granitic rocks. A site in the Wicklow Mountains (Ireland) has been identified that consists of an outcrop surface of Caledonian (ca. 400 million years old) pegmatitic granite from which large intact crystals of variably weathered muscovite, plagioclase, K-feldspar and quartz were sampled, together with whole-rock granite. Culture-based microbial approaches have been widely used to profile microbial communities, particularly from copiotrophic environments, but it is now well established that for oligotrophic environments such as those that would be expected on weathering faces, perhaps less than 1% of microbial diversity can be profiled by cultural means. A number of culture-independent molecular based approaches have been developed to profile microbial diversity and community structure. These rely on successfully isolating environmental DNA from a given environment, followed by the use of the polymerase chain reaction (PCR) to amplify the typically small quantities of extracted DNA. Amplified DNA can then be analysed using cloning based approaches as well as community fingerprinting systems such as denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (TRFLP) and ribosomal intergenic spacer analysis (RISA). Community DNA was extracted and the intergenic spacer region (ITS) between small (16S) and large (23S) bacterial subunit rRNA genes was amplified. RISA fragments were then electrophoresed on a non-denaturing polyacrylamide gel. Banding patterns suggest that the bacterial population in whole rock, which contained approximately 30 separated bands (indicative of the number of bacterial ribotypes), is greater than muscovite (20), K-feldspar (15), and plagioclase feldspar (12) with quartz exhibiting the lowest number (6). These bands were excised from the gel for sequencing, allowing identification of the major populations. An automated approach was also used to assess similarity of bacterial communities present on each sample type, and this allowed for a statistical evaluation of bacterial diversity. Petrographic studies were carried out to assess mineral alteration effects. Scanning electron microscopy (SEM) was used to visualise in-situ bacterial cells.

  11. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model.

    PubMed

    Fang, Yilin; Scheibe, Timothy D; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E; Lovley, Derek R

    2011-03-25

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint-based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species and multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The modeling system is designed in such a way that constraint-based models targeting different microorganisms or competing organism communities can be easily plugged into the system. Constraint-based modeling is very costly given the size of a genome-scale reaction network. To save computation time, a binary tree is traversed to examine the concentration and solution pool generated during the simulation in order to decide whether the constraint-based model should be called. We also show preliminary results from the integrated model including a comparison of the direct and indirect coupling approaches and evaluated the ability of the approach to simulate field experiment. Published by Elsevier B.V.

  12. Pore-Scale Characterization of Biogeochemical Controls on Iron and Uranium Speciation under Flow Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearce, Carolyn I.; Wilkins, Michael J.; Zhang, Changyong

    2012-09-17

    Etched silicon microfluidic pore network models (micromodels) with controlled chemical and redox gradients, mineralogy, and microbiology under continuous flow conditions are used for the incremental development of complex microenvironments that simulate subsurface conditions. We demonstrate the colonization of micromodel pore spaces by an anaerobic Fe(III)-reducing bacterial species (Geobacter sulfurreducens) and the enzymatic reduction of a bioavailable Fe(III) phase within this environment. Using both X-ray Microprobe and X-ray Absorption Spectroscopy, we investigate the combined effects of the precipitated Fe(III) phases and the microbial population on uranium biogeochemistry under flow conditions. Precipitated Fe(III) phases within the micromodel were most effectively reduced inmore » the presence of an electron shuttle (AQDS), and Fe(II) ions adsorbed onto the precipitated mineral surface without inducing any structural change. In the absence of Fe(III), U(VI) was effectively reduced by the microbial population to insoluble U(IV), which was precipitated in discrete regions associated with biomass. In the presence of Fe(III) phases, however, both U(IV) and U(VI) could be detected associated with biomass, suggesting re-oxidation of U(IV) by localized Fe(III) phases. These results demonstrate the importance of the spatial localization of biomass and redox active metals, and illustrate the key effects of pore-scale processes on contaminant fate and reactive transport.« less

  13. Impact of heavy metal on activity of some microbial enzymes in the riverbed sediments: Ecotoxicological implications in the Ganga River (India).

    PubMed

    Jaiswal, Deepa; Pandey, Jitendra

    2018-04-15

    We studied the extracellular enzyme activity (EEA) in the riverbed sediment along a 518km gradient of the Ganga River receiving carbon and nutrient load from varied human sources. Also, we tested, together with substrate-driven stimulation, if the heavy metal accumulated in the sediment inhibits enzyme activities. Because pristine values are not available, we considered Dev Prayag, a least polluted site located 624km upstream to main study stretch, as a reference site. There were distinct increases in enzyme activities in the sediment along the study gradient from Dev Prayag, however, between-site differences were in concordance with sediment carbon(C), nitrogen (N) and phosphorus (P). Fluorescein diacetate hydrolysis (FDAase), β-glucosidase (Glu) and protease activities showed positive correlation with C, N and P while alkaline phosphatase was found negatively correlated with P. Enzyme activities were found negatively correlated with heavy metal, although ecological risk index (E R i ) varied with site and metal species. Dynamic fit curves showed significant positive correlation between heavy metal and microbial metabolic quotient (qCO 2 ) indicating a decrease in microbial activity in response to increasing heavy metal concentrations. This study forms the first report linking microbial enzyme activities to regional scale sediment heavy metal accumulation in the Ganga River, suggests that the microbial enzyme activities in the riverbed sediment were well associated with the proportion of C, N and P and appeared to be a sensitive indicator of C, N and P accumulation in the river. Heavy metal accumulated in the sediment inhibits enzyme activities, although C rich sediment showed relatively low toxicity due probably to reduced bioavailability of the metal. The study has relevance from ecotoxicological as well as from biomonitoring perspectives. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Río Tinto Faulted Volcanosedimentary Deposits as Analog Habitats for Extant Subsurface Biospheres on Mars: A Synthesis of the MARTE Drilling Project Geobiology Results

    NASA Astrophysics Data System (ADS)

    Fernández-Remolar, D. C.; Prieto-Ballesteros, O.; Rodríguez, N.; Dávila, F.; Stevens, T.; Amils, R.; Gómez-Elvira, J.; Stoker, C. R.

    2005-03-01

    Reconstruction of the probable habitats hosting the detected microbial communities through the integration of the geobiological data obtained from the MARTE drilling campaigns, TEM sounding and field surface geological survey

  15. In situ biofilm coupon device

    DOEpatents

    Peyton, Brent M.; Truex, Michael J.

    1997-01-01

    An apparatus for characterization of in-situ microbial biofilm populations in subsurface groundwater. The device permits biofilm-forming microorganisms to adhere to packing material while emplaced in a groundwater strata, so that the packing material can be later analyzed for quantity and type of microorganisms, growth rate, and nutrient requirements.

  16. IMPACT OF COSOLVENT FLUSHING ON SUBSURFACE MICROBIAL ECOLOGY AT A FORMER DRY CLEANER SITE

    EPA Science Inventory

    The Solvent Extraction Residual Biotreatment (SERB) technology was evaluated at a former dry cleaner site in Jacksonville, FL where an area of tetrachloroethene (PCE) contamination was identified. The SERB technology is a treatment train approach to complete site restoration, wh...

  17. IMPACT OF COSOLVENT FLUSHING ON SUBSURFACE MICROBIAL ECOLOGY AT THE FORMER SAGE'S DRY CLEANER SITE

    EPA Science Inventory

    The Solvent Extraction Residual Biotreatment (SERB) technology was evaluated at the former Sage's Dry Cleaner site in Jacksonville, FL where an area of tetrachloroethylene (PCE) contamination was identified. The SERB technology is a treatment train approach to complete site rest...

  18. MICROBIAL PROCESSES AFFECTING MONITORED NATURAL ATTENUATION OF CONTAMINANTS IN THE SUBSURFACE

    EPA Science Inventory

    Among the alternatives considered for the remediation of soil and ground water at hazardous wastes sites are the use of natural processes to reduce or remove the contaminants of concern. Under favorable conditions, the use of natural attenuation can result in significant cost sa...

  19. Impact of repeated single-metal and multi-metal pollution events on soil quality.

    PubMed

    Burges, Aritz; Epelde, Lur; Garbisu, Carlos

    2015-02-01

    Most frequently, soil metal pollution results from the occurrence of repeated single-metal and, above all, multi-metal pollution events, with concomitant adverse consequences for soil quality. Therefore, in this study, we evaluated the impact of repeated single-metal and multi-metal (Cd, Pb, Cu, Zn) pollution events on soil quality, as reflected by the values of a variety of soil microbial parameters with potential as bioindicators of soil functioning. Specifically, parameters of microbial activity (potentially mineralizable nitrogen, β-glucosidase and acid phosphatase activity) and biomass (fungal and bacterial gene abundance by RT-qPCR) were determined, in the artificially metal-polluted soil samples, at regular intervals over a period of 26 weeks. Similarly, we studied the evolution over time of CaCl2-extractable metal fractions, in order to estimate metal bioavailability in soil. Different metals showed different values of bioavailability and relative bioavailability ([metal]bio/[metal]tot) in soil throughout the experiment, under both repeated single-metal and multi-metal pollution events. Both repeated Zn-pollution and multi-metal pollution events led to a significant reduction in the values of acid phosphatase activity, and bacterial and fungal gene abundance, reflecting the negative impact of these repeated events on soil microbial activity and biomass, and, hence, soil quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Duckweed diversity decreases heavy metal toxicity by altering the metabolic function of associated microbial communities.

    PubMed

    Zhao, Zhao; Shi, Huijuan; Liu, Cunqi; Kang, Xianjiang; Chen, Lingci; Liang, Xiaofei; Jin, Lei

    2018-07-01

    Mono-cultured and mix-cultured duckweed species were investigated with respect to the function of their associated microbial communities in heavy metal contaminated wastewater. Results show that the carbon source utilization patterns of the L. aequinoctialis- and S. polyrhiza-associated microbial communities were different. The relationships between microbial activity, antioxidant enzyme activity (CAT, GSH, and SOD) and growth was positive and significant. The microbial activity of L. aequinoctialis and S. polyrhiza in mixture was higher than in monoculture in low and high heavy metal, respectively, thereby altering the utilization of specific carbon source types and increasing duckweed growth and antioxidant enzyme activity, when compared to the monocultured duckweed. Furthermore, results indicate that duckweed species in mixture are protected from damage through regulation of the associated bacterial communities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Studies of Young Hawai'ian Lava Tubes: Implications for Planetary Habitability and Human Exploration

    NASA Technical Reports Server (NTRS)

    McAdam, Amy; Bleacher, Jacob; Young, Kelsey; Johnson, Sarah Stewart; Needham, Debra; Schmerr, Nicholas; Shiro, Brian; Garry, Brent; Whelley, Patrick; Knudson, Christine; hide

    2017-01-01

    Habitability: Subsurface environments may preserve records of habitability or biosignatures, with more stable environmental conditions compared to surface (e.g., smaller variations in temperature and humidity) and reduced exposure to radiation; Lava tubes are expected on Mars, and candidates are observed from orbit; Few detailed studies of microbial populations in terrestrial lava caves; Also contain a variety of secondary minerals; Microbial activity may play a role in mineral formation or be preserved in these minerals; Minerals can provide insight into fluids (e.g., pH, temperature).

  2. In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust.

    PubMed

    Salas, Everett C; Bhartia, Rohit; Anderson, Louise; Hug, William F; Reid, Ray D; Iturrino, Gerardo; Edwards, Katrina J

    2015-01-01

    The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 10(5) cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.

  3. Trace Metal Requirements for Microbial Enzymes Involved in the Production and Consumption of Methane and Nitrous Oxide

    PubMed Central

    Glass, Jennifer B.; Orphan, Victoria J.

    2011-01-01

    Fluxes of greenhouse gases to the atmosphere are heavily influenced by microbiological activity. Microbial enzymes involved in the production and consumption of greenhouse gases often contain metal cofactors. While extensive research has examined the influence of Fe bioavailability on microbial CO2 cycling, fewer studies have explored metal requirements for microbial production and consumption of the second- and third-most abundant greenhouse gases, methane (CH4), and nitrous oxide (N2O). Here we review the current state of biochemical, physiological, and environmental research on transition metal requirements for microbial CH4 and N2O cycling. Methanogenic archaea require large amounts of Fe, Ni, and Co (and some Mo/W and Zn). Low bioavailability of Fe, Ni, and Co limits methanogenesis in pure and mixed cultures and environmental studies. Anaerobic methane oxidation by anaerobic methanotrophic archaea (ANME) likely occurs via reverse methanogenesis since ANME possess most of the enzymes in the methanogenic pathway. Aerobic CH4 oxidation uses Cu or Fe for the first step depending on Cu availability, and additional Fe, Cu, and Mo for later steps. N2O production via classical anaerobic denitrification is primarily Fe-based, whereas aerobic pathways (nitrifier denitrification and archaeal ammonia oxidation) require Cu in addition to, or possibly in place of, Fe. Genes encoding the Cu-containing N2O reductase, the only known enzyme capable of microbial N2O conversion to N2, have only been found in classical denitrifiers. Accumulation of N2O due to low Cu has been observed in pure cultures and a lake ecosystem, but not in marine systems. Future research is needed on metalloenzymes involved in the production of N2O by enrichment cultures of ammonia oxidizing archaea, biological mechanisms for scavenging scarce metals, and possible links between metal bioavailability and greenhouse gas fluxes in anaerobic environments where metals may be limiting due to sulfide-metal scavenging. PMID:22363333

  4. Imaging Preferential Flow Pathways of Contaminants from Passive Acid Mine Drainage Mitigation Sites Using Electrical Resistivity

    NASA Astrophysics Data System (ADS)

    Kelley, N.; Mount, G.; Terry, N.; Herndon, E.; Singer, D. M.

    2017-12-01

    The Critical Zone represents the surficial and shallow layer of rock, air, water, and soil where most interactions between living organisms and the Earth occur. Acid mine drainage (AMD) resulting from coal extraction can influence both biological and geochemical processes across this zone. Conservative estimates suggest that more than 300 million gallons of AMD are released daily, making this acidic solution of water and contaminants a common issue in areas with legacy or current coal extraction. Electrical resistivity imaging (ERI) provides a rapid and minimally invasive method to identify and monitor contaminant pathways from AMD remediation systems in the subsurface of the Critical Zone. The technique yields spatially continuous data of subsurface resistivity that can be inverted to determine electrical conductivity as a function of depth. Since elevated concentrations of heavy metals can directly influence soil conductivity, ERI data can be used to trace the flow pathways or perhaps unknown mine conduits and transport of heavy metals through the subsurface near acid mine drainage sources. This study aims to examine preferential contaminant migration from those sources through substrate pores, fractures, and shallow mine workings in the near subsurface surrounding AMD sites in eastern Ohio and western Pennsylvania. We utilize time lapse ERI measures during different hydrologic conditions to better understand the variability of preferential flow pathways in relation to changes in stage and discharge within the remediation systems. To confirm ERI findings, and provide constraint to geochemical reactions occurring in the shallow subsurface, we conducted Inductively Coupled Plasma (ICP) spectrometry analysis of groundwater samples from boreholes along the survey transects. Through these combined methods, we can provide insight into the ability of engineered systems to contain and isolate metals in passive acid mine drainage treatment systems.

  5. Evidence of a dynamic microbial community structure and predation through combined microbiological and stable isotope characterization

    NASA Astrophysics Data System (ADS)

    Druhan, J. L.; Bill, M.; Lim, H. C.; Wu, C.; Conrad, M. E.; Williams, K. H.; DePaolo, D. J.; Brodie, E.

    2014-12-01

    The speciation, reactivity and mobility of carbon in the near surface environment is intimately linked to the prevalence, diversity and dynamics of native microbial populations. We utilize this relationship by introducing 13C-labeled acetate to sediments recovered from a shallow aquifer system to track both the cycling of carbon through multiple redox pathways and the associated spatial and temporal evolution of bacterial communities in response to this nutrient source. Results demonstrate a net loss of sediment organic carbon over the course of the amendment experiment. Furthermore, these data demonstrated a source of isotopically labeled inorganic carbon that was not attributable to primary metabolism by acetate-oxidizing microorganisms. Fluid samples analyzed weekly for microbial composition by pyrosequencing of ribosomal RNA genes showed a transient microbial community structure, with distinct occurrences of Azoarcus, Geobacter and multiple sulfate reducing species over the course of the experiment. In combination with DNA sequencing data, the anomalous carbon cycling process is shown to occur exclusively during the period of predominant Geobacter species growth. Pyrosequencing indicated, and targeted cloning and sequencing confirmed the presence of several bacteriovorous protozoa, including species of the Breviata, Planococcus and Euplotes genera. Cloning and qPCR analysis demonstrated that Euplotes species were most abundant and displayed a growth trajectory that closely followed that of the Geobacter population. These results suggest a previously undocumented secondary turnover of biomass carbon related to protozoan grazing that was not sufficiently prevalent to be observed in bulk concentrations of carbon species in the system, but was clearly identifiable in the partitioning of carbon isotopes. The impact of predator-prey relationships on subsurface microbial community dynamics and therefore the flux of carbon through a system via the microbial biomass pool suggests a diversity of processes that should be considered for inclusion in reactive transport models that aim to predict carbon turnover, nutrient flux, and redox reactions in natural and stimulated subsurface systems.

  6. Composition and functional diversity of microbial community across a mangrove-inhabited mudflat as revealed by 16S rDNA gene sequences.

    PubMed

    Zhang, Xiaoying; Hu, Bill X; Ren, Hejun; Zhang, Jin

    2018-08-15

    The gradient distribution of microbial communities has been detected in profiles along many natural environments. In a mangrove seedlings inhabited mudflat, the microbes drive a variety of biogeochemical processes and are associated with a dramatically changed environment across the tidal zones of mudflat. A better understanding of microbial composition, diversity and associated functional profiles in relation to physicochemical influences could provide more insights into the ecological functions of microbes in a coastal mangrove ecosystem. In this study, the variation of microbial community along successive tidal flats inhabited by mangrove seedlings were characterized based on the 16S rDNA gene sequences, and then the factors that shape the bacterial and archaeal communities were determined. Results showed that the tidal cycles strongly influence the distribution of bacterial and archaeal communities. Dissimilarity and gradient distribution of microbial communities were found among high tidal flat, mid-low tidal flat and seawater. Discrepancies were also as well observed from the surface to subsurface layers specifically in the high tidal flat. For example, Alphaproteobacteria displayed an increasing trend from low tidal to high tidal flat and vice versa for Deltaproteobacteria; Cyanobacteria and Thaumarchaeota were more dominant in the surface layer than the subsurface. In addition, by classifying the microorganisms into metabolic functional groups, we were able to identify the biogeochemical pathway that was dominant in each zone. The (oxygenic) photoautotrophy and nitrate reduction were enhanced in the mangrove inhabited mid tidal flat. It revealed the ability of xenobiotic metabolism microbes to degrade, transform, or accumulate environmental hydrocarbon pollutants in seawater, increasing sulfur-related respiration from high tidal to low tidal flat. An opposite distribution was found for major nitrogen cycling processes. The shift of both composition and function of microbial communities were significantly related to light, oxygen availability and total dissolved nitrogen instead of sediment types or salinity. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Radiochemically-Supported Microbial Communities: A Potential Mechanism for Biocolloid Production of Importance to Actinide Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Duane P.; Hamilton-Brehm, Scott D.; Fisher, Jenny C.

    Due to the legacy of Cold War nuclear weapons testing, the Nevada National Security Site (NNSS, formerly known as the Nevada Test Site (NTS)) contains millions of Curies of radioactive contamination. Presented here is a summary of the results of the first comprehensive study of subsurface microbial communities of radioactive and nonradioactive aquifers at this site. To achieve the objectives of this project, cooperative actions between the Desert Research Institute (DRI), the Nevada Field Office of the National Nuclear Security Administration (NNSA), the Underground Test Area Activity (UGTA), and contractors such as Navarro-Interra (NI), were required. Ultimately, fluids from 17more » boreholes and two water-filled tunnels were sampled (sometimes on multiple occasions and from multiple depths) from the NNSS, the adjacent Nevada Test and Training Range (NTTR), and a reference hole in the Amargosa Valley near Death Valley. The sites sampled ranged from highly-radioactive nuclear device test cavities to uncontaminated perched and regional aquifers. Specific areas sampled included recharge, intermediate, and discharge zones of a 100,000-km2 internally-draining province, known as the Death Valley Regional Flow System (DVRFS), which encompasses the entirety of the NNSS/NTTR and surrounding areas. Specific geological features sampled included: West Pahute and Ranier Mesas (recharge zone), Yucca and Frenchman Flats (transitional zone), and the Western edge of the Amargosa Valley near Death Valley (discharge zone). The original overarching question underlying the proposal supporting this work was stated as: Can radiochemically-produced substrates support indigenous microbial communities and subsequently stimulate biocolloid formation that can affect radionuclides in NNSS subsurface nuclear test/detonation sites? Radioactive and non-radioactive groundwater samples were thus characterized for physical parameters, aqueous geochemistry, and microbial communities using both DNA- and cultivation-based tools in an effort to understand the drivers of microbial community structure (including radioactivity) and microbial interactions with select radionuclides and other factors across the range of habitats surveyed.« less

  8. Sources and fates of heavy metals in a mining-impacted stream: Temporal variability and the role of iron oxides

    PubMed Central

    Schaider, Laurel A.; Senn, David B.; Estes, Emily R.; Brabander, Daniel J.; Shine, James P.

    2014-01-01

    Heavy metal contamination of surface waters at mining sites often involves complex interactions of multiple sources and varying biogeochemical conditions. We compared surface and subsurface metal loading from mine waste pile runoff and mine drainage discharge and characterized the influence of iron oxides on metal fate along a 0.9-km stretch of Tar Creek (Oklahoma, USA), which drains an abandoned Zn/Pb mining area. The importance of each source varied by metal: mine waste pile runoff contributed 70% of Cd, while mine drainage contributed 90% of Pb, and both sources contributed similarly to Zn loading. Subsurface inputs accounted for 40% of flow and 40-70% of metal loading along this stretch. Streambed iron oxide aggregate material contained highly elevated Zn (up to 27,000 μg g−1), Pb (up to 550 μg g−1) and Cd (up to 200 μg g−1) and was characterized as a heterogeneous mixture of iron oxides, fine-grain mine waste, and organic material. Sequential extractions confirmed preferential sequestration of Pb by iron oxides, as well as substantial concentrations of Zn and Cd in iron oxide fractions, with additional accumulation of Zn, Pb, and Cd during downstream transport. Comparisons with historical data show that while metal concentrations in mine drainage have decreased by more than an order of magnitude in recent decades, the chemical composition of mine waste pile runoff has remained relatively constant, indicating less attenuation and increased relative importance of pile runoff. These results highlight the importance of monitoring temporal changes at contaminated sites associated with evolving speciation and simultaneously addressing surface and subsurface contamination from both mine waste piles and mine drainage. PMID:24867708

  9. Trace Metals in Groundwater & the Vadose Zone Calcite: In Situ Containment & Stabilization of Strontium-90 & Other Divalent Metals & Radionuclides at Arid West DOE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Robert W.

    2004-12-01

    Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., strontium-90) by their facilitated co-precipitation with calcium carbonate in groundwater and vadose zonemore » systems. Our facilitated approach, shown schematically in Figure 1, relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from the aqueous phase over the long-term. Another advantage of the ureolysis approach is that the ammonium ions produced by the reaction can exchange with radionuclides sorbed to subsurface minerals, thereby enhancing the availability of the radionuclides for re-capture in a more stable solid phase (co-precipitation rather than adsorption).« less

  10. Succession in the petroleum reservoir microbiome through an oil field production lifecycle

    DOE PAGES

    Vigneron, Adrien; Alsop, Eric B.; Lomans, Bartholomeus P.; ...

    2017-05-19

    Subsurface petroleum reservoirs are an important component of the deep biosphere where indigenous microorganisms live under extreme conditions and in isolation from the Earth's surface for millions of years. However, unlike the bulk of the deep biosphere, the petroleum reservoir deep biosphere is subject to extreme anthropogenic perturbation, with the introduction of new electron acceptors, donors and exogenous microbes during oil exploration and production. Despite the fundamental and practical significance of this perturbation, there has never been a systematic evaluation of the ecological changes that occur over the production lifetime of an active offshore petroleum production system. Analysis of themore » entire Halfdan oil field in the North Sea (32 producing wells in production for 1-15 years) using quantitative PCR, multigenic sequencing, comparative metagenomic and genomic bins reconstruction revealed systematic shifts in microbial community composition and metabolic potential, as well as changing ecological strategies in response to anthropogenic perturbation of the oil field ecosystem, related to length of time in production. The microbial communities were initially dominated by slow growing anaerobes such as members of the Thermotogales and Clostridiales adapted to living on hydrocarbons and complex refractory organic matter. However, as seawater and nitrate injection (used for secondary oil production) delivered oxidants, the microbial community composition progressively changed to fast growing opportunists such as members of the Deferribacteres, Delta-, Epsilon- and Gammaproteobacteria, with energetically more favorable metabolism (for example, nitrate reduction, H2S, sulfide and sulfur oxidation). This perturbation has profound consequences for understanding the microbial ecology of the system and is of considerable practical importance as it promotes detrimental processes such as reservoir souring and metal corrosion. These findings provide a new conceptual framework for understanding the petroleum reservoir biosphere and have consequences for developing strategies to manage microbiological problems in the oil industry.« less

  11. Succession in the petroleum reservoir microbiome through an oil field production lifecycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigneron, Adrien; Alsop, Eric B.; Lomans, Bartholomeus P.

    Subsurface petroleum reservoirs are an important component of the deep biosphere where indigenous microorganisms live under extreme conditions and in isolation from the Earth's surface for millions of years. However, unlike the bulk of the deep biosphere, the petroleum reservoir deep biosphere is subject to extreme anthropogenic perturbation, with the introduction of new electron acceptors, donors and exogenous microbes during oil exploration and production. Despite the fundamental and practical significance of this perturbation, there has never been a systematic evaluation of the ecological changes that occur over the production lifetime of an active offshore petroleum production system. Analysis of themore » entire Halfdan oil field in the North Sea (32 producing wells in production for 1-15 years) using quantitative PCR, multigenic sequencing, comparative metagenomic and genomic bins reconstruction revealed systematic shifts in microbial community composition and metabolic potential, as well as changing ecological strategies in response to anthropogenic perturbation of the oil field ecosystem, related to length of time in production. The microbial communities were initially dominated by slow growing anaerobes such as members of the Thermotogales and Clostridiales adapted to living on hydrocarbons and complex refractory organic matter. However, as seawater and nitrate injection (used for secondary oil production) delivered oxidants, the microbial community composition progressively changed to fast growing opportunists such as members of the Deferribacteres, Delta-, Epsilon- and Gammaproteobacteria, with energetically more favorable metabolism (for example, nitrate reduction, H2S, sulfide and sulfur oxidation). This perturbation has profound consequences for understanding the microbial ecology of the system and is of considerable practical importance as it promotes detrimental processes such as reservoir souring and metal corrosion. These findings provide a new conceptual framework for understanding the petroleum reservoir biosphere and have consequences for developing strategies to manage microbiological problems in the oil industry.« less

  12. Impact of sources of environmental degradation on microbial community dynamics in non-polluted and metal-polluted soils.

    PubMed

    Epelde, Lur; Martín-Sánchez, Iker; González-Oreja, José A; Anza, Mikel; Gómez-Sagasti, María T; Garbisu, Carlos

    2012-09-01

    Soils are currently being degraded at an alarming rate due to increasing pressure from different sources of environmental degradation. Consequently, we carried out a 4-month microcosm experiment to measure the impact of different sources of environmental degradation (biodiversity loss, nitrogen deposition and climate change) on soil health in a non-polluted (non-degraded) and a heavily metal-polluted (degraded) soil, and to compare their responses. To this aim, we determined a variety of soil microbial properties with potential as bioindicators of soil health: basal respiration; β-glucosaminidase and protease activities; abundance (Q-PCR) of bacterial, fungal and chitinase genes; richness (PCR-DGGE) of fungal and chitinase genes. Non-polluted and metal-polluted soils showed different response microbial dynamics when subjected to sources of environmental degradation. The non-polluted soil appeared resilient to "biodiversity loss" and "climate change" treatments. The metal-polluted soil was probably already too severely affected by the presence of high levels of toxic metals to respond to other sources of stress. Our data together suggests that soil microbial activity and biomass parameters are more sensitive to the applied sources of environmental degradation, showing immediate responses of greater magnitude, while soil microbial diversity parameters do not show such variations. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shales

    PubMed Central

    Booker, Anne E.; Borton, Mikayla A.; Daly, Rebecca A.; Welch, Susan A.; Nicora, Carrie D.; Hoyt, David W.; Wilson, Travis; Purvine, Samuel O.; Wolfe, Richard A.; Sharma, Shikha; Mouser, Paula J.; Cole, David R.; Lipton, Mary S.; Wrighton, Kelly C.

    2017-01-01

    ABSTRACT Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance of Halanaerobium strains within the in situ microbial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by a Halanaerobium strain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis of Halanaerobium isolate genomes and reconstructed genomes from metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using a Halanaerobium isolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentative Halanaerobium uses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics. IMPORTANCE Although thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our research demonstrates that dominant microbial populations in these subsurface ecosystems contain the conserved capacity for the reduction of thiosulfate to sulfide and that this process is likely occurring in the environment. Sulfide generation (also known as “souring”) is considered deleterious in the oil and gas industry because of both toxicity issues and impacts on corrosion of the subsurface infrastructure. Critically, the capacity for sulfide generation via reduction of sulfate was not detected in our data sets. Given that current industry wellhead tests for sulfidogenesis target canonical sulfate-reducing microorganisms, these data suggest that new approaches to the detection of sulfide-producing microorganisms may be necessary. PMID:28685163

  14. Where microorganisms meet rocks in the Earth's Critical Zone

    NASA Astrophysics Data System (ADS)

    Akob, D. M.; Küsel, K.

    2011-03-01

    The Earth's Critical Zone (CZ) is the critical, outer shell of the Earth that provides an arena for the interplay of diverse physical, chemical, and biological processes that are fundamental for sustaining life. As microbes are the principle drivers of biogeochemical cycles, it is necessary to understand the biodiversity of the CZ unseen majority and their impact on life-sustaining processes. This review aims to summarize the factors controlling where microbes (prokaryotes and micro-eukaryotes) live within the CZ and what is known to date about their diversity and function. Microbes live in all regions of the CZ down to 5 km depth, but due to changing habitat complexity, e.g., variability in pore spaces, water, oxygen, and nutrients, their functional role changes with depth. The abundance of prokaryotes and micro-eukaryotes decreases from a maximum of 1010 or 107 cells g soil-1 up to eight orders of magnitude with depth. Symbiotic mycorrhizal fungi and free-living decomposers are best understood in soil habitats, where they are up to 103 cells g soil-1. However, little is known about their identity and impact on weathering in the deep subsurface. The relatively low abundance of micro-eukaryotes in the deep subsurface suggests that these organisms are either limited in space or nutrients or unable to cope with oxygen limitations. Since deep regions of the CZ are limited in the recent input of photosynthesis-derived carbon, microbes are dependent on deposited organic material or on chemolithoautotrophic metabolism that allows for the establishment of a complete food chain independent from the surface. However, the energy flux available might only allow cell growth over tens to thousands of years. The recent development of "omics" technologies has provided microbial ecologists with methods to link the composition and function of in situ microbial communities. We should expect new metabolic discoveries as we have a closer look utilizing a polyphasic approach into the microbial communities of the CZ. Thus, future work is still needed to link microbial biodiversity to the exact role of microbes in weathering and geochemical cycling in the CZ, especially in subsurface habitats.

  15. Mineralizing Filamentous Bacteria from the Prony Bay Hydrothermal Field Give New Insights into the Functioning of Serpentinization-Based Subseafloor Ecosystems

    PubMed Central

    Pisapia, Céline; Gérard, Emmanuelle; Gérard, Martine; Lecourt, Léna; Lang, Susan Q.; Pelletier, Bernard; Payri, Claude E.; Monnin, Christophe; Guentas, Linda; Postec, Anne; Quéméneur, Marianne; Erauso, Gaël; Ménez, Bénédicte

    2017-01-01

    Despite their potential importance as analogs of primitive microbial metabolisms, the knowledge of the structure and functioning of the deep ecosystems associated with serpentinizing environments is hampered by the lack of accessibility to relevant systems. These hyperalkaline environments are depleted in dissolved inorganic carbon (DIC), making the carbon sources and assimilation pathways in the associated ecosystems highly enigmatic. The Prony Bay Hydrothermal Field (PHF) is an active serpentinization site where, similar to Lost City (Mid-Atlantic Ridge), high-pH fluids rich in H2 and CH4 are discharged from carbonate chimneys at the seafloor, but in a shallower lagoonal environment. This study aimed to characterize the subsurface microbial ecology of this environment by focusing on the earliest stages of chimney construction, dominated by the discharge of hydrothermal fluids of subseafloor origin. By jointly examining the mineralogy and the microbial diversity of the conduits of juvenile edifices at the micrometric scale, we find a central role of uncultivated bacteria belonging to the Firmicutes in the ecology of the PHF. These bacteria, along with members of the phyla Acetothermia and Omnitrophica, are identified as the first chimneys inhabitants before archaeal Methanosarcinales. They are involved in the construction and early consolidation of the carbonate structures via organomineralization processes. Their predominance in the most juvenile and nascent hydrothermal chimneys, and their affiliation with environmental subsurface microorganisms, indicate that they are likely discharged with hydrothermal fluids from the subseafloor. They may thus be representative of endolithic serpentinization-based ecosystems, in an environment where DIC is limited. In contrast, heterotrophic and fermentative microorganisms may consume organic compounds from the abiotic by-products of serpentinization processes and/or from life in the deeper subsurface. We thus propose that the Firmicutes identified at PHF may have a versatile metabolism with the capability to use diverse organic compounds from biological or abiotic origin. From that perspective, this study sheds new light on the structure of deep microbial communities living at the energetic edge in serpentinites and may provide an alternative model of the earliest metabolisms. PMID:28197130

  16. Mineralizing Filamentous Bacteria from the Prony Bay Hydrothermal Field Give New Insights into the Functioning of Serpentinization-Based Subseafloor Ecosystems.

    PubMed

    Pisapia, Céline; Gérard, Emmanuelle; Gérard, Martine; Lecourt, Léna; Lang, Susan Q; Pelletier, Bernard; Payri, Claude E; Monnin, Christophe; Guentas, Linda; Postec, Anne; Quéméneur, Marianne; Erauso, Gaël; Ménez, Bénédicte

    2017-01-01

    Despite their potential importance as analogs of primitive microbial metabolisms, the knowledge of the structure and functioning of the deep ecosystems associated with serpentinizing environments is hampered by the lack of accessibility to relevant systems. These hyperalkaline environments are depleted in dissolved inorganic carbon (DIC), making the carbon sources and assimilation pathways in the associated ecosystems highly enigmatic. The Prony Bay Hydrothermal Field (PHF) is an active serpentinization site where, similar to Lost City (Mid-Atlantic Ridge), high-pH fluids rich in H 2 and CH 4 are discharged from carbonate chimneys at the seafloor, but in a shallower lagoonal environment. This study aimed to characterize the subsurface microbial ecology of this environment by focusing on the earliest stages of chimney construction, dominated by the discharge of hydrothermal fluids of subseafloor origin. By jointly examining the mineralogy and the microbial diversity of the conduits of juvenile edifices at the micrometric scale, we find a central role of uncultivated bacteria belonging to the Firmicutes in the ecology of the PHF. These bacteria, along with members of the phyla Acetothermia and Omnitrophica , are identified as the first chimneys inhabitants before archaeal Methanosarcinales . They are involved in the construction and early consolidation of the carbonate structures via organomineralization processes. Their predominance in the most juvenile and nascent hydrothermal chimneys, and their affiliation with environmental subsurface microorganisms, indicate that they are likely discharged with hydrothermal fluids from the subseafloor. They may thus be representative of endolithic serpentinization-based ecosystems, in an environment where DIC is limited. In contrast, heterotrophic and fermentative microorganisms may consume organic compounds from the abiotic by-products of serpentinization processes and/or from life in the deeper subsurface. We thus propose that the Firmicutes identified at PHF may have a versatile metabolism with the capability to use diverse organic compounds from biological or abiotic origin. From that perspective, this study sheds new light on the structure of deep microbial communities living at the energetic edge in serpentinites and may provide an alternative model of the earliest metabolisms.

  17. Microbial Communities in Subpermafrost Saline Fracture Water at the Lupin Au Mine, Nunavut, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onstott, Tullis; McGown, Daniel; Bakermans, Corien

    2009-01-01

    We report the first investigation of a deep subpermafrost microbial ecosystem, a terrestrial analog for the Martian subsurface. Our multidisciplinary team analyzed fracture water collected at 890 and 1,130 m depths beneath a 540-m-thick permafrost layer at the Lupin Au mine (Nunavut, Canada). 14C, 3H, and noble gas isotope analyses suggest that the Na Ca Cl, suboxic, fracture water represents a mixture of geologically ancient brine, ~25-kyr-old, meteoric water and a minor modern talik-water component. Microbial planktonic concentrations were ~103 cells mL 1. Analysis of the 16S rRNA gene from extracted DNA and enrichment cultures revealed 42 unique operational taxonomicmore » units in 11 genera with Desulfosporosinus, Halothiobacillus, and Pseudomonas representing the most prominent phylotypes and failed to detect Archaea. The abundance of terminally branched and midchain-branched saturated fatty acids (5 to 15 mol%) was consistent with the abundance of Grampositive bacteria in the clone libraries. Geochemical data, the ubiquinone (UQ) abundance (3 to 11 mol%), and the presence of both aerobic and anaerobic bacteria indicated that the environment was suboxic, not anoxic. Stable sulfur isotope analyses of the fracture water detected the presence of microbial sulfate reduction, and analyses of the vein-filling pyrite indicated that it was in isotopic equilibrium with the dissolved sulfide. Free energy calculations revealed that sulfate reduction and sulfide oxidation via denitrification and not methanogenesis were the most thermodynamically viable consistent with the principal metabolisms inferred from the 16S rRNA community composition and with CH4 isotopic compositions. The sulfate-reducing bacteria most likely colonized the subsurface during the Pleistocene or earlier, whereas aerobic bacteria may have entered the fracture water networks either during deglaciation prior to permafrost formation 9,000 years ago or from the nearby talik through the hydrologic gradient created during mine dewatering. Although the absence of methanogens from this subsurface ecosystem is somewhat surprising, it may be attributable to an energy bottleneck that restricts their migration from surface permafrost deposits where they are frequently reported. These results have implications for the biological origin of CH4 on Mars.« less

  18. Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals.

    PubMed

    Thavamani, Palanisami; Malik, Seidu; Beer, Michael; Megharaj, Mallavarapu; Naidu, Ravi

    2012-05-30

    The co-occurrence of polyaromatic hydrocarbons (PAHs) with heavy metals and their effect on soil microbial activity have not been systematically investigated. In this study a holistic approach was employed by combining physico-chemical, biological and advanced molecular methods to determine the soil microbial activities of long-term mixed contaminated soils collected from a former manufactured gas plant (MGP) site. Concentrations of PAHs in MGP soils ranged from 335 to 8645 mg/kg. Of the potentially toxic metals, concentrations of lead were found to be highest, ranging from 88 to 671 mg/kg, cadmium 8 to 112 mg/kg, while zinc varied from 64 to 488 mg/kg. The enzyme activities were severely inhibited in soils that were contaminated with both PAHs and heavy metals. The presence of heavy metals in PAH-contaminated soils not only reduced the diversity of microbial population but also showed a few distinctive species by exerting selective pressure. The multivariate analysis revealed that there is an association between PAHs and heavy metals which influenced biological properties in mixed contaminated soils. The findings of this study have major implications for the bioremediation of organic pollutants in metal-organic mixed contaminated sites. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Technical Challenges of Drilling on Mars

    NASA Technical Reports Server (NTRS)

    Briggs, Geoffrey; Gross, Anthony; Condon, Estelle (Technical Monitor)

    2002-01-01

    In the last year, NASA's Mars science advisory committee (MEPAG: Mars Exploration Payload Advisory Group) has formally recommended that deep drilling be undertaken as a priority investigation to meet astrobiology and geology goals. This proposed new dimension in Mars exploration has come about for several reasons. Firstly, geophysical models of the martian subsurface environment indicate that we may well find liquid water (in the form of brines) under ground-ice at depths of several kilometers near the equator. On Earth we invariably find life forms associated with any environmental niche that supports liquid water. New data from the Mars Global Surveyor have shown that the most recent volcanism on Mars is very young so we cannot rule out contemporary volcanism -- in which case subsurface temperatures consistent with having water in its liquid phase may be found at relatively shallow depths. Secondly, in recent decades we have learned to our surprise that the Earth's subsurface (microbial) biosphere extends to depths of many kilometers and this discovery provides the basis for planning to explore the martian subsurface in search of ancient or even extant microbial life forms. We know (from Viking measurements) that all the biogenic elements (C, H, O, N, P, S) are available on Mars. What we therefore hope to learn is whether or not the evolution of life is inevitable given the necessary ingredients and, by implication, whether the Universe may be teeming with life. The feasibility of drilling deep into the surface of Mars has been the subject of increasing attention within NASA (and more recently among some of its international partners) for several years and this led to a broad-based feasibility study carried out by the Los Alamos National Laboratory and, subsequently, to the development of several hardware prototypes. This paper is intended to provide a general survey of that activity.

  20. Selective phylogenetic analysis targeting 16S rRNA genes of hyperthermophilic archaea in the deep-subsurface hot biosphere.

    PubMed

    Kimura, Hiroyuki; Ishibashi, Jun-Ichiro; Masuda, Harue; Kato, Kenji; Hanada, Satoshi

    2007-04-01

    International drilling projects for the study of microbial communities in the deep-subsurface hot biosphere have been expanded. Core samples obtained by deep drilling are commonly contaminated with mesophilic microorganisms in the drilling fluid, making it difficult to examine the microbial community by 16S rRNA gene clone library analysis. To eliminate mesophilic organism contamination, we previously developed a new method (selective phylogenetic analysis [SePA]) based on the strong correlation between the guanine-plus-cytosine (G+C) contents of the 16S rRNA genes and the optimal growth temperatures of prokaryotes, and we verified the method's effectiveness (H. Kimura, M. Sugihara, K. Kato, and S. Hanada, Appl. Environ. Microbiol. 72:21-27, 2006). In the present study we ascertained SePA's ability to eliminate contamination by archaeal rRNA genes, using deep-sea hydrothermal fluid (117 degrees C) and surface seawater (29.9 degrees C) as substitutes for deep-subsurface geothermal samples and drilling fluid, respectively. Archaeal 16S rRNA gene fragments, PCR amplified from the surface seawater, were denatured at 82 degrees C and completely digested with exonuclease I (Exo I), while gene fragments from the deep-sea hydrothermal fluid remained intact after denaturation at 84 degrees C because of their high G+C contents. An examination using mixtures of DNAs from the two environmental samples showed that denaturation at 84 degrees C and digestion with Exo I completely eliminated archaeal 16S rRNA genes from the surface seawater. Our method was quite useful for culture-independent community analysis of hyperthermophilic archaea in core samples recovered from deep-subsurface geothermal environments.

  1. Progression of methanogenic degradation of crude oil in the subsurface

    USGS Publications Warehouse

    Bekins, B.A.; Hostettler, F.D.; Herkelrath, W.N.; Delin, G.N.; Warren, E.; Essaid, H.I.

    2005-01-01

    Our results show that subsurface crude-oil degradation rates at a long-term research site were strongly influenced by small-scale variations in hydrologic conditions. The site is a shallow glacial outwash aquifer located near Bemidji in northern Minnesota that became contaminated when oil spilled from a broken pipeline in August 1979. In the study area, separate-phase oil forms a subsurface oil body extending from land surface to about 1 m (3.3 ft) below the 6-8-m (20-26 ft)-deep water table. Oil saturation in the sediments ranges from 10-20% in the vadose zone to 30-70% near the water table. At depths below 2 m (6.6 ft), degradation of the separate-phase crude oil occurs under methanogenic conditions. The sequence of methanogenic alkane degradation depletes the longer chain n-alkanes before the shorter chain n-alkanes, which is opposite to the better known aerobic sequence. The rates of degradation vary significantly with location in the subsurface. Oil-coated soils within 1.5 m (5 ft) of land surface have experienced little degradation where soil water saturation is less than 20%. Oil located 2-8 m (6.6-26 ft) below land surface in areas of higher recharge has been substantially degraded. The best explanation for the association between recharge and enhanced degradation seems to be increased downward transport of microbial growth nutrients to the oil body. This is supported by observations of greater microbial numbers at higher elevations in the oil body and significant decreases with depth in nutrient concentrations, especially phosphorus. Our results suggest that environmental effects may cause widely diverging degradation rates in the same spill, calling into question dating methods based on degradation state. Copyright ?? 2005. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  2. Anoxia stimulates microbially catalyzed metal release from Animas River sediments.

    PubMed

    Saup, Casey M; Williams, Kenneth H; Rodríguez-Freire, Lucía; Cerrato, José M; Johnston, Michael D; Wilkins, Michael J

    2017-04-19

    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amended with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2- -reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.

  3. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments.

    PubMed

    Lee, Sang-Hwan; Lee, Jin-Soo; Choi, Youn Jeong; Kim, Jeong-Gyu

    2009-11-01

    Chemical stabilization is an in situ remediation method that uses inexpensive amendments to reduce contaminant availability in polluted soil. We tested the effects of several amendments (limestone, red-mud, and furnace slag) on the extractability of heavy metals, microbial activities, phytoavailability of soil metals (assessed using lettuce, Lactuca sativa L.), and availability of heavy metals in ingested soil to the human gastrointestinal system (assessed using the physiologically based extraction test). The application of soil amendments significantly decreased the amount of soluble and extractable heavy metals in the soil (p<0.05). The decreased extractable metal content of soil was accompanied by increased microbial activity and decreased plant uptake of heavy metals. Soil microbial activities (soil respiration, urease, and dehydrogenase activity) significantly increased in limestone and red-mud-amended soils. Red-mud was the most effective treatment in decreasing heavy-metal concentrations in lettuce. Compared to non-amended control soil, lettuce uptake of Cd, Pb, and Zn was reduced 86%, 58%, and 73%, respectively, by the addition of red-mud.

  4. MODELING MICROBIAL TRANSPORT IN SOIL AND GROUNDWATER: MICROBIOLOGISTS CAN ASSIST IN THE DEVELOPMENT OF MODELS OF CONTAMINANT TRANSPORT

    EPA Science Inventory

    A large body of literature describes the processes affecting the fate of microorganisms in the subsurface environment (i.e., soil and groundwater). The fate of microorganisms depends on two main components: survival and transport. other components must be considered when determin...

  5. In situ biofilm coupon device

    DOEpatents

    Peyton, B.M.; Truex, M.J.

    1997-06-24

    An apparatus is disclosed for characterization of in-situ microbial biofilm populations in subsurface groundwater. The device permits biofilm-forming microorganisms to adhere to packing material while emplaced in a groundwater strata, so that the packing material can be later analyzed for quantity and type of microorganisms, growth rate, and nutrient requirements. 3 figs.

  6. Sustained removal of uranium from contaminated groundwater following stimulation of dissimilatory metal reduction.

    PubMed

    N'Guessan, A Lucie; Vrionis, Helen A; Resch, Charles T; Long, Philip E; Lovley, Derek R

    2008-04-15

    Previous field studies on in situ bioremediation of uranium-contaminated groundwater in an aquifer in Rifle, Colorado identified two distinct phases following the addition of acetate to stimulate microbial respiration. In phase I, Geobacter species are the predominant organisms, Fe(III) is reduced, and microbial reduction of soluble U(VI) to insoluble U(IV) removes uranium from the groundwater. In phase II, Fe(III) is depleted, sulfate is reduced, and sulfate-reducing bacteria predominate. Long-term monitoring revealed an unexpected third phase during which U(VI) removal continues even after acetate additions are stopped. All three of these phases were successfully reproduced in flow-through sediment columns. When sediments from the third phase were heat sterilized, the capacity for U(VI) removal was lost. In the live sediments U(VI) removed from the groundwater was recovered as U(VI) in the sediments. This contrasts to the recovery of U(IV) in sediments resulting from the reduction of U(VI) to U(IV) during the Fe(III) reduction phase in acetate-amended sediments. Analysis of 16S rRNA gene sequences in the sediments in which U(VI) was being adsorbed indicated that members of the Firmicutes were the predominant organisms whereas no Firmicutes sequences were detected in background sediments which did not have the capacity to sorb U(VI), suggesting that the U(VI) adsorption might be due to the presence of these living organisms or at least their intact cell components. This unexpected enhanced adsorption of U(VI) onto sediments following the stimulation of microbial growth in the subsurface may potentially enhance the cost effectiveness of in situ uranium bioremediation.

  7. Self-sustained reduction of multiple metals in a microbial fuel cell-microbial electrolysis cell hybrid system.

    PubMed

    Li, Yan; Wu, Yining; Liu, Bingchuan; Luan, Hongwei; Vadas, Timothy; Guo, Wanqian; Ding, Jie; Li, Baikun

    2015-09-01

    A self-sustained hybrid bioelectrochemical system consisting of microbial fuel cell (MFC) and microbial electrolysis cell (MEC) was developed to reduce multiple metals simultaneously by utilizing different reaction potentials. Three heavy metals representing spontaneous reaction (chromium, Cr) and unspontaneous reaction (lead, Pb and nickel, Ni) were selected in this batch-mode study. The maximum power density of the MFC achieved 189.4 mW m(-2), and the energy recovery relative to the energy storage circuit (ESC) was ∼ 450%. At the initial concentration of 100 mg L(-1), the average reduction rate of Cr(VI) was 30.0 mg L(-1) d(-1), Pb(II) 32.7 mg L(-1) d(-1), and Ni(II) 8.9 mg L(-1) d(-1). An electrochemical model was developed to predict the change of metal concentration over time. The power output of the MFC was sufficient to meet the requirement of the ESC and MEC, and the "self-sustained metal reduction" was achieved in this hybrid system. Published by Elsevier Ltd.

  8. The biogeochemistry of metal cycling

    NASA Technical Reports Server (NTRS)

    Nealson, Kenneth H. (Editor); Nealson, Molly (Editor); Dutcher, F. Ronald (Editor)

    1990-01-01

    The results of the Planetary Biology and Microbial Ecology's summer 1987 program are summarized. The purpose of the interdisciplinary PBME program is to integrate, via lectures and laboratory work, the contributions of university and NASA scientists and student interns. The 1987 program examined various aspects of the biogeochemistry of metal cycling, and included such areas as limnology, metal chemistry, metal geochemistry, microbial ecology, and interactions with metals. A particular area of focus was the use of remote sensing in the study of biogeochemistry. Abstracts and bibliographies of the lectures and reports of the laboratory projects are presented.

  9. Trace Element and Cu Isotopic Tracers of Subsurface Flow and Transport in Wastewater Irrigated Soils

    NASA Astrophysics Data System (ADS)

    Carte, J.; Fantle, M. S.

    2017-12-01

    An understanding of subsurface flow paths is critical for quantifying the fate of contaminants in wastewater irrigation systems. This study investigates the subsurface flow of wastewater by quantifying the distribution of trace contaminants in wastewater irrigated soils. Soil samples were collected from the upper 1m of two wetlands at Penn State University's wastewater irrigation site, at which all effluent from the University's wastewater treatment plant has been sprayed since 1983. Major and trace element and Cu isotopic composition were determined for these samples, in addition to wastewater effluent and bedrock samples. The upper 20 cm of each wetland shows an enrichment of Bi, Cd, Cr, Cu, Mo, Ni, Pb, and Zn concentrations relative to deep (>1m) soils at the site by a factor of 1.7-3.5. Each wetland also has a subsurface clay rich horizon with Bi, Cu, Li, Ni, Pb, and Zn concentrations enriched by a factor of 1.4 to 5 relative to deep soils. These subsurface horizons directly underlie intervals that could facilitate preferential effluent flow: a gravel layer in one wetland, and a silty loam with visible mottling, an indication of dynamic water saturation, in the other. Trace metal concentrations in other horizons from both wetlands fall in the range of the deep soils. Significant variability in Cu isotopic composition is present in soils from both wetlands, with δ65Cu values ranging from 0.74‰ to 5.09‰. Soil δ65Cu correlates well with Cu concentrations, with lighter δ65Cu associated with higher concentrations. The Cu isotopic composition of the zones of metal enrichment are comparable to the ostensible average wastewater effluent δ65Cu value (0.61‰), while other horizons have considerably heavier δ65Cu values. We hypothesize that wastewater is the source of the metal enrichments, as each of the enriched elements are present as contaminants in wastewater, and the enrichments are located in clay-rich horizons conducive to trace metal immobilization due to adsorption. This hypothesis will be further tested by modeling with the reactive transport code CrunchTope. This study provides evidence that trace element and isotopic composition of soils can be useful tracers of subsurface hydrologic pathways and elemental fate and transport.

  10. Effects of forest conversion on soil microbial communities depend on soil layer on the eastern Tibetan Plateau of China.

    PubMed

    He, Ruoyang; Yang, Kaijun; Li, Zhijie; Schädler, Martin; Yang, Wanqin; Wu, Fuzhong; Tan, Bo; Zhang, Li; Xu, Zhenfeng

    2017-01-01

    Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT). Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA), respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus), microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion.

  11. Microbial-mediated method for metal oxide nanoparticle formation

    DOEpatents

    Rondinone, Adam J.; Moon, Ji Won; Love, Lonnie J.; Yeary, Lucas W.; Phelps, Tommy J.

    2015-09-08

    The invention is directed to a method for producing metal oxide nanoparticles, the method comprising: (i) subjecting a combination of reaction components to conditions conducive to microbial-mediated formation of metal oxide nanoparticles, wherein said combination of reaction components comprise: metal-reducing microbes, a culture medium suitable for sustaining said metal-reducing microbes, an effective concentration of one or more surfactants, a reducible metal oxide component containing one or more reducible metal species, and one or more electron donors that provide donatable electrons to said metal-reducing microbes during consumption of the electron donor by said metal-reducing microbes; and (ii) isolating said metal oxide nanoparticles, which contain a reduced form of said reducible metal oxide component. The invention is also directed to metal oxide nanoparticle compositions produced by the inventive method.

  12. Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities: a comparative investigation.

    PubMed

    Majer, Bernhard J; Tscherko, Dagmar; Paschke, Albrecht; Wennrich, Rainer; Kundi, Michael; Kandeler, Ellen; Knasmüller, Siegfried

    2002-03-25

    The aim of this study was to investigate correlation between genotoxic effects and changes of microbial parameters caused by metal contamination in soils. In total, 20 soils from nine locations were examined; metal contents and physicochemical soil parameters were measured with standard methods. In general, a pronounced induction of the frequency of micronuclei (MN) in the Tradescantia micronucleus (Trad-MN) assay was seen with increasing metal concentration in soils from identical locations. However, no correlations were found between metal contents and genotoxicity of soils from different locations. These discrepancies are probably due to differences of the physicochemical characteristics of the samples. Also, the microbial parameters depended on the metal content in soils from identical sampling locations. Inconsistent responses of the individual enzymes were seen in soils from different locations, indicating that it is not possible to define a specific marker enzyme for metal contamination. The most sensitive microbial parameters were dehydrogenase and arylsulfatase activity, biomass C, and biomass N. Statistical analyses showed an overall correlation between genotoxicity in Tradescantia on the one hand and dehydrogenase activity, biomass C, and the metabolic quotient on the other hand. In conclusion, the results of the present study show that the Trad-MN assay is suitable for the detection of genotoxic effects of metal contamination in soils and furthermore, that the DNA-damaging potential of soils from different origin cannot be predicted on the basis of chemical analyses of their metal concentrations.

  13. Diversity change of microbial communities responding to zinc and arsenic pollution in a river of northeastern China.

    PubMed

    Zhao, Jun; Zhao, Xin; Chao, Lei; Zhang, Wei; You, Tao; Zhang, Jie

    2014-07-01

    Pollution discharge disturbs the natural functions of water systems. The environmental microbial community composition and diversity are sensitive key indicators to the impact of water pollutant on the microbial ecology system over time. It is meaningful to develop a way to identify the microbial diversity related to heavy metal effects in evaluating river pollution. Water and sediment samples were collected from eight sections along the Tiaozi River where wastewater and sewage were discharged from Siping City in northeastern China. The main pollutants contents and microbial communities were analyzed. As the primary metal pollutants, zinc (Zn) and arsenic (As) were recorded at the maximum concentrations of 420 and 5.72 μg/L in the water, and 1704 and 1.92 mg/kg in the sediment, respectively. These pollutants posed a threat to the microbial community diversity as only a few species of bacteria and eukaryotes with strong resistance were detected through denaturing gradient gel electrophoresis (DGGE). Acinetobacter johnsonii, Clostridium cellulovorans, and Trichococcus pasteurii were the dominant bacteria in the severely polluted areas. The massive reproduction of Limnodrilus hoffmeisteri almost depleted the dissolved oxygen (DO) and resulted in the decline of the aerobic bacteria. It was noted that the pollution reduced the microbial diversity but the L. hoffmeisteri mass increased as the dominant community, which led to the overconsuming of DO and anaerobic stinking water bodies. Water quality, concentrations of heavy metals, and the spatial distribution of microbial populations have obvious consistencies, which mean that the heavy metals in the river pose a serious stress on the microorganisms.

  14. Development of a Model, Metal-reducing Microbial Community for a System Biology Level Assessment of Desulfovibrio vulgaris as part of a Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elias, Dwayne; Schadt, Christopher; Miller, Lance

    2010-05-17

    One of the largest experimental gaps is between the simplicity of pure cultures and the complexity of open environmental systems, particularly in metal-contaminated areas. These microbial communities form ecosystem foundations, drive biogeochemical processes, and are relevant for biotechnology and bioremediation. A model, metal-reducing microbial community was constructed as either syntrophic or competitive to study microbial cell to cell interactions, cell signaling and competition for resources. The microbial community was comprised of the metal-reducing Desulfovibrio vulgaris Hildenborough and Geobacter sulfurreducens PCA. Additionally, Methanococcus maripaludis S2 was added to study complete carbon reduction and maintain a low hydrogen partial pressure for syntrophismmore » to occur. Further, considerable work has been published on D. vulgaris and the D. vulgaris/ Mc. maripaludis co-culture both with and without stress. We are extending this work by conducting the same stress conditions on the model community. Additionally, this comprehensive investigation includes physiological and metabolic analyses as well as specially designed mRNA microarrays with the genes for all three organisms on one slide so as to follow gene expression changes in the various cultivation conditions as well as being comparable to the co- and individual cultures. Further, state-of -the-art comprehensive AMT tag proteomics allows for these comparisons at the protein level for a systems biology assessment of a model, metal-reducing microbial community. Preliminary data revealed that lactate oxidation by D. vulgaris was sufficient to support both G. sulfurreducens and M. maripaludis via the excretion of H2 and acetate. Fumarate was utilized by G. sulfurreducens and reduced to succinate since neither of the other two organisms can reduce fumarate. Methane was quantified, suggesting acetate and H2 concentrations were sufficient for M. maripaludis. Steady state community cultivation will allow for a comprehensive, system biology level analysis of a metal-reducing microbial community.« less

  15. Carbonate precipitation under bulk acidic conditions as a potential biosignature for searching life on Mars

    NASA Astrophysics Data System (ADS)

    Fernández-Remolar, David C.; Preston, Louisa J.; Sánchez-Román, Mónica; Izawa, Matthew R. M.; Huang, L.; Southam, Gordon; Banerjee, Neil R.; Osinski, Gordon R.; Flemming, Roberta; Gómez-Ortíz, David; Prieto Ballesteros, Olga; Rodríguez, Nuria; Amils, Ricardo; Darby Dyar, M.

    2012-10-01

    Recent observations of carbonate minerals in ancient Martian rocks have been interpreted as evidence for the former presence of circumneutral solutions optimal for carbonate precipitation. Sampling from surface and subsurface regions of the low-pH system of Río Tinto has shown, unexpectedly, that carbonates can form under diverse macroscopic physicochemical conditions ranging from very low to neutral pH (1.5-7.0). A multi-technique approach demonstrates that carbonate minerals are closely associated with microbial activity. Carbonates occur in the form of micron-size carbonate precipitates under bacterial biofilms, mineralization of subsurface colonies, and possible biogenic microstructures including globules, platelets and dumbbell morphologies. We propose that carbonate precipitation in the low-pH environment of Río Tinto is a process enabled by microbially-mediated neutralization driven by the reduction of ferric iron coupled to the oxidation of biomolecules in microbially-maintained circumneutral oases, where the local pH (at the scale of cells or cell colonies) can be much different than in the macroscopic environment. Acidic conditions were likely predominant in vast regions of Mars over the last four billion years of planetary evolution. Ancient Martian microbial life inhabiting low-pH environments could have precipitated carbonates similar to those observed at Río Tinto. Preservation of carbonates at Río Tinto over geologically significant timescales suggests that similarly-formed carbonate minerals could also be preserved on Mars. Such carbonates could soon be observed by the Mars Science Laboratory, and by future missions to the red planet.

  16. Attenuation of heavy metals by geosynthetics in the coal gangue-filled columns.

    PubMed

    Wang, Ping; Hu, Zhenqi; Wang, Peijun

    2013-01-01

    In the subsided areas backfilled with coal gangue, an issue of continuing environmental concern is the migration of hazardous metals to the subsurface soil and groundwater. As an effective isolation material, geosynthetics have been scarcely applied into mining areas reclamation of China. This paper describes research aimed at characterizing the behaviours of different geosynthetics in the leaching columns filled with coal gangues. Four types of geosynthetics were selected: fibres needle-punched nonwoven geotextiles, high-density polyethylene, needle-punched Na-bentonite geosynthetic clay liner (GCL-NP) and Na-bentonite geosynthetic-overbited film. Heavy metals were significantly attenuated and by monitoring aqueous solutions in the whole percolation period, negative correlation was found between pH value and concentration of heavy metals. Generally, GCL-NP showed comparatively better effects on attenuating the migration of heavy metals. According to the meta-analysis of heavy metals present in the leachates and retained in the columns, geosynthetics have good capabilities of sorption and retardation, which can delay the breakthrough time of heavy metals and retard the accumulation in the subsurface. Future research will use X-ray diffraction and micro-imaging (electron microprobe and scanning electron microscopy) to further explain retention mechanisms.

  17. Comparison of heavy metal toxicity in continuous flow and batch reactors

    NASA Astrophysics Data System (ADS)

    Sengor, S. S.; Gikas, P.; Moberly, J. G.; Peyton, B. M.; Ginn, T. R.

    2009-12-01

    The presence of heavy metals may significantly affect microbial growth. In many cases, small amounts of particular heavy metals may stimulate microbial growth; however, larger quantities may result in microbial growth reduction. Environmental parameters, such as growth pattern may alter the critical heavy metal concentration, above which microbial growth stimulation turns to growth inhibition. Thus, it is important to quantify the effects of heavy metals on microbial activity for understanding natural or manmade biological reactors, either in situ or ex situ. Here we compare the toxicity of Zn and Cu on Arthrobacter sp., a heavy metal tolerant microorganism, under continuous flow versus batch reactor operations. Batch and continuous growth tests of Arthrobacter sp. were carried out at various individual and combined concentrations of Zn and Cu. Biomass concentration (OD) was measured for both the batch and continuous reactors, whereas ATP, oxygen uptake rates and substrate concentrations were additionally measured for the continuous system. Results indicated that Cu was more toxic than Zn under all conditions for both systems. In batch reactors, all tested Zn concentrations up to 150 uM showed a stimulatory effect on microbial growth. However, in the case of mixed Zn and Cu exposures, the presence of Zn either eliminated (at the 50 uM level both Zn and Cu) or reduced by ~25% (at the 100 and 150 uM levels both Zn and Cu) the Cu-induced inhibition. In the continuous system, only one test involved combined Cu (40uM) and Zn (125uM) and this test showed similar results to the 40uM Cu continuous test, i.e., no reduction in inhibition. The specific ATP concentration, i.e., ATP/OD, results for the continuous reactor showed an apparent recovery for both Cu-treated populations, although neither the OD nor glucose data showed any recovery. This may reflect that the individual microorganisms that survived after the addition of heavy metals, kept maintaining the usual ATP levels, as before metal addition. The last may imply a short of adaptation by some microorganisms to the presence of heavy metals. Overall, the batch reactor tests underestimated significantly the heavy metal inhibition, as compared to the continuous flow reactors. Therefore, the results of batch reactor tests should be used with some caution when heavy metal inhibition is to be interpreted for continuous flow natural environmental systems, such as rivers or wetlands.

  18. Biological Characterization of Microenvironments in a Hypersaline Cold Spring Mars Analog

    PubMed Central

    Sapers, Haley M.; Ronholm, Jennifer; Raymond-Bouchard, Isabelle; Comrey, Raven; Osinski, Gordon R.; Whyte, Lyle G.

    2017-01-01

    While many habitable niches on Earth are characterized by permanently cold conditions, little is known about the spatial structure of seasonal communities and the importance of substrate-cell associations in terrestrial cyroenvironments. Here we use the 16S rRNA gene as a marker for genetic diversity to compare two visually distinct but spatially integrated surface microbial mats on Axel Heiberg Island, Canadian high arctic, proximal to a perennial saline spring. This is the first study to describe the bacterial diversity in microbial mats on Axel Heiberg Island. The hypersaline springs on Axel Heiberg represent a unique analog to putative subsurface aquifers on Mars. The Martian subsurface represents the longest-lived potentially habitable environment on Mars and a better understanding of the microbial communities on Earth that thrive in analog conditions will help direct future life detection missions. The microbial mats sampled on Axel Heiberg are only visible during the summer months in seasonal flood plains formed by melt water and run-off from the proximal spring. Targeted-amplicon sequencing revealed that not only does the bacterial composition of the two mat communities differ substantially from the sediment community of the proximal cold spring, but that the mat communities are distinct from any other microbial community in proximity to the Arctic springs studied to date. All samples are dominated by Gammaproteobacteria: Thiotichales is dominant within the spring samples while Alteromonadales comprises a significant component of the mat communities. The two mat samples differ in their Thiotichales:Alteromonadales ratio and contribution of Bacteroidetes to overall diversity. The red mats have a greater proportion of Alteromonadales and Bacteroidetes reads. The distinct bacterial composition of the mat bacterial communities suggests that the spring communities are not sourced from the surface, and that seasonal melt events create ephemerally habitable niches with distinct microbial communities in the Canadian high arctic. The finding that these surficial complex microbial communities exist in close proximity to perennial springs demonstrates the existence of a transiently habitable niche in an important Mars analog site. PMID:29312221

  19. Microbial Metabolism in Serpentinite Fluids

    NASA Astrophysics Data System (ADS)

    Crespo-Medina, M.; Brazelton, W. J.; Twing, K. I.; Kubo, M.; Hoehler, T. M.; Schrenk, M. O.

    2013-12-01

    Serpentinization is the process in which ultramafic rocks, characteristic of the upper mantle, react with water liberating mantle carbon and reducing power to potenially support chemosynthetic microbial communities. These communities may be important mediators of carbon and energy exchange between the deep Earth and the surface biosphere. Our work focuses on the Coast Range Ophiolite Microbial Observatory (CROMO) in Northern California where subsurface fluids are accessible through a series of wells. Preliminary analyses indicate that the highly basic fluids (pH 9-12) have low microbial diversity, but there is limited knowledge about the metabolic capabilities of these communties. Metagenomic data from similar serpentine environments [1] have identified Betaproteobacteria belonging to the order Burkholderiales and Gram-positive bacteria from the order Clostridiales as key components of the serpentine microbiome. In an effort to better characterize the microbial community, metabolism, and geochemistry at CROMO, fluids from two representative wells (N08B and CSWold) were sampled during recent field campaigns. Geochemical characterization of the fluids includes measurements of dissolved gases (H2, CO, CH4), dissolved inorganic and organic carbon, volatile fatty acids, and nutrients. The wells selected can be differentiated in that N08B had higher pH (10-11), lower dissolved oxygen, and cell counts ranging from 105-106 cells mL-1 of fluid, with an abundance of the betaproteobacterium Hydrogenophaga. In contrast, fluids from CSWold have slightly lower pH (9-9.5), DO, and conductivity, as well as higher TDN and TDP. CSWold fluid is also characterized for having lower cell counts (~103 cells mL-1) and an abundance of Dethiobacter, a taxon within the phylum Clostridiales. Microcosm experiments were conducted with the purpose of monitoring carbon fixation, methanotrophy and metabolism of small organic compounds, such as acetate and formate, while tracing changes in fluid chemistry and microbial community composition. These experiments are expected to provide insight into the biogeochemical dynamics of the serpentinite subsurface at CROMO and represent a first step for developing metatranscriptomic and RNA-based Stable Isotope Probing (RNA-SIP) experiments to trace microbial activity at this site. [1] Brazelton et al. (2012) Frontiers in Microbiology 2:268

  20. Biological Characterization of Microenvironments in a Hypersaline Cold Spring Mars Analog.

    PubMed

    Sapers, Haley M; Ronholm, Jennifer; Raymond-Bouchard, Isabelle; Comrey, Raven; Osinski, Gordon R; Whyte, Lyle G

    2017-01-01

    While many habitable niches on Earth are characterized by permanently cold conditions, little is known about the spatial structure of seasonal communities and the importance of substrate-cell associations in terrestrial cyroenvironments. Here we use the 16S rRNA gene as a marker for genetic diversity to compare two visually distinct but spatially integrated surface microbial mats on Axel Heiberg Island, Canadian high arctic, proximal to a perennial saline spring. This is the first study to describe the bacterial diversity in microbial mats on Axel Heiberg Island. The hypersaline springs on Axel Heiberg represent a unique analog to putative subsurface aquifers on Mars. The Martian subsurface represents the longest-lived potentially habitable environment on Mars and a better understanding of the microbial communities on Earth that thrive in analog conditions will help direct future life detection missions. The microbial mats sampled on Axel Heiberg are only visible during the summer months in seasonal flood plains formed by melt water and run-off from the proximal spring. Targeted-amplicon sequencing revealed that not only does the bacterial composition of the two mat communities differ substantially from the sediment community of the proximal cold spring, but that the mat communities are distinct from any other microbial community in proximity to the Arctic springs studied to date. All samples are dominated by Gammaproteobacteria: Thiotichales is dominant within the spring samples while Alteromonadales comprises a significant component of the mat communities. The two mat samples differ in their Thiotichales:Alteromonadales ratio and contribution of Bacteroidetes to overall diversity. The red mats have a greater proportion of Alteromonadales and Bacteroidetes reads. The distinct bacterial composition of the mat bacterial communities suggests that the spring communities are not sourced from the surface, and that seasonal melt events create ephemerally habitable niches with distinct microbial communities in the Canadian high arctic. The finding that these surficial complex microbial communities exist in close proximity to perennial springs demonstrates the existence of a transiently habitable niche in an important Mars analog site.

Top