Sample records for microbial technetium reduction

  1. Microbial methods of reducing technetium

    DOEpatents

    Wildung, Raymond E [Richland, WA; Garland, Thomas R [Greybull, WY; Gorby, Yuri A [Richland, WA; Hess, Nancy J [Benton City, WA; Li, Shu-Mei W [Richland, WA; Plymale, Andrew E [Richland, WA

    2001-01-01

    The present invention is directed toward a method for microbial reduction of a technetium compound to form other compounds of value in medical imaging. The technetium compound is combined in a mixture with non-growing microbial cells which contain a technetium-reducing enzyme system, a stabilizing agent and an electron donor in a saline solution under anaerobic conditions. The mixture is substantially free of an inorganic technetium reducing agent and its reduction products. The resulting product is Tc of lower oxidation states, the form of which can be partially controlled by the stabilizing agent. It has been discovered that the microorganisms Shewanella alga, strain Bry and Shewanelia putrifacians, strain CN-32 contain the necessary enzyme systems for technetium reduction and can form both mono nuclear and polynuclear reduced Tc species depending on the stabilizing agent.

  2. Kit for providing a technetium medical radioimaging agent

    DOEpatents

    Wildung, Raymond E.; Garland, Thomas R.; Li, Shu-Mei W.

    2000-01-01

    The present invention is directed toward a kit for microbial reduction of a technetium compound to form other compounds of value in medical imaging. The technetium compound is combined in a mixture with non-growing microbial cells which contain a technetium-reducing enzyme system, a stabilizing agent and an electron donor in a saline solution under anaerobic conditions. The mixture is substantially free of an inorganic technetium reducing agent and its reduction products. The resulting product is Tc of lower oxidation states, the form of which can be partially controlled by the stabilizing agent. It has been discovered that the microorganisms Shewanella alga, strain Bry and Shewanella putrifacians, strain CN-32 contain the necessary enzyme systems for technetium reduction and can form both mono nuclear and polynuclear reduced Tc species depending on the stabilizing agent.

  3. Technetium recovery from high alkaline solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  4. Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldron, P.J.; Wu, L.; Van Nostrand, J.D.

    2009-06-15

    To understand how contaminants affect microbial community diversity, heterogeneity, and functional structure, six groundwater monitoring wells from the Field Research Center of the U.S. Department of Energy Environmental Remediation Science Program (ERSP; Oak Ridge, TN), with a wide range of pH, nitrate, and heavy metal contamination were investigated. DNA from the groundwater community was analyzed with a functional gene array containing 2006 probes to detect genes involved in metal resistance, sulfate reduction, organic contaminant degradation, and carbon and nitrogen cycling. Microbial diversity decreased in relation to the contamination levels of the wells. Highly contaminated wells had lower gene diversity butmore » greater signal intensity than the pristine well. The microbial composition was heterogeneous, with 17-70% overlap between different wells. Metal-resistant and metal-reducing microorganisms were detected in both contaminated and pristine wells, suggesting the potential for successful bioremediation of metal-contaminated groundwaters. In addition, results of Mantel tests and canonical correspondence analysis indicate that nitrate, sulfate, pH, uranium, and technetium have a significant (p < 0.05) effect on microbial community structure. This study provides an overall picture of microbial community structure in contaminated environments with functional gene arrays by showing that diversity and heterogeneity can vary greatly in relation to contamination.« less

  5. Redox-dependent solubility of technetium in low activity waste glass

    NASA Astrophysics Data System (ADS)

    Soderquist, Chuck Z.; Schweiger, Michael J.; Kim, Dong-Sang; Lukens, Wayne W.; McCloy, John S.

    2014-06-01

    The solubility of technetium was measured in a Hanford low activity waste (LAW) glass simulant, to investigate the extent that technetium solubility controls the incorporation of technetium into LAW glass. A series of LAW glass samples, spiked with 500-6000 ppm of Tc as potassium pertechnetate, were melted at 1000 °C in sealed fused quartz ampoules. Technetium solubility was determined in the quenched bulk glass to be 2000-2800 ppm, with slightly reducing conditions due to choice of milling media resulting in reductant contamination and higher solubility. The chemical form of technetium obtained by X-ray absorption near edge spectroscopy is mainly isolated, octahedrally-coordinated Tc(IV), with a minority of Tc(VII) in some glasses and TcO2 in two glasses. The concentration and speciation of technetium depends on glass redox and amount of technetium added. Salts formed at the top of higher technetium loaded glasses during the melt. The results of this study show that technetium solubility should not be a factor in technetium retention during melting of Hanford LAW glass.

  6. Structural characterization of a bridged 99Tc-Sn-dimethylglyoxime complex: implications for the chemistry of 99mTc-radiopharmaceuticals prepared by the Sn (II) reduction of pertechnetate.

    PubMed Central

    Deutsch, E; Elder, R C; Lange, B A; Vaal, M J; Lay, D G

    1976-01-01

    Reduction of pertechnetate by tin(II) in the presence of dimethylglyoxime is shown, by single crystal x-ray analysis, to yield a technetium-tin-dimethylglyoxime complex in which tin and technetium are intimately connected by a triple bridging arrangement. One bridge consists of a single oxygen atom and it is hypothesized that this bridge arises from the inner sphere reduction of technetium by tin(II), the electrons being transferred through a technetium "yl" oxygen which eventually becomes the bridging atom. Two additional bridges arise from two dimethylglyoxime ligands that function as bidentate nitrogen donors towards Tc and monodentate oxygen donors towards Sn. The tin atom can thus be viewed as providing a three-pronged "cap" on one end of the Tc-dimethylglyoxime complex. The additional coordination sites around Tc are occupied by the two nitrogens of a third dimethylglyoxime ligand, making the Tc seven-coordinate. The additional coordination sites around Sn are occupied by three chloride anions, giving the Sn a fac octahedral coordination environment. From indirect evidence the oxidation states of tin and technetium are tentatively assigned to be IV and V, respectively. Since most 99mTc-radiopharmaceuticals are synthesized by the tin(II) reduction of pertechnetate, it is likely that the Sn-O-Tc linkage described in this work is an important feature of the chemistry of these species. This linkage also provides a ready rationale for the close association of tin and technetium observed in many 99mTc-radiopharmaceuticals. PMID:1069984

  7. Technetium and iodine aqueous species immobilization and transformations in the presence of strong reductants and calcite-forming solutions: Remedial action implications.

    PubMed

    Lawter, Amanda R; Garcia, Whitney L; Kukkadapu, Ravi K; Qafoku, Odeta; Bowden, Mark E; Saslow, Sarah A; Qafoku, Nikolla P

    2018-04-30

    At the Hanford Site in southeastern Washington, discharge of radionuclide laden liquid wastes resulted in vadose zone contamination, providing a continuous source of these contaminants to groundwater. The presence of multiple contaminants (i.e., 99 Tc and 129 I) increases the complexity of finding viable remediation technologies to sequester contaminants in situ and protect groundwater. Although previous studies have shown the efficiency of zero valent iron (ZVI) and sulfur modified iron (SMI) in reducing mobile Tc(VII) to immobile Tc(IV) and iodate incorporation into calcite, the coupled effects from simultaneously using these remedial technologies have not been previously studied. In this first-of-a-kind laboratory study, we used reductants (ZVI or SMI) and calcite-forming solutions to simultaneously remove aqueous Tc(VII) and iodate via reduction and incorporation, respectively. The results confirmed that Tc(VII) was rapidly removed from the aqueous phase via reduction to Tc(IV). Most of the aqueous iodate was transformed to iodide faster than incorporation into calcite occurred, and therefore the I remained in the aqueous phase. These results suggested that this remedial pathway is not efficient in immobilizing iodate when reductants are present. Other experiments suggested that iodate removal via calcite precipitation should occur prior to adding reductants for Tc(VII) removal. When microbes were included in the tests, there was no negative impact on the microbial population but changes in the makeup of the microbial community were observed. These microbial community changes may have an impact on remediation efforts in the long-term that could not be seen in a short-term study. The results underscore the importance of identifying interactions between natural attenuation pathways and remediation technologies that only target individual contaminants. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. APPLICATION OF FORMOHYDROXAMIC ACID IN NUCLEAR PROCESSING: SYNTHESIS AND COMPLEXATION WITH TECHNETIUM-99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amber Wright; Edward Mausolf; Keri Campbell

    2010-05-01

    Acetohydroxamic acid (AHA) is an organic ligand planned for use in the Uranium Extraction (UREX) process. It reduces neptunium and plutonium, and the resultant hydrophilic complexes are separated from uranium by extraction with tributyl phosphate (TBP) in a hydrocarbon diluent. AHA undergoes hydrolysis to acetic acid which will impede the recycling of nitric acid. During recent discussions of the UREX process, it has been proposed to replace AHA by formohydroxamic acid (FHA). FHA will undergo hydrolysis to formic acid which is volatile, thus allowing the recycling of nitric acid. The reported reduction potentials of AHA and pertechnetate (TcO{sub 4}{sup -})more » indicated that it may be possible for AHA to reduce technetium, altering its fate in the fuel cycle. At UNLV, it has been demonstrated that TcO{sub 4}{sup -} undergoes reductive nitrosylation by AHA under a variety of conditions. The resulting divalent technetium is complexed by AHA to form the pseudo-octahedral trans-aquonitrosyl (diacetohydroxamic)-technetium(II) complex ([Tc{sup II}(NO)(AHA){sub 2}H{sub 2}O]{sup +}). In this paper, we are reporting the synthesis of FHA and its complex formation with technetium along with the characterization of FHA crystals achieved by NMR and IR spectroscopy. Two experiments were conducted to investigate the complexation of FHA with Tc and the results were compared with previous data on AHA. The first experiment involved the elution of Tc from a Reillex HP anion exchange resin, and the second one monitored the complexation of technetium with FHA by UV-visible spectrophotometry.« less

  9. Technetium and iodine aqueous species immobilization and transformations in the presence of strong reductants and calcite-forming solutions: Remedial action implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawter, Amanda R.; Garcia, Whitney L.; Kukkadapu, Ravi K.

    At the Hanford Site in southeastern Washington State, radionuclide (Tc-99/I-129) laden liquid wastes have been discharged to ground, resulting in vadose zone contamination, which provides a continuous source of these contaminants to groundwater. The presence of multiple contaminants increases the complexity of finding viable remediation technologies to sequester vadose zone contaminants in situ and protect groundwater. Although previous studies have shown the efficiency of zero valent iron (ZVI) and sulfur modified iron (SMI) in reducing mobile Tc(VII) to immobile Tc(IV) and iodate incorporation into calcite, the coupled effects from simultaneously using these remedial technologies have not been previously studied. Inmore » this first-of-a-kind laboratory study, we used two efficient reductants (i.e., ZVI and SMI) and calcite-forming solutions to simultaneously remove aqueous Tc(VII) and iodate via reduction and incorporation, respectively. The results confirmed that Tc(VII) was rapidly removed from the aqueous phase via reduction to Tc(IV). ZVI removed Tc(VII) faster than SMI, although both had removed the same amount by the end of the experiments. Most of the aqueous iodate was rapidly transformed to iodide, and therefore was not incorporated into calcite, but instead remained in the aqueous phase. The iodate reduction to iodide was much faster than iodate incorporation into calcite, suggesting that this remedial pathway is not efficient in removing aqueous iodate when strong reductants are present. Other experiments suggested that iodate removal via calcite precipitation should occur first and then reductants should be added for Tc(VII) removal. Although ZVI can negatively impact microbial populations and thereby inhibit natural attenuation mechanisms, only changes in the makeup of the microbial community were observed. However, these changes in the microbial community may have an impact on remediation efforts in the long term that could not be seen in a short-term study. The results underscore the importance of identifying interactions between natural attenuation pathways and remediation technologies that only target individual contaminants.« less

  10. Reduction of pertechnetate by acetohydroxamic acid: Formation of [TcNO(AHA)2(H2O)]+ and implications for the UREX process.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    1Harry Reid Center for Environmental Studies, Nuclear Science and Technology Division, University of Nevada, Las Vegas, Las Vegas, NV, 89154-4006; Gong, Cynthia-May S; Poineau, Frederic

    2008-02-26

    Reductive nitrosylation and complexation of ammonium pertechnetate by acetohydroxamic acid has been achieved in aqueous nitric and perchloric acid solutions. The kinetics of the reaction depend on the relative concentrations of the reaction components and are accelerated at higher temperatures. The reaction does not occur unless conditions are acidic. Analysis of the x-ray absorption fine structure spectroscopic data is consistent with a pseudo-octahedral geometry with the linear Tc-N-O bond typical of technetium nitrosyl compounds, and electron spin resonance spectroscopy is consistent with a the d{sup 5} Tc(II) nitrosyl complex. The nitrosyl source is generally AHA, but may be augmented bymore » products of reaction with nitric acid. The resulting low-valency trans-aquonitrosyl(diacetohydroxamic)-technetium(II) complex (1) is highly soluble in water, extremely hydrophilic, and is not extracted by tri-n-butylphosphate in a dodecane diluent. Its extraction properties are not pH-dependent; titration studies indicate a single species from pH 4.5 down to -0.6 (calculated). This molecule is resistant to oxidation by H{sub 2}O{sub 2}, even at high pH, and can undergo substitution to form other technetium nitrosyl complexes. The formation of 1 may strongly impact the fate of technetium in the nuclear fuel cycle.« less

  11. Deep liquid-chromatographic purification of uranium extract from technetium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volk, V.; Dvoeglazov, K; Podrezova, L.

    The recycling of uranium in the nuclear fuel cycle requires the removal of a number of radioactive and stable impurities like {sup 99}Tc from spent fuels. In order to improve the grade of uranium extract purification from technetium the method of liquid chromatography and the apparatus for its performance have been developed. Process of technetium extraction and concentrating in aqueous solution containing reducing agent has been studied on simulated solutions (U-Tc-HNO{sub 3}-30% TBP-isoparM). The dynamic tests of the method have been carried out on the laboratory unit. Solution of diformyl-hydrazine in nitric acid was used as a stationary phase. Silicamore » gel with specific surface of 186 m{sup 2}/g was used as a carrier of the stationary phase. It is shown that the volume of purified extract increases as the solution temperature increases, concentration of reducing agent increases and extract flow rate decreases. It is established that the technetium content in uranium by this method could achieve a value below 0.3 ppm. Some variants of overload and composition of the stationary phase containing the extracted technetium have been offered and tested. It is defined that the method provides reduction of processing medium-active wastes by more than 10 times during finish refining process. (authors)« less

  12. Reduction of Pertechnetate By Acetohydroxamic Acid: Formation of [tc**II(NO)(AHA)(2)(H(2)O)]**+ And Implications for the UREX Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, C.-M.S.; Lukens, W.W.; Poineau, F.

    2009-05-18

    Reductive nitrosylation and complexation of ammonium pertechnetate by acetohydroxamic acid has been achieved in aqueous nitric and perchloric acid solutions. The kinetics of the reaction depend on the relative concentrations of the reaction components and are accelerated at higher temperatures. The reaction does not occur unless conditions are acidic. Analysis of the X-ray absorption fine structure spectroscopic data is consistent with a pseudo-octahedral geometry and the linear Tc-N-O bond typical of technetium nitrosyl compounds, and electron spin resonance spectroscopy is consistent with a d{sup 5} Tc(II) nitrosyl complex. The nitrosyl source is generally AHA, but it may be augmented bymore » some products of the reaction with nitric acid. The resulting low-valency trans-aquonitrosyl(diacetohydroxamic)-technetium(II) complex ([Tc{sup II}(NO)(AHA){sub 2}H{sub 2}O]{sup +}, 1) is highly soluble in water, extremely hydrophilic, and is not extracted by tri-n-butylphosphate in a dodecane diluent. Its extraction properties are not pH-dependent: potentiometric-spectrophotometric titration studies indicate a single species from pH 4 down to -0.6 (calculated). This molecule is resistant to oxidation by H{sub 2}O{sub 2}, even at high pH, and can undergo substitution to form other technetium nitrosyl complexes. The potential formation of 1 during reprocessing may strongly impact the fate of technetium in the nuclear fuel cycle.« less

  13. Solubility Control of Technetium Release from Saltstone by Tc02•xH20

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.; Williams, Benjamin D.

    2013-11-12

    Saltstone leaching experiments were conducted using a modified single-pass flow-through method under anoxic conditions. The analytical results of leachates collected from these experiments were evaluated using thermodynamic modeling to determine if the data were consistent with potential solubility controlling phases. The results demonstrate that technetium concentrations in water in contact with Saltstone under anoxic conditions is controlled by the solubility of TcO2•xH2O (likely TcO2•1.6H2O). In our system equilibrium solubility appears to have been reached within two weeks at a concentration of approximately 1.5 x 10-6 M. This concentration is likely to vary as the composition of Saltstone pore fluid evolvesmore » over time. As the pH goes from the initial high values (~12.5-13) to lower values, the solubility of technetium will decrease significantly. The thermodynamic data used to determine the solubility of TcO2•1.6H2O were taken from the tabulation of critically selected thermodynamic data determined by the Nuclear Energy Agency. Solid phase characterization to demonstrate the presence of TcO2•xH2O was not possible due to the low concentrations of technetium in our samples. Previous solid phase characterization studies with cementitious waste forms that were very similar to our Saltstone samples as well as reaction products derived from reductive immobilization of TcO4- by amorphous FeS clearly indicate the presence of TcO2 with varying degrees of hydration. Although, the presence of TcSx or other reduced technetium sulfide phases in our samples cannot be ruled out, release of technetium from Saltstone will be controlled by TcO2•1.6H2O because of its higher solubility. Our results clearly demonstrate that the release mechanism of technetium from Saltstone under reducing conditions is solubility controlled by TcO2•xH2O (likely TcO2•1.6H2O); however, distribution coefficients (Kds), that describe sorption and not solubility, were calculated for comparison with past literature values. After 84 days of reaction under anoxic conditions, the average Kd value for technetium was determined to be 610 mL/g. This value is similar to a value determined previously for a similar saltstone sample under reducing conditions at 56 days (712 ± 81 mL/g).« less

  14. Clinical application of calculated split renal volume using computed tomography-based renal volumetry after partial nephrectomy: Correlation with technetium-99m dimercaptosuccinic acid renal scan data.

    PubMed

    Lee, Chan Ho; Park, Young Joo; Ku, Ja Yoon; Ha, Hong Koo

    2017-06-01

    To evaluate the clinical application of computed tomography-based measurement of renal cortical volume and split renal volume as a single tool to assess the anatomy and renal function in patients with renal tumors before and after partial nephrectomy, and to compare the findings with technetium-99m dimercaptosuccinic acid renal scan. The data of 51 patients with a unilateral renal tumor managed by partial nephrectomy were retrospectively analyzed. The renal cortical volume of tumor-bearing and contralateral kidneys was measured using ImageJ software. Split estimated glomerular filtration rate and split renal volume calculated using this renal cortical volume were compared with the split renal function measured with technetium-99m dimercaptosuccinic acid renal scan. A strong correlation between split renal function and split renal volume of the tumor-bearing kidney was observed before and after surgery (r = 0.89, P < 0.001 and r = 0.94, P < 0.001). The preoperative and postoperative split estimated glomerular filtration rate of the operated kidney showed a moderate correlation with split renal function (r = 0.39, P = 0.004 and r = 0.49, P < 0.001). The correlation between reductions in split renal function and split renal volume of the operated kidney (r = 0.87, P < 0.001) was stronger than that between split renal function and percent reduction in split estimated glomerular filtration rate (r = 0.64, P < 0.001). The split renal volume calculated using computed tomography-based renal volumetry had a strong correlation with the split renal function measured using technetium-99m dimercaptosuccinic acid renal scan. Computed tomography-based split renal volume measurement before and after partial nephrectomy can be used as a single modality for anatomical and functional assessment of the tumor-bearing kidney. © 2017 The Japanese Urological Association.

  15. Effect of Electron Donor and Solution Chemistry on Products of Dissimilatory Reduction of Technetium by Shewanella putrefaciens

    PubMed Central

    Wildung, R. E.; Gorby, Y. A.; Krupka, K. M.; Hess, N. J.; Li, S. W.; Plymale, A. E.; McKinley, J. P.; Fredrickson, J. K.

    2000-01-01

    To help provide a fundamental basis for use of microbial dissimilatory reduction processes in separating or immobilizing 99Tc in waste or groundwaters, the effects of electron donor and the presence of the bicarbonate ion on the rate and extent of pertechnetate ion [Tc(VII)O4−] enzymatic reduction by the subsurface metal-reducing bacterium Shewanella putrefaciens CN32 were determined, and the forms of aqueous and solid-phase reduction products were evaluated through a combination of high-resolution transmission electron microscopy, X-ray absorption spectroscopy, and thermodynamic calculations. When H2 served as the electron donor, dissolved Tc(VII) was rapidly reduced to amorphous Tc(IV) hydrous oxide, which was largely associated with the cell in unbuffered 0.85% NaCl and with extracellular particulates (0.2 to 0.001 μm) in bicarbonate buffer. Cell-associated Tc was present principally in the periplasm and outside the outer membrane. The reduction rate was much lower when lactate was the electron donor, with extracellular Tc(IV) hydrous oxide the dominant solid-phase reduction product, but in bicarbonate systems much less Tc(IV) was associated directly with the cell and solid-phase Tc(IV) carbonate may have been present. In the presence of carbonate, soluble (<0.001 μm) electronegative, Tc(IV) carbonate complexes were also formed that exceeded Tc(VII)O4− in electrophoretic mobility. Thermodynamic calculations indicate that the dominant reduced Tc species identified in the experiments would be stable over a range of Eh and pH conditions typical of natural waters. Thus, carbonate complexes may represent an important pathway for Tc transport in anaerobic subsurface environments, where it has generally been assumed that Tc mobility is controlled by low-solubility Tc(IV) hydrous oxide and adsorptive, aqueous Tc(IV) hydrolysis products. PMID:10831424

  16. A Study of Tungsten-Technetium Alloys

    NASA Technical Reports Server (NTRS)

    Maltz, J. W.

    1965-01-01

    Technetium is a sister element to rhenium and has many properties that are similar to rhenium. It is predicted that technetium will have about the same effects on tungsten as rhenium in regard to increase in workability, lowered ductile to brittle transition temperature, and improved ductility. The objectives of the current work are to recover technetium from fission product wastes at Hanford Atomic Products Operation and reduce to purified metal; prepare W-Tc alloys containing up to 50 atomic% Tc; fabricate the alloy ingots to sheet stock, assessing the effect of technetium on workability; and perform metallurgical and mechanical properties evaluation of the fabricated alloys. Previous reports have described the separation and purification of 800 g of technetium metal powder, melting of technetium and W-Tc alloys, and some initial observation of the alloy material.

  17. 10 CFR Appendix B to Part 30 - Quantities 1 of Licensed Material Requiring Labeling

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Technetium-97m 100 Technetium-97 100 Technetium-99m 100 Technetium-99 10 Tellurium-125m 10 Tellurium-127m 10 Tellurium-127 100 Tellurium-129m 10 Tellurium-129 100 Tellurium-131m 10 Tellurium-132 10...

  18. 10 CFR Appendix B to Part 30 - Quantities 1 of Licensed Material Requiring Labeling

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Technetium-97m 100 Technetium-97 100 Technetium-99m 100 Technetium-99 10 Tellurium-125m 10 Tellurium-127m 10 Tellurium-127 100 Tellurium-129m 10 Tellurium-129 100 Tellurium-131m 10 Tellurium-132 10...

  19. New method for the selective labeling of erythrocytes in whole blood with Tc-99m

    DOEpatents

    Srivastava, S.C.; Babich, J.W.; Straub, R.; Richards, P.

    1984-01-27

    Method and kit are described for the preparation of /sup 99m/Tc labeled red blood cells using whole blood in a closed sterile system containing stannous tin in a form such that it will enter the red blood cells and be available therein for the reduction of technetium.

  20. Kit for the selective labeling of red blood cells in whole blood with .sup.9 TC

    DOEpatents

    Srivastava, Suresh C.; Babich, John W.; Straub, Rita; Richards, Powell

    1992-01-01

    Disclosed herein are a method and kit for the preparation of .sup.99m Tc labeled red blood cells using whole blood in a closed sterile system containing stannous tin in a form such that it will enter the red blood cells and be available therein for reduction of technetium.

  1. Influence of calcium on microbial reduction of solid phase uranium(VI).

    PubMed

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming

    2007-08-15

    The effect of calcium on the dissolution and microbial reduction of a representative solid phase uranyl [U(VI)], sodium boltwoodite (NaUO(2)SiO(3)OH . 1.5H(2)O), was investigated to evaluate the rate-limiting step of microbial reduction of the solid phase U(VI). Microbial reduction experiments were performed in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1, in a bicarbonate medium with lactate as electron donor at pH 6.8 buffered with PIPES. Calcium increased the rate of Na-boltwoodite dissolution and U(VI) bioavailability by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) collectively revealed that microbial reduction of solid phase U(VI) was a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. Under studied experimental conditions, the overall rate of microbial reduction of solid phase U(VI) was limited by U(VI) dissolution reactions in solutions without calcium and limited by microbial reduction in solutions with calcium. Generally, the overall rate of microbial reduction of solid phase U(VI) was determined by the coupling of solid phase U(VI) dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) that were all affected by calcium. (c) 2007 Wiley Periodicals, Inc.

  2. Solar neutrino production of technetium-97 and technetium-98.

    PubMed

    Cowan, G A; Haxton, W C

    1982-04-02

    It may be possible to determine the boron-8 solar neutrino flux, averaged over the past several million years, from the concentration of technetium-98 in molybdenite. The mass spectrometry of this system is greatly simplified by the absence of stable technetium isotopes, and the presence of the fission product technetium-99 provides a monitor of uiranium-induced backgrounds. This geochemical experiment could provide the first test of nonstandard solar models that suggest a relation between the chlorine-37 solar neutrino puzzle and the recent ice age.

  3. Method and kit for the selective labeling of red blood cells in whole blood with Tc-99m

    DOEpatents

    Srivastava, S.C.; Babich, J.W.; Straub, R.; Richards, P.

    1988-07-05

    Disclosed herein are a method and kit for the preparation of [sup 99m]Tc labeled red blood cells using whole blood in a closed sterile system containing stannous tin in a form such that it will enter the red blood cells and be available for the reduction of technetium. No Drawings

  4. Method and kit for the selective labeling of red blood cells in whole blood with TC-99M

    DOEpatents

    Srivastava, Suresh C.; Babich, John W.; Straub, Rita; Richards, Powell

    1988-01-01

    Disclosed herein are a method and kit for the preparation of .sup.99m Tc labeled red blood cells using whole blood in a closed sterile system containing stannous tin in a form such that it will enter the red blood cells and be available therein for the reduction of technetium.

  5. Kit for the selective labeling of red blood cells in whole blood with [sup 99]Tc

    DOEpatents

    Srivastava, S.C.; Babich, J.W.; Straub, R.; Richards, P.

    1992-05-26

    Disclosed herein are a method and kit for the preparation of [sup 99m]Tc labeled red blood cells using whole blood in a closed sterile system containing stannous tin in a form such that it will enter the red blood cells and be available therein for reduction of technetium. No Drawings

  6. Technetium-99m: basic nuclear physics and chemical properties.

    PubMed

    Castronovo, F P

    1975-05-01

    The nuclear physics and chemical properties of technetium-99m are reviewed. The review of basic nuclear physics includes: classification of nuclides, nuclear stability, production of radionuclides, artificial production of molybdenum-99, production of technetium 99m and -99Mo-99mTc generators. The discussion of the chemistry of technetium includes a profile of several -99mCc-labeled radiopharmaceuticals.

  7. Tc-99 Decontamination From Heat Treated Gaseous Diffusion Membrane -Phase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L.; Wilmarth, B.; Restivo, M.

    2017-03-13

    Uranium gaseous diffusion cascades represent a significant environmental challenge to dismantle, containerize and dispose as low-level radioactive waste. Baseline technologies rely on manual manipulations involving direct access to technetium-contaminated piping and materials. There is a potential to utilize novel thermal decontamination technologies to remove the technetium and allow for on-site disposal of the very large uranium converters. Technetium entered these gaseous diffusion cascades as a hexafluoride complex in the same fashion as uranium. Technetium, as the isotope Tc-99, is an impurity that follows uranium in the first cycle of the Plutonium and Uranium Extraction (PUREX) process. The technetium speciation ormore » exact form in the gas diffusion cascades is not well defined. Several forms of Tc-99 compounds, mostly the fluorinated technetium compounds with varying degrees of volatility have been speculated by the scientific community to be present in these cascades. Therefore, there may be a possibility of using thermal desorption, which is independent of the technetium oxidation states, to perform an in situ removal of the technetium as a volatile species and trap the radionuclide on sorbent traps which could be disposed as low-level waste.« less

  8. Cohesive Relations for Surface Atoms in the Iron-Technetium Binary System

    DOE PAGES

    Taylor, Christopher D.

    2011-01-01

    Iron-technetium alloys are of relevance to the development of waste forms for disposition of radioactive technetium-99 obtained from spent nuclear fuel. Corrosion of candidate waste forms is a function of the local cohesive energy () of surface atoms. A theoretical model for calculating is developed. Density functional theory was used to construct a modified embedded atom (MEAM) potential for iron-technetium. Materials properties determined for the iron-technetium system were in good agreement with the literature. To explore the relationship between local structure and corrosion, MEAM simulations were performed on representative iron-technetium alloys and intermetallics. Technetium-rich phases have lower , suggesting thatmore » these phases will be more noble than iron-rich ones. Quantitative estimates of based on numbers of nearest neighbors alone can lead to errors up to 0.5 eV. Consequently, atomistic corrosion simulations for alloy systems should utilize physics-based models that consider not only neighbor counts, but also local compositions and atomic arrangements.« less

  9. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  10. Influence of Calcium on Microbial Reduction of Solid Phase Uranium (VI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M.

    2007-06-27

    The effect of calcium on microbial reduction of a solid phase U(VI), sodium boltwoodite (NaUO2SiO3OH ∙1.5H2O), was evaluated in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. Batch experiments were performed in a non-growth bicarbonate medium with lactate as electron donor at pH 7 buffered with PIPES. Calcium increased both the rate and extent of Na-boltwoodite dissolution by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) revealed that microbial reductionmore » of solid phase U(VI) is a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. The overall rates of microbial reduction of solid phase U(VI) can be described by the coupled rates of dissolution and microbial reduction that were both influenced by calcium. The results demonstrated that dissolved U(VI) concentration during microbial reduction was a complex function of solid phase U(VI) dissolution kinetics, aqueous U(VI) speciation, and microbial activity.« less

  11. Method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions

    DOEpatents

    Horwitz, E. Philip; Delphin, Walter H.

    1979-07-24

    A method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions containing these and other values by contacting the waste solution with an extractant of tricaprylmethylammonium nitrate in an inert hydrocarbon diluent which extracts the palladium and technetium values from the waste solution. The palladium and technetium values are recovered from the extractant and from any other coextracted values with a strong nitric acid strip solution.

  12. The Evaluation of Novel Tin Materials for the Removal of Technetium from Groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Kent E.; Wellman, Dawn M.

    2017-06-30

    Technetium-99 ( 99Tc) is present at several U.S. Department of Energy (DOE) facilities, including the Hanford, Oak Ridge, Paducah, Portsmouth, and Savannah River sites. Due to its mobility, persistence, and toxicity in the environment, developing means to immobilize and/or remove technetium from the environment is currently a top priority for DOE. However, there are currently very few approaches that effectively manage the risks of technetium to human health and the environment. The objective of this study is to evaluate novel synthetic materials that could enable direct removal of technetium from groundwater. The following report •assesses the viability of existing methodologiesmore » for synthesis of tin (II) apatite for in situ formation and remediation of 99Tc within the subsurface environment •discusses the development of alternative methodologies for production of tin (II) apatite •evaluates nanoporous tin phosphate materials for removal of technetium from groundwater.« less

  13. Equation of state for technetium from X-ray diffraction and first-principle calculations

    NASA Astrophysics Data System (ADS)

    Mast, Daniel S.; Kim, Eunja; Siska, Emily M.; Poineau, Frederic; Czerwinski, Kenneth R.; Lavina, Barbara; Forster, Paul M.

    2016-08-01

    The ambient temperature equation of state (EoS) of technetium metal has been measured by X-ray diffraction. The metal was compressed using a diamond anvil cell and using a 4:1 methanol-ethanol pressure transmitting medium. The maximum pressure achieved, as determined from the gold pressureEquation of state for technetium from X-ray diffraction and first-principle calculations scale, was 67 GPa. The compression data shows that the HCP phase of technetium is stable up to 67 GPa. The compression curve of technetium was also calculated using first-principles total-energy calculations. Utilizing a number of fitting strategies to compare the experimental and theoretical data it is determined that the Vinet equation of state with an ambient isothermal bulk modulus of B0T=288 GPa and a first pressure derivative of B‧=5.9(2) best represent the compression behavior of technetium metal.

  14. Process for removing technetium from iron and other metals

    DOEpatents

    Leitnaker, J.M.; Trowbridge, L.D.

    1999-03-23

    A process for removing technetium from iron and other metals comprises the steps of converting the molten, alloyed technetium to a sulfide dissolved in manganese sulfide, and removing the sulfide from the molten metal as a slag. 4 figs.

  15. Characterising microbial reduction of arsenate sorbed to ferrihydrite and its concurrence with iron reduction and the consequent impact on arsenic mobilisation

    NASA Astrophysics Data System (ADS)

    Huang, Jen-How

    2014-05-01

    Mobilisation of solid phase arsenic under reducing conditions involves a combination of microbial arsenate and iron reduction and is affected by secondary reactions of released products. A series of model anoxic incubations were performed to understand the concurrence between arsenate and ferrihydrite reduction by Shewanella putrefaciens strain CN-32 at different concentrations of arsenate, ferrihydrite and lactate, and with given ΔGrxn for arsenate and ferrihydrite reduction in non-growth conditions at pH 7. The reduction kinetics of arsenate sorbed to ferrihydrite is predominately controlled by the availability of dissolved arsenate, which is measured by the integral of dissolved arsenate concentrations against incubation time and shown to correlate with the first order rate constants. Thus, the mobilisation of adsorbed As(V) can be regarded as the rate determining step of microbial reduction of As(V) sorbed to ferrihydrite. High lactate concentrations slightly slowed down the rate of arsenate reduction due to the competition with arsenate for microbial contact. Under all experimental conditions, simultaneous arsenate and ferrihydrite reduction occurred following addition of S. putrefaciens inoculums and suggested no apparent competition between these two enzymatic reductions. Ferrous ions released from iron reduction might retard microbial arsenate reduction at high arsenate and ferrihydrite concentrations due to formation of ferrous arsenate. At high arsenate to ferrihydrite ratios, reductive dissolution of ferrihydrite shifted arsenate from sorption to dissolution and hence accelerated arsenate reduction. Reductive dissolution of ferrihydrite may cause additional releases of adsorbed As(V) into solution, which is especially effective at high As(V) to ferrihydrite ratios. In comparison, formation of Fe(II) secondary minerals during microbial Fe(III) reduction were responsible for trapping solution As(V) in the systems with high ferrihydrite but low As(V) concentrations. In summary, the interaction between microbial arsenate and ferrihydrite reduction did not correlate with ΔGrxn, but instead was governed by geochemical and microbial parameters, which may substantially influence the mobility of arsenic.

  16. Radionuclide Basics: Technetium-99

    EPA Pesticide Factsheets

    Technetium-99 (chemical symbol Tc-99) is a silver-gray, radioactive metal. It occurs naturally in very small amounts in the earth's crust, but is primarily man-made. Technetium-99m is a short-lived form of Tc-99 that is used as a medical diagnostic tool.

  17. Bioinorganic Activity of Technetium Radiopharmaceuticals.

    ERIC Educational Resources Information Center

    Pinkerton, Thomas C.; And Others

    1985-01-01

    Technetium radiopharmaceuticals are diagnostic imaging agents used in the field of nuclear medicine to visualize tissues, anatomical structures, and metabolic disorders. Bioavailability of technetium complexes, thyroid imaging, brain imaging, kidney imaging, imaging liver function, bone imaging, and heart imaging are the major areas discussed. (JN)

  18. SEPARATION OF TECHNETIUM FROM AQUEOUS SOLUTIONS BY COPRECIPITATION WITH MAGNETITE

    DOEpatents

    Rimshaw, S.J.

    1961-10-24

    A method of separating technetium in the 4+ oxidation state from an aqueous basic solution containing products of uranium fission is described. The method consists of contacting the solution with finely divided magnetite and recovering a technetium-bearing precipitate. (AEC)

  19. Microbial reduction of uranium

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.; Gorby, Y.A.; Landa, E.R.

    1991-01-01

    REDUCTION of the soluble, oxidized form of uranium, U(VI), to insoluble U(IV) is an important mechanism for the immobilization of uranium in aquatic sediments and for the formation of some uranium ores1-10. U(VI) reduction has generally been regarded as an abiological reaction in which sulphide, molecular hydrogen or organic compounds function as the reductant1,2,5,11. Microbial involvement in U(VI) reduction has been considered to be limited to indirect effects, such as microbial metabolism providing the reduced compounds for abiological U(VI) reduction and microbial cell walls providing a surface to stimulate abiological U(VI) reduction1,12,13. We report here, however, that dissimilatory Fe(III)-reducing microorganisms can obtain energy for growth by electron transport to U(VI). This novel form of microbial metabolism can be much faster than commonly cited abiological mechanisms for U(VI) reduction. Not only do these findings expand the known potential terminal electron acceptors for microbial energy transduction, they offer a likely explanation for the deposition of uranium in aquatic sediments and aquifers, and suggest a method for biological remediation of environments contaminated with uranium.

  20. Cast Stone Oxidation Front Evaluation: Preliminary Results For Samples Exposed To Moist Air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C. A.; Almond, P. M.

    The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO{sub 4}{sup -} in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O{sub 4}{sup -}, which is very soluble. Consequently the rate of technetium oxidation front advancement into a monolith and the technetium leaching profile as a function ofmore » depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate (Cr(VI) was used as a non-radioactive surrogate for pertechnetate, Tc(VII), in Cast Stone samples prepared with 5 M Simulant. Cast Stone spiked with pertechnetate was also prepared and tested. Depth discrete subsamples spiked with Cr were cut from Cast Stone exposed to Savannah River Site (SRS) outdoor ambient temperature fluctuations and moist air. Depth discrete subsamples spiked with Tc-99 were cut from Cast Stone exposed to laboratory ambient temperature fluctuations and moist air. Similar conditions are expected to be encountered in the Cast Stone curing container. The leachability of Cr and Tc-99 and the reduction capacities, measured by the Angus-Glasser method, were determined for each subsample as a function of depth from the exposed surface. The results obtained to date were focused on continued method development and are preliminary and apply to the sample composition and curing / exposure conditions described in this report. The Cr oxidation front (depth to which soluble Cr was detected) for the Cast Stone sample exposed for 68 days to ambient outdoor temperatures and humid air (total age of sample was 131 days) was determined to be about 35 mm below the top sample surface exposed. The Tc oxidation front, depth at which Tc was insoluble, was not determined. Interpretation of the results indicates that the oxidation front is at least 38 mm below the exposed surface. The sample used for this measurement was exposed to ambient laboratory conditions and humid air for 50 days. The total age of the sample was 98 days. Technetium appears to be more easily oxidized than Cr in the Cast Stone matrix. The oxidized forms of Tc and Cr are soluble and therefore leachable. Longer exposure times are required for both the Cr and Tc spiked samples to better interpret the rate of oxidation. Tc spiked subsamples need to be taken further from the exposed surface to better define and interpret the leachable Tc profile. Finally Tc(VII) reduction to Tc(IV) appears to occur relatively fast. Results demonstrated that about 95 percent of the Tc(VII) was reduced to Tc(IV) during the setting and very early stage setting for a Cast Stone sample cured 10 days. Additional testing at longer curing times is required to determine whether additional time is required to reduce 100 % of the Tc(VII) in Cast Stone or whether the Tc loading exceeded the ability of the waste form to reduce 100 % of the Tc(VII). Additional testing is required for samples cured for longer times. Depth discrete subsampling in a nitrogen glove box is also required to determine whether the 5 percent Tc extracted from the subsamples was the result of the sampling process which took place in air. Reduction capacity measurements (per the Angus-Glasser method) performed on depth discrete samples could not be correlated with the amount of chromium or technetium leached from the depth discrete subsamples or with the oxidation front inferred from soluble chromium and technetium (i.e., effective Cr and Tc oxidation fronts). Residual reduction capacity in the oxidized region of the test samples indicates that the remaining reduction capacity is not effective in re-reducing Cr(VI) or Tc(VII) in the presence of oxygen. Depth discrete sampling and leaching is a useful for evaluating Cast Stone and other chemically reducing waste forms containing ground granulated blast furnace slag (GGBFS) or other reduction / sequestration reagents to control redox sensitive contaminant chemistry and leachability in the near surface disposal environment. Based on results presented in this report, reduction capacity measured by the Angus-Glasser Ce(IV) method is not an appropriate or meaningful parameter for determining or predicting Tc and Cr oxidation / retentions, speciation, or solubilities in cementitious materials such as Cast Stone. A model for predicting Tc(IV) oxidation to soluble Tc(VII) should consider the waste form porosity (pathway for oxygen ingress), oxygen source, and the contaminant specific oxidation rates and oxidation fronts. Depth discrete sampling of materials exposed to realistic conditions in combination with short term leaching of crushed samples has potential for advancing the understanding of factors influencing performance. This information can be used to support conceptual model development.« less

  1. Process for the extraction of technetium from uranium

    DOEpatents

    Gong, Cynthia-May S.; Poineau, Frederic; Czerwinski, Kenneth R.

    2010-12-21

    A spent fuel reprocessing method contacts an aqueous solution containing Technetium(V) and uranyl with an acidic solution comprising hydroxylamine hydrochloride or acetohydroxamic acid to reduce Tc(V) to Tc(II, and then extracts the uranyl with an organic phase, leaving technetium(II) in aqueous solution.

  2. Process for preparing radiopharmaceuticals

    DOEpatents

    Barak, Morton; Winchell, Harry S.

    1977-01-04

    A process for the preparation of technetium-99m labeled pharmaceuticals is disclosed. The process comprises initially isolating technetium-99m pertechnetate by adsorption upon an adsorbent packing in a chromatographic column. The technetium-99m is then eluted from the packing with a biological compound to form a radiopharmaceutical.

  3. [Advances in microbial genome reduction and modification].

    PubMed

    Wang, Jianli; Wang, Xiaoyuan

    2013-08-01

    Microbial genome reduction and modification are important strategies for constructing cellular chassis used for synthetic biology. This article summarized the essential genes and the methods to identify them in microorganisms, compared various strategies for microbial genome reduction, and analyzed the characteristics of some microorganisms with the minimized genome. This review shows the important role of genome reduction in constructing cellular chassis.

  4. A biokinetic model for systemic technetium in adult humans

    DOE PAGES

    Leggett, Richard Wayne; Giussani, Augusto

    2015-04-10

    The International Commission on Radiological Protection (ICRP) currently is updating its biokinetic and dosimetric models for internally deposited radionuclides. Technetium (Tc), the lightest element that exists only in radioactive form, has two important isotopes from the standpoint of potential risk to humans: the long-lived isotope 99Tm(T 1/2=2.1x10 5 y) is present in high concentration in nuclear waste, and the short-lived isotope 99mTc (T 1/2=6.02 h) is the most commonly used radionuclide in diagnostic nuclear medicine. This paper reviews data on the biological behavior of technetium and proposes a biokinetic model for systemic technetium in the adult human body formore » use in radiation protection. Compared with the ICRP s current occupational model for systemic technetium, the proposed model provides a more realistic description of the paths of movement of technetium in the body; provides greater consistency with experimental and medical data; and, for most radiosensitive organs, yields substantially different estimates of cumulative activity (total radioactive decays within the organ) following uptake of 99Tm or 99mTc to blood.« less

  5. Characterising microbial reduction of arsenate sorbed to ferrihydrite and its concurrence with iron reduction.

    PubMed

    Huang, Jen-How

    2018-03-01

    A series of model anoxic incubations were performed to understand the concurrence between arsenate and ferrihydrite reduction by Shewanella putrefaciens strain CN-32 at different concentrations of arsenate, ferrihydrite and lactate, and with given ΔG rxn for arsenate and ferrihydrite reduction in non-growth conditions. The reduction kinetics of arsenate sorbed to ferrihydrite is predominately controlled by the availability of dissolved arsenate, which is measured by the integral of dissolved arsenate concentrations against incubation time and shown to correlate with the first order rate constants. High lactate concentrations slightly slowed down the rate of arsenate reduction due to the competition with arsenate for microbial contact. Under all experimental conditions, simultaneous arsenate and ferrihydrite reduction occurred following addition of S. putrefaciens inoculums and suggested no apparent competition between these two enzymatic reductions. Ferrous ions released from iron reduction might retard microbial arsenate reduction at high arsenate and ferrihydrite concentrations due to formation of ferrous arsenate. At high arsenate to ferrihydrite ratios, reductive dissolution of ferrihydrite shifted arsenate from sorption to dissolution and hence accelerated arsenate reduction. The interaction between microbial arsenate and ferrihydrite reduction did not correlate with ΔG rxn , but instead was governed by other factors such as geochemical and microbial parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Thermodynamics of technetium: Reconciling theory and experiment using density functional perturbation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weck, Philippe F.; Kim, Eunja

    The structure, lattice dynamics and thermodynamic properties of bulk technetium were investigated within the framework of density functional theory. The phonon density of states spectrum computed with density functional perturbation theory closely matches inelastic coherent neutron scattering measurements. The thermal properties of technetium were derived from phonon frequencies calculated within the quasi-harmonic approximation (QHA), which introduces a volume dependence of phonon frequencies as a part of the anharmonic effect. As a result, the predicted thermal expansion and isobaric heat capacity of technetium are in excellent agreement with available experimental data for temperatures up to ~1600 K.

  7. Thermodynamics of technetium: Reconciling theory and experiment using density functional perturbation analysis

    DOE PAGES

    Weck, Philippe F.; Kim, Eunja

    2015-06-11

    The structure, lattice dynamics and thermodynamic properties of bulk technetium were investigated within the framework of density functional theory. The phonon density of states spectrum computed with density functional perturbation theory closely matches inelastic coherent neutron scattering measurements. The thermal properties of technetium were derived from phonon frequencies calculated within the quasi-harmonic approximation (QHA), which introduces a volume dependence of phonon frequencies as a part of the anharmonic effect. As a result, the predicted thermal expansion and isobaric heat capacity of technetium are in excellent agreement with available experimental data for temperatures up to ~1600 K.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieske, T.R.; Sunderrajan, E.V.; Passamonte, P.M.

    A patient with chronic eosinophilic pneumonia was evaluated using bronchoalveolar lavage, technetium-99m glucoheptonate, and transbronchial lung biopsy. Bronchoalveolar lavage revealed 43 percent eosinophils and correlated well with results of transbronchial lung biopsy. Technetium-99m glucoheptonate lung imaging demonstrated intense parenchymal uptake. After eight weeks of corticosteroid therapy, the bronchoalveolar lavage eosinophil population and the technetium-99m glucoheptonate uptake had returned to normal. We suggest that bronchoalveolar lavage, with transbronchial lung biopsy, is a less invasive way than open lung biopsy to diagnose chronic eosinophilic pneumonia. The mechanism of uptake of technetium-99m glucoheptonate in this disorder remains to be defined.

  9. Equation of state for technetium from X-ray diffraction and first-principle calculations

    DOE PAGES

    Mast, Daniel S.; Kim, Eunja; Siska, Emily M.; ...

    2016-03-20

    Here, the ambient temperature equation of state (EoS) of technetium metal has been measured by X-ray diffraction. The metal was compressed using a diamond anvil cell and using a 4:1 methanol-ethanol pressure transmitting medium. The maximum pressure achieved, as determined from the gold pressure scale, was 67 GPa. The compression data shows that the HCP phase of technetium is stable up to 67 GPa. The compression curve of technetium was also calculated using first-principles total-energy calculations. Utilizing a number of fitting strategies to compare the experimental and theoretical data it is determined that the Vinet equation of state with anmore » ambient isothermal bulk modulus of B 0T = 288 GPa and a first pressure derivative of B' = 5.9(2) best represent the compression behavior of technetium metal.« less

  10. Microbial Activity in Aquatic Environments Measured by Dimethyl Sulfoxide Reduction and Intercomparison with Commonly Used Methods

    PubMed Central

    Griebler, Christian; Slezak, Doris

    2001-01-01

    A new method to determine microbial (bacterial and fungal) activity in various freshwater habitats is described. Based on microbial reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS), our DMSO reduction method allows measurement of the respiratory activity in interstitial water, as well as in the water column. DMSO is added to water samples at a concentration (0.75% [vol/vol] or 106 mM) high enough to compete with other naturally occurring electron acceptors, as determined with oxygen and nitrate, without stimulating or inhibiting microbial activity. Addition of NaN3, KCN, and formaldehyde, as well as autoclaving, inhibited the production of DMS, which proves that the reduction of DMSO is a biotic process. DMSO reduction is readily detectable via the formation of DMS even at low microbial activities. All water samples showed significant DMSO reduction over several hours. Microbially reduced DMSO is recovered in the form of DMS from water samples by a purge and trap system and is quantified by gas chromatography and detection with a flame photometric detector. The DMSO reduction method was compared with other methods commonly used for assessment of microbial activity. DMSO reduction activity correlated well with bacterial production in predator-free batch cultures. Cell-production-specific DMSO reduction rates did not differ significantly in batch cultures with different nutrient regimes but were different in different growth phases. Overall, a cell-production-specific DMSO reduction rate of 1.26 × 10−17 ± 0.12 × 10−17 mol of DMS per produced cell (mean ± standard error; R2 = 0.78) was calculated. We suggest that the relationship of DMSO reduction rates to thymidine and leucine incorporation is linear (the R2 values ranged from 0.783 to 0.944), whereas there is an exponential relationship between DMSO reduction rates and glucose uptake, as well as incorporation (the R2 values ranged from 0.821 to 0.931). Based on our results, we conclude that the DMSO reduction method is a nonradioactive alternative to other methods commonly used to assess microbial activity. PMID:11133433

  11. Microbial activity in aquatic environments measured by dimethyl sulfoxide reduction and intercomparison with commonly used methods.

    PubMed

    Griebler, C; Slezak, D

    2001-01-01

    A new method to determine microbial (bacterial and fungal) activity in various freshwater habitats is described. Based on microbial reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS), our DMSO reduction method allows measurement of the respiratory activity in interstitial water, as well as in the water column. DMSO is added to water samples at a concentration (0.75% [vol/vol] or 106 mM) high enough to compete with other naturally occurring electron acceptors, as determined with oxygen and nitrate, without stimulating or inhibiting microbial activity. Addition of NaN(3), KCN, and formaldehyde, as well as autoclaving, inhibited the production of DMS, which proves that the reduction of DMSO is a biotic process. DMSO reduction is readily detectable via the formation of DMS even at low microbial activities. All water samples showed significant DMSO reduction over several hours. Microbially reduced DMSO is recovered in the form of DMS from water samples by a purge and trap system and is quantified by gas chromatography and detection with a flame photometric detector. The DMSO reduction method was compared with other methods commonly used for assessment of microbial activity. DMSO reduction activity correlated well with bacterial production in predator-free batch cultures. Cell-production-specific DMSO reduction rates did not differ significantly in batch cultures with different nutrient regimes but were different in different growth phases. Overall, a cell-production-specific DMSO reduction rate of 1.26 x 10(-17) +/- 0. 12 x 10(-17) mol of DMS per produced cell (mean +/- standard error; R(2) = 0.78) was calculated. We suggest that the relationship of DMSO reduction rates to thymidine and leucine incorporation is linear (the R(2) values ranged from 0.783 to 0.944), whereas there is an exponential relationship between DMSO reduction rates and glucose uptake, as well as incorporation (the R(2) values ranged from 0.821 to 0.931). Based on our results, we conclude that the DMSO reduction method is a nonradioactive alternative to other methods commonly used to assess microbial activity.

  12. Development of Novel Technetium-99m-Labeled Steroids as Estrogen-Responsive Breast Cancer Imaging Agents

    DTIC Science & Technology

    2007-06-01

    alkylation with α,ω-ditosyloxy triethylene glycol, followed by displacement with sodium azide, aromatization and reduction of the 17- keto group give the...17alpha.-E- (trifluoromethylphenyl)vinyl estradiols as novel estrogen receptor ligands. Steroids 2003, 68, 143 -148. 23. Hanson, R.N., Dilis, R...R. N.; Lee, C. Y.; Friel, C.; Hughes, A.; DeSombre, E. R. Steroids 2003, 68, 143 -148. (c) Hanson, R. N.; Tongcharoensirikul, P.; Dilis, R.; Hughes

  13. Residence time effects on technetium reduction in slag-based cementitious materials.

    PubMed

    Arai, Yuji; Powell, Brian A; Kaplan, D I

    2018-01-15

    A long-term disposal of technetium-99 ( 99 Tc) has been considered in a type of cementitious formulation, slag-based grout, at the U.S. Department of Energy, Savannah River Site, Aiken SC, U.S.A. Blast furnace slag, which contains S and Fe electron donors, has been used in a mixture with fly ash, and Portland cement to immobilize 99 Tc(VII)O 4 - (aq) in low level radioactive waste via reductive precipitation reaction. However the long-term stability of Tc(IV) species is not clearly understood as oxygen gradually diffuses into the solid structure. In this study, aging effects of Tc speciation were investigated as a function of depth (<2.5cm) in slag-based grout using X-ray absorption spectroscopy. All of Fe(II) in solids was oxidized to Fe(III) after 117d. However, elemental S, sulfide, and sulfoxide persists at the 0-8mm depths even after 485d, suggesting the presence of a reduced zone below the surface few millimeters. Pertechnetate was successfully reduced to Tc(IV) after 29d. Distorted hydrolyzed Tc(IV) octahedral molecules were partially sulfidized and or polymerized at all depths (0-8mm) and were stable in 485d aged sample. The results of this study suggest that variable S species contribute to stabilize the partially sulfidized Tc(IV) species in aged slag-based grout. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Diffusion of 99-technetium in compacted bentonite under aerobic and anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Večerník, P.; Jedináková-Křížová, V.

    2006-01-01

    The main aim of this study was to investigate diffusion of technetium 99Tc under different conditions. Because technetium represents one of the most dangerous fission products due to its very long halftime and high mobility in aerobic conditions diffusion experiments of technetium (as 99TcO 4 - anion) in Czech bentonite from Rokle locality have been carried out. For performance and evaluation of experiments the through-diffusion method was chosen and apparent (Da) and effective (De) diffusion coefficients were evaluated. The effects of particle mesh-size, dry bulk density and aerobic or anaerobic conditions on diffusion were studied. In the presence of oxygen, technetium occurs in oxidation state VII, as an anion, soluble and mobile in the environment. However, under reducing conditions it occurs in a lower oxidation states, mainly as insoluble oxides or hydroxides. Aerobic experiments were carried out under laboratory conditions and anaerobic experiments were performed in a nitrogen atmosphere in a glove box, to simulate the real underground conditions.

  15. Thermodynamic and Microstructural Mechanisms in the Corrosion of Advanced Ceramic Tc-bearing Waste Forms and Thermophysical Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, Thomas

    Technetium-99 (Tc, t 1/2 = 2.13x10 5 years) is a challenge from a nuclear waste perspective and is one of the most abundant, long-lived radioisotopes found in used nuclear fuel (UNF). Within the Hanford Tank Waste Treatment and Immobilization Plant, technetium volatilizes at typical glass melting temperature, is captured in the off-gas treatment system and recycled back into the feed to eventually increase Tc-loadings of the glass. The aim of this NEUP project was to provide an alternative strategy to immobilize fission technetium as durable ceramic waste form and also to avoid the accumulation of volatile technetium within the offmore » gas melter system in the course of vitrifying radioactive effluents in a ceramic melter. During this project our major attention was turned to the fabrication of chemical durable mineral phases where technetium is structurally bond entirely as tetravalent cation. These mineral phases will act as the primary waste form with optimal waste loading and superior resistance against leaching and corrosion. We have been very successful in fabricating phase-pure micro-gram amounts of lanthanide-technetium pyrochlores by dry-chemical synthesis. However, upscaling to a gram-size synthesis route using either dry- or wet-chemical processing was not always successful, but progress can be reported on a variety of aspects. During the course of this 5-year NEUP project (including a 2-year no-cost extension) we have significantly enhanced the existing knowledge on the fabrication and properties of ceramic technetium waste forms.« less

  16. TC-99 Decontaminant from heat treated gaseous diffusion membrane -Phase I, Part B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L.; Restivo, M.; Duignan, M.

    2017-11-01

    Uranium gaseous diffusion cascades represent a significant environmental challenge to dismantle, containerize and dispose as low-level radioactive waste. Baseline technologies rely on manual manipulations involving direct access to technetium-contaminated piping and materials. There is a potential to utilize novel decontamination technologies to remove the technetium and allow for on-site disposal of the very large uranium converters. Technetium entered these gaseous diffusion cascades as a hexafluoride complex in the same fashion as uranium. Technetium, as the isotope Tc-99, is an impurity that follows uranium in the first cycle of the Plutonium and Uranium Extraction (PUREX) process. The technetium speciation or exactmore » form in the gaseous diffusion cascades is not well defined. Several forms of Tc-99 compounds, mostly the fluorinated technetium compounds with varying degrees of volatility have been speculated by the scientific community to be present in these cascades. Therefore, there may be a possibility of using thermal or leaching desorption, which is independent of the technetium oxidation states, to perform an insitu removal of the technetium as a volatile species and trap the radionuclide on sorbent traps which could be disposed as low-level waste. Based on the positive results of the first part of this work1 the use of steam as a thermal decontamination agent was further explored with a second piece of used barrier material from a different location. This new series of tests included exposing more of the material surface to the flow of high temperature steam through the change in the reactor design, subjecting it to alternating periods of stream and vacuum, as well as determining if a lower temperature steam, i.e., 121°C (250°F) would be effective, too. Along with these methods, one other simpler method involving the leaching of the Tc-99 contaminated barrier material with a 1.0 M aqueous solution of ammonium carbonate, with and without sonication, was evaluated.« less

  17. LABORATORY REPORT ON THE REMOVAL OF PERTECHNETATE FROM TANK 241-AN-105 SIMULANT USING PUROLITE A530E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DUNCAN JB; HAGERTY KJ, MOORE WP; JOHNSON JM

    2012-04-17

    This report documents the laboratory testing and analyses as directed under the test plan, LAB-PLN-11-00010, Evaluation of Technetium Ion Exchange Material against Hanford Double Shell Tank Supernate Simulate with Pertechnetate. Technetium (Tc-99) is a major fission product from nuclear reactors, and because it has few applications outside of scientific research, most of the technetium will ultimately be disposed of as nuclear waste. The radioactive decay of Tc-99 to ruthenium 99 (Ru-99) produces a low energy {beta}{sup -} particle (0.1 MeV max). However, due to its fairly long half-life (t{sub 1/2} = 2.13E05 years), Tc-99 is a major source of radiationmore » in low-level waste (UCRL-JRNL-212334, Current Status of the Thermodynamic Data for Technetium and its Compounds and Aqueous Species). Technetium forms the soluble oxy anion, TcO{sub 4}{sup -} under aerobic conditions. This anion is very mobile in groundwater and poses a health risk (ANL, Radiological and Chemical Fact Sheets to Support Health Risk Analyses for Contaminated Areas). It has been demonstrated that Purolite{reg_sign} A530E is highly effective in removing TcO{sub 4}{sup -} from a water matrix (RPP-RPT-23199, The Removal of Technetium-99 from the Effluent Treatment Facility Basin 44 Waste Using Purolite A-530E, Reillex HPQ, and Sybron IONAC SR-7 Ion Exchange Resins). Purolite{reg_sign} A530E is the commercial product of the Oak Ridge National Laboratory's Biquat{trademark} resin (Gu, B. et. ai, Development of Novel Bifunctional Anion-Exchange Resins with Improved Selectivity for Pertechnetate Sorption from Contaminated Groundwater). Further work has demonstrated that technetium-loaded A530E achieves a leachability index in Cast Stone of 12.5 (ANSI/ASN-16.1-2003, Measurement of the Leachability of Solidified Low-Level Radioactive Wastes by a Short-term Test Procedure) as reported in RPP-RPT-39195, Assessment of Technetium Leachability in Cement-Stabilized Basin 43 Groundwater Brine. This effort falls under the technetium management initiative and will provide data for those who will make decisions on the handling and disposition of technetium. To that end, the objective of this effort was to challenge Purolite{reg_sign} A530E against a double-shell tank (DST) simulant (tank 241-AN-105 or AN-105) spiked with pertechnetate (TcO{sub 4}{sup -}) to determine breakthrough of the lead column.« less

  18. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2.

    PubMed

    Jin, Qusheng; Kirk, Matthew F

    2016-01-01

    Geological carbon sequestration captures CO 2 from industrial sources and stores the CO 2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO 2 concentration. This study uses biogeochemical modeling to explore the influence of CO 2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO 2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO 2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO 2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO 2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  19. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2

    PubMed Central

    Jin, Qusheng; Kirk, Matthew F.

    2016-01-01

    Geological carbon sequestration captures CO2 from industrial sources and stores the CO2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO2 concentration. This study uses biogeochemical modeling to explore the influence of CO2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses. PMID:27909425

  20. Recalcitrant Carbonaceous Material: A Source of Electron Donors for Anaerobic Microbial Metabolisms in the Subsurface?

    NASA Astrophysics Data System (ADS)

    Nixon, S. L.; Montgomery, W.; Sephton, M. A.; Cockell, C. S.

    2014-12-01

    More than 90% of organic material on Earth resides in sedimentary rocks in the form of kerogens; fossilized organic matter formed through selective preservation of high molecular weight biopolymers under anoxic conditions. Despite its prevalence in the subsurface, the extent to which this material supports microbial metabolisms is unknown. Whilst aerobic microorganisms are known to derive energy from kerogens within shales, utilization in anaerobic microbial metabolisms that proliferate in the terrestrial subsurface, such as microbial iron reduction, has yet to be demonstrated. Data are presented from microbial growth experiments in which kerogens and shales were supplied as the sole electron donor source for microbial iron reduction by an enrichment culture. Four well-characterized kerogens samples (representative of Types I-IV, classified by starting material), and two shale samples, were assessed. Organic analysis was carried out to investigate major compound classes present in each starting material. Parallel experiments were conducted to test inhibition of microbial iron reduction in the presence of each material when the culture was supplied with a full redox couple. The results demonstrate that iron-reducing microorganisms in this culture were unable to use kerogens and shales as a source of electron donors for energy acquisition, despite the presence of compound classes known to support this metabolism. Furthermore, the presence of these materials was found to inhibit microbial iron reduction to varying degrees, with some samples leading to complete inhibition. These results suggest that recalcitrant carbonaceous material in the terrestrial subsurface is not available for microbial iron reduction and similar metabolisms, such as sulphate-reduction. Further research is needed to investigate the inhibition exerted by these materials, and to assess whether these findings apply to other microbial consortia. These results may have significant implications for the role of anaerobic microbial metabolisms in the subsurface terrestrial carbon cycle. Kerogens are chemically similar to organic material in carbonaceous chondrites. As such, further study may provide insight into the potential availability of organic compounds for microbial metabolisms operating in the subsurface of Mars.

  1. Effect Of Oxidation On Chromium Leaching And Redox Capacity Of Slag-Containing Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almond, P. M.; Stefanko, D. B.; Langton, C. A.

    2013-03-01

    The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO 4 - in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases [Shuh, et al., 1994, Shuh, et al., 2000, Shuh, et al., 2003]. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O 4 -, which is very soluble. Consequently the rate of technetium oxidation front advancementmore » into a monolith and the technetium leaching profile as a function of depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate was used as a non-radioactive surrogate for pertechnetate in simulated waste form samples. Depth discrete subsamples were cut from material exposed to Savannah River Site (SRS) field cured conditions. The subsamples were prepared and analyzed for both reduction capacity and chromium leachability. Results from field-cured samples indicate that the depth at which leachable chromium was detected advanced further into the sample exposed for 302 days compared to the sample exposed to air for 118 days (at least 50 mm compared to at least 20 mm). Data for only two exposure time intervals is currently available. Data for additional exposure times are required to develop an equation for the oxidation front progression. Reduction capacity measurements (per the Angus-Glasser method, which is a measurement of the ability of a material to chemically reduce Ce(IV) to Ce(III) in solution) performed on depth discrete samples could not be correlated with the amount of chromium leached from the depth discrete subsamples or with the oxidation front inferred from soluble chromium (i.e., effective Cr oxidation front). Exposure to oxygen (air or oxygen dissolved in water) results in the release of chromium through oxidation of Cr(III) to highly soluble chromate, Cr(VI). Residual reduction capacity in the oxidized region of the test samples indicates that the remaining reduction capacity is not effective in re-reducing Cr(VI) in the presence of oxygen. Consequently, this method for determining reduction capacity may not be a good indicator of the effective contaminant oxidation rate in a relatively porous solid (40 to 60 volume percent porosity). The chromium extracted in depth discrete samples ranged from a maximum of about 5.8 % at about 5 mm (118 day exposure) to about 4 % at about 10 mm (302 day exposure). The use of reduction capacity as an indicator of long-term performance requires further investigation. The carbonation front was also estimated to have advanced to at least 28 mm in 302 days based on visual observation of gas evolution during acid addition during the reduction capacity measurements. Depth discrete sampling of materials exposed to realistic conditions in combination with short term leaching of crushed samples has potential for advancing the understanding of factors influencing performance and will support conceptual model development.« less

  2. Reactivity of TNT & TNT - Microbial Reduction Products with Soil Components

    DTIC Science & Technology

    1983-07-01

    TECHNICAL REPORT REACTIVITY OF N TNT & TNT - MICROBIAL REDUCTION PRODUCTS WITH SOIL COMPONENTS BY D. L.KAPLAN ANDDTI C A. M. KAPLAN APPPoVrD FOPJUY1S...3. RECIPIENT’S CATALOG NUMBER NATICK TR-83/041 / 5c ’_______________ 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD -COVERED REACTIVITY OF TNT... REACTIVITY OF TNT AND TNT-MICROBIAL REDUCTION PRODUCTS WITH SOIL COMPONENTS INTRODUCTION Contamination of soils by hazardous wastes (toxic

  3. Technetium: The First Radioelement on the Periodic Table

    DOE PAGES

    Johnstone, Erik V.; Yates, Mary Anne; Poineau, Frederic; ...

    2017-02-21

    The radioactive nature of technetium is discussed using a combination of introductory nuclear physics concepts and empirical trends observed in the chart of the nuclides and the periodic table of the elements. Trends such as the enhanced stability of nucleon pairs, magic numbers, and Mattauch's rule are described. Here, the concepts of nuclear binding energies and the nuclear shell model are introduced and used to explain the relative stability of radionuclides and, in particular, the isotopes of technetium.

  4. Assessment of the value of quantitative thyroid scintigraphy for determination of thyroid function in dogs.

    PubMed

    Shiel, R E; Pinilla, M; McAllister, H; Mooney, C T

    2012-05-01

    To assess the value of thyroid scintigraphy to determine thyroid status in dogs with hypothyroidism and various non-thyroidal illnesses. Thyroid hormone concentrations were measured and quantitative thyroid scintigraphy performed in 21 dogs with clinical and/or clinicopathological features consistent with hypothyroidism. In 14 dogs with technetium thyroidal uptake values consistent with euthyroidism, further investigations supported non-thyroidal illness. In five dogs with technetium thyroidal uptake values within the hypothyroid range, primary hypothyroidism was confirmed as the only disease in four. The remaining dog had pituitary-dependent hyperadrenocorticism. Two dogs had technetium thyroidal uptake values in the non-diagnostic range. One dog had iodothyronine concentrations indicative of euthyroidism. In the other, a dog receiving glucocorticoid therapy, all iodothyronine concentrations were decreased. Markedly asymmetric technetium thyroidal uptake was present in two dogs. All iodothyronine concentrations were within reference interval but canine thyroid stimulating hormone concentration was elevated in one. Non-thyroidal illness was identified in both cases. In dogs, technetium thyroidal uptake is a useful test to determine thyroid function. However, values may be non-diagnostic, asymmetric uptake can occur and excess glucocorticoids may variably suppress technetium thyroidal uptake and/or thyroid hormone concentrations. Further studies are necessary to evaluate quantitative thyroid scintigraphy as a gold standard method for determining canine thyroid function. © 2012 British Small Animal Veterinary Association.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ping; Van Nostrand, Joy D.; He, Zhili

    Cr(VI) is a widespread environmental contaminant that is highly toxic and soluble. Previous work indicated that a one-time amendment of polylactate hydrogen-release compound (HRC) reduced groundwater Cr(VI) concentrations for >3.5 years at a contaminated aquifer; however, microbial communities responsible for Cr(VI) reduction are poorly understood. Here in this study, we hypothesized that HRC amendment would significantly change the composition and structure of groundwater microbial communities, and that the abundance of key functional genes involved in HRC degradation and electron acceptor reduction would increase long-term in response to this slowly degrading, complex substrate. To test these hypotheses, groundwater microbial communities weremore » monitored after HRC amendment for >1 year using a comprehensive functional gene microarray. The results showed that the overall functional composition and structure of groundwater microbial communities underwent sequential shifts after HRC amendment. Particularly, the abundance of functional genes involved in acetate oxidation, denitrification, dissimilatory nitrate reduction, metal reduction, and sulfate reduction significantly increased. The overall community dynamics was significantly correlated with changes in groundwater concentrations of microbial biomass, acetate, NO 3 -, Cr(VI), Fe(II) and SO 4 2-. Finally, our results suggest that HRC amendment primarily stimulated key functional processes associated with HRC degradation and reduction of multiple electron acceptors in the aquifer toward long-term Cr(VI) reduction.« less

  6. Recovery of Technetium Adsorbed on Charcoal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelmann, Mark D.; Metz, Lori A.; Ballou, Nathan E.

    2006-05-01

    Two methods capable of near complete recovery of technetium adsorbed on charcoal are presented. The first involves liquid extraction of the technetium from the charcoal by hot 4M nitric acid. An average recovery of 98% (n=3) is obtained after three rounds of extraction. The second method involves dry ashing with air in a quartz combustion tube at 400-450 C. This method yields an average recovery of 96% (n=5). Other thermal methods were attempted, but resulted in reduced recovery and incomplete material balance

  7. Method of tagging excipients with /sup 99m/Tc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardy, A.; Beydon, J.; Gobin, R.

    1977-11-08

    A method of using /sup 99m/technetium for tagging excipients in medical diagnosis by scintigraphy comprises mixing, in an aqueous solution of alkali-metal pertechnetate, an excipient and a reducing agent in the form of a complex, which complex is such that the association constant of the anion with reduced techetium is less than the association constant of the excipient with reduced technetium, thereby forming a radio-pharmaceutical substance which is a complex between the excipient and /sup 99m/technetium.

  8. Anaerobic Methane Oxidation Driven by Microbial Reduction of Natural Organic Matter in a Tropical Wetland

    PubMed Central

    Valenzuela, Edgardo I.; Prieto-Davó, Alejandra; López-Lozano, Nguyen E.; Hernández-Eligio, Alberto; Vega-Alvarado, Leticia; Juárez, Katy; García-González, Ana Sarahí; López, Mercedes G.

    2017-01-01

    ABSTRACT Wetlands constitute the main natural source of methane on Earth due to their high content of natural organic matter (NOM), but key drivers, such as electron acceptors, supporting methanotrophic activities in these habitats are poorly understood. We performed anoxic incubations using freshly collected sediment, along with water samples harvested from a tropical wetland, amended with 13C-methane (0.67 atm) to test the capacity of its microbial community to perform anaerobic oxidation of methane (AOM) linked to the reduction of the humic fraction of its NOM. Collected evidence demonstrates that electron-accepting functional groups (e.g., quinones) present in NOM fueled AOM by serving as a terminal electron acceptor. Indeed, while sulfate reduction was the predominant process, accounting for up to 42.5% of the AOM activities, the microbial reduction of NOM concomitantly occurred. Furthermore, enrichment of wetland sediment with external NOM provided a complementary electron-accepting capacity, of which reduction accounted for ∼100 nmol 13CH4 oxidized · cm−3 · day−1. Spectroscopic evidence showed that quinone moieties were heterogeneously distributed in the wetland sediment, and their reduction occurred during the course of AOM. Moreover, an enrichment derived from wetland sediments performing AOM linked to NOM reduction stoichiometrically oxidized methane coupled to the reduction of the humic analogue anthraquinone-2,6-disulfonate. Microbial populations potentially involved in AOM coupled to microbial reduction of NOM were dominated by divergent biota from putative AOM-associated archaea. We estimate that this microbial process potentially contributes to the suppression of up to 114 teragrams (Tg) of CH4 · year−1 in coastal wetlands and more than 1,300 Tg · year−1, considering the global wetland area. IMPORTANCE The identification of key processes governing methane emissions from natural systems is of major importance considering the global warming effects triggered by this greenhouse gas. Anaerobic oxidation of methane (AOM) coupled to the microbial reduction of distinct electron acceptors plays a pivotal role in mitigating methane emissions from ecosystems. Given their high organic content, wetlands constitute the largest natural source of atmospheric methane. Nevertheless, processes controlling methane emissions in these environments are poorly understood. Here, we provide tracer analysis with 13CH4 and spectroscopic evidence revealing that AOM linked to the microbial reduction of redox functional groups in natural organic matter (NOM) prevails in a tropical wetland. We suggest that microbial reduction of NOM may largely contribute to the suppression of methane emissions from tropical wetlands. This is a novel avenue within the carbon cycle in which slowly decaying NOM (e.g., humic fraction) in organotrophic environments fuels AOM by serving as a terminal electron acceptor. PMID:28341676

  9. Anaerobic Methane Oxidation Driven by Microbial Reduction of Natural Organic Matter in a Tropical Wetland.

    PubMed

    Valenzuela, Edgardo I; Prieto-Davó, Alejandra; López-Lozano, Nguyen E; Hernández-Eligio, Alberto; Vega-Alvarado, Leticia; Juárez, Katy; García-González, Ana Sarahí; López, Mercedes G; Cervantes, Francisco J

    2017-06-01

    Wetlands constitute the main natural source of methane on Earth due to their high content of natural organic matter (NOM), but key drivers, such as electron acceptors, supporting methanotrophic activities in these habitats are poorly understood. We performed anoxic incubations using freshly collected sediment, along with water samples harvested from a tropical wetland, amended with 13 C-methane (0.67 atm) to test the capacity of its microbial community to perform anaerobic oxidation of methane (AOM) linked to the reduction of the humic fraction of its NOM. Collected evidence demonstrates that electron-accepting functional groups (e.g., quinones) present in NOM fueled AOM by serving as a terminal electron acceptor. Indeed, while sulfate reduction was the predominant process, accounting for up to 42.5% of the AOM activities, the microbial reduction of NOM concomitantly occurred. Furthermore, enrichment of wetland sediment with external NOM provided a complementary electron-accepting capacity, of which reduction accounted for ∼100 nmol 13 CH 4 oxidized · cm -3 · day -1 Spectroscopic evidence showed that quinone moieties were heterogeneously distributed in the wetland sediment, and their reduction occurred during the course of AOM. Moreover, an enrichment derived from wetland sediments performing AOM linked to NOM reduction stoichiometrically oxidized methane coupled to the reduction of the humic analogue anthraquinone-2,6-disulfonate. Microbial populations potentially involved in AOM coupled to microbial reduction of NOM were dominated by divergent biota from putative AOM-associated archaea. We estimate that this microbial process potentially contributes to the suppression of up to 114 teragrams (Tg) of CH 4 · year -1 in coastal wetlands and more than 1,300 Tg · year -1 , considering the global wetland area. IMPORTANCE The identification of key processes governing methane emissions from natural systems is of major importance considering the global warming effects triggered by this greenhouse gas. Anaerobic oxidation of methane (AOM) coupled to the microbial reduction of distinct electron acceptors plays a pivotal role in mitigating methane emissions from ecosystems. Given their high organic content, wetlands constitute the largest natural source of atmospheric methane. Nevertheless, processes controlling methane emissions in these environments are poorly understood. Here, we provide tracer analysis with 13 CH 4 and spectroscopic evidence revealing that AOM linked to the microbial reduction of redox functional groups in natural organic matter (NOM) prevails in a tropical wetland. We suggest that microbial reduction of NOM may largely contribute to the suppression of methane emissions from tropical wetlands. This is a novel avenue within the carbon cycle in which slowly decaying NOM (e.g., humic fraction) in organotrophic environments fuels AOM by serving as a terminal electron acceptor. Copyright © 2017 American Society for Microbiology.

  10. Sulfur-Modified Zero-Valent Iron for Remediation Applications at DOE Sites - 13600

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogwell, Thomas W.; Santina, Pete

    2013-07-01

    Many DOE remediation sites have chemicals of concern that are compounds in higher oxidation states, which make them both more mobile and more toxic. The chemical reduction of these compounds both prevents the migration of these chemicals and in some cases reduces the toxicity. It has also been shown that zero-valent iron is a very effective substance to use in reducing oxygenated compounds in various treatment processes. These have included the treatment of halogenated hydrocarbons in the form volatile organic compounds used as solvents and pesticides. Zero-valent iron has also been used to reduce various oxidized metals such as chromium,more » arsenic, and mercury in order to immobilize them, decrease their toxicity, and prevent further transport. In addition, it has been used to immobilize or break down other non-metallic species such as selenium compounds and nitrates. Of particular interest at several DOE remediation sites is the fact that zero-valent iron is very effective in immobilizing several radioactive metals which are mobile in their oxidized states. These include both technetium and uranium. The main difficulty in using zero-valent iron has been its tendency to become inactive after relatively short periods of time. While it is advantageous to have the zero-valent iron particles as porous as possible in order to provide maximum surface area for reactions to take place, these pores can become clogged when the iron is oxidized. This is due to the fact that ferric oxide has a greater volume for a given mass than metallic iron. When the surfaces of the iron particles oxidize to ferric oxide, the pores become narrower and will eventually shut. In order to minimize the degradation of the chemical activity of the iron due to this process, a modification of zero-valent iron has been developed which prevents or slows this process, which decreases its effectiveness. It is called sulfur-modified iron, and it has been produced in high purity for applications in municipal water treatment applications. Sulfur-modified iron has been found to not only be an extremely economical treatment technology for municipal water supplies, where very large quantities of water must be treated economically, but it has also been demonstrated to immobilize technetium. It has the added benefit of eliminating several other harmful chemicals in water supplies. These include arsenic and selenium. In one large-scale evaluation study an integrated system implemented chemical reduction of nitrate with sulfur-modified iron followed by filtration for arsenic removal. The sulfur-modified iron that was used was an iron-based granular medium that has been commercially developed for the removal of nitrate, co-contaminants including uranium, vanadium and chromium, and other compounds from water. The independent study concluded that 'It is foreseen that the greatest benefit of this technology (sulfur-modified iron) is that it does not produce a costly brine stream as do the currently accepted nitrate removal technologies of ion exchange and reverse osmosis. This investigation confirmed that nitrate reduction via sulfur-modified iron is independent of the hydraulic loading rate. Future sulfur-modified iron treatment systems can be designed without restriction of the reactor vessel dimensions. Future vessels can be adapted to existing site constraints without being limited to height-to-width ratios that would exist if nitrate reduction were to depend on hydraulic loading rate'. Sulfur-modified iron was studied by the Pacific Northwest National Laboratory (PNNL) for its effectiveness in the reduction and permanent sequestration of technetium. The testing was done using Hanford Site groundwater together with sediment. The report stated, 'Under reducing conditions, TcO{sub 4} is readily reduced to TcIV, which forms highly insoluble oxides such at TcO{sub 2}.nH{sub 2}O. However, (re)oxidation of TcIV oxides can lead to remobilization. Under sulfidogenic conditions, most TcIV will be reduced and immobilized as Tc{sub 2}S{sub 7}, which is less readily re-mobilized, even under oxic conditions. This process should be favored by stimulation of sulfidogenic conditions'. The sulfur-modified iron provides the sulfur, together with the iron, to maintain this stable sequestration of technetium. As a result of these and other studies demonstrating the cost-effectiveness of sulfur-modified iron in treating technetium and other hazardous compounds in Hanford Site groundwater and its cost-effectiveness in reducing nitrate, the Richland Operations Office of the Department of Energy issued a change order to the Central Plateau Contractor providing for the testing of sulfur-modified iron in a mobile pilot unit at the Hanford Site. Further testing is anticipated to produce refinements in operating conditions and further optimization of the existing process. (authors)« less

  11. Biogenic nanopalladium production by self-immobilized granular biomass: application for contaminant remediation.

    PubMed

    Suja, E; Nancharaiah, Y V; Venugopalan, V P

    2014-11-15

    Microbial granules cultivated in an aerobic bubble column sequencing batch reactor were used for reduction of Pd(II) and formation of biomass associated Pd(0) nanoparticles (Bio-Pd) for reductive transformation of organic and inorganic contaminants. Addition of Pd(II) to microbial granules incubated under fermentative conditions resulted in rapid formation of Bio-Pd. The reduction of soluble Pd(II) to biomass associated Pd(0) was predominantly mediated by H2 produced through fermentation. X-ray diffraction and scanning electron microscope analysis revealed that the produced Pd nanoparticles were associated with the microbial granules. The catalytic activity of Bio-Pd was determined using p-nitrophenol and Cr(VI) as model compounds. Reductive transformation of p-nitrophenol by Bio-Pd was ∼20 times higher in comparison to microbial granules without Pd. Complete reduction of up to 0.25 mM of Cr(VI) by Bio-Pd was achieved in 24 h. Bio-Pd synthesis using self-immobilized microbial granules is advantageous and obviates the need for nanoparticle encapsulation or use of barrier membranes for retaining Bio-Pd in practical applications. In short, microbial granules offer a dual purpose system for Bio-Pd production and retention, wherein in situ generated H2 serves as electron donor powering biotransformations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Immobilization and Limited Reoxidation of Technetium-99 by Fe(II)-Goethite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Chang, Hyun-shik; Icenhower, Jonathan P.

    2010-09-30

    This report summarizes the methodology used to test the sequestration of technetium-99 present in both deionized water and simulated Hanford Tank Waste Treatment and Immobilization Plant waste solutions.

  13. Microbial impacts on 99mTc migration through sandstone under highly alkaline conditions relevant to radioactive waste disposal.

    PubMed

    Smith, Sarah L; Boothman, Christopher; Williams, Heather A; Ellis, Beverly L; Wragg, Joanna; West, Julia M; Lloyd, Jonathan R

    2017-01-01

    Geological disposal of intermediate level radioactive waste in the UK is planned to involve the use of cementitious materials, facilitating the formation of an alkali-disturbed zone within the host rock. The biogeochemical processes that will occur in this environment, and the extent to which they will impact on radionuclide migration, are currently poorly understood. This study investigates the impact of biogeochemical processes on the mobility of the radionuclide technetium, in column experiments designed to be representative of aspects of the alkali-disturbed zone. Results indicate that microbial processes were capable of inhibiting 99m Tc migration through columns, and X-ray radiography demonstrated that extensive physical changes had occurred to the material within columns where microbiological activity had been stimulated. The utilisation of organic acids under highly alkaline conditions, generating H 2 and CO 2 , may represent a mechanism by which microbial processes may alter the hydraulic conductivity of a geological environment. Column sediments were dominated by obligately alkaliphilic H 2 -oxidising bacteria, suggesting that the enrichment of these bacteria may have occurred as a result of H 2 generation during organic acid metabolism. The results from these experiments show that microorganisms are able to carry out a number of processes under highly alkaline conditions that could potentially impact on the properties of the host rock surrounding a geological disposal facility for intermediate level radioactive waste. Copyright © 2016. Published by Elsevier B.V.

  14. Microbial reduction of vanadium (V) in groundwater: Interactions with coexisting common electron acceptors and analysis of microbial community.

    PubMed

    Liu, Hui; Zhang, Baogang; Yuan, Heyang; Cheng, Yutong; Wang, Song; He, Zhen

    2017-12-01

    Vanadium (V) pollution in groundwater has posed serious risks to the environment and public health. Anaerobic microbial reduction can achieve efficient and cost-effective remediation of V(V) pollution, but its interactions with coexisting common electron acceptors such as NO 3 - , Fe 3+ , SO 4 2- and CO 2 in groundwater remain unknown. In this study, the interactions between V(V) reduction and reduction of common electron acceptors were examined with revealing relevant microbial community and identifying dominant species. The results showed that the presence of NO 3 - slowed down the removal of V(V) in the early stage of the reaction but eventually led to a similar reduction efficiency (90.0% ± 0.4% in 72-h operation) to that in the reactor without NO 3 - . The addition of Fe 3+ , SO 4 2- , or CO 2 decreased the efficiency of V(V) reduction. Furthermore, the microbial reduction of these coexisting electron acceptors was also adversely affected by the presence of V(V). The addition of V(V) as well as the extra dose of Fe 3+ , SO 4 2- and CO 2 decreased microbial diversity and evenness, whereas the reactor supplied with NO 3 - showed the increased diversity. High-throughput 16S rRNA gene pyrosequencing analysis indicated the accumulation of Geobacter, Longilinea, Syntrophobacter, Spirochaeta and Anaerolinea, which might be responsible for the reduction of multiple electron acceptors. The findings of this study have demonstrated the feasibility of anaerobic bioremediation of V(V) and the possible influence of coexisting electron acceptors commonly found in groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest

    USGS Publications Warehouse

    Waldrop, M.P.; Harden, J.W.

    2008-01-01

    Boreal forests contain significant quantities of soil carbon that may be oxidized to CO2 given future increases in climate warming and wildfire behavior. At the ecosystem scale, decomposition and heterotrophic respiration are strongly controlled by temperature and moisture, but we questioned whether changes in microbial biomass, activity, or community structure induced by fire might also affect these processes. We particularly wanted to understand whether postfire reductions in microbial biomass could affect rates of decomposition. Additionally, we compared the short-term effects of wildfire to the long-term effects of climate warming and permafrost decline. We compared soil microbial communities between control and recently burned soils that were located in areas with and without permafrost near Delta Junction, AK. In addition to soil physical variables, we quantified changes in microbial biomass, fungal biomass, fungal community composition, and C cycling processes (phenol oxidase enzyme activity, lignin decomposition, and microbial respiration). Five years following fire, organic surface horizons had lower microbial biomass, fungal biomass, and dissolved organic carbon (DOC) concentrations compared with control soils. Reductions in soil fungi were associated with reductions in phenol oxidase activity and lignin decomposition. Effects of wildfire on microbial biomass and activity in the mineral soil were minor. Microbial community composition was affected by wildfire, but the effect was greater in nonpermafrost soils. Although the presence of permafrost increased soil moisture contents, effects on microbial biomass and activity were limited to mineral soils that showed lower fungal biomass but higher activity compared with soils without permafrost. Fungal abundance and moisture were strong predictors of phenol oxidase enzyme activity in soil. Phenol oxidase enzyme activity, in turn, was linearly related to both 13C lignin decomposition and microbial respiration in incubation studies. Taken together, these results indicate that reductions in fungal biomass in postfire soils and lower soil moisture in nonpermafrost soils reduced the potential of soil heterotrophs to decompose soil carbon. Although in the field increased rates of microbial respiration can be observed in postfire soils due to warmer soil conditions, reductions in fungal biomass and activity may limit rates of decomposition. ?? 2008 The Authors Journal compilation ?? 2008 Blackwell Publishing.

  16. Speciation and Oxidative Stability of Alkaline Soluble, Non-Pertechnetate Technetium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitskaia, Tatiana G.; Rapko, Brian M.; Anderson, Amity

    2014-09-30

    The long half-life, complex chemical behavior in tank waste, limited incorporation in mid- to high-temperature immobilization processes, and high mobility in subsurface environments make technetium (Tc) one of the most difficult contaminants to dispose of and/or remediate. Technetium exists predominantly in the liquid tank waste phase as the relatively mobile form of pertechnetate, TcO 4 -. However, based on experimentation to date a significant fraction of the soluble Tc cannot be effectively separated from the wastes and may be present as a non- pertechnetate species. The presence of a non-pertechnetate species significantly complicates disposition of low-activity waste (LAW), and themore » development of methods to either convert them to pertechnetate or to separate directly is needed. The challenge is the uncertainty regarding the chemical form of the alkaline-soluble low-valent non-pertechnetate species in the liquid tank waste. This report summarizes work done in fiscal year (FY) 2014 exploring the chemistry of a low-valence technetium(I) species, [(CO) 3Tc(H 2O) 3] +, a compound of interest due to its implication in the speciation of alkaline-soluble technetium in several Hanford tank waste supernatants.« less

  17. Radioactive excretion in human milk following administration of /sup 99m/Tc macroaggregated albumin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pittard, W.B.; Merkatz, R.; Fletcher, B.D.

    Albumin-tagged sodium pertechnetate (technetium) is routinely used in nuclear medicine for scanning procedures of the lung. The rate of excretion of this radionuclide into breast milk and the resultant potential radiation hazard to the nursing infant have received little attention. Therefore the milk from a nursing mother who required a lung scan because of suspected pulmonary emboli using an intravenous injection of 4 mCi of /sup 99m/Tc macroaggregated human serum albumin was monitored. Albumin tagging severely limited the entrance of technetium into her milk and the radioactivity of the milk returned to base line by 24 hours. A total ofmore » 2.02 muCi of technetium was measured in the 24-hour milk collection after technetium injection and 94% of this amount was excreted by 15.5 hours. This amount of technetium administered orally to a newborn would deliver a total body radiation dose of .3 mrad. Therefore, an infant would receive trivial doses of radiation if breast-feeding were resumed 15.5 hours after administration of the radionuclide to the mother and nursing can clearly be resumed safely 24 hours after injection.« less

  18. Failure of technetium bone scanning to detect pseudarthroses in spinal fusion for scoliosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannon, K.M.; Wetta, W.J.

    1977-01-01

    A prospective study of 11 patients suggests that present techniques of technetium bone scanning do not assist in recognizing the presence of well-established pseudarthrosis in spinal fusions for scoliosis.

  19. 99M-Technetium labeled tin colloid radiopharmaceuticals

    DOEpatents

    Winchell, Harry S.; Barak, Morton; Van Fleet, III, Parmer

    1976-07-06

    An improved 99m-technetium labeled tin(II) colloid, size-stabilized for reticuloendothelial organ imaging without the use of macromolecular stabilizers and a packaged tin base reagent and an improved method for making it are disclosed.

  20. Technetium Tetrachloride Revisited: A Precursor to Lower-Valent Binary Technetium Chlorides

    DOE PAGES

    Johnstone, Erik V.; Poineau, Frederic; Forster, Paul M.; ...

    2012-07-09

    Technetium (Tc) is the lightest element that doesn't occur in nature. At UNLV, our radiochemistry program gives us access to Tc and the ability to make various Tc compounds. Here we describe the preparation and characterization of TcCl 4. The Tc atom is found to have a magnetic moment and magnetically orders at low temperature. As discerning trends in the transition metals, of which Tc is one, is important for understanding all transition metal compounds, this research is relevant to understanding these materials.

  1. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOEpatents

    Friedman, H.A.

    1984-06-13

    A method for decontaminating uranium product from the Purex 5 process comprises addition of hydrazine to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO/sub 2//sup 2 +/) uranium and heptavalent technetium (TcO/sub 4/-). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H/sub 2/C/sub 2/O/sub 4/), and the Tc-oxalate complex is readily separated from the 10 uranium by solvent extraction with 30 vol % tributyl phosphate in n-dodecane.

  2. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOEpatents

    Friedman, Horace A.

    1985-01-01

    A method for decontaminating uranium product from the Purex process comprises addition of hydrazine to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO.sub.2.sup.2+) uranium and heptavalent technetium (TcO.sub.4 -). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H.sub.2 C.sub.2 O.sub.4), and the Tc-oxalate complex is readily separated from the uranium by solvent extraction with 30 vol. % tributyl phosphate in n-dodecane.

  3. Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction.

    PubMed

    Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D; Deng, Ye; He, Zhili; Gihring, Thomas; Zhang, Gengxin; Schadt, Chris W; Watson, David; Jardine, Phil; Criddle, Craig S; Brooks, Scott; Marsh, Terence L; Tiedje, James M; Arkin, Adam P; Zhou, Jizhong

    2015-06-15

    A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3 (-), Mn(IV), Fe(III), U(VI), and SO4 (2-) significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3 (-), Mn(II), Fe(II), U(VI), and SO4 (2-). Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction

    PubMed Central

    Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D.; Deng, Ye; He, Zhili; Gihring, Thomas; Zhang, Gengxin; Schadt, Chris W.; Watson, David; Jardine, Phil; Criddle, Craig S.; Brooks, Scott; Marsh, Terence L.; Tiedje, James M.; Arkin, Adam P.

    2015-01-01

    A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3−, Mn(IV), Fe(III), U(VI), and SO42− significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3−, Mn(II), Fe(II), U(VI), and SO42−. Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction. PMID:25862231

  5. Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction

    DOE PAGES

    Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D.; ...

    2015-04-10

    A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this paper, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using amore » comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO 3 -, Mn(IV), Fe(III), U(VI), and SO 4 2- significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO 3 -, Mn(II), Fe(II), U(VI), and SO 4 2-. Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. Finally, this study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.« less

  6. Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D.

    A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this paper, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using amore » comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO 3 -, Mn(IV), Fe(III), U(VI), and SO 4 2- significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO 3 -, Mn(II), Fe(II), U(VI), and SO 4 2-. Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. Finally, this study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.« less

  7. Reactions of technetium hexafluoride with nitric acid, nitrosyl fluoride, and nitryl fluoride

    NASA Technical Reports Server (NTRS)

    Holloway, J. H.; Selig, H.

    1970-01-01

    Stoichiometry of technetium hexafluoride reactions is studied. Magnetic properties and infrared spectra of reaction products are studied and compared with those of analogous complexes of the hexafluorides of tungsten, rhenium, and osmium.

  8. Nuclear waste solutions

    DOEpatents

    Walker, Darrel D.; Ebra, Martha A.

    1987-01-01

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  9. Materials for Tc Capture to Increase Tc Retention in Glass Waste Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luksic, Steven A.; Hrma, Pavel R.; Kruger, Albert A.

    99Technetium is a long-lived fission product found in the tank waste at the Hanford site in Washington State. In its heptavalent species, it is volatile at the temperatures used in Hanford Tank Waste Treatment and Immobilization Plant vitrification melters, and thus is challenging to incorporate into waste glass. In order to decrease volatility and thereby increase retention, technetium can be converted into more thermally stable species. Several mineral phases, such as spinel, are able to incorporate tetravalent technetium in a chemically durable and thermally stable lattice, and these hosts may promote the decreased volatility that is desired. In order tomore » be usefully implemented, there must be a synthetic rout to these phases that is compatible with both technetium chemistry and current Hanford Tank Waste Treatment and Immobilization Plant design. Synthetic routes for spinel and other potential host phases are examined.« less

  10. Simultaneous microbial reduction of vanadium (V) and chromium (VI) by Shewanella loihica PV-4.

    PubMed

    Wang, Guangyu; Zhang, Baogang; Li, Shuang; Yang, Meng; Yin, Changcheng

    2017-03-01

    Toxic vanadium (V) and chromium (VI) often co-exist in wastewater from vanadium ore smelting and their reductions by bacterial strain Shewanella loihica PV-4 is realized simultaneously. After 27-d operation, 71.3% of V(V) and 91.2% of Cr(VI) were removed respectively, with citrate as organic carbon source. Enhancement of Cr(VI) bioreduction was observed with the suppressed V(V) reduction. V(IV) and Cr(III), the main reduction products, precipitated inside the organisms and attached on cell surfaces. Both membrane components containing cytochrome c and cytoplasmic fractions containing soluble proteins as well as NADH may contribute to these microbial reductions. Most Cr(VI) were reduced extracellularly and V(V) tended to be reduced through intracellular process, as revealed by mapping the microbial surface and a line scan across the cell, performed by scanning transmission electron microscopy. This study provides an efficient alternative for controlling combined pollution caused by these two metals based on microbial technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Interactions between microbial iron reduction and metal geochemistry: effect of redox cycling on transition metal speciation in iron bearing sediments.

    PubMed

    Cooper, D Craig; Picardal, Flynn F; Coby, Aaron J

    2006-03-15

    Microbial iron reduction is an important biogeochemical process that can affect metal geochemistry in sediments through direct and indirect mechanisms. With respectto Fe(III) (hydr)oxides bearing sorbed divalent metals, recent reports have indicated that (1) microbial reduction of goethite/ferrihydrite mixtures preferentially removes ferrihydrite, (2) this process can incorporate previously sorbed Zn(II) into an authigenic crystalline phase that is insoluble in 0.5 M HCl, (3) this new phase is probably goethite, and (4) the presence of nonreducible minerals can inhibit this transformation. This study demonstrates that a range of sorbed transition metals can be selectively sequestered into a 0.5 M HCl insoluble phase and that the process can be stimulated through sequential steps of microbial iron reduction and air oxidation. Microbial reduction experiments with divalent Cd, Co, Mn, Ni, Pb, and Zn indicate that all metals save Mn experienced some sequestration, with the degree of metal incorporation into the 0.5 M HCl insoluble phase correlating positively with crystalline ionic radius at coordination number = 6. Redox cycling experiments with Zn adsorbed to synthetic goethite/ferrihydrite or iron-bearing natural sediments indicate that redox cycling from iron reducing to iron oxidizing conditions sequesters more Zn within authigenic minerals than microbial iron reduction alone. In addition, the process is more effective in goethite/ferrihydrite mixtures than in iron-bearing natural sediments. Microbial reduction alone resulted in a -3x increase in 0.5 M HCl insoluble Zn and increased aqueous Zn (Zn-aq) in goethite/ferrihydrite, but did not significantly affect Zn speciation in natural sediments. Redox cycling enhanced the Zn sequestration by approximately 12% in both goethite/ferrihydrite and natural sediments and reduced Zn-aq to levels equal to the uninoculated control in goethite/ferrihydrite and less than the uninoculated control in natural sediments. These data suggest that in situ redox cycling may serve as an effective method for

  12. Effects of Drought Manipulation on Soil Nitrogen Cycling: A Meta-Analysis

    NASA Astrophysics Data System (ADS)

    Homyak, Peter M.; Allison, Steven D.; Huxman, Travis E.; Goulden, Michael L.; Treseder, Kathleen K.

    2017-12-01

    Many regions on Earth are expected to become drier with climate change, which may impact nitrogen (N) cycling rates and availability. We used a meta-analytical approach on the results of field experiments that reduced precipitation and measured N supply (i.e., indices of N mineralization), soil microbial biomass, inorganic N pools (ammonium (NH4+) and nitrate (NO3-)), and nitrous oxide (N2O) emissions. We hypothesized that N supply and N2O emissions would be relatively insensitive to precipitation reduction and that reducing precipitation would increase extractable NH4+ and NO3- concentrations because microbial processes continue, whereas plant N uptake diminishes with drought. In support of this hypothesis, extractable NH4+ increased by 25% overall with precipitation reduction; NH4+ also increased significantly with increasing magnitude of precipitation reduction. In contrast, N supply and extractable NO3- did not change and N2O emissions decreased with reduced precipitation. Across studies microbial biomass appeared unchanged, yet from the diversity of studies, it was clear that proportionally smaller precipitation reductions increased microbial biomass, whereas larger proportional reductions in rainfall reduced microbial biomass; there was a positive intercept (P = 0.005) and a significant negative slope (P = 0.0002) for the regression of microbial biomass versus % precipitation reduction (LnR = -0.009 × (% precipitation reduction) + 0.4021). Our analyses imply that relative to other N variables, N supply is less sensitive to reduced precipitation, whereas processes producing N2O decline. Drought intensity and duration, through sustained N supply, may control how much N becomes vulnerable to loss via hydrologic and gaseous pathways upon rewetting dry soils.

  13. Effect of acclimatization on hexavalent chromium reduction in a biocathode microbial fuel cell.

    PubMed

    Wu, Xiayuan; Zhu, Xujun; Song, Tianshun; Zhang, Lixiong; Jia, Honghua; Wei, Ping

    2015-03-01

    A simple acclimatization method for the reduction of hexavalent chromium (Cr(VI)) at a biocathode by first enriching an exoelectrogenic biofilm on a microbial fuel cell (MFC) anode, followed by direct inversion of the anode to function as the biocathode, has been established. This novel method significantly enhanced the Cr(VI) reduction efficiency of the MFC, which was mainly attributed to the higher microbial density and less resistive Cr(III) precipitates on the cathode when compared with a common biocathode acclimatization method (control). The biocathode acclimatization period was shortened by 19days and the Cr(VI) reduction rate was increased by a factor of 2.9. Microbial community analyses of biocathodes acclimatized using different methods further verified the feasibility of this electrode inversion method, indicating similar dominant bacteria species in biofilms, which mainly consist of Gamma-proteobacteria and Bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Dissimilar behavior of technetium and rhenium in borosilicatewaste glass as determined by X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukens, Wayne W.; McKeown, David A.; Buechele, Andrew C.

    2006-11-09

    Technetium-99 is an abundant, long-lived (t1/2 = 213,000 yr)fission product that creates challenges for the safe, long-term disposalof nuclear waste. While 99Tc receives attention largely due to its highenvironmental mobility, it also causes problems during its incorporationinto nuclear waste glass due to the volatility of Tc(VII) compounds. Thisvolatility decreases the amount of 99Tc stabilized in the waste glass andcauses contamination of the waste glass melter and off-gas system. Theapproach to decrease the volatility of 99Tc that has received the mostattention is reduction of the volatile Tc(VII) species to less volatileTc(IV) species in the glass melt. On engineering scale experiments,rhenium ismore » often used as a non-radioactive surrogate for 99Tc to avoidthe radioactive contamination problems caused by volatile 99Tc compounds.However, Re(VII) is more stable towards reduction than Tc(VII), so morereducing conditions would be required in the glass melt to produceRe(IV). To better understand the redox behavior of Tc and Re in nuclearwaste glass, a series of glasses were prepared under different redoxconditions. The speciation of Tc and Re in the resulting glasses wasdetermined by X-ray absorption fine structure spectroscopy. Surprisingly,Re and Tc do not behave similarly in the glass melt. Although Tc(0),Tc(IV), and Tc(VII) were observed in these samples, only Re(0) andRe(VII) were found. In no case was Re(IV) (or Re(VI))observed.« less

  15. Single chamber microbial fuel cell with Ni-Co cathode

    NASA Astrophysics Data System (ADS)

    Włodarczyk, Barbara; Włodarczyk, Paweł P.; Kalinichenko, Antonina

    2017-10-01

    The possibility of wastewater treatment and the parallel energy production using the Ni-Co alloy as cathode catalyst for single chamber microbial fuel cells is presented in this research. The research included a preparation of catalyst and comparison of COD, NH4+ and NO3- reduction in the reactor without aeration, with aeration and with using a single chamber microbial fuel cell with Ni-Co cathode. The reduction time for COD with the use of microbial fuel cell with the Ni-Co catalyst is similar to the reduction time with aeration. The current density (2.4 A·m-2) and amount of energy (0.48 Wh) obtained in MFC is low, but the obtained amount of energy allows elimination of the energy needed for reactor aeration. It has been shown that the Ni-Co can be used as cathode catalyst in single chamber microbial fuel cells.

  16. Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation in microbial fuel cells.

    PubMed

    Zhang, Baogang; Tian, Caixing; Liu, Ying; Hao, Liting; Liu, Ye; Feng, Chuanping; Liu, Yuqian; Wang, Zhongli

    2015-03-01

    Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation were realized in microbial fuel cells (MFCs). With initial V(V) concentrations of 75 mg/l and 150 mg/l in anolyte and catholyte, respectively, stable power output of 419±11 mW/m(2) was achieved. After 12h operation, V(V) concentration in the catholyte decreased to the value similar to that of the initial one in the anolyte, meanwhile it was nearly reduced completely in the anolyte. V(IV) was the main reduction product, which subsequently precipitated, acquiring total vanadium removal efficiencies of 76.8±2.9%. Microbial community analysis revealed the emergence of the new species of Deltaproteobacteria and Bacteroidetes as well as the enhanced Spirochaetes mainly functioned in the anode. This study opens new pathways to successful remediation of vanadium contamination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: An incubation study

    PubMed Central

    Molaei, Ali; Haghnia, Gholamhosain; Astaraei, Alireza; Rasouli-Sadaghiani, MirHassan; Teresa Ceccherini, Maria; Datta, Rahul

    2017-01-01

    Oxytetracycline (OTC) and sulfamethoxazole (SMX) are two of most widely used antibiotics in livestock and poultry industry. After consumption of antibiotics, a major portion of these compounds is excreted through the feces and urine of animals. Land application of antibiotic-treated animal wastes has caused increasing concern about their adverse effects on ecosystem health. In this regard, inconsistent results have been reported regarding the effects of antibiotics on soil microbial activities. This study was conducted based on the completely randomized design to the measure microbial biomass carbon, cumulative respiration and iron (III) reduction bioassays. Concentrations of OTC and SMX including 0, 1, 10, 25, 50, and 100 mg/kg were spiked in triplicate to a sandy loam soil and incubated for 21 days at 25°C. Results showed that the effects of OTC and SMX antibiotics on cumulative respiration and microbial biomass carbon were different. SMX antibiotic significantly affected soil microbial biomass carbon and cumulative respiration at different treatments compared to control with increasing incubation time. OTC antibiotic, on the other hand, negatively affected cumulative respiration compared to control treatment throughout the incubation period. Although OTC antibiotic positively affected microbial biomass carbon at day one of incubation, there was no clear trend in microbial biomass carbon between different treatments of this antibiotic after that time period. Nevertheless, sulfamethoxazole and oxytetracycline antibiotics had similar effects on iron (III) reduction such that they considerably affected iron (III) reduction at 1 and 10 mg/kg, and iron (III) reduction was completely inhibited at concentrations above 10 mg/kg. Hence, according to our results, microbial biomass carbon and cumulative respiration experiments are not able alone to exhibit the effect of antibiotics on soil microbial activity, but combination of these two experiments with iron (III) reduction test could well display the effects of sulfamethoxazole (SMX) and oxytetracycline (OTC) antibiotics on soil biochemical activities. PMID:28683144

  18. Rapid assay for microbially reducible ferric iron in aquatic sediments

    USGS Publications Warehouse

    Lovely, Derek R.; Philips , Elizabeth J.P.

    1987-01-01

    The availability of ferric iron for microbial reduction as directly determined by the activity of iron-reducing organisms was compared with its availability as determined by a newly developed chemical assay for microbially reducible iron. The chemical assay was based on the reduction of poorly crystalline ferric iron by hydroxylamine under acidic conditions. There was a strong correlation between the extent to which hydroxylamine could reduce various synthetic ferric iron forms and the susceptibility of the iron to microbial reduction in an enrichment culture of iron-reducing organisms. When sediments that contained hydroxylamine-reducible ferric iron were incubated under anaerobic conditions, ferrous iron accumulated as the concentration of hydroxylamine-reducible ferric iron declined over time. Ferrous iron production stopped as soon as the hydroxylamine-reducible ferric iron was depleted. In anaerobic incubations of reduced sediments that did not contain hydroxylamine-reducible ferric iron, there was no microbial iron reduction, even though the sediments contained high concentrations of oxalate-extractable ferric iron. A correspondence between the presence of hydroxylamine-reducible ferric iron and the extent of ferric iron reduction in anaerobic incubations was observed in sediments from an aquifer and in fresh- and brackish-water sediments from the Potomac River estuary. The assay is a significant improvement over previously described procedures for the determination of hydroxylamine-reducible ferric iron because it provides a correction for the high concentrations of solid ferrous iron which may also be extracted from sediments with acid. This is a rapid, simple technique to determine whether ferric iron is available for microbial reduction.

  19. Breaking America’s Dependence on Foreign…Molybdenum

    PubMed Central

    Einstein, Andrew J.

    2009-01-01

    Brief Unstructured Abstract Approximately 9 million nuclear cardiology studies performed each year in the United States employ technetium-99m, which is produced from the decay of molybdenum-99. The fragility of the worldwide technetium-99m supply chain has been underscored by current shortages caused by an unplanned shutdown of Europe’s largest reactor. The majority of the United States’ supply derives from a reactor in Canada nearing the end of its lifespan, whose planned replacements have been recently cancelled. In this article, the clinical importance of technetium-99m and our tenuous dependence on foreign supply of Molybdenum is addressed. PMID:19356583

  20. Dissolution of spent nuclear fuel in carbonate-peroxide solution

    NASA Astrophysics Data System (ADS)

    Soderquist, Chuck; Hanson, Brady

    2010-01-01

    This study shows that spent UO2 fuel can be completely dissolved in a room temperature carbonate-peroxide solution apparently without attacking the metallic Mo-Tc-Ru-Rh-Pd fission product phase. In parallel tests, identical samples of spent nuclear fuel were dissolved in nitric acid and in an ammonium carbonate, hydrogen peroxide solution. The resulting solutions were analyzed for strontium-90, technetium-99, cesium-137, europium-154, plutonium, and americium-241. The results were identical for all analytes except technetium, where the carbonate-peroxide dissolution had only about 25% of the technetium that the nitric acid dissolution had.

  1. Assessment of the Cast Stone Low-Temperature Waste Form Technology Coupled with Technetium Removal - 14379

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Christopher F.; Rapko, Brian M.; Serne, R. Jeffrey

    2014-03-03

    The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) were chartered to implement a science and technology program addressing low-temperature waste forms for immobilization of DOE aqueous waste streams, including technetium removal as an implementing technology. As a first step, the laboratories examined the technical risks and uncertainties associated withmore » the Cast Stone waste immobilization and technetium removal projects at Hanford. Science and technology gaps were identified for work associated with 1) conducting performance assessments and risk assessments of waste form and disposal system performance, and 2) technetium chemistry in tank wastes and separation of technetium from waste processing streams. Technical approaches to address the science and technology gaps were identified and an initial sequencing priority was suggested. A subset of research was initiated in 2013 to begin addressing the most significant science and technology gaps. The purpose of this paper is to report progress made towards closing these gaps and provide notable highlights of results achieved to date.« less

  2. Dynamics of microbial community composition and function during in-situ bioremediation of a uranium-contaminated aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nostrand, J.D. Van; Wu, L.; Wu, W.M.

    2010-08-15

    A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter{sup -1}). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed thatmore » Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process.« less

  3. Dynamics of Microbial Community Composition and Function during In Situ Bioremediation of a Uranium-Contaminated Aquifer▿‡

    PubMed Central

    Van Nostrand, Joy D.; Wu, Liyou; Wu, Wei-Min; Huang, Zhijian; Gentry, Terry J.; Deng, Ye; Carley, Jack; Carroll, Sue; He, Zhili; Gu, Baohua; Luo, Jian; Criddle, Craig S.; Watson, David B.; Jardine, Philip M.; Marsh, Terence L.; Tiedje, James M.; Hazen, Terry C.; Zhou, Jizhong

    2011-01-01

    A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter−1). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed that Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process. PMID:21498771

  4. Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.; Lonergan, D.J.

    1991-01-01

    The potential for nonenzymatic reduction of Fe(III) either by organic compounds or by the development of a low redox potential during microbial metabolism was compared with direct, enzymatic Fe(III) reduction by Fe(III)-reducing microorganisms. At circumneutral pH, very few organic compounds nonenzymatically reduced Fe(III). In contrast, in the presence of the appropriate Fe(IH)-reducing microorganisms, most of the organic compounds examined could be completely oxidized to carbon dioxide with the reduction of Fe(III). Even for those organic compounds that could nonenzymatically reduce Fe(III), microbial Fe(III) reduction was much more extensive. The development of a low redox potential during microbial fermentation did not result in nonenzymatic Fe(III) reduction. Model organic compounds were readily oxidized in Fe(III)-reducing aquifer sediments, but not in sterilized sediments. These results suggest that microorganisms enzymatically catalyze most of the Fe(III) reduction in the Fe(III) reduction zone of aquatic sediments and aquifers.

  5. 10 CFR 33.100 - Schedule A.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... .1 Technetium-99m 100 1. Technetium-99 1 .01 Tellurium-125m 1 .01 Tellurium-127m 1 .01 Tellurium-127 10 .1 Tellurium-129m 1 .01 Tellurium-129 100 1 Tellurium-131m 10 .1 Tellurium-132 1 .01 Terbium-160 1...

  6. 10 CFR 33.100 - Schedule A.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... .1 Technetium-99m 100 1. Technetium-99 1 .01 Tellurium-125m 1 .01 Tellurium-127m 1 .01 Tellurium-127 10 .1 Tellurium-129m 1 .01 Tellurium-129 100 1 Tellurium-131m 10 .1 Tellurium-132 1 .01 Terbium-160 1...

  7. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.

    PubMed

    Picot, Matthieu; Lapinsonnière, Laure; Rothballer, Michael; Barrière, Frédéric

    2011-10-15

    Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for modification is easy to control and can be optimized and implemented for many carbon materials currently used in microbial fuel cells and other bioelectrochemical systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Reduction of nutrients, microbes, and personal care products in domestic wastewater by a benchtop electrocoagulation unit

    PubMed Central

    Symonds, E. M.; Cook, M. M.; McQuaig, S. M.; Ulrich, R. M.; Schenck, R. O.; Lukasik, J. O.; Van Vleet, E. S.; Breitbart, M.

    2015-01-01

    To preserve environmental and human health, improved treatment processes are needed to reduce nutrients, microbes, and emerging chemical contaminants from domestic wastewater prior to discharge into the environment. Electrocoagulation (EC) treatment is increasingly used to treat industrial wastewater; however, this technology has not yet been thoroughly assessed for its potential to reduce concentrations of nutrients, a variety of microbial surrogates, and personal care products found in domestic wastewater. This investigation's objective was to determine the efficiency of a benchtop EC unit with aluminum sacrificial electrodes to reduce concentrations of the aforementioned biological and chemical pollutants from raw and tertiary-treated domestic wastewater. EC treatment resulted in significant reductions (p < 0.05, α = 0.05) in phosphate, all microbial surrogates, and several personal care products from raw and tertiary-treated domestic wastewater. When wastewater was augmented with microbial surrogates representing bacterial, viral, and protozoan pathogens to measure the extent of reduction, EC treatment resulted in up to 7-log10 reduction of microbial surrogates. Future pilot and full-scale investigations are needed to optimize EC treatment for the following: reducing nitrogen species, personal care products, and energy consumption; elucidating the mechanisms behind microbial reductions; and performing life cycle analyses to determine the appropriateness of implementation. PMID:25797885

  9. Reduction of nutrients, microbes, and personal care products in domestic wastewater by a benchtop electrocoagulation unit.

    PubMed

    Symonds, E M; Cook, M M; McQuaig, S M; Ulrich, R M; Schenck, R O; Lukasik, J O; Van Vleet, E S; Breitbart, M

    2015-03-23

    To preserve environmental and human health, improved treatment processes are needed to reduce nutrients, microbes, and emerging chemical contaminants from domestic wastewater prior to discharge into the environment. Electrocoagulation (EC) treatment is increasingly used to treat industrial wastewater; however, this technology has not yet been thoroughly assessed for its potential to reduce concentrations of nutrients, a variety of microbial surrogates, and personal care products found in domestic wastewater. This investigation's objective was to determine the efficiency of a benchtop EC unit with aluminum sacrificial electrodes to reduce concentrations of the aforementioned biological and chemical pollutants from raw and tertiary-treated domestic wastewater. EC treatment resulted in significant reductions (p < 0.05, α = 0.05) in phosphate, all microbial surrogates, and several personal care products from raw and tertiary-treated domestic wastewater. When wastewater was augmented with microbial surrogates representing bacterial, viral, and protozoan pathogens to measure the extent of reduction, EC treatment resulted in up to 7-log10 reduction of microbial surrogates. Future pilot and full-scale investigations are needed to optimize EC treatment for the following: reducing nitrogen species, personal care products, and energy consumption; elucidating the mechanisms behind microbial reductions; and performing life cycle analyses to determine the appropriateness of implementation.

  10. Reduction of nutrients, microbes, and personal care products in domestic wastewater by a benchtop electrocoagulation unit

    NASA Astrophysics Data System (ADS)

    Symonds, E. M.; Cook, M. M.; McQuaig, S. M.; Ulrich, R. M.; Schenck, R. O.; Lukasik, J. O.; van Vleet, E. S.; Breitbart, M.

    2015-03-01

    To preserve environmental and human health, improved treatment processes are needed to reduce nutrients, microbes, and emerging chemical contaminants from domestic wastewater prior to discharge into the environment. Electrocoagulation (EC) treatment is increasingly used to treat industrial wastewater; however, this technology has not yet been thoroughly assessed for its potential to reduce concentrations of nutrients, a variety of microbial surrogates, and personal care products found in domestic wastewater. This investigation's objective was to determine the efficiency of a benchtop EC unit with aluminum sacrificial electrodes to reduce concentrations of the aforementioned biological and chemical pollutants from raw and tertiary-treated domestic wastewater. EC treatment resulted in significant reductions (p < 0.05, α = 0.05) in phosphate, all microbial surrogates, and several personal care products from raw and tertiary-treated domestic wastewater. When wastewater was augmented with microbial surrogates representing bacterial, viral, and protozoan pathogens to measure the extent of reduction, EC treatment resulted in up to 7-log10 reduction of microbial surrogates. Future pilot and full-scale investigations are needed to optimize EC treatment for the following: reducing nitrogen species, personal care products, and energy consumption; elucidating the mechanisms behind microbial reductions; and performing life cycle analyses to determine the appropriateness of implementation.

  11. Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, William G.; Esparza, Brian P.

    2013-07-01

    Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls formore » the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)« less

  12. Technetium-99m-labeled annexin V imaging for detecting prosthetic joint infection in a rabbit model.

    PubMed

    Tang, Cheng; Wang, Feng; Hou, Yanjie; Lu, Shanshan; Tian, Wei; Xu, Yan; Jin, Chengzhe; Wang, Liming

    2015-05-01

    Accurate and timely diagnosis of prosthetic joint infection is essential to initiate early treatment and achieve a favorable outcome. In this study, we used a rabbit model to assess the feasibility of technetium-99m-labeled annexin V for detecting prosthetic joint infection. Right knee arthroplasty was performed on 24 New Zealand rabbits. After surgery, methicillin-susceptible Staphylococcus aureus was intra-articularly injected to create a model of prosthetic joint infection (the infected group, n = 12). Rabbits in the control group were injected with sterile saline (n = 12). Seven and 21 days after surgery, technetium-99m-labeled annexin V imaging was performed in 6 rabbits of each group. Images were acquired 1 and 4 hours after injection of technetium-99m-labeled annexin V (150 MBq). The operated-to-normal-knee activity ratios were calculated for quantitative analysis. Seven days after surgery, increased technetium-99m-labeled annexin V uptake was observed in all cases. However, at 21 days a notable decrease was found in the control group, but not in the infected group. The operated-to-normal-knee activity ratios of the infected group were 1.84 ± 0.29 in the early phase and 2.19 ± 0.34 in the delay phase, both of which were significantly higher than those of the control group (P = 0.03 and P = 0.02). The receiver operator characteristic curve analysis showed that the operated-to-normal-knee activity ratios of the delay phase at 21 days was the best indicator, with an accuracy of 80%. In conclusion, technetium-99m-labeled annexin V imaging could effectively distinguish an infected prosthetic joint from an uninfected prosthetic joint in a rabbit model.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Tao; Kukkadapu, Ravi K.; Griffin, Aron M.

    Fe(III)-oxides and Fe(III)-bearing phyllosilicates are the two major iron sources utilized as electron acceptors by dissimilatory iron-reducing bacteria (DIRB) in anoxic soils and sediments. Although there have been many studies of microbial Fe(III)-oxide and Fe(III)-phyllosilicate reduction with both natural and specimen materials, no controlled experimental information is available on the interaction between these two phases when both are available for microbial reduction. In this study, the model DIRB Geobacter sulfurreducens was used to examine the pathways of Fe(III) reduction in Fe(III)-oxide stripped subsurface sediment that was coated with different amounts of synthetic high surface area goethite. Cryogenic (12K) 57Fe Mössbauermore » spectroscopy was used to determine changes in the relative abundances of Fe(III)-oxide, Fe(III)-phyllosilicate, and phyllosilicate-associated Fe(II) (Fe(II)-phyllosilicate) in bioreduced samples. Analogous Mössbauer analyses were performed on samples from abiotic Fe(II) sorption experiments in which sediments were exposed to a quantity of exogenous soluble Fe(II) (FeCl22H2O) comparable to the amount of Fe(II) produced during microbial reduction. A Fe partitioning model was developed to analyze the fate of Fe(II) and assess the potential for abiotic Fe(II)-catalyzed reduction of Fe(III)-phyllosilicatesilicates. The microbial reduction experiments indicated that although reduction of Fe(III)-oxide accounted for virtually all of the observed bulk Fe(III) reduction activity, there was no significant abiotic electron transfer between oxide-derived Fe(II) and Fe(III)-phyllosilicatesilicates, with 26-87% of biogenic Fe(II) appearing as sorbed Fe(II) in the Fe(II)-phyllosilicate pool. In contrast, the abiotic Fe(II) sorption experiments showed that 41 and 24% of the added Fe(II) engaged in electron transfer to Fe(III)-phyllosilicate surfaces in synthetic goethite-coated and uncoated sediment. Differences in the rate of Fe(II) addition and system redox potential may account for the microbial and abiotic reaction systems. Our experiments provide new insight into pathways for Fe(III) reduction in mixed Fe(III)-oxide/Fe(III)-phyllosilicate assemblages, and provide key mechanistic insight for interpreting microbial reduction experiments and field data from complex natural soils and sediments.« less

  14. Precipitation process for the removal of technetium values from nuclear waste solutions

    DOEpatents

    Walker, D.D.; Ebra, M.A.

    1985-11-21

    High efficiency removal of techetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  15. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal potomac river.

    PubMed

    Lovley, D R; Phillips, E J

    1986-10-01

    The distribution of Fe(III), its availability for microbial reduction, and factors controlling Fe(III) availability were investigated in sediments from a freshwater site in the Potomac River Estuary. Fe(III) reduction in sediments incubated under anaerobic conditions and depth profiles of oxalate-extractable Fe(III) indicated that Fe(III) reduction was limited to depths of 4 cm or less, with the most intense Fe(III) reduction in the top 1 cm. In incubations of the upper 4 cm of the sediments, Fe(III) reduction was as important as methane production as a pathway for anaerobic electron flow because of the high rates of Fe(III) reduction in the 0- to 0.5-cm interval. Most of the oxalate-extractable Fe(III) in the sediments was not reduced and persisted to a depth of at least 20 cm. The incomplete reduction was not the result of a lack of suitable electron donors. The oxalate-extractable Fe(III) that was preserved in the sediments was considered to be in a form other than amorphous Fe(III) oxyhydroxide, since synthetic amorphous Fe(III) oxyhydroxide, amorphous Fe(III) oxyhydroxide adsorbed onto clay, and amorphous Fe(III) oxyhydroxide saturated with adsorbed phosphate or fulvic acids were all readily reduced. Fe(3)O(4) and the mixed Fe(III)-Fe(II) compound(s) that were produced during the reduction of amorphous Fe(III) oxyhydroxide in an enrichment culture were oxalate extractable but were not reduced, suggesting that mixed Fe(III)-Fe(II) compounds might account for the persistence of oxalate-extractable Fe(III) in the sediments. The availability of microbially reducible Fe(III) in surficial sediments demonstrates that microbial Fe(III) reduction can be important to organic matter decomposition and iron geochemistry. However, the overall extent of microbial Fe(III) reduction is governed by the inability of microorganisms to reduce most of the Fe(III) in the sediment.

  16. Further biogeochemical characterization of a trichloroethene-contaminated fractured dolomite aquifer: Electron source and microbial communities involved in reductive dechlorination

    USGS Publications Warehouse

    Hohnstock-Ashe, A. M.; Plummer, S.M.; Yager, R.M.; Baveye, P.; Madsen, E.L.

    2001-01-01

    A recent article presented geochemical and microbial evidence establishing metabolic adaptation to and in-situ reductive dechlorination of trichloroethene (TCE) in a fractured dolomite aquifer. This study was designed to further explore site conditions and microbial populations and to explain previously reported enhancement of reductive dechlorination by the addition of pulverized dolomite to laboratory microcosms. A survey of groundwater geochemical parameters (chlorinated ethenes, ethene, H2, CH4, DIC, DOC, and ??13C values for CH4, DIC, and DOC) indicated that in situ reductive dechlorination was ongoing and that an unidentified pool of organic carbon was contributing, likely via microbial respiration, to the large and relatively light onsite DIC pool. Petroleum hydrocarbons associated with the dolomite rock were analyzed by GC/MS and featured a characteristically low ??13C value. Straight chain hydrocarbons were extracted from the dolomite previously found to stimulate reductive dechlorination; these were particularly depleted in hexadecane (HD). Thus, we hypothesized that HD and related hydrocarbons might be anaerobically respired and serve both as the source of onsite DIC and support reductive dechlorination of TCE. Microcosms amended with pulverized dolomite demonstrated reductive dechlorination, whereas a combusted dolomite amendment did not. HD-amended microcosms were also inactive. Therefore, the stimulatory factor in the pulverized dolomite was heat labile, but that component was not HD. Amplified Ribosomal DNA Restriction Analysis (ARDRA) of the microbial populations in well waters indicated that a relatively low diversity, sulfur-transforming community outside the plume was shifted toward a high diversity community including Dehalococcoides ethenogenes-type microorganisms inside the zone of contamination. These observations illustrate biogeochemical intricacies of in situ reductive dechlorination reactions.

  17. Whole-leaf wash improves chlorine efficacy for microbial reduction and prevents pathogen cross-contamination during fresh-cut lettuce processing.

    PubMed

    Nou, Xiangwu; Luo, Yaguang

    2010-06-01

    Currently, most fresh-cut processing facilities in the United States use chlorinated water or other sanitizer solutions for microbial reduction after lettuce is cut. Freshly cut lettuce releases significant amounts of organic matter that negatively impacts the effectiveness of chlorine or other sanitizers for microbial reduction. The objective of this study is to evaluate whether a sanitizer wash before cutting improves microbial reduction efficacy compared to a traditional postcutting sanitizer wash. Romaine lettuce leaves were quantitatively inoculated with E. coli O157:H7 strains and washed in chlorinated water before or after cutting, and E. coli O157:H7 cells that survived the washing process were enumerated to determine the effectiveness of microbial reduction for the 2 cutting and washing sequences. Whole-leaf washing in chlorinated water improved pathogen reduction by approximately 1 log unit over traditional cut-leaf sanitization. Similar improvement in the reduction of background microflora was also observed. Inoculated "Lollo Rossa" red lettuce leaves were mixed with noninoculated Green-Leaf lettuce leaves to evaluate pathogen cross-contamination during processing. High level (96.7% subsamples, average MPN 0.6 log CFU/g) of cross-contamination of noninoculated green leaves by inoculated red leaves was observed when mixed lettuce leaves were cut prior to washing in chlorinated water. In contrast, cross-contamination of noninoculated green leaves was significantly reduced (3.3% of subsamples, average MPN

  18. Microbial degradation of chloroethenes in groundwater systems

    USGS Publications Warehouse

    Bradley, Paul M.

    2000-01-01

     The chloroethenes, tetrachloroethene (PCE) and trichloroethene (TCE) are among the most common contaminants detected in groundwater systems. As recently as 1980, the consensus was that chloroethene compounds were not significantly biodegradable in groundwater. Consequently, efforts to remediate chloroethene-contaminated groundwater were limited to largely unsuccessful pump-and-treat attempts. Subsequent investigation revealed that under reducing conditions, aquifer microorganisms can reductively dechlorinate PCE and TCE to the less chlorinated daughter products dichloroethene (DCE) and vinyl chloride (VC). Although recent laboratory studies conducted with halorespiring microorganisms suggest that complete reduction to ethene is possible, in the majority of groundwater systems reductive dechlorination apparently stops at DCE or VC. However, recent investigations conducted with aquifer and stream-bed sediments have demonstrated that microbial oxidation of these reduced daughter products can be significant under anaerobic redox conditions. The combination of reductive dechlorination of PCE and TCE under anaerobic conditions followed by anaerobic microbial oxidation of DCE and VC provides a possible microbial pathway for complete degradation of chloroethene contaminants in groundwater systems.

  19. Microbial degradation of chloroethenes in groundwater systems

    USGS Publications Warehouse

    Bradley, P.M.

    2000-01-01

    The chloroethenes, tetrachloroethene (PCE) and trichloroethene (TCE) are among the most common contaminants detected in groundwater systems. As recently as 1980, the consensus was that chloroethene compounds were not significantly biodegradable in groundwater. Consequently, efforts to remediate chloroethene-contaminated groundwater were limited to largely unsuccessful pump-and-treat attempts. Subsequent investigation revealed that under reducing conditions, aquifer microorganisms can reductively dechlorinate PCE and TCE to the less chlorinated daughter products dichloroethene (DCE) and vinyl chloride (VC). Although recent laboratory studies conducted with halorespiring microorganisms suggest that complete reduction to ethene is possible, in the majority of groundwater systems reductive dechlorination apparently stops at DCE or VC. However, recent investigations conducted with aquifer and stream-bed sediments have demonstrated that microbial oxidation of these reduced daughter products can be significant under anaerobic redox conditions. The combination of reductive dechlorination of PCE and TCE under anaerobic conditions followed by anaerobic microbial oxidation of DCE and VC provides a possible microbial pathway for complete degradation of chloroethene contaminants in groundwater systems.

  20. Reduction of date microbial load with ozone

    PubMed Central

    Farajzadeh, Davood; Qorbanpoor, Ali; Rafati, Hasan; Isfeedvajani, Mohsen Saberi

    2013-01-01

    Background: Date is one of the foodstuffs that are produced in tropical areas and used worldwide. Conventionally, methyl bromide and phosphine are used for date disinfection. The toxic side effects of these usual disinfectants have led food scientists to consider safer agents such as ozone for disinfection, because food safety is a top priority. The present study was performed to investigate the possibility of replacing common conventional disinfectants with ozone for date disinfection and microbial load reduction. Materials and Methods: In this experimental study, date samples were ozonized for 3 and 5 hours with 5 and 10 g/h concentrations and packed. Ozonized samples were divided into two groups and kept in an incubator which was maintained at 25°C and 40°C for 9 months. During this period, every 3 month, microbial load (bacteria, mold, and yeast) were examined in ozonized and non-ozonized samples. Results: This study showed that ozonization with 5 g/h for 3 hours, 5 g/h for 5 hours, 10 g/h for 3 hours, and 10 g/h for 5 hours leads to about 25%, 25%, 53%, and 46% reduction in date mold and yeast load and about 6%, 9%, 76%, and 74.7% reduction in date bacterial load at baseline phase, respectively. Appropriate concentration and duration of ozonization for microbial load reduction were 10 g/h and 3 hours. Conclusion: Date ozonization is an appropriate method for microbial load reduction and leads to an increase in the shelf life of dates. PMID:24124432

  1. Enhanced microbial reduction of vanadium (V) in groundwater with bioelectricity from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Hao, Liting; Zhang, Baogang; Tian, Caixing; Liu, Ye; Shi, Chunhong; Cheng, Ming; Feng, Chuanping

    2015-08-01

    Bioelectricity generated from the microbial fuel cell (MFC) is applied to the bioelectrical reactor (BER) directly to enhance microbial reduction of vanadium (V) (V(V)) in groundwater. With the maximum power density of 543.4 mW m-2 from the MFC, V(V) removal is accelerated with efficiency of 93.6% during 12 h operation. Higher applied voltage can facilitate this process. V(V) removals decrease with the increase of initial V(V) concentration, while extra addition of chemical oxygen demand (COD) has little effect on performance improvement. Microbial V(V) reduction is enhanced and then suppressed with the increase of conductivity. High-throughput 16S rRNA gene pyrosequencing analysis implies the accumulated Enterobacter and Lactococcus reduce V(V) with products from fermentative microorganisms such as Macellibacteroides. The presentation of electrochemically active bacteria as Enterobacter promotes electron transfers. This study indicates that application of bioelectricity from MFCs is a promising strategy to improve the efficiency of in-situ bioremediation of V(V) polluted groundwater.

  2. Ferrihydrite-associated organic matter (OM) stimulates reduction by Shewanella oneidensis MR-1 and a complex microbial consortia

    NASA Astrophysics Data System (ADS)

    Cooper, Rebecca Elizabeth; Eusterhues, Karin; Wegner, Carl-Eric; Totsche, Kai Uwe; Küsel, Kirsten

    2017-11-01

    The formation of Fe(III) oxides in natural environments occurs in the presence of natural organic matter (OM), resulting in the formation of OM-mineral complexes that form through adsorption or coprecipitation processes. Thus, microbial Fe(III) reduction in natural environments most often occurs in the presence of OM-mineral complexes rather than pure Fe(III) minerals. This study investigated to what extent does the content of adsorbed or coprecipitated OM on ferrihydrite influence the rate of Fe(III) reduction by Shewanella oneidensis MR-1, a model Fe(III)-reducing microorganism, in comparison to a microbial consortium extracted from the acidic, Fe-rich Schlöppnerbrunnen fen. We found that increased OM content led to increased rates of microbial Fe(III) reduction by S. oneidensis MR-1 in contrast to earlier findings with the model organism Geobacter bremensis. Ferrihydrite-OM coprecipitates were reduced slightly faster than ferrihydrites with adsorbed OM. Surprisingly, the complex microbial consortia stimulated by a mixture of electrons donors (lactate, acetate, and glucose) mimics S. oneidensis under the same experimental Fe(III)-reducing conditions suggesting similar mechanisms of electron transfer whether or not the OM is adsorbed or coprecipitated to the mineral surfaces. We also followed potential shifts of the microbial community during the incubation via 16S rRNA gene sequence analyses to determine variations due to the presence of adsorbed or coprecipitated OM-ferrihydrite complexes in contrast to pure ferrihydrite. Community profile analyses showed no enrichment of typical model Fe(III)-reducing bacteria, such as Shewanella or Geobacter sp., but an enrichment of fermenters (e.g., Enterobacteria) during pure ferrihydrite incubations which are known to use Fe(III) as an electron sink. Instead, OM-mineral complexes favored the enrichment of microbes including Desulfobacteria and Pelosinus sp., both of which can utilize lactate and acetate as an electron donor under Fe(III)-reducing conditions. In summary, this study shows that increasing concentrations of OM in OM-mineral complexes determines microbial Fe(III) reduction rates and shapes the microbial community structure involved in the reductive dissolution of ferrihydrite. Similarities observed between the complex Fe(III)-reducing microbial consortia and the model Fe(III)-reducer S. oneidensis MR-1 suggest electron-shuttling mechanisms dominate in OM-rich environments, including soils, sediments, and fens, where natural OM interacts with Fe(III) oxides during mineral formation.

  3. Scintigraphic evaluation in musculoskeletal sepsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, K.D.; Fitzgerald, R.H. Jr.; Brown, M.L.

    In this article, the mechanism of technetium, gallium, and indium-labeled white blood cell localization in septic processes is detailed, and the method of interpretation of these three isotopes with relationship to musculoskeletal infection is outlined. Specific clinical application of technetium, gallium, and indium-labeled white blood cell imaging for musculoskeletal sepsis is reviewed.

  4. Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m

    ScienceCinema

    Grover, Blaine

    2018-05-01

    Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m is a linear electron accelerator-based technology for producing medical imaging radioisotopes from a separation process that heats, vaporizes and condenses the desired radioisotope. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  5. The influence of microbial-based inoculants on N2O emissions from soil planted with corn (Zea mays L.) under greenhouse conditions with different nitrogen fertilizer regimens.

    PubMed

    Calvo, Pamela; Watts, Dexter B; Kloepper, Joseph W; Torbert, H Allen

    2016-12-01

    Nitrous oxide (N 2 O) emissions are increasing at an unprecedented rate owing to the increased use of nitrogen (N) fertilizers. Thus, new innovative management tools are needed to reduce emissions. One potential approach is the use of microbial inoculants in agricultural production. In a previous incubation study, we observed reductions in N 2 O emissions when microbial-based inoculants were added to soil (no plants present) with N fertilizers under laboratory incubations. This present study evaluated the effects of microbial-based inoculants on N 2 O and carbon dioxide (CO 2 ) emissions when applied to soil planted with corn (Zea mays L.) under controlled greenhouse conditions. Inoculant treatments consisted of (i) SoilBuilder (SB), (ii) a metabolite extract of SoilBuilder (SBF), and (iii) a mixture of 4 strains of plant-growth-promoting Bacillus spp. (BM). Experiments included an unfertilized control and 3 N fertilizers: urea, urea - ammonium nitrate with 32% N (UAN-32), and calcium - ammonium nitrate with 17% N (CAN-17). Cumulative N 2 O fluxes from pots 41 days after planting showed significant reductions in N 2 O of 15% (SB), 41% (BM), and 28% (SBF) with CAN-17 fertilizer. When UAN-32 was used, reductions of 34% (SB), 35% (SBF), and 49% (BM) were obtained. However, no reductions in N 2 O emissions occurred with urea. Microbial-based inoculants did not affect total CO 2 emissions from any of the fertilized treatments or the unfertilized control. N uptake was increased by an average of 56% with microbial inoculants compared with the control (nonmicrobial-based treatments). Significant increases in plant height, SPAD chlorophyll readings, and fresh and dry shoot mass were also observed when the microbial-based treatments were applied (with and without N). Overall, results demonstrate that microbial inoculants can reduce N 2 O emissions following fertilizer application depending on the N fertilizer type used and can enhance N uptake and plant growth. Future studies are planned to evaluate the effectiveness of these microbial inoculants in field-based trials and determine the mechanisms involved in N 2 O reduction.

  6. Microbial Fuel Cell Performance with a Pressurized Cathode Chamber

    USDA-ARS?s Scientific Manuscript database

    Microbial fuel cell (MFC) power densities are often constrained by the oxygen reduction reaction rate on the cathode electrode. One important factor for this is the normally low solubility of oxygen in the aqueous cathode solution creating mass transport limitations, which hinder oxygen reduction a...

  7. Behavior of technetium-99 in soils and plants. Final report, April 1, 1974--December 31, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gast, R.G.; Landa, E.R.; Thorvig, L.J.

    Studies described in this report were aimed at establishing the magnitude and mechanisms of /sup 99/Tc sorption by soils and uptake by plants. Results show that /sup 99/Tc was sorbed from solution over a period to two to five weeks by 8 of 11 soils studies. The slow rate of sorption, the lack of sorption by low organic matter soils, the elimination of sorption following sterilization and increased sorption following addition of dextrose all point to a microbial role in the sorption process. However, it has not been established whether this is a direct or indirect role nor is itmore » possible to clearly predict the conditions under which sorption will occur. Results of plant uptake studies show that /sup 99/Tc can be taken up and translocated into the photosynthetic tissue of higher plants with concentrations in seeds being much less than in vegetative tissue. Technetium-99 was also shown to be toxic to plants at low concentrations and evidence suggests that this is a chemically rather than radiologically induced toxicity. However, this remains to be completely resolved as well as whether there is a threshold level of /sup 99/Tc required before toxicity occurs. Studies of short-term, dynamic, aerobic systems indicated that /sup 99/Tc moves through the soil as a relatively large anion exhibiting characteristic miscible displacement with some asymmetric tailing. /sup 99/Tc exhibits greater retention that C1/sup -/, which may be attributed statistically to weak complexion by organic matter. It is unlikely that this retention phenomenon is related to the static sorption activity reported in the first part of this study.« less

  8. Measurement of translymphatic fluid absorption using technetium-99m human serum albumin diethylenetriamine pentaacetic acid in continuous ambulatory peritoneal dialysis patients.

    PubMed

    Terawaki, Hiroyuki; Nakayama, Masaaki; Seto, Kazuhiko; Yoshimura, Kazunobu; Hasegawa, Toshio

    2004-08-01

    We have established a new method of measuring translymphatic fluid absorption (TLA) using technetium-99m ((99m)Tc) human serum albumin diethylenetriamine pentaacetic acid ((99m)Tc-HSAD) that can be used commonly in clinical practice. This new method was applied in 13 continuous ambulatory peritoneal dialysis patients (11 males and two females) who had various peritoneal permeability and capacities for peritoneal transport of water. (99m)Tc-HSAD 740MBq was injected in 2 L of peritoneal dialysis fluid with 2.5% glucose, mixed well, and administered intraperitoneally. The fluid was drained extraperitoneally after 4 h and TLA was determined by the in vivo loss of (99m)Tc-HSAD. TLA was 1.41 +/- 1.11 mL/min (mean +/- SD; range, 0.27-3.69 mL/min). The estimated reduction rate by TLA in trans-peritoneally removed fluid ranged from 14.2 to 84.4%, indicating that TLA could have an extremely significant negative effect in some cases on total drainage volume. The present study, using new tracer (99m)Tc-HSAD, could confirm a large individual difference in TLA, indicating TLA as an important contributing factor for fluid-removal failure in continuous ambulatory peritoneal dialysis patients.

  9. Enhanced vanadium (V) reduction and bioelectricity generation in microbial fuel cells with biocathode

    NASA Astrophysics Data System (ADS)

    Qiu, Rui; Zhang, Baogang; Li, Jiaxin; Lv, Qing; Wang, Song; Gu, Qian

    2017-08-01

    Microbial fuel cells (MFCs) represent a promising approach for remediation of toxic vanadium (V) contaminated environment. Herein, enhanced V(V) reduction and bioelectricity generation are realized in MFCs with biocathode. Synergistically electrochemical and microbial reductions result in the nearly complete removals of V(V) within 7 d operation with initial concentration of 200 mg L-1. Maximum power density of 529 ± 12 mW m-2 is obtained. Electrochemical tests reveal that biocathode promotes electron transfers and reduces charge transfer resistance. XPS analysis confirms that V(IV) is the main reduction product, which precipitates naturally under neutral conditions. High-throughput 16S rRNA gene sequencing analysis indicates that the newly appeared Dysgonomonas is responsible for V(V) reduction and Klebsiella contributes mainly to bioelectricity generation in MFCs with biocathode. This study further improves the performance of remediating V(V) contaminated environment based on MFC technology.

  10. Microbial Community Structure during Nitrate and Perchlorate Reduction in Ion-exchange Brine Using the Hydrogen-based membrane Biofilm Reactor (MBIR)

    EPA Science Inventory

    Detoxification of perchlorate by microbial communities under denitrifying conditions has been recently reported, although the identity of the mixed populations involved in perchlorate reduction is not well understood. In order to address this, the bacterial diversity of membrane ...

  11. ESTIMATION OF MICROBIAL REDUCTIVE TRANSFORMATION RATES FOR CHLORINATED BENZENES AND PHENOLS USING A QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP APPROACH

    EPA Science Inventory

    A set of literature data was used to derive several quantitative structure-activity relationships (QSARs) to predict the rate constants for the microbial reductive dehalogenation of chlorinated aromatics. Dechlorination rate constants for 25 chloroaromatics were corrected for th...

  12. Optimization of microbial detoxification for an aquatic mercury-contaminated environment.

    PubMed

    Figueiredo, Neusa L; Canário, João; Serralheiro, Maria Luísa; Carvalho, Cristina

    2017-01-01

    Mercury (Hg) reduction performed by microorganisms is well recognized as a biological means for remediation of contaminated environment. Recently, studies demonstrated that Hg-resistant microorganisms of Tagus Estuary are involved in metal reduction processes. In the present study, aerobic microbial community isolated from a highly Hg-contaminated area of Tagus Estuary was used to determine the optimization of the reduction process in conditions such as the contaminated ecosystem. Factorial design methodology was employed to examine the influence of glucose, sulfate, iron, and chloride on Hg reduction. In the presence of several concentrations of these elements, microbial community reduced Hg in a range of 37-61% of the initial 0.1 mg/ml Hg 2+ levels. The response prediction through central composite design showed that the increase of sulfate concentration led to an optimal response in Hg reduction by microbial community, while the rise in chloride levels markedly decreased metal reduction. Iron may exert antagonistic effects depending upon the media composition. These results are useful in understanding the persistence of Hg contamination in Tagus Estuary after inactivation of critical industrial units, as well as data might also be beneficial for development of new bioremediation strategies either in Tagus Estuary and/or in other Hg-contaminated aquatic environments.

  13. Breaking America's dependence on imported molybdenum.

    PubMed

    Einstein, Andrew J

    2009-03-01

    Approximately 9 million nuclear cardiology studies performed each year in the U.S. use technetium-99m, which is produced from the decay of molybdenum-99. The fragility of the worldwide technetium-99m supply chain has been underscored by current shortages caused by an unplanned shutdown of Europe's largest reactor. The majority of the U.S. supply derives from a reactor in Canada that is nearing the end of its lifespan and whose planned replacements have been cancelled recently. In this article, the clinical importance of technetium-99m and our tenuous dependence on the foreign supply of molybdenum are addressed, along with potential measures that may be taken to ensure that America's supply chain remains unbroken.

  14. Technetium: The First Radioelement on the Periodic Table

    ERIC Educational Resources Information Center

    Johnstone, Erik V.; Yates, Mary Anne; Poineau, Frederic; Sattelberger, Alfred P.; Czerwinski, Kenneth R.

    2017-01-01

    The radioactive nature of technetium is discussed using a combination of introductory nuclear physics concepts and empirical trends observed in the chart of the nuclides and the periodic table of the elements. Trends such as the enhanced stability of nucleon pairs, magic numbers, and Mattauch's rule are described. The concepts of nuclear binding…

  15. Discovery of rhenium and masurium (technetium) by Ida Noddack-Tacke and Walter Noddack. Forgotten heroes of nuclear medicine.

    PubMed

    Biersack, H-J; Stelzner, F; Knapp, F F

    2015-01-01

    The history of the early identification of elements and their designation to the Mendeleev Table of the Elements was an important chapter in German science in which Ida (1896-1978) and Walter (1893-1960) Noddack played an important role in the first identification of rhenium (element 75, 1925) and technetium (element 43, 1933). In 1934 Ida Noddack was also the first to predict fission of uranium into smaller atoms. Although the Noddacks did not for some time later receive the recognition for the first identification of technetium-99m, their efforts have appropriately more recently been recognized. The discoveries of these early pioneers are even more astounding in light of the limited technologies and resources which were available during this period. The Noddack discoveries of elements 43 and 75 are related to the subsequent use of rhenium-188 (beta/gamma emitter) and technetium-99m (gamma emitter) in nuclear medicine. In particular, the theranostic relationship between these two generator-derived radioisotopes has been demonstrated and offers new opportunities in the current era of personalized medicine.

  16. Technetium and rhenium pentacarbonyl complexes with C₂ and C₁₁ ω-isocyanocarboxylic acid esters.

    PubMed

    Miroslavov, Alexander E; Polotskii, Yuriy S; Gurzhiy, Vladislav V; Ivanov, Alexander Yu; Lumpov, Alexander A; Tyupina, Margarita Yu; Sidorenko, Georgy V; Tolstoy, Peter M; Maltsev, Daniil A; Suglobov, Dmitry N

    2014-08-04

    Technetium(I) and rhenium(I) pentacarbonyl complexes with ethyl 2-isocyanoacetate and methyl 11-isocyanoundecanoate, [M(CO)5(CNCH2COOEt)]ClO4 (M = Tc (1) and Re (2)) and [M(CO)5(CN(CH2)10COOMe)]ClO4 (M = Tc (3) and Re (4)), were prepared and characterized by IR, (1)H NMR, and (13)C{(1)H} NMR spectroscopy. The crystal structures of 1 and 2 were determined using single-crystal X-ray diffraction. The kinetics of thermal decarbonylation of technetium complexes 1 and 3 in ethylene glycol was studied by IR spectroscopy. The rate constants and activation parameters of this reaction were determined and compared with those for [Tc(CO)6](+). It was found that rhenium complexes 2 and 4 were stable with respect to thermal decarbonylation. Histidine challenge reaction of complexes 1 and 2 in phosphate buffer was examined by IR spectroscopy. In the presence of histidine, the rhenium pentacarbonyl isocyanide complex partially decomposes to form an unidentified yellow precipitate. Technetium analogue 1 is more stable under these conditions.

  17. Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide.

    PubMed

    Butler, Elizabeth C; Chen, Lixia; Hansel, Colleen M; Krumholz, Lee R; Elwood Madden, Andrew S; Lan, Ying

    2015-11-01

    Hexavalent chromium (Cr(vi), present predominantly as CrO4(2-) in water at neutral pH) is a common ground water pollutant, and reductive immobilization is a frequent remediation alternative. The Cr(iii) that forms upon microbial or abiotic reduction often co-precipitates with naturally present or added iron (Fe), and the stability of the resulting Fe-Cr precipitate is a function of its mineral properties. In this study, Fe-Cr solids were formed by microbial Cr(vi) reduction using Desulfovibrio vulgaris strain RCH1 in the presence of the Fe-bearing minerals hematite, aluminum substituted goethite (Al-goethite), and nontronite (NAu-2, Clay Minerals Society), or by abiotic Cr(vi) reduction by dithionite reduced NAu-2 or iron sulfide (FeS). The properties of the resulting Fe-Cr solids and their behavior upon exposure to the oxidant manganese (Mn) oxide (birnessite) differed significantly. In microcosms containing strain RCH1 and hematite or Al-goethite, there was significant initial loss of Cr(vi) in a pattern consistent with adsorption, and significant Cr(vi) was found in the resulting solids. The solid formed when Cr(vi) was reduced by FeS contained a high proportion of Cr(iii) and was poorly crystalline. In microcosms with strain RCH1 and hematite, Cr precipitates appeared to be concentrated in organic biofilms. Reaction between birnessite and the abiotically formed Cr(iii) solids led to production of significant dissolved Cr(vi) compared to the no-birnessite controls. This pattern was not observed in the solids generated by microbial Cr(vi) reduction, possibly due to re-reduction of any Cr(vi) generated upon oxidation by birnessite by active bacteria or microbial enzymes. The results of this study suggest that Fe-Cr precipitates formed in groundwater remediation may remain stable only in the presence of active anaerobic microbial reduction. If exposed to environmentally common Mn oxides such as birnessite in the absence of microbial activity, there is the potential for rapid (re)formation of dissolved Cr(vi) above regulatory levels.

  18. Humin as an electron donor for enhancement of multiple microbial reduction reactions with different redox potentials in a consortium.

    PubMed

    Zhang, Dongdong; Zhang, Chunfang; Xiao, Zhixing; Suzuki, Daisuke; Katayama, Arata

    2015-02-01

    A solid-phase humin, acting as an electron donor, was able to enhance multiple reductive biotransformations, including dechlorination of pentachlorophenol (PCP), dissimilatory reduction of amorphous Fe (III) oxide (FeOOH), and reduction of nitrate, in a consortium. Humin that was chemically reduced by NaBH4 served as an electron donor for these microbial reducing reactions, with electron donating capacities of 0.013 mmol e(-)/g for PCP dechlorination, 0.15 mmol e(-)/g for iron reduction, and 0.30 mmol e(-)/g for nitrate reduction. Two pairs of oxidation and reduction peaks within the humin were detected by cyclic voltammetry analysis. 16S rRNA gene sequencing-based microbial community analysis of the consortium incubated with different terminal electron acceptors, suggested that Dehalobacter sp., Bacteroides sp., and Sulfurospirillum sp. were involved in the PCP dechlorination, dissimilatory iron reduction, and nitrate reduction, respectively. These findings suggested that humin functioned as a versatile redox mediator, donating electrons for multiple respiration reactions with different redox potentials. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Profiling of Indigenous Microbial Community Dynamics and Metabolic Activity During Enrichment in Molasses-Supplemented Crude Oil-Brine Mixtures for Improved Understanding of Microbial Enhanced Oil Recovery.

    PubMed

    Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie; Lantz, Anna Eliasson

    2015-06-01

    Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil-brine system after addition of a complex carbon source, molasses, with or without nitrate to boost microbial growth. Growth of the indigenous microbes was stimulated by addition of molasses. Pyrosequencing showed that specifically Anaerobaculum, Petrotoga, and Methanothermococcus were enriched. Addition of nitrate favored the growth of Petrotoga over Anaerobaculum. The microbial growth caused changes in the crude oil-brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil-brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs.

  20. Study of Electrochemical Reduction of CO2 for Future Use in Secondary Microbial Electrochemical Technologies.

    PubMed

    Gimkiewicz, Carla; Hegner, Richard; Gutensohn, Mareike F; Koch, Christin; Harnisch, Falk

    2017-03-09

    The fluctuation and decentralization of renewable energy have triggered the search for respective energy storage and utilization. At the same time, a sustainable bioeconomy calls for the exploitation of CO 2 as feedstock. Secondary microbial electrochemical technologies (METs) allow both challenges to be tackled because the electrochemical reduction of CO 2 can be coupled with microbial synthesis. Because this combination creates special challenges, the electrochemical reduction of CO 2 was investigated under conditions allowing microbial conversions, that is, for their future use in secondary METs. A reproducible electrodeposition procedure of In on a graphite backbone allowed a systematic study of formate production from CO 2 with a high number of replicates. Coulomb efficiencies and formate production rates of up to 64.6±6.8 % and 0.013±0.002 mmol formate  h -1  cm -2 , respectively, were achieved. Electrode redeposition, reusability, and long-term performance were investigated. Furthermore, the effect of components used in microbial media, that is, yeast extract, trace elements, and phosphate salts, on the electrode performance was addressed. The results demonstrate that the integration of electrochemical reduction of CO 2 in secondary METs can become technologically relevant. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. CHANGES IN ENANTIOMERIC FRACTIONS DURING MICROBIAL REDUCTIVE DECHLORINATION OF PCB132, PCB149, AND AROCLOR 1254 IN LAKE HARTWELL SEDIMENT MICROCOSMS

    EPA Science Inventory

    Enantioselectivity of microbial reductive dechlorination of chiral PCBs in sediments from Lake Hartwell, SC, was determined by microcosm studies and enantiomer-specific GC analysis. Sediments from two locations in the vicinity of the highest levels of PCB contamination were used...

  2. Microbial arsenic reduction in polluted and unpolluted soils from Attica, Greece.

    PubMed

    Vaxevanidou, K; Giannikou, S; Papassiopi, N

    2012-11-30

    Indigenous soil microorganisms often affect the mobility of heavy metals and metalloids by altering their oxidation state. Under anaerobic conditions, the microbial transformation is usually reduction and may cause the mobilization of contaminants, as happens in the case of arsenic, which is much more stable in the pentavalent state compared to the reduced trivalent form. The aim of this work was to investigate the occurrence of such a microbial activity in representative Greek soils. Five soil samples, with As levels varying between 14 and 259 mg/kg, were examined. The samples were artificially contaminated, by adding 750 mg of As(V) per kg of soil. Initial sorption of As(V) ranged between 70 and 85%. Microbial reduction of arsenic was observed in three of the examined soils, without any obvious correlation with pre-existing levels of contamination. Reduction reached high percentages, i.e. up to 99%, and was accompanied by the corresponding release of reduced As in the aqueous solution. A simultaneous iron reducing activity was also observed in four of the five soil samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Influence of redox mediators and salinity level on the (bio)transformation of Direct Blue 71: kinetics aspects.

    PubMed

    Alvarez, Luis H; Meza-Escalante, Edna R; Gortáres-Moroyoqui, Pablo; Morales, Luz; Rosas, Krystal; García-Reyes, Bernardo; García-González, Alicone

    2016-12-01

    The rate-limiting step of azo dye decolorization was elucidated by exploring the microbial reduction of a model quinone and the chemical decolorization by previously reduced quinone at different salinity conditions (2-8%). Microbial experiments were performed in batch with a marine consortium. The decolorization of Direct Blue 71 (DB71) by the marine consortium at 2% salinity, mediated with anthraquinone-2,6-disulfonate (AQDS), showed the highest rate of decolorization as compared with those obtained with riboflavin, and two samples of humic acids. Moreover, the incubations at different salinity conditions (0-8%) performed with AQDS showed that the highest rate of decolorization of DB71 by the marine consortium occurred at 2% and 4% salinity. In addition, the highest microbial reduction rate of AQDS occurred in incubations at 0%, 2%, and 4% of salinity. The chemical reduction of DB71 by reduced AQDS occurred in two stages and proceeded faster at 4% and 6% salinity. The results indicate that the rate-limiting step during azo decolorization was the microbial reduction of AQDS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A meta-analysis of soil microbial biomass responses to forest disturbances

    PubMed Central

    Holden, Sandra R.; Treseder, Kathleen K.

    2013-01-01

    Climate warming is likely to increase the frequency and severity of forest disturbances, with uncertain consequences for soil microbial communities and their contribution to ecosystem C dynamics. To address this uncertainty, we conducted a meta-analysis of 139 published soil microbial responses to forest disturbances. These disturbances included abiotic (fire, harvesting, storm) and biotic (insect, pathogen) disturbances. We hypothesized that soil microbial biomass would decline following forest disturbances, but that abiotic disturbances would elicit greater reductions in microbial biomass than biotic disturbances. In support of this hypothesis, across all published studies, disturbances reduced soil microbial biomass by an average of 29.4%. However, microbial responses differed between abiotic and biotic disturbances. Microbial responses were significantly negative following fires, harvest, and storms (48.7, 19.1, and 41.7% reductions in microbial biomass, respectively). In contrast, changes in soil microbial biomass following insect infestation and pathogen-induced tree mortality were non-significant, although biotic disturbances were poorly represented in the literature. When measured separately, fungal and bacterial responses to disturbances mirrored the response of the microbial community as a whole. Changes in microbial abundance following disturbance were significantly positively correlated with changes in microbial respiration. We propose that the differential effect of abiotic and biotic disturbances on microbial biomass may be attributable to differences in soil disruption and organic C removal from forests among disturbance types. Altogether, these results suggest that abiotic forest disturbances may significantly decrease soil microbial abundance, with corresponding consequences for microbial respiration. Further studies are needed on the effect of biotic disturbances on forest soil microbial communities and soil C dynamics. PMID:23801985

  5. Utilization of subsurface microbial electrochemical systems to elucidate the mechanisms of competition between methanogenesis and microbial iron(III)/humic acid reduction in Arctic peat soils

    NASA Astrophysics Data System (ADS)

    Friedman, E. S.; Miller, K.; Lipson, D.; Angenent, L. T.

    2012-12-01

    High-latitude peat soils are a major carbon reservoir, and there is growing concern that previously dormant carbon from this reservoir could be released to the atmosphere as a result of continued climate change. Microbial processes, such as methanogenesis and carbon dioxide production via iron(III) or humic acid reduction, are at the heart of the carbon cycle in Arctic peat soils [1]. A deeper understanding of the factors governing microbial dominance in these soils is crucial for predicting the effects of continued climate change. In previous years, we have demonstrated the viability of a potentiostatically-controlled subsurface microbial electrochemical system-based biosensor that measures microbial respiration via exocellular electron transfer [2]. This system utilizes a graphite working electrode poised at 0.1 V NHE to mimic ferric iron and humic acid compounds. Microbes that would normally utilize these compounds as electron acceptors donate electrons to the electrode instead. The resulting current is a measure of microbial respiration with the electrode and is recorded with respect to time. Here, we examine the mechanistic relationship between methanogenesis and iron(III)- or humic acid-reduction by using these same microbial-three electrode systems to provide an inexhaustible source of alternate electron acceptor to microbes in these soils. Chamber-based carbon dioxide and methane fluxes were measured from soil collars with and without microbial three-electrode systems over a period of four weeks. In addition, in some collars we simulated increased fermentation by applying acetate treatments to understand possible effects of continued climate change on microbial processes in these carbon-rich soils. The results from this work aim to increase our fundamental understanding of competition between electron acceptors, and will provide valuable data for climate modeling scenarios. 1. Lipson, D.A., et al., Reduction of iron (III) and humic substances plays a major role in anaerobic respiration in an Arctic peat soil. Journal of Geophysical Research-Biogeosciences, 2010. 115. 2. Friedman, E.S., et al., A cost-effective and field-ready potentiostat that poises subsurface electrodes to monitor bacterial respiration. Biosensors and Bioelectronics, 2012. 32(1): p. 309-313.

  6. Evaluation of Technetium Getters to Improve the Performance of Cast Stone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Qafoku, Nikolla P.; Serne, R. Jeffrey

    2015-11-01

    Cast Stone has been selected as the preferred waste form for solidification of aqueous secondary liquid effluents from the Hanford Tank Waste Treatment and Immobilization Plant (WTP) process condensates and low-activity waste (LAW) melter off-gas caustic scrubber effluents. Cast Stone is also being evaluated as a supplemental immobilization technology to provide the necessary LAW treatment capacity to complete the Hanford tank waste cleanup mission in a timely and cost effective manner. One of the major radionuclides that Cast Stone has the potential to immobilize is technetium (Tc). The mechanism for immobilization is through the reduction of the highly mobile Tc(VII)more » species to the less mobile Tc(IV) species by the blast furnace slag (BFS) used in the Cast Stone formulation. Technetium immobilization through this method would be beneficial because Tc is one of the most difficult contaminants to address at the U.S. Department of Energy (DOE) Hanford Site due to its complex chemical behavior in tank waste, limited incorporation in mid- to high-temperature immobilization processes (vitrification, steam reformation, etc.), and high mobility in subsurface environments. In fact, the Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC&WM EIS) identifies technetium-99 ( 99Tc) as one of the radioactive tank waste components contributing the most to the environmental impact associated with the cleanup of the Hanford Site. The TC&WM EIS, along with an earlier supplemental waste-form risk assessment, used a diffusion-limited release model to estimate the release of different contaminants from the WTP process waste forms. In both of these predictive modeling exercises, where effective diffusivities based on grout performance data available at the time, groundwater at the 100-m down-gradient well exceeded the allowable maximum permissible concentrations for 99Tc. (900 pCi/L). Recent relatively short-term (63 day) leach tests conducted on both LAW and secondary waste Cast Stone monoliths indicated that 99Tc diffusivities were at or near diffusivities where the groundwater at the 100-m down-gradient well would exceed the allowable maximum permissible 99Tc concentrations. There is, therefore, a need and an opportunity to improve the retention of Tc in the Cast Stone waste form. One method to improve the performance of the Cast Stone waste form is through the addition of “getters” that selectively sequester Tc inside Cast Stone.« less

  7. Impact of natural organic matter coatings on the microbial reduction of iron oxides

    NASA Astrophysics Data System (ADS)

    Poggenburg, Christine; Mikutta, Robert; Schippers, Axel; Dohrmann, Reiner; Guggenberger, Georg

    2018-03-01

    Iron (Fe) oxyhydroxides are important constituents of the soil mineral phase known to stabilize organic matter (OM) under oxic conditions. In an anoxic milieu, however, these Fe-organic associations are exposed to microbial reduction, releasing OM into soil solution. At present, only few studies have addressed the influence of adsorbed natural OM (NOM) on the reductive dissolution of Fe oxyhydroxides. This study therefore examined the impact of both the composition and concentration of adsorbed NOM on microbial Fe reduction with regard to (i) electron shuttling, (ii) complexation of Fe(II,III), (iii) surface site coverage and/or pore blockage, and (iv) aggregation. Adsorption complexes with varying carbon loadings were synthesized using different Fe oxyhydroxides (ferrihydrite, lepidocrocite, goethite, hematite, magnetite) and NOM of different origin (extracellular polymeric substances from Bacillus subtilis, OM extracted from soil Oi and Oa horizons). The adsorption complexes were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), N2 gas adsorption, electrophoretic mobility and particle size measurements, and OM desorption. Incubation experiments under anaerobic conditions were conducted for 16 days comparing two different strains of dissimilatory Fe(III)-reducing bacteria (Shewanella putrefaciens, Geobacter metallireducens). Mineral transformation during reduction was assessed via XRD and FTIR. Microbial reduction of the pure Fe oxyhydroxides was controlled by the specific surface area (SSA) and solubility of the minerals. For Shewanella putrefaciens, the Fe reduction of adsorption complexes strongly correlated with the concentration of potentially usable electron-shuttling molecules for NOM concentrations <2 mg C L-1, whereas for Geobacter metallireducens, Fe reduction depended on the particle size and thus aggregation of the adsorption complexes. These diverging results suggest that the influence of NOM on the stability of Fe-organic associations in soils cannot easily be assessed without considering the composition of the microbial soil community.

  8. Geochemical control of microbial Fe(III) reduction potential in wetlands: Comparison of the rhizosphere to non-rhizosphere soil

    USGS Publications Warehouse

    Weiss, J.V.; Emerson, D.; Megonigal, J.P.

    2004-01-01

    We compared the reactivity and microbial reduction potential of Fe(III) minerals in the rhizosphere and non-rhizosphere soil to test the hypothesis that rapid Fe(III) reduction rates in wetland soils are explained by rhizosphere processes. The rhizosphere was defined as the area immediately adjacent to a root encrusted with Fe(III)-oxides or Fe plaque, and non-rhizosphere soil was 0.5 cm from the root surface. The rhizosphere had a significantly higher percentage of poorly crystalline Fe (66??7%) than non-rhizosphere soil (23??7%); conversely, non-rhizosphere soil had a significantly higher proportion of crystalline Fe (50??7%) than the rhizosphere (18??7%, P<0.05 in all cases). The percentage of poorly crystalline Fe(III) was significantly correlated with the percentage of FeRB (r=0.76), reflecting the fact that poorly crystalline Fe(III) minerals are labile with respect to microbial reduction. Abiotic reductive dissolution consumed about 75% of the rhizosphere Fe(III)-oxide pool in 4 h compared to 23% of the soil Fe(III)-oxide pool. Similarly, microbial reduction consumed 75-80% of the rhizosphere pool in 10 days compared to 30-40% of the non-rhizosphere soil pool. Differences between the two pools persisted when samples were amended with an electron-shuttling compound (AQDS), an Fe(III)-reducing bacterium (Geobacter metallireducens), and organic carbon. Thus, Fe(III)-oxide mineralogy contributed strongly to differences in the Fe(III) reduction potential of the two pools. Higher amounts of poorly crystalline Fe(III) and possibly humic substances, and a higher Fe(III) reduction potential in the rhizosphere compared to the non-rhizosphere soil, suggested the rhizosphere is a site of unusually active microbial Fe cycling. The results were consistent with previous speculation that rapid Fe cycling in wetlands is due to the activity of wetland plant roots. ?? 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

  9. Chromium Isotope Behaviour During Aerobic Microbial Reduction Activities

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Amor, K.; Porcelli, D.; Thompson, I.

    2014-12-01

    Microbial activity is a very important, and possibly even the dominant, reduction mechanism for many metals in natural water systems. Isotope fractionations during microbial metal reduction can reflect one major mechanism in metal cycling in the environment, and isotopic signatures can be used to identify and quantify reduction processes during biogeochemical cycling in the present environment as well as in the past. There are many Cr (VI)-reducing bacteria that have been discovered and isolated from the environment, and Cr isotopes were found to be fractionated during microbial reduction processes. In this study, Cr reduction experiments have been undertaken to determine the conditions under which Cr is reduced and the corresponding isotope signals that are generated. The experiments have been done with a facultative bacteria Pseudomonas fluorescens LB 300, and several parameters that have potential impact on reduction mechanisms have been investigated. Electron donors are important for bacteria growth and metabolism. One factor that can control the rate of Cr reduction is the nature of the electron donor. The results show that using citrate as an electron donor can stimulate bacteria reduction activity to a large extent; the reduction rate is much higher (15.10 mgˑL-1hour-1) compared with experiments using glucose (6.65 mgˑL-1ˑhour-1), acetate (4.88 mgˑL-1hour-1) or propionate (4.85 mgˑL-1hour-1) as electron donors. Groups with higher electron donor concentrations have higher reduction rates. Chromium is toxic, and when increasing Cr concentrations in the medium, the bacteria reduction rate is also higher, which reflects bacteria adapting to the toxic environment. In the natural environment, under different pH conditions, bacteria may metabolise in different ways. In our experiments with pH, bacteria performed better in reducing Cr (VI) when pH = 8, and there are no significant differences between groups with pH = 4 or pH = 6. To investigate this further, Cr isotope determinations will be presented, which are essential in better understanding bacterial reducing activities under different environmental conditions and can also provide important background information for interpreting Cr isotope fractionations in natural environment, and using Cr isotopes to identify reduction by microbial activity.

  10. Uranium isotopes fingerprint biotic reduction.

    PubMed

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-05-05

    Knowledge of paleo-redox conditions in the Earth's history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth's crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  11. Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction

    NASA Astrophysics Data System (ADS)

    Antler, Gilad; Turchyn, Alexandra V.; Ono, Shuhei; Sivan, Orit; Bosak, Tanja

    2017-04-01

    Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide.

  12. Characteristics and Kinetic Analysis of AQS Transformation and Microbial Goethite Reduction:Insight into "Redox mediator-Microbe-Iron oxide" Interaction Process.

    PubMed

    Zhu, Weihuang; Shi, Mengran; Yu, Dan; Liu, Chongxuan; Huang, Tinglin; Wu, Fengchang

    2016-03-29

    The characteristics and kinetics of redox transformation of a redox mediator, anthraquinone-2-sulfonate (AQS), during microbial goethite reduction by Shewanella decolorationis S12, a dissimilatory iron reduction bacterium (DIRB), were investigated to provide insights into "redox mediator-iron oxide" interaction in the presence of DIRB. Two pre-incubation reaction systems of the "strain S12- goethite" and the "strain S12-AQS" were used to investigate the dynamics of goethite reduction and AQS redox transformation. Results show that the concentrations of goethite and redox mediator, and the inoculation cell density all affect the characteristics of microbial goethite reduction, kinetic transformation between oxidized and reduced species of the redox mediator. Both abiotic and biotic reactions and their coupling regulate the kinetic process for "Quinone-Iron" interaction in the presence of DIRB. Our results provide some new insights into the characteristics and mechanisms of interaction among "quinone-DIRB- goethite" under biotic/abiotic driven.

  13. Whole-leaf sanitizing wash improves chlorine efficacy for microbial reduction and prevents pathogen cross contamination during fresh-cut lettuce processing

    USDA-ARS?s Scientific Manuscript database

    Currently, nearly all fresh-cut lettuce processing facilities in the United States use chlorinated water or other sanitizer solutions for microbial reduction after lettuce is cut. It is believed that freshly cut lettuce releases significant amounts of organic matters that negatively impact the effec...

  14. Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions

    DOE PAGES

    Kwon, Man Jae; O’Loughlin, Edward J.; Boyanov, Maxim I.; ...

    2016-01-22

    Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over timemore » revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. As a result, these data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.« less

  15. Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Man Jae; O’Loughlin, Edward J.; Boyanov, Maxim I.

    Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over timemore » revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. As a result, these data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.« less

  16. Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions.

    PubMed

    Kwon, Man Jae; O'Loughlin, Edward J; Boyanov, Maxim I; Brulc, Jennifer M; Johnston, Eric R; Kemner, Kenneth M; Antonopoulos, Dionysios A

    2016-01-01

    Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over time revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. These data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.

  17. Microbially Mediated Kinetic Sulfur Isotope Fractionation: Reactive Transport Modeling Benchmark

    NASA Astrophysics Data System (ADS)

    Wanner, C.; Druhan, J. L.; Cheng, Y.; Amos, R. T.; Steefel, C. I.; Ajo Franklin, J. B.

    2014-12-01

    Microbially mediated sulfate reduction is a ubiquitous process in many subsurface systems. Isotopic fractionation is characteristic of this anaerobic process, since sulfate reducing bacteria (SRB) favor the reduction of the lighter sulfate isotopologue (S32O42-) over the heavier isotopologue (S34O42-). Detection of isotopic shifts have been utilized as a proxy for the onset of sulfate reduction in subsurface systems such as oil reservoirs and aquifers undergoing uranium bioremediation. Reactive transport modeling (RTM) of kinetic sulfur isotope fractionation has been applied to field and laboratory studies. These RTM approaches employ different mathematical formulations in the representation of kinetic sulfur isotope fractionation. In order to test the various formulations, we propose a benchmark problem set for the simulation of kinetic sulfur isotope fractionation during microbially mediated sulfate reduction. The benchmark problem set is comprised of four problem levels and is based on a recent laboratory column experimental study of sulfur isotope fractionation. Pertinent processes impacting sulfur isotopic composition such as microbial sulfate reduction and dispersion are included in the problem set. To date, participating RTM codes are: CRUNCHTOPE, TOUGHREACT, MIN3P and THE GEOCHEMIST'S WORKBENCH. Preliminary results from various codes show reasonable agreement for the problem levels simulating sulfur isotope fractionation in 1D.

  18. Real-time monitoring of subsurface microbial metabolism with graphite electrodes

    DOE PAGES

    Wardman, Colin; Nevin, Kelly P.; Lovley, Derek R.

    2014-11-21

    Monitoring in situ microbial activity in anoxic submerged soils and aquatic sediments can be labor intensive and technically difficult, especially in dynamic environments in which a record of changes in microbial activity over time is desired. Microbial fuel cell concepts have previously been adapted to detect changes in the availability of relatively high concentrations of organic compounds in waste water but, in most soils and sediments, rates of microbial activity are not linked to the concentrations of labile substrates, but rather to the turnover rates of the substrate pools with steady state concentrations in the nM-μ M range. In ordermore » to determine whether levels of current produced at a graphite anode would correspond to the rates of microbial metabolism in anoxic sediments, small graphite anodes were inserted in sediment cores and connected to graphite brush cathodes in the overlying water. Currents produced were compared with the rates of [2- 14C]-acetate metabolism. There was a direct correlation between current production and the rate that [2- 14C]-acetate was metabolized to 14CO 2 and 14CH 4 in sediments in which Fe(III) reduction, sulfate reduction, or methane production was the predominant terminal electron-accepting process. At comparable acetate turnover rates, currents were higher in the sediments in which sulfate-reduction or Fe(III) reduction predominated than in methanogenic sediments. This was attributed to reduced products (Fe(II), sulfide) produced at distance from the anode contributing to current production in addition to the current that was produced from microbial oxidation of organic substrates with electron transfer to the anode surface in all three sediment types. In conclusion, the results demonstrate that inexpensive graphite electrodes may provide a simple strategy for real-time monitoring of microbial activity in a diversity of anoxic soils and sediments.« less

  19. Influence of nitrate, sulfate and operational parameters on the bioreduction of perchlorate using an up-flow packed bed reactor at high salinity.

    PubMed

    Chung, J; Shin, S; Oh, J

    2010-05-01

    In this study we have investigated whether electron acceptors, such as nitrate or sulphate ions, competitively inhibit the reduction of perchlorate in brine in continuous up-flow packed bed bioreactors. The effect of pH and hydraulic retention time (HRT) on the reduction of perchlorate at high salinity has also been examined. Reduction of perchlorate was found to be only moderately influenced by nitrate (under 163 mg N L-'), implying that there was no significant microbial competition for electron acceptors. As a result of microbial diversity, there were few differences between microbial communities fed with a variety of media, suggesting that most nitrate-reducing bacteria are able to reduce perchlorate at high salinity. Reduction of perchlorate was almost complete at relatively high sulfate levels (1000 mg L(-1)), neutral pH (6-8) and relatively long HRTs (> 10 h).

  20. Kinetics during the redox biotransformation of pollutants mediated by immobilized and soluble humic acids.

    PubMed

    Cervantes, Francisco J; Martínez, Claudia M; Gonzalez-Estrella, Jorge; Márquez, Arturo; Arriaga, Sonia

    2013-03-01

    The aim of this study was to elucidate the kinetic constraints during the redox biotransformation of the azo dye, Reactive Red 2 (RR2), and carbon tetrachloride (CT) mediated by soluble humic acids (HAs) and immobilized humic acids (HAi), as well as by the quinoid model compounds, anthraquinone-2,6-disulfonate (AQDS) and 1,2-naphthoquinone-4-sulfonate (NQS). The microbial reduction of both HAs and HAi by anaerobic granular sludge (AGS) was the rate-limiting step during decolorization of RR2 since the reduction of RR2 by reduced HAi proceeded at more than three orders of magnitute faster than the electron-transferring rate observed during the microbial reduction of HAi by AGS. Similarly, the reduction of RR2 by reduced AQDS proceeded 1.6- and 1.9-fold faster than the microbial reduction of AQDS by AGS when this redox mediator (RM) was supplied in soluble and immobilized form, respectively. In contrast, the reduction of NQS by AGS occurred 1.6- and 19.2-fold faster than the chemical reduction of RR2 by reduced NQS when this RM was supplied in soluble and immobilized form, respectively. The microbial reduction of HAs and HAi by a humus-reducing consortium proceeded 1,400- and 790-fold faster than the transfer of electrons from reduced HAs and HAi, respectively, to achieve the reductive dechlorination of CT to chloroform. Overall, the present study provides elucidation on the rate-limiting steps involved in the redox biotransformation of priority pollutants mediated by both HAs and HAi and offers technical suggestions to overcome the kinetic restrictions identified in the redox reactions evaluated.

  1. Effects of dissolved oxygen on performance and microbial community structure in a micro-aerobic hydrolysis sludge in situ reduction process.

    PubMed

    Niu, Tianhao; Zhou, Zhen; Shen, Xuelian; Qiao, Weimin; Jiang, Lu-Man; Pan, Wei; Zhou, Jijun

    2016-03-01

    A sludge process reduction activated sludge (SPRAS), with a sludge process reduction module composed of a micro-aerobic tank and a settler positioned before conventional activated sludge process, showed good performance of pollutant removal and sludge reduction. Two SPRAS systems were operated to investigate effects of micro-aeration on sludge reduction performance and microbial community structure. When dissolved oxygen (DO) concentration in the micro-aerobic tank decreased from 2.5 (SPH) to 0.5 (SPL) mg/L, the sludge reduction efficiency increased from 42.9% to 68.3%. Compared to SPH, activated sludge in SPL showed higher contents of extracellular polymeric substances and dissolved organic matter. Destabilization of floc structure in the settler, and cell lysis in the sludge process reduction module were two major reasons for sludge reduction. Illumina-MiSeq sequencing showed that microbial diversity decreased under high DO concentration. Proteobacteria, Bacteroidetes and Chloroflexi were the most abundant phyla in the SPRAS. Specific comparisons down to the class and genus level showed that fermentative, predatory and slow-growing bacteria in SPL community were more abundant than in SPH. The results revealed that micro-aeration in the SPRAS improved hydrolysis efficiency and enriched fermentative and predatory bacteria responsible for sludge reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The role of technetium-99m stannous pyrophosphate in myocardial imaging to recognize, localize and identify extension of acute myocardial infarction in patients

    NASA Technical Reports Server (NTRS)

    Willerson, J. T.; Parkey, R. W.; Bonte, F. J.; Stokely, E. M.; Buja, E. M.

    1975-01-01

    The ability of technetium-99m stannous pyrophosphate myocardial scintigrams to aid diagnostically in recognizing, localizing, and identifying extension of acute myocardial infarction in patients was evaluated. The present study is an extension of previous animal and patient evaluations that were recently performed utilizing this myocardial imaging agent.

  3. Effects of concurrent drug therapy on technetium /sup 99m/Tc gluceptate biodistribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinkle, G.H.; Basmadjian, G.P.; Peek, C.

    Drug interactions with /sup 99m/Tc gluceptate resulting in altered biodistribution were studied using chart review and animal tests. Charts of nine patients who had abnormal gallbladder uptake of technetium /sup 99m/Tc gluceptate during a two-year period were reviewed to obtain data such as concurrent drug therapy, primary diagnosis, and laboratory values. Adult New Zealand white rabbits were then used for testing the biodistribution of technetium /sup 99m/Tc gluceptate when administered concurrently with possibly interacting drugs identified in the chart review--penicillamine, penicillin G potassium, penicillin V potassium, acetaminophen, and trimethoprim-sulfamethoxazole. Chart review revealed no conclusive patterns of altered biodistribution associated withmore » other factors. The data did suggest the possibility that the five drugs listed above might cause increased hepatobiliary clearance of the radiopharmaceutical. Animal tests showed that i.v. penicillamine caused substantial distribution of radioactivity into the gallbladder and small bowel. Minimally increased gallbladder radioactivity occurred when oral acetaminophen and trimethoprim-sulfamethoxazole were administered concurrently. Oral and i.v. penicillins did not increase gallbladder activity. Penicillamine may cause substantial alteration of the biodistribution of technetium /sup 99m/Tc gluceptate.« less

  4. Methanogenic and Sulfate-Reducing Activities in a Hypersaline Microbial Mat and Associated Microbial Diversity.

    PubMed

    Cadena, Santiago; García-Maldonado, José Q; López-Lozano, Nguyen E; Cervantes, Francisco J

    2018-05-01

    Methanogenesis and sulfate reduction are important microbial processes in hypersaline environments. However, key aspects determining substrate competition between these microbial processes have not been well documented. We evaluated competitive and non-competitive substrates for stimulation of both processes through microcosm experiments of hypersaline microbial mat samples from Guerrero Negro, Baja California Sur, Mexico, and we assessed the effect of these substrates on the microbial community composition. Methylotrophic methanogenesis evidenced by sequences belonging to methanogens of the family Methanosarcinaceae was found as the dominant methanogenic pathway in the studied hypersaline microbial mat. Nevertheless, our results showed that incubations supplemented with acetate and lactate, performed in absence of sulfate, also produced methane after 40 days of incubation, apparently driven by hydrogenotrophic methanogens affiliated to the family Methanomicrobiaceae. Sulfate reduction was mainly stimulated by addition of acetate and lactate; however, after 40 days of incubation, an increase of the H 2 S concentrations in microcosms amended with trimethylamine and methanol was also observed, suggesting that these substrates are putatively used for sulfate reduction. Moreover, 16S rRNA gene sequencing analysis showed remarkable differences in the microbial community composition among experimental treatments. In the analyzed sample amended with acetate, sulfate-reducing bacteria (SRB) belonging to the family Desulfobacteraceae were dominant, while members of Desulfohalobiaceae, Desulfomicrobiaceae, and Desulfovibrionaceae were found in the incubation with lactate. Additionally, we detected an unexpected high abundance of unclassified Hydrogenedentes (near 25%) in almost all the experimental treatments. This study contributes to better understand methanogenic and sulfate-reducing activities, which play an important role in the functioning of hypersaline environments.

  5. Multilevel samplers as microcosms to assess microbial response to biostimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, Brett R.; Peacock, Aaron D.; Park, Melora M.

    Passive multilevel samplers (MLS) containing a solid matrix for microbial colonization were used in conjunction with a push-pull biostimulation experiment designed to promote biological U(VI) and Tc(VII) reduction. MLS were deployed at 24 elevations in the injection well and two down gradient wells to investigate the spatial variability in microbial community composition and growth prior to and following biostimulation. The microbial community was characterized by real-time PCR (Q-PCR) quantification of Bacteria, NO3- reducing bacteria (nirS and nirK), δ-proteobacteria, Geobacter sp., and methanogens (mcrA). Pretest cell densities were low overall but varied substantially with significantly greater Bacterial populations detected at circumneutralmore » pH (T-test, α=0.05) suggesting carbon substrate and low pH limitations of microbial activity. Although pretest cell densities were low, denitrifying bacteria were dominant members of the microbial community. Biostimulation with an ethanol amended groundwater resulted in concurrent NO3- and Tc(VII) reduction followed by U(VI) reduction. Q-PCR analysis of MLS revealed significant (1-2 orders of magnitude, T-test, α=0.05) increases in cell densities of Bacteria, denitrifiers, δ-proteobacteria, Geobacter sp., and methanogens in response to biostimulation. Traditionally characterization of sediment samples has been used to investigate the microbial community response to biostimulation, however, collection of sediment samples is expensive and not conducive to deep aquifers or temporal studies. The results presented demonstrate that push-pull tests with passive MLS provide an inexpensive approach to determine the effect of biostimulation on contaminant concentrations, geochemical conditions, and the microbial community composition and function.« less

  6. Insights on Microbial Activity from Reduction Potential: Electrochemical Noise Analysis of a Pristine Aquifer

    NASA Astrophysics Data System (ADS)

    Enright, A. M.; Shirokova, V.; Ferris, G.

    2012-12-01

    Reduction potential was measured in a shallow, till-hosted, pristine aquifer. A previous study* characterized the microbial community of the aquifer, and geochemical analysis of water from the aquifer from 2010, 2011, and 2012 indicates persistent localized geochemical gradients of ferrous, ferric, sulphate, and sulphide ions. The chemical plume changes oxidation state from a reduced centre to oxidized outer boundaries, and microbial activity is responsible for the shift in redox state. Analysis of reduction potential as electrochemical noise in both the frequency and time domains provides insight into the manipulation of dissolved ions by the microbial community. Analysis of electrochemical noise is sensitive enough to distinguish the rates and magnitude of influence of the mechanisms which contribute to the redox state of a system. Self-similarity has been suggested to arise in any system where electrochemical noise is the result of a multitude of contributory processes, and this type of noise signature has been reported for many biological and abiotic natural processes. This observed ubiquity is not well understood. Reduction potential data is analyzed using detrended fluctuation analysis in the frequency domain and detrended moving average analysis in the time domain to characterize the Hurst exponent and fractal dimension of this physiological time series. *V.L. Shirokova and F.G. Ferris. (2012). Microbial Diversity and Biogeochemistry of a Pristine Canadian Shield Groundwater System. Geomicrobiology Journal.

  7. Fate of Cd during microbial Fe(III) mineral reduction by a novel and Cd-tolerant Geobacter species.

    PubMed

    Muehe, E Marie; Obst, Martin; Hitchcock, Adam; Tyliszczak, Tolek; Behrens, Sebastian; Schröder, Christian; Byrne, James M; Michel, F Marc; Krämer, Ute; Kappler, Andreas

    2013-12-17

    Fe(III) (oxyhydr)oxides affect the mobility of contaminants in the environment by providing reactive surfaces for sorption. This includes the toxic metal cadmium (Cd), which prevails in agricultural soils and is taken up by crops. Fe(III)-reducing bacteria can mobilize such contaminants by Fe(III) mineral dissolution or immobilize them by sorption to or coprecipitation with secondary Fe minerals. To date, not much is known about the fate of Fe(III) mineral-associated Cd during microbial Fe(III) reduction. Here, we describe the isolation of a new Geobacter sp. strain Cd1 from a Cd-contaminated field site, where the strain accounts for 10(4) cells g(-1) dry soil. Strain Cd1 reduces the poorly crystalline Fe(III) oxyhydroxide ferrihydrite in the presence of at least up to 112 mg Cd L(-1). During initial microbial reduction of Cd-loaded ferrihydrite, sorbed Cd was mobilized. However, during continuous microbial Fe(III) reduction, Cd was immobilized by sorption to and/or coprecipitation within newly formed secondary minerals that contained Ca, Fe, and carbonate, implying the formation of an otavite-siderite-calcite (CdCO3-FeCO3-CaCO3) mixed mineral phase. Our data shows that microbially mediated turnover of Fe minerals affects the mobility of Cd in soils, potentially altering the dynamics of Cd uptake into food or phyto-remediating plants.

  8. Study of the diversity of microbial communities in a sequencing batch reactor oxic-settling-anaerobic process and its modified process.

    PubMed

    Sun, Lianpeng; Chen, Jianfan; Wei, Xiange; Guo, Wuzhen; Lin, Meishan; Yu, Xiaoyu

    2016-05-01

    To further reveal the mechanism of sludge reduction in the oxic-settling-anaerobic (OSA) process, the polymerase chain reaction - denaturing gradient gel electrophoresis protocol was used to study the possible difference in the microbial communities between a sequencing batch reactor (SBR)-OSA process and its modified process, by analyzing the change in the diversity of the microbial communities in each reactor of both systems. The results indicated that the structure of the microbial communities in aerobic reactors of the 2 processes was very different, but the predominant microbial populations in anaerobic reactors were similar. The predominant microbial population in the aerobic reactor of the SBR-OSA belonged to Burkholderia cepacia, class Betaproteobacteria, while those of the modified process belonged to the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. These 3 types of microbes had a cryptic growth characteristic, which was the main cause of a greater sludge reduction efficiency achieved by the modified process.

  9. In Situ Rates of Sulfate Reduction in Response to Geochemical Perturbations

    USGS Publications Warehouse

    Kneeshaw, T.A.; McGuire, J.T.; Cozzarelli, I.M.; Smith, E.W.

    2011-01-01

    Rates of in situ microbial sulfate reduction in response to geochemical perturbations were determined using Native Organism Geochemical Experimentation Enclosures (NOGEEs), a new in situ technique developed to facilitate evaluation of controls on microbial reaction rates. NOGEEs function by first trapping a native microbial community in situ and then subjecting it to geochemical perturbations through the introduction of various test solutions. On three occasions, NOGEEs were used at the Norman Landfill research site in Norman, Oklahoma, to evaluate sulfate-reduction rates in wetland sediments impacted by landfill leachate. The initial experiment, in May 2007, consisted of five introductions of a sulfate test solution over 11 d. Each test stimulated sulfate reduction with rates increasing until an apparent maximum was achieved. Two subsequent experiments, conducted in October 2007 and February 2008, evaluated the effects of concentration on sulfate-reduction rates. Results from these experiments showed that faster sulfate-reduction rates were associated with increased sulfate concentrations. Understanding variability in sulfate-reduction rates in response to perturbations may be an important factor in predicting rates of natural attenuation and bioremediation of contaminants in systems not at biogeochemical equilibrium. Copyright ?? 2011 The Author(s). Journal compilation ?? 2011 National Ground Water Association.

  10. Microbial Community Response to Warming and Correlations to Organic Carbon Degradation in an Arctic Tundra Soil

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Yang, S.; Zhou, J.; Wullschleger, S. D.; Graham, D. E.; Yang, Y.; Gu, B.

    2016-12-01

    Climate warming increases microbial activity and thus decomposition of soil organic carbon (SOC) stored in Arctic tundra, but changes in microbial community and its correlations to SOC decomposition are poorly understood. Using a microbial functional gene array (GeoChip 5.0), we examined the microbial functional community structure changes with temperature (-2 and +8 °C) in an anoxic incubation experiment with a high-centered polygon trough soil from Barrow, Alaska. Through a 122-day incubation, we show that functional community structure was significantly altered (P < 0.05) by 8 °C warming, with functional diversity decreasing in response to warming and rapid degradation of the labile soil organic substrates. In contrast, microbial community structure was largely unchanged by -2 °C incubation. In the organic layer soil, gene abundances associated with fermentation, methanogenesis, and iron reduction all decreased significantly (P < 0.05) following the incubation at 8 °C. These observations corroborate strongly with decreased methane and reducing sugar production rates and iron reduction during the incubation. These results demonstrate a rapid and sensitive microbial response to increasing soil temperature, and suggest important roles of microbial communities in moderating SOC degradation and iron cycling in warming Arctic tundra.

  11. Inhibitory Effects of Sulfate and Nitrate Reduction on Reductive Dechlorination of PCP in a Flooded Paddy Soil

    PubMed Central

    Xu, Yan; Xue, Lili; Ye, Qi; Franks, Ashley E.; Zhu, Min; Feng, Xi; Xu, Jianming; He, Yan

    2018-01-01

    Pentachlorophenol (PCP) is highly toxic and persistent in soils. Bioreduction of PCP often co-occurs with varying concentrations of sulfate and nitrate in flooded paddy soils where each can act as an electron acceptor. Anaerobic soil microcosms were constructed to evaluate the influence of sulfate and nitrate amendments and their redox processes. Microcosms with varying sulfate and nitrate concentrations demonstrated an inhibitory effect on reductive dechlorination of PCP compared to an untreated control. Compared to nitrate, sulfate exhibited a more significant impact on PCP dechlorination, as evidenced by a lower maximum reaction rate and a longer time to reach the maximum reaction rate. Dechlorination of PCP was initiated at the ortho-position, and then at the para- and meta-positions to form 3-CP as the final product in all microcosms. Deep sequencing of microbial communities in the microcosms revealed a strong variation in bacterial taxon among treatments. Specialized microbial groups, such as the genus of Desulfovibrio responding to the addition of sulfate, had a potential to mediate the competitive microbial dechlorination of PCP. Our results provide an insight into the competitive microbial-mediated reductive dechlorination of PCP in natural flooded soil or sediment environments. PMID:29643842

  12. Effect of long-term fertilization on humic redox mediators in multiple microbial redox reactions.

    PubMed

    Guo, Peng; Zhang, Chunfang; Wang, Yi; Yu, Xinwei; Zhang, Zhichao; Zhang, Dongdong

    2018-03-01

    This study investigated the effects of different long-term fertilizations on humic substances (HSs), humic acids (HAs) and humins, functioning as redox mediators for various microbial redox biotransformations, including 2,2',4,4',5,5'- hexachlorobiphenyl (PCB 153 ) dechlorination, dissimilatory iron reduction, and nitrate reduction, and their electron-mediating natures. The redox activity of HSs for various microbial redox metabolisms was substantially enhanced by long-term application of organic fertilizer (pig manure). As a redox mediator, only humin extracted from soils with organic fertilizer amendment (OF-HM) maintained microbial PCB 153 dechlorination activity (1.03 μM PCB 153 removal), and corresponding HA (OF-HA) most effectively enhanced iron reduction and nitrate reduction by Shewanella putrefaciens. Electrochemical analysis confirmed the enhancement of their electron transfer capacity and redox properties. Fourier transform infrared analysis showed that C=C and C=O bonds, and carboxylic or phenolic groups in HSs might be the redox functional groups affected by fertilization. This research enhances our understanding of the influence of anthropogenic fertility on the biogeochemical cycling of elements and in situ remediation ability in agroecosystems through microorganisms' metabolisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Viable cold-tolerant iron-reducing microorganisms in geographically diverse subglacial environments

    NASA Astrophysics Data System (ADS)

    Nixon, Sophie L.; Telling, Jon P.; Wadham, Jemma L.; Cockell, Charles S.

    2017-03-01

    Subglacial environments are known to harbour metabolically diverse microbial communities. These microbial communities drive chemical weathering of underlying bedrock and influence the geochemistry of glacial meltwater. Despite its importance in weathering reactions, the microbial cycling of iron in subglacial environments, in particular the role of microbial iron reduction, is poorly understood. In this study we address the prevalence of viable iron-reducing microorganisms in subglacial sediments from five geographically isolated glaciers. Iron-reducing enrichment cultures were established with sediment from beneath Engabreen (Norway), Finsterwalderbreen (Svalbard), Leverett and Russell glaciers (Greenland), and Lower Wright Glacier (Antarctica). Rates of iron reduction were higher at 4 °C compared with 15 °C in all but one duplicated second-generation enrichment culture, indicative of cold-tolerant and perhaps cold-adapted iron reducers. Analysis of bacterial 16S rRNA genes indicates Desulfosporosinus were the dominant iron-reducing microorganisms in low-temperature Engabreen, Finsterwalderbreen and Lower Wright Glacier enrichments, and Geobacter dominated in Russell and Leverett enrichments. Results from this study suggest microbial iron reduction is widespread in subglacial environments and may have important implications for global biogeochemical iron cycling and export to marine ecosystems.

  14. Uranium isotopes fingerprint biotic reduction

    DOE PAGES

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; ...

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more » i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less

  15. Transglutaminase-mediated conjugation and nitride-technetium-99m labelling of a bis(thiosemicarbazone) bifunctional chelator.

    PubMed

    Salvarese, Nicola; Spolaore, Barbara; Marangoni, Selena; Pasin, Anna; Galenda, Alessandro; Tamburini, Sergio; Cicoria, Gianfranco; Refosco, Fiorenzo; Bolzati, Cristina

    2018-06-01

    An assessment study involving the use of the transglutaminase (TGase) conjugation method and the nitride-technetium-99m labelling on a bis(thiosemicarbazone) (BTS) bifunctional chelating agent is presented. The previously described chelator diacetyl-2-(N 4 -methyl-3-thiosemicarbazone)-3-(N 4 -amino-3-thiosemicarbazone), H 2 ATSM/A, has been functionalized with 6-aminohexanoic acid (ε-Ahx) to generate the bifunctional chelating agent diacetyl-2-(N 4 -methyl-3-thiosemicarbazone)-3-[N 4 -(amino)-(6-aminohexanoic acid)-3-thiosemicarbazone], H 2 ATSM/A-ε-Ahx (1), suitable for conjugation to glutamine (Gln) residues of bioactive molecules via TGase. The feasibility of the TGase reaction in the synthesis of a bioconjugate derivative was investigated using Substance P (SP) as model peptide. Compounds 1 and H 2 ATSM/A-ε-Ahx-SP (2) were labelled with nitride-technetium-99m, obtaining the complexes [ 99m Tc][Tc(N)(ATSM/A-ε-Ahx)] ( 99m Tc1) and [ 99m Tc][Tc(N)(ATSM/A-ε-Ahx-SP)] ( 99m Tc2). The chemical identity of 99m Tc1 and 99m Tc2 was confirmed by radio/UV-RP-HPLC combined with ESI-MS analysis on the respective carrier-added products 99g/99m Tc1 and 99g/99m Tc2. The stability of the radiolabelled complexes after incubation in various environments was investigated. All the results were compared with those obtained for the corresponding 64 Cu-analogues, 64 Cu1 and 64 Cu2. The TGase reaction allows the conjugation of 1 with the peptide, but it is not highly efficient due to instability of the chelator in the required conditions. The SP-conjugated complexes are unstable in mouse and human sera. However, indeed the BTS system can be exploited as nitride-technetium-99m chelator for highly efficient technetium labelling, thus making compound 1 worthy of further investigations for new targeted technetium and copper radiopharmaceuticals encompassing Single Photon Emission Computed Tomography and Positron Emission Tomography imaging. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. A study of microbial profile modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, J.H.; Lee, H.O.

    1995-12-31

    A microbial profile modification method using spores was investigated. A halotolerant, spore-forming, biopolymer-producing mesophile was used in Berea cores with a specifically formulated nutrient package to reduce the permeability of the rock. The degree of permeability reduction varied widely depending on the stimulation protocols used. The incubation period had a significant impact on permeability reduction, and there appeared to be an optimum incubation time for maximum permeability reduction. The reduction persisted for many PV of brine injection and appeared very stable. For our microbes used in this study, the permeability reduction was about the same when the NaCl concentration wasmore » above 2 wt% in the range from 0 wt% to 10 wt%.« less

  17. Increased technetium uptake is not equivalent to muscle necrosis: scintigraphic, morphological and intramuscular pressure analyses of sore muscles after exercise

    NASA Technical Reports Server (NTRS)

    Crenshaw, A. G.; Friden, J.; Hargens, A. R.; Lang, G. H.; Thornell, L. E.

    1993-01-01

    A scintigraphic technique employing technetium pyrophosphate uptake was used to identify the area of skeletal muscle damage in the lower leg of four runners 24 h after an ultramarathon footrace (160 km). Most of the race had been run downhill which incorporated an extensive amount of eccentric work. Soreness was diffuse throughout the posterior region of the lower leg. In order to interpret what increased technetium uptake reflects and to express extreme endurance related damages, a biopsy was taken from the 3-D position of abnormal uptake. In addition, intramuscular pressures were determined in the deep posterior compartment. Scintigraphs revealed increased technetium pyrophosphate uptake in the medial portion of the gastrocnemius muscle. For 3698 fibres analysed, 33 fibres (1%) were necrotic, while a few other fibres were either atrophic or irregular shaped. A cluster of necrotic fibres occurred at the fascicular periphery for one subject and fibre type grouping occurred for another. Ultrastructural analysis revealed Z-line streaming near many capillaries and variously altered subsarcolemmal mitochondria including some with paracrystalline inclusions. The majority of the capillaries included thickened and irregular shaped endothelial cells. Intramuscular pressures of the deep posterior compartment were slightly elevated (12-15 mmHg) for three of the four subjects. Increased technetium uptake following extreme endurance running does not just reflect muscle necrosis but also subtle fibre abnormalities. Collectively, these pathological findings are attributed to relative ischaemia occurring during the race and during pre-race training, whereas, intramuscular pressure elevations associated with muscle soreness are attributed to mechanical stress caused by extensive eccentric work during the race.

  18. Value of imaging studies after a first febrile urinary tract infection in young children: data from Italian renal infection study 1.

    PubMed

    Montini, Giovanni; Zucchetta, Pietro; Tomasi, Lisanna; Talenti, Enrico; Rigamonti, Waifro; Picco, Giorgio; Ballan, Alberto; Zucchini, Andrea; Serra, Laura; Canella, Vanna; Gheno, Marta; Venturoli, Andrea; Ranieri, Marco; Caddia, Valeria; Carasi, Carla; Dall'amico, Roberto; Hewitt, Ian

    2009-02-01

    We examined the diagnostic accuracy of routine imaging studies (ultrasonography and micturating cystography) for predicting long-term parenchymal renal damage after a first febrile urinary tract infection. This study addressed the secondary objective of a prospective trial evaluating different antibiotic regimens for the treatment of acute pyelonephritis. Data for 300 children < or =2 years of age, with normal prenatal ultrasound results, who completed the diagnostic follow-up evaluation (ultrasonography and technetium-99m-dimercaptosuccinic acid scanning within 10 days, cystography within 2 months, and repeat technetium-99m-dimercaptosuccinic acid scanning at 12 months to detect scarring) were analyzed. Outcome measures were sensitivity, specificity, and negative and positive predictive values for ultrasonography and cystography in predicting parenchymal renal damage on the 12-month technetium-99m-dimercaptosuccinic acid scans. The kidneys and urinary tracts were mostly normal. The acute technetium-99m-dimercaptosuccinic acid scans showed pyelonephritis in 54% of cases. Renal scarring developed in 15% of cases. The ultrasonographic and cystographic findings were poor predictors of long-term damage, showing minor sonographic abnormalities for 12 and reflux for 23 of the 45 children who subsequently developed scarring. The benefit of performing ultrasonography and scintigraphy in the acute phase or cystourethrography is minimal. Our findings support (1) technetium-99m-dimercaptosuccinic acid scintigraphy 6 months after infection to detect scarring that may be related to long-term hypertension, proteinuria, and renal function impairment (although the degree of scarring was generally minor and did not impair renal function) and (2) continued surveillance to identify recurrent urinary tract infections that may warrant further investigation.

  19. Water-stable fac-{TcO₃}⁺ complexes - a new field of technetium chemistry.

    PubMed

    Braband, Henrik

    2011-01-01

    The development of technetium chemistry has been lagging behind that of its heavier congener rhenium, primarily because the inherent radioactivity of all Tc isotopes has limited the number of laboratories that can study the chemistry of this fascinating element. Although technetium is an artificial element, it is not rare. Significant amounts of the isotope (99)Tc are produced every day as a fission byproduct in nuclear power plants. Therefore, a fundamental understanding of the chemistry of (99)Tc is essential to avoid its release into the environment. In this article the chemistry of technetium at its highest oxidation state (+VII) is reviewed with a special focus on recent developments which make water-stable complexes of the general type [TcO(3)(tacn-R)](+) (tacn-R = 1,4,7-triazacyclononane or derivatives) accessible. Complexes containing the fac-{TcO(3)}(+) core display a unique reactivity. In analogy to [OsO(4)] and [RuO(4)], complexes containing the fac-{TcO(3)}(+) core undergo with alkenes metal-mediated, vicinal cis-dihydroxylation reactions (alkene-glycol interconversion) in water via a (3+2)-cycloaddition reaction. Therefore, water-stable fac-{(99m)TcO(3)}(+) complexes pave the way for a new labeling strategy for radiopharmaceutical applications, based on (3+2)-cycloaddition reactions. This new concept for the labeling of biomolecules with small [(99m)TcO(3)(tacn-R)](+)-type complexes by way of a (3+2)-cycloaddition with alkenes is discussed in detail. The herein reported developments in high-valent technetium chemistry create a new field of research with this artificial element. This demonstrates the potential of fundamental research to provide new impetus of innovation for the development of new methods for radiopharmaceutical applications.

  20. Evaluation of Hanford Tank Supernatant Availability for Technetium Management Project Studies in FY16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapko, Brian M.

    2015-09-30

    This report examines the need for actual Hanford tank waste solutions to support tasks in the Technetium Management Program in fiscal year (FY) 2016. One key need is to identify both samples where a majority of the soluble technetium is present as pertechnetate and samples where it is not. The total amount of tank supernatant needed from any given tank waste supernatant was determined by polling the tasks leaders for their technology testing needs in FY16 and then arbitrarily ascribing a 10% process loss associated with consolidation and the Cs-137 removal needed to reduce the dose to a level suitablemore » for testing in radiological fumehoods. These polling results identified a need for approximately 2.1 to 3.6 kg of any particular targeted Hanford tank waste supernatant.« less

  1. Characteristics and kinetic analysis of AQS transformation and microbial goethite reduction: Insight into “redox mediator-microbe-iron oxide” interaction process

    DOE PAGES

    Zhu, Weihuang; Shi, Mengran; Yu, Dan; ...

    2016-03-29

    Here, the characteristics and kinetics of redox transformation of a redox mediator, anthraquinone-2-sulfonate (AQS), during microbial goethite reduction by Shewanella decolorationis S12, a dissimilatory iron reduction bacterium (DIRB), were investigated to provide insights into “redox mediator-iron oxide” interaction in the presence of DIRB. Two pre-incubation reaction systems of the “strain S12-goethite” and the “strain S12-AQS” were used to investigate the dynamics of goethite reduction and AQS redox transformation. Results show that the concentrations of goethite and redox mediator, and the inoculation cell density all affect the characteristics of microbial goethite reduction, kinetic transformation between oxidized and reduced species of themore » redox mediator. Both abiotic and biotic reactions and their coupling regulate the kinetic process for “Quinone-Iron” interaction in the presence of DIRB. Our results provide some new insights into the characteristics and mechanisms of interaction among “quinone-DIRB- goethite” under biotic/abiotic driven.« less

  2. Microbial communities biostimulated by ethanol during uranium (VI) bioremediation in contaminated sediment as shown by stable isotope probing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leigh, Mary Beth; Wu, Wei -Min; Cardenas, Erick

    Stable isotope probing (SIP) was used to identify microbes stimulated by ethanol addition in microcosms containing two sediments collected from the bioremediation test zone at the US Department of Energy Oak Ridge site, TN, USA. One sample was highly bioreduced with ethanol while another was less reduced. Microcosms with the respective sediments were amended with 13C labeled ethanol and incubated for 7 days for SIP. Ethanol was rapidly converted to acetate within 24 h accompanied with the reduction of nitrate and sulfate. The accumulation of acetate persisted beyond the 7 d period. Aqueous U did not decline in the microcosmmore » with the reduced sediment due to desorption of U but continuously declined in the less reduced sample. Microbial growth and concomitant 13C-DNA production was detected when ethanol was exhausted and abundant acetate had accumulated in both microcosms. This coincided with U(VI) reduction in the less reduced sample. 13C originating from ethanol was ultimately utilized for growth, either directly or indirectly, by the dominant microbial community members within 7 days of incubation. The microbial community was comprised predominantly of known denitrifiers, sulfate-reducing bacteria and iron (III) reducing bacteria including Desulfovibrio, Sphingomonas, Ferribacterium, Rhodanobacter, Geothrix, Thiobacillus and others, including the known U(VI)-reducing bacteria Acidovorax, Anaeromyxobacter, Desulfovibrio, Geobacter and Desulfosporosinus. As a result, the findings suggest that ethanol biostimulates the U(VI)-reducing microbial community by first serving as an electron donor for nitrate, sulfate, iron (III) and U(VI) reduction, and acetate which then functions as electron donor for U(VI) reduction and carbon source for microbial growth.« less

  3. Isotopic insights into microbial sulfur cycling in oil reservoirs

    PubMed Central

    Hubbard, Christopher G.; Cheng, Yiwei; Engelbrekston, Anna; Druhan, Jennifer L.; Li, Li; Ajo-Franklin, Jonathan B.; Coates, John D.; Conrad, Mark E.

    2014-01-01

    Microbial sulfate reduction in oil reservoirs (biosouring) is often associated with secondary oil production where seawater containing high sulfate concentrations (~28 mM) is injected into a reservoir to maintain pressure and displace oil. The sulfide generated from biosouring can cause corrosion of infrastructure, health exposure risks, and higher production costs. Isotope monitoring is a promising approach for understanding microbial sulfur cycling in reservoirs, enabling early detection of biosouring, and understanding the impact of souring. Microbial sulfate reduction is known to result in large shifts in the sulfur and oxygen isotope compositions of the residual sulfate, which can be distinguished from other processes that may be occurring in oil reservoirs, such as precipitation of sulfate and sulfide minerals. Key to the success of this method is using the appropriate isotopic fractionation factors for the conditions and processes being monitored. For a set of batch incubation experiments using a mixed microbial culture with crude oil as the electron donor, we measured a sulfur fractionation factor for sulfate reduction of −30‰. We have incorporated this result into a simplified 1D reservoir reactive transport model to highlight how isotopes can help discriminate between biotic and abiotic processes affecting sulfate and sulfide concentrations. Modeling results suggest that monitoring sulfate isotopes can provide an early indication of souring for reservoirs with reactive iron minerals that can remove the produced sulfide, especially when sulfate reduction occurs in the mixing zone between formation waters (FW) containing elevated concentrations of volatile fatty acids (VFAs) and injection water (IW) containing elevated sulfate. In addition, we examine the role of reservoir thermal, geochemical, hydrological, operational and microbiological conditions in determining microbial souring dynamics and hence the anticipated isotopic signatures. PMID:25285094

  4. Interpreting isotopic analyses of microbial sulfate reduction in oil reservoirs

    NASA Astrophysics Data System (ADS)

    Hubbard, C. G.; Engelbrektson, A. L.; Druhan, J. L.; Cheng, Y.; Li, L.; Ajo Franklin, J. B.; Coates, J. D.; Conrad, M. E.

    2013-12-01

    Microbial sulfate reduction in oil reservoirs is often associated with secondary production of oil where seawater (28 mM sulfate) is commonly injected to maintain reservoir pressure and displace oil. The hydrogen sulfide produced can cause a suite of operating problems including corrosion of infrastructure, health exposure risks and additional processing costs. We propose that monitoring of the sulfur and oxygen isotopes of sulfate can be used as early indicators that microbial sulfate reduction is occurring, as this process is well known to cause substantial isotopic fractionation. This approach relies on the idea that reactions with reservoir (iron) minerals can remove dissolved sulfide, thereby delaying the transport of the sulfide through the reservoir relative to the sulfate in the injected water. Changes in the sulfate isotopes due to microbial sulfate reduction may therefore be measurable in the produced water before sulfide is detected. However, turning this approach into a predictive tool requires (i) an understanding of appropriate fractionation factors for oil reservoirs, (ii) incorporation of isotopic data into reservoir flow and reactive transport models. We present here the results of preliminary batch experiments aimed at determining fractionation factors using relevant electron donors (e.g. crude oil and volatile fatty acids), reservoir microbial communities and reservoir environmental conditions (pressure, temperature). We further explore modeling options for integrating isotope data and discuss whether single fractionation factors are appropriate to model complex environments with dynamic hydrology, geochemistry, temperature and microbiology gradients.

  5. Process for the recovery of strontium from acid solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1992-01-01

    The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid.

  6. Liquid chromatographic extraction medium

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1994-01-01

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  7. The discovery of robust magnetism in a technetium oxide: The structure of CaTcO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avdeev, Maxim; Thorogood, Gordon J.; Carter, Melody L.

    The technetium perovskite CaTcO{sub 3} has been synthesized. Combining synchrotron X-ray and neutron diffraction, we found that CaTcO{sub 3} is an antiferromagnetic with a surprisingly high Neel temperature of 800 K. The transition to the magnetic state does not involve a structural change, but there is obvious magnetostriction. Electronic structure calculations confirm the experimental results.

  8. Magnetic core mesoporous silica nanoparticles doped with dacarbazine and labelled with 99mTc for early and differential detection of metastatic melanoma by single photon emission computed tomography.

    PubMed

    Portilho, Filipe Leal; Helal-Neto, Edward; Cabezas, Santiago Sánchez; Pinto, Suyene Rocha; Dos Santos, Sofia Nascimento; Pozzo, Lorena; Sancenón, Félix; Martínez-Máñez, Ramón; Santos-Oliveira, Ralph

    2018-02-27

    Cancer is responsible for more than 12% of all causes of death in the world, with an annual death rate of more than 7 million people. In this scenario melanoma is one of the most aggressive ones with serious limitation in early detection and therapy. In this direction we developed, characterized and tested in vivo a new drug delivery system based on magnetic core-mesoporous silica nanoparticle that has been doped with dacarbazine and labelled with technetium 99 m to be used as nano-imaging agent (nanoradiopharmaceutical) for early and differential diagnosis and melanoma by single photon emission computed tomography. The results demonstrated the ability of the magnetic core-mesoporous silica to be efficiently (>98%) doped with dacarbazine and also efficiently labelled with 99mTc (technetium 99 m) (>99%). The in vivo test, using inducted mice with melanoma, demonstrated the EPR effect of the magnetic core-mesoporous silica nanoparticles doped with dacarbazine and labelled with technetium 99 metastable when injected intratumorally and the possibility to be used as systemic injection too. In both cases, magnetic core-mesoporous silica nanoparticles doped with dacarbazine and labelled with technetium 99 metastable showed to be a reliable and efficient nano-imaging agent for melanoma.

  9. Rhenium volatilisation as caesium perrhenate from simulated vitrified high level waste from a melter crucible

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, T.A.; Short, R.J.; Gribble, N.R.

    2013-07-01

    The Waste Vitrification Plant (WVP) converts Highly Active Liquor (HAL) from spent nuclear fuel reprocessing into a stable vitrified product. Recently WVP have been experiencing accumulation of solids in their primary off gas (POG) system leading to potential blockages. Chemical analysis of the blockage material via Laser Induced Breakdown Spectroscopy (LIBS) has shown it to exclusively consist of caesium, technetium and oxygen. The solids are understood to be caesium pertechnetate (CsTcO{sub 4}), resulting from the volatilisation of caesium and technetium from the high level waste glass melt. Using rhenium as a chemical surrogate for technetium, a series of full scalemore » experiments have been performed in order to understand the mechanism of rhenium volatilisation as caesium perrhenate (CsReO{sub 4}), and therefore technetium volatilisation as CsTcO{sub 4}. These experiments explored the factors governing volatilisation rates from the melt, potential methods of minimising the amount of volatilisation, and various strategies for mitigating the deleterious effects of the volatile material on the POG. This paper presents the results from those experiments, and discusses potential methods to minimise blockages that can be implemented on WVP, so that the frequency of the CsTcO{sub 4} blockages can be reduced or even eradicated altogether. (authors)« less

  10. Pilot scale application of nanosized iron oxides as electron acceptors for bioremediation

    NASA Astrophysics Data System (ADS)

    Bosch, Julian; Fritzsche, Andreas; Frank-Fahle, Beatrice; Lüders, Tilmann; Höss, Sebastian; Eisenmann, Heinrich; Held, Thomas; Totsche, Kai U.; Meckenstock, Rainer U.

    2014-05-01

    Microbial reduction of ferric iron is a major biogeochemical process in groundwater aquifer ecosystems and often associated with the degradation of organic contaminants, as bacteria couple iron reduction to the oxidation reduced carbon like e.g. BTEX. Yet in general the low bioavailability of natural iron oxides limits microbial reduction rates. However, nanosized iron oxides have an unequally enhanced bioavailability and reactivity compared to their respective bulk, macro-sized, and more crystalline materials. At the same time, nanosized iron oxides can be produced in stable colloidal suspensions, permitting efficient injections into contaminated aquifers. We examined the reactivity of nanosized synthetic colloidal iron oxides in microbial iron reduction. Application of colloidal nanoparticles led to a strong and sustainable enhancement of microbial reaction rates in batch experiments and sediment columns. Toluene oxidation was increased five-fold as compared to bulk, non-colloidal ferrihydrite as electron acceptor. Furthermore, we developed a unique approach for custom-tailoring the subsurface mobility of these particles after being injected into a contaminant plume. In a field pilot application, we injected 18 m3 of an iron oxide nanoparticle solution into a BTEX contaminated aquifer with a maximum excess pressure as low as 0.2 bar. The applied suspension showed a superior subsurface mobility, creating a reactive zone of 4 m height (corresponding to the height of the confined aquifer) and 6 m in diameter. Subsequent monitoring of BTEX, microbial BTEX degradation metabolites, ferrous iron generation, stable isotopes fractionation, microbial populations, and methanogenesis demonstrated the strong impact of our approach. Mathematic processed X-ray diffractograms and FTIR spectra provided a semi-quantitatively estimate of the long-term fate of the iron oxide colloids in the aquifer. Potential environmental risks of the injection itself were monitored with ecotoxicological investigations. Our data suggest that the injection of ferric iron nanoparticles as electron acceptors into contaminated aquifers for the enhancement of microbial contaminant degradation might develop into a novel bioremediation strategy.

  11. Hydrological modelling in a drinking water catchment area as a means of evaluating pathogen risk reduction

    NASA Astrophysics Data System (ADS)

    Bergion, Viktor; Sokolova, Ekaterina; Åström, Johan; Lindhe, Andreas; Sörén, Kaisa; Rosén, Lars

    2017-01-01

    Waterborne outbreaks of gastrointestinal diseases are of great concern to drinking water producers and can give rise to substantial costs to the society. The World Health Organisation promotes an approach where the emphasis is on mitigating risks close to the contamination source. In order to handle microbial risks efficiently, there is a need for systematic risk management. In this paper we present a framework for microbial risk management of drinking water systems. The framework incorporates cost-benefit analysis as a decision support method. The hydrological Soil and Water Assessment Tool (SWAT) model, which was set up for the Stäket catchment area in Sweden, was used to simulate the effects of four different mitigation measures on microbial concentrations. The modelling results showed that the two mitigation measures that resulted in a significant (p < 0.05) reduction of Cryptosporidium spp. and Escherichia coli concentrations were a vegetative filter strip linked to cropland and improved treatment (by one Log10 unit) at the wastewater treatment plants. The mitigation measure with a vegetative filter strip linked to grazing areas resulted in a significant reduction of Cryptosporidium spp., but not of E. coli concentrations. The mitigation measure with enhancing the removal efficiency of all on-site wastewater treatment systems (total removal of 2 Log10 units) did not achieve any significant reduction of E. coli or Cryptosporidium spp. concentrations. The SWAT model was useful when characterising the effect of different mitigation measures on microbial concentrations. Hydrological modelling implemented within an appropriate risk management framework is a key decision support element as it identifies the most efficient alternative for microbial risk reduction.

  12. Recovery of Elemental Tellurium Nanoparticles by the Reduction of Tellurium Oxyanions in a Methanogenic Microbial Consortium.

    PubMed

    Ramos-Ruiz, Adriana; Field, Jim A; Wilkening, Jean V; Sierra-Alvarez, Reyes

    2016-02-02

    This research focuses on the microbial recovery of elemental tellurium (Te(0)) from aqueous streams containing soluble tellurium oxyanions, tellurate (Te(VI)), and tellurite (Te(IV)). An anaerobic mixed microbial culture occurring in methanogenic granular sludge was able to biocatalyze the reduction of both Te oxyanions to produce Te(0) nanoparticles (NPs) in sulfur-free medium. Te(IV) reduction was seven times faster than that of Te(VI), such that Te(IV) did not accumulate to a great extent during Te(VI) reduction. Endogenous substrates in the granular sludge provided the electron equivalents required to reduce Te oxyanions; however, the reduction rates were modestly increased with an exogenous electron donor such as H2. The effect of four redox mediators (anthraquinone-2,6-disulfonate, hydroxocobalamin, riboflavin, and lawsone) was also tested. Riboflavin increased the rate of Te(IV) reduction eleven-fold and also enhanced the fraction Te recovered as extracellular Te(0) NPs from 21% to 64%. Lawsone increased the rate of Te(VI) reduction five-fold, and the fraction of Te recovered as extracellular material increased from 49% to 83%. The redox mediators and electron donors also impacted the morphologies and localization of Te(0) NPs, suggesting that NP production can be tailored for a particular application.

  13. Recovery of Elemental Tellurium Nanoparticles by the Reduction of Tellurium Oxyanions in a Methanogenic Microbial Consortium

    PubMed Central

    Ramos-Ruiz, Adriana; Field, Jim A.; Wilkening, Jean V.; Sierra-Alvarez, Reyes

    2016-01-01

    This research focuses on the microbial recovery of elemental tellurium (Te0) from aqueous streams containing soluble tellurium oxyanions, tellurate (TeVI) and tellurite (TeIV). An anaerobic mixed microbial culture occurring in methanogenic granular sludge was able to biocatalyze the reduction of both Te oxyanions to produce Te0 nanoparticles (NPs) in sulfur-free medium. TeIV reduction was 7-fold faster than that of TeVI, such that TeIV did not accumulate to a great extent during TeVI reduction. Endogenous substrates in the granular sludge provided the electron equivalents required to reduce Te oxyanions; however, the reduction rates were modestly increased with an exogenous electron donor such as H2. The effect of four redox mediators (anthraquinone-2,6-disulfonate, hydroxocobalamin, riboflavin, and lawsone) was also tested. Riboflavin increased the rate of TeIV reduction by 11-fold and also enhanced the fraction Te recovered as extracellular Te0 NPs from 21% to 64%. Lawsone increased the rate of TeVI reduction by 5-fold and the fraction of Te recovered as extracellular material increased from 49% to 83%. The redox mediators and electron donors also impacted the morphologies and localization of Te0 NPs, suggesting that NP production can be tailored for a particular application. PMID:26735010

  14. Fast microbial reduction of ferrihydrite colloids from a soil effluent

    NASA Astrophysics Data System (ADS)

    Fritzsche, Andreas; Bosch, Julian; Rennert, Thilo; Heister, Katja; Braunschweig, Juliane; Meckenstock, Rainer U.; Totsche, Kai U.

    2012-01-01

    Recent studies on the microbial reduction of synthetic iron oxide colloids showed their superior electron accepting property in comparison to bulk iron oxides. However, natural colloidal iron oxides differ in composition from their synthetic counterparts. Besides a potential effect of colloid size, microbial iron reduction may be accelerated by electron-shuttling dissolved organic matter (DOM) as well as slowed down by inhibitors such as arsenic. We examined the microbial reduction of OM- and arsenic-containing ferrihydrite colloids. Four effluent fractions were collected from a soil column experiment run under water-saturated conditions. Ferrihydrite colloids precipitated from the soil effluent and exhibited stable hydrodynamic diameters ranging from 281 (±146) nm in the effluent fraction that was collected first and 100 (±43) nm in a subsequently obtained effluent fraction. Aliquots of these oxic effluent fractions were added to anoxic low salt medium containing diluted suspensions of Geobacter sulfurreducens. Independent of the initial colloid size, the soil effluent ferrihydrite colloids were quickly and completely reduced. The rates of Fe2+ formation ranged between 1.9 and 3.3 fmol h-1 cell-1, and are in the range of or slightly exceeding previously reported rates of synthetic ferrihydrite colloids (1.3 fmol h-1 cell-1), but greatly exceeding previously known rates of macroaggregate-ferrihydrite reduction (0.07 fmol h-1 cell-1). The inhibition of microbial Fe(III) reduction by arsenic is unlikely or overridden by the concurrent enhancement induced by soil effluent DOM. These organic species may have increased the already high intrinsic reducibility of colloidal ferrihydrite owing to quinone-mediated electron shuttling. Additionally, OM, which is structurally associated with the soil effluent ferrihydrite colloids, may also contribute to the higher reactivity due to increasing solubility and specific surface area of ferrihydrite. In conclusion, ferrihydrite colloids from soil effluents can be considered as highly reactive electron acceptors in anoxic environments.

  15. Perchlorate reduction by hydrogen autotrophic bacteria and microbial community analysis using high-throughput sequencing.

    PubMed

    Wan, Dongjin; Liu, Yongde; Niu, Zhenhua; Xiao, Shuhu; Li, Daorong

    2016-02-01

    Hydrogen autotrophic reduction of perchlorate have advantages of high removal efficiency and harmless to drinking water. But so far the reported information about the microbial community structure was comparatively limited, changes in the biodiversity and the dominant bacteria during acclimation process required detailed study. In this study, perchlorate-reducing hydrogen autotrophic bacteria were acclimated by hydrogen aeration from activated sludge. For the first time, high-throughput sequencing was applied to analyze changes in biodiversity and the dominant bacteria during acclimation process. The Michaelis-Menten model described the perchlorate reduction kinetics well. Model parameters q(max) and K(s) were 2.521-3.245 (mg ClO4(-)/gVSS h) and 5.44-8.23 (mg/l), respectively. Microbial perchlorate reduction occurred across at pH range 5.0-11.0; removal was highest at pH 9.0. The enriched mixed bacteria could use perchlorate, nitrate and sulfate as electron accepter, and the sequence of preference was: NO3(-) > ClO4(-) > SO4(2-). Compared to the feed culture, biodiversity decreased greatly during acclimation process, the microbial community structure gradually stabilized after 9 acclimation cycles. The Thauera genus related to Rhodocyclales was the dominated perchlorate reducing bacteria (PRB) in the mixed culture.

  16. Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater

    NASA Astrophysics Data System (ADS)

    Peng, Lai; Liu, Yiwen; Gao, Shu-Hong; Chen, Xueming; Xin, Pei; Dai, Xiaohu; Ni, Bing-Jie

    2015-07-01

    Nanoscale zero valent iron (NZVI) based microbial denitrification has been demonstrated to be a promising technology for nitrate removal from groundwater. In this work, a mathematical model is developed to evaluate the performance of this new technology and to provide insights into the chemical and microbial interactions in the system in terms of nitrate reduction, ammonium accumulation and hydrogen turnover. The developed model integrates NZVI-based abiotic reduction of nitrate, NZVI corrosion for hydrogen production and hydrogen-based microbial denitrification and satisfactorily describes all of the nitrate and ammonium dynamics from two systems with highly different conditions. The high NZVI corrosion rate revealed by the model indicates the high reaction rate of NZVI with water due to their large specific surface area and high surface reactivity, leading to an effective microbial nitrate reduction by utilizing the produced hydrogen. The simulation results further suggest a NZVI dosing strategy (3-6 mmol/L in temperature range of 30-40 °C, 6-10 mmol/L in temperature range of 15-30 °C and 10-14 mmol/L in temperature range of 5-15 °C) during groundwater remediation to make sure a low ammonium yield and a high nitrogen removal efficiency.

  17. Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater

    PubMed Central

    Peng, Lai; Liu, Yiwen; Gao, Shu-Hong; Chen, Xueming; Xin, Pei; Dai, Xiaohu; Ni, Bing-Jie

    2015-01-01

    Nanoscale zero valent iron (NZVI) based microbial denitrification has been demonstrated to be a promising technology for nitrate removal from groundwater. In this work, a mathematical model is developed to evaluate the performance of this new technology and to provide insights into the chemical and microbial interactions in the system in terms of nitrate reduction, ammonium accumulation and hydrogen turnover. The developed model integrates NZVI-based abiotic reduction of nitrate, NZVI corrosion for hydrogen production and hydrogen-based microbial denitrification and satisfactorily describes all of the nitrate and ammonium dynamics from two systems with highly different conditions. The high NZVI corrosion rate revealed by the model indicates the high reaction rate of NZVI with water due to their large specific surface area and high surface reactivity, leading to an effective microbial nitrate reduction by utilizing the produced hydrogen. The simulation results further suggest a NZVI dosing strategy (3–6 mmol/L in temperature range of 30–40 °C, 6–10 mmol/L in temperature range of 15–30 °C and 10–14 mmol/L in temperature range of 5–15 °C) during groundwater remediation to make sure a low ammonium yield and a high nitrogen removal efficiency. PMID:26199053

  18. Uranium reduction and microbial community development in response to stimulation with different electron donors.

    PubMed

    Barlett, Melissa; Moon, Hee Sun; Peacock, Aaron A; Hedrick, David B; Williams, Kenneth H; Long, Philip E; Lovley, Derek; Jaffe, Peter R

    2012-07-01

    Stimulating microbial reduction of soluble U(VI) to less soluble U(IV) shows promise as an in situ bioremediation strategy for uranium contaminated groundwater, but the optimal electron donors for promoting this process have yet to be identified. The purpose of this study was to better understand how the addition of various electron donors to uranium-contaminated subsurface sediments affected U(VI) reduction and the composition of the microbial community. The simple electron donors, acetate or lactate, or the more complex donors, hydrogen-release compound (HRC) or vegetable oil, were added to the sediments incubated in flow-through columns. The composition of the microbial communities was evaluated with quantitative PCR probing specific 16S rRNA genes and functional genes, phospholipid fatty acid analysis, and clone libraries. All the electron donors promoted U(VI) removal, even though the composition of the microbial communities was different with each donor. In general, the overall biomass, rather than the specific bacterial species, was the factor most related to U(VI) removal. Vegetable oil and HRC were more effective in stimulating U(VI) removal than acetate. These results suggest that the addition of more complex organic electron donors could be an excellent option for in situ bioremediation of uranium-contaminated groundwater.

  19. Self-sustained reduction of multiple metals in a microbial fuel cell-microbial electrolysis cell hybrid system.

    PubMed

    Li, Yan; Wu, Yining; Liu, Bingchuan; Luan, Hongwei; Vadas, Timothy; Guo, Wanqian; Ding, Jie; Li, Baikun

    2015-09-01

    A self-sustained hybrid bioelectrochemical system consisting of microbial fuel cell (MFC) and microbial electrolysis cell (MEC) was developed to reduce multiple metals simultaneously by utilizing different reaction potentials. Three heavy metals representing spontaneous reaction (chromium, Cr) and unspontaneous reaction (lead, Pb and nickel, Ni) were selected in this batch-mode study. The maximum power density of the MFC achieved 189.4 mW m(-2), and the energy recovery relative to the energy storage circuit (ESC) was ∼ 450%. At the initial concentration of 100 mg L(-1), the average reduction rate of Cr(VI) was 30.0 mg L(-1) d(-1), Pb(II) 32.7 mg L(-1) d(-1), and Ni(II) 8.9 mg L(-1) d(-1). An electrochemical model was developed to predict the change of metal concentration over time. The power output of the MFC was sufficient to meet the requirement of the ESC and MEC, and the "self-sustained metal reduction" was achieved in this hybrid system. Published by Elsevier Ltd.

  20. Enhanced performance of microbial fuel cell with in situ preparing dual graphene modified bioelectrode.

    PubMed

    Chen, Junfeng; Hu, Yongyou; Tan, Xiaojun; Zhang, Lihua; Huang, Wantang; Sun, Jian

    2017-10-01

    This study proposed a three-step method to prepare dual graphene modified bioelectrode (D-GM-BE) by in situ microbial-induced reduction of GO and polarity reversion in microbial fuel cell (MFC). Both graphene modified bioanode (GM-BA) and biocathode (GM-BC) were of 3D graphene/biofilm architectures; the viability and thickness of microbial biofilm decreased compared with control bioelectrode (C-BE). The coulombic efficiency (CE) of GM-BA was 2.1 times of the control bioanode (C-BA), which demonstrated higher rate of substrates oxidation; the relationship between peak current and scan rates data meant that GM-BC was of higher efficiency of catalyzing oxygen reduction than the control biocathode (C-BC). The maximum power density obtained in D-GM-BE MFC was 122.4±6.9mWm -2 , the interfacial charge transfer resistance of GM-BA and GM-BC were decreased by 79% and 75.7%. The excellent electrochemical performance of D-GM-BE MFC was attributed to the enhanced extracellular electron transfer (EET) process and catalyzing oxygen reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effectiveness of Morinda citrifolia juice as an intracanal irrigant in deciduous molars: An in vivo study

    PubMed Central

    Chandwani, Manisha; Mittal, Rakesh; Chandak, Shweta; Pimpale, Jitesh

    2017-01-01

    Background: The purpose of this study was to evaluate the microbial reduction in deciduous molars using Morinda citrifolia juice (MCJ) as irrigating solution. Materials and Methods: This was a randomized comparative study including 60 deciduous molars chosen among the patients belonging to the age group of 6–9 years based on the inclusion or exclusion criteria. The selected teeth were divided randomly into two groups based on irrigation solution used, that was, Group I (1% NaOCl) and Group II (MCJ). The microbial samples were collected both pre- and post-irrigation and were transferred for microbial assay. Paired t-test was used for intragroup analysis of pre- and post-operative mean reduction of bacterial colony forming unit (CFU)/ml, whereas Independent t-test was used to assess the intergroup, pre- and post-operative mean reduction of bacterial CFU/ml. Results: In the intragroup comparison, both of the groups showed statistically significant (P < 0.001) reduction in the mean CFU/ml; however, it did not show statistically significant reduction when intergroup comparison was carried out between the two groups. Both the study materials had clinically revealed decrease in the microbial count postirrigation. Conclusion: Both the irrigants, 1% NaOCl and MCJ, were significantly effective in the reduction of mean CFUs/ml postoperatively. The results of this study have confirmed the antibacterial effectiveness of MCJ in the root canals of deciduous teeth. Considering the low toxicity and antibacterial effectiveness of MCJ, it can be advocated as a root canal irrigant in endodontic treatment of primary teeth. PMID:28928778

  2. Non-enzymatic palladium recovery on microbial and synthetic surfaces.

    PubMed

    Rotaru, Amelia-Elena; Jiang, Wei; Finster, Kai; Skrydstrup, Troels; Meyer, Rikke Louise

    2012-08-01

    The use of microorganisms as support for reduction of dissolved Pd(II) to immobilized Pd(0) nanoparticles is an environmentally friendly approach for Pd recovery from waste. To better understand and engineer Pd(0) nanoparticle synthesis, one has to consider the mechanisms by which Pd(II) is reduced on microbial surfaces. Escherichia coli, Shewanella oneidensis, and Pseudomonas putida were used as model organisms in order to elucidate the role of microbial cells in Pd(II) reduction under acidic conditions. Pd(II) was reduced by formate under acidic conditions, and the process occurred substantially faster in the presence of cells as compared to cell-free controls. We found no difference between native (untreated) and autoclaved cells, and could demonstrate that even a non-enzymatic protein (bovine serum albumin) stimulated Pd(II) reduction as efficiently as bacterial cells. Amine groups readily interact with Pd(II), and to specifically test their role in surface-assisted Pd(II) reduction by formate, we replaced bacterial cells with polystyrene microparticles functionalized with amine or carboxyl groups. Amine-functionalized microparticles had the same effect on Pd(II) reduction as bacterial cells, and the effect could be hampered if the amine groups were blocked by acetylation. The interaction with amine groups was confirmed by infrared spectroscopy on whole cells and amine-functionalized microparticles. In conclusion, bio-supported Pd(II) reduction on microbial surfaces is possibly mediated by a non-enzymatic mechanism. We therefore suggest the use of amine-rich biomaterials rather than intact cells for Pd bio-recovery from waste. Copyright © 2012 Wiley Periodicals, Inc.

  3. Metabolic adaptation and in situ attenuation of chlorinated ethenes by naturally occurring microorganisms in a fractured dolomite aquifer near Niagara Falls, New York

    USGS Publications Warehouse

    Yager, R.M.; Bilotta, S.E.; Mann, C.L.; Madsen, E.L.

    1997-01-01

    A combination of hydrogeological, geochemical, and microbiological methods was used to document the biotransformation of trichloroethene (TCE) to ethene, a completely dechlorinated and environmentally benign compound, by naturally occurring microorganisms within a fractured dolomite aquifer. Analyses of groundwater samples showed that three microbially produced TCE breakdown products (cis-1,2-dichloroethene, vinyl chloride, and ethene) were present in the contaminant plume. Hydrogen (H2) concentrations in groundwater indicated that iron reduction was the predominant terminal electron-accepting process in the most contaminated geologic zone of the site. Laboratory microcosms prepared with groundwater demonstrated complete sequential dechlorination of TCE to ethene. Microcosm assays also revealed that reductive dechlorination activity was present in waters from the center but not from the periphery of the contaminant plume. This dechlorination activity indicated that naturally occurring microorganisms have adapted to utilize chlorinated ethenes and suggested that dehalorespiring rather than cometabolic, microbial processes were the cause of the dechlorination. The addition of pulverized dolomite to microcosms enhanced the rate of reductive dechlorination, suggesting that hydrocarbons in the dolomite aquifer may serve as electron donors to drive microbially mediated reductive dechlorination reactions. Biodegradation of the chlorinated ethenes appears to contribute significantly to decontamination of the site.A combination of hydrogeological, geochemical, and microbiological methods was used to document the biotransformation of trichloroethene (TCE) to ethene, a completely dechlorinated and environmentally benign compound, by naturally occurring microorganisms within a fractured dolomite aquifer. Analyses of groundwater samples showed that three microbially produced TCE breakdown products (cis-1,2-dichloroethene, vinyl chloride, and ethene) were present in the contaminant plume. Hydrogen (H2) concentrations in groundwater indicated that iron reduction was the predominant terminal electron-accepting process in the most contaminated geologic zone of the site. Laboratory microcosms prepared with groundwater demonstrated complete sequential dechlorination of TCE to ethene. Microcosm assays also revealed that reductive dechlorination activity was present in waters from the center but not from the periphery of the contaminant plume. This dechlorination activity indicated that naturally occurring microorganisms have adapted to utilize chlorinated ethenes and suggested that dehalorespiring rather than cometabolic, microbial processes were the cause of the dechlorination. The addition of pulverized dolomite to microcosms enhanced the rate of reductive dechlorination, suggesting that hydrocarbons in the dolomite aquifer may serve as electron donors to drive microbially mediated reductive dechlorination reactions. Biodegradation of the chlorinated ethenes appears to contribute significantly to decontamination of the site.

  4. Scintigraphic detection of occult hemorrhage using RBCs labeled in vitro with technetium Tc 99m sodium pertechnetate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunker, S.R.; Kolina, J.S.; Kaplan, K.A.

    1983-05-01

    Scintigraphy with RBCs labeled with technetium Tc 99m sodium pertechnetate effectively located the source of hemorrhage in a patient receiving long-term anticoagulant therapy. (The patient was initially seen with a large hematoma on the flank.) More important, the procedure was used to monitor activity in this otherwise-occult bleeding site. Scintigraphic studies may be useful in the management of these difficult clinical problems.

  5. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOEpatents

    Pruett, D.J.; McTaggart, D.R.

    1983-08-31

    Uranium and technetium in the product stream of the Purex process for recovery of uranium in spent nuclear fuel are separated by (1) contacting the aqueous Purex product stream with hydrazine to reduce Tc/sup +7/ therein to a reduced species, and (2) contacting said aqueous stream with an organic phase containing tributyl phosphate and an organic diluent to extract uranium from said aqueous stream into said organic phase.

  6. Soft-tissue sarcoma: imaged with technetium-99m pyrophosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blatt, C.J.; Hayt, D.B.; Desai, M.

    1977-11-01

    A liposarcoma showed intense concentration of technetium-99m pyrophosphate. An angiogram demonstrated a highly vascular lesion, and it is suggested that blood flow played a major role in allowing the tumor to be demonstrated on scintiphotography. There was some histologic evidence of calcification which probably also contributed to bone-tracer disposition. Quantitative analysis of the specimen demonstrated that this calcification was located primarily in the areas of hemorrhage and necrosis.

  7. Process for the recovery of strontium from acid solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1992-03-31

    The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid. 5 figs.

  8. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOEpatents

    Pruett, David J.; McTaggart, Donald R.

    1984-01-01

    Uranium and technetium in the product stream of the Purex process for recovery of uranium in spent nuclear fuel are separated by (1) contacting the aqueous Purex product stream with hydrazine to reduce Tc.sup.+7 therein to a reduced species, and (2) contacting said aqueous stream with an organic phase containing tributyl phosphate and an organic diluent to extract uranium from said aqueous stream into said organic phase.

  9. Liquid chromatographic extraction medium

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1994-09-13

    A method and apparatus are disclosed for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water. 1 fig.

  10. The corrosion behavior of technetium metal exposed to aqueous sulfate and chloride solutions

    DOE PAGES

    Kolman, David Gary; Goff, George Scott; Cisneros, Michael Ruben; ...

    2017-04-19

    Here, metal waste forms are being studied as possible disposal forms for technetium and other fission products from spent nuclear fuel. As an initial step in assessing the viability of waste forms, technetium corrosion and passivity behavior was assessed across a broad pH spectrum (pH –1 to pH 13). Measurements indicate that the open circuit potential falls into the region of Tc +7 stability, more noble than the region of presumed passivity. Potentiodynamic polarization tests indicate that the Tc samples are not passive. Both electrochemical results and visual inspection suggest the presence of a nonprotective film. The corrosion rate ismore » relatively independent of pH and low, as measured by linear polarization resistance. No evidence of passivity was observed in the Tc +4 region of the potential-pH diagram following in-situ abrasion, suggesting that Tc does not passivate, regardless of potential.« less

  11. The corrosion behavior of technetium metal exposed to aqueous sulfate and chloride solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolman, David Gary; Goff, George Scott; Cisneros, Michael Ruben

    Here, metal waste forms are being studied as possible disposal forms for technetium and other fission products from spent nuclear fuel. As an initial step in assessing the viability of waste forms, technetium corrosion and passivity behavior was assessed across a broad pH spectrum (pH –1 to pH 13). Measurements indicate that the open circuit potential falls into the region of Tc +7 stability, more noble than the region of presumed passivity. Potentiodynamic polarization tests indicate that the Tc samples are not passive. Both electrochemical results and visual inspection suggest the presence of a nonprotective film. The corrosion rate ismore » relatively independent of pH and low, as measured by linear polarization resistance. No evidence of passivity was observed in the Tc +4 region of the potential-pH diagram following in-situ abrasion, suggesting that Tc does not passivate, regardless of potential.« less

  12. Bone scanning in severe external otitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, W.J.; Shary, J.H. 3d.; Nichols, L.T.

    1986-11-01

    Technetium99 Methylene Diphosphate bone scanning has been considered an early valuable tool to diagnose necrotizing progressive malignant external otitis. However, to our knowledge, no formal studies have actually compared bone scans of otherwise young, healthy patients with severe external otitis to scans of patients with clinical presentation of malignant external otitis. Twelve patients with only severe external otitis were studied with Technetium99 Diphosphate and were compared to known cases of malignant otitis. All scans were evaluated by two neuroradiologists with no prior knowledge of the clinical status of the patients. Nine of the 12 patients had positive bone scans withmore » many scans resembling those reported with malignant external otitis. Interestingly, there was no consistent correlation between the severity of clinical presentation and the amount of Technetium uptake. These findings suggest that a positive bone scan alone should not be interpreted as indicative of malignant external otitis.« less

  13. Investigation of radioactivity concentration in spent technetium generators

    NASA Astrophysics Data System (ADS)

    Idriss, Hajo; Salih, Isam; Alaamer, Abdulaziz S.; Eisa, M. H.; Sam, A. K.

    2014-04-01

    This study was carried out to survey and measure radioactivity concentration and estimate radiation dose level at the surface of spent technetium generator columns for the safe final disposal of radioactive waste. High resolution γ-spectrometry with the aid of handheld radiation survey meters has been used. The radioactivity measurements has shown that 238U, 40K and 137Cs were only measurable in one sample whereas 125Sb was found in 14 samples out of total of 20 samples with an activity concentration which ranged from 21 to 7404 with an average value of 1095 Bq/kg. The activity concentration of 125Sb is highly variable indicating that the spent 99mTc generator columns are of different origin. This investigation highlighted the importance of radiation monitoring of spent technetium generators in the country in order to protect workers, and the public from the dangers posed by radioactive waste.

  14. Role of nuclear medicine in clinical urology and nephrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaufox, M.D.; Fine, E.; Lee, H.B.

    The application of radionuclide studies to nephrologic and urologic practice has reached a measurable degree of maturity during the past several years. In spite of this, the utilization of these techniques in many institutions in the United States continues to be far less frequent than one would expect from the clinical advantages. The aim of this editorial is to try to place the role of nuclear medicine in urology and nephrology in perspective. At the present time, in spite of the large number of renal agents that have been developed, there is no practical ideal radiopharmaceutical that can serve asmore » a universal agent. Arbitrarily, one may reduce the chief armamentarium to only four radiopharmaceuticals; technetium-99m DTPA, I-131 OIH (orthoiodohippurate), technetium-99m glucoheptonate and technetium-99m DMSA. These agents are discussed with their relative advantages and disadvantages.« less

  15. Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste

    DOEpatents

    Zaitsev, Boris N.; Esimantovskiy, Vyacheslav M.; Lazarev, Leonard N.; Dzekun, Evgeniy G.; Romanovskiy, Valeriy N.; Todd, Terry A.; Brewer, Ken N.; Herbst, Ronald S.; Law, Jack D.

    2001-01-01

    Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

  16. Sodalite as a vehicle to increase Re retention in waste glass simulant during vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luksic, Steven A.; Riley, Brian J.; Parker, Kent E.

    Technetium retention during Hanford waste vitrification can be increased by inhibiting technetium volatility from the waste glass melter. Incorporating technetium into a mineral phase, such as sodalite, is one way to achieve this. Rhenium-bearing sodalite was tested as a vehicle to transport perrhenate (ReO4-), a nonradioactive surrogate for pertechnetate (TcO4-), into high-level (HLW) and low-activity waste (LAW) glasses. After melting feeds of these two glasses, the retention of rhenium was measured and compared with the rhenium retention in glass prepared from a feed containing Re2O7 as a standard. The rhenium retention was 21% higher for HLW glass and 85% highermore » for LAW glass when added to samples in the form of sodalite as opposed to when it was added as Re2O7, demonstrating the efficacy of this type of an approach.« less

  17. The Effect of a Reduction in Microbial Diversity on Greenhouse Gas Production in Alaskan Tundra Soils.

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Oechel, W. C.; Lipson, D.

    2017-12-01

    Atmospheric methane accounts for 20% of the warming potential of all greenhouse gases, has increased by 150% since pre-industrial times, and has the potential to double again over the next century. Microbially mediated CH4 emissions from natural wetlands represent the highest uncertainty in relative contributions to atmospheric CH4 levels of all CH4 sources, with Arctic wetlands currently experiencing twice the rate of warming as the rest of the planet. Notwithstanding the central role that the soil microbial community plays, and the high uncertainty in CH4 emissions from this ecosystem, surprisingly little research has been done to directly connect the microbial community structure to methane production rates. This is especially disconcerting given that most current CH4 emission models completely neglect microbial characteristics, despite the fact that the soil microbial community is predicted to be heavily impacted by a changing climate. Here, the effect of an artificial reduction in soil microbial α-diversity was investigated with regard to methane production and respiration rates. The microbial community was serially diluted followed by re-inoculation of sterilized Arctic soils in a mesocosm experiment. Methane production and respiration rates were measured, metagenomic sequencing was performed to determine microbial community diversity measures, and the effect of the oxidation state of iron was investigated. Preliminary results indicate that microbial communities with reduced α-diversity have lowered respiration rates in these soils. Analyses are ongoing and are expected to provide critical observations linking the role of soil microbial community diversity and greenhouse gas production in Arctic tundra ecosystems.

  18. The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli: menaquinone reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, Timothy D.; Tran, Vi N.; Mohamed, Abdelrhman

    The aim of this work was to elucidate the mechanism of mediated microbial electrosynthesis via neutral red from an electrode to fermenting Escherichia coli cultures in a bioelectrochemical system. Chemical reduction of NAD+ by reduced neutral red did not occur as predicted. Instead, neutral red was shown to reduce the menaquinone pool in the inner bacterial membrane. The reduced menaquinone pool altered fermentative metabolite production via the arcB redox-sensing cascade in the absence of terminal electron acceptors. When the acceptors DMSO, fumarate, or nitrate were provided, as many as 19% of the electrons trapped in the reduced acceptors were derivedmore » from the electrode. These results demonstrate the mechanism of neutral red-mediated microbial electrosynthesis during fermentation as well as how neutral red enables microbial electrosynthesis of reduced terminal electron acceptors.« less

  19. Application of microwaves for microbial load reduction in black pepper (Piper nigrum L.).

    PubMed

    Jeevitha, G Chengaiyan; Sowbhagya, H Bogegowda; Hebbar, H Umesh

    2016-09-01

    Black pepper (Piper nigrum L.) is exposed to microbial contamination which could potentially create public health risk and also rejection of consignments in the export market due to non-adherance to microbial safety standards. The present study investigates the use of microwave (MW) radiation for microbial load reduction in black pepper and analyses the effect on quality. Black pepper was exposed to MWs at two different power levels (663 and 800 W) at an intensity of 40 W g(-1) for different time intervals (1-15 min) and moisture content (110 and 260 g kg(-1) on a wet basis). The exposure of black pepper to MWs at 663 W for 12.5 min was found to be sufficient to reduce the microbial load to the permissible level suggested by the International Commission on Microbiological Specifications for Foods and the European Spice Association. The retention of volatile oil, piperine and resin was 91.3 ± 0.03, 87.6 ± 0.02 and 90.7 ± 0.05%, respectively, in MW-treated black pepper. The final moisture content after MW treatment was found to be 100 ± 1 g kg(-1) for black pepper containing initial moisture of 260 ± 3 g kg(-1) . These results suggest that MW heating can be effectively used for microbial load reduction of black pepper without a significant loss in product quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Release of 226Ra from uranium mill tailings by microbial Fe(III) reduction

    USGS Publications Warehouse

    Landa, E.R.; Phillips, E.J.P.; Lovley, D.R.

    1991-01-01

    Uranium mill tailings were anaerobically incubated in the presence of H2 with Alteromonas putrefaciens, a bacterium known to couple the oxidation of H2 and organic compounds to the reduction of Fe(III) oxides. There was a direct correlation between the extent of Fe(III) reduction and the accumulation of dissolved 226Ra. In sterile tailings in which Fe(III) was not reduced, there was negligible leaching of 226Ra. The behavior of Ba was similar to that of Ra in inoculated and sterile systems. These results demonstrate that under anaerobic conditions, microbial reduction of Fe(III) may result in the release of dissolved 226Ra from uranium mill tailings. ?? 1991.

  1. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  2. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, Michael R.; Arnold, Robert G.; Stephanopoulos, Gregory

    1989-01-01

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

  3. Coupling Aggressive Mass Removal with Microbial Reductive Dechlorination for Remediation of DNAPL Source Zones: A Review and Assessment

    PubMed Central

    Christ, John A.; Ramsburg, C. Andrew; Abriola, Linda M.; Pennell, Kurt D.; Löffler, Frank E.

    2005-01-01

    The infiltration of dense non-aqueous-phase liquids (DNAPLs) into the saturated subsurface typically produces a highly contaminated zone that serves as a long-term source of dissolved-phase groundwater contamination. Applications of aggressive physical–chemical technologies to such source zones may remove > 90% of the contaminant mass under favorable conditions. The remaining contaminant mass, however, can create a rebounding of aqueous-phase concentrations within the treated zone. Stimulation of microbial reductive dechlorination within the source zone after aggressive mass removal has recently been proposed as a promising staged-treatment remediation technology for transforming the remaining contaminant mass. This article reviews available laboratory and field evidence that supports the development of a treatment strategy that combines aggressive source-zone removal technologies with subsequent promotion of sustained microbial reductive dechlorination. Physical–chemical source-zone treatment technologies compatible with posttreatment stimulation of microbial activity are identified, and studies examining the requirements and controls (i.e., limits) of reductive dechlorination of chlorinated ethenes are investigated. Illustrative calculations are presented to explore the potential effects of source-zone management alternatives. Results suggest that, for the favorable conditions assumed in these calculations (i.e., statistical homogeneity of aquifer properties, known source-zone DNAPL distribution, and successful bioenhancement in the source zone), source longevity may be reduced by as much as an order of magnitude when physical–chemical source-zone treatment is coupled with reductive dechlorination. PMID:15811838

  4. Influence of Bicarbonate, Sulfate, and Electron Donors on Biological reduction of Uranium and Microbial Community Composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Wensui; Zhou, Jizhong; Wu, Weimin

    2007-01-01

    A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 mM or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonatemore » (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and geoundwater geochemistry alter microbial communities responsible for U(VI) reduction.« less

  5. The Validation of Vapor Phase Hydrogen Peroxide Microbial Reduction for Planetary Protection and a Proposed Vacuum Process Specification

    NASA Technical Reports Server (NTRS)

    Chung, Shirley; Barengoltz, Jack; Kern, Roger; Koukol, Robert; Cash, Howard

    2006-01-01

    The Jet Propulsion Laboratory, in conjunction with the NASA Planetary Protection Officer, has selected the vapor phase hydrogen peroxide sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal is to include this technique, with an appropriate specification, in NPR 8020.12C as a low temperature complementary technique to the dry heat sterilization process.To meet microbial reduction requirements for all Mars in-situ life detection and sample return missions, various planetary spacecraft subsystems will have to be exposed to a qualified sterilization process. This process could be the elevated temperature dry heat sterilization process (115 C for 40 hours) which was used to sterilize the Viking lander spacecraft. However, with utilization of such elements as highly sophisticated electronics and sensors in modern spacecraft, this process presents significant materials challenges and is thus an undesirable bioburden reduction method to design engineers. The objective of this work is to introduce vapor hydrogen peroxide (VHP) as an alternative to dry heat microbial reduction to meet planetary protection requirements.The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices, but high doses of VHP may degrade the performance of flight hardware, or compromise material properties. Our goal for this study was to determine the minimum VHP process conditions to achieve microbial reduction levels acceptable for planetary protection.

  6. A new method for long-term storage of titred microbial standard solutions suitable for microbiologic quality control activities of pharmaceutical companies.

    PubMed

    Chiellini, Carolina; Mocali, Stefano; Fani, Renato; Ferro, Iolanda; Bruschi, Serenella; Pinzani, Alessandro

    2016-08-01

    Commercially available lyophilized microbial standards are expensive and subject to reduction in cell viability due to freeze-drying stress. Here we introduce an inexpensive and straightforward method for in-house microbial standard preparation and cryoconservation that preserves constant cell titre and cell viability over 14 months.

  7. Candidate Low-Temperature Glass Waste Forms for Technetium-99 Recovered from Hanford Effluent Management Facility Evaporator Concentrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Mei; Tang, Ming; Rim, Jung Ho

    Alternative treatment and disposition options may exist for technetium-99 (99Tc) in secondary liquid waste from the Hanford Direct-Feed Low-Activity Waste (DFLAW) process. One approach includes development of an alternate glass waste form that is suitable for on-site disposition of technetium, including salts and other species recovered by ion exchange or precipitation from the EMF evaporator concentrate. By recovering the Tc content from the stream, and not recycling the treated concentrate, the DFLAW process can potentially be operated in a more efficient manner that lowers the cost to the Department of Energy. This report provides a survey of candidate glass formulationsmore » and glass-making processes that can potentially incorporate technetium at temperatures <700 °C to avoid volatilization. Three candidate technetium feed streams are considered: (1) dilute sodium pertechnetate loaded on a non-elutable ion exchange resin; (2) dilute sodium-bearing aqueous eluent from ion exchange recovery of pertechnetate, or (3) technetium(IV) oxide precipitate containing Sn and Cr solids in an aqueous slurry. From the technical literature, promising candidate glasses are identified based on their processing temperatures and chemical durability data. The suitability and technical risk of three low-temperature glass processing routes (vitrification, encapsulation by sintering into a glass composite material, and sol-gel chemical condensation) for the three waste streams was assessed, based on available low-temperature glass data. For a subset of candidate glasses, their long-term thermodynamic behavior with exposure to water and oxygen was modeled using Geochemist’s Workbench, with and without addition of reducing stannous ion. For further evaluation and development, encapsulation of precipitated TcO2/Sn/Cr in a glass composite material based on lead-free sealing glasses is recommended as a high priority. Vitrification of pertechnetate in aqueous anion exchange eluent solution using a high lead content borate glass, or other low melting glass is also recommended for further evaluation and development. Additional laboratory studies of phase behavior and chemical durability of low-temperature glasses is also recommended to provide risk mitigation if one of the primary development paths proves infeasible. This report is a deliverable for the task “Candidate Low-T Glass Waste Forms for EMF Bottoms On-Site Disposition Alternative Option.”« less

  8. Experimental removal of wetland emergent vegetation leads to decreased methylmercury production in surface sediment

    USGS Publications Warehouse

    Windham-Myers, L.; Marvin-DiPasquale, M.; Krabbenhoft, D.P.; Agee, J.L.; Cox, M.H.; Heredia-Middleton, P.; Coates, C.; Kakouros, E.

    2009-01-01

    We performed plant removal (devegetation) experiments across a suite of ecologically diverse wetland settings (tidal salt marshes, river floodplain, rotational rice fields, and freshwater wetlands with permanent or seasonal flooding) to determine the extent to which the presence (or absence) of actively growing plants influences the activity of the Hg(II)-methylating microbial community and the availability of Hg(II) to those microbes. Vegetated control plots were paired with neighboring devegetated plots in which photosynthetic input was terminated 4-8 months prior to measurements, through clipping aboveground biomass, severing belowground connections, and shading the sediment surface to prevent regrowth. Across all wetlands, devegetation decreased the activity of the Hg(II)-methylating microbial community (kmeth) by 38%, calculated MeHg production potential (MP) rates by 36%, and pore water acetate concentration by 78%. Decreases in MP were associated with decreases in microbial sulfate reduction in salt marsh settings. In freshwater agricultural wetlands, decreases in MP were related to indices of microbial iron reduction. Sediment MeHg concentrations were also significantly lower in devegetated than in vegetated plots in most wetland settings studied. Devegetation effects were correlated with live root density (percent volume) and were most profound in vegetated sites with higher initial pore water acetate concentrations. Densely rooted wetlands had the highest rates of microbial Hg(II)-methylation activity but often the lowest concentrations of bioavailable reactive Hg(II). We conclude that the exudation of labile organic carbon (e.g., acetate) by plants leads to enhanced microbial sulfate and iron reduction activity in the rhizosphere, which results in high rates of microbial Hg(II)-methyation and high MeHg concentrations in wetland sediment.

  9. Experimental removal of wetland emergent vegetation leads to decreased methylmercury production in surface sediment

    USGS Publications Warehouse

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Krabbenhoft, David P.; Agee, Jennifer L.; Cox, Marisa H.; Heredia-Middleton, Pilar; Coates, Carolyn; Kakouros, Evangelos

    2009-01-01

    We performed plant removal (devegetation) experiments across a suite of ecologically diverse wetland settings (tidal salt marshes, river floodplain, rotational rice fields, and freshwater wetlands with permanent or seasonal flooding) to determine the extent to which the presence (or absence) of actively growing plants influences the activity of the Hg(II)-methylating microbial community and the availability of Hg(II) to those microbes. Vegetated control plots were paired with neighboring devegetated plots in which photosynthetic input was terminated 4–8 months prior to measurements, through clipping aboveground biomass, severing belowground connections, and shading the sediment surface to prevent regrowth. Across all wetlands, devegetation decreased the activity of the Hg(II)-methylating microbial community (kmeth) by 38%, calculated MeHg production potential (MP) rates by 36%, and pore water acetate concentration by 78%. Decreases in MP were associated with decreases in microbial sulfate reduction in salt marsh settings. In freshwater agricultural wetlands, decreases in MP were related to indices of microbial iron reduction. Sediment MeHg concentrations were also significantly lower in devegetated than in vegetated plots in most wetland settings studied. Devegetation effects were correlated with live root density (percent volume) and were most profound in vegetated sites with higher initial pore water acetate concentrations. Densely rooted wetlands had the highest rates of microbial Hg(II)-methylation activity but often the lowest concentrations of bioavailable reactive Hg(II). We conclude that the exudation of labile organic carbon (e.g., acetate) by plants leads to enhanced microbial sulfate and iron reduction activity in the rhizosphere, which results in high rates of microbial Hg(II)-methyation and high MeHg concentrations in wetland sediment.

  10. Common hydraulic fracturing fluid additives alter the structure and function of anaerobic microbial communities

    USGS Publications Warehouse

    Mumford, Adam C.; Akob, Denise M.; Klinges, J. Grace; Cozzarelli, Isabelle M.

    2018-01-01

    The development of unconventional oil and gas (UOG) resources results in the production of large volumes of wastewater containing a complex mixture of hydraulic fracturing chemical additives and components from the formation. The release of these wastewaters into the environment poses potential risks that are poorly understood. Microbial communities in stream sediments form the base of the food chain and may serve as sentinels for changes in stream health. Iron-reducing organisms have been shown to play a role in the biodegradation of a wide range of organic compounds, and so to evaluate their response to UOG wastewater, we enriched anaerobic microbial communities from sediments collected upstream (background) and downstream (impacted) of an UOG wastewater injection disposal facility in the presence of hydraulic fracturing fluid (HFF) additives: guar gum, ethylene glycol, and two biocides, 2,2-dibromo-3-nitrilopropionamide (DBNPA) and bronopol (C3H6BrNO4). Iron reduction was significantly inhibited early in the incubations with the addition of biocides, whereas amendment with guar gum and ethylene glycol stimulated iron reduction relative to levels in the unamended controls. Changes in the microbial community structure were observed across all treatments, indicating the potential for even small amounts of UOG wastewater components to influence natural microbial processes. The microbial community structure differed between enrichments with background and impacted sediments, suggesting that impacted sediments may have been preconditioned by exposure to wastewater. These experiments demonstrated the potential for biocides to significantly decrease iron reduction rates immediately following a spill and demonstrated how microbial communities previously exposed to UOG wastewater may be more resilient to additional spills.

  11. Flow-through Column Experiments and Modeling of Microbially Mediated Cr(VI) Reduction at Hanford 100H

    NASA Astrophysics Data System (ADS)

    Yang, L.; Molins, S.; Beller, H. R.; Brodie, E. L.; Steefel, C.; Nico, P. S.; Han, R.

    2010-12-01

    Microbially mediated Cr(VI) reduction at the Hanford 100H area was investigated by flow-through column experiments. Three separate experiments were conducted to promote microbial activities associated with denitrification, iron and sulfate reduction, respectively. Replicate columns packed with natural sediments from the site under anaerobic environment were injected with 5mM Lactate as the electron donor and 5 μM Cr(VI) in all experiments. Sulfate and nitrate solutions were added to act as the main electron acceptors in the respective experiments, while iron columns relied on the indigenous sediment iron (and manganese) oxides as electron acceptors. Column effluent solutions were analyzed by IC and ICP-MS to monitor the microbial consumption/conversion of lactate and the associated Cr(VI) reduction. Biogeochemical reactive transport modeling was performed to gain further insights into the reaction mechanisms and Cr(VI) bioreduction rates. All experimental columns showed a reduction of the injected Cr(VI). Columns under denitrifying conditions showed the least Cr(VI) reduction at early stages (<60 days) compared to columns run under other experimental conditions, but became more active over time, and ultimately showed the most consistent Cr(VI) reduction. A strong correlation between denitrification and Cr(VI) reduction processes was observed and was in agreement with the results obtained in batch experiments with a denitrifying bacterium isolated from the Hanford site. The accumulation of nitrite does not appear to have an adverse effect on Cr(VI) reduction rates. Reactive transport simulations indicated that biomass growth completely depleted influent ammonium, and called for an additional source of N to account for the measured reduction rates. Iron columns were the least active with undetectable consumption of the injected lactate, slowest cell growth, and the smallest change in Cr(VI) concentrations during the course of the experiment. In contrast, columns under sulfate-reducing/fermentative conditions exhibited the greatest Cr(VI) reduction capacity. Two sulfate columns evolved to complete lactate fermentation with acetate and propionate produced in the column effluent after 40 days of experiments. These fermenting columns showed a complete removal of injected Cr(VI), visible precipitation of sulfide minerals, and a significant increase in effluent Fe and Mn concentrations. Reactive transport simulations suggested that direct reduction of Cr(VI) by Fe(II) and Mn(II) released from the sediment could account for the observed Cr(VI) removal. The biogeochemical modeling was employed to test two hypotheses that could explain the release of Fe(II) and Mn(II) from the column sediments: 1) acetate produced by lactate fermentation provided the substrate for the growth of iron(III) and manganese(IV) oxide reducers, and 2) direct reduction of iron(III) and manganese(IV) oxides by hydrogen sulfide generated during sulfate reduction. Overall, experimental and modeling results suggested that Cr(VI) reduction in the sulfate-reducing columns occurred through a complex network of microbial reactions that included fermentation, sulfate reduction, and possibly the stimulated iron-reducing communities.

  12. Method for liquid chromatographic extraction of strontium from acid solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1992-01-01

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  13. Detection of intestinal obstruction by radionuclide scan: case report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhuri, T.K.

    1976-11-01

    The value of /sup 99m/Technetium-pertechnetate abdomen scan has recently been established in the diagnosis of Meckel's diverticulum, intussusception, and inflamed appendix. The purpose of this paper is to report a case with small intestinal obstruction secondary to fibrous adhesions which resulted from a previous surgery, in whom a /sup 99m/Technetium-pertechnetate abdomen scan showed increased radionuclide concentration in the area of dilated loop of bowel proximal to the site of obstruction.

  14. Geochemical behavior of Cs, Sr, Tc, Np, and U in saline groundwaters: Sorption experiments on shales and their clay mineral components: Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, R.E.; Arnold, W.D.; Ho, P.C.

    1987-11-01

    The Sedimentary Rock Program at the Oak Ridge National Laboratory is investigating shale to determine its potential suitability as a host rock for the disposal of high-level radioactive wastes (HLW). In support of this program, preliminary studies were carried out on sorption of cesium, strontium, technetium, neptunium, and uranium onto Chattanooga (Upper Dowelltown), Pierre, Green River Formation, Nolichucky, and Pumpkin Valley Shales under oxic conditions (air present). Three simulated groundwaters were used. One of the groundwaters was a synthetic brine made up to simulate highly saline groundwaters in the Pumpkin Valley Shale. The second was a 100/1 dilution of thismore » groundwater and the third was 0.03 M NaHCO/sub 3/. Moderate to significant sorption was observed under most conditions for all of the tested radionuclides except technetium. Moderate technetium sorption occurred on Upper Dowelltown Shale, and although technetium sorption was low on the other shales, it was higher than expected for Tc(VII), present as the anion TcO/sub 4//sup -/. Little sorption of strontium onto the shales was observed from the concentrated saline groundwater. These data can be used in a generic fashion to help assess the sorption characteristics of shales in support of a national survey. 10 refs., 4 figs., 23 tabs.« less

  15. REACTIVITY OF CHEMICAL REDUCTANTS AS A FUNCTION OF REDOX ZONATION

    EPA Science Inventory

    The incorporation of reductive transformations into fate models continues to be a challenging problem. The occurrence of chemical reductants in anaerobic sediments and aquifers is a result of the reduction of inorganic, electron acceptors coupled to the microbial oxidation of org...

  16. The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent.

    PubMed

    Pawlett, Mark; Ritz, Karl; Dorey, Robert A; Rocks, Sophie; Ramsden, Jeremy; Harris, Jim A

    2013-02-01

    Nanosized zero-valent iron (nZVI) is an effective land remediation tool, but there remains little information regarding its impact upon and interactions with the soil microbial community. nZVI stabilised with sodium carboxymethyl cellulose was applied to soils of three contrasting textures and organic matter contents to determine impacts on soil microbial biomass, phenotypic (phospholipid fatty acid (PLFA)), and functional (multiple substrate-induced respiration (MSIR)) profiles. The nZVI significantly reduced microbial biomass by 29 % but only where soil was amended with 5 % straw. Effects of nZVI on MSIR profiles were only evident in the clay soils and were independent of organic matter content. PLFA profiling indicated that the soil microbial community structure in sandy soils were apparently the most, and clay soils the least, vulnerable to nZVI suggesting a protective effect imparted by clays. Evidence of nZVI bactericidal effects on Gram-negative bacteria and a potential reduction of arbuscular mycorrhizal fungi are presented. Data imply that the impact of nZVI on soil microbial communities is dependent on organic matter content and soil mineral type. Thereby, evaluations of nZVI toxicity on soil microbial communities should consider context. The reduction of AM fungi following nZVI application may have implications for land remediation.

  17. Total electron acceptor loading and composition affect hexavalent uranium reduction and microbial community structure in a membrane biofilm reactor.

    PubMed

    Ontiveros-Valencia, Aura; Zhou, Chen; Ilhan, Zehra Esra; de Saint Cyr, Louis Cornette; Krajmalnik-Brown, Rosa; Rittmann, Bruce E

    2017-11-15

    Molecular microbiology tools (i.e., 16S rDNA gene sequencing) were employed to elucidate changes in the microbial community structure according to the total electron acceptor loading (controlled by influent flow rate and/or medium composition) in a H 2 -based membrane biofilm reactor evaluated for removal of hexavalent uranium. Once nitrate, sulfate, and dissolved oxygen were replaced by U(VI) and bicarbonate and the total acceptor loading was lowered, slow-growing bacteria capable of reducing U(VI) to U(IV) dominated in the biofilm community: Replacing denitrifying bacteria Rhodocyclales and Burkholderiales were spore-producing Clostridiales and Natranaerobiales. Though potentially competing for electrons with U(VI) reducers, homo-acetogens helped attain steady U(VI) reduction, while methanogenesis inhibited U(VI) reduction. U(VI) reduction was reinstated through suppression of methanogenesis by addition of bromoethanesulfonate or by competition from SRB when sulfate was re-introduced. Predictive metagenome analysis further points out community changes in response to alterations in the electron-acceptor loading: Sporulation and homo-acetogenesis were critical factors for strengthening stable microbial U(VI) reduction. This study documents that sporulation was important to long-term U(VI) reduction, whether or not microorganisms that carry out U(VI) reduction mediated by cytochrome c 3 , such as SRB and ferric-iron-reducers, were inhibited. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Anaerobic Redox Cycling of Iron by Freshwater Sediment Microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Karrie A.; Urrutia, Matilde M.; Churchill, Perry F.

    2006-01-01

    The potential for microbially-mediated anaerobic redox cycling of iron (Fe) was examined in a first-generation enrichment culture of freshwater wetland sediment microorganisms. MPN enumerations revealed the presence of significant populations of Fe(III)-reducing (ca. 108 cells mL-1) and Fe(II)-oxidizing, nitrate-reducing organisms (ca. 105 cells mL-1) in the sediment used to inoculate the enrichment cultures. Nitrate reduction commenced immediately following inoculation of acetate-containing (ca. 1 mM) medium with a small quantity (1% vol/vol) of wetland sediment, and resulted in the transient accumulation of NO2- and production of a mixture of end-products including NH4+. Fe(III) oxide (high surface area goethite) reduction took placemore » - after NO3- was depleted and continued until all the acetate was utilized. Addition of NO3 after Fe(III) reduction ceased resulted in the immediate oxidation of Fe(II) coupled to reduction of + NO3-to NH4 . No significant NO2- accumulation was observed during nitrate-dependent Fe(II) oxidation. No Fe(II) oxidation occurred in pasteurized controls. Microbial community structure in the enrichment was monitored by DGGE analysis of PCR amplified 16s rDNA and RT-PCR amplified 16S rRNA, as well as by construction of 16S rDNA clone libraries for four different time points during the experiment. Strong similarities in dominant members of the microbial community were observed in the Fe(III) reduction and nitrate-dependent Fe(II) oxidation phases of the experiment, specifically the common presence of organisms closely related (= 95% sequence similarity) to the genera Geobacter and Dechloromonas. These results indicate that the wetland sediments contained organisms such as Geobacter sp. which are capable of both + dissimilatory Fe(III) reduction and oxidation of Fe(II) with reduction of NO3-reduction to NH4 . Our findings suggest that microbially-catalyzed nitrate-dependent Fe(II) oxidation has the potential to contribute to a dynamic anaerobic Fe redox cycle in freshwater sediments.« less

  19. Natural and induced reduction of hexavalent chromium in soil

    NASA Astrophysics Data System (ADS)

    Leita, Liviana; Margon, Alja; Sinicco, Tania; Mondini, Claudio; Valentini, Massimiliano; Cantone, Pierpaolo

    2013-04-01

    Even though naturally elevated levels of chromium can be found naturally in some soils, distressing amounts of the hexavalent form (CrVI) are largely restricted to sites contaminated by anthropogenic activities. In fact, the widespread use of chromium in various industries and the frequently associated inadequate disposal of its by-products and wastes have created serious environmental pollution problems in many parts of the world. CrVI is toxic to plants, animals and humans and exhibits also mutagenic effects. However, being a strong oxidant, CrVI can be readily reduced to the much less harmful trivalent form (CrIII) when suitable electron donors are present in the environment. CrIII is relatively insoluble, less available for biological uptake, and thus definitely less toxic for web-biota. Various electron donors in soil can be involved in CrVI reduction in soil. The efficiency of CrVI reducing abiotic agents such as ferrous iron and sulphur compounds is well documented. Furthermore, CrVI reduction is also known to be significantly enhanced by a wide variety of cell-produced monosaccharides, including glucose. In this study we evaluated the dynamics of hexavalent chromium (CrVI) reduction in contaminated soil amended or not with iron sulphate or/and glucose and assessed the effects of CrVI on native or glucose-induced soil microbial biomass size and activity. CrVI negatively affected both soil microbial activity and the size of the microbial biomass. During the incubation period, the concentration of CrVI in soil decreased over time whether iron sulphate or/and glucose was added or not, but with different reduction rates. Soil therefore displayed a natural attenuation capacity towards chromate reduction. Addition of iron sulphate or/and glucose, however, increased the reduction rate by both abiotic and biotic mechanisms. Our data suggest that glucose is likely to have exerted an indirect role in the increased rate of CrVI reduction by promoting growth of indigenous microbial biomass, while iron sulphate exerted a direct abiotic role.

  20. Sulfur isotopic constraints from a single enzyme on the cellular to global sulfur cycles

    NASA Astrophysics Data System (ADS)

    Sim, M. S.; Adkins, J. F.; Sessions, A. L.; Orphan, V. J.; McGlynn, S.

    2017-12-01

    Since first reported more than a half century ago, sulfur isotope fractionation between sulfate and sulfide has been used as a diagnostic indicator of microbial sulfate reduction, giving added dimensions to the microbial ecological and geochemical studies of the sulfur cycle. A wide range of fractionation has attracted particular attention because it may serve as a potential indicator of environmental or physiological variables such as substrate concentrations or specific respiration rates. In theory, the magnitude of isotope fractionation depends upon the sulfur isotope effect imparted by the involved enzymes and the relative rate of each enzymatic reaction. The former defines the possible range of fractionation quantitatively, while the latter responds to environmental stimuli, providing an underlying rationale for the varying fractionations. The experimental efforts so far have concentrated largely on the latter, the factors affecting the size of fractionation. Recently, however, the direct assessment of intracellular processes emerges as a promising means for the quantitative analysis of microbial sulfur isotope fractionation as a function of environmental or physiological variables. Here, we experimentally determined for the first time the sulfur isotope fractionation during APS reduction, the first reductive step in the dissimilatory sulfate reduction pathway, using the enzyme purified from Desulfovibrio vulgaris Miyazaki. APS reductase carried out the one-step, two-electron reduction of APS to sulfite, without the production of other metabolic intermediates. Nearly identical isotope effects were obtained at two different temperatures, while the rate of APS reduction more than quadrupled with a temperature increase from 20 to 32°C. When placed in context of the linear network model for microbial sulfur isotope fractionation, our finding could provide a new, semi-quantitative constraint on the sulfur cycle at levels from cellular to global.

  1. Evaluation of a Direct-Fed Microbial Product Effect on the Prevalence and Load of Escherichia coli O157:H7 in Feedlot Cattle

    USDA-ARS?s Scientific Manuscript database

    Direct fed microbials (DFM) have been identified as potential pre-harvest interventions for the reduction of foodborne bacterial pathogens such as E. coli O157:H7. This study evaluated the efficacy of a direct fed microbial (DFM) consisting of Bacillus subtilis strain 166 as an antimicrobial interve...

  2. Mineral solubility and free energy controls on microbial reaction kinetics: Application to contaminant transport in the subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taillefert, Martial; Van Cappellen, Philippe

    Recent developments in the theoretical treatment of geomicrobial reaction processes have resulted in the formulation of kinetic models that directly link the rates of microbial respiration and growth to the corresponding thermodynamic driving forces. The overall objective of this project was to verify and calibrate these kinetic models for the microbial reduction of uranium(VI) in geochemical conditions that mimic as much as possible field conditions. The approach combined modeling of bacterial processes using new bioenergetic rate laws, laboratory experiments to determine the bioavailability of uranium during uranium bioreduction, evaluation of microbial growth yield under energy-limited conditions using bioreactor experiments, competitionmore » experiments between metabolic processes in environmentally relevant conditions, and model applications at the field scale. The new kinetic descriptions of microbial U(VI) and Fe(III) reduction should replace those currently used in reactive transport models that couple catabolic energy generation and growth of microbial populations to the rates of biogeochemical redox processes. The above work was carried out in collaboration between the groups of Taillefert (batch reactor experiments and reaction modeling) at Georgia Tech and Van Cappellen (retentostat experiments and reactive transport modeling) at University of Waterloo (Canada).« less

  3. Fe(III) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17.

    PubMed

    Liu, Tongxu; Li, Xiaomin; Zhang, Wei; Hu, Min; Li, Fangbai

    2014-06-01

    Klebsiella pneumoniae L17 is a fermentative bacterium that can reduce iron oxide and generate electricity under anoxic conditions, as previously reported. This study reveals that K. pneumoniae L17 is also capable of dissimilatory nitrate reduction, producing NO2(-), NH4(+), NO and N2O under anoxic conditions. The presence of Fe(III) oxides (i.e., α-FeOOH, γ-FeOOH, α-Fe2O3 and γ-Fe2O3) significantly accelerates the reduction of nitrate and generation of electricity by K. pneumoniae L17, which is similar to a previous report regarding another fermentative bacterium, Bacillus. No significant nitrate reduction was observed upon treatment with Fe(2+) or α-FeOOH+Fe(2+), but a slight facilitation of nitrate reduction and electricity generation was observed upon treatment with L17+Fe(2+). This result suggests that aqueous Fe(II) or mineral-adsorbed Fe(II) cannot reduce nitrate abiotically but that L17 can catalyze the reduction of nitrate and generation of electricity in the presence of Fe(II) (which might exist as cell surface-bound Fe(II)). To rule out the potential effect of Fe(II) produced by L17 during microbial iron reduction, treatments with the addition of TiO2 or Al2O3 instead of Fe(III) oxides also exhibited accelerated microbial nitrate reduction and electricity generation, indicating that cell-mineral sorption did account for the acceleration effect. However, the acceleration caused by Fe(III) oxides is only partially attributed to the cell surface-bound Fe(II) and cell-mineral sorption but may be driven by the iron oxide conduction band-mediated electron transfer from L17 to nitrate or an electrode, as proposed previously. The current study extends the diversity of bacteria of which nitrate reduction and electricity generation can be facilitated by the presence of iron oxides and confirms the positive role of Fe(III) oxides on microbial nitrate reduction and electricity generation by particular fermentative bacteria in anoxic environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Oxidation of aromatic contaminants coupled to microbial iron reduction

    USGS Publications Warehouse

    Lovley, D.R.; Baedecker, M.J.; Lonergan, D.J.; Cozzarelli, I.M.; Phillips, E.J.P.; Siegel, D.I.

    1989-01-01

    THE contamination of sub-surface water supplies with aromatic compounds is a significant environmental concern1,2. As these contaminated sub-surface environments are generally anaerobic, the microbial oxidation of aromatic compounds coupled to nitrate reduction, sulphate reduction and methane production has been studied intensively1-7. In addition, geochemical evidence suggests that Fe(III) can be an important electron acceptor for the oxidation of aromatic compounds in anaerobic groundwater. Until now, only abiological mechanisms for the oxidation of aromatic compounds with Fe(III) have been reported8-12. Here we show that in aquatic sediments, microbial activity is necessary for the oxidation of model aromatic compounds coupled to Fe(III) reduction. Furthermore, a pure culture of the Fe(III)-reducing bacterium GS-15 can obtain energy for growth by oxidizing benzoate, toluene, phenol or p-cresol with Fe(III) as the sole electron acceptor. These results extend the known physiological capabilities of Fe(III)-reducing organisms and provide the first example of an organism of any type which can oxidize an aromatic hydrocarbon anaerobically. ?? 1989 Nature Publishing Group.

  5. PREDICTION OF RELAPSE FROM HYPERTHYROIDISM FOLLOWING ANTITHYROID MEDICATION WITHDRAWAL USING TECHNETIUM THYROID UPTAKE SCANNING.

    PubMed

    Nakhjavani, Manouchehr; Abdollahi, Soraya; Farzanefar, Saeed; Abousaidi, Mohammadtagi; Esteghamati, Alireza; Naseri, Maryam; Eftekhari, Mohamad; Abbasi, Mehrshad

    2017-04-02

    Technetium thyroid uptake (TTU) is not inhibited by antithyroid drugs (ATD) and reflects the degree of thyroid stimulation. We intended to predict the relapse rate from hyperthyroidism based on TTU measurement. Out of 44 initially enrolled subjects, 38 patients aged 41.6 ± 14.6 with Graves disease (duration: 84 ± 78 months) completed the study. TTU was performed with 40-second imaging of the neck and mediastinum 20 minutes after injection of 1 mCi technetium-99m pertechnetate. TTU was measured as the percentage of the count of activity accumulated in the thyroidal region minus the mediastinal background uptake to the count of 1 mCi technetium-99m under the same acquisition conditions. Then methimazole was stopped and patients were followed. The optimal TTU cutoff value for Graves relapse prediction was calculated using Youden's J statistic. Hyperthyroidism relapsed in 11 (28.9%) patients 122 ± 96 (range: 15-290) days post-ATD withdrawal. The subjects in remission were followed for 209 ± 81 days (range: 88-390). TTU was significantly higher in patients with forthcoming relapse (12.0 ± 8.0 vs. 3.9 ± 2.0, P = .007). The difference was significant after adjustment for age, sex, history of previous relapse, disease duration, and thyroid-stimulating hormone (TSH) levels before withdrawal. The area under the receiver operative characteristic (ROC) curve was 0.87. The optimal TTU cutoff value for classification of subjects with relapse and remission was 8.7 with sensitivity, specificity, and positive and negative predictive value of 73%, 100%, 100%, and 90%, respectively (odds ratio [OR] = 10.0; 95% confidence interval [CI]: 3.4-29.3). TTU evaluation in hyperthyroid patients receiving antithyroid medication is an accurate and practical method for predicting relapse after ATD withdrawal. ATD = antithyroid drugs RIU = radio-iodine uptake TSH = thyroid-stimulating hormone TSI = thyroid-stimulating immunoglobulin TTU = technetium thyroid uptake.

  6. Importance of methodology on (99m)technetium dimercapto-succinic acid scintigraphic image quality: imaging pilot study for RIVUR (Randomized Intervention for Children With Vesicoureteral Reflux) multicenter investigation.

    PubMed

    Ziessman, Harvey A; Majd, Massoud

    2009-07-01

    We reviewed our experience with (99m)technetium dimercapto-succinic acid scintigraphy obtained during an imaging pilot study for a multicenter investigation (Randomized Intervention for Children With Vesicoureteral Reflux) of the effectiveness of daily antimicrobial prophylaxis for preventing recurrent urinary tract infection and renal scarring. We analyzed imaging methodology and its relation to diagnostic image quality. (99m)Technetium dimercapto-succinic acid imaging guidelines were provided to participating sites. High-resolution planar imaging with parallel hole or pinhole collimation was required. Two core reviewers evaluated all submitted images. Analysis included appropriate views, presence or lack of patient motion, adequate magnification, sufficient counts and diagnostic image quality. Inter-reader agreement was evaluated. We evaluated 70, (99m)technetium dimercapto-succinic acid studies from 14 institutions. Variability was noted in methodology and image quality. Correlation (r value) between dose administered and patient age was 0.780. For parallel hole collimator imaging good correlation was noted between activity administered and counts (r = 0.800). For pinhole imaging the correlation was poor (r = 0.110). A total of 10 studies (17%) were rejected for quality issues of motion, kidney overlap, inadequate magnification, inadequate counts and poor quality images. The submitting institution was informed and provided with recommendations for improving quality, and resubmission of another study was required. Only 4 studies (6%) were judged differently by the 2 reviewers, and the differences were minor. Methodology and image quality for (99m)technetium dimercapto-succinic acid scintigraphy varied more than expected between institutions. The most common reason for poor image quality was inadequate count acquisition with insufficient attention to the tradeoff between administered dose, length of image acquisition, start time of imaging and resulting image quality. Inter-observer core reader agreement was high. The pilot study ensured good diagnostic quality standardized images for the Randomized Intervention for Children With Vesicoureteral Reflux investigation.

  7. Linking Specific Heterotrophic Bacterial Populations to Bioreduction of Uranium and Nitrate in Contaminated Subsurface Sediments by Using Stable Isotope Probing▿†

    PubMed Central

    Akob, Denise M.; Kerkhof, Lee; Küsel, Kirsten; Watson, David B.; Palumbo, Anthony V.; Kostka, Joel E.

    2011-01-01

    Shifts in terminal electron-accepting processes during biostimulation of uranium-contaminated sediments were linked to the composition of stimulated microbial populations using DNA-based stable isotope probing. Nitrate reduction preceded U(VI) and Fe(III) reduction in [13C]ethanol-amended microcosms. The predominant, active denitrifying microbial groups were identified as members of the Betaproteobacteria, whereas Actinobacteria dominated under metal-reducing conditions. PMID:21948831

  8. Comparison of Chlorinated Ethenes DNAPL Reductive Dechlorination by Indigenous and Evanite culture with Surfactant Tween-80

    NASA Astrophysics Data System (ADS)

    Kwon, S.; Hong, S.; Kim, R.; Kim, N.; Ahn, H.; Lee, S.; Kim, Y.

    2010-12-01

    Although many innovative technologies have been developed to enhance remediation of chlorinated ethenes(e.g. tetrachloroethene[PCE], trichloroethene[TCE])DNAPL source zones, they have been ineffective in reducing contaminant concentration to regulatory end points. Thus, combination of surfactant flushing process that removes significant contaminant mass with microbial reductive dechlorination, posttreatment "polishing step" to control the remaining DNAPL that may serve as a source of reducing equivalents and stimulate the dechlorinating bacterial communities may be an attractive remediation process alternatively. Microcosm studies were conducted to explore chlorinated ethenes, PCE/TCE of 3 ~ 30 mg/L dechlorination by indigenous microbial communities from TCE DNAPL source zones of Korea and Evanite culture in the presence of Tween-80 of 10 ~ 5,000 mg/L. In the microcosms for indigenous microbial communities, by-products(e.g. c-DCE, vinyl chloride) of reductive dechlorination of PCE/TCE were not detected. This results suggest dechlorinating bacteria might be not exist or high concentration of chlorinated ethenes inhibit activity of dechlorinating bacteria in indigenous microbial communities. But VFAs like acetate, methane and hydrogen gas from fermentation of Tween-80 were detected. So Tween-80 might estimated to serve as a source of reducing equivalents. To evaluate the dechlorinating ability of Evanite-culture, we added Evanite-culture to the microcosms for indigenous bacteria and monitored by-products of reductive dechlorination of PCE/TCE and VFAs and hydrogen gas.

  9. Microbial Community and Functional Gene Changes in Arctic Tundra Soils in a Microcosm Warming Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ziming; Yang, Sihang; Van Nostrand, Joy D.

    Microbial decomposition of soil organic carbon (SOC) in the thawing Arctic permafrost is one of the most important, but poorly understood, processes in determining the greenhouse gases feedback of tundra ecosystems to climate. Here in this paper, we examine changes in microbial community structure during an anoxic incubation at either –2 or 8 °C for up to 122 days using both an organic and a mineral soil collected from the Barrow Environmental Observatory in northern Alaska, USA. Soils were characterized for SOC chemistry, and GeoChips were used to determine microbial community structure and functional genes associated with C degradation andmore » Fe(III) reduction. We observed notable decreases in functional gene diversity (at P < 0.05) in response to warming at 8 °C, particularly in the organic soil. A number of genes associated with SOC degradation, fermentation, methanogenesis, and iron cycling decreased significantly (P < 0.05) after 122 days of incubation, which coincided well with decreasing labile SOC content, soil respiration, methane production, and iron reduction. The soil type (i.e., organic vs. mineral) and the availability of labile SOC were among the most significant environmental factors impacting the functional community structure. In contrast, the functional structure was largely unchanged in the –2 °C incubation due to low microbial activity resulting in less competition or exclusion. These results demonstrate the vulnerability of SOC in Arctic tundra to warming, facilitated by iron reduction and methanogenesis, and the importance of microbial communities in moderating such vulnerability.« less

  10. Microbial Community and Functional Gene Changes in Arctic Tundra Soils in a Microcosm Warming Experiment

    DOE PAGES

    Yang, Ziming; Yang, Sihang; Van Nostrand, Joy D.; ...

    2017-09-19

    Microbial decomposition of soil organic carbon (SOC) in the thawing Arctic permafrost is one of the most important, but poorly understood, processes in determining the greenhouse gases feedback of tundra ecosystems to climate. Here in this paper, we examine changes in microbial community structure during an anoxic incubation at either –2 or 8 °C for up to 122 days using both an organic and a mineral soil collected from the Barrow Environmental Observatory in northern Alaska, USA. Soils were characterized for SOC chemistry, and GeoChips were used to determine microbial community structure and functional genes associated with C degradation andmore » Fe(III) reduction. We observed notable decreases in functional gene diversity (at P < 0.05) in response to warming at 8 °C, particularly in the organic soil. A number of genes associated with SOC degradation, fermentation, methanogenesis, and iron cycling decreased significantly (P < 0.05) after 122 days of incubation, which coincided well with decreasing labile SOC content, soil respiration, methane production, and iron reduction. The soil type (i.e., organic vs. mineral) and the availability of labile SOC were among the most significant environmental factors impacting the functional community structure. In contrast, the functional structure was largely unchanged in the –2 °C incubation due to low microbial activity resulting in less competition or exclusion. These results demonstrate the vulnerability of SOC in Arctic tundra to warming, facilitated by iron reduction and methanogenesis, and the importance of microbial communities in moderating such vulnerability.« less

  11. Kinetics of microbial reduction of Solid phase U(VI).

    PubMed

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming; Dohnalkova, Alice; Fredrickson, James K

    2006-10-15

    Sodium boltwoodite (NaUO2SiO3OH x 1.5 H2O) was used to assess the kinetics of microbial reduction of solid-phase U(VI) by a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. The bioreduction kinetics was studied with Na-boltwoodite in suspension or within alginate beads in a nongrowth medium with lactate as electron donor at pH 6.8 buffered with PIPES. Concentrations of U(VI)tot and cell number were varied to evaluate the coupling of U(VI) dissolution, diffusion, and microbial activity. Microscopic and spectroscopic analyses with transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and laser-induced fluorescence spectroscopy (LIFS) collectively indicated that solid-phase U(VI) was first dissolved and diffused out of grain interiors before it was reduced on bacterial surfaces and/or within the periplasm. The kinetics of solid-phase U(VI) bioreduction was well described by a coupled model of bicarbonate-promoted dissolution of Na-boltwoodite, intragrain uranyl diffusion, and Monod type bioreduction kinetics with respect to dissolved U(VI) concentration. The results demonstrated that microbial reduction of solid-phase U(VI) is controlled by coupled biological, chemical, and physical processes.

  12. Acetate biostimulation as an effective treatment for cleaning up alkaline soil highly contaminated with Cr(VI).

    PubMed

    Lara, Paloma; Morett, Enrique; Juárez, Katy

    2017-11-01

    Stimulation of microbial reduction of Cr(VI) to the less toxic and less soluble Cr(III) through electron donor addition has been regarded as a promising approach for the remediation of chromium-contaminated soil and groundwater sites. However, each site presents different challenges; local physicochemical characteristics and indigenous microbial communities influence the effectiveness of the biostimulation processes. Here, we show microcosm assays stimulation of microbial reduction of Cr(VI) in highly alkaline and saline soil samples from a long-term contaminated site in Guanajuato, Mexico. Acetate was effective promoting anaerobic microbial reduction of 15 mM of Cr(VI) in 25 days accompanied by an increase in pH from 9 to 10. Our analyses showed the presence of Halomonas, Herbaspirillum, Nesterenkonia/Arthrobacter, and Bacillus species in the soil sample collected. Moreover, from biostimulated soil samples, it was possible to isolate Halomonas spp. strains able to grow at 32 mM of Cr(VI). Additionally, we found that polluted groundwater has bacterial species different to those found in soil samples with the ability to resist and reduce chromate using acetate and yeast extract as electron donors.

  13. Nitrogen fertilization decouples roots and microbes: Reductions in belowground carbon allocation limit microbial activity

    NASA Astrophysics Data System (ADS)

    Carrara, J.; Walter, C. A.; Govindarajulu, R.; Hawkins, J.; Brzostek, E. R.

    2017-12-01

    Nitrogen (N) deposition has enhanced the ability of trees to capture atmospheric carbon (C). The effect of elevated N on belowground C cycling, however, is variable and response mechanisms are largely unknown. Recent research has highlighted distinct differences between ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) trees in the strength of root-microbial interactions. In particular, ECM trees send more C to rhizosphere microbes to stimulate enzyme activity and nutrient mobilization than AM trees, which primarily rely on saprotrophic microbes to mobilize N. As such, we hypothesized that N fertilization would weaken root-microbial interactions and soil decomposition in ECM stands more than in AM stands. To test this hypothesis, we measured root-microbial interactions in ECM and AM plots in two long-term N fertilization studies, the Fernow Experimental Forest, WV and Bear Brook Watershed, ME. We found that N fertilization led to declines in plant C allocation belowground to fine root biomass, branching, and root exudation in ECM stands to a greater extent than in AM stands. As ECM roots are tightly coupled to the soil microbiome through energy and nutrient exchange, reductions in belowground C allocation were mirrored by shifts in microbial community composition and reductions in fungal gene expression. These shifts were accompanied by larger reductions in fungal-derived lignolytic and hydrolytic enzyme activity in ECM stands than in AM stands. In contrast, as the AM soil microbiome is less reliant on trees for C and are more adapted to high inorganic nutrient environments, the soil metagenome and transcriptome were more resilient to decreases in belowground C allocation. Collectively, our results indicate the N fertilization decoupled root-microbial interactions by reducing belowground carbon allocation in ECM stands. Thus, N fertilization may reduce soil turnover and increase soil C storage to a greater extent in forests dominated by ECM than AM trees.

  14. Physicochemical properties influencing denitrification rate and microbial activity in denitrification bioreactors

    NASA Astrophysics Data System (ADS)

    Schmidt, C. A.

    2012-12-01

    The use of N-based fertilizer will need to increase to meet future demands, yet existing applications have been implicated as the main source of coastal eutrophication and hypoxic zones. Producing sufficient crops to feed a growing planet will require efficient production in combination with sustainable treatment solutions. The long-term success of denitrification bioreactors to effectively remove nitrate (NO¬3), indicates this technology is a feasible treatment option. Assessing and quantifying the media properties that affect NO¬3 removal rate and microbial activity can improve predictions on bioreactor performance. It was hypothesized that denitrification rates and microbial biomass would be correlated with total C, NO¬3 concentration, metrics of organic matter quality, media surface area and laboratory measures of potential denitrification rate. NO¬3 removal rates and microbial biomass were evaluated in mesocosms filled with different wood treatments and the unique influence of these predictor variables was determined using a multiple linear regression analysis. NO3 reduction rates were independent of NO¬3 concentration indicating zero order reaction kinetics. Temperature was strongly correlated with denitrification rate (r2=0.87; Q10=4.7), indicating the variability of bioreactor performance in differing climates. Fiber quality, and media surface area were strong (R>0.50), unique predictors of rates and microbial biomass, although C:N ratio and potential denitrification rate did not predict actual denitrification rate or microbial biomass. Utilizing a stepwise multiple linear regression, indicates that the denitrification rate can be effectively (r2=0.56;p<0.0001) predicted if the groundwater temperature, neutral detergent fiber and surface area alone are quantified. These results will assist with the widespread implementation of denitrification bioreactors to achieve significant N load reductions in large watersheds. The nitrate reduction rate as a function of groundwater temperature for all treatments. Correlations between nitrate reduction rate and properties of carbon media;

  15. Images of liposarcoma using technetium-99m bleomycin and technetium (V)-99m DMSA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohta, H.; Shane, F.I.; Endo, K.

    1986-12-01

    The effectiveness of Tc-99m bleomycin (BLM) and Tc(V)-99m DMSA are compared with that of Ga-67 citrate, which is currently the most widely used agent. In four patients with lipomatous tumors, the clinical significance of tumor imaging with each of these three agents is discussed and compared. Results indicate that both Tc-99m BLM and Tc(V)-99m DMSA are superior in detecting the extension or localization of liposarcomas.

  16. Separation of uranium from technetium in recovery of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Friedman, H. A.

    1984-06-01

    A method for decontaminating uranium product from the Purex 5 process is described. Hydrazine is added to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO2(2+)) uranium and heptavalent technetius (TcO4-). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H2O2O4), and the Tc-oxalate complex is readily separated from the 10 uranium by solvent extraction with 30 vol % tributyl phosphate in n-dodecane.

  17. Detection of homing-in of stem cells labeled with technetium-99m hexamethylpropyleneamine oxime in infarcted myocardium after intracoronary injection

    PubMed Central

    Patel, Chetan D; Agarwal, Snehlata; Seth, Sandeep; Mohanty, Sujata; Aggarwal, Himesh; Gupta, Namit

    2014-01-01

    Bone marrow stem cells having myogenic potential are promising candidates for various cell-based therapies for myocardial disease. We present here images showing homing of technetium-99m (Tc-99m) hexamethylpropyleneamine oxime (HMPAO) labeled stem cells in the infarcted myocardium from a pilot study conducted to radio-label part of the stem cells in patients enrolled in a stem cell clinical trial for recent myocardial infarction. PMID:25400375

  18. Differences between the macroscopic and tracer level chemistry of rhenium and technetium: contrasting cage isomerisation behaviour of Re(I) and Tc(I) carborane complexes.

    PubMed

    Armstrong, Andrea F; Valliant, John F

    2010-09-21

    Carboranes form stable complexes with the [M(CO)(3)](+) (M = (99m)Tc, Re) core and are viable ligands for the development of targeted radiopharmaceuticals. (99m)Tc-carborane complexes were found to exhibit substantially different 1,2-->1,7 cage isomerisation behaviour than their Re counterparts, challenging the validity of the routine use of rhenium as a surrogate for the development of technetium-99m based molecular imaging agents.

  19. Anaerobic oxidation of methane by sulfate in hypersaline groundwater of the Dead Sea aquifer

    PubMed Central

    Avrahamov, N; Antler, G; Yechieli, Y; Gavrieli, I; Joye, S B; Saxton, M; Turchyn, A V; Sivan, O

    2014-01-01

    Geochemical and microbial evidence points to anaerobic oxidation of methane (AOM) likely coupled with bacterial sulfate reduction in the hypersaline groundwater of the Dead Sea (DS) alluvial aquifer. Groundwater was sampled from nine boreholes drilled along the Arugot alluvial fan next to the DS. The groundwater samples were highly saline (up to 6300 mm chlorine), anoxic, and contained methane. A mass balance calculation demonstrates that the very low δ13CDIC in this groundwater is due to anaerobic methane oxidation. Sulfate depletion coincident with isotope enrichment of sulfur and oxygen isotopes in the sulfate suggests that sulfate reduction is associated with this AOM. DNA extraction and 16S amplicon sequencing were used to explore the microbial community present and were found to be microbial composition indicative of bacterial sulfate reducers associated with anaerobic methanotrophic archaea (ANME) driving AOM. The net sulfate reduction seems to be primarily controlled by the salinity and the available methane and is substantially lower as salinity increases (2.5 mm sulfate removal at 3000 mm chlorine but only 0.5 mm sulfate removal at 6300 mm chlorine). Low overall sulfur isotope fractionation observed (34ε = 17 ± 3.5‰) hints at high rates of sulfate reduction, as has been previously suggested for sulfate reduction coupled with methane oxidation. The new results demonstrate the presence of sulfate-driven AOM in terrestrial hypersaline systems and expand our understanding of how microbial life is sustained under the challenging conditions of an extremely hypersaline environment. PMID:25039851

  20. Anaerobic oxidation of methane by sulfate in hypersaline groundwater of the Dead Sea aquifer.

    PubMed

    Avrahamov, N; Antler, G; Yechieli, Y; Gavrieli, I; Joye, S B; Saxton, M; Turchyn, A V; Sivan, O

    2014-11-01

    Geochemical and microbial evidence points to anaerobic oxidation of methane (AOM) likely coupled with bacterial sulfate reduction in the hypersaline groundwater of the Dead Sea (DS) alluvial aquifer. Groundwater was sampled from nine boreholes drilled along the Arugot alluvial fan next to the DS. The groundwater samples were highly saline (up to 6300 mm chlorine), anoxic, and contained methane. A mass balance calculation demonstrates that the very low δ(13) CDIC in this groundwater is due to anaerobic methane oxidation. Sulfate depletion coincident with isotope enrichment of sulfur and oxygen isotopes in the sulfate suggests that sulfate reduction is associated with this AOM. DNA extraction and 16S amplicon sequencing were used to explore the microbial community present and were found to be microbial composition indicative of bacterial sulfate reducers associated with anaerobic methanotrophic archaea (ANME) driving AOM. The net sulfate reduction seems to be primarily controlled by the salinity and the available methane and is substantially lower as salinity increases (2.5 mm sulfate removal at 3000 mm chlorine but only 0.5 mm sulfate removal at 6300 mm chlorine). Low overall sulfur isotope fractionation observed ((34) ε = 17 ± 3.5‰) hints at high rates of sulfate reduction, as has been previously suggested for sulfate reduction coupled with methane oxidation. The new results demonstrate the presence of sulfate-driven AOM in terrestrial hypersaline systems and expand our understanding of how microbial life is sustained under the challenging conditions of an extremely hypersaline environment. © 2014 The Authors. Geobiology Published by John Wiley & Sons Ltd.

  1. Use of simulation tools to illustrate the effect of data management practices for low and negative plate counts on the estimated parameters of microbial reduction models.

    PubMed

    Garcés-Vega, Francisco; Marks, Bradley P

    2014-08-01

    In the last 20 years, the use of microbial reduction models has expanded significantly, including inactivation (linear and nonlinear), survival, and transfer models. However, a major constraint for model development is the impossibility to directly quantify the number of viable microorganisms below the limit of detection (LOD) for a given study. Different approaches have been used to manage this challenge, including ignoring negative plate counts, using statistical estimations, or applying data transformations. Our objective was to illustrate and quantify the effect of negative plate count data management approaches on parameter estimation for microbial reduction models. Because it is impossible to obtain accurate plate counts below the LOD, we performed simulated experiments to generate synthetic data for both log-linear and Weibull-type microbial reductions. We then applied five different, previously reported data management practices and fit log-linear and Weibull models to the resulting data. The results indicated a significant effect (α = 0.05) of the data management practices on the estimated model parameters and performance indicators. For example, when the negative plate counts were replaced by the LOD for log-linear data sets, the slope of the subsequent log-linear model was, on average, 22% smaller than for the original data, the resulting model underpredicted lethality by up to 2.0 log, and the Weibull model was erroneously selected as the most likely correct model for those data. The results demonstrate that it is important to explicitly report LODs and related data management protocols, which can significantly affect model results, interpretation, and utility. Ultimately, we recommend using only the positive plate counts to estimate model parameters for microbial reduction curves and avoiding any data value substitutions or transformations when managing negative plate counts to yield the most accurate model parameters.

  2. Fe-oxide grain coatings support bacterial Fe-reducing metabolisms in 1.7−2.0 km-deep subsurface quartz arenite sandstone reservoirs of the Illinois Basin (USA)

    PubMed Central

    Dong, Yiran; Sanford, Robert A.; Locke, Randall A.; Cann, Isaac K.; Mackie, Roderick I.; Fouke, Bruce W.

    2014-01-01

    The Cambrian-age Mt. Simon Sandstone, deeply buried within the Illinois Basin of the midcontinent of North America, contains quartz sand grains ubiquitously encrusted with iron-oxide cements and dissolved ferrous iron in pore-water. Although microbial iron reduction has previously been documented in the deep terrestrial subsurface, the potential for diagenetic mineral cementation to drive microbial activity has not been well studied. In this study, two subsurface formation water samples were collected at 1.72 and 2.02 km, respectively, from the Mt. Simon Sandstone in Decatur, Illinois. Low-diversity microbial communities were detected from both horizons and were dominated by Halanaerobiales of Phylum Firmicutes. Iron-reducing enrichment cultures fed with ferric citrate were successfully established using the formation water. Phylogenetic classification identified the enriched species to be related to Vulcanibacillus from the 1.72 km depth sample, while Orenia dominated the communities at 2.02 km of burial depth. Species-specific quantitative analyses of the enriched organisms in the microbial communities suggest that they are indigenous to the Mt. Simon Sandstone. Optimal iron reduction by the 1.72 km enrichment culture occurred at a temperature of 40°C (range 20–60°C) and a salinity of 25 parts per thousand (range 25–75 ppt). This culture also mediated fermentation and nitrate reduction. In contrast, the 2.02 km enrichment culture exclusively utilized hydrogen and pyruvate as the electron donors for iron reduction, tolerated a wider range of salinities (25–200 ppt), and exhibited only minimal nitrate- and sulfate-reduction. In addition, the 2.02 km depth community actively reduces the more crystalline ferric iron minerals goethite and hematite. The results suggest evolutionary adaptation of the autochthonous microbial communities to the Mt. Simon Sandstone and carries potentially important implications for future utilization of this reservoir for CO2 injection. PMID:25324834

  3. Metagenomic and functional analyses of the consequences of reduction of bacterial diversity on soil functions and bioremediation in diesel-contaminated microcosms.

    PubMed

    Jung, Jaejoon; Philippot, Laurent; Park, Woojun

    2016-03-14

    The relationship between microbial biodiversity and soil function is an important issue in ecology, yet most studies have been performed in pristine ecosystems. Here, we assess the role of microbial diversity in ecological function and remediation strategies in diesel-contaminated soils. Soil microbial diversity was manipulated using a removal by dilution approach and microbial functions were determined using both metagenomic analyses and enzymatic assays. A shift from Proteobacteria- to Actinobacteria-dominant communities was observed when species diversity was reduced. Metagenomic analysis showed that a large proportion of functional gene categories were significantly altered by the reduction in biodiversity. The abundance of genes related to the nitrogen cycle was significantly reduced in the low-diversity community, impairing denitrification. In contrast, the efficiency of diesel biodegradation was increased in the low-diversity community and was further enhanced by addition of red clay as a stimulating agent. Our results suggest that the relationship between microbial diversity and ecological function involves trade-offs among ecological processes, and should not be generalized as a positive, neutral, or negative relationship.

  4. Metagenomic and functional analyses of the consequences of reduction of bacterial diversity on soil functions and bioremediation in diesel-contaminated microcosms

    PubMed Central

    Jung, Jaejoon; Philippot, Laurent; Park, Woojun

    2016-01-01

    The relationship between microbial biodiversity and soil function is an important issue in ecology, yet most studies have been performed in pristine ecosystems. Here, we assess the role of microbial diversity in ecological function and remediation strategies in diesel-contaminated soils. Soil microbial diversity was manipulated using a removal by dilution approach and microbial functions were determined using both metagenomic analyses and enzymatic assays. A shift from Proteobacteria- to Actinobacteria-dominant communities was observed when species diversity was reduced. Metagenomic analysis showed that a large proportion of functional gene categories were significantly altered by the reduction in biodiversity. The abundance of genes related to the nitrogen cycle was significantly reduced in the low-diversity community, impairing denitrification. In contrast, the efficiency of diesel biodegradation was increased in the low-diversity community and was further enhanced by addition of red clay as a stimulating agent. Our results suggest that the relationship between microbial diversity and ecological function involves trade-offs among ecological processes, and should not be generalized as a positive, neutral, or negative relationship. PMID:26972977

  5. Influence of mechanical disintegration on the microbial growth of aerobic sludge biomass: A comparative study of ultrasonic and shear gap homogenizers by oxygen uptake measurements.

    PubMed

    Divyalakshmi, P; Murugan, D; Sivarajan, M; Saravanan, P; Lajapathi Rai, C

    2015-11-01

    Wastewater treatment plant incorporates physical, chemical and biological processes to treat and remove the contaminants. The main drawback of conventional activated sludge process is the huge production of excess sludge, which is an unavoidable byproduct. The treatment and disposal of excess sludge costs about 60% of the total operating cost. The ideal way to reduce excess sludge production during wastewater treatment is by preventing biomass formation within the aerobic treatment train rather than post treatment of the generated sludge. In the present investigation two different mechanical devices namely, Ultrasonic and Shear Gap homogenizers have been employed to disintegrate the aerobic biomass. This study is intended to restrict the multiplication of microbial biomass and at the same time degrade the organics present in wastewater by increasing the oxidative capacity of microorganisms. The disintegrability on biomass was determined by biochemical methods. Degree of inactivation provides the information on inability of microorganisms to consume oxygen upon disruption. The soluble COD quantifies the extent of release of intra cellular compounds. The participation of disintegrated microorganism in wastewater treatment process was carried out in two identical respirometeric reactors. The results show that Ultrasonic homogenizer is very effective in the disruption of microorganisms leading to a maximum microbial growth reduction of 27%. On the other hand, Shear gap homogenizer does not favor the sludge growth reduction rather it facilitates the growth. This study also shows that for better microbial growth reduction, floc size reduction alone is not sufficient but also microbial disruption is essential. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Common Hydraulic Fracturing Fluid Additives Alter the Structure and Function of Anaerobic Microbial Communities.

    PubMed

    Mumford, Adam C; Akob, Denise M; Klinges, J Grace; Cozzarelli, Isabelle M

    2018-04-15

    The development of unconventional oil and gas (UOG) resources results in the production of large volumes of wastewater containing a complex mixture of hydraulic fracturing chemical additives and components from the formation. The release of these wastewaters into the environment poses potential risks that are poorly understood. Microbial communities in stream sediments form the base of the food chain and may serve as sentinels for changes in stream health. Iron-reducing organisms have been shown to play a role in the biodegradation of a wide range of organic compounds, and so to evaluate their response to UOG wastewater, we enriched anaerobic microbial communities from sediments collected upstream (background) and downstream (impacted) of an UOG wastewater injection disposal facility in the presence of hydraulic fracturing fluid (HFF) additives: guar gum, ethylene glycol, and two biocides, 2,2-dibromo-3-nitrilopropionamide (DBNPA) and bronopol (C 3 H 6 BrNO 4 ). Iron reduction was significantly inhibited early in the incubations with the addition of biocides, whereas amendment with guar gum and ethylene glycol stimulated iron reduction relative to levels in the unamended controls. Changes in the microbial community structure were observed across all treatments, indicating the potential for even small amounts of UOG wastewater components to influence natural microbial processes. The microbial community structure differed between enrichments with background and impacted sediments, suggesting that impacted sediments may have been preconditioned by exposure to wastewater. These experiments demonstrated the potential for biocides to significantly decrease iron reduction rates immediately following a spill and demonstrated how microbial communities previously exposed to UOG wastewater may be more resilient to additional spills. IMPORTANCE Organic components of UOG wastewater can alter microbial communities and biogeochemical processes, which could alter the rates of essential natural attenuation processes. These findings provide new insights into microbial responses following a release of UOG wastewaters and are critical for identifying strategies for the remediation and natural attenuation of impacted environments. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  7. Metal-Organic-Framework-Derived Dual Metal- and Nitrogen-Doped Carbon as Efficient and Robust Oxygen Reduction Reaction Catalysts for Microbial Fuel Cells.

    PubMed

    Tang, Haolin; Cai, Shichang; Xie, Shilei; Wang, Zhengbang; Tong, Yexiang; Pan, Mu; Lu, Xihong

    2016-02-01

    A new class of dual metal and N doped carbon catalysts with well-defined porous structure derived from metal-organic frameworks (MOFs) has been developed as a high-performance electrocatalyst for oxygen reduction reaction (ORR). Furthermore, the microbial fuel cell (MFC) device based on the as-prepared Ni/Co and N codoped carbon as air cathode catalyst achieves a maximum power density of 4335.6 mW m -2 and excellent durability.

  8. Microbial Reduction of Structural Fe3+ in Nontronite by a Thermophilic Bacterium and its Role in Promoting the Smectite to Illite Reaction

    DTIC Science & Technology

    2007-01-01

    role in promoting the smectite to Hike reaction GENGXIN ZHANG,’ HAIUANG DONG, 1 * JINWOOK KIM,2 AND D.D. EBERL3 ’Department of Geology, Miami...Geological Survey, Boulder, Colorado 80303, USA. ABSTRACT The illitization process of Fe-rich smectite (nontronite NAu-2) promoted by microbial reduction of...layers of illite/ smectite or highly charged smectite were detected under other conditions. The morphology of biogenic illite evolved from lath and flake

  9. Fecal Bacteria, Bacteriophage, and Nutrient Reductions in a Full-Scale Denitrifying Woodchip Bioreactor.

    PubMed

    Rambags, Femke; Tanner, Chris C; Stott, Rebecca; Schipper, Louis A

    2016-05-01

    Denitrifying bioreactors using woodchips or other slow-release carbon sources can be an effective method for removing nitrate (NO) from wastewater and tile drainage. However, the ability of these systems to remove fecal microbes from wastewater has been largely uninvestigated. In this study, reductions in fecal indicator bacteria () and viruses (F-specific RNA bacteriophage [FRNA phage]) were analyzed by monthly sampling along a longitudinal transect within a full-scale denitrifying woodchip bioreactor receiving secondary-treated septic tank effluent. Nitrogen, phosphorus, 5-d carbonaceous biochemical oxygen demand (CBOD), and total suspended solids (TSS) reduction were also assessed. The bioreactor demonstrated consistent and substantial reduction of (2.9 log reduction) and FRNA phage (3.9 log reduction) despite receiving highly fluctuating inflow concentrations [up to 3.5 × 10 MPN (100 mL) and 1.1 × 10 plaque-forming units (100 mL) , respectively]. Most of the removal of fecal microbial contaminants occurred within the first meter of the system (1.4 log reduction for ; 1.8 log reduction for FRNA phage). The system was also efficient at removing NO (>99.9% reduction) and TSS (89% reduction). There was no evidence of consistent removal of ammonium, organic nitrogen, or phosphorus. Leaching of CBOD occurred during initial operation but decreased and stabilized at lower values (14 g O m) after 9 mo. We present strong evidence for reliable microbial contaminant removal in denitrifying bioreactors, demonstrating their broader versatility for wastewater treatment. Research on the removal mechanisms of microbial contaminants in these systems, together with the assessment of longevity of removal, is warranted. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Kinetics of nitrate and sulfate removal using a mixed microbial culture with or without limited-oxygen fed.

    PubMed

    Xu, Xi-Jun; Chen, Chuan; Wang, Ai-Jie; Guo, Hong-Liang; Yuan, Ye; Lee, Duu-Jong; Ren, Nan-Qi

    2014-07-01

    The biological degradation of nitrate and sulfate was investigated using a mixed microbial culture and lactate as the carbon source, with or without limited-oxygen fed. It was found that sulfate reduction was slightly inhibited by nitrate, since after nitrate depletion the sulfate reduction rate increased from 0.37 mg SO4 (2-)/mg VSS d to 0.71 mg SO4 (2-)/mg VSS d, and the maximum rate of sulfate reduction in the presence of nitrate corresponded to 56 % of the non-inhibited sulfate reduction rate determined after nitrate depleted. However, simultaneous but not sequential reduction of both oxy-anions was observed in this study, unlike some literature reports in which sulfate reduction starts only after depletion of nitrate, and this case might be due to the fact that lactate was always kept above the limiting conditions. At limited oxygen, the inhibited effect on sulfate reduction by nitrate was relieved, and the sulfate reduction rate seemed relatively higher than that obtained without limited-oxygen fed, whereas kept almost constant (0.86-0.89 mg SO4 (2-)/mg VSS d) cross the six ROS states. In contrast, nitrate reduction rates decreased substantially with the increase in the initial limited-oxygen fed, showing an inhibited effect on nitrate reduction by oxygen. Kinetic parameters determined for the mixed microbial culture showed that the maximum specific sulfate utilization rate obtained (0.098 ± 0.022 mg SO4 (2-)/(mg VSS h)) was similar to the reported typical value (0.1 mg SO4 (2-)/(mg VSS h)), also indicating a moderate inhibited effect by nitrate.

  11. Effects of imposed salinity gradients on dissimilatory arsenate reduction, sulfate reduction, and other microbial processes in sediments from two California soda lakes

    USGS Publications Warehouse

    Kulp, T.R.; Han, S.; Saltikov, C.W.; Lanoil, B.D.; Zargar, K.; Oremland, R.S.

    2007-01-01

    Salinity effects on microbial community structure and on potential rates of arsenate reduction, arsenite oxidation, sulfate reduction, denitrification, and methanogenesis were examined in sediment slurries from two California soda lakes. We conducted experiments with Mono Lake and Searles Lake sediments over a wide range of salt concentrations (25 to 346 g liter-1). With the exception of sulfate reduction, rates of all processes demonstrated an inverse relationship to total salinity. However, each of these processes persisted at low but detectable rates at salt saturation. Denaturing gradient gel electrophoresis analysis of partial 16S rRNA genes amplified from As(V) reduction slurries revealed that distinct microbial populations grew at low (25 to 50 g liter-1), intermediate (100 to 200 g liter-1), and high (>300 g liter-1) salinity. At intermediate and high salinities, a close relative of a cultivated As-respiring halophile was present. These results suggest that organisms adapted to more dilute conditions can remain viable at high salinity and rapidly repopulate the lake during periods of rising lake level. In contrast to As reduction, sulfate reduction in Mono Lake slurries was undetectable at salt saturation. Furthermore, sulfate reduction was excluded from Searles Lake sediments at any salinity despite the presence of abundant sulfate. Sulfate reduction occurred in Searles Lake sediment slurries only following inoculation with Mono Lake sediment, indicating the absence of sulfate-reducing flora. Experiments with borate-amended Mono Lake slurries suggest that the notably high (0.46 molal) concentration of borate in the Searles Lake brine was responsible for the exclusion of sulfate reducers from that ecosystem. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  12. Hematite Reduction Buffers Acid Generation and Enhances Nutrient Uptake by a Fermentative Iron Reducing Bacterium, Orenia metallireducens Strain Z6.

    PubMed

    Dong, Yiran; Sanford, Robert A; Chang, Yun-Juan; McInerney, Michael J; Fouke, Bruce W

    2017-01-03

    Fermentative iron-reducing organisms have been identified in a variety of environments. Instead of coupling iron reduction to respiration, they have been consistently observed to use ferric iron minerals as an electron sink for fermentation. In the present study, a fermentative iron reducer, Orenia metallireducens strain Z6, was shown to use iron reduction to enhance fermentation not only by consuming electron equivalents, but also by generating alkalinity that effectively buffers the pH. Fermentation of glucose by this organism in the presence of a ferric oxide mineral, hematite (Fe 2 O 3 ), resulted in enhanced glucose decomposition compared with fermentation in the absence of an iron source. Parallel evidence (i.e., genomic reconstruction, metabolomics, thermodynamic analyses, and calculation of electron transfer) suggested hematite reduction as a proton-consuming reaction effectively consumed acid produced by fermentation. The buffering effect of hematite was further supported by a greater extent of glucose utilization by strain Z6 in media with increasing buffer capacity. Such maintenance of a stable pH through hematite reduction for enhanced glucose fermentation complements the thermodynamic interpretation of interactions between microbial iron reduction and other biogeochemical processes. This newly discovered feature of iron reducer metabolism also has significant implications for groundwater management and contaminant remediation by providing microbially mediated buffering systems for the associated microbial and/or chemical reactions.

  13. Sulfur transformations at the hydrogen sulfide/oxygen interface in stratified waters and in cyanobacterial mats

    NASA Technical Reports Server (NTRS)

    Cohen, Y.

    1985-01-01

    Stratified water bodies allow the development of several microbial plates along the water column. The microbial plates develop in relation to nutrient availability, light penetration, and the distribution of oxygen and sulfide. Sulfide is initially produced in the sediment by sulfate-reducing bacteria. It diffuses along the water column creating a zone of hydrogen sulfide/oxygen interface. In the chemocline of Solar Lake oxygen and sulfide coexist in a 0 to 10 cm layer that moves up and down during a diurnal cycle. The microbial plate at the chemocline is exposed to oxygen and hydrogen sulfide, alternating on a diurnal basis. The cyanobacteria occupying the interface switch from anoxygenic photosynthesis in the morning to oxygenic photosynthesis during the rest of the day which results in a temporal build up of elemental sulfur during the day and disappears at night due to both oxidation to thiosulfate and sulfate by thiobacilli, and reduction to hydrogen sulfide by Desulfuromonas sp. and anaerobically respiring cyanobacteria. Sulfate reduction was enhanced in the light at the surface of the cyanobacterial mats. Microsulfate reduction measurements showed enhanced activity of sulfate reduction even under high oxygen concentrations of 300 to 800 micrometer. Apparent aerobic SO sub 4 reduction activity is explained by the co-occurrence of H sub 2. The physiology of this apparent sulfate reduction activity is studied.

  14. Hyperthermia increases accumulation of technetium-99m-labeled liposomes in feline sarcomas.

    PubMed

    Matteucci, M L; Anyarambhatla, G; Rosner, G; Azuma, C; Fisher, P E; Dewhirst, M W; Needham, D; Thrall, D E

    2000-09-01

    The effect of hyperthermia on the accumulation of technetium-99m-labeled liposomes was studied in feline sarcomas. Each cat received two separate injections of liposomes. The first was used to quantify the amount of technetium-99m-labeled liposomes within the tumor under normothermic conditions. The second injection was made at the beginning of a 60-min hyperthermia procedure. Planar scintigraphy was used to measure the activity of technetium-99m-labeled liposomes within the tumor at predetermined times up to 18 h after injection. Regions of interest were drawn for the tumor, lungs, liver, kidney, and aorta. Counts in the regions of interest were decay corrected. Counts/pixel in the tumor under normothermic and hyperthermic conditions were normalized to aorta counts/pixel. A total of 16 cats were eligible for the study. In two of the 16 cats, incomplete count data precluded analysis. In the remaining 14 cats, hyperthermia resulted in a significant increase in liposome accumulation in the tumor (P = 0.001). Tumor volume ranged from 1.2 to 236.2 cm3, and thermal dose ranged from 2.0 to 243.3 CEM43CT90 (equivalent time that the 10th percentile temperature was equal to 43 degrees C). There was not a relationship between either tumor volume or hyperthermia dose on the magnitude of increased liposome accumulation, suggesting that this method has application across a range of tumor volumes and degrees of heatibility.

  15. Analysis of the functional gene structure and metabolic potential of microbial community in high arsenic groundwater.

    PubMed

    Li, Ping; Jiang, Zhou; Wang, Yanhong; Deng, Ye; Van Nostrand, Joy D; Yuan, Tong; Liu, Han; Wei, Dazhun; Zhou, Jizhong

    2017-10-15

    Microbial functional potential in high arsenic (As) groundwater ecosystems remains largely unknown. In this study, the microbial community functional composition of nineteen groundwater samples was investigated using a functional gene array (GeoChip 5.0). Samples were divided into low and high As groups based on the clustering analysis of geochemical parameters and microbial functional structures. The results showed that As related genes (arsC, arrA), sulfate related genes (dsrA and dsrB), nitrogen cycling related genes (ureC, amoA, and hzo) and methanogen genes (mcrA, hdrB) in groundwater samples were correlated with As, SO 4 2- , NH 4 + or CH 4 concentrations, respectively. Canonical correspondence analysis (CCA) results indicated that some geochemical parameters including As, total organic content, SO 4 2- , NH 4 + , oxidation-reduction potential (ORP) and pH were important factors shaping the functional microbial community structures. Alkaline and reducing conditions with relatively low SO 4 2- , ORP, and high NH 4 + , as well as SO 4 2- and Fe reduction and ammonification involved in microbially-mediated geochemical processes could be associated with As enrichment in groundwater. This study provides an overall picture of functional microbial communities in high As groundwater aquifers, and also provides insights into the critical role of microorganisms in As biogeochemical cycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The influence of in situ chemical oxidation on microbial community composition in groundwater contaminated with chlorinated solvents.

    PubMed

    Sercu, Bram; Jones, Antony D G; Wu, Cindy H; Escobar, Mauricio H; Serlin, Carol L; Knapp, Timothy A; Andersen, Gary L; Holden, Patricia A

    2013-01-01

    In situ chemical oxidation with permanganate has become an accepted remedial treatment for groundwater contaminated with chlorinated solvents. This study focuses on the immediate and short-term effects of sodium permanganate (NaMnO(4)) on the indigenous subsurface microbial community composition in groundwater impacted by trichloroethylene (TCE). Planktonic and biofilm microbial communities were studied using groundwater grab samples and reticulated vitreous carbon passive samplers, respectively. Microbial community composition was analyzed by terminal restriction fragment length polymorphism and a high-density phylogenetic microarray (PhyloChip). Significant reductions in microbial diversity and biomass were shown during NaMnO(4) exposure, followed by recovery within several weeks after the oxidant concentrations decreased to <1 mg/L. Bray-Curtis similarities and nonmetric multidimensional scaling showed that microbial community composition before and after NaMnO(4) was similar, when taking into account the natural variation of the microbial communities. Also, 16S rRNA genes of two reductive dechlorinators (Desulfuromonas spp. and Sulfurospirillum spp.) and diverse taxa capable of cometabolic TCE oxidation were detected in similar quantities by PhyloChip across all monitoring wells, irrespective of NaMnO(4) exposure and TCE concentrations. However, minimal biodegradation of TCE was observed in this study, based on oxidized conditions, concentration patterns of chlorinated and nonchlorinated hydrocarbons, geochemistry, and spatiotemporal distribution of TCE-degrading bacteria.

  17. Microbial Transformations of Selenium Species of Relevance to Bioremediation

    PubMed Central

    Eswayah, Abdurrahman S.; Smith, Thomas J.

    2016-01-01

    Selenium species, particularly the oxyanions selenite (SeO32−) and selenate (SeO42−), are significant pollutants in the environment that leach from rocks and are released by anthropogenic activities. Selenium is also an essential micronutrient for organisms across the tree of life, including microorganisms and human beings, particularly because of its presence in the 21st genetically encoded amino acid, selenocysteine. Environmental microorganisms are known to be capable of a range of transformations of selenium species, including reduction, methylation, oxidation, and demethylation. Assimilatory reduction of selenium species is necessary for the synthesis of selenoproteins. Dissimilatory reduction of selenate is known to support the anaerobic respiration of a number of microorganisms, and the dissimilatory reduction of soluble selenate and selenite to nanoparticulate elemental selenium greatly reduces the toxicity and bioavailability of selenium and has a major role in bioremediation and potentially in the production of selenium nanospheres for technological applications. Also, microbial methylation after reduction of Se oxyanions is another potentially effective detoxification process if limitations with low reaction rates and capture of the volatile methylated selenium species can be overcome. This review discusses microbial transformations of different forms of Se in an environmental context, with special emphasis on bioremediation of Se pollution. PMID:27260359

  18. Effects of the photodynamic therapy on microbial reduction of diabetic ulcers in humans

    NASA Astrophysics Data System (ADS)

    Carrinho Aureliano, Patrícia Michelassi; Andreani, Dora Inés. Kozusny; Morete, Vislaine de Aguiar; Iseri Giraldeli, Shizumi; Baptista, Alessandra; Navarro, Ricardo Scarparo; Villaverde, Antonio Balbin

    2018-02-01

    Diabetes Mellitus is a chronic disease that can lead to lower-limb ulceration. The photodynamic therapy (PDT) is based on light interaction with a photosensitizer capable to promote bacterial death and tissue repair acceleration. This study analyzed the effects of PDT in the repair of human diabetic ulcers, by means of microbiological assessment. The clinical study was composed of 12 patients of both sexes with diabetic ulcers in lower limbs that were divided into two groups, control group (n=6) and PDT group (n=6). All patients were treated with collagenase/chloramphenicol during the experimental period, in which 6 of them have received PDT with methylene blue dye (0.01%) associated with laser therapy (660 nm), dose of 6 J/cm2¨ and 30 mW laser power. PDT group received ten treatment sessions. Wounds were evaluated for micro-organisms analysis. It was found a reduction in the occurrence of Staphylococcus aureus in both groups, being that reduction more pronounced in the PDT group. Microbial count was performed on PDT group, showing a statistical difference reduction (p<0.05) when compared before and after the treatment. It is concluded that PDT seems to be effective in microbial reduction of human diabetic wounds, promoting acceleration and improvement of tissue repair quality.ty.

  19. Microbial redox processes in deep subsurface environments and the potential application of (per)chlorate in oil reservoirs

    PubMed Central

    Liebensteiner, Martin G.; Tsesmetzis, Nicolas; Stams, Alfons J. M.; Lomans, Bartholomeus P.

    2014-01-01

    The ability of microorganisms to thrive under oxygen-free conditions in subsurface environments relies on the enzymatic reduction of oxidized elements, such as sulfate, ferric iron, or CO2, coupled to the oxidation of inorganic or organic compounds. A broad phylogenetic and functional diversity of microorganisms from subsurface environments has been described using isolation-based and advanced molecular ecological techniques. The physiological groups reviewed here comprise iron-, manganese-, and nitrate-reducing microorganisms. In the context of recent findings also the potential of chlorate and perchlorate [jointly termed (per)chlorate] reduction in oil reservoirs will be discussed. Special attention is given to elevated temperatures that are predominant in the deep subsurface. Microbial reduction of (per)chlorate is a thermodynamically favorable redox process, also at high temperature. However, knowledge about (per)chlorate reduction at elevated temperatures is still scarce and restricted to members of the Firmicutes and the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic distribution of functional genes in (meta)genome databases and combining this knowledge with extrapolations to earlier-made physiological observations we speculate on the potential of (per)chlorate reduction in the subsurface and more precisely oil fields. In addition, the application of (per)chlorate for bioremediation, souring control, and microbial enhanced oil recovery are addressed. PMID:25225493

  20. Reduction and Simultaneous Removal of 99 Tc and Cr by Fe(OH) 2 (s) Mineral Transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saslow, Sarah A.; Um, Wooyong; Pearce, Carolyn I.

    Technetium (Tc) remains a priority remediation concern due to persistent challenges, including rapid re-oxidation of immobilized Tc, and competing contaminants, e.g. Cr(VI), that inhibit targeted Tc reduction and incorporation into stable mineral phases. Here Fe(OH) 2(s) is investigated as a comprehensive solution for overcoming these challenges, by serving as both the reductant, (Fe(II)), and immobilization agent to form Tc-incorporated magnetite (Fe 3O 4). Trace metal analysis suggests removal of Tc(VII) and Cr(VI) from solution occurs simultaneously; however, complete removal and reduction of Cr(VI) is achieved earlier than the removal/reduction of co-mingled Tc(VII). Bulk oxidation state analysis of the magnetite solidmore » phase by XANES confirms that the majority of Tc is Tc(IV), which is corroborated by XPS. Furthermore, EXAFS results show successful Tc(IV) incorporation into magnetite octahedral sites without additional substitution of Cr or Tc into neighboring Fe octahedral sites. XPS analysis of Cr confirms reduction to Cr(III) and the formation of a Cr-incorporated spinel, Cr2O 3, and Cr(OH)3 phases. Spinel (modeled as Fe 3O 4), goethite, and feroxyhyte are detected in all reacted solid phase samples analyzed by XRD, where Tc(IV) incorporation has little effect on the spinel lattice structure. In the presence of Cr(III) a spinel phase along the magnetite-chromite (Fe 3O 4-FeCr 2O 4) solid-solution line is formed.« less

  1. Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell.

    PubMed

    Zhao, Zisheng; Zhang, Yaobin; Quan, Xie; Zhao, Huimin

    2016-01-01

    Increase of methanogenesis in methane-producing microbial electrolysis cells (MECs) is frequently believed as a result of cathodic reduction of CO2. Recent studies indicated that this electromethanogenesis only accounted for a little part of methane production during anaerobic sludge digestion. Instead, direct interspecies electron transfer (DIET) possibly plays an important role in methane production. In this study, anaerobic digestion of sludge were investigated in a single-chamber MEC reactor, a carbon-felt supplemented reactor and a common anaerobic reactor to evaluate the effects of DIET on the sludge digestion. The results showed that adding carbon felt into the reactor increased 12.9% of methane production and 17.2% of sludge reduction. Imposing a voltage on the carbon felt further improved the digestion. Current calculation showed that the cathodic reduction only contributed to 27.5% of increased methane production. Microbial analysis indicated that DIET played an important role in the anaerobic sludge digestion in the MEC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Corrosion Behavior of Nuclear Waste Storage Canister Materials

    NASA Astrophysics Data System (ADS)

    Grant, John

    The nature of interaction of mild steel nuclear waste storage containers with technetium ions is not fully known. Technetium is formed during nuclear processing and some of this technetium has leaked at the Hanford nuclear waste storage site in Washington State. It is often found as highly oxidized pertechnetate (TeO4-) anions at these storage sites which also happen to be highly alkaline and contain a significant amount of nitrate. Theoretically, pertechnetate anions can act as electron acceptors and interact with the mild steel containers and accelerate the oxidation (corrosion) of steel. It is of interest to identify if pertechnetate anions pose a corrosion hazard to the mild steel nuclear waste storage tanks, under the conditions of the storage sites, as that can accelerate the degradation of the tanks and lead to further contamination. In this thesis, the interaction of two relevant container materials, namely, steel alloys A285 and A537 with a technetium surrogate, rhenium was studied. Perrhenate was used as an analog for pertechnetate. As all isotopes of technetium are radioactive, rhenium was chosen as the experimental surrogate due to its chemical similarity to technetium. Electrochemical behavior was evaluated using potentiodynamic polarization tests, and the surface morphology was studied using optical microscopy and scanning electron microscopy. Potentiodynamic polarization tests were conducted in 1.0M NaNO3 + 0.1M NaOH and 1.0M NaNO3 + 0.1M NaOH + 0.02M NaReO4. Tests were performed at three different temperatures, namely, (i) room temperature, (ii) 50°C and (iii) 80°C to study the effect of higher temperatures found in the storage sites. Corrosion current, corrosion potential, anodic and cathodic Tafel slopes, polarization resistance and corrosion rates were obtained from electrochemical testing and evaluated. Increasing temperatures was found to lead to increasing corrosion rates for all samples. The data also revealed increased corrosion from sodium perrhenate on the mild steel A285 samples. The perrhenate anion (ReO4-) formed a redox couple with iron in the mild steel and accelerated metal dissolution that increased with temperature. Pitting and uniform corrosion was observed in the A285 and A537 mild steel samples. The A537 mild steel, however, displayed lower corrosion rates in the presence of perrhenate compared in the absence of perrhenate. A hypothesis has been proposed to explain the differences between the two alloys.

  3. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps

    DOE PAGES

    Sivan, Orit; Antler, Gilad; Turchyn, Alexandra V.; ...

    2014-09-22

    Seep sediments are dominated by intensive microbial sulfate reduction coupled to the anaerobic oxidation of methane (AOM). Through geochemical measurements of incubation experiments with methane seep sediments collected from Hydrate Ridge, we provide insight into the role of iron oxides in sulfate-driven AOM. Seep sediments incubated with 13C-labeled methane showed co-occurring sulfate reduction, AOM, and methanogenesis. The isotope fractionation factors for sulfur and oxygen isotopes in sulfate were about 40‰ and 22‰, respectively, reinforcing the difference between microbial sulfate reduction in methane seeps versus other sedimentary environments (for example, sulfur isotope fractionation above 60‰ in sulfate reduction coupled to organicmore » carbon oxidation or in diffusive sedimentary sulfate–methane transition zone). The addition of hematite to these microcosm experiments resulted in significant microbial iron reduction as well as enhancing sulfate-driven AOM. The magnitude of the isotope fractionation of sulfur and oxygen isotopes in sulfate from these incubations was lowered by about 50%, indicating the involvement of iron oxides during sulfate reduction in methane seeps. The similar relative change between the oxygen versus sulfur isotopes of sulfate in all experiments (with and without hematite addition) suggests that oxidized forms of iron, naturally present in the sediment incubations, were involved in sulfate reduction, with hematite addition increasing the sulfate recycling or the activity of sulfur-cycling microorganisms by about 40%. Furthermore, these results highlight a role for natural iron oxides during bacterial sulfate reduction in methane seeps not only as nutrient but also as stimulator of sulfur recycling.« less

  4. Advection of surface-derived organic carbon fuels microbial reduction in Bangladesh groundwater

    PubMed Central

    Mailloux, Brian J.; Trembath-Reichert, Elizabeth; Cheung, Jennifer; Watson, Marlena; Stute, Martin; Freyer, Greg A.; Ferguson, Andrew S.; Ahmed, Kazi Matin; Alam, Md. Jahangir; Buchholz, Bruce A.; Thomas, James; Layton, Alice C.; Zheng, Yan; Bostick, Benjamin C.; van Geen, Alexander

    2013-01-01

    Chronic exposure to arsenic (As) by drinking shallow groundwater causes widespread disease in Bangladesh and neighboring countries. The release of As naturally present in sediment to groundwater has been linked to the reductive dissolution of iron oxides coupled to the microbial respiration of organic carbon (OC). The source of OC driving this microbial reduction—carbon deposited with the sediments or exogenous carbon transported by groundwater—is still debated despite its importance in regulating aquifer redox status and groundwater As levels. Here, we used the radiocarbon (14C) signature of microbial DNA isolated from groundwater samples to determine the relative importance of surface and sediment-derived OC. Three DNA samples collected from the shallow, high-As aquifer and one sample from the underlying, low-As aquifer were consistently younger than the total sediment carbon, by as much as several thousand years. This difference and the dominance of heterotrophic microorganisms implies that younger, surface-derived OC is advected within the aquifer, albeit more slowly than groundwater, and represents a critical pool of OC for aquifer microbial communities. The vertical profile shows that downward transport of dissolved OC is occurring on anthropogenic timescales, but bomb 14C-labeled dissolved OC has not yet accumulated in DNA and is not fueling reduction. These results indicate that advected OC controls aquifer redox status and confirm that As release is a natural process that predates human perturbations to groundwater flow. Anthropogenic perturbations, however, could affect groundwater redox conditions and As levels in the future. PMID:23487743

  5. A Novel Nano/Micro-Fluidic Reactor for Evaluation of Pore-Scale Reactive Transport

    NASA Astrophysics Data System (ADS)

    Werth, C. J.; Alcalde, R.; Ghazvini, S.; Sanford, R. A.; Fouke, B. W.; Valocchi, A. J.

    2017-12-01

    The reactive transport of pollutants in groundwater can be affected by the presence of stressor chemicals, which inhibit microbial functions. The stressor can be a primary reactant (e.g., trichloroethene), a reaction product (e.g., nitrite from nitrate), or some other chemical present in groundwater (e.g., antibiotic). In this work, a novel nano/microfluidic cell was developed to examine the effect of the antibiotic ciprofloxacin on nitrate reduction coupled to lactate oxidation. The reactor contains parallel boundary channels that deliver flow and solutes on either side of a pore network. The boundary channels are separated from the pore network by one centimeter-long, one micrometer-thick walls perforated by hundreds of nanoslits. The nanoslits allow solute mass transfer from the boundary channels to the pore network, but not microbial passage. The pore network was inoculated with a pure culture of Shewanella oneidensis MR-1, and this was allowed to grow on lactate and nitrate in the presence of ciprofloxacin, all delivered through the boundary channels. Microbial growth patterns suggest inhibition from ciprofloxacin and the nitrate reduction product nitrite, and a dependence on nitrate and lactate mass transfer rates from the boundary channels. A numerical model was developed to interpret the controlling mechanisms, and results indicate cell chemotaxis also affects nitrate reduction and microbial growth. The results are broadly relevant to bioremediation efforts where one or more chemicals that inhibit microbial growth are present and inhibit pollutant degradation rates.

  6. Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry

    USGS Publications Warehouse

    McMahon, P.B.; Chapelle, F.H.

    1991-01-01

    MICROBIAL activity in aquifers plays an important part in the chemical evolution of ground water1-5. The most important terminal electron-accepting microbial processes in deeply buried anaerobic aquifers are iron reduction, sulphate reduction and methanogenesis5-8, each of which requires simple organic compounds or hydrogen (H2) as electron donors. Until now, the source of these compounds was unknown because the concentrations of dissolved organic carbon and sedimentary organic carbon in aquifers are extremely low9-11. Here we show that rates of microbial fermentation exceed rates of respiration in organic-rich aquitards (low-permeability sediments stratigraphically adjacent to higher-permeability aquifer sediments), resulting in a net accumulation of simple organic acids in pore waters. In aquifers, however, respiration outpaces fermentation, resulting in a net consumption of organic acids. The concentration gradient that develops in response to these two processes drives a net diffusive flux of organic acids from aquitards to aquifers. Diffusion calculations demonstrate that rates of organic acid transport are sufficient to account for observed rates of microbial respiration in aquifers. This overall process effectively links the large pool of sedimentary organic carbon in aquitards to microbial respiration in aquifers, and is a principal mechanism driving groundwater chemistry changes in aquifers.

  7. Quantitative Relationships between Photosynthetic, Nitrogen Fixing, and Fermentative H2 Metabolism in a Photosynthetic Microbial Mat

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Albert, Daniel B.; Bebout, Brad M.; Turk, Kendra A.; DesMarais, David J.

    2004-01-01

    The ultimate potential of any microbial ecosystem to contribute chemically to its environment - and therefore, to impact planetary biogeochemistry or to generate recognizable biosignatures - depends not only on the individual metabolic capabilities of constituent organisms, but also on how those capabilities are expressed through interactions with neighboring organisms. This is particularly important for microbial mats, which compress an extremely broad range of metabolic potential into a small and dynamic system. H2 participates in many of these metabolic processes, including the major elemental cycling processes of photosynthesis, nitrogen fixation, sulfate reduction, and fermentation, and may therefore serve as a mediator of microbial interactions within the mat system. Collectively, the requirements of energy, electron transfer, and biomass element stoichiometry suggest quantitative relationships among the major element cycling processes, as regards H2 metabolism We determined experimentally the major contributions to 32 cycling in hypersaline microbial mats from Baja California, Mexico, and compared them to predicted relationships. Fermentation under dark, anoxic conditions is quantitatively the most important mechanism of H2 production, consistent with expectations for non-heterocystous mats such as those under study. Up to 16% of reducing equivalents fixed by photosynthesis during the day may be released by this mechanism. The direct contribution of nitrogen fixation to H2 production is small in comparison, but this process may indirectly stimulate substantial H2 generation, by requiring higher rates of fermentation. Sulfate reduction, aerobic consumption, diffusive and ebulitive loss, and possibly H2-based photoreduction of CO2 serve as the principal H2 sinks. Collectively, these processes interact to create an orders-of-magnitude daily variation in H2 concentrations and fluxes, and thereby in the oxidation-reduction potential that is imposed on microbial processes occuring within the mat matrix.

  8. Rate dependent fractionation of sulfur isotopes in through-flowing systems

    NASA Astrophysics Data System (ADS)

    Giannetta, M.; Sanford, R. A.; Druhan, J. L.

    2017-12-01

    The fidelity of reactive transport models in quantifying microbial activity in the subsurface is often improved through the use stable isotopes. However, the accuracy of current predictions for microbially mediated isotope fractionations within open through-flowing systems typically depends on nutrient availability. This disparity arises from the common application of a single `effective' fractionation factor assigned to a given system, despite extensive evidence for variability in the fractionation factor between eutrophic environments and many naturally occurring, nutrient-limited environments. Here, we demonstrate a reactive transport model with the capacity to simulate a variable fractionation factor over a range of microbially mediated reduction rates and constrain the model with experimental data for nutrient limited conditions. Two coupled isotope-specific Monod rate laws for 32S and 34S, constructed to quantify microbial sulfate reduction and predict associated S isotope partitioning, were parameterized using a series of batch reactor experiments designed to minimize microbial growth. In the current study, we implement these parameterized isotope-specific rate laws within an open, through-flowing system to predict variable fractionation with distance as a function of sulfate reduction rate. These predictions are tested through a supporting laboratory experiment consisting of a flow-through column packed with homogenous porous media inoculated with the same species of sulfate reducing bacteria used in the previous batch reactors, Desulfovibrio vulgaris. The collective results of batch reactor and flow-through column experiments support a significant improvement for S isotope predictions in isotope-sensitive multi-component reactive transport models through treatment of rate-dependent fractionation. Such an update to the model will better equip reactive transport software for isotope informed characterization of microbial activity within energy and nutrient limited environments.

  9. [Synthetic biology and rearrangements of microbial genetic material].

    PubMed

    Liang, Quan-Feng; Wang, Qian; Qi, Qing-Sheng

    2011-10-01

    As an emerging discipline, synthetic biology has shown great scientific values and application prospects. Although there have been many reviews of various aspects on synthetic biology over the last years, this article, for the first time, attempted to discuss the relationship and difference between microbial genetics and synthetic biology. We summarized the recent development of synthetic biology in rearranging microbial genetic materials, including synthesis, design and reduction of genetic materials, standardization of genetic parts and modularization of genetic circuits. The relationship between synthetic biology and microbial genetic engineering was also discussed in the paper.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, T.; Griffin, A. M.; Gorski, C. A.

    Dissimilatory microbial reduction of solid-phase Fe(III)-oxides and Fe(III)-bearing phyllosilicates (Fe(III)-phyllosilicates) is an important process in anoxic soils, sediments, and subsurface materials. Although various studies have documented the relative extent of microbial reduction of single-phase Fe(III)-oxides and Fe(III)-phyllosilicates, detailed information is not available on interaction between these two processes in situations where both phases are available for microbial reduction. The goal of this research was to use the model dissimilatory iron-reducing bacterium (DIRB) Geobacter sulfurreducens to study Fe(III)-oxide vs. Fe(III)-phyllosilicate reduction in a range of subsurface materials and Fe(III)-oxide stripped versions of the materials. Low temperature (12K) Mossbauer spectroscopy was usedmore » to infer changes in the relative abundances of Fe(III)-oxide, Fe(III)-phyllosilicate, and phyllosilicate-associated Fe(II) (Fe(II)-phyllosilicate). A Fe partitioning model was employed to analyze the fate of Fe(II) and assess the potential for abiotic Fe(II)-catalyzed reduction of Fe(III)-phyllosilicates. The results showed that in most cases Fe(III)- oxide utilization dominated (70-100 %) bulk Fe(III) reduction activity, and that electron transfer from oxide-derived Fe(II) played only a minor role (ca. 10-20 %) in Fe partitioning. In addition, the extent of Fe(III)-oxide reduction was positively correlated to surface area-normalized cation exchange capacity and the phyllosilicate-Fe(III)/total Fe(III) ratio, which suggests that the phyllosilicates in the natural sediments promoted Fe(III)-oxide reduction by binding of oxide-derived Fe(II), thereby enhancing Fe(III)-oxide reduction by reducing or delaying the inhibitory effect that Fe(II) accumulation on oxide and DIRB cell surfaces has on Fe(III)-oxide reduction. In general our results suggest that although Fe(III)-oxide reduction is likely to dominate bulk Fe(III) reduction in most subsurface sediments, Fe(II) binding by phyllosilicates is likely to play a key role in controlling the long-term kinetics of Fe(III)-oxide reduction.« less

  11. Geochemical modeling of iron, sulfur, oxygen and carbon in a coastal plain aquifer

    USGS Publications Warehouse

    Brown, C.J.; Schoonen, M.A.A.; Candela, J.L.

    2000-01-01

    Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron-related geochemical processes and redox zonation along a flow path. The observed increase in dissolved inorganic carbon is consistent with the oxidation of sedimentary organic matter coupled to the reduction of O2 and SO4/2- in the aerobic zone, and to the reduction of SO4/2- in the anaerobic zone; estimated rates of CO2 production through reduction of Fe(III) were relatively minor by comparison. The rates of CO2 production calculated from dissolved inorganic carbon mass transfer (2.55 x 10-4 to 48.6 x 10-4 mmol 1-1 yr-1) generally were comparable to the calculated rates of CO2 production by the combined reduction of O2, Fe(III) and SO4/2- (1.31 x 10-4 to 15 x 10-4 mmol 1-1 yr-1). The overall increase in SO4/2- concentrations along the flow path, together with the results of mass-balance calculations, and variations in ??34S values along the flow path indicate that SO4/2- loss through microbial reduction is exceeded by SO4/2- gain through diffusion from sediments and through the oxidation of FeS2. Geochemichal and microbial data on cores indicate that Fe(III) oxyhydroxide coatings on sediment grains in local, organic carbon- and SO4/2- -rich zones have localized SO4/2- -reducing zones in which the formation of iron disulfides been depleted by microbial reduction and resulted in decreases dissolved iron concentrations. These localized zones of SO4/2- reduction, which are important for assessing zones of low dissolved iron for water-supply development, could be overlooked by aquifer studies that rely only on groundwater data from well-water samples for geochemical modeling. (C) 2000 Elsevier Science B.V.Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron-related geochemical processes and redox zonation along a flow path. The observed increase in dissolved inorganic carbon is consistent with the oxidation of sedimentary organic matter coupled to the reduction of O2 and SO42- in the aerobic zone, and to the reduction of SO42- in the anaerobic zone; estimated rates of CO2 production through reduction of Fe(III) were relatively minor by comparison. The rates of CO2 production calculated from dissolved inorganic carbon mass transfer (2.55??10-4 to 48.6??10-4mmol l-1yr-1) generally were comparable to the calculated rates of CO2 production by the combined reduction of O2, Fe(III) and SO42- (1.31??10-4 to 15??10-4mmol l-1yr-1). The overall increase in SO42- concentrations along the flow path, together with the results of mass-balance calculations, and variations in ??34S values along the flow path indicate that SO42- loss through microbial reduction is exceeded by SO42- gain through diffusion from sediments and through the oxidation of FeS2. Geochemical and microbial data on cores indicate that Fe(III) oxyhydroxide coatings on sediment grains in local, organic carbon- and SO42--rich zones have been depleted by microbial reduction and resulted in localized SO42--reducing zones in which the formation of iron disulfides decreases dissolved iron concentrations. These localized zones of SO42- reduction, which are important for assessing zones of low dissolved iron for water-supply development, could be overlooked by aquifer studies that rely only on groundwater data from well-water samples for geochemical modeling.

  12. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell.

    PubMed

    Song, Tian-Shun; Jin, Yuejuan; Bao, Jingjing; Kang, Dongzhou; Xie, Jingjing

    2016-11-05

    In this study, a simple method of biocathode fabrication in a Cr(VI)-reducing microbial fuel cell (MFC) is demonstrated. A self-assembling graphene was decorated onto the biocathode microbially, constructing a graphene/biofilm, in situ. The maximum power density of the MFC with a graphene biocathode is 5.7 times that of the MFC with a graphite felt biocathode. Cr(VI) reduction was also enhanced, resulting in 100% removal of Cr(VI) within 48h, at 40mg/L Cr(VI), compared with only 58.3% removal of Cr(VI) in the MFC with a graphite felt biocathode. Cyclic voltammogram analyses showed that the graphene biocathode had faster electron transfer kinetics than the graphite felt version. Energy dispersive spectrometer (EDS) and X-ray photoelectron spectra (XPS) analysis revealed a possible adsorption-reduction mechanism for Cr(VI) reduction via the graphene biocathode. This study attempts to improve the efficiency of the biocathode in the Cr(VI)-reducing MFC, and provides a useful candidate method for the treatment of Cr(VI) contaminated wastewater, under neutral conditions. Copyright © 2016. Published by Elsevier B.V.

  13. Interaction of abiotic and microbial processes in hexachloroethane reduction in groundwater

    USGS Publications Warehouse

    Roberts, A. Lynn; Gschwend, Philip M.

    1994-01-01

    In order to gain insight into mechanisms of hexachloroethane reduction, hexa- and pentachloroethane transformation rates were measured in anaerobic groundwater samples. For samples spiked with pentachloroethane, disappearance of pentachloroethane was accompanied by tetrachloroethylene production. Transformation rates were similar in unpoisoned and in HgCl2-poisoned samples, and rates were within ±20% of predictions based on measured pH and second-order dehydrochlorination rate constants determined in clean laboratory systems, indicating that the fate of pentachloroethane in this system is dominated by abiotic reactions. No hexachloroethane transformation was observed in HgCl2-poisoned samples, whereas in unpoisoned samples, hexachloroethane disappearance was accompanied by production of tetrachloroethylene as well as traces of pentachloroethane. Although only minor amounts of pentachloroethane accumulated, as much as 30% of the hexachloroethane transformation pathway proceeds via a pentachloroethane intermediate. This suggests that the microbial reduction of hexachloroethane proceeds at least in part through a free-radical mechanism. To the extent that hexachloroethane reduction to tetrachloroethylene occurs through a pentachloroethane intermediate, the first step in the sequence, the microbially-mediated step, is the slow step; the subsequent abiotic dehydrohalogenation step occurs much more rapidly.

  14. Reactor shutdown delays medical procedures

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2008-01-01

    A longer-than-expected maintenance shutdown of the Canadian nuclear reactor that produces North America's entire supply of molybdenum-99 - from which the radioactive isotopes technetium-99 and iodine-131 are made - caused delays to the diagnosis and treatment of thousands of seriously ill patients last month. Technetium-99 is a key component of nuclear-medicine scans, while iodine-131 is used to treat cancer and other diseases of the thyroid. Production eventually resumed, but only after the Canadian government had overruled the Canadian Nuclear Safety Commission (CNSC), which was still concerned about the reactor's safety.

  15. Literature review of the potential impact of glycolic acid on the technetium chemistry of srs tank waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Charles A.; McCabe, Daniel J.

    This document presents a literature study of the impact of glycolate on technetium chemistry in the Savannah River Site (SRS) waste system and specifically Saltstone. A predominant portion of the Tc at SRS will be sent to the Saltstone Facility where it will be immobilized. The Tc in the tank waste is in the highly soluble chemical form of pertechnetate ion (TcO 4 -) which is reduced by blast furnace slag (BFS) in Saltstone, rendering it highly insoluble and resistant to leaching.

  16. Microbial mats in the Black Sea that anaerobically oxidise methane

    NASA Astrophysics Data System (ADS)

    Nauhaus, K.; Knittel, K.; Krüger, M.; Boetius, A.; Michaelis, W.; Widdel, F.

    2003-04-01

    Reef-forming microbial mats were recovered from methane seeps in anoxic waters of the northwestern Black Sea (BS) shelf. The microbial mats consist mainly of archaea (ANME-1 cluster) and sulfate-reducing bacteria (Desulfosarcina/Desulfococcus group). Laboratory incubations with homogenized subsamples of the mats revealed their ability for the anaerobic oxidation of methane (AOM). The phylogentic relationship of the sulfate reducing partner is the same as in the AOM consortia studied in sediment samples from a methane hydrate area (Hydrate Ridge (HR), Oregon, USA (1,2)). The archaeal partner however belongs to a different cluster than in the HR samples (ANME-2). Methane oxidation is coupled to sulfate reduction in a 1:1 stoichiometry. Elevated methane partial pressures (0.1 to 1.1 MPa) increased the sulfate reduction rates in the Black Sea samples only two-fold in contrast to 5-fold in HR samples. The optimal temperature for the BS samples is between 10 and 25^oC. In both samples AOM was not taking place if typical inhibitors for sulfate-reduction or methanogenesis were added, thus indicating a syntrophic relationship between the partner organisms. The intermediate that is exchanged between the methane oxidizing archaea and the sulfate-reducing bacterium is still unknown. Additions of the possible intermediates (Acetate, Formate, Hydrogen) did not result in higher sulfate reduction rates in the absence of methane. (1) Boetius, A. et al. (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature. 407: 623--626 (2) Nauhaus, K., Boetius, A., Krüger, M., Widdel, F. (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ. Microbiol. 4 (5): 296--305

  17. Microbial processes and factors controlling their activities in alkaline lakes of the Mongolian plateau

    NASA Astrophysics Data System (ADS)

    Namsaraev, Zorigto B.; Zaitseva, Svetlana V.; Gorlenko, Vladimir M.; Kozyreva, Ludmila P.; Namsaraev, Bair B.

    2015-11-01

    A striking feature of the Mongolian plateau is the wide range of air temperatures during a year, -30 to 30°C. High summer temperatures, atmospheric weathering and the arid climate lead to formation of numerous alkaline soda lakes that are covered by ice during 6-7 months per year. During the study period, the lakes had pH values between 8.1 to 10.4 and salinity between 1.8 and 360 g/L. According to chemical composition, the lakes belong to sodium carbonate, sodium chloride-carbonate and sodium sulfate-carbonate types. This paper presents the data on the water chemical composition, results of the determination of the rates of microbial processes in microbial mats and sediments in the lakes studied, and the results of a Principal Component Analysis of environmental variables and microbial activity data. Temperature was the most important factor that influenced both chemical composition and microbial activity. pH and salinity are also important factors for the microbial processes. Dark CO2 fixation is impacted mostly by salinity and the chemical composition of the lake water. Total photosynthesis and sulfate-reduction are impacted mostly by pH. Photosynthesis is the dominant process of primary production, but the highest rate (386 mg C/(L•d)) determined in the lakes studied were 2-3 times lower than in microbial mats of lakes located in tropical zones. This can be explained by the relatively short warm period that lasts only 3-4 months per year. The highest measured rate of dark CO2 assimilation (59.8 mg C/(L•d)) was much lower than photosynthesis. The highest rate of sulfate reduction was 60 mg S/(L•d), while that of methanogenesis was 75.6 μL CN4/(L•d) in the alkaline lakes of Mongolian plateau. The rate of organic matter consumption during sulfate reduction was 3-4 orders of magnitude higher than that associated with methanogenesis.

  18. Spatial variability of heating profiles in windrowed poultry litter

    USDA-ARS?s Scientific Manuscript database

    In-house windrow composting of broiler litter has been suggested as a means to reduce microbial populations between flocks. Published time-temperature goals are used to determine the success of the composting process for microbial reductions. Spatial and temporal density of temperature measurement ...

  19. Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles.

    PubMed

    Sathiyanarayanan, Ganesan; Dineshkumar, Krishnamoorthy; Yang, Yung-Hun

    2017-11-01

    Exopolysaccharides (EPSs) are structurally and functionally valuable biopolymer secreted by different prokaryotic and eukaryotic microorganisms in response to biotic/abiotic stresses and to survive in extreme environments. Microbial EPSs are fascinating in various industrial sectors due to their excellent material properties and less toxic, highly biodegradable, and biocompatible nature. Recently, microbial EPSs have been used as a potential template for the rapid synthesis of metallic nanoparticles and EPS-mediated metal reduction processes are emerging as simple, harmless, and environmentally benign green chemistry approaches. EPS-mediated synthesis of metal nanoparticles is a distinctive metabolism-independent bio-reduction process due to the formation of interfaces between metal cations and the polyanionic functional groups (i.e. hydroxyl, carboxyl and amino groups) of the EPS. In addition, the range of physicochemical features which facilitates the EPS as an efficient stabilizing or capping agents to protect the primary structure of the metal nanoparticles with an encapsulation film in order to separate the nanoparticle core from the mixture of composites. The EPS-capping also enables the further modification of metal nanoparticles with expected material properties for multifarious applications. The present review discusses the microbial EPS-mediated green synthesis/stabilization of metal nanoparticles, possible mechanisms involved in EPS-mediated metal reduction, and application prospects of EPS-based metal nanoparticles.

  20. Kinetics of Microbial Reduction of Solid Phase U(VI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chongxuan; Jeon, Byong Hun; Zachara, John M.

    2006-10-01

    Sodium boltwoodite (NaUO2SiO3OH ?1.5H2O) was used to assess the kinetics of microbial reduction of solid phase U(VI) by a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. The bioreduction kinetics was studied with Na-boltwoodite in suspension or within alginate beads. Concentrations of U(VI)tot and cell number were varied to evaluate the coupling of U(VI) dissolution, diffusion, and microbial activity. Batch experiments were performed in a non-growth medium with lactate as electron donor at pH 6.8 buffered with PIPES. Microscopic and spectroscopic analyses with transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and laser-induced fluorescence spectroscopy (LIFS) collectively indicated that solidmore » phase U(VI) was first dissolved and diffused out of grain interiors before it was reduced on bacterial surfaces and/or within the periplasm. The kinetics of solid phase U(VI) bioreduction was well described by a coupled model of bicarbonate-promoted dissolution of Na-boltwoodite, intraparticle uranyl diffusion, and Monod type bioreduction kinetics with respect to dissolved U(VI) concentration. The results demonstrated the intimate coupling of biological, chemical, and physical processes in microbial reduction of solid phase U(VI).« less

  1. Temperature dependence of bioelectrochemical CO2 conversion and methane production with a mixed-culture biocathode.

    PubMed

    Yang, Hou-Yun; Bao, Bai-Ling; Liu, Jing; Qin, Yuan; Wang, Yi-Ran; Su, Kui-Zu; Han, Jun-Cheng; Mu, Yang

    2018-02-01

    This study evaluated the effect of temperature on methane production by CO 2 reduction during microbial electrosynthesis (MES) with a mixed-culture biocathode. Reactor performance, in terms of the amount and rate of methane production, current density, and coulombic efficiency, was compared at different temperatures. The microbial properties of the biocathode at each temperature were also analyzed by 16S rRNA gene sequencing. The results showed that the optimum temperature for methane production from CO 2 reduction in MES with a mixed-culture cathode was 50°C, with the highest amount and rate of methane production of 2.06±0.13mmol and 0.094±0.01mmolh -1 , respectively. In the mixed-culture biocathode MES, the coulombic efficiency of methane formation was within a range of 19.15±2.31% to 73.94±2.18% due to by-product formation at the cathode, including volatile fatty acids and hydrogen. Microbial analysis demonstrated that temperature had an impact on the diversity of microbial communities in the biofilm that formed on the MES cathode. Specifically, the hydrogenotrophic methanogen Methanobacterium became the predominant archaea for methane production from CO 2 reduction, while the abundance of the aceticlastic methanogen Methanosaeta decreased with increased temperature. Copyright © 2017. Published by Elsevier B.V.

  2. Bioelectrochemical denitrification on biocathode buried in simulated aquifer saturated with nitrate-contaminated groundwater.

    PubMed

    Nguyen, Van Khanh; Park, Younghyun; Yu, Jaecheul; Lee, Taeho

    2016-08-01

    Nitrate contamination in aquifers has posed human health under high risk because people still rely on groundwater withdrawn from aquifers as drinking water and running water sources. These days, bioelectrochemical technologies have shown a great number of benefits for nitrate remediation via autotrophic denitrification in groundwater. This study tested the working possibility of a denitrifying biocathode when installed into a simulated aquifer. The reactors were filled with sand and synthetic groundwater at various ratios (10, 50, and 100 %) to clarify the effect of various biocathode states (not-buried, half-buried, and fully buried) on nitrate reduction rate and microbial communities. Decreases in specific nitrate reduction rates were found to be correlated with increases in sand/medium ratios. A specific nitrate reduction rate of 322.6 mg m(-2) day(-1) was obtained when the biocathode was fully buried in an aquifer. Microbial community analysis revealed slight differences in the microbial communities of biocathodes at various sand/medium ratios. Various coccus- and rod-shaped bacteria were found to contribute to bioelectrochemical denitrification including Thiobacillus spp. and Paracoccus spp. This study demonstrated that the denitrifying biocathode could work effectively in a saturated aquifer and confirmed the feasibility of in situ application of microbial electrochemical denitrification technology.

  3. Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust

    PubMed Central

    Robador, Alberto; Jungbluth, Sean P.; LaRowe, Douglas E.; Bowers, Robert M.; Rappé, Michael S.; Amend, Jan P.; Cowen, James P.

    2015-01-01

    The basaltic ocean crust is the largest aquifer system on Earth, yet the rates of biological activity in this environment are unknown. Low-temperature (<100°C) fluid samples were investigated from two borehole observatories in the Juan de Fuca Ridge (JFR) flank, representing a range of upper oceanic basement thermal and geochemical properties. Microbial sulfate reduction rates (SRR) were measured in laboratory incubations with 35S-sulfate over a range of temperatures and the identity of the corresponding sulfate-reducing microorganisms (SRM) was studied by analyzing the sequence diversity of the functional marker dissimilatory (bi)sulfite reductase (dsrAB) gene. We found that microbial sulfate reduction was limited by the decreasing availability of organic electron donors in higher temperature, more altered fluids. Thermodynamic calculations indicate energetic constraints for metabolism, which together with relatively higher cell-specific SRR reveal increased maintenance requirements, consistent with novel species-level dsrAB phylotypes of thermophilic SRM. Our estimates suggest that microbially-mediated sulfate reduction may account for the removal of organic matter in fluids within the upper oceanic crust and underscore the potential quantitative impact of microbial processes in deep subsurface marine crustal fluids on marine and global biogeochemical carbon cycling. PMID:25642212

  4. Microbial reduction of iodate

    USGS Publications Warehouse

    Councell, T.B.; Landa, E.R.; Lovley, D.R.

    1997-01-01

    The different oxidation species of iodine have markedly different sorption properties. Hence, changes in iodine redox states can greatly affect the mobility of iodine in the environment. Although a major microbial role has been suggested in the past to account for these redox changes, little has been done to elucidate the responsible microorganisms or the mechanisms involved. In the work presented here, direct microbial reduction of iodate was demonstrated with anaerobic cell suspensions of the sulfate reducing bacterium Desulfovibrio desulfuricans which reduced 96% of an initial 100 ??M iodate to iodide at pH 7 in 30 mM NaHCO3 buffer, whereas anaerobic cell suspensions of the dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens were unable to reduce iodate in 30 mM NaHCO3 buffer (pH 7). Both D. desulfuricans and S. putrefaciens were able to reduce iodate at pH 7 in 10 mM HEPES buffer. Both soluble ferrous iron and sulfide, as well as iron monosulfide (FeS) were shown to abiologically reduce iodate to iodide. These results indicate that ferric iron and/or sulfate reducing bacteria are capable of mediating both direct, enzymatic, as well as abiotic reduction of iodate in natural anaerobic environments. These microbially mediated reactions may be important factors in the fate and transport of 129I in natural systems.

  5. CHARACTERIZING THE ABIOTIC REDUCTANTS FOR NITROAROMATIC COMPOUNDS AS A FUNCTION OF REDOX ZONATION IN ANOXIC SEDIMENTS

    EPA Science Inventory

    Reductive transformation is the dominant reaction pathway for the degradation of nitroaromatic compounds in anaerobic environments (Larson and Weber, 1994). Proposed reductants cover a spectrum ranging from reduced rninerals and organic matter to microbial enzyme systems. Transfo...

  6. Microbial reduction and precipitation of vanadium (V) in groundwater by immobilized mixed anaerobic culture.

    PubMed

    Zhang, Baogang; Hao, Liting; Tian, Caixing; Yuan, Songhu; Feng, Chuanping; Ni, Jinren; Borthwick, Alistair G L

    2015-09-01

    Vanadium is an important contaminant impacted by natural and industrial activities. Vanadium (V) reduction efficiency as high as 87.0% was achieved by employing immobilized mixed anaerobic sludge as inoculated seed within 12h operation, while V(IV) was the main reduction product which precipitated instantly. Increasing initial V(V) concentration resulted in the decrease of V(V) removal efficiency, while this index increased first and then decreased with the increase of initial COD concentration, pH and conductivity. High-throughput 16S rRNA gene pyrosequencing analysis indicated the decreased microbial diversity. V(V) reduction was realized through dissimilatory reduction process by significantly enhanced Lactococcus and Enterobacter with oxidation of lactic and acetic acids from fermentative microorganisms such as the enriched Paludibacter and the newly appeared Acetobacterium, Oscillibacter. This study is helpful to detect new functional species for V(V) reduction and constitutes a step ahead in developing in situ bioremediations of vanadium contamination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Development of a remote spectroelectrochemical sensor for technetium as pertechnetate

    NASA Astrophysics Data System (ADS)

    Monk, David James

    Subsurface contamination by technetium (Tc) is of particular concern in the monitoring, characterization, and remediation of underground nuclear waste storage tanks, processing areas, and associated surroundings at the Hanford Site and other U.S. DOE sites nationwide. The concern over this radioactive element arises for two reasons. First, its most common isotope, 99Tc, has an extremely long lifetime of 2.15 x 105 years. Second, it's most common chemical form in environmental conditions, pertechnetate (TcO4-), exhibits very fast migration through soils and readily presents itself to any nearby aquifer. Standard procedures of sampling and analysis in a laboratory prove to be slow and costly in the case of subsurface contamination by radioactive materials. It is highly desirable to develop sensors for these materials that possess the capability of either in-situ or on-site placement for continuous monitoring or immediate analysis of collected samples. These sensors need to possess adequate detection limit and selectivity, rapid response, reversibility (many measurements with one sensor), the ability to perform remotely, and ruggedness. This dissertation describes several areas of the continued work toward a sensor for 99Tc as TcO4-. Research initially focused on developing spectroelectrochemical instrumentation and a disposable sensing element, engineered to address the need to perform remote measurements. The instrument was then tested using samples containing 99Tc, resulting in the development of ancillary equipment and techniques to address concerns associated with performing experiments on radioactive materials. In these tests, the electrochemistry of TcO4 - was demonstrated to be irreversible. Electrochemical reduction of TcO4- on a bare or polymer modified electrode resulted in the continuous build up of technetium oxide (TcO2) on the electrode surface. This TcO2 formed in visual quantities in these films during electrochemistry, and proved to be non-ideal for spectroelectrochemical sensing. In the most recent work described, the development of metal templating techniques using complexes synthesized with rhenium (Re) was investigated as one means to circumvent this irreversibility. In an extension of the metal templating research, custom ligands were being designed which will impart structural rigidity and fluorescence to the template complexes, to facilitate selectivity and sensitivity at levels previously unprecedented for optical techniques.

  8. Comparison of respiratory activity and culturability during monochloramine disinfection of binary population biofilms.

    PubMed Central

    Stewart, P S; Griebe, T; Srinivasan, R; Chen, C I; Yu, F P; deBeer, D; McFeters, G A

    1994-01-01

    Biofilm bacteria challenged with monochloramine retained significant respiratory activity, even though they could not be cultured on agar plates. Microbial colony counts on agar media declined by approximately 99.9% after 1 h of disinfection, whereas the number of bacteria stained by a fluorescent redox dye experienced a 93% reduction. Integrated measures of biofilm respiratory activity, including net oxygen and glucose utilization rates, showed only a 10 to 15% reduction. In this biofilm system, measures of microbial respiratory activity and culturability yielded widely differing estimates of biocide efficacy. PMID:8017950

  9. Case Study: Microbial Ecology and Forensics of Chinese Drywall-Elemental Sulfur Disproportionation as Primary Generator of Hydrogen Sulfide.

    PubMed

    Tomei Torres, Francisco A

    2017-06-21

    Drywall manufactured in China released foul odors attributed to volatile sulfur compounds. These included hydrogen sulfide, methyl mercaptan, and sulfur dioxide. Given that calcium sulfate is the main component of drywall, one would suspect bacterial reduction of sulfate to sulfide as the primary culprit. However, when the forensics, i.e., the microbial and chemical signatures left in the drywall, are studied, the evidence suggests that, rather than dissimilatory sulfate reduction, disproportionation of elemental sulfur to hydrogen sulfide and sulfate was actually the primary cause of the malodors. Forensic evidence suggests that the transformation of elemental sulfur went through several abiological and microbial stages: (1) partial volatilization of elemental sulfur during the manufacture of plaster of Paris, (2) partial abiotic disproportionation of elemental sulfur to sulfide and thiosulfate during the manufacture of drywall, (3) microbial disproportionation of elemental sulfur to sulfide and sulfate resulting in neutralization of all alkalinity, and acidification below pH 4, (4) acidophilic microbial disproportionation of elemental sulfur to sulfide and sulfuric acid, and (5) hydrogen sulfide volatilization, coating of copper fixtures resulting in corrosion, and oxidation to sulfur dioxide.

  10. Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries

    NASA Astrophysics Data System (ADS)

    Baumgartner, L. K.; Reid, R. P.; Dupraz, C.; Decho, A. W.; Buckley, D. H.; Spear, J. R.; Przekop, K. M.; Visscher, P. T.

    2006-03-01

    Sulfate reducing bacteria (SRB) have existed throughout much of Earth's history and remain major contributors to carbon cycling in modern systems. Despite their importance, misconceptions about SRB are prevalent. In particular, SRB are commonly thought to lack oxygen tolerance and to exist only in anoxic environments. Through the last two decades, researchers have discovered that SRB can, in fact, tolerate and even respire oxygen. Investigations of microbial mat systems have demonstrated that SRB are both abundant and active in the oxic zones of mats. Additionally, SRB have been found to be highly active in the lithified zones of microbial mats, suggesting a connection between sulfate reduction and mat lithification. In the present paper, we review recent research on SRB distribution and present new preliminary findings on both the diversity and distribution of δ-proteobacterial SRB in lithifying and non-lithifying microbial mat systems. These preliminary findings indicate the unexplored diversity of SRB in a microbial mat system and demonstrate the close microspatial association of SRB and cyanobacteria in the oxic zone of the mat. Possible mechanisms and further studies to elucidate mechanisms for carbonate precipitation via sulfate reduction are also discussed.

  11. Aerated Shewanella oneidensis in Continuously-fed Bioelectrochemical Systems for Power and Hydrogen Production

    USDA-ARS?s Scientific Manuscript database

    We studied the effects of aeration of Shewanella oneidensis on potentiostatic current production, iron(III) reduction, hydrogen production in a microbial electrolysis cell, and electric power generation in a microbial fuel cell. The potentiostatic performance of aerated S. oneidensis was considerab...

  12. Advanced Oxidation Process sanitation of hatching eggs reduces Salmonella in broiler chicks

    USDA-ARS?s Scientific Manuscript database

    Reduction of Salmonella contamination of eggs is important in improving the microbial food safety of poultry and poultry products. Developing interventions to reduce Salmonella contamination of eggs is important to improving the microbial quality of eggs entering the hatchery. Previously, the hydr...

  13. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Aharon, Paul; Fu, Baoshun

    2000-01-01

    Sulfate reduction and anaerobic methane oxidation are the dominant microbial processes occurring in hydrate-bearing sediments at bathyal depths in the Gulf of Mexico where crude oil and methane are advecting through fault conduits to the seafloor. The oil and gas seeps are typically overlain by chemosynthetic communities consisting of thiotrophic bacterial mats (Beggiatoa spp.) and methanotrophic mussels (Bathymodiolus spp.), respectively. Cores were recovered with a manned submersible from fine-grained sediments containing dispersed gas hydrates at the threshold of stability. Estimated sulfate reduction rates are variable but generally are substantially higher in crude oil seeps (up to 50 times) and methane seeps (up to 600 times) relative to a non-seep reference sediment (0.0043 μmol SO 42- cm -3 day -1). Sulfur and oxygen isotope fractionation factors are highest in the reference sediment (α S = 1.027; α O = 1.015) but substantially lower in the seep sediments (α S = 1.018 to 1.009; α O = 1.006 to 1.002) and are controlled primarily by kinetic factors related to sulfate reduction rates. Kinetic effects also control the δ 34S/δ 18O ratios such that slow microbial rates yield low ratios whereas faster rates yield progressively higher ratios. The seep data contradict previous claims that δ 34S/δ 18O ratios are diagnostic of either microbial sulfate reduction at a fixed δ 34S/δ 18O ratio of 4/1 or lower ratios caused by SO 4-H 2O equilibration at ambient temperatures. The new results offer a better understanding of methane removal via anaerobic oxidation in the sulfate reduction zone of hydrate-bearing sediments and have significant implications regarding the origin and geochemical history of sedimentary sulfate reconstructed on the basis of δ 34S and δ 18O compositions.

  14. GeoChip-Based Analysis of the Functional Gene Diversity and Metabolic Potential of Microbial Communities in Acid Mine Drainage▿ †

    PubMed Central

    Xie, Jianping; He, Zhili; Liu, Xinxing; Liu, Xueduan; Van Nostrand, Joy D.; Deng, Ye; Wu, Liyou; Zhou, Jizhong; Qiu, Guanzhou

    2011-01-01

    Acid mine drainage (AMD) is an extreme environment, usually with low pH and high concentrations of metals. Although the phylogenetic diversity of AMD microbial communities has been examined extensively, little is known about their functional gene diversity and metabolic potential. In this study, a comprehensive functional gene array (GeoChip 2.0) was used to analyze the functional diversity, composition, structure, and metabolic potential of AMD microbial communities from three copper mines in China. GeoChip data indicated that these microbial communities were functionally diverse as measured by the number of genes detected, gene overlapping, unique genes, and various diversity indices. Almost all key functional gene categories targeted by GeoChip 2.0 were detected in the AMD microbial communities, including carbon fixation, carbon degradation, methane generation, nitrogen fixation, nitrification, denitrification, ammonification, nitrogen reduction, sulfur metabolism, metal resistance, and organic contaminant degradation, which suggested that the functional gene diversity was higher than was previously thought. Mantel test results indicated that AMD microbial communities are shaped largely by surrounding environmental factors (e.g., S, Mg, and Cu). Functional genes (e.g., narG and norB) and several key functional processes (e.g., methane generation, ammonification, denitrification, sulfite reduction, and organic contaminant degradation) were significantly (P < 0.10) correlated with environmental variables. This study presents an overview of functional gene diversity and the structure of AMD microbial communities and also provides insights into our understanding of metabolic potential in AMD ecosystems. PMID:21097602

  15. Microbial Response to Experimentally Controlled Redox Transitions at the Sediment Water Interface.

    PubMed

    Frindte, Katharina; Allgaier, Martin; Grossart, Hans-Peter; Eckert, Werner

    2015-01-01

    The sediment-water interface of freshwater lakes is characterized by sharp chemical gradients, shaped by the interplay between physical, chemical and microbial processes. As dissolved oxygen is depleted in the uppermost sediment, the availability of alternative electron acceptors, e.g. nitrate and sulfate, becomes the limiting factor. We performed a time series experiment in a mesocosm to simulate the transition from aerobic to anaerobic conditions at the sediment-water interface. Our goal was to identify changes in the microbial activity due to redox transitions induced by successive depletion of available electron acceptors. Monitoring critical hydrochemical parameters in the overlying water in conjunction with a new sampling strategy for sediment bacteria enabled us to correlate redox changes in the water to shifts in the active microbial community and the expression of functional genes representing specific redox-dependent microbial processes. Our results show that during several transitions from oxic-heterotrophic condition to sulfate-reducing condition, nitrate-availability and the on-set of sulfate reduction strongly affected the corresponding functional gene expression. There was evidence of anaerobic methane oxidation with NOx. DGGE analysis revealed redox-related changes in microbial activity and expression of functional genes involved in sulfate and nitrite reduction, whereas methanogenesis and methanotrophy showed only minor changes during redox transitions. The combination of high-frequency chemical measurements and molecular methods provide new insights into the temporal dynamics of the interplay between microbial activity and specific redox transitions at the sediment-water interface.

  16. MICROBIAL ACTIVITIES FOR THE REMEDIATION OF MERCURY CONTAMINATION

    EPA Science Inventory

    Methylmercury (MeHg) accumulation by aquatic biota could be reduced by stimulating bacterial degradation of MeHg and the reduction of Hg(II) to volatile Hg to zero power. Reduction of Hg(II) affects MeHg production by substrate limitation. The potential of bacterial reduction of ...

  17. Non-pertechnetate Technetium Sensor Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Samuel A.; Rapko, Brian M.; Branch, Shirmir D.

    Several significant uncertainties remain regarding the understanding and modeling of the fate and speciation of technicium-99 ( 99Tc) in Hanford waste tanks, glass, and low-temperature waste forms. A significant (2% to 25%) fraction of the 99Tc in the water-soluble portion of the tank waste may be present as one or more non pertechnetate species that have not been identified and to date, cannot be effectively separated from the wastes. This task will provide a sensor specifically tuned to detect the Tc(I)-carbonyl species believed to constitute the main fraction of the non-pertechnetate form of technetium. By direct measurement of the non-pertechnetatemore » species, such a sensor will help reduce the uncertainties in the modeling of the fate and speciation of 99Tc in Hanford tanks and waste forms. This report summarizes work performed in FY2016 that was sponsored by the Department of Energy’s Office of Environmental Management and demonstrates the protocol for using fluorescent Tc(I)-tricarbonyl complex as a means to detect the non-pertechnetate species within tank waste solutions. The protocol was optimized with respect to ligand concentration, solvent choice, reaction temperature and time. This work culminated in the quantitation of Tc(I)-tricarbonyl within a waste simulant, using a standard addition method for measurement. This report also summarizes the synthesis and high-yield preparation of the low-valence technetium species, [Tc(CO) 3(H 2O) 3] +, which will be used as the technetium standard material for the demonstration of the non-pertechnetate species in actual wastes.« less

  18. Microbial Fe(III) Oxide Reduction in Chocolate Pots Hot Springs, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Fortney, N. W.; Roden, E. E.; Boyd, E. S.; Converse, B. J.

    2014-12-01

    Previous work on dissimilatory iron reduction (DIR) in Yellowstone National Park (YNP) has focused on high temperature, low pH environments where soluble Fe(III) is utilized as an electron acceptor for respiration. Much less attention has been paid to DIR in lower temperature, circumneutral pH environments, where solid phase Fe(III) oxides are the dominant forms of Fe(III). This study explored the potential for DIR in the warm (ca. 40-50°C), circumneutral pH Chocolate Pots hot springs (CP) in YNP. Most probable number (MPN) enumerations and enrichment culture studies confirmed the presence of endogenous microbial communities that reduced native CP Fe(III) oxides. Enrichment cultures demonstrated sustained DIR coupled to acetate and lactate oxidation through repeated transfers over ca. 450 days. Pyrosequencing of 16S rRNA genes indicated that the dominant organisms in the enrichments were closely affiliated with the well known Fe(III) reducer Geobacter metallireducens. Additional taxa included relatives of sulfate reducing bacterial genera Desulfohalobium and Thermodesulfovibrio; however, amendment of enrichments with molybdate, an inhibitor of sulfate reduction, suggested that sulfate reduction was not a primary metabolic pathway involved in DIR in the cultures. A metagenomic analysis of enrichment cultures is underway in anticipation of identifying genes involved in DIR in the less well-characterized dominant organisms. Current studies are aimed at interrogating the in situ microbial community at CP. Core samples were collected along the flow path (Fig. 1) and subdivided into 1 cm depth intervals for geochemical and microbiological analysis. The presence of significant quantities of Fe(II) in the solids indicated that DIR is active in situ. A parallel study investigated in vitro microbial DIR in sediments collected from three of the coring sites. DNA was extracted from samples from both studies for 16S rRNA gene and metagenomic sequencing in order to obtain a detailed understanding of the vertical and longitudinal distribution of microbial taxa throughout CP. These studies will provide insight into the operation of the microbial Fe redox cycle, demonstrating how genomic properties relate to and control geochemical conditions with depth and distance in a Fe-rich, neutral pH geothermal environment.

  19. Microbial Sulfate Reduction Potential in Coal-Bearing Sediments Down to ~2.5 km below the Seafloor off Shimokita Peninsula, Japan

    PubMed Central

    Glombitza, Clemens; Adhikari, Rishi R.; Riedinger, Natascha; Gilhooly, William P.; Hinrichs, Kai-Uwe; Inagaki, Fumio

    2016-01-01

    Sulfate reduction is the predominant anaerobic microbial process of organic matter mineralization in marine sediments, with recent studies revealing that sulfate reduction not only occurs in sulfate-rich sediments, but even extends to deeper, methanogenic sediments at very low background concentrations of sulfate. Using samples retrieved off the Shimokita Peninsula, Japan, during the Integrated Ocean Drilling Program (IODP) Expedition 337, we measured potential sulfate reduction rates by slurry incubations with 35S-labeled sulfate in deep methanogenic sediments between 1276.75 and 2456.75 meters below the seafloor. Potential sulfate reduction rates were generally extremely low (mostly below 0.1 pmol cm−3 d−1) but showed elevated values (up to 1.8 pmol cm−3 d−1) in a coal-bearing interval (Unit III). A measured increase in hydrogenase activity in the coal-bearing horizons coincided with this local increase in potential sulfate reduction rates. This paired enzymatic response suggests that hydrogen is a potentially important electron donor for sulfate reduction in the deep coalbed biosphere. By contrast, no stimulation of sulfate reduction rates was observed in treatments where methane was added as an electron donor. In the deep coalbeds, small amounts of sulfate might be provided by a cryptic sulfur cycle. The isotopically very heavy pyrites (δ34S = +43‰) found in this horizon is consistent with its formation via microbial sulfate reduction that has been continuously utilizing a small, increasingly 34S-enriched sulfate reservoir over geologic time scales. Although our results do not represent in-situ activity, and the sulfate reducers might only have persisted in a dormant, spore-like state, our findings show that organisms capable of sulfate reduction have survived in deep methanogenic sediments over more than 20 Ma. This highlights the ability of sulfate-reducers to persist over geological timespans even in sulfate-depleted environments. Our study moreover represents the deepest evidence of a potential for sulfate reduction in marine sediments to date. PMID:27761134

  20. Microbial Sulfate Reduction Potential in Coal-Bearing Sediments Down to ~2.5 km below the Seafloor off Shimokita Peninsula, Japan.

    PubMed

    Glombitza, Clemens; Adhikari, Rishi R; Riedinger, Natascha; Gilhooly, William P; Hinrichs, Kai-Uwe; Inagaki, Fumio

    2016-01-01

    Sulfate reduction is the predominant anaerobic microbial process of organic matter mineralization in marine sediments, with recent studies revealing that sulfate reduction not only occurs in sulfate-rich sediments, but even extends to deeper, methanogenic sediments at very low background concentrations of sulfate. Using samples retrieved off the Shimokita Peninsula, Japan, during the Integrated Ocean Drilling Program (IODP) Expedition 337, we measured potential sulfate reduction rates by slurry incubations with 35 S-labeled sulfate in deep methanogenic sediments between 1276.75 and 2456.75 meters below the seafloor. Potential sulfate reduction rates were generally extremely low (mostly below 0.1 pmol cm -3 d -1 ) but showed elevated values (up to 1.8 pmol cm -3 d -1 ) in a coal-bearing interval (Unit III). A measured increase in hydrogenase activity in the coal-bearing horizons coincided with this local increase in potential sulfate reduction rates. This paired enzymatic response suggests that hydrogen is a potentially important electron donor for sulfate reduction in the deep coalbed biosphere. By contrast, no stimulation of sulfate reduction rates was observed in treatments where methane was added as an electron donor. In the deep coalbeds, small amounts of sulfate might be provided by a cryptic sulfur cycle. The isotopically very heavy pyrites (δ 34 S = +43‰) found in this horizon is consistent with its formation via microbial sulfate reduction that has been continuously utilizing a small, increasingly 34 S-enriched sulfate reservoir over geologic time scales. Although our results do not represent in-situ activity, and the sulfate reducers might only have persisted in a dormant, spore-like state, our findings show that organisms capable of sulfate reduction have survived in deep methanogenic sediments over more than 20 Ma. This highlights the ability of sulfate-reducers to persist over geological timespans even in sulfate-depleted environments. Our study moreover represents the deepest evidence of a potential for sulfate reduction in marine sediments to date.

  1. The Impact of Gamma Radiation on Sediment Microbial Processes

    PubMed Central

    Brown, Ashley R.; Boothman, Christopher; Pimblott, Simon M.

    2015-01-01

    Microbial communities have the potential to control the biogeochemical fate of some radionuclides in contaminated land scenarios or in the vicinity of a geological repository for radioactive waste. However, there have been few studies of ionizing radiation effects on microbial communities in sediment systems. Here, acetate and lactate amended sediment microcosms irradiated with gamma radiation at 0.5 or 30 Gy h−1 for 8 weeks all displayed NO3− and Fe(III) reduction, although the rate of Fe(III) reduction was decreased in 30-Gy h−1 treatments. These systems were dominated by fermentation processes. Pyrosequencing indicated that the 30-Gy h−1 treatment resulted in a community dominated by two Clostridial species. In systems containing no added electron donor, irradiation at either dose rate did not restrict NO3−, Fe(III), or SO42− reduction. Rather, Fe(III) reduction was stimulated in the 0.5-Gy h−1-treated systems. In irradiated systems, there was a relative increase in the proportion of bacteria capable of Fe(III) reduction, with Geothrix fermentans and Geobacter sp. identified in the 0.5-Gy h−1 and 30-Gy h−1 treatments, respectively. These results indicate that biogeochemical processes will likely not be restricted by dose rates in such environments, and electron accepting processes may even be stimulated by radiation. PMID:25841009

  2. Microbial toxicity of the insensitive munitions compound, 2,4-dinitroanisole (DNAN), and its aromatic amine metabolites.

    PubMed

    Liang, Jidong; Olivares, Christopher; Field, Jim A; Sierra-Alvarez, Reyes

    2013-11-15

    2,4-Dinitroanisole (DNAN) is an insensitive munitions compound considered to replace conventional explosives such as 2,4,6-trinitrotoluene (TNT). DNAN undergoes facile microbial reduction to 2-methoxy-5-nitroaniline (MENA) and 2,4-diaminoanisole (DAAN). This study investigated the inhibitory effect of DNAN, MENA, and DAAN toward various microbial targets in anaerobic (acetoclastic methanogens) and aerobic (heterotrophs and nitrifiers) sludge, and the bioluminescent bacterium, Aliivibrio fischeri, used in the Microtox assay. Aerobic heterotrophic and nitrifying batch experiments with DAAN could not be performed because the compound underwent extensive autooxidation in these assays. DNAN severely inhibited methanogens, nitrifying bacteria, and A. fischeri (50% inhibitory concentrations (IC50) ranging 41-57μM), but was notably less inhibitory to aerobic heterotrophs (IC50>390 μM). Reduction of DNAN to MENA and DAAN lead to a marked decrease in methanogenic inhibition (i.e., DNAN>MENA≈DAAN). Reduction of all nitro groups in DNAN also resulted in partial detoxification in assays with A. fischeri. In contrast, reduction of a single nitro group did not alter the inhibitory impact of DNAN toward A. fischeri and nitrifying bacteria given the similar IC50 values determined for MENA and DNAN in these assays. These results indicate that reductive biotransformation could reduce the inhibitory potential of DNAN. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Combined technetium radioisotope penile plethysmography and xenon washout: A technique for evaluating corpora cavernosal inflow and outflow during early tumescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, A.N.; Graham, M.M.

    1991-03-01

    Combined technetium radioisotope penile plethysmography and xenon washout is a new technique that measures both corporal arterial inflow and venous sinusoidal outflow during early tumescence in patients with erectile dysfunction. Fourteen patients were studied using 99mTc-RBCs to measure inflow and 133Xe or 127Xe in saline to measure outflow. Tumescence was induced by injecting papaverine intracorporally. Peak corporal rates corrected for inflow (r = 0.88) and uncorrected for outflow (r = 0.91) and change in volume over 2 min centered around peak inflow (r = 0.96) all correlated with angiography. Outflow measurements did not correlate with intracorporal resistance. Thus, outflow ratesmore » alone could not be used to predict venous sinusoidal competence. Normal inflow rate is greater than 20 ml/min; probable normal 12-20; indeterminate inflow 7-12; and abnormal inflow less than 7 ml/min. Technetium-99m radioisotope penile plethysmography and xenon washout can be performed together and both provide a method for simultaneously evaluating the relationship between corporal inflow and outflow rates in patients with erectile dysfunction.« less

  4. Sensitivity of technetium-99m-pyrophosphate scintigraphy in diagnosing cardiac amyloidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falk, R.H.; Lee, V.W.; Rubinow, A.

    1983-03-01

    To determine the value of technetium-99m-pyrophosphate myocardial scintigraphy in the diagnosis of amyloid heart disease this procedure was prospectively performed in 20 consecutive patients with biopsy-proven primary amyloidosis. Eleven patients had echocardiographic abnormalities compatible with amyloid cardiomyopathy, 9 of whom had congestive heart failure. Diffuse myocardial pyrophosphate uptake was of equal or greater intensity than that of the ribs in 9 of the 11 patients with echocardiograms suggestive of amyloidosis, but in only 2 of the 9 with normal echocardiograms, despite abnormal electrocardiograms (p less than 0.01). Increased wall thickness measured by M-mode echocardiography correlated with myocardial pyrophosphate uptake (rmore » . 0.68, p less than 0.01). None of 10 control patients with nonamyloid, nonischemic heart disease had a strongly positive myocardial pyrophosphate uptake. Thus, myocardial technetium-99m-pyrophosphate scanning is a sensitive and specific test for the diagnosis of cardiac amyloidosis in patients with congestive heart failure of obscure origin. It does not appear to be of value for the early detection of cardiac involvement in patients with known primary amyloidosis without echocardiographic abnormalities.« less

  5. Technetium-99m NGA functional hepatic imaging: preliminary clinical experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadalnik, R.C.; Vera, D.R.; Woodle, E.S.

    1985-11-01

    Technetium-99m galactosyl-neoglycoalbumin ( (Tc)NGA) is a radiolabeled ligand to hepatic binding protein, a receptor which resides at the plasma membrane of hepatocytes. This receptor-binding radiopharmaceutical and its kinetic model provide a noninvasive method for the assessment of liver function. Eighteen patients were studied: seven with hepatoma, eight with liver metastases, four with cirrhosis, and one patient with acute fulminant non-A, non-B hepatitis. Technetium-99m NGA liver imaging provided anatomic information of diagnostic quality comparable to that obtained with other routine imaging modalities, including computed tomography, angiography, ultrasound, and (Tc)sulfur colloid scintigraphy. Kinetic modeling of dynamic (Tc)NGA data produced estimates of standardizedmore » hepatic blood flow, Q (hepatic blood flow divided by total blood volume), and hepatic binding protein concentration, (HBP). Significant rank correlation was obtained between (HBP) estimates and CTC scores. This correlation supports the hypothesis that (HBP) is a measure of functional hepatocyte mass. The combination of decreased Q and markedly reduced (HBP) may have prognostic significance; all three patients with this combination died of hepatic failure within 6 wk of imaging.« less

  6. Rhenium and technetium complexes that bind to amyloid-β plaques.

    PubMed

    Hayne, David J; North, Andrea J; Fodero-Tavoletti, Michelle; White, Jonathan M; Hung, Lin W; Rigopoulos, Angela; McLean, Catriona A; Adlard, Paul A; Ackermann, Uwe; Tochon-Danguy, Henri; Villemagne, Victor L; Barnham, Kevin J; Donnelly, Paul S

    2015-03-21

    Alzheimer's disease is associated with the presence of insoluble protein deposits in the brain called amyloid plaques. The major constituent of these deposits is aggregated amyloid-β peptide. Technetium-99m complexes that bind to amyloid-β plaques could provide important diagnostic information on amyloid-β plaque burden using Single Photon Emission Computed Tomography (SPECT). Tridentate ligands with a stilbene functional group were used to form complexes with the fac-[M(I)(CO)3](+) (M = Re or (99m)Tc) core. The rhenium carbonyl complexes with tridentate co-ligands that included a stilbene functional group and a dimethylamino substituent bound to amyloid-β present in human frontal cortex brain tissue from subjects with Alzheimer's disease. This chemistry was extended to make the analogous [(99m)Tc(I)(CO)3](+) complexes and the complexes were sufficiently stable in human serum. Whilst the lipophilicity (log D7.4) of the technetium complexes appeared ideally suited for penetration of the blood-brain barrier, preliminary biodistribution studies in an AD mouse model (APP/PS1) revealed relatively low brain uptake (0.24% ID g(-1) at 2 min post injection).

  7. Review of pathogen treatment reductions for onsite non-potable reuse of alternative source waters

    EPA Science Inventory

    Communities face a challenge when implementing onsite reuse of collected waters for non-potable purposes given the lack of national microbial standards. Quantitative Microbial Risk Assessment (QMRA) can be used to predict the pathogen risks associated with the non-potable reuse o...

  8. Biogeochemistry of dissolved arsenic in the temperate to tropical North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Wurl, Oliver; Shelley, Rachel U.; Landing, William M.; Cutter, Gregory A.

    2015-06-01

    The biogeochemical cycle of arsenic was examined in the water column across the North Atlantic from 39° to 17°N as part of the US GEOTRACES North Atlantic study (GEOTRACES Section GA03). Results show limited nutrient-like distribution of As5+, and upper ocean maxima in As3+ and methylated As as found in many other studies In the oligotrophic water masses, microbial communities, i.e. phytoplankton, appear to favor the reduction to As3+ instead of methylation as detoxification of As5+ taken up during phosphorus (P) limitation due to their chemical similarities. The depth-integrated average concentrations in the mixed layer depth of As3+ in the western and eastern Atlantic Ocean were 1.30±1.14 nmol L-1 (n=4) and 0.65 (n=2), respectively, and rose to 3.30 nmol L-1 (n=2) in the Central Atlantic Ocean. No pattern was observed for As5+ (15.7±2.8 nmol L-1, n=8) and methylated species were detected occasionally below 0.41 nmol L-1 in the mixed layer. Based on significant correlations between phosphate, alkaline phosphate activity (APA), a conventional proxy for P limitation, and As3+, we conclude that As3+ is a good proxy for P limitation within the upper water column similar to our earlier evaluation of surface data. Mass balances for the mixed layer show that atmospheric inputs of As5+ can compensate for the losses via export fluxes and microbial reduction to As3+. The cycling of As3+ is more complex, with sources from As5+ reduction and losses due to photochemical and microbial-induced oxidation. The resulting residence time of As3+ with respect to these processes can be as short as 0.7-3 days. Unlike As5+, atmospheric inputs of As3+ cannot balance the oxidative losses and the short residence time further limits horizontal and vertical advective/diffusive inputs. It appears that reduction of As5+ coupled with detoxification and general microbial reduction are the sources of As3+ in the oceanic mixed layer. While As3+ production during As5+ detoxification has been well studied, the generic microbial reduction of As5+ to As3+ requires a more thorough investigation.

  9. The effect of hazard analysis critical control point programs on microbial contamination of carcasses in abattoirs: a systematic review of published data.

    PubMed

    Wilhelm, Barbara; Rajić, Andrijana; Greig, Judy D; Waddell, Lisa; Harris, Janet

    2011-09-01

    Hazard analysis critical control point (HACCP) programs have been endorsed and implemented globally to enhance food safety. Our objective was to identify, assess, and summarize or synthesize the published research investigating the effect of HACCP programs on microbial prevalence and concentration on food animal carcasses in abattoirs through primary processing. The results of microbial testing pre- and post-HACCP implementation were reported in only 19 studies, mostly investigating beef (n=13 studies) and pork (n=8 studies) carcasses. In 12 of 13 studies measuring aerobic bacterial counts, reductions were reported on beef (7/8 studies), pork (3/3), poultry (1/1), and sheep (1/1). Significant (p<0.05) reductions in prevalence of Salmonella spp. were reported in studies on pork (2/3 studies) and poultry carcasses (3/3); no significant reductions were reported on beef carcasses (0/8 studies). These trends were confirmed through meta-analysis of these data; however, powerful meta-analysis was precluded because of an overall scarcity of individual studies and significant heterogeneity across studies. Australia reported extensive national data spanning the period from 4 years prior to HACCP implementation to 4 years post-HACCP, indicating reduction in microbial prevalence and concentration on beef carcasses in abattoirs slaughtering beef for export; however, the effect of abattoir changes initiated independent of HACCP could not be excluded. More primary research and access to relevant proprietary data are needed to properly evaluate HACCP program effectiveness using modeling techniques capable of differentiating the effects of HACCP from other concurrent factors.

  10. Microbial reduction of structural Fe3+ in nontronite by a thermophilic bacterium and its role in promoting the smectite to illite reaction

    USGS Publications Warehouse

    Zhang, G.; Dong, H.; Kim, J.; Eberl, D.D.

    2007-01-01

    The illitization process of Fe-rich smectite (nontronite NAu-2) promoted by microbial reduction of structural Fe3+ was investigated by using a thermophilic metal-reducing bacterium, Thermoanaerobacter ethanolicus, isolated from the deep subsurface. T. ethanolicus was incubated with lactate as the sole electron donor and structural Fe3+ in nontronite as the sole electron acceptor, and anthraquinone-2, 6-disulfonate (AQDS) as an electron shuttle in a growth medium (pH 6.2 and 9.2, 65 ??C) with or without an external supply of Al and K sources. With an external supply of Al and K, the extent of reduction of Fe3+ in NAu-2 was 43.7 and 40.4% at pH 6.2 and 9.2, respectively. X-ray diffraction and scanning and transmission electron microscopy revealed formation of discrete illite at pH 9.2 with external Al and K sources, while mixed layers of illite/smectite or highly charged smectite were detected under other conditions. The morphology of biogenic illite evolved from lath and flake to pseudo-hexagonal shape. An external supply of Al and K under alkaline conditions enhances the smectite-illite reaction during microbial Fe3+ reduction of smectite. Biogenic SiO2 was observed as a result of bioreduction under all conditions. The microbially promoted smectite-illite reaction proceeds via dissolution of smectite and precipitation of illite. Thermophilic iron reducing bacteria have a significant role in promoting the smectite to illite reaction under conditions common in sedimentary basins.

  11. Bioreactor performance and functional gene analysis of microbial community in a limited-oxygen fed bioreactor for co-reduction of sulfate and nitrate with high organic input.

    PubMed

    Xu, Xi-jun; Chen, Chuan; Wang, Ai-jie; Yu, Hao; Zhou, Xu; Guo, Hong-liang; Yuan, Ye; Lee, Duu-jong; Zhou, Jizhong; Ren, Nan-qi

    2014-08-15

    Limited-oxygen mediated synergistic relationships between sulfate-reducing bacteria (SRB), nitrate-reducing bacteria (NRB) and sulfide-oxidizing bacteria (SOB, including nitrate-reducing, sulfide-oxidizing bacteria NR-SOB) were predicted to simultaneously remove contaminants of nitrate, sulfate and high COD, and eliminate sulfide generation. A lab-scale experiment was conducted to examine the impact of limited oxygen on these oxy-anions degradation, sulfide oxidation and associated microbial functional responses. In all scenarios tested, the reduction of both nitrate and sulfate was almost complete. When limited-oxygen was fed into bioreactors, S(0) formation was significantly improved up to ∼ 70%. GeoChip 4.0, a functional gene microarray, was used to determine the microbial gene diversity and functional potential for nitrate and sulfate reduction, and sulfide oxidation. The diversity of the microbial community in bioreactors was increased with the feeding of limited oxygen. Whereas the intensities of the functional genes involved in sulfate reduction did not show a significant difference, the abundance of the detected denitrification genes decreased in limited oxygen samples. More importantly, sulfide-oxidizing bacteria may alter their populations/genes in response to limited oxygen potentially to function more effectively in sulfide oxidation, especially to elemental sulfur. The genes fccA/fccB from nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB), such as Paracoccus denitrificans, Thiobacillus denitrificans, Beggiatoa sp., Thiomicrospira sp., and Thioalkalivibrio sp., were more abundant under limited-oxygen condition. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Strength and stability of microbial plugs in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, A.K.; Sharma, M.M.; Georgiou, G.

    1995-12-31

    Mobility reduction induced by the growth and metabolism of bacteria in high-permeability layers of heterogeneous reservoirs is an economically attractive technique to improve sweep efficiency. This paper describes an experimental study conducted in sandpacks using an injected bacterium to investigate the strength and stability of microbial plugs in porous media. Successful convective transport of bacteria is important for achieving sufficient initial bacteria distribution. The chemotactic and diffusive fluxes are probably not significant even under static conditions. Mobility reduction depends upon the initial cell concentrations and increase in cell mass. For single or multiple static or dynamic growth techniques, permeability reductionmore » was approximately 70% of the original permeability. The stability of these microbial plugs to increases in pressure gradient and changes in cell physiology in a nutrient-depleted environment needs to be improved.« less

  13. Radiation treatment of herb tea for the reduction of microbial contamination (Flores chamomillae)

    NASA Astrophysics Data System (ADS)

    Katušin-Ražem, B.; Ražem, D.; Dvornik, I.; Matić, S.

    A survey of microbiological contamination of dried chamomile flowers indicates the presence of thermophilic bacteria up to the level of 10 4 per gram. This material often contains insecticides which have been used to reduce post-harvest losses. This work was undertaken in order to study the feasibility of radiation treatment of dried chamomile flowers as the only acceptable process for reduction of microbial contamination and as an alternative to chemical treatment. The main microbial contaminants were identified and typical contamination levels established. Survival curves of the irradiated microflora were obtained as a function of gamma radiation dose. Chemical composition of chamomile oil was followed by spectroscopy, thin layer and gas chromatography. No untoward effects of radiation treatment on active components were found, which indicates the usefulness of radiation treatment of dry flowers.

  14. Use of carbonated water in reduction of adjacent gastric activity in 456 consecutive technetium-99m myocardial perfusion imaging studies.

    PubMed

    Thomas, Dustin M; Lee, Joshua S; Charmforoush, Anthony; Rubal, Bernard J; Rosenblatt, Stephen A; Butler, Joshua T; Clemenshaw, Michael; Cheezum, Michael K; Slim, Ahmad M

    2015-12-01

    Small, observational trials have suggested a reduction in adjacent gastric activity with ingestion of soda water in myocardial perfusion imaging (MPI). We report our findings prior to and after implementation of soda water in 467 consecutive MPI studies. Consecutive MPI studies performed at a high-volume facility referred for vasodilator (VD) or exercise treadmill testing (ETT) were retrospectively reviewed before and after implementation of the soda water protocol. Patients undergoing the soda water protocol received 100 ml of soda water administered 30 min prior to image acquisition and after stress. Studies were performed using a same day rest/stress protocol. Incidence of adjacent gastric activity, diaphragmatic attenuation, stress and rest perfusion defects, and major adverse cardiovascular events (MACE) outcomes defined as death, myocardial infarction, stroke, reevaluation for chest pain, and late revascularization (>90 days from MPI) were abstracted using International Classification of Diseases, Ninth Revision (ICD-9) search. Two hundred and eighteen studies were performed prior to implementation of the soda water protocol and 249 studies were performed with the use of soda water. Baseline demographic data were equal between the groups with the exception of more patients undergoing VD stress receiving soda water (p < 0.001). Soda water was not associated with a decreased incidence of adjacent gastric activity with stress (54.7% versus 61.9% with no soda water, p = 0.129) or rest (68.6% versus 69.5% with no soda water, p = 0.919) imaging. Less adjacent gastric activity was observed with patients undergoing ETT who received soda water (42.5% versus 56.9% with no soda water, p = 0.031), but no difference was observed between the groups with VD stress (69.0% versus 68.1% with no soda water, p = 1.000). The use of soda water prior to technetium-99m MPI was associated with lower rates of adjacent gastric activity only in patients undergoing ETT stress but not rest or VD stress. This differs from previously published data. © The Author(s), 2015.

  15. Microbial inactivation and MLF performances of Tempranillo Rioja wines treated with PEF after alcoholic fermentation.

    PubMed

    González-Arenzana, Lucía; López-Alfaro, Isabel; Garde-Cerdán, Teresa; Portu, Javier; López, Rosa; Santamaría, Pilar

    2018-03-23

    This study was performed with the aim of reducing the microbial communities of wines after alcoholic fermentation to improve the establishment of commercial Oenococcus oeni inoculum for developing the malolactic fermentation. Microbial community reduction was accomplished by applying Pulsed Electric Field (PEF) technology to four different wines. Overall, significant reductions in yeast population were observed. To a lesser extent, lactic acid bacteria were reduced while acetic acid bacteria were completely eliminated after the PEF treatment. In three out of the four tested wines, a decrease in the competitive pressure between microorganisms due to the detected reduction led to a general but slight shortening of the malolactic fermentation duration. In the wine with the most adverse conditions to commercial starter establishment, the shortest malolactic fermentation was reached after PEF treatment. Finally, the sensorial quality of three out of the four treated wines was considered better after the PEF treatment. Therefore, PEF technology meant an important tool for improving the malolactic fermentation performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. REPORT FOR COMMERCIAL GRADE NICKEL CHARACTERIZATION AND BENCHMARKING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-12-20

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, has completed the collection, sample analysis, and review of analytical results to benchmark the concentrations of gross alpha-emitting radionuclides, gross beta-emitting radionuclides, and technetium-99 in commercial grade nickel. This report presents methods, change management, observations, and statistical analysis of materials procured from sellers representing nine countries on four continents. The data suggest there is a low probability of detecting alpha- and beta-emitting radionuclides in commercial nickel. Technetium-99 was not detected in any samples, thus suggesting it is not present in commercial nickel.

  17. Ab-initio study of B{sub 2}-type technetium AB (A=Tc, B=Nb and Ta) intermetallic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, Nikita, E-mail: acharyaniks30@gmail.com; Fatima, Bushra; Sanyal, Sankar P.

    2016-05-06

    The structural, electronic and elastic properties of AB type (A = Tc, B = Nb and Ta) technetium intermetallic compounds are studied using full potential linearized plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The calculated lattice parameters agree well with the experimental results. The elastic constants obey the stability criteria for cubic system. Ductility for these compounds has been analyzed using the Pugh’s rule and Cauchy’s pressure and found that all the compounds are ductile in nature. Bonding nature is discussed in terms of Fermi surface and band structures.

  18. Technetium phosphate bone scan in the diagnosis of septic arthritis in childhood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundberg, S.B.; Savage, J.P.; Foster, B.K.

    1989-09-01

    The technetium phosphate bone scans of 106 children with suspected septic arthritis were reviewed to determine whether the bone scan can accurately differentiate septic from nonseptic arthropathy. Only 13% of children with proved septic arthritis had correct blind scan interpretation. The clinically adjusted interpretation did not identify septic arthritis in 30%. Septic arthritis was incorrectly identified in 32% of children with no evidence of septic arthritis. No statistically significant differences were noted between the scan findings in the septic and nonseptic groups and no scan findings correlated specifically with the presence or absence of joint sepsis.

  19. Thermal processing of food reduces gut microbiota diversity of the host and triggers adaptation of the microbiota: evidence from two vertebrates.

    PubMed

    Zhang, Zhimin; Li, Dapeng

    2018-05-31

    Adoption of thermal processing of the diet drives human evolution and gut microbiota diversity changes in a dietary habit-dependent manner. However, whether thermal processing of food triggers gut microbial variation remains unknown. Herein, we compared the microbiota of non-thermally processed and thermally processed food (NF and TF) and investigated gut microbiota associated with NF and TF in catfish Silurus meridionalis and C57BL/6 mice to assess effects of thermal processing of food on gut microbiota and to further identify the differences in host responses. We found no differences in overall microbial composition and structure in the pairwise NF and TF, but identified differential microbial communities between food and gut. Both fish and mice fed TF had significantly lower gut microbial diversity than those fed NF. Moreover, thermal processing of food triggered the changes in their microbial communities. Comparative host studies further indicated host species determined gut microbial assemblies, even if fed with the same food. Fusobacteria was the most abundant phylum in the fish, and Bacteroidetes and Firmicutes dominated in the mice. Besides the consistent reduction of Bacteroidetes and the balanced Protebacteria, the response of other dominated gut microbiota in the fish and mice to TF was taxonomically opposite at the phylum level, and those further found at the genus level. Our results reveal that thermal processing of food strongly contributes to the reduction of gut microbial diversity and differentially drives microbial alterations in a host-dependent manner, suggesting specific adaptations of host-gut microbiota in vertebrates responding to thermal processing of food. These findings open a window of opportunity to understand the decline in gut microbial diversity and the community variation in human evolution and provide new insights into the host-specific microbial assemblages associated with the use of processing techniques in food preparation in humans and domesticated animals.

  20. Microbial mercury methylation in Antarctic sea ice.

    PubMed

    Gionfriddo, Caitlin M; Tate, Michael T; Wick, Ryan R; Schultz, Mark B; Zemla, Adam; Thelen, Michael P; Schofield, Robyn; Krabbenhoft, David P; Holt, Kathryn E; Moreau, John W

    2016-08-01

    Atmospheric deposition of mercury onto sea ice and circumpolar sea water provides mercury for microbial methylation, and contributes to the bioaccumulation of the potent neurotoxin methylmercury in the marine food web. Little is known about the abiotic and biotic controls on microbial mercury methylation in polar marine systems. However, mercury methylation is known to occur alongside photochemical and microbial mercury reduction and subsequent volatilization. Here, we combine mercury speciation measurements of total and methylated mercury with metagenomic analysis of whole-community microbial DNA from Antarctic snow, brine, sea ice and sea water to elucidate potential microbially mediated mercury methylation and volatilization pathways in polar marine environments. Our results identify the marine microaerophilic bacterium Nitrospina as a potential mercury methylator within sea ice. Anaerobic bacteria known to methylate mercury were notably absent from sea-ice metagenomes. We propose that Antarctic sea ice can harbour a microbial source of methylmercury in the Southern Ocean.

  1. The vertical distribution of prokaryotes in the surface sediment of Jiaolong cold seep at the northern South China Sea.

    PubMed

    Wu, Yuzhi; Qiu, Jian-Wen; Qian, Pei-Yuan; Wang, Yong

    2018-05-01

    In deep-sea cold seeps, microbial communities are shaped by geochemical components in seepage solutions. In the present study, we report the composition of microbial communities and potential metabolic activities in the surface sediment of Jiaolong cold seep at the northern South China Sea. Pyrosequencing of 16S rRNA gene amplicons revealed that a majority of the microbial inhabitants of the surface layers (0-6 cm) were sulfur oxidizer bacteria Sulfurimonas and archaeal methane consumer ANME-1, while sulfate reducer bacteria SEEP-SRB1, ANME-1 and ANME-2 dominated the bottom layers (8-14 cm). The potential ecological roles of the microorganisms were further supported by the presence of functional genes for methane oxidation, sulfur oxidation, sulfur reduction and nitrate reduction in the metagenomes. Metagenomic analysis revealed a significant correlation between coverage of 16S rRNA gene of sulfur oxidizer bacteria, functional genes involved in sulfur oxidation and nitrate reduction in different layers, indicating that sulfur oxidizing may be coupled to nitrate reducing at the surface layers of Jiaolong seeping site. This is probably related to the sulfur oxidizers of Sulfurimonas and Sulfurovum, which may be the capacity of nitrate reduction or associated with unidentified syntrophic nitrate-reducing microbes in the surface of the cold seep.

  2. Effect of exogenous reductant on growth and iron mobilization from ferrihydrite by the Pseudomonas mendocina ymp strain.

    PubMed

    Dhungana, Suraj; Anthony, Charles R; Hersman, Larry E

    2007-05-01

    Growth of the Pseudomonas mendocina ymp strain on insoluble ferrihydrite is enhanced by exogenous reductants with concurrent increase in soluble iron concentrations. This shows that exogenous reductants play a substantial role in the overall microbial iron bioavailability. The exogenous reductants may work together with the siderophores, Fe-scavenging agents, to facilitate ferrihydrite dissolution.

  3. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell.

    PubMed

    Huang, Liping; Chen, Jingwen; Quan, Xie; Yang, Fenglin

    2010-10-01

    Enhancement of Cr (VI) reduction rate and power production from biocathode microbial fuel cells (MFCs) was achieved using indigenous bacteria from Cr (VI)-contaminated site as inoculum and MFC architecture with a relatively large cathode-specific surface area of 340-900 m2 m(-3). A specific Cr (VI) reduction rate of 2.4 ± 0.2 mg g(-1)VSS h(-1) and a power production of 2.4 ± 0.1 W m(-3) at a current density of 6.9 A m(-3) were simultaneously achieved at an initial Cr (VI) concentration of 39.2 mg L(-1). Initial Cr (VI) concentration and solution conductivity affected Cr (VI) reduction rate, power production and coulombic efficiency. These findings demonstrate the importance of inoculation and MFC architecture in the enhancement of Cr (VI) reduction rate and power production. This study is a beneficial attempt to improve the efficiency of biocathode MFCs and provide a good candidate of bioremediation process for Cr (VI)-contaminated sites.

  4. Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattigod, Shas V.; Westsik, Joseph H.; Chung, Chul-Woo

    2011-08-12

    To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions has initiated secondary-waste-form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is conducting tests on four candidate waste forms to evaluate their ability to meet potential waste acceptance criteria for immobilized secondary wastes that would be placed in the IDF. All three waste forms demonstrated compressive strengths above the minimum 3.45 MPa (500 psi) set as a target formore » cement-based waste forms. Further, none of the waste forms showed any significant degradation in compressive strength after undergoing thermal cycling (30 cycles in a 10 day period) between -40 C and 60 C or water immersion for 90 days. The three leach test methods are intended to measure the diffusion rates of contaminants from the waste forms. Results are reported in terms of diffusion coefficients and a leachability index (LI) calculated based on the diffusion coefficients. A smaller diffusion coefficient and a larger LI are desired. The NRC, in its Waste Form Technical Position (NRC 1991), provides recommendations and guidance regarding methods to demonstrate waste stability for land disposal of radioactive waste. Included is a recommendation to conduct leach tests using the ANS 16.1 method. The resulting leachability index (LI) should be greater than 6.0. For Hanford secondary wastes, the LI > 6.0 criterion applies to sodium leached from the waste form. For technetium and iodine, higher targets of LI > 9 for Tc and LI > 11 for iodine have been set based on early waste-disposal risk and performance assessment analyses. The results of these three leach tests conducted for a total time between 11days (ASTM C1308) to 90 days (ANS 16.1) showed: (1) Technetium diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that all the waste forms had leachability indices better than the target LI > 9 for technetium; (2) Rhenium diffusivity: Cast Stone 2M specimens, when tested using EPA 1315 protocol, had leachability indices better than the target LI > 9 for technetium based on rhenium as a surrogate for technetium. All other waste forms tested by ANSI/ANS 16.1, ASTM C1308, and EPA 1315 test methods had leachability indices that were below the target LI > 9 for Tc based on rhenium release. These studies indicated that use of Re(VII) as a surrogate for 99Tc(VII) in low temperature secondary waste forms containing reductants will provide overestimated diffusivity values for 99Tc. Therefore, it is not appropriate to use Re as a surrogate 99Tc in future low temperature waste form studies. (3) Iodine diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that the three waste forms had leachability indices that were below the target LI > 11 for iodine. Therefore, it may be necessary to use a more effective sequestering material than silver zeolite used in two of the waste forms (Ceramicrete and DuraLith); (4) Sodium diffusivity: All the waste form specimens tested by the three leach methods (ANSI/ANS 16.1, ASTM C1308, and EPA 1315) exceeded the target LI value of 6; (5) All three leach methods (ANS 16.1, ASTM C1308 and EPA 1315) provided similar 99Tc diffusivity values for both short-time transient diffusivity effects as well as long-term ({approx}90 days) steady diffusivity from each of the three tested waste forms (Cast Stone 2M, Ceramicrete and DuraLith). Therefore, any one of the three methods can be used to determine the contaminant diffusivities from a selected waste form.« less

  5. Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds

    PubMed Central

    Nevin, Kelly P.; Woodard, Trevor L.; Franks, Ashley E.; Summers, Zarath M.; Lovley, Derek R.

    2010-01-01

    The possibility of providing the acetogenic microorganism Sporomusa ovata with electrons delivered directly to the cells with a graphite electrode for the reduction of carbon dioxide to organic compounds was investigated. Biofilms of S. ovata growing on graphite cathode surfaces consumed electrons with the reduction of carbon dioxide to acetate and small amounts of 2-oxobutyrate. Electrons appearing in these products accounted for over 85% of the electrons consumed. These results demonstrate that microbial production of multicarbon organic compounds from carbon dioxide and water with electricity as the energy source is feasible. PMID:20714445

  6. Microbial Reduction of Chromium from the Hexavalent to Divalent State

    DTIC Science & Technology

    2007-01-01

    address: Center for Materials Innova- strong oxidants which act as carcinogens, mutagens, and tion and Department of Physics , Washington University in...perlite. J. Haz. Mat. B95, 29-46. Kimbrough, D.E., Cohen, Y., Winer, A.M., Creelman , L., Mabuni, C., Chen, J.M., Hao, O.J., 1998. Microbial chromium

  7. Planetary quarantine

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Developed methodologies and procedures for the reduction of microbial burden on an assembled spacecraft at the time of encapsulation or terminal sterilization are reported. This technology is required for reducing excessive microbial burden on spacecraft components for the purposes of either decreasing planetary contamination probabilities for an orbiter or minimizing the duration of a sterilization process for a lander.

  8. New wash aid T-128 improves efficacy of chlorine against cross contamination by bacterial pathogens in fresh-cut lettuce processing

    USDA-ARS?s Scientific Manuscript database

    Chlorinated water is widely used as the primary anti-microbial intervention during fresh-cut produce processing. Free chlorine in chlorinated water can provide effective reduction of potential contaminations by microbial pathogens, and, more importantly, effectively prevent cross contamination of p...

  9. Optimization of heat and relative humidity conditions to reduce Escherichia coli O157:H7 contamination and maximize the germination of radish seeds.

    PubMed

    Song, M K; Kim, H W; Rhee, M S

    2016-06-01

    We previously reported that a combination of heat and relative humidity (RH) had a marked bactericidal effect on Escherichia coli O157:H7 on radish seeds. Here, response surface methodology with a Box-Behnken design was used to build a model to predict reductions in E. coli O157:H7 populations based on three independent variables: heating temperature (55 °C, 60 °C, or 65 °C), RH (40%, 60%, and 80%), and holding time (8, 15, or 22 h). Optimum treatment conditions were selected using a desirability function. The predictive model for microbial reduction had a high regression coefficient (R(2) = 0.97), and the accuracy of the model was verified using validation data (R(2) = 0.95). Among the three variables examined, heating temperature (P < 0.0001) and RH (P = 0.004) were the most significant in terms of bacterial reduction and seed germination, respectively. The optimum conditions for microbial reduction (6.6 log reduction) determined by ridge analysis were as follows: 64.5 °C and 63.2% RH for 17.7 h. However, when both microbial reduction and germination rate were taken into consideration, the desirability function yielded optimal conditions of 65 °C and 40% RH for 8 h (6.6 log reduction in the bacterial population; 94.4% of seeds germinated). This study provides comprehensive data that improve our understanding of the effects of heating temperature, RH, and holding time on the E. coli O157:H7 population on radish seeds. Radish seeds can be exposed to these conditions before sprouting, which greatly increases the microbiological safety of the products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The Effect of Ion Adsorption on Microbial Dissimilatory Iron-Reduction and the Mobility of Adsorbed As(V)

    NASA Astrophysics Data System (ADS)

    Meyer, B. A.; Stillings, L. L.

    2003-12-01

    The effect of varying environmental conditions on the microbial reduction of Fe(III) and the mobility of adsorbed As(V) was investigated by studying the kinetics of reductive dissolution of synthetic, hydrous ferric oxide (HFO) in three batch-reactor experiments. Growth medium, containing HFO as an electron acceptor (EA) and acetate as an electron donor (ED), was dispensed into 500-ml septum sealed serum bottles. Each bottle was inoculated with an enrichment culture (MEC) containing an anaerobic Fe-reducing bacterium obtained from sediments at Milltown Reservoir near Missoula, MT. Each enrichment culture grew for at least 600 hrs and exhibited both exponential and stationary growth. Microbial reduction was monitored by measuring the production of dissolved Fe(II). Total Fe(II) was calculated by applying a Langmuir adsorption model, developed for each growth condition, to the measured dissolved Fe(II). Total Fe(II) production was modeled by: x = Xs(1-e-ket)-[kL(e-ket)]+(kL/ke) where x is the total Fe(II) concentration (mM) at t, ke is the exponential production rate constant (hr-1), Xs is the total Fe(II) concentration (mM) at the time of transition between exponential and stationary growth, t is the time since inoculation minus lag time, and kL is the stationary (linear) production rate constant (mM hr-1). From our experiments we learned that: 1) increasing the concentration of EA from 10-30 mM had no effect on the value of ke, which remained constant at 0.015 hr-1. However, the maximum production rate, Rmax = (ke Xs)+kL, did increase with increasing EA, varying from 0.014-0.031 mM hr-1; 2) increasing the concentration of ED from 10-30 mM had no effect on either ke or Rmax. These values remained constant as ED increased; 3) sorption of As(V) to the EA (in mM ratios of 1:10 and 1:30, As(V):HFO) affected Rmax but not ke. Rmax increased with increasing EA, as observed earlier, but its value was lower than in cultures without arsenic. In the presence of As(V), Rmax was unaffected by increasing ED. Microbial reduction of EA did not result in the release of aqueous As(V) or As(III). In all cases, representative blank and kill controls were run concurrent with growth experiments. No Fe(II) production was observed in the controls. The modeling method showed that increases in Rmax, when observed, were due to an elongated exponential growth phase. We conclude that the availability of surface sites to the culture is the controlling factor in microbial iron reduction. The length of the exponential growth phase depends on the concentration of surface sites available for microbial reduction. Adsorbed Fe(II) or As(V) inhibits reduction by decreasing the concentration of available surface sites. Likewise, increasing the initial concentration of EA increases the concentration of available surface sites thus increasing Rmax.

  11. Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate.

    PubMed

    Choppala, Girish; Bolan, Nanthi; Kunhikrishnan, Anitha; Bush, Richard

    2016-02-01

    Heavy metals such as chromium (Cr) and arsenic (As) occur in ionic form in soil, with chromate [Cr(VI)] and arsenate As(V) being the most pre-dominant forms. The application of biochar to Cr(VI) and As(V) spiked and field contaminated soils was evaluated on the reduction processes [(Cr(VI) to Cr(III)] and [As(V) to As(III))], and subsequent mobility and bioavailability of both As(V) and Cr(VI). The assays used in this study included leaching, soil microbial activity and XPS techniques. The reduction rate of As(V) was lower than that of Cr(VI) with and without biochar addition, however, supplementation with biochar enhanced the reduction process of As(V). Leaching experiments indicated Cr(VI) was more mobile than As(V). Addition of biochar reversed the effect by reducing the mobility of Cr and increasing that of As. The presence of Cr and As in both spiked and contaminated soils reduced microbial activity, but with the addition of biochar to these soils, the microbial activity increased in the Cr(VI) contaminated soils, while it was further decreased with As(V) contaminated soils. The addition of biochar was effective in mitigating Cr toxicity by reducing Cr(VI) to Cr(III). In contrast, the conversion process of As(V) to As(III) hastened by biochar was not favourable, as As(III) is more toxic in soils. Overall, the presence of functional groups on biochar promotes reduction by providing the electrons required for reduction processes to occur as determined by XPS data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments.

    PubMed

    Hansel, Colleen M; Lentini, Chris J; Tang, Yuanzhi; Johnston, David T; Wankel, Scott D; Jardine, Philip M

    2015-11-01

    A central tenant in microbial biogeochemistry is that microbial metabolisms follow a predictable sequence of terminal electron acceptors based on the energetic yield for the reaction. It is thereby oftentimes assumed that microbial respiration of ferric iron outcompetes sulfate in all but high-sulfate systems, and thus sulfide has little influence on freshwater or terrestrial iron cycling. Observations of sulfate reduction in low-sulfate environments have been attributed to the presumed presence of highly crystalline iron oxides allowing sulfate reduction to be more energetically favored. Here we identified the iron-reducing processes under low-sulfate conditions within columns containing freshwater sediments amended with structurally diverse iron oxides and fermentation products that fuel anaerobic respiration. We show that despite low sulfate concentrations and regardless of iron oxide substrate (ferrihydrite, Al-ferrihydrite, goethite, hematite), sulfidization was a dominant pathway in iron reduction. This process was mediated by (re)cycling of sulfur upon reaction of sulfide and iron oxides to support continued sulfur-based respiration--a cryptic sulfur cycle involving generation and consumption of sulfur intermediates. Although canonical iron respiration was not observed in the sediments amended with the more crystalline iron oxides, iron respiration did become dominant in the presence of ferrihydrite once sulfate was consumed. Thus, despite more favorable energetics, ferrihydrite reduction did not precede sulfate reduction and instead an inverse redox zonation was observed. These findings indicate that sulfur (re)cycling is a dominant force in iron cycling even in low-sulfate systems and in a manner difficult to predict using the classical thermodynamic ladder.

  13. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments

    PubMed Central

    Hansel, Colleen M; Lentini, Chris J; Tang, Yuanzhi; Johnston, David T; Wankel, Scott D; Jardine, Philip M

    2015-01-01

    A central tenant in microbial biogeochemistry is that microbial metabolisms follow a predictable sequence of terminal electron acceptors based on the energetic yield for the reaction. It is thereby oftentimes assumed that microbial respiration of ferric iron outcompetes sulfate in all but high-sulfate systems, and thus sulfide has little influence on freshwater or terrestrial iron cycling. Observations of sulfate reduction in low-sulfate environments have been attributed to the presumed presence of highly crystalline iron oxides allowing sulfate reduction to be more energetically favored. Here we identified the iron-reducing processes under low-sulfate conditions within columns containing freshwater sediments amended with structurally diverse iron oxides and fermentation products that fuel anaerobic respiration. We show that despite low sulfate concentrations and regardless of iron oxide substrate (ferrihydrite, Al-ferrihydrite, goethite, hematite), sulfidization was a dominant pathway in iron reduction. This process was mediated by (re)cycling of sulfur upon reaction of sulfide and iron oxides to support continued sulfur-based respiration—a cryptic sulfur cycle involving generation and consumption of sulfur intermediates. Although canonical iron respiration was not observed in the sediments amended with the more crystalline iron oxides, iron respiration did become dominant in the presence of ferrihydrite once sulfate was consumed. Thus, despite more favorable energetics, ferrihydrite reduction did not precede sulfate reduction and instead an inverse redox zonation was observed. These findings indicate that sulfur (re)cycling is a dominant force in iron cycling even in low-sulfate systems and in a manner difficult to predict using the classical thermodynamic ladder. PMID:25871933

  14. Humic substances as a mediator for microbially catalyzed metal reduction

    USGS Publications Warehouse

    Lovley, D.R.; Fraga, J.L.; Blunt-Harris, E. L.; Hayes, L.A.; Phillips, E.J.P.; Coates, J.D.

    1998-01-01

    The potential for humic substances to serve as a terminal electron acceptor in microbial respiration and to function as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides was investigated. The Fe(III)-reducing microorganism Geobacter metallireducens conserved energy to support growth from electron transport to humics as evidenced by continued oxidation of acetate to carbon dioxide after as many as nine transfers in a medium with acetate as the electron donor and soil humic acids as the electron acceptor. Growth of G. metallireducens with poorly crystalline Fe(III) oxide as the electron acceptor was greatly stimulated by the addition of as little as 100 ??M of the humics analog, anthraquinone-2,6-disulfonate. Other quinones investigated, including lawsone, menadione, and anthraquinone-2-sulfonate, also stimulated Fe(III) oxide reduction. A wide phylogenetic diversity of microorganisms capable of Fe(III) reduction were also able to transfer electrons to humics. Microorganisms which can not reduce Fe(III) could not reduce humics. Humics stimulated the reduction of structural Fe(III) in clay and the crystalline Fe(III) forms, goethite and hematite. These results demonstrate that electron shuttling between Fe(III)-reducing microorganisms and Fe(III) via humics not only accelerates the microbial reduction of poorly crystalline Fe(III) oxide, but also can facilitate the reduction of Fe(III) forms that are not typically reduced by microorganisms in the absence of humics. Addition of humic substances to enhance electron shuttling between Fe(III)-reducing microorganisms and Fe(III) oxides may be a useful strategy to stimulate the remediation of soils and sediments contaminated with organic or metal pollutants.

  15. Photoreduction of 99Tc Pertechnetate by Nanometer-Sized Metal Oxides: New Strategies for Formation and Sequestration of Low-Valent Technetium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton-Pye, Benjamin P.; Radivojevic, Ivana; McGregor, Donna

    2011-11-23

    Technetium-99 ( 99Tc)(β - max: 293.7 keV; t 1/2: 2.1 x 10 5 years) is a byproduct of uranium-235 fission and comprises a large component of radioactive waste. Under aerobic conditions and in a neutral- basic environment, the pertechnetate anion ( 99TcO 4 -) is stable. 99TcO 4 - is very soluble, migrates easily through the environment and does not sorb well onto mineral surfaces, soils or sediments. This study moves forward a new strategy for the reduction of TcO 4 - and chemical incorporation of the reduced 99Tc into a metal oxide material. This strategy employs a single material,more » a polyoxometalate (POM), α 2-[P 2W 17O 61] 10-, that can be photoactivated in the presence of 2-propanol to transfer electrons to TcO 4 - and incorporate the reduced 99Tc covalently into the α 2 - framework to form the Tc VO species, Tc VO(α 2-P 2W 17O 61) 7-. This occurs via the formation of an intermediate species that slowly converts to Tc VO(α 2-P 2W 17O 61) 7-. EXAFS and XANES analysis and preliminary EPR analysis, suggests that the intermediate consists of a Tc(IV) α 2- species where the 99Tc is likely bound to only 2 of the 4 W-O oxygen atoms in the α 2-[P 2W 17O 61] 10- defect. This intermediate then oxidizes and converts to the 99Tc VO(α 2-P 2W 17O 61) 7- product. The reduction and incorporation of 99TcO 4- was accomplished in a ''one pot'' reaction using both sunlight and UV irradiation, and monitored as a function of time using multinuclear NMR and radio TLC. The process was further probed by the ''step-wise'' generation of reduced α 2-P 2W 17O 61 12- through bulk electrolysis followed by the addition of TcO 4 -. The reduction and incorporation of ReO 4 -, as a non-radioactive surrogate for 99Tc, does not proceed through the intermediate species, and Re VO is incorporated quickly into the α 2-[P 2W 17O 61] 10- defect. These observations are consistent with the periodic trends of 99Tc and Re. Specifically, 99Tc is more easily reduced compared to Re. In addition to serving as models for metal oxides, POMs may also provide a suitable platform to study the molecular level dynamics and mechanisms of the reduction and incorporation of Tc into a material.« less

  16. Microbial reduction of manganese oxides - Interactions with iron and sulfur

    NASA Technical Reports Server (NTRS)

    Myers, Charles R.; Nealson, Kenneth H.

    1988-01-01

    Alteromonas putrefaciens (strain MR-1) is capable of rapid Mn(IV) reduction under conditions of neutral pH and temperatures characteristic of the Oneida Lake, New York, sediments from which it was isolated. MR-1 also reduces Fe(3+) to Fe(2+), and disproportionates thiosulfate to sulfide and sulfite; independently, the Fe(2+) and sulfide act as rapid reductants of Mn. The addition of Fe(3+) or thiosulfate to cultures of MR-1 in the presence of oxidized Mn increases the rate and the extent of Mn reduction relative to that observed in the absence of Fe(3+) or thiosulfate. Furthermore, when Fe(3+) and Mn oxides are present conjointly, Fe(2+) does not appear until the reduction of the oxidized Mn is complete. These results demonstrate that the observed rates of Fe(2+) and sulfide production may underestimate the total rates of Fe and sulfate reduction in those environments containing oxidized Mn. These results also demonstrate the potential impact that a single microbe can exert on sediment geochemistry, and provide the basis for preliminary models of the complexity of microbial and geochemical interactions that occur.

  17. Application of response surface methodology to optimise microbial inactivation of shrimp and conch by supercritical carbon dioxide.

    PubMed

    Chen, Manhua; Sui, Xiao; Ma, Xixiu; Feng, Xiaomei; Han, Yuqian

    2015-03-30

    Supercritical carbon dioxide (SC-CO2 ) has been shown to have a good pasteurising effect on food. However, very few research papers have investigated the possibility to exploit this treatment for solid foods, particularly for seafood. Considering the microbial safety of raw seafood consumption, the study aimed to explore the feasibility of microbial inactivation of shrimp (Metapenaeus ensis) and conch (Rapana venosa) by SC-CO2 treatment. Response surface methodology (RSM) models were established to predict and analyse the SC-CO2 process. A 3.69-log reduction in the total aerobic plate count (TPC) of shrimp was observed by SC-CO2 treatment at 53°C, 15 MPa for 40 min, and the logarithmic reduction in TPC of conch was 3.31 at 55°C, 14 MPa for 42 min. Sensory scores of the products achieved approximately 8 (desirable). The optimal parameters for microbial inactivation of shrimp and conch by SC-CO2 might be 55°C, 15 MPa and 40 min. SC-CO2 exerted a strong bactericidal effect on the TPC of shrimp and conch, and the products maintained good organoleptic properties. This study verified the feasibility of microbial inactivation of shrimp and conch by SC-CO2 treatment. © 2014 Society of Chemical Industry.

  18. High‑throughput sequencing analyses of oral microbial diversity in healthy people and patients with dental caries and periodontal disease.

    PubMed

    Chen, Tingtao; Shi, Yan; Wang, Xiaolei; Wang, Xin; Meng, Fanjing; Yang, Shaoguo; Yang, Jian; Xin, Hongbo

    2017-07-01

    Recurrence of oral diseases caused by antibiotics has brought about an urgent requirement to explore the oral microbial diversity in the human oral cavity. In the present study, the high‑throughput sequencing method was adopted to compare the microbial diversity of healthy people and oral patients and sequence analysis was performed by UPARSE software package. The Venn results indicated that a mean of 315 operational taxonomic units (OTUs) was obtained, and 73, 64, 53, 19 and 18 common OTUs belonging to Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria and Fusobacteria, respectively, were identified in healthy people. Moreover, the reduction of Firmicutes and the increase of Proteobacteria in the children group, and the increase of Firmicutes and the reduction of Proteobacteria in the youth and adult groups, indicated that the age bracket and oral disease had largely influenced the tooth development and microbial development in the oral cavity. In addition, the traditional 'pathogenic bacteria' of Firmicutes, Proteobacteria and Bacteroidetes (accounted for >95% of the total sequencing number in each group) indicated that the 'harmful' bacteria may exert beneficial effects on oral health. Therefore, the data will provide certain clues for curing some oral diseases by the strategy of adjusting the disturbed microbial compositions in oral disease to healthy level.

  19. METHANOGENESIS AND SULFATE REDUCTION IN CHEMOSTATS: I. KINETIC STUDIES AND EXPERIMENTS

    EPA Science Inventory

    Six anaerobic chemostats containing mixed microbial cultures were used to investigate the interactions between sulfate reduction and methanogenesis for three substrates: acetic acid, methanol and formic acid. Sulfate reducers outcompeted methanogens in acetate-fed chemostats whil...

  20. Relative contributions of mercury bioavailability and microbial growth rate on net methylmercury production by anaerobic mixed cultures

    DOE PAGES

    Kucharzyk, Katarzyna H.; Deshusses, Marc A.; Porter, Kaitlyn A.; ...

    2015-01-01

    Net production of methylmercury correlated with sulfate reduction rates in cultures exposed to dissolved Hg, but was insensitive to sulfate reduction rates for cultures exposed to nanoparticulate HgS.

  1. Organic priority substances and microbial processes in river sediments subject to contrasting hydrological conditions.

    PubMed

    Zoppini, Annamaria; Ademollo, Nicoletta; Amalfitano, Stefano; Casella, Patrizia; Patrolecco, Luisa; Polesello, Stefano

    2014-06-15

    Flood and drought events of higher intensity and frequency are expected to increase in arid and semi-arid regions, in which temporary rivers represent both a water resource and an aquatic ecosystem to be preserved. In this study, we explored the variation of two classes of hazardous substances (Polycyclic Aromatic Hydrocarbons and Nonylphenols) and the functioning of the microbial community in river sediments subject to hydrological fluctuations (Candelaro river basin, Italy). Overall, the concentration of pollutants (∑PAHs range 8-275ngg(-1); ∑NPs range 299-4858ngg(-1)) suggests a moderate degree of contamination. The conditions in which the sediments were tested, flow (high/low) and no flow (wet/dry/arid), were associated to significant differences in the chemical and microbial properties. The total organic carbon contribution decreased together with the stream flow reduction, while the contribution of C-PAHs and C-NPs tended to increase. NPs were relatively more concentrated in sediments under high flow, while the more hydrophobic PAHs accumulated under low and no flow conditions. Passing from high to no flow conditions, a gradual reduction of microbial processes was observed, to reach the lowest specific bacterial carbon production rates (0.06fmolCh(-1)cell(-1)), extracellular enzyme activities, and the highest doubling time (40h) in arid sediments. In conclusion, different scenarios for the mobilization of pollutants and microbial processes can be identified under contrasting hydrological conditions: (i) the mobilization of pollutants under high flow and a relatively higher probability for biodegradation; (ii) the accumulation of pollutants during low flow and lower probability for biodegradation; (iii) the drastic reduction of pollutant concentrations under dry and arid conditions, probably independently from the microbial activity (abiotic processes). Our findings let us infer that a multiple approach has to be considered for an appropriate water resource exploitation and a more realistic prevision of the impact of pollutants in temporary waters. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Situ formation of apatite for sequestering radionuclides and heavy metals

    DOEpatents

    Moore, Robert C.

    2003-07-15

    Methods for in situ formation in soil of a permeable reactive barrier or zone comprising a phosphate precipitate, such as apatite or hydroxyapatite, which is capable of selectively trapping and removing radionuclides and heavy metal contaminants from the soil, while allowing water or other compounds to pass through. A preparation of a phosphate reagent and a chelated calcium reagent is mixed aboveground and injected into the soil. Subsequently, the chelated calcium reagent biodegrades and slowly releases free calcium. The free calcium reacts with the phosphate reagent to form a phosphate precipitate. Under the proper chemical conditions, apatite or hydroxyapatite can form. Radionuclide and heavy metal contaminants, including lead, strontium, lanthanides, and uranium are then selectively sequestered by sorbing them onto the phosphate precipitate. A reducing agent can be added for reduction and selective sequestration of technetium or selenium contaminants.

  3. The Microbial Ferrous Wheel in a Neutral pH Groundwater Seep

    PubMed Central

    Roden, Eric E.; McBeth, Joyce M.; Blöthe, Marco; Percak-Dennett, Elizabeth M.; Fleming, Emily J.; Holyoke, Rebecca R.; Luther, George W.; Emerson, David; Schieber, Juergen

    2012-01-01

    Evidence for microbial Fe redox cycling was documented in a circumneutral pH groundwater seep near Bloomington, Indiana. Geochemical and microbiological analyses were conducted at two sites, a semi-consolidated microbial mat and a floating puffball structure. In situ voltammetric microelectrode measurements revealed steep opposing gradients of O2 and Fe(II) at both sites, similar to other groundwater seep and sedimentary environments known to support microbial Fe redox cycling. The puffball structure showed an abrupt increase in dissolved Fe(II) just at its surface (∼5 cm depth), suggesting an internal Fe(II) source coupled to active Fe(III) reduction. Most probable number enumerations detected microaerophilic Fe(II)-oxidizing bacteria (FeOB) and dissimilatory Fe(III)-reducing bacteria (FeRB) at densities of 102 to 105 cells mL−1 in samples from both sites. In vitro Fe(III) reduction experiments revealed the potential for immediate reduction (no lag period) of native Fe(III) oxides. Conventional full-length 16S rRNA gene clone libraries were compared with high throughput barcode sequencing of the V1, V4, or V6 variable regions of 16S rRNA genes in order to evaluate the extent to which new sequencing approaches could provide enhanced insight into the composition of Fe redox cycling microbial community structure. The composition of the clone libraries suggested a lithotroph-dominated microbial community centered around taxa related to known FeOB (e.g., Gallionella, Sideroxydans, Aquabacterium). Sequences related to recognized FeRB (e.g., Rhodoferax, Aeromonas, Geobacter, Desulfovibrio) were also well-represented. Overall, sequences related to known FeOB and FeRB accounted for 88 and 59% of total clone sequences in the mat and puffball libraries, respectively. Taxa identified in the barcode libraries showed partial overlap with the clone libraries, but were not always consistent across different variable regions and sequencing platforms. However, the barcode libraries provided confirmation of key clone library results (e.g., the predominance of Betaproteobacteria) and an expanded view of lithotrophic microbial community composition. PMID:22783228

  4. Microbial Manganese and Sulfate Reduction in Black Sea Shelf Sediments

    PubMed Central

    Thamdrup, Bo; Rosselló-Mora, Ramón; Amann, Rudolf

    2000-01-01

    The microbial ecology of anaerobic carbon oxidation processes was investigated in Black Sea shelf sediments from mid-shelf with well-oxygenated bottom water to the oxic-anoxic chemocline at the shelf-break. At all stations, organic carbon (Corg) oxidation rates were rapidly attenuated with depth in anoxically incubated sediment. Dissimilatory Mn reduction was the most important terminal electron-accepting process in the active surface layer to a depth of ∼1 cm, while SO42− reduction accounted for the entire Corg oxidation below. Manganese reduction was supported by moderately high Mn oxide concentrations. A contribution from microbial Fe reduction could not be discerned, and the process was not stimulated by addition of ferrihydrite. Manganese reduction resulted in carbonate precipitation, which complicated the quantification of Corg oxidation rates. The relative contribution of Mn reduction to Corg oxidation in the anaerobic incubations was 25 to 73% at the stations with oxic bottom water. In situ, where Mn reduction must compete with oxygen respiration, the contribution of the process will vary in response to fluctuations in bottom water oxygen concentrations. Total bacterial numbers as well as the detection frequency of bacteria with fluorescent in situ hybridization scaled to the mineralization rates. Most-probable-number enumerations yielded up to 105 cells of acetate-oxidizing Mn-reducing bacteria (MnRB) cm−3, while counts of Fe reducers were <102 cm−3. At two stations, organisms affiliated with Arcobacter were the only types identified from 16S rRNA clone libraries from the highest positive MPN dilutions for MnRB. At the third station, a clone type affiliated with Pelobacter was also observed. Our results delineate a niche for dissimilatory Mn-reducing bacteria in sediments with Mn oxide concentrations greater than ∼10 μmol cm−3 and indicate that bacteria that are specialized in Mn reduction, rather than known Mn and Fe reducers, are important in this niche. PMID:10877783

  5. Geomicrobiological redox cycling of the transuranic element neptunium.

    PubMed

    Law, Gareth T W; Geissler, Andrea; Lloyd, Jonathan R; Livens, Francis R; Boothman, Christopher; Begg, James D C; Denecke, Melissa A; Rothe, Jörg; Dardenne, Kathy; Burke, Ian T; Charnock, John M; Morris, Katherine

    2010-12-01

    Microbial processes can affect the environmental behavior of redox sensitive radionuclides, and understanding these reactions is essential for the safe management of radioactive wastes. Neptunium, an alpha-emitting transuranic element, is of particular importance because of its long half-life, high radiotoxicity, and relatively high solubility as Np(V)O(2)(+) under oxic conditions. Here, we describe experiments to explore the biogeochemistry of Np where Np(V) was added to oxic sediment microcosms with indigenous microorganisms and anaerobically incubated. Enhanced Np removal to sediments occurred during microbially mediated metal reduction, and X-ray absorption spectroscopy showed this was due to reduction to poorly soluble Np(IV) on solids. In subsequent reoxidation experiments, sediment-associated Np(IV) was somewhat resistant to oxidative remobilization. These results demonstrate the influence of microbial processes on Np solubility and highlight the critical importance of radionuclide biogeochemistry in nuclear legacy management.

  6. Reduction of jarosite by Shewanella oneidensis MR-1 and secondary mineralization

    NASA Astrophysics Data System (ADS)

    Bingjie, Ouyang; Xiancai, Lu; Huan, Liu; Juan, Li; Tingting, Zhu; Xiangyu, Zhu; Jianjun, Lu; Rucheng, Wang

    2014-01-01

    Jarosite is a common mineral in a variety of environments formed by the oxidation of iron sulfide normally accompanying with the generation of acid mine drainage (AMD) in mining areas or acid rock drainages (ARD) in many localities. Decomposition of jarosite by dissimilatory iron reducing bacteria (DIRB) influences the mobility of many heavy metals generally accommodated in natural jarosite. This study examined the anaerobic reduction of synthesized jarosite by Shewanella oneidensis strain MR-1, a typical facultative bacteria. The release of ferrous and ferric ion, as well as sulfate and potassium, in the inoculated experimental group lasting 80 days is much higher than that in abiotic control groups. The detection of bicarbonate and acetate in experimental solution further confirms the mechanism of microbial reduction of jarosite, in which lactate acts as the electron donor. The produced ferrous iron stimulates the subsequent secondary mineralization, leading to precipitation and transformation of various iron-containing minerals. Green rust and goethite are the intermediate minerals of the microbial reduction process under anoxic conditions, and the end products include magnetite and siderite. In aerobic environments, goethite, magnetite and siderite were also detected, but the contents were relatively lower. While in abiotic experiments, only goethite has been detected as a product. Thus, the microbial reduction and subsequent mineral transformation can remarkably influence the geochemical cycling of iron and sulfur in supergene environments, as well as the mobility of heavy metals commonly accommodated in jarosite.

  7. Extracellular Saccharide-Mediated Reduction of Au3+ to Gold Nanoparticles: New Insights for Heavy Metals Biomineralization on Microbial Surfaces.

    PubMed

    Kang, Fuxing; Qu, Xiaolei; Alvarez, Pedro J J; Zhu, Dongqiang

    2017-03-07

    Biomineralization is a critical process controlling the biogeochemical cycling, fate, and potential environmental impacts of heavy metals. Despite the indispensability of extracellular polymeric substances (EPS) to microbial life and their ubiquity in soil and aquatic environments, the role played by EPS in the transformation and biomineralization of heavy metals is not well understood. Here, we used gold ion (Au 3+ ) as a model heavy metal ion to quantitatively assess the role of EPS in biomineralization and discern the responsible functional groups. Integrated spectroscopic analyses showed that Au 3+ was readily reduced to zerovalent gold nanoparticles (AuNPs, 2-15 nm in size) in aqueous suspension of Escherichia coli or dissolved EPS extracted from microbes. The majority of AuNPs (95.2%) was formed outside Escherichia coli cells, and the removal of EPS attached to cells pronouncedly suppressed Au 3+ reduction, reflecting the predominance of the extracellular matrix in Au 3+ reduction. XPS, UV-vis, and FTIR analyses corroborated that Au 3+ reduction was mediated by the hemiacetal groups (aldehyde equivalents) of reducing saccharides of EPS. Consistently, the kinetics of AuNP formation obeyed pseudo-second-order reaction kinetics with respect to the concentrations of Au 3+ and the hemiacetal groups in EPS, with minimal dependency on the source of microbial EPS. Our findings indicate a previously overlooked, universally significant contribution of EPS to the reduction, mineralization, and potential detoxification of metal species with high oxidation state.

  8. Potential for Mercury Reduction by Microbes in the High Arctic▿

    PubMed Central

    Poulain, Alexandre J.; Ní Chadhain, Sinéad M.; Ariya, Parisa A.; Amyot, Marc; Garcia, Edenise; Campbell, Peter G. C.; Zylstra, Gerben J.; Barkay, Tamar

    2007-01-01

    The contamination of polar regions due to the global distribution of anthropogenic pollutants is of great concern because it leads to the bioaccumulation of toxic substances, methylmercury among them, in Arctic food chains. Here we present the first evidence that microbes in the high Arctic possess and express diverse merA genes, which specify the reduction of ionic mercury [Hg(II)] to the volatile elemental form [Hg(0)]. The sampled microbial biomass, collected from microbial mats in a coastal lagoon and from the surface of marine macroalgae, was comprised of bacteria that were most closely related to psychrophiles that had previously been described in polar environments. We used a kinetic redox model, taking into consideration photoredox reactions as well as mer-mediated reduction, to assess if the potential for Hg(II) reduction by Arctic microbes can affect the toxicity and environmental mobility of mercury in the high Arctic. Results suggested that mer-mediated Hg(II) reduction could account for most of the Hg(0) that is produced in high Arctic waters. At the surface, with only 5% metabolically active cells, up to 68% of the mercury pool was resolved by the model as biogenic Hg(0). At a greater depth, because of incident light attenuation, the significance of photoredox transformations declined and merA-mediated activity could account for up to 90% of Hg(0) production. These findings highlight the importance of microbial redox transformations in the biogeochemical cycling, and thus the toxicity and mobility, of mercury in polar regions. PMID:17293515

  9. Phenazines and Other Redox-Active Antibiotics Promote Microbial Mineral Reduction

    PubMed Central

    Hernandez, Maria E.; Kappler, Andreas; Newman, Dianne K.

    2004-01-01

    Natural products with important therapeutic properties are known to be produced by a variety of soil bacteria, yet the ecological function of these compounds is not well understood. Here we show that phenazines and other redox-active antibiotics can promote microbial mineral reduction. Pseudomonas chlororaphis PCL1391, a root isolate that produces phenazine-1-carboxamide (PCN), is able to reductively dissolve poorly crystalline iron and manganese oxides, whereas a strain carrying a mutation in one of the phenazine-biosynthetic genes (phzB) is not; the addition of purified PCN restores this ability to the mutant strain. The small amount of PCN produced relative to the large amount of ferric iron reduced in cultures of P. chlororaphis implies that PCN is recycled multiple times; moreover, poorly crystalline iron (hydr)oxide can be reduced abiotically by reduced PCN. This ability suggests that PCN functions as an electron shuttle rather than an iron chelator, a finding that is consistent with the observation that dissolved ferric iron is undetectable in culture fluids. Multiple phenazines and the glycopeptidic antibiotic bleomycin can also stimulate mineral reduction by the dissimilatory iron-reducing bacterium Shewanella oneidensis MR1. Because diverse bacterial strains that cannot grow on iron can reduce phenazines, and because thermodynamic calculations suggest that phenazines have lower redox potentials than those of poorly crystalline iron (hydr)oxides in a range of relevant environmental pH (5 to 9), we suggest that natural products like phenazines may promote microbial mineral reduction in the environment. PMID:14766572

  10. MURMoT. Design and Application of Microbial Uranium Reduction Monitoring Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loeffler, Frank E.

    2014-12-31

    Uranium (U) contamination in the subsurface is a major remediation challenge at many DOE sites. Traditional site remedies present enormous costs to DOE; hence, enhanced bioremediation technologies (i.e., biostimulation and bioaugmentation) combined with monitoring efforts are being considered as cost-effective corrective actions to address subsurface contamination. This research effort improved understanding of the microbial U reduction process and developed new tools for monitoring microbial activities. Application of these tools will promote science-based site management decisions that achieve contaminant detoxification, plume control, and long-term stewardship in the most efficient manner. The overarching hypothesis was that the design, validation and application ofmore » a suite of new molecular and biogeochemical tools advance process understanding, and improve environmental monitoring regimes to assess and predict in situ U immobilization. Accomplishments: This project (i) advanced nucleic acid-based approaches to elucidate the presence, abundance, dynamics, spatial distribution, and activity of metal- and radionuclide-detoxifying bacteria; (ii) developed proteomics workflows for detection of metal reduction biomarker proteins in laboratory cultures and contaminated site groundwater; (iii) developed and demonstrated the utility of U isotopic fractionation using high precision mass spectrometry to quantify U(VI) reduction for a range of reduction mechanisms and environmental conditions; and (iv) validated the new tools using field samples from U-contaminated IFRC sites, and demonstrated their prognostic and diagnostic capabilities in guiding decision making for environmental remediation and long-term site stewardship.« less

  11. Microbial Community Phylogenetic and Functional Succession in Chromium-Reducing Aquifer-Derived Microcosms

    NASA Astrophysics Data System (ADS)

    Brodie, E. L.; Beller, H. R.; Goldfarb, K. C.; Han, R.; Santee, C. A.

    2009-12-01

    In situ reductive immobilization, whereby highly soluble Cr(VI) species are reduced to poorly soluble Cr(III) species, is a favored approach for remediating Cr-contaminated groundwater. How microbial populations respond phylogenetically and functionally to the injection of an organic electron donor to stimulate Cr(VI) reduction is unclear, as are the relative contributions of direct enzymatic Cr(VI) reduction versus indirect (e.g. sulfide-mediated) reduction. In this study, we inoculated anaerobic microcosms with groundwater from the Cr-contaminated Hanford 100H site (WA) and supplemented them with lactate and the electron acceptors nitrate, sulfate, and amorphous ferric oxyhydroxide. The microcosms progressed successively through nitrate-reducing, sulfate-reducing, and Fe(III)-reducing conditions, and after a second nitrate amendment, nitrate-dependent Fe(II)-oxidizing conditions. Cr(VI) reduction occurred during both the denitrification and the sulfate/iron reduction phases. DNA and RNA were harvested during each major biogeochemical phase and were subjected to PhyloChip analysis, qPCR, and transcript sequencing. Bacterial community succession followed a trajectory related to the sequential use of electron acceptors. During denitrification, bacterial communities were enriched in known denitrifiers within the Beta- and Gamma-proteobacteria and became phylogenetically clustered. Fermenters became enriched following nitrate reduction, preceding both iron and sulfate reduction. Iron reduction was stoichiometrically related to the formation of hydrogen sulfide and, although iron reducers were detected during this phase, their iron-reducing activity was not confirmed. Following the depletion of lactate and sulfate, iron reduction rates decreased and acetate and propionate concentrations stabilized, indicating a marginal contribution of acetate-coupled iron reduction. Rapid Fe(II) oxidation occurred following the nitrate amendment with a concomitant reduction of nitrate to nitrite and an increased abundance of Beta-proteobacterial species related to known anaerobic Fe(II)-oxidizing bacteria. To uncover the microbial mechanisms contributing to the biogeochemical complexity encountered, even under controlled laboratory incubations, requires alternatives to standard phylogenetic analyses. Our ongoing efforts in analyzing the community transcriptomes (mRNA) should provide valuable insight into the relative rates of direct versus indirect mechanisms of Cr(VI) immobilization in contaminated aquifers.

  12. Optimization of hot water treatment for removing microbial colonies on fresh blueberry surface.

    PubMed

    Kim, Tae Jo; Corbitt, Melody P; Silva, Juan L; Wang, Dja Shin; Jung, Yean-Sung; Spencer, Barbara

    2011-08-01

    Blueberries for the frozen market are washed but this process sometimes is not effective or further contaminates the berries. This study was designed to optimize conditions for hot water treatment (temperature, time, and antimicrobial concentration) to remove biofilm and decrease microbial load on blueberries. Scanning electron microscopy (SEM) image showed a well-developed microbial biofilm on blueberries dipped in room temperature water. The biofilm consisted of yeast and bacterial cells attached to the berry surface in the form of microcolonies, which produced exopolymer substances between or upon the cells. Berry exposure to 75 and 90 °C showed little to no microorganisms on the blueberry surface; however, the sensory quality (wax/bloom) of berries at those temperatures was unacceptable. Response surface plots showed that increasing temperature was a significant factor on reduction of aerobic plate counts (APCs) and yeast/mold counts (YMCs) while adding Boxyl® did not have significant effect on APC. Overlaid contour plots showed that treatments of 65 to 70 °C for 10 to 15 s showed maximum reductions of 1.5 and 2.0 log CFU/g on APCs and YMCs, respectively; with acceptable level of bloom/wax score on fresh blueberries. This study showed that SEM, response surface, and overlaid contour plots proved successful in arriving at optima to reduce microbial counts while maintaining bloom/wax on the surface of the blueberries. Since chemical sanitizing treatments such as chlorine showed ineffectiveness to reduce microorganisms loaded on berry surface (Beuchat and others 2001, Sapers 2001), hot water treatment on fresh blueberries could maximize microbial reduction with acceptable quality of fresh blueberries. © 2011 Institute of Food Technologists®

  13. Photodynamic inactivation of Staphylococcus aureus and Escherichia coli biofilms by malachite green and phenothiazine dyes: an in vitro study.

    PubMed

    Vilela, Simone Furgeri Godinho; Junqueira, Juliana Campos; Barbosa, Junia Oliveira; Majewski, Marta; Munin, Egberto; Jorge, Antonio Olavo Cardoso

    2012-06-01

    The organization of biofilms in the oral cavity gives them added resistance to antimicrobial agents. The action of phenothiazinic photosensitizers on oral biofilms has already been reported. However, the action of the malachite green photosensitizer upon biofilm-organized microorganisms has not been described. The objective of the present work was to compare the action of malachite green with the phenothiazinic photosensitizers (methylene blue and toluidine blue) on Staphylococcus aureus and Escherichia coli biofilms. The biofilms were grown on sample pieces of acrylic resin and subjected to photodynamic therapy using a 660-nm diode laser and photosensitizer concentrations ranging from 37.5 to 3000 μM. After photodynamic therapy, cells from the biofilms were dispersed in a homogenizer and cultured in Brain Heart Infusion broth for quantification of colony-forming units per experimental protocol. For each tested microorganism, two control groups were maintained: one exposed to the laser radiation without the photosensitizer (L+PS-) and other treated with the photosensitizer without exposure to the red laser light (L-PS+). The results were subjected to descriptive statistical analysis. The best results for S. aureus and E. coli biofilms were obtained with photosensitizer concentrations of approximately 300 μM methylene blue, with microbial reductions of 0.8-1.0 log(10); 150 μM toluidine blue, with microbial reductions of 0.9-1.0 log(10); and 3000 μM malachite green, with microbial reductions of 1.6-4.0 log(10). Greater microbial reduction was achieved with the malachite green photosensitizer when used at higher concentrations than those employed for the phenothiazinic dyes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17.

    PubMed

    Li, Xiaomin; Liu, Liang; Liu, Tongxu; Yuan, Tian; Zhang, Wei; Li, Fangbai; Zhou, Shungui; Li, Yongtao

    2013-06-01

    Quinone groups in exogenous electron shuttles can accelerate extracellular electron transfer (EET) from bacteria to insoluble terminal electron acceptors, such as Fe(III) oxides and electrodes, which are important in biogeochemical redox processes and microbial electricity generation. However, the relationship between quinone-mediated EET performance and electron-shuttling properties of the quinones remains incompletely characterized. This study investigates the effects of a series of synthetic quinones (SQs) on goethite reduction and current generation by a fermenting bacterium Klebsiella pneumoniae L17. In addition, the voltammetric behavior and electron transfer capacities (ETCs) of SQ, including electron accepting (EAC) and donating (EDC) capacities, is also examined using electrochemical methods. The results showed that SQ can significantly increase both the Fe(III) reduction rates and current outputs of L17. Each tested SQ reversibly accepted and donated electrons as indicated by the cyclic voltammograms. The EAC and EDC results showed that Carmine and Alizarin had low relative capacities of electron transfer, whereas 9,10-anthraquinone-2,6-disulfonic acid (AQDS), 2-hydroxy-1,4-naphthoquinone (2-HNQ), and 5-hydroxy-1,4-naphthoquinone (5-HNQ) showed stronger relative ETC, and 9,10-anthraquinone-2-carboxylic acid (AQC) and 9,10-anthraquinone-2-sulfonic acid (AQS) had high relative ETC. Enhancement of microbial goethite reduction kinetics and current outputs by SQ had a good linear relationship with their ETC, indicating that the effectiveness of quinone-mediated EET may be strongly dependent on the ETC of the quinones. Therefore, the presence of quinone compounds and fermenting microorganisms may increase the diversity of microbial populations that contribute to element transformation in natural environments. Moreover, ETC determination of different SQ would help to evaluate their performance for microbial EET under anoxic conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: The geologic factor

    USGS Publications Warehouse

    Flores, R.M.; Rice, C.A.; Stricker, G.D.; Warden, A.; Ellis, M.S.

    2008-01-01

    Coal-bed gas of the Tertiary Fort Union and Wasatch Formations in the Powder River Basin in Wyoming and Montana, U.S. was interpreted as microbial in origin by previous studies based on limited data on the gas and water composition and isotopes associated with the coal beds. To fully evaluate the microbial origin of the gas and mechanisms of methane generation, additional data for 165 gas and water samples from 7 different coal-bed methane-bearing coal-bed reservoirs were collected basinwide and correlated to the coal geology and stratigraphy. The C1/(C2 + C3) ratio and vitrinite reflectance of coal and organic shale permitted differentiation between microbial gas and transitional thermogenic gas in the central part of the basin. Analyses of methane ??13C and ??D, carbon dioxide ??13C, and water ??D values indicate gas was generated primarily from microbial CO2 reduction, but with significant gas generated by microbial methyl-type fermentation (aceticlastic) in some areas of the basin. Microbial CO2 reduction occurs basinwide, but is generally dominant in Paleocene Fort Union Formation coals in the central part of the basin, whereas microbial methyl-type fermentation is common along the northwest and east margins. Isotopically light methane ??13C is distributed along the basin margins where ??D is also depleted, indicating that both CO2-reduction and methyl-type fermentation pathways played major roles in gas generation, but gas from the latter pathway overprinted gas from the former pathway. More specifically, along the northwest basin margin gas generation by methyl-type fermentation may have been stimulated by late-stage infiltration of groundwater recharge from clinker areas, which flowed through highly fractured and faulted coal aquifers. Also, groundwater recharge controlled a change in gas composition in the shallow Eocene Wasatch Formation with the increase of nitrogen and decrease of methane composition of the coal-bed gas. Other geologic factors, such as burial, thermal and maturation history, lateral and vertical continuity, and coalification of the coal beds, also played a significant role in controlling methanogenic pathways and provided new perspectives on gas evolution and emplacement. The early-stage gas produced by CO2 reduction has mixed with transitional thermogenic gas in the deeper, central parts of the Powder River Basin to form 'old' gas, whereas along the basin margins the overprint of gas from methyl-type fermentation represents 'new' gas. Thus, a clear understanding of these geologic factors is necessary to relate the microbiological, biogeochemical, and hydrological processes involved in the generation of coal-bed gas.

  16. Chloroethene Biodegradation Potential, ADOT/PF Peger Road Maintenance Facility, Fairbanks, Alaska

    USGS Publications Warehouse

    Bradley, Paul M.; Chapelle, Frances H.

    2004-01-01

    A series of 14C-radiotracer-based microcosm experiments were conducted to assess: 1) the extent, rate and products of microbial dechlorination of trichloroethene (TCE), cis-dichloroethene (cis-DCE) and vinyl chloride (VC) in sediments at the Peger Road site; 2) the effect of three electron donor amendments (molasses, shrimp and crab chitin, and 'Hydrogen Release Compound' (HRC)) on microbial degradation of TCE in three Peger Road sediments; and 3) the potential significance at the site of chloroethene biodegradation processes other than reductive dechlorination. In these experiments, TCE biodegradation yielded the reduced products, DCE and VC, and the oxidation product CO 2. Biodegradation of DCE and VC involved stoichiometric oxidation to CO 2. Both laboratory microcosm study and field redox assessment results indicated that the predominant terminal electron accepting process in Peger Road plume sediments under anoxic conditions was Mn/Fe-reduction. The rates of chloroethene biodegradation observed in Peger Road sediment microcosms under low temperature conditions (4?C) were within the range of those observed in sediments from temperate (20?C) aquifer systems. This result confirmed that biodegradation can be a significant mechanism for in situ contaminant remediation even in cold temperature aquifers. The fact that CO2 was the sole product of cis-DCE and VC biodegradation detected in Peger Road sediments indicated that a natural attenuation assessment based on reduced daughter product accumulation may significantly underestimate the potential for DCE and VC biodegradation at the Peger Road. Neither HRC nor molasses addition stimulated TCE reductive dechlorination. The fact that molasses and HRC amendment did stimulate Mn/Fe-reduction suggests that addition of these electron donors favored microbial Mn/Fe-reduction to the detriment of microbial TCE dechlorinating activity. In contrast, amendment of sediment microcosms with shrimp and crab chitin resulted in the establishment of mixed Mn/Fe-reducing, SO42--reducing and methanogenic conditions and enhanced TCE biodegradation in two of three Peger Road sediment treatments.

  17. Mechanisms for chelator stimulation of microbial Fe(III) -oxide reduction

    USGS Publications Warehouse

    Lovley, D.R.; Woodward, J.C.

    1996-01-01

    The mechanisms by which nitrilotriacetic acid (NTA) stimulated Fe(III) reduction in sediments from a petroleum-contaminated aquifer were investigated in order to gain insight into how added Fe(III) chelators stimulate the activity of hydrocarbon-degrading, Fe(III)-reducing microorganisms in these sediments, and how naturally occurring Fe(III) chelators might promote Fe(III) reduction in aquatic sediments. NTA solubilized Fe(III) from the aquifer sediments. NTA stimulation of microbial Fe(III) reduction did not appear to be the result of making calcium, magnesium, potassium, or trace metals more available to the microorganisms. Stimulation of Fe(III) reduction could not be attributed to NTA serving as a source of carbon or fixed nitrogen for Fe(III)-reducing bacteria as NTA was not degraded in the sediments. Studies with the Fe(III)-reducing microorganism, Geobacter metallireducens, and pure Fe(III)-oxide forms, demonstrated that NTA stimulated the reduction of a variety of Fe(III) forms, including highly crystalline Fe(III)-oxides such as goethite and hematite. The results suggest that NTA solubilization of insoluble Fe(III)-oxide is an important mechanism for the stimulation of Fe(III) reduction by NTA in aquifer sediments.

  18. High-throughput screening to identify selective inhibitors of microbial sulfate reduction (and beyond)

    NASA Astrophysics Data System (ADS)

    Carlson, H. K.; Coates, J. D.; Deutschbauer, A. M.

    2015-12-01

    The selective perturbation of complex microbial ecosystems to predictably influence outcomes in engineered and industrial environments remains a grand challenge for geomicrobiology. In some industrial ecosystems, such as oil reservoirs, sulfate reducing microorganisms (SRM) produce hydrogen sulfide which is toxic, explosive and corrosive. Current strategies to selectively inhibit sulfidogenesis are based on non-specific biocide treatments, bio-competitive exclusion by alternative electron acceptors or sulfate-analogs which are competitive inhibitors or futile/alternative substrates of the sulfate reduction pathway. Despite the economic cost of sulfidogenesis, there has been minimal exploration of the chemical space of possible inhibitory compounds, and very little work has quantitatively assessed the selectivity of putative souring treatments. We have developed a high-throughput screening strategy to target SRM, quantitatively ranked the selectivity and potency of hundreds of compounds and identified previously unrecognized SRM selective inhibitors and synergistic interactions between inhibitors. Once inhibitor selectivity is defined, high-throughput characterization of microbial community structure across compound gradients and identification of fitness determinants using isolate bar-coded transposon mutant libraries can give insights into the genetic mechanisms whereby compounds structure microbial communities. The high-throughput (HT) approach we present can be readily applied to target SRM in diverse environments and more broadly, could be used to identify and quantify the potency and selectivity of inhibitors of a variety of microbial metabolisms. Our findings and approach are relevant for engineering environmental ecosystems and also to understand the role of natural gradients in shaping microbial niche space.

  19. [Course of ejection fraction, regurgitation fraction and ventricular volumes during exertion in chronic aortic insufficiency. Study using technetium 99m gamma-cineangiography].

    PubMed

    Bassand, J P; Faivre, R; Berthout, P; Cardot, J C; Verdenet, J; Bidet, R; Maurat, J P

    1985-06-01

    Previous studies have shown that variations of the ejection fraction (EF) during exercise were representative of the contractile state of the left ventricle: an increased EF on effort is considered to be physiological, whilst a decrease would indicate latent LV dysfunction unmasked during exercise. This hypothesis was tested by performing Technetium 99 gamma cineangiography at equilibrium under basal conditions and at maximal effort in 8 healthy subjects and 44 patients with pure, severe aortic regurgitation to measure the ejection and regurgitant fractions and the variations in end systolic and end diastolic LV volume. In the control group the EF increased and end systolic volume decreased significantly on effort whilst the regurgitant fraction and end diastolic volume were unchanged. In the 44 patients with aortic regurgitation no significant variations in EF, end systolic and end diastolic volumes were observed because the individual values were very dispersed. Variations of the EF and end systolic volume were inversely correlated. The regurgitant fraction decreased significantly on effort. Based on the variations of the EF and end systolic volume three different types of response to effort could be identified: in 7 patients, the EF increased on effort and end systolic volume decreased without any significant variation in the end diastolic volume, as in the group of normal control subjects; in 22 patients, a reduction in EF was observed on effort, associated with an increased end systolic volume. These changes indicated latent IV dysfunction inapparent at rest and unmasked by exercise; in a third group of 15 patients, the EF decreased on effort despite a physiological decrease in end systolic volume due to a greater decrease in end diastolic volume.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. ENVIRONMENTAL CHARACTERISTICS AFFECTING REDUCTIVE TRANSFORMATION OF ORGANIC POLLUTANTS IN ANOXIC SEDIMENTS

    EPA Science Inventory

    Reductive transformations are important processes for determining the fate of organic pollutants in anoxic environments. These processes are most often microbially mediated by both direct and indirect means. For example, specific bacteria transform organic pollutants directly as ...

  1. Identification of neutron deficient niobium, molybdenum and technetium isotopes

    NASA Astrophysics Data System (ADS)

    Gross, C. J.

    We report on the in-beam identification of fourteen new isotopes in the A=80-90 region. Heavy-ion reactions with a recoil separator or charged particle and neutron detectors provided identification of γ-rays from these new niobium, molybdenum, and technetium isotopes. The procedures used are described and energy level systematics are discussed. The energy levels appear to be organized into rotational bands in nuclei with N≤44 while those with N ≥ 46 have more single-particle-like transitions. Lifetime measurements in 87Mo and 87Nb indicate that g {9}/{2} particle alignment strongly influences the collectivity of these nuclei.

  2. Volatile species of technetium and rhenium during waste vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dongsang; Kruger, Albert A.

    Volatile loss of technetium (Tc) during vitrification of low-activity wastes is a technical challenge for treating and immobilizing the large volumes of radioactive and hazardous wastes stored at the U.S. Department of Energy's Hanford Site. There are various research efforts being pursued to develop technologies that can be implemented for cost effective management of Tc, including studies to understand the behavior of Tc during vitrification, with the goal of eventually increasing Tc retention in glass. Furthermore, one of these studies has focused on identifying the form or species of Tc and Re (surrogate for Tc) that evolve during the waste-to-glassmore » conversion process. This information is important for understanding the mechanism of Tc volatilization. In this paper, available information collected from the literature is critically evaluated to clarify the volatile species of Tc and Re and, more specifically, whether they volatilize as alkali pertechnetate and perrhenate or as technetium and rhenium oxides after decomposition of alkali pertechnetate and perrhenate. The evaluated data ranged from mass spectrometric identification of species volatilized from pure and binary alkali pertechnetate and perrhenate salts to structural and chemical analyses of volatilized materials during crucible melting and scaled melter processing of simulated wastes.« less

  3. Volatile species of technetium and rhenium during waste vitrification

    DOE PAGES

    Kim, Dongsang; Kruger, Albert A.

    2017-10-26

    Volatile loss of technetium (Tc) during vitrification of low-activity wastes is a technical challenge for treating and immobilizing the large volumes of radioactive and hazardous wastes stored at the U.S. Department of Energy's Hanford Site. There are various research efforts being pursued to develop technologies that can be implemented for cost effective management of Tc, including studies to understand the behavior of Tc during vitrification, with the goal of eventually increasing Tc retention in glass. Furthermore, one of these studies has focused on identifying the form or species of Tc and Re (surrogate for Tc) that evolve during the waste-to-glassmore » conversion process. This information is important for understanding the mechanism of Tc volatilization. In this paper, available information collected from the literature is critically evaluated to clarify the volatile species of Tc and Re and, more specifically, whether they volatilize as alkali pertechnetate and perrhenate or as technetium and rhenium oxides after decomposition of alkali pertechnetate and perrhenate. The evaluated data ranged from mass spectrometric identification of species volatilized from pure and binary alkali pertechnetate and perrhenate salts to structural and chemical analyses of volatilized materials during crucible melting and scaled melter processing of simulated wastes.« less

  4. Soil microbial communties and enzyme activities in soils during historically extreme drought conditions in the USA

    USDA-ARS?s Scientific Manuscript database

    The Southern High Plains region of Texas experienced a significant reduction in 2011 crop production due a record drought as it experienced the hottest summer since 1911 (> 48 days of temperatures above 37.7oC and only 37.8 mm precipitation). Soil microbial communities and their associated enzymatic...

  5. Soil microbial communities and enzyme activities in soils during historically extreme drought conditions in the USA

    USDA-ARS?s Scientific Manuscript database

    The Southern High Plains region of Texas experienced a significant reduction in 2011 crop production due a record drought as it experienced the hottest summer since 1911 (> 48 days of temperatures above 37.7oC and only 37.8 mm precipitation). Soil microbial communities and their associated enzymati...

  6. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests

    Treesearch

    Jorge Durán; Jennifer L. Morse; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer

    2014-01-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity...

  7. Microbial fuel cells: From fundamentals to applications. A review.

    PubMed

    Santoro, Carlo; Arbizzani, Catia; Erable, Benjamin; Ieropoulos, Ioannis

    2017-07-15

    In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.

  8. Microbial fuel cells: From fundamentals to applications. A review

    NASA Astrophysics Data System (ADS)

    Santoro, Carlo; Arbizzani, Catia; Erable, Benjamin; Ieropoulos, Ioannis

    2017-07-01

    In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.

  9. Innovative biological approaches for monitoring and improving water quality

    PubMed Central

    Aracic, Sanja; Manna, Sam; Petrovski, Steve; Wiltshire, Jennifer L.; Mann, Gülay; Franks, Ashley E.

    2015-01-01

    Water quality is largely influenced by the abundance and diversity of indigenous microbes present within an aquatic environment. Physical, chemical and biological contaminants from anthropogenic activities can accumulate in aquatic systems causing detrimental ecological consequences. Approaches exploiting microbial processes are now being utilized for the detection, and removal or reduction of contaminants. Contaminants can be identified and quantified in situ using microbial whole-cell biosensors, negating the need for water samples to be tested off-site. Similarly, the innate biodegradative processes can be enhanced through manipulation of the composition and/or function of the indigenous microbial communities present within the contaminated environments. Biological contaminants, such as detrimental/pathogenic bacteria, can be specifically targeted and reduced in number using bacteriophages. This mini-review discusses the potential application of whole-cell microbial biosensors for the detection of contaminants, the exploitation of microbial biodegradative processes for environmental restoration and the manipulation of microbial communities using phages. PMID:26322034

  10. Biofilm-induced bioclogging produces sharp interfaces in hyporheic flow, redox conditions, and microbial community structure

    NASA Astrophysics Data System (ADS)

    Caruso, Alice; Boano, Fulvio; Ridolfi, Luca; Chopp, David L.; Packman, Aaron

    2017-05-01

    Riverbed sediments host important biogeochemical processes that play a key role in nutrient dynamics. Sedimentary nutrient transformations are mediated by bacteria in the form of attached biofilms. The influence of microbial metabolic activity on the hydrochemical conditions within the hyporheic zone is poorly understood. We present a hydrobiogeochemical model to assess how the growth of heterotrophic and autotrophic biomass affects the transport and transformation of dissolved nitrogen compounds in bed form-induced hyporheic zones. Coupling between hyporheic exchange, nitrogen metabolism, and biomass growth leads to an equilibrium between permeability reduction and microbial metabolism that yields shallow hyporheic flows in a region with low permeability and high rates of microbial metabolism near the stream-sediment interface. The results show that the bioclogging caused by microbial growth can constrain rates and patterns of hyporheic fluxes and microbial transformation rate in many streams.

  11. Anti-Bacterial and Anti-Fungal Activity of Xanthones Obtained via Semi-Synthetic Modification of α-Mangostin from Garcinia mangostana.

    PubMed

    Narasimhan, Srinivasan; Maheshwaran, Shanmugam; Abu-Yousef, Imad A; Majdalawieh, Amin F; Rethavathi, Janarthanam; Das, Prince Edwin; Poltronieri, Palmiro

    2017-02-12

    The microbial contamination in food packaging has been a major concern that has paved the way to search for novel, natural anti-microbial agents, such as modified α-mangostin. In the present study, twelve synthetic analogs were obtained through semi-synthetic modification of α-mangostin by Ritter reaction, reduction by palladium-carbon (Pd-C), alkylation, and acetylation. The evaluation of the anti-microbial potential of the synthetic analogs showed higher bactericidal activity than the parent molecule. The anti-microbial studies proved that I E showed high anti-bacterial activity whereas I I showed the highest anti-fungal activity. Due to their microbicidal potential, modified α-mangostin derivatives could be utilized as active anti-microbial agents in materials for the biomedical and food industry.

  12. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells.

    PubMed

    Wang, Gang; Huang, Liping; Zhang, Yifeng

    2008-11-01

    A novel approach to Cr(VI)-contaminated wastewater treatment was investigated using microbial fuel cell technologies in fed-batch mode. By using synthetic Cr(VI)-containing wastewater as catholyte and anaerobic microorganisms as anodic biocatalyst, Cr(VI) at 100 mg/l was completely removed during 150 h (initial pH 2). The maximum power density of 150 mW/m(2) (0.04 mA/cm(2)) and the maximum open circuit voltage of 0.91 V were generated with Cr(VI) at 200 mg/l as electron acceptor. This work verifies the possibility of simultaneous electricity production and cathodic Cr(VI) reduction.

  13. Research supporting potential modification of the NASA specification for dry heat microbial reduction of spacecraft hardware

    NASA Astrophysics Data System (ADS)

    Spry, James A.; Beaudet, Robert; Schubert, Wayne

    Dry heat microbial reduction (DHMR) is the primary method currently used to reduce the microbial load of spacecraft and component parts to comply with planetary protection re-quirements. However, manufacturing processes often involve heating flight hardware to high temperatures for purposes other than planetary protection DHMR. At present, the specifica-tion in NASA document NPR8020.12, describing the process lethality on B. atrophaeus (ATCC 9372) bacterial spores, does not allow for additional planetary protection bioburden reduction credit for processing outside a narrow temperature, time and humidity window. Our results from a comprehensive multi-year laboratory research effort have generated en-hanced data sets on four aspects of the current specification: time and temperature effects in combination, the effect that humidity has on spore lethality, and the lethality for spores with exceptionally high thermal resistance (so called "hardies"). This paper describes potential modifications to the specification, based on the data set gener-ated in the referenced studies. The proposed modifications are intended to broaden the scope of the current specification while still maintaining confidence in a conservative interpretation of the lethality of the DHMR process on microorganisms.

  14. Development of a multiple-step process for the microbial decontamination of beef trim.

    PubMed

    Kang, D H; Koohmaraie, M; Dorsa, W J; Siragusa, G R

    2001-01-01

    A multiple-hurdle antimicrobial process for beef trim was developed. The microbial profiles of inoculated lean beef trim tissue (BTL) and fat-covered lean beef trim (BTF) were monitored during prolonged refrigerated storage following the application of successive multiple antimicrobial treatments applied to inoculated beef trim on a processing conveyor belt set at a belt speed of 1 cm/s. Beef trim (meat size approximately 15 by 15 cm) was preinoculated with bovine feces before all treatments that included the following: control, no treatment; water wash at 65 psi for five passes; water plus lactic acid (2% [vol/vol] room temperature lactic acid wash at 30 psi for three passes); combination treatment 1 (water plus 65 degrees C hot water at 30 psi for one pass plus hot air at 510 degrees C for four passes plus lactic acid), combination treatment 2 (water plus hot water at 82 degrees C for one pass plus hot air at 510 degrees C for five passes plus lactic acid), and combination treatment 3 (water plus hot water at 82 degrees C for three passes plus hot air at 510 degrees C for six passes plus lactic acid). The effects of treatments on bacterial populations were monitored by enumerating mesophilic aerobic bacteria (APC), presumptive lactic acid bacteria (PLAB), psychrotrophic bacteria (PCT), coliforms, and Escherichia coli biotype 1 on product stored for up to 7 days at 4 degrees C. In the case of BTL, the numbers of APC, PCT, and PLAB increased during storage at 5 degrees C, whereas the numbers of coliform and E. coli decreased on average by 1.8 log CFU/cm2, then remained constant following the initial reduction. Negligible effects on color quality were observed from multihurdle treatment combination 1. In the case of the BTF, the microbial reductions by treatments were much greater than the reduction on BTL. The pH of treated BTF increased more slowly than the pH of treated BTL, resulting in further reduction of the microflora on BTF. Except for control and water treatments, all sample treatments involving lactic acid resulted in continuously decreasing microbial populations. Based on microbial reduction and quality aspects, it was concluded that successively applied combination antimicrobial treatments for meat trim could offer potential food safety benefits.

  15. Microbial Nitrogen Cycle Hotspots in the Plant-Bed/Ditch System of a Constructed Wetland with N2O Mitigation.

    PubMed

    Wang, Shanyun; Wang, Weidong; Liu, Lu; Zhuang, Linjie; Zhao, Siyan; Su, Yu; Li, Yixiao; Wang, Mengzi; Wang, Cheng; Xu, Liya; Zhu, Guibing

    2018-05-24

    Artificial microbial nitrogen (N) cycle hotspots in the plant-bed/ditch system were developed and investigated based on intact core and slurry assays measurement using isotopic tracing technology, quantitative PCR and high-throughput sequencing. By increasing hydraulic retention time and periodically fluctuating water level in heterogeneous riparian zones, hotspots of anammox, nitrification, denitrification, ammonium (NH 4 + ) oxidation, nitrite (NO 2 - ) oxidation, nitrate (NO 3 - ) reduction and DNRA were all stimulated at the interface sediments, with the abundance and activity being about 1-3 orders of magnitude higher than those in nonhotspots. Isotopic pairing experiments revealed that in microbial hotspots, nitrite sources were higher than the sinks, and both NH 4 + oxidation (55.8%) and NO 3 - reduction (44.2%) provided nitrite for anammox, which accounted for 43.0% of N-loss and 44.4% of NH 4 + removal in riparian zones but did not involve nitrous oxide (N 2 O) emission risks. High-throughput analysis identified that bacterial quorum sensing mediated this anammox hotspot with B.fulgida dominating the anammox community, but it was B. anammoxidans and Jettenia sp. that contributed more to anammox activity. In the nonhotspot zones, the NO 2 - source (NO 3 - reduction dominated) was lower than the sink, limiting the effects on anammox. The in situ N 2 O flux measurement showed that the microbial hotspot had a 27.1% reduced N 2 O emission flux compared with the nonhotspot zones.

  16. The pH and pCO2 dependence of sulfate reduction in shallow-sea hydrothermal CO2 – venting sediments (Milos Island, Greece)

    PubMed Central

    Bayraktarov, Elisa; Price, Roy E.; Ferdelman, Timothy G.; Finster, Kai

    2013-01-01

    Microbial sulfate reduction (SR) is a dominant process of organic matter mineralization in sulfate-rich anoxic environments at neutral pH. Recent studies have demonstrated SR in low pH environments, but investigations on the microbial activity at variable pH and CO2 partial pressure are still lacking. In this study, the effect of pH and pCO2 on microbial activity was investigated by incubation experiments with radioactive 35S targeting SR in sediments from the shallow-sea hydrothermal vent system of Milos, Greece, where pH is naturally decreased by CO2 release. Sediments differed in their physicochemical characteristics with distance from the main site of fluid discharge. Adjacent to the vent site (T ~40–75°C, pH ~5), maximal sulfate reduction rates (SRR) were observed between pH 5 and 6. SR in hydrothermally influenced sediments decreased at neutral pH. Sediments unaffected by hydrothermal venting (T ~26°C, pH ~8) expressed the highest SRR between pH 6 and 7. Further experiments investigating the effect of pCO2 on SR revealed a steep decrease in activity when the partial pressure increased from 2 to 3 bar. Findings suggest that sulfate reducing microbial communities associated with hydrothermal vent system are adapted to low pH and high CO2, while communities at control sites required a higher pH for optimal activity. PMID:23658555

  17. The pH and pCO2 dependence of sulfate reduction in shallow-sea hydrothermal CO2 - venting sediments (Milos Island, Greece).

    PubMed

    Bayraktarov, Elisa; Price, Roy E; Ferdelman, Timothy G; Finster, Kai

    2013-01-01

    Microbial sulfate reduction (SR) is a dominant process of organic matter mineralization in sulfate-rich anoxic environments at neutral pH. Recent studies have demonstrated SR in low pH environments, but investigations on the microbial activity at variable pH and CO2 partial pressure are still lacking. In this study, the effect of pH and pCO2 on microbial activity was investigated by incubation experiments with radioactive (35)S targeting SR in sediments from the shallow-sea hydrothermal vent system of Milos, Greece, where pH is naturally decreased by CO2 release. Sediments differed in their physicochemical characteristics with distance from the main site of fluid discharge. Adjacent to the vent site (T ~40-75°C, pH ~5), maximal sulfate reduction rates (SRR) were observed between pH 5 and 6. SR in hydrothermally influenced sediments decreased at neutral pH. Sediments unaffected by hydrothermal venting (T ~26°C, pH ~8) expressed the highest SRR between pH 6 and 7. Further experiments investigating the effect of pCO2 on SR revealed a steep decrease in activity when the partial pressure increased from 2 to 3 bar. Findings suggest that sulfate reducing microbial communities associated with hydrothermal vent system are adapted to low pH and high CO2, while communities at control sites required a higher pH for optimal activity.

  18. Impacts of shallow geothermal energy production on redox processes and microbial communities.

    PubMed

    Bonte, Matthijs; Röling, Wilfred F M; Zaura, Egija; van der Wielen, Paul W J J; Stuyfzand, Pieter J; van Breukelen, Boris M

    2013-12-17

    Shallow geothermal systems are increasingly being used to store or harvest thermal energy for heating or cooling purposes. This technology causes temperature perturbations exceeding the natural variations in aquifers, which may impact groundwater quality. Here, we report the results of laboratory experiments on the effect of temperature variations (5-80 °C) on redox processes and associated microbial communities in anoxic unconsolidated subsurface sediments. Both hydrochemical and microbiological data showed that a temperature increase from 11 °C (in situ) to 25 °C caused a shift from iron-reducing to sulfate-reducing and methanogenic conditions. Bioenergetic calculations could explain this shift. A further temperature increase (>45 °C) resulted in the emergence of a thermophilic microbial community specialized in fermentation and sulfate reduction. Two distinct maxima in sulfate reduction rates, of similar orders of magnitude (5 × 10(-10) M s(-1)), were observed at 40 and 70 °C. Thermophilic sulfate reduction, however, had a higher activation energy (100-160 kJ mol(-1)) than mesophilic sulfate reduction (30-60 kJ mol(-1)), which might be due to a trade-off between enzyme stability and activity with thermostable enzymes being less efficient catalysts that require higher activation energies. These results reveal that while sulfate-reducing functionality can withstand a substantial temperature rise, other key biochemical processes appear more temperature sensitive.

  19. Synchronous microbial vanadium (V) reduction and denitrification in groundwater using hydrogen as the sole electron donor.

    PubMed

    Jiang, Yufeng; Zhang, Baogang; He, Chao; Shi, Jiaxin; Borthwick, Alistair G L; Huang, Xueyang

    2018-05-21

    Groundwater co-contaminated by vanadium (V) (V(V)) and nitrate requires efficient remediation to prevent adverse environmental impacts. However, little is known about simultaneous bio-reductions of V(V) and nitrate supported by gaseous electron donors in aquifers. This study is among the first to examine microbial V(V) reduction and denitrification with hydrogen as the sole electron donor. V(V) removal efficiency of 91.0 ± 3.2% was achieved in test bioreactors within 7 d, with synchronous, complete removal of nitrate. V(V) was reduced to V(IV), which precipitated naturally under near-neutral conditions, and nitrate tended to be converted to nitrogen, both of which processes helped to purify the groundwater. Volatile fatty acids (VFAs) were produced from hydrogen oxidation. High-throughput 16S rRNA gene sequencing and metagenomic analyses revealed the evolutionary behavior of microbial communities and functional genes. The genera Dechloromonas and Hydrogenophaga promoted bio-reductions of V(V) and nitrate directly coupled to hydrogen oxidation. Enriched Geobacter and denitrifiers also indicated synergistic mechanism, with VFAs acting as organic carbon sources for heterotrophically functional bacteria while reducing V(V) and nitrate. These findings are likely to be useful in revealing biogeochemical fates of V(V) and nitrate in aquifer and developing technology for removing them simultaneously from groundwater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Geochemical and microbial community determinants of reductive dechlorination at a site biostimulated with glycerol.

    PubMed

    Atashgahi, Siavash; Lu, Yue; Zheng, Ying; Saccenti, Edoardo; Suarez-Diez, Maria; Ramiro-Garcia, Javier; Eisenmann, Heinrich; Elsner, Martin; J M Stams, Alfons; Springael, Dirk; Dejonghe, Winnie; Smidt, Hauke

    2017-03-01

    Biostimulation is widely used to enhance reductive dechlorination of chlorinated ethenes in contaminated aquifers. However, the knowledge on corresponding biogeochemical responses is limited. In this study, glycerol was injected in an aquifer contaminated with cis-dichloroethene (cDCE), and geochemical and microbial shifts were followed for 265 days. Consistent with anoxic conditions and sulfate reduction after biostimulation, MiSeq 16S rRNA gene sequencing revealed temporarily increased relative abundance of Firmicutes, Bacteriodetes and sulfate reducing Deltaproteobacteria. In line with 13 C cDCE enrichment and increased Dehalococcoides mccartyi (Dcm) numbers, dechlorination was observed toward the end of the field experiment, albeit being incomplete with accumulation of vinyl chloride. This was concurrent with (i) decreased concentrations of dissolved organic carbon (DOC), reduced relative abundances of fermenting and sulfate reducing bacteria that have been suggested to promote Dcm growth by providing electron donor (H 2 ) and essential corrinoid cofactors, (ii) increased sulfate concentration and increased relative abundance of Epsilonproteobacteria and Deferribacteres as putative oxidizers of reduced sulfur compounds. Strong correlations of DOC, relative abundance of fermenters and sulfate reducers, and dechlorination imply the importance of syntrophic interactions to sustain robust dechlorination. Tracking microbial and environmental parameters that promote/preclude enhanced reductive dechlorination should aid development of sustainable bioremediation strategies. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community

    PubMed Central

    Harter, Johannes; Krause, Hans-Martin; Schuettler, Stefanie; Ruser, Reiner; Fromme, Markus; Scholten, Thomas; Kappler, Andreas; Behrens, Sebastian

    2014-01-01

    Nitrous oxide (N2O) contributes 8% to global greenhouse gas emissions. Agricultural sources represent about 60% of anthropogenic N2O emissions. Most agricultural N2O emissions are due to increased fertilizer application. A considerable fraction of nitrogen fertilizers are converted to N2O by microbiological processes (that is, nitrification and denitrification). Soil amended with biochar (charcoal created by pyrolysis of biomass) has been demonstrated to increase crop yield, improve soil quality and affect greenhouse gas emissions, for example, reduce N2O emissions. Despite several studies on variations in the general microbial community structure due to soil biochar amendment, hitherto the specific role of the nitrogen cycling microbial community in mitigating soil N2O emissions has not been subject of systematic investigation. We performed a microcosm study with a water-saturated soil amended with different amounts (0%, 2% and 10% (w/w)) of high-temperature biochar. By quantifying the abundance and activity of functional marker genes of microbial nitrogen fixation (nifH), nitrification (amoA) and denitrification (nirK, nirS and nosZ) using quantitative PCR we found that biochar addition enhanced microbial nitrous oxide reduction and increased the abundance of microorganisms capable of N2-fixation. Soil biochar amendment increased the relative gene and transcript copy numbers of the nosZ-encoded bacterial N2O reductase, suggesting a mechanistic link to the observed reduction in N2O emissions. Our findings contribute to a better understanding of the impact of biochar on the nitrogen cycling microbial community and the consequences of soil biochar amendment for microbial nitrogen transformation processes and N2O emissions from soil. PMID:24067258

  2. Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream.

    PubMed

    Mora-Gómez, Juanita; Duarte, Sofia; Cássio, Fernanda; Pascoal, Cláudia; Romaní, Anna M

    2018-04-15

    Drought frequency and intensity in some temperate regions are forecasted to increase under the ongoing global change, which might expose permanent streams to intermittence and have severe repercussions on stream communities and ecosystem processes. In this study, we investigated the effect of drought duration on microbial decomposition of Populus nigra leaf litter in a temperate permanent stream (Oliveira, NW Portugal). Specifically, we measured the response of the structural (assemblage composition, bacterial and fungal biomass) and functional (leaf litter decomposition, extracellular enzyme activities (EEA), and fungal sporulation) parameters of fungal and bacterial communities on leaf litter exposed to emersion during different time periods (7, 14 and 21d). Emersion time affected microbial assemblages and litter decomposition, but the response differed among variables. Leaf decomposition rates and the activity of β-glucosidase, cellobiohydrolase and phosphatase were gradually reduced with increasing emersion time, while β-xylosidase reduction was similar when emersion last for 7 or more days, and the phenol oxidase reduction was similar at 14 and 21days of leaf emersion. Microbial biomass and fungal sporulation were reduced after 21days of emersion. The structure of microbial assemblages was affected by the duration of the emersion period. The shifts in fungal assemblages were correlated with a decreased microbial capacity to degrade lignin and hemicellulose in leaf litter exposed to emersion. Additionally, some resilience was observed in leaf litter mass loss, bacterial biomass, some enzyme activities and structure of fungal assemblages. Our study shows that drought can strongly alter structural and functional aspects of microbial decomposers. Therefore, the exposure of leaf litter to increasing emersion periods in temperate streams is expected to affect decomposer communities and overall decomposition of plant material by decelerating carbon cycling in streams. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The Impact of Population Bottlenecks on Microbial Adaptation

    NASA Astrophysics Data System (ADS)

    LeClair, Joshua S.; Wahl, Lindi M.

    2018-07-01

    Population bottlenecks—sudden, severe reductions in population size—are ubiquitous in nature. Because of their critical implications for conservation genetics, the effects of population bottlenecks on the loss of genetic diversity have been well studied. Bottlenecks also have important implications for adaptation, however, and these effects have been addressed more recently, typically in microbial populations. In this short review, we survey both experimental and theoretical work describing the impact of population bottlenecks on microbial adaptation. Focusing on theoretical contributions, we highlight emerging insights and conclude with several open questions of interest in the field.

  4. Geochemical modeling of iron, sulfur, oxygen and carbon in a coastal plain aquifer

    NASA Astrophysics Data System (ADS)

    Brown, C. J.; Schoonen, M. A. A.; Candela, J. L.

    2000-11-01

    Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron-related geochemical processes and redox zonation along a flow path. The observed increase in dissolved inorganic carbon is consistent with the oxidation of sedimentary organic matter coupled to the reduction of O 2 and SO 42- in the aerobic zone, and to the reduction of SO 42- in the anaerobic zone; estimated rates of CO 2 production through reduction of Fe(III) were relatively minor by comparison. The rates of CO 2 production calculated from dissolved inorganic carbon mass transfer (2.55×10 -4 to 48.6×10 -4 mmol l -1 yr-1) generally were comparable to the calculated rates of CO 2 production by the combined reduction of O 2, Fe(III) and SO 42- (1.31×10 -4 to 15×10 -4 mmol l -1 yr-1). The overall increase in SO 42- concentrations along the flow path, together with the results of mass-balance calculations, and variations in δ34S values along the flow path indicate that SO 42- loss through microbial reduction is exceeded by SO 42- gain through diffusion from sediments and through the oxidation of FeS 2. Geochemical and microbial data on cores indicate that Fe(III) oxyhydroxide coatings on sediment grains in local, organic carbon- and SO 42--rich zones have been depleted by microbial reduction and resulted in localized SO 42--reducing zones in which the formation of iron disulfides decreases dissolved iron concentrations. These localized zones of SO 42- reduction, which are important for assessing zones of low dissolved iron for water-supply development, could be overlooked by aquifer studies that rely only on groundwater data from well-water samples for geochemical modeling.

  5. Quantification and isotopic analysis of intracellular sulfur metabolites in the dissimilatory sulfate reduction pathway

    NASA Astrophysics Data System (ADS)

    Sim, Min Sub; Paris, Guillaume; Adkins, Jess F.; Orphan, Victoria J.; Sessions, Alex L.

    2017-06-01

    Microbial sulfate reduction exhibits a normal isotope effect, leaving unreacted sulfate enriched in 34S and producing sulfide that is depleted in 34S. However, the magnitude of sulfur isotope fractionation is quite variable. The resulting changes in sulfur isotope abundance have been used to trace microbial sulfate reduction in modern and ancient ecosystems, but the intracellular mechanism(s) underlying the wide range of fractionations remains unclear. Here we report the concentrations and isotopic ratios of sulfur metabolites in the dissimilatory sulfate reduction pathway of Desulfovibrio alaskensis. Intracellular sulfate and APS levels change depending on the growth phase, peaking at the end of exponential phase, while sulfite accumulates in the cell during stationary phase. During exponential growth, intracellular sulfate and APS are strongly enriched in 34S. The fractionation between internal and external sulfate is up to 49‰, while at the same time that between external sulfate and sulfide is just a few permil. We interpret this pattern to indicate that enzymatic fractionations remain large but the net fractionation between sulfate and sulfide is muted by the closed-system limitation of intracellular sulfate. This 'reservoir effect' diminishes upon cessation of exponential phase growth, allowing the expression of larger net sulfur isotope fractionations. Thus, the relative rates of sulfate exchange across the membrane versus intracellular sulfate reduction should govern the overall (net) fractionation that is expressed. A strong reservoir effect due to vigorous sulfate reduction might be responsible for the well-established inverse correlation between sulfur isotope fractionation and the cell-specific rate of sulfate reduction, while at the same time intraspecies differences in sulfate uptake and/or exchange rates could account for the significant scatter in this relationship. Our approach, together with ongoing investigations of the kinetic isotope fractionation by key enzymes in the sulfate reduction pathway, should provide an empirical basis for a quantitative model relating the magnitude of microbial isotope fractionation to their environmental and physiological controls.

  6. Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide.

    PubMed

    Bajracharya, Suman; Vanbroekhoven, Karolien; Buisman, Cees J N; Pant, Deepak; Strik, David P B T B

    2016-11-01

    Microbial catalysis of carbon dioxide (CO 2 ) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO 2 by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO 2 as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO 2 in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO 2 through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO 2 and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at -1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO 2 reduction. Bioelectrochemical CO 2 reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO 2 gas mixture feed were achieved with 10 cm 2 of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO 2 gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO 2 reduction with enhanced mass transfer rate at continuous supply of gaseous CO 2 . Graphical abstract ᅟ.

  7. Anaerobic microbial redox processes in a landfill leachate contaminated aquifer (Grindsted, Denmark)

    NASA Astrophysics Data System (ADS)

    Ludvigsen, L.; Albrechtsen, H.-J.; Heron, G.; Bjerg, P. L.; Christensen, T. H.

    1998-10-01

    The distribution of anaerobic microbial redox processes was investigated along a 305 m long transect of a shallow landfill-leachate polluted aquifer. By unamended bioassays containing sediment and groundwater, 37 samples were investigated with respect to methane production, sulfate, iron, and manganese reduction, and denitrification. Methane production was restricted to the most reduced part of the plume with rates of 0.003-0.055 nmol CH 4/g dry weight/day. Sulfate reduction was observed at rates of maximum 1.8 nmol SO 42-/g dry weight/day along with methane production in the plume, but sulfate reduction was also observed further downgradient of the landfill. Iron reduction at rates of 5-19 nmol Fe(II)/g dry weight/day was observed in only a few samples, but this may be related to a high detection limit for the iron reducing bioassay. Manganese reduction at rates of maximum 2.4 nmol Mn(II)/g dry weight/day and denitrification at rates of 0.2-37 nmol N 2O-N/g dry weight/day were observed in the less reduced part of the plume. All the redox processes were microbial processes. In many cases, several redox processes took place simultaneously, but in all samples one process dominated accounting for more than 70% of the equivalent carbon conversion. The bioassays showed that the redox zones in the plume identified from the groundwater composition (e.g. as methanogenic and sulfate reducing) locally hosted also other redox processes (e.g. iron reduction). This may have implications for the potential of the redox zone to degrade trace amounts of organic chemicals and suggests that unamended bioassays may be an important supplement to other approaches in characterizing the redox processes in an anaerobic plume.

  8. Soil Biogeochemical and Microbial Feedbacks along a Snowmelt-Dominated Hillslope-to-Floodplain Transect in Colorado.

    NASA Astrophysics Data System (ADS)

    Sorensen, P.; Beller, H. R.; Bill, M.; Bouskill, N.; Brodie, E.; Chakraborty, R.; Conrad, M. E.; Karaoz, U.; Polussa, A.; Steltzer, H.; Wang, S.; Williams, K. H.; Wilmer, C.; Wu, Y.

    2017-12-01

    Nitrogen export from mountainous watersheds is a product of multiple interactions among hydrological processes and soil-microbial-plant feedbacks along the continuum from terrestrial to aquatic environments. In snow-dominated systems, like the East River Watershed (CO), seasonal processes such as snowmelt exert significant influence on the annual hydrologic cycle and may also link spatially distinct catchment subsystems, such as hillslope and adjoining riparian floodplains. Further, snowmelt is occurring earlier each year and this is predicted to result in a temporal asynchrony between historically coupled microbial nutrient release and plant nutrient demand in spring, with the potential to increase N export from the East River Watershed. Here we summarize biogeochemical data collected along a hillslope-to-riparian floodplain transect at the East River site. Starting in Fall 2016, we sampled soils at 3 depths and measured dissolved pools of soil nutrients (e.g., NH4+, NO3-, DOC, P), microbial biomass CN, and microbial community composition over a seasonal time course, through periods of snow accumulation, snowmelt, and plant senescence. Soil moisture content in the top 5 cm of floodplain soils was nearly 4X greater across sampling dates, coinciding with 2X greater microbial biomass C, larger extractable pools of NH4+, and smaller pools of NO3- in floodplain vs. hillslope soils. These results suggest that microbially mediated redox processes played an important role in N cycling along the transect. Hillslope vs. floodplain location also appeared to be a key factor that differentiated soil microbial communities (e.g., a more important factor than seasonality or soil depth or type). Snow accumulation and snowmelt exerted substantial influence on soil biogeochemistry. For example, microbial biomass accumulation increased about 2X beneath the winter snowpack. Snowmelt resulted in a precipitous crash in the microbial population, with 2.5X reductions in floodplain and 2X reductions in hillslope soils. Immediately following snowmelt, NO3- concentrations in soil porewater and soil extracts increased dramatically. Overall, these results suggest that N export is strongly influenced by distinct soil biogeochemical and microbiological patterns along hillslope-to-floodplain transects at East River.

  9. Impacts of zero valent iron, natural zeolite and Dnase on the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of swine manure.

    PubMed

    Zhang, Junya; Sui, Qianwen; Zhong, Hui; Meng, Xiaoshan; Wang, Ziyue; Wang, Yawei; Wei, Yuansong

    2018-06-01

    This study investigated the fate of antibiotic resistance genes (ARGs) during mesophilic (mAD) and thermophilic digestion (tAD) of swine manure through zero valent iron (ZVI), natural zeolite and Dnase addition. Changes of microbial community, intI1, heavy metal resistance genes (MRGs) and virulence factors (VFs) were followed to clarify the influencing factors to ARGs reduction. Results showed that AD could realize ARGs reduction with tAD superior to mAD, and ZVI and natural zeolite could further enhance the reduction, especially for natural zeolite addition at mAD. The reduction efficiency of the relative abundance of ARGs was increased by 33.3% and 138.5% after ZVI and natural zeolite addition, respectively, but Dnase deteriorated ARGs reduction at mAD. Most of ARGs could be reduced effectively except sulII and tetM. Network analysis and partial redundancy analysis indicated that co-occurrence of MRGs followed by microbial community contributed the most to the variation of ARGs fate among treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Kinetic comparison of microbial assemblages for the anaerobic treatment of wastewater with high sulfate and heavy metal contents.

    PubMed

    Sinbuathong, Nusara; Sirirote, Pramote; Liengcharernsit, Winai; Khaodhiar, Sutha; Watts, Daniel J

    2009-01-01

    Mixed-microbial assemblages enriched from a septic tank, coastal sediment samples, the digester sludge of a brewery wastewater treatment plant and acidic sulfate soil samples were compared on the basis of growth rate, waste and sulfate reduction rate under sulfate reducing conditions at 30 degrees C. The specific growth rate of various cultures was in the range 0.0013-0.0022 hr(-1). Estimates of waste and sulfate reduction rate were obtained by fitting substrate depletion and sulfate reduction data with the Michaelis-Menten equation. The waste reduction rates were in the range 4x10(-8)-1x10(-7) I mg(-1) hr(-1) and generally increased in the presence of copper, likely by copper sulfide precipitation that reduced sulfide and copper toxicity and thus protected the anaerobic microbes. Anaerobic microorganisms from a brewery digester sludge were found to be the most appropriate culture for the treatment of wastewater with high sulfate and heavy metal content due to their growth rate, and waste and sulfate reduction rate.

  11. Comparative metagenomic analysis of the microbial communities in the surroundings of Iheya north and Iheya ridge hydrothermal fields reveals insights into the survival strategy of microorganisms in deep-sea environments

    NASA Astrophysics Data System (ADS)

    Wang, Hai-liang; Sun, Li

    2018-04-01

    In this study, metagenomic analysis was performed to investigate the taxonomic compositions and metabolic profiles of the microbial communities inhabiting the sediments in the surroundings of Iheya North and Iheya Ridge hydrothermal fields. The microbial communities in four different samples were found to be dominated by bacteria and, to a much lesser extent, archaea belonging to the phyla Proteobacteria, Actinobacteria, Planctomycetes, Firmicutes, Deinococcus-Thermus, and Nitrospirae, which play important roles in the cycling of carbon, nitrogen, and sulfur. All four microbial communities (i) contained chemoautotrophs and heterotrophs, the former probably fixed CO2 via various carbon fixation pathways, and the latter may degrade organic matters using nitrate and sulfate as electron acceptors, (ii) exhibited an abundance of DNA repair genes and bacterial sulfur oxidation mediated by reverse sulfate reduction, and (iii) harbored bacteria and archaea involved in anaerobic methane oxidation via intra-aerobic denitrification and reverse methanogenesis, which were found for the first time in hydrothermal areas. Furthermore, genes involved in DNA repair, reductive acetyl-CoA pathway, and ammonia metabolism were possibly affected by distance to the vent fields. These findings facilitate our understanding of the strategies of the microbial communities to adapt to the environments in deep sea areas associated with hydrothermal vents.

  12. Draft genome sequence of Sulfurospirillum sp. strain MES, reconstructed from the metagenome of a microbial electrosynthesis system

    DOE PAGES

    Ross, Daniel E.; Marshall, Christopher W.; May, Harold D.; ...

    2015-01-15

    A draft genome of Sulfurospirillum sp. strain MES was isolated through taxonomic binning of a metagenome sequenced from a microbial electrosynthesis system (MES) actively producing acetate and hydrogen. The genome contains the nosZDFLY genes, which are involved in nitrous oxide reduction, suggesting the potential role of this strain in denitrification.

  13. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation.

    PubMed

    Zeng, Zhirui; Tice, Michael M

    2018-01-01

    Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms. Key Words: Microbial iron reduction-Micropore-Electron transfer strategies-Microbial carbonate. Astrobiology 18, 28-36.

  14. Microbial physiology-based model of ethanol metabolism in subsurface sediments

    NASA Astrophysics Data System (ADS)

    Jin, Qusheng; Roden, Eric E.

    2011-07-01

    A biogeochemical reaction model was developed based on microbial physiology to simulate ethanol metabolism and its influence on the chemistry of anoxic subsurface environments. The model accounts for potential microbial metabolisms that degrade ethanol, including those that oxidize ethanol directly or syntrophically by reducing different electron acceptors. Out of the potential metabolisms, those that are active in the environment can be inferred by fitting the model to experimental observations. This approach was applied to a batch sediment slurry experiment that examined ethanol metabolism in uranium-contaminated aquifer sediments from Area 2 at the U.S. Department of Energy Field Research Center in Oak Ridge, TN. According to the simulation results, complete ethanol oxidation by denitrification, incomplete ethanol oxidation by ferric iron reduction, ethanol fermentation to acetate and H 2, hydrogenotrophic sulfate reduction, and acetoclastic methanogenesis: all contributed significantly to the degradation of ethanol in the aquifer sediments. The assemblage of the active metabolisms provides a frame work to explore how ethanol amendment impacts the chemistry of the environment, including the occurrence and levels of uranium. The results can also be applied to explore how diverse microbial metabolisms impact the progress and efficacy of bioremediation strategies.

  15. Environmental proteomics reveals early microbial community responses to biostimulation at a uranium- and nitrate-contaminated site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chourey, Karuna; Nissen, Silke; Vishnivetskaya, T.

    2013-01-01

    High performance mass spectrometry instrumentation coupled with improved protein extraction techniques enable metaproteomics to identify active members of soil and groundwater microbial communities. Metaproteomics workflows were applied to study the initial responses (i.e., 4 days post treatment) of the indigenous aquifer microbiota to biostimulation with emulsified vegetable oil (EVO) at a uranium-contaminated site. Members of the Betaproteobacteria (i.e., Dechloromonas, Ralstonia, Rhodoferax, Polaromonas, Delftia, Chromobacterium) and Firmicutes dominated the biostimulated aquifer community. Proteome characterization revealed distinct differences in protein expression between the microbial biomass collected from groundwater influenced by biostimulation and groundwater collected up-gradient of the EVO injection points. In particular,more » proteins involved in ammonium assimilation, EVO degradation, and polyhydroxybutyrate (PHB) granule formation were prominent following biostimulation. Interestingly, the atypical NosZ of a Dechloromonas sp. was highly expressed suggesting active nitrous oxide (N2O) respiration. c-type cytochromes were barely detected, as was citrate synthase, a biomarker for hexavalent uranium reduction activity, suggesting that metal reduction has not commenced 4 days post EVO delivery. Environmental metaproteomics identified microbial community responses to biostimulation and elucidated active pathways demonstrating the value of this technique for complementing nucleic acid-based approaches.« less

  16. MICROBIAL UTILIZATION OF VADOSE ZONE ORGANIC CARBON FOR REDUCTIVE DECHLORINATION OF TETRACHLOROETHENE

    EPA Science Inventory

    Aqueous extracts from a calcareous spodosol were used as the primary substrate to study the reductive dechlorination of tetrachloroethene (PCE). A comparison was made between extracts obtained using pure water and water saturated with trichloroethene (TCE). The latter solutions w...

  17. Microbial Reduction and Precipitation of Vanadium by Shewanella oneidensis

    PubMed Central

    Carpentier, W.; Sandra, K.; De Smet, I.; Brigé, A.; De Smet, L.; Van Beeumen, J.

    2003-01-01

    Shewanella oneidensis couples anaerobic oxidation of lactate, formate, and pyruvate to the reduction of vanadium pentoxide (VV). The bacterium reduces VV (vanadate ion) to VIV (vanadyl ion) in an anaerobic atmosphere. The resulting vanadyl ion precipitates as a VIV-containing solid. PMID:12788772

  18. Salt content and minimum acceptable levels in whole-muscle cured meat products.

    PubMed

    Delgado-Pando, Gonzalo; Fischer, Estelle; Allen, Paul; Kerry, Joe P; O'Sullivan, Maurice G; Hamill, Ruth M

    2018-05-01

    Reported salt levels in whole-muscle cured meat products differ substantially within and among European countries, providing substantial scope for salt reduction across this sector. The objective of this study was to identify the minimum acceptable salt levels in typical whole-muscle cured products in terms of physicochemical, microbial and sensorial properties. Salt levels in a small selection of commercial Irish meat products were determined to establish a baseline for reduction. Subsequently, eight different back bacon rasher and cooked ham products were produced with varying levels of salt: 2.9%, 2.5%, 2% and 1.5% for bacon, and 2%, 1.6%, 1.0% and 0.8% for ham. Salt reduction produced products with significantly harder texture and higher microbial counts, with no difference in the colour and affecting the sensory properties. Nonetheless, salt reduction proved to be feasible to levels of 34% and 19% in bacon and ham products, respectively, compared to baseline. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Biomineralization associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals

    USGS Publications Warehouse

    Zhang, G.; Dong, H.; Jiang, H.; Kukkadapu, R.K.; Kim, J.; Eberl, D.; Xu, Z.

    2009-01-01

    Iron-reducing and oxidizing microorganisms gain energy through reduction or oxidation of iron, and by doing so play an important role in the geochemical cycling of iron. This study was undertaken to investigate mineral transformations associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. A fluid sample from the 2450 m depth of the Chinese Continental Scientific Drilling project was collected, and Fe3+-reducing and Fe2+-oxidizing microorganisms were enriched. The enrichment cultures displayed reduction of Fe3+ in nontronite and ferric citrate, and oxidation of Fe2+ in vivianite, siderite, and monosulfide (FeS). Additional experiments verified that the iron reduction and oxidation was biological. Oxidation of FeS resulted in the formation of goethite, lepidocrocite, and ferrihydrite as products. Although our molecular microbiological analyses detected Thermoan-aerobacter ethanolicus as a predominant organism in the enrichment culture, Fe3+ reduction and Fe2+ oxidation may be accomplished by a consortia of organisms. Our results have important environmental and ecological implications for iron redox cycling in solid minerals in natural environments, where iron mineral transformations may be related to the mobility and solubility of inorganic and organic contaminants.

  20. Microbial network of the carbonate precipitation process induced by microbial consortia and the potential application to crack healing in concrete.

    PubMed

    Zhang, Jiaguang; Zhou, Aijuan; Liu, Yuanzhen; Zhao, Bowei; Luan, Yunbo; Wang, Sufang; Yue, Xiuping; Li, Zhu

    2017-11-06

    Current studies have employed various pure-cultures for improving concrete durability based on microbially induced carbonate precipitation (MICP). However, there have been very few reports concerned with microbial consortia, which could perform more complex tasks and be more robust in their resistance to environmental fluctuations. In this study, we constructed three microbial consortia that are capable of MICP under aerobic (AE), anaerobic (AN) and facultative anaerobic (FA) conditions. The results showed that AE consortia showed more positive effects on inorganic carbon conversion than AN and FA consortia. Pyrosequencing analysis showed that clear distinctions appeared in the community structure between different microbial consortia systems. Further investigation on microbial community networks revealed that the species in the three microbial consortia built thorough energetic and metabolic interaction networks regarding MICP, nitrate-reduction, bacterial endospores and fermentation communities. Crack-healing experiments showed that the selected cracks of the three consortia-based concrete specimens were almost completely healed in 28 days, which was consistent with the studies using pure cultures. Although the economic advantage might not be clear yet, this study highlights the potential implementation of microbial consortia on crack healing in concrete.

  1. Reductive dechlorination in recalcitrant sources of chloroethenes in the transition zone between aquifers and aquitards.

    PubMed

    Puigserver, Diana; Herrero, Jofre; Torres, Mònica; Cortés, Amparo; Nijenhuis, Ivonne; Kuntze, Kevin; Parker, Beth L; Carmona, José M

    2016-09-01

    In the transition zone between aquifers and basal aquitards, the perchloroethene pools at an early time in their evolution are more recalcitrant than those elsewhere in the aquifer. The aim of this study is to demonstrate that the biodegradation of chloroethenes from aged pools (i.e., pools after decades of continuous groundwater flushing and dissolution) of perchloroethene is favored in the transition zone. A field site was selected where an aged pool exists at the bottom of a transition zone. Two boreholes were drilled to obtain sediment and groundwater samples to perform chemical, isotopic, molecular, and clone library analyses and microcosm experiments. The main results were as follows: (i) the transition zone is characterized by a high microbial richness; (ii) reductively dechlorinating microorganisms are present and partial reductive dechlorination coexists with denitrification, Fe and Mn reduction, and sulfate reduction; (iii) reductively dechlorinating microorganisms were also present in the zone of the aged pool; (v) the high concentrations of perchloroethene in this zone resulted in a decrease in microbial richness; (vi) however, the presence of fermenting microorganisms supplying electrons for the reductively dechlorinating microorganisms prevented the reductive dechlorination to be inhibited. These findings suggest that biostimulation and/or bioaugmentation could be applied to promote complete reductive dechlorination and to enhance the dissolution of more nonaqueous phase liquids (DNAPL).

  2. Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance.

    PubMed

    Alisi, Chiara; Musella, Rosario; Tasso, Flavia; Ubaldi, Carla; Manzo, Sonia; Cremisini, Carlo; Sprocati, Anna Rosa

    2009-04-01

    The aim of the work is to assess the feasibility of bioremediation of a soil, containing heavy metals and spiked with diesel oil (DO), through a bioaugmentation strategy based on the use of a microbial formula tailored with selected native strains. The soil originated from the metallurgic area of Bagnoli (Naples, Italy). The formula, named ENEA-LAM, combines ten bacterial strains selected for multiple resistance to heavy metals among the native microbial community. The biodegradation process of diesel oil was assessed in biometer flasks by monitoring the following parameters: DO composition by GC-MS, CO2 evolution rate, microbial load and composition of the community by T-RFLP, physiological profile in Biolog ECOplates and ecotoxicity of the system. The application of this microbial formula allowed to obtain, in the presence of heavy metals, the complete degradation of n-C(12-20), the total disappearance of phenantrene, a 60% reduction of isoprenoids and an overall reduction of about 75% of the total diesel hydrocarbons in 42 days. Concurrently with the increase of metabolic activity at community level and the microbial load, the gradual abatement of the ecotoxicity was observed. The T-RFLP analysis highlighted that most of the ENEA-LAM strains survived and some minor native strains, undetectable in the soil at the beginning of the experiment, developed. Such a bioaugmentation approach allows the newly established microbial community to strike a balance between the introduced and the naturally present microorganisms. The results indicate that the use of a tailored microbial formula may efficiently facilitate and speed up the bioremediation of matrices co-contaminated with hydrocarbons and heavy metals. The study represents the first step for the scale up of the system and should be verified at a larger scale. In this view, this bioaugmentation strategy may contribute to overcome a critical bottleneck of the bioremediation technology.

  3. Hard surface biocontrol in hospitals using microbial-based cleaning products.

    PubMed

    Vandini, Alberta; Temmerman, Robin; Frabetti, Alessia; Caselli, Elisabetta; Antonioli, Paola; Balboni, Pier Giorgio; Platano, Daniela; Branchini, Alessio; Mazzacane, Sante

    2014-01-01

    Healthcare-Associated Infections (HAIs) are one of the most frequent complications occurring in healthcare facilities. Contaminated environmental surfaces provide an important potential source for transmission of many healthcare-associated pathogens, thus indicating the need for new and sustainable strategies. This study aims to evaluate the effect of a novel cleaning procedure based on the mechanism of biocontrol, on the presence and survival of several microorganisms responsible for HAIs (i.e. coliforms, Staphyloccus aureus, Clostridium difficile, and Candida albicans) on hard surfaces in a hospital setting. The effect of microbial cleaning, containing spores of food grade Bacillus subtilis, Bacillus pumilus and Bacillus megaterium, in comparison with conventional cleaning protocols, was evaluated for 24 weeks in three independent hospitals (one in Belgium and two in Italy) and approximately 20000 microbial surface samples were collected. Microbial cleaning, as part of the daily cleaning protocol, resulted in a reduction of HAI-related pathogens by 50 to 89%. This effect was achieved after 3-4 weeks and the reduction in the pathogen load was stable over time. Moreover, by using microbial or conventional cleaning alternatively, we found that this effect was directly related to the new procedure, as indicated by the raise in CFU/m2 when microbial cleaning was replaced by the conventional procedure. Although many questions remain regarding the actual mechanisms involved, this study demonstrates that microbial cleaning is a more effective and sustainable alternative to chemical cleaning and non-specific disinfection in healthcare facilities. This study indicates microbial cleaning as an effective strategy in continuously lowering the number of HAI-related microorganisms on surfaces. The first indications on the actual level of HAIs in the trial hospitals monitored on a continuous basis are very promising, and may pave the way for a novel and cost-effective strategy to counteract or (bio)control healthcare-associated pathogens.

  4. Hard Surface Biocontrol in Hospitals Using Microbial-Based Cleaning Products

    PubMed Central

    Vandini, Alberta; Temmerman, Robin; Frabetti, Alessia; Caselli, Elisabetta; Antonioli, Paola; Balboni, Pier Giorgio; Platano, Daniela; Branchini, Alessio; Mazzacane, Sante

    2014-01-01

    Background Healthcare-Associated Infections (HAIs) are one of the most frequent complications occurring in healthcare facilities. Contaminated environmental surfaces provide an important potential source for transmission of many healthcare-associated pathogens, thus indicating the need for new and sustainable strategies. Aim This study aims to evaluate the effect of a novel cleaning procedure based on the mechanism of biocontrol, on the presence and survival of several microorganisms responsible for HAIs (i.e. coliforms, Staphyloccus aureus, Clostridium difficile, and Candida albicans) on hard surfaces in a hospital setting. Methods The effect of microbial cleaning, containing spores of food grade Bacillus subtilis, Bacillus pumilus and Bacillus megaterium, in comparison with conventional cleaning protocols, was evaluated for 24 weeks in three independent hospitals (one in Belgium and two in Italy) and approximately 20000 microbial surface samples were collected. Results Microbial cleaning, as part of the daily cleaning protocol, resulted in a reduction of HAI-related pathogens by 50 to 89%. This effect was achieved after 3–4 weeks and the reduction in the pathogen load was stable over time. Moreover, by using microbial or conventional cleaning alternatively, we found that this effect was directly related to the new procedure, as indicated by the raise in CFU/m2 when microbial cleaning was replaced by the conventional procedure. Although many questions remain regarding the actual mechanisms involved, this study demonstrates that microbial cleaning is a more effective and sustainable alternative to chemical cleaning and non-specific disinfection in healthcare facilities. Conclusions This study indicates microbial cleaning as an effective strategy in continuously lowering the number of HAI-related microorganisms on surfaces. The first indications on the actual level of HAIs in the trial hospitals monitored on a continuous basis are very promising, and may pave the way for a novel and cost-effective strategy to counteract or (bio)control healthcare-associated pathogens. PMID:25259528

  5. Mechanistic Understanding of Microbial Plugging for Improved Sweep Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Bryant; Larry Britton

    2008-09-30

    Microbial plugging has been proposed as an effective low cost method of permeability reduction. Yet there is a dearth of information on the fundamental processes of microbial growth in porous media, and there are no suitable data to model the process of microbial plugging as it relates to sweep efficiency. To optimize the field implementation, better mechanistic and volumetric understanding of biofilm growth within a porous medium is needed. In particular, the engineering design hinges upon a quantitative relationship between amount of nutrient consumption, amount of growth, and degree of permeability reduction. In this project experiments were conducted to obtainmore » new data to elucidate this relationship. Experiments in heterogeneous (layered) beadpacks showed that microbes could grow preferentially in the high permeability layer. Ultimately this caused flow to be equally divided between high and low permeability layers, precisely the behavior needed for MEOR. Remarkably, classical models of microbial nutrient uptake in batch experiments do not explain the nutrient consumption by the same microbes in flow experiments. We propose a simple extension of classical kinetics to account for the self-limiting consumption of nutrient observed in our experiments, and we outline a modeling approach based on architecture and behavior of biofilms. Such a model would account for the changing trend of nutrient consumption by bacteria with the increasing biomass and the onset of biofilm formation. However no existing model can explain the microbial preference for growth in high permeability regions, nor is there any obvious extension of the model for this observation. An attractive conjecture is that quorum sensing is involved in the heterogeneous bead packs.« less

  6. Methane Emission in a Specific Riparian-Zone Sediment Decreased with Bioelectrochemical Manipulation and Corresponded to the Microbial Community Dynamics

    PubMed Central

    Friedman, Elliot S.; McPhillips, Lauren E.; Werner, Jeffrey J.; Poole, Angela C.; Ley, Ruth E.; Walter, M. Todd; Angenent, Largus T.

    2016-01-01

    Dissimilatory metal-reducing bacteria are widespread in terrestrial ecosystems, especially in anaerobic soils and sediments. Thermodynamically, dissimilatory metal reduction is more favorable than sulfate reduction and methanogenesis but less favorable than denitrification and aerobic respiration. It is critical to understand the complex relationships, including the absence or presence of terminal electron acceptors, that govern microbial competition and coexistence in anaerobic soils and sediments, because subsurface microbial processes can effect greenhouse gas emissions from soils, possibly resulting in impacts at the global scale. Here, we elucidated the effect of an inexhaustible, ferrous-iron and humic-substance mimicking terminal electron acceptor by deploying potentiostatically poised electrodes in the sediment of a very specific stream riparian zone in Upstate New York state. At two sites within the same stream riparian zone during the course of 6 weeks in the spring of 2013, we measured CH4 and N2/N2O emissions from soil chambers containing either poised or unpoised electrodes, and we harvested biofilms from the electrodes to quantify microbial community dynamics. At the upstream site, which had a lower vegetation cover and highest soil temperatures, the poised electrodes inhibited CH4 emissions by ∼45% (when normalized to remove temporal effects). CH4 emissions were not significantly impacted at the downstream site. N2/N2O emissions were generally low at both sites and were not impacted by poised electrodes. We did not find a direct link between bioelectrochemical treatment and microbial community membership; however, we did find a correspondence between environment/function and microbial community dynamics. PMID:26793170

  7. Growing Rocks: Implications of Lithification for Microbial Communities and Nutrient Cycling

    NASA Astrophysics Data System (ADS)

    Corman, J. R.; Poret-Peterson, A. T.; Elser, J. J.

    2014-12-01

    Lithifying microbial communities ("microbialites") have left their signature on Earth's rock record for over 3.4 billion years and are regarded as important players in paleo-biogeochemical cycles. In this project, we study extant microbialites to understand the interactions between lithification and resource availability. All microbes need nutrients and energy for growth; indeed, nutrients are often a factor limiting microbial growth. We hypothesize that calcium carbonate deposition can sequester bioavailable phosphorus (P) and expect the growth of microbialites to be P-limited. To test our hypothesis, we first compared nutrient limitation in lithifying and non-lithifying microbial communities in Río Mesquites, Cuatro Ciénegas. Then, we experimentally manipulated calcification rates in the Río Mesquites microbialites. Our results suggest that lithifying microbialites are indeed P-limited, while non-lithifying, benthic microbial communities tend towards co-limitation by nitrogen (N) and P. Indeed, in microbialites, photosynthesis and aerobic respiration responded positively to P additions (P<0.05). Organic carbon (OC) additions caused shifts in bacterial community composition based on analysis of 16S rRNA genes. Unexpectedly, calcification rates increased with OC additions (P<0.05), but not with P additions, suggesting that sulfate reduction may be an important pathway for calcification. Experimental reductions in calcification rates caused changes to microbial biomass OC and P concentrations (P<0.01 and P<0.001, respectively), although shifts depended on whether calcification was decreased abiotically or biotically. These results show that resource availability does influence microbialite formation and that lithification may promote phosphorus limitation; however, further investigation is required to understand the mechanism by which the later occurs.

  8. Microbial production and oxidation of methane in deep subsurface

    NASA Astrophysics Data System (ADS)

    Kotelnikova, Svetlana

    2002-10-01

    The goal of this review is to summarize present studies on microbial production and oxidation of methane in the deep subterranean environments. Methane is a long-living gas causing the "greenhouse" effect in the planet's atmosphere. Earlier, the deep "organic carbon poor" subsurface was not considered as a source of "biogenic" methane. Evidence of active methanogenesis and presence of viable methanogens including autotrophic organisms were obtained for some subsurface environments including water-flooded oil-fields, deep sandy aquifers, deep sea hydrothermal vents, the deep sediments and granitic groundwater at depths of 10 to 2000 m below sea level. As a rule, the deep subterranean microbial populations dwell at more or less oligotrophic conditions. Molecular hydrogen has been found in a variety of subsurface environments, where its concentrations were significantly higher than in the tested surface aquatic environments. Chemolithoautotrophic microorganisms from deep aquifers that could grow on hydrogen and carbon dioxide can act as primary producers of organic carbon, initiating heterotrophic food chains in the deep subterranean environments independent of photosynthesis. "Biogenic" methane has been found all over the world. On the basis of documented occurrences, gases in reservoirs and older sediments are similar and have the isotopic character of methane derived from CO 2 reduction. Groundwater representing the methanogenic end member are characterized by a relative depletion of dissolved organic carbon (DOC) in combination with an enrichment in 13C in inorganic carbon, which is consistent with the preferential reduction of 12CO 2 by autotrophic methanogens or acetogens. The isotopic composition of methane formed via CO 2 reduction is controlled by the δ13C of the original CO 2 substrate. Literature data shows that CH 4 as heavy as -40‰ or -50‰ can be produced by the microbial reduction of isotopically heavy CO 2. Produced methane may be oxidized microbially to carbon dioxide. Microbial methane oxidation is a biogeochemical process that limits the release of methane, a greenhouse gas from anaerobic environments. Anaerobic methane oxidation plays an important role in marine sediments. Similar processes may take place in deep subsurface and thus fuel the deep microbial community. Organisms or consortia responsible for anaerobic methane oxidation have not yet been cultured, although diverse aerobic methanotrophs have been isolated from a variety of underground niches. The presence of aerobic methanotrophs in the anoxic subsurface remains to be explained. The presence of methane in the deep subsurface have been shown all over the world. The flux of gases between the deep subsurface and the atmosphere is driven by the concentration gradient from depth to the atmosphere. However, methane is consumed by methanotrophs on the way of its evolution in oxidized environments and is transformed to organic form, available for further microbial processing. When the impact of subsurface environments to global warming is estimated, it is necessary to take into account the activity of methane-producing Archaea and methane-oxidizing biofilters in groundwater. Microbial production and oxidation of methane is involved in the carbon cycle in the deep subsurface environments.

  9. Creatine kinase MB isoenzyme in dermatomyositis: a noncardiac source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larca, L.J.; Coppola, J.T.; Honig, S.

    1981-03-01

    Three patients with polymyositis had elevated serum levels of creatine kinase MB isoenzyme. The presence of this isoenzyme is used extensively to diagnose myocardial infarction, but the isoenzyme is also found in sera of patients with primary muscular and neuromuscular disorders. Researchers studied cardiac function in two of our patients with electrocardiograms, technetium stannous pyrophosphate scanning, and technetium 99m-labeled erythrocyte gated blood pool imaging and in the third patient by postmortem examination. There was no evidence of myocardial involvement to account for the high serum levels of isoenzyme. Creatine kinase MB in the sera of patients with polymyositis does notmore » necessarily indicate myocardial necrosis.« less

  10. Technetium-99m stannous pyrophosphate myocardial scintigraphy after cardiopulmonary resuscitation with cardioversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davison, R.; Spies, S.M.; Przybylek, J.

    1979-08-01

    Thirty consecutive patients underwent technetium-99m stannous pyrophosphate myocardial scintigraphy 48 to 72 h after successful cardiopulmonary resuscitation and direct current cardioversion. Five patients with transmural myocardial infarctions by ECG and enzyme determinations were correctly identified by scintigraphy. Myocardial scans were positive in five of nine patients with nontransmural infarction. Of 16 patients without evidence of myocardial infarction, only two (13%) had false-positive myocardial scans. The overall accuracy of imaging in this series was 80%. We conclude that false-positive scans after cardiopulmonary resuscitation with electrical cardioversion are infrequent, and do not significantly detract from the value of myocardial scintigraphy in themore » diagnosis of myocardial infarction.« less

  11. Recovery and Determination of Adsorbed Technetium on Savannah River Site Charcoal Stack Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lahoda, Kristy G.; Engelmann, Mark D.; Farmer, Orville T.

    2008-03-01

    Experimental results are provided for the sample analyses for technetium (Tc) in charcoal samples placed in-line with a Savannah River Site (SRS) processing stack effluent stream as a part of an environmental surveillance program. The method for Tc removal from charcoal was based on that originally developed with high purity charcoal. Presented is the process that allowed for the quantitative analysis of 99Tc in SRS charcoal stack samples with and without 97Tc as a tracer. The results obtained with the method using the 97Tc tracer quantitatively confirm the results obtained with no tracer added. All samples contain 99Tc at themore » pg g-1 level.« less

  12. Technetium-99m-labeled ceftizoxime loaded long-circulating and pH-sensitive liposomes used to identify osteomyelitis.

    PubMed

    Ferreira, Soraya Maria Zandim Maciel Dias; Domingos, Giselle Pires; Ferreira, Diego dos Santos; Rocha, Talita Guieiro Ribeiro; Serakides, Rogéria; de Faria Rezende, Cleuza Maria; Cardoso, Valbert Nascimento; Fernandes, Simone Odília Antunes; Oliveira, Mônica Cristina

    2012-07-15

    Osteomyelitis is an infectious disease located in the bone or bone marrow. Long-circulating and pH-sensitive liposomes containing a technetium-99m-labeled antibiotic, ceftizoxime, (SpHL-(99m)Tc-CF) were developed to identify osteomyelitis foci. Biodistribution studies and scintigraphic images of bone infection or non infection-bearing rats that had been treated with these liposomes were performed. A high accumulation in infectious foci and high values in the target-non target ratio could be observed. These results indicate the potential of SpHL-(99m)Tc-CF as a potential agent for the diagnosis of bone infections. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Eosinophilic enterocolitis diagnosed by means of technetium-99m albumin scintigraphy and treated with budesonide (CIR).

    PubMed Central

    Russel, M G; Zeijen, R N; Brummer, R J; de Bruine, A P; van Kroonenburgh, M J; Stockbrügger, R W

    1994-01-01

    A patient with a 15 year history of diarrhoea of unknown origin is described. Scintigraphy with technetium-99m labelled albumin suggested albumin loss at the terminal ileum and caecum; subsequent colonoscopic biopsies of these macroscopically normal looking areas showed abundant infiltration with eosinophils. A diagnosis of eosinophilic enterocolitis was made. Treatment with prednisolone had good results, but had to be stopped because of severe side effects. Oral cromoglycate and mesalazine were not effective. Budesonide (CIR), a new topically active corticosteroid with very little systemic effects, was at least as effective as prednisolone without producing side effects. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7959211

  14. Comparison of technetium-99m-HMPAO and technetium-99m-ECD cerebral SPECT images in Alzheimer`s disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyck, C.H. van; Lin, C.H.; Smith, E.O.

    1996-11-01

    SPECT has shown increasing promise as a diagnostic tool in Alzheimer`s disease (AD). Recently, a new SPECT brain perfusion agent, {sup 99m}Tc-ethyl cysteinate dimer ({sup 99m}Tc-ECD) has emerged with purported advantages in image quality over the established tracer, {sup 99m}Tc-hexamethylpropyleneamine oxime ({sup 99m}Tc-HMPAO). This research aimed to compare cerebral images for ({sup 99m}Tc-HMPAO). This research aimed to compare cerebral images for {sup 99}mTc-HMPAO and {sup 99m}Tc-ECD in discriminating patients with AD form control subjects. 51 refs., 5 figs., 3 tabs.

  15. Amyloidosis of heart and liver: comparison of Tc-99m pyrophosphate and Tc-99m methylene diphosphonate for detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, V.W.; Caldarone, A.G.; Falk, R.H.

    1983-07-01

    A prospective, comparative study was made of the efficacy of technetium-99m pyrophosphate (Tc PYP) and technetium-99m methylene diphosphonate (Tc MDP) in detecting soft-tissue amyloidois. Tc PYP and Tc MDP scans were obtained within ten-day intervals in seven patients with histologically proven amyloidosis. Tc PYP was a better scanning agent for soft-tissue amyloidosis in all patients. Cardiac and hepatic involvement were proved by autopsy in one patient. Involvement of the heart was confirmed by echocardiography in five patients. The potential use of tc PYP scannning as a screening test for soft-tissue amyloidosis is discussed.

  16. Technetium-99m generator system

    DOEpatents

    Mirzadeh, Saed; Knapp, Jr., Furn F.; Collins, Emory D.

    1998-01-01

    A .sup.99 Mo/.sup.99m Tc generator system includes a sorbent column loaded with a composition containing .sup.99 Mo. The sorbent column has an effluent end in fluid communication with an anion-exchange column for concentrating .sup.99m Tc eluted from the sorbent column. A method of preparing a concentrated solution of .sup.99m Tc includes the general steps of: a. providing a sorbent column loaded with a composition containing .sup.99 Mo, the sorbent column having an effluent end in fluid communication with an anion-exchange column; b. eluting the sorbent column with a salt solution to elute .sup.99m Tc from the sorbent and to trap and concentrate the eluted .sup.99m Tc on the ion-exchange column; and c. eluting the concentrated .sup.99m Tc from the ion-exchange column with a solution comprising a reductive complexing agent.

  17. Technetium-99m generator system

    DOEpatents

    Mirzadeh, S.; Knapp, F.F. Jr.; Collins, E.D.

    1998-06-30

    A {sup 99}Mo/{sup 99m}Tc generator system includes a sorbent column loaded with a composition containing {sup 99}Mo. The sorbent column has an effluent end in fluid communication with an anion-exchange column for concentrating {sup 99m}Tc eluted from the sorbent column. A method of preparing a concentrated solution of {sup 99m}Tc includes the general steps of: (a) providing a sorbent column loaded with a composition containing {sup 99}Mo, the sorbent column having an effluent end in fluid communication with an anion-exchange column; (b) eluting the sorbent column with a salt solution to elute {sup 99m}Tc from the sorbent and to trap and concentrate the eluted {sup 99m}Tc on the ion-exchange column; and (c) eluting the concentrated {sup 99m}Tc from the ion-exchange column with a solution comprising a reductive complexing agent. 1 fig.

  18. Reduction of Microbial and Chemical Contaminants in Water Using POU/POE & Mobile Treatment Technologies

    EPA Science Inventory

    POU/POE may be a cost-effective option for reductions of a particular chemical to achieve water quality compliance under certain situations and given restrictions. Proactive consumers seeking to reduce exposure to potential pathogens, trace chemicals, and nanoparticles not curre...

  19. Improving Pathogen Reduction by Chlorine Wash Prior to Cutting in Fresh-Cut Processing

    USDA-ARS?s Scientific Manuscript database

    Introduction: Currently, most fresh-cut processing facilities in the United States use chlorinated water or other sanitizer solutions for microbial reduction after lettuce is cut. Freshly cut lettuce releases significant amounts of organic matter that negatively impacts the effectiveness of chlorine...

  20. Fully reversible current driven by a dual marine photosynthetic microbial community.

    PubMed

    Darus, Libertus; Lu, Yang; Ledezma, Pablo; Keller, Jürg; Freguia, Stefano

    2015-11-01

    The electrochemical activity of two seawater microbial consortia were investigated in three-electrode bioelectrochemical cells. Two seawater inocula - from the Sunshine Coast (SC) and Gold Coast (GC) shores of Australia - were enriched at +0.6 V vs. SHE using 12/12 h day/night cycles. After re-inoculation, the SC consortium developed a fully-reversible cathodic/anodic current, with a max. of -62 mA m(-2) during the day and +110 mA m(-2) at night, while the GC exhibited negligible daytime output but +98 mA m(-2) at night. Community analysis revealed that both enrichments were dominated by cyanobacteria, indicating their potential as biocatalysts for indirect light conversion to electricity. Moreover, the presence of γ-proteobacterium Congregibacter in SC biofilm was likely related to the cathodic reductive current, indicating its effectiveness at catalysing cathodic oxygen reduction at a surprisingly high potential. For the first time a correlation between a dual microbial community and fully reversible current is reported. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Analysis of Nitrification Efficiency and Microbial Community in a Membrane Bioreactor Fed with Low COD/N-Ratio Wastewater

    PubMed Central

    Ma, Jinxing; Wang, Zhiwei; Zhu, Chaowei; Liu, Shumeng; Wang, Qiaoying; Wu, Zhichao

    2013-01-01

    In this study, an approach using influent COD/N ratio reduction was employed to improve process performance and nitrification efficiency in a membrane bioreactor (MBR). Besides sludge reduction, membrane fouling alleviation was observed during 330 d operation, which was attributed to the decreased production of soluble microbial products (SMP) and efficient carbon metabolism in the autotrophic nitrifying community. 454 high-throughput 16S rRNA gene pyrosequencing revealed that the diversity of microbial sequences was mainly determined by the feed characteristics, and that microbes could derive energy by switching to a more autotrophic metabolism to resist the environmental stress. The enrichment of nitrifiers in an MBR with a low COD/N-ratio demonstrated that this condition stimulated nitrification, and that the community distribution of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) resulted in faster nitrite uptake rates. Further, ammonia oxidation was the rate-limiting step during the full nitrification. PMID:23667573

  2. Microbial biogeochemistry of uranium mill tailings

    USGS Publications Warehouse

    Landa, Edward R.

    2005-01-01

    Uranium mill tailings (UMT) are the crushed ore residues from the extraction of uranium (U) from ores. Among the radioactive wastes associated with the nuclear fuel cycle, UMT are unique in terms of their volume and their limited isolation from the surficial environment. For this latter reason, their management and long-term fate has many interfaces with environmental microbial communities and processes. The interactions of microorganisms with UMT have been shown to be diverse and with significant consequences for radionuclide mobility and bioremediation. These radionuclides are associated with the U-decay series. The addition of organic carbon and phosphate is required to initiate the reduction of the U present in the groundwater down gradient of the mills. Investigations on sediment and water from the U-contaminated aquifer, indicates that the addition of a carbon source stimulates the rate of U removal by microbial reduction. Moreover, most attention with respect to passive or engineered removal of U from groundwaters focuses on iron-reducing and sulfate-reducing bacteria.

  3. Microbial fuel cells

    DOEpatents

    Nealson, Kenneth H; Pirbazari, Massoud; Hsu, Lewis

    2013-04-09

    A microbial fuel cell includes an anode compartment with an anode and an anode biocatalyst and a cathode compartment with a cathode and a cathode biocatalyst, with a membrane positioned between the anode compartment and the cathode compartment, and an electrical pathway between the anode and the cathode. The anode biocatalyst is capable of catalyzing oxidation of an organic substance, and the cathode biocatalyst is capable of catalyzing reduction of an inorganic substance. The reduced organic substance can form a precipitate, thereby removing the inorganic substance from solution. In some cases, the anode biocatalyst is capable of catalyzing oxidation of an inorganic substance, and the cathode biocatalyst is capable of catalyzing reduction of an organic or inorganic substance.

  4. Intraoperative Injection of Technetium-99m Sulfur Colloid for Sentinel Lymph Node Biopsy in Breast Cancer Patients: A Single Institution Experience.

    PubMed

    Berrocal, Julian; Saperstein, Lawrence; Grube, Baiba; Horowitz, Nina R; Chagpar, Anees B; Killelea, Brigid K; Lannin, Donald R

    2017-01-01

    Background . Most institutions require a patient undergoing sentinel lymph node biopsy to go through nuclear medicine prior to surgery to be injected with radioisotope. This study describes the long-term results using intraoperative injection of radioisotope. Methods . Since late 2002, all patients undergoing a sentinel lymph node biopsy at the Yale-New Haven Breast Center underwent intraoperative injection of technetium-99m sulfur colloid. Endpoints included number of sentinel and nonsentinel lymph nodes obtained and number of positive sentinel and nonsentinel lymph nodes. Results . At least one sentinel lymph node was obtained in 2,333 out of 2,338 cases of sentinel node biopsy for an identification rate of 99.8%. The median number of sentinel nodes found was 2 and the mean was 2.33 (range: 1-15). There were 512 cases (21.9%) in which a sentinel node was positive for metastatic carcinoma. Of the patients with a positive sentinel lymph node who underwent axillary dissection, there were 242 cases (54.2%) with no additional positive nonsentinel lymph nodes. Advantages of intraoperative injection included increased comfort for the patient and simplification of scheduling. There were no radiation related complications. Conclusion . Intraoperative injection of technetium-99m sulfur colloid is convenient, effective, safe, and comfortable for the patient.

  5. Retrograde spread of 5-aminosalicylic acid enemas in patients with active ulcerative colitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campieri, M.; Lanfranchi, G.A.; Brignola, C.

    1986-02-01

    In an attempt to know the exact retrograde spread of high-dosage 5-aminosalicylic acid enemas, we have studied eight patients with active left-sided colitis, by adding a small amount of barium sulfate to the enemas and by checking the spread radiologically after 15 minutes, 1 hour, and 6 hours. Four grams of 5-aminosalicylic acid in 100-ml enemas and 4 gm in 200-ml enemas were used. The same experiment was repeated in a subsequent attack, with enemas labeled with technetium-99m and checked by scintiscans in five of these patients. We always have observed a volume-dependent spread of enemas but, interestingly, in themore » patients studied with technetium-99m there was always a wider spread than that which was detected with barium enemas. In all five patients, 100-ml enemas reached the splenic flexure. In two patients with total colitis, a progression of 100-ml technetium-99m enemas was performed in the transverse colon, but the maximum opacity remained in the left side. We can conclude that 4 gm of 5-aminosalicylic acid in 100-ml enemas can be suitable for treating patients with left-sided colitis, and will represent a valid addition for patients with more extensive colitis.« less

  6. Periarticular uptake of /sup 99m/technetium diphosphonate in psoriatics. Correlation with cutaneous activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namey, T.C.; Rosenthall, L.

    1976-01-01

    The periarticular uptake of /sup 99m/technetium-labeled diphosphonate (/sup 99m/TcDP) was compared in 12 patients hospitalized for psoriasis and in 12 hospitalized for other dermatoses not associated with arthropathy. The 12 patients with psoriasis had recent onset disease of less than 5 years duration; neither group had historical or clinical evidence of arthritis. All psoriatics had markedly abnormal scans with symmetrically increased periarticular uptake about the imaged joints. None of the controls had similar findings. In 4 patients scanned with /sup 99m/technetium-pertechnetate within 24 hours of their /sup 99m/TcDP scan, no evidence of inflammatory synovitis was found. Three of these patientsmore » were serially imaged with /sup 99m/TcDP at intervals of 2 weeks to 3 months after their initial study, when obvious clinical improvement in their psoriasis was apparent. Improvement in the radionuclide joint images was demonstrated in some of the patients, but none reverted to normal during the study period. In light of recent evidence for the preferential binding of /sup 99m/TcDP to immature collagen, it is suggested that psoriasis may represent a generalized, but uncharacterized, collagen disorder present in bone as well as skin, linking the cutaneous disease with the potential for arthropathy.« less

  7. Development of Alternative Technetium Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czerwinski, Kenneth

    2013-09-13

    The UREX+1 process is under consideration for the separation of transuranic elements from spent nuclear fuel. The first steps of this process extract the fission product technicium-99 ({sup 99}Tc) into an organic phase containing tributylphosphate together with uranium. Treatment of this stream requires the separation of Tc from U and placement into a suitable waste storage form. A potential candidate waste form involves immobilizing the Tc as an alloy with either excess metallic zirconium or stainless steel. Although Tc-Zr alloys seem to be promising waste forms, alternative materials must be investigated. Innovative studies related to the synthesis and behavior ofmore » a different class of Tc materials will increase the scientific knowledge related to development of Tc waste forms. These studies will also provide a better understanding of the behavior of {sup 99}Tc in repository conditions. A literature survey has selected promising alternative waste forms for further study: technetium metallic alloys, nitrides, oxides, sulfides, and pertechnetate salts. The goals of this project are to 1) synthesize and structurally characterize relevant technetium materials that may be considered as waste forms, 2) investigate material behavior in solution under different conditions of temperature, electrochemical potential, and radiation, and 3) predict the long-term behavior of these materials.« less

  8. In-situ evidence for uranium immobilization and remobilization

    USGS Publications Warehouse

    Senko, John M.; Istok, Jonathan D.; Suflita, Joseph M.; Krumholz, Lee R.

    2002-01-01

    The in-situ microbial reduction and immobilization of uranium was assessed as a means of preventing the migration of this element in the terrestrial subsurface. Uranium immobilization (putatively identified as reduction) and microbial respiratory activities were evaluated in the presence of exogenous electron donors and acceptors with field push−pull tests using wells installed in an anoxic aquifer contaminated with landfill leachate. Uranium(VI) amended at 1.5 μM was reduced to less than 1 nM in groundwater in less than 8 d during all field experiments. Amendments of 0.5 mM sulfate or 5 mM nitrate slowed U(VI) immobilization and allowed for the recovery of 10% and 54% of the injected element, respectively, as compared to 4% in the unamended treatment. Laboratory incubations confirmed the field tests and showed that the majority of the U(VI) immobilized was due to microbial reduction. In these tests, nitrate treatment (7.5 mM) inhibited U(VI) reduction, and nitrite was transiently produced. Further push−pull tests were performed in which either 1 or 5 mM nitrate was added with 1.0 μM U(VI) to sediments that already contained immobilized uranium. After an initial loss of the amendments, the concentration of soluble U(VI) increased and eventually exceeded the injected concentration, indicating that previously immobilized uranium was remobilized as nitrate was reduced. Laboratory experiments using heat-inactivated sediment slurries suggested that the intermediates of dissimilatory nitrate reduction (denitrification or dissimilatory nitrate reduction to ammonia), nitrite, nitrous oxide, and nitric oxide were all capable of oxidizing and mobilizing U(IV). These findings indicate that in-situ subsurface U(VI) immobilization can be expected to take place under anaerobic conditions, but the permanence of the approach can be impaired by disimilatory nitrate reduction intermediates that can mobilize previously reduced uranium.

  9. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOEpatents

    Turick, Charles E.

    1997-01-01

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases.

  10. Microbial Mechanisms Underlying Acidity-induced Reduction in Soil Respiration Under Nitrogen Fertilization

    NASA Astrophysics Data System (ADS)

    Niu, S.; Li, Y.

    2016-12-01

    Terrestrial ecosystems are receiving increasing amounts of reactive nitrogen (N) due to anthropogenic activities, which largely changes soil respiration and its feedback to climate change. N enrichment can not only increase N availability but also induce soil acidification, both may affect soil microbial activity and root growth with a consequent impact on soil respiration. However, it remains unclear whether elevated N availability or soil acidity has greater impact on soil respiration (Rs). We conducted a manipulative experiment to simulate N enrichment (10 g m-2 yr-1 NH4NO3) and soil acidity (0.552 mol H+ m-2 yr-1 sulfuric acid) and studied their effects on Rs and its components in a temperate forest. Our results showed that soil pH was reduced by 0.2 under N addition or acid addition treatment. Acid addition significantly decreased autotrophic respiration (Ra) and heterotrophic respiration (Rh) by 21.5% and 22.7% in 2014, 34.8% and 21.9% in 2015, respectively, resulting in a reduction of Rs by 22.2% in 2014 and 26.1% in 2015. Nitrogen enrichment reduced Ra, Rh, Rs by 21.9%, 16.2%, 18.6% in 2014 and 22.1%, 5.9%, 11.7% in 2015, respectively. The reductions of Rs and its components were attributable to decrease of fine root biomass, microbial biomass, and cellulose degrading enzymes. N addition did not change microbial community but acid addition increased both fungal and arbuscular mycorrhiza fungi PLFAs, and N plus acid addition significantly enhanced fungal to bacterial ratio. All the hydrolase enzymes were reduced more by soil acidity (43-50%) than nitrogen addition (30-39%). Structural equation model showed that soil acidity played more important role than N availability in reducing soil respiration mainly by changing microbial extracellular enzymes. We therefore suggest that N deposition induced indirect effect of soil acidification on microbial properties is critical and should be taken into account to better understand and predict ecosystem C cycling in the future scenarios of anthropogenic N deposition and acid enrichment.

  11. Selection and screening of microbial consortia for efficient and ecofriendly degradation of plastic garbage collected from urban and rural areas of Bangalore, India.

    PubMed

    Skariyachan, Sinosh; Megha, M; Kini, Meghna Niranjan; Mukund, Kamath Manali; Rizvi, Alya; Vasist, Kiran

    2015-01-01

    Industrialization and urbanization have led to massive accumulation of plastic garbage all over India. The persistence of plastic in soil and aquatic environment has become ecological threat to the metropolitan city such as Bangalore, India. Present study investigates an ecofriendly, efficient and cost-effective approach for plastic waste management by the screening of novel microbial consortia which are capable of degrading plastic polymers. Plastic-contaminated soil and water samples were collected from six hot spots of urban and rural areas of Bangalore. The plastic-degrading bacteria were enriched, and degradation ability was determined by zone of clearance method. The percentage of polymer degradation was initially monitored by weight loss method, and the main isolates were characterized by standard microbiology protocols. These isolates were used to form microbial consortia, and the degradation efficiency of the consortia was compared with individual isolate and known strains obtained from the Microbial Type Culture Collection (MTCC) and Gene Bank, India. One of the main enzymes responsible for polymer degradation was identified, and the biodegradation mechanism was hypothesized by bioinformatics studies. From this study, it is evident that the bacteria utilized the plastic polymer as a sole source of carbon and showed 20-50% weight reduction over a period of 120 days. The two main bacteria responsible for the degradation were microbiologically characterized to be Pseudomonas spp. These bacteria could grow optimally at 37 °C in pH 9.0 and showed 35-40% of plastic weight reduction over 120 days. These isolates were showed better degradation ability than known strains from MTCC. The current study further revealed that the microbial consortia formulated by combining Psuedomonas spp. showed 40 plastic weight reduction over a period of 90 days. Further, extracellular lipase, one of the main enzymes responsible for polymer degradation, was identified. The computational docking studies suggested that polyethylene glycol and polystyrene present in the plastics might have good interaction towards the microbial lipase with stable binding and interacting forces which probably could be one of the reasons for the degradative mechanisms.

  12. Applications of Graphene-Modified Electrodes in Microbial Fuel Cells

    PubMed Central

    Yu, Fei; Wang, Chengxian; Ma, Jie

    2016-01-01

    Graphene-modified materials have captured increasing attention for energy applications due to their superior physical and chemical properties, which can significantly enhance the electricity generation performance of microbial fuel cells (MFC). In this review, several typical synthesis methods of graphene-modified electrodes, such as graphite oxide reduction methods, self-assembly methods, and chemical vapor deposition, are summarized. According to the different functions of the graphene-modified materials in the MFC anode and cathode chambers, a series of design concepts for MFC electrodes are assembled, e.g., enhancing the biocompatibility and improving the extracellular electron transfer efficiency for anode electrodes and increasing the active sites and strengthening the reduction pathway for cathode electrodes. In spite of the challenges of MFC electrodes, graphene-modified electrodes are promising for MFC development to address the reduction in efficiency brought about by organic waste by converting it into electrical energy. PMID:28773929

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joel E. Kostka

    This project represented a joint effort between Oak Ridge National Laboratory (ORNL), the University of Tennessee (UT), and Florida State University (FSU). ORNL served as the lead in-stitution with Dr. A.V. Palumbo responsible for project coordination, integration, and deliver-ables. In situ uranium bioremediation is focused on biostimulating indigenous microorganisms through a combination of pH neutralization and the addition of large amounts of electron donor. Successful biostimulation of U(VI) reduction has been demonstrated in the field and in the laboratory. However, little data is available on the dynamics of microbial populations capable of U(VI) reduction, and the differences in the microbialmore » community dynamics between proposed electron donors have not been explored. In order to elucidate the potential mechanisms of U(VI) reduction for optimization of bioremediation strategies, structure-function relationships of microbial populations were investigated in microcosms of subsurface materials cocontaminated with radionuclides and nitrate from the Oak Ridge Field Research Center (ORFRC), Oak Ridge, Tennessee.« less

  14. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction

    USGS Publications Warehouse

    Philips , Elizabeth J.P.; Landa, Edward R.; Lovely, Derek R.

    1995-01-01

    A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranuum-contaminated soils. Bicarbonate (100 mM) extracted 20–94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism,Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils.

  15. Exposure to vancomycin causes a shift in the microbial community structure without affecting nitrate reduction rates in river sediments.

    PubMed

    Laverman, Anniet M; Cazier, Thibaut; Yan, Chen; Roose-Amsaleg, Céline; Petit, Fabienne; Garnier, Josette; Berthe, Thierry

    2015-09-01

    Antibiotics and antibiotic resistance genes have shown to be omnipresent in the environment. In this study, we investigated the effect of vancomycin (VA) on denitrifying bacteria in river sediments of a Waste Water Treatment Plant, receiving both domestic and hospital waste. We exposed these sediments continuously in flow-through reactors to different VA concentrations under denitrifying conditions (nitrate addition and anoxia) in order to determine potential nitrate reduction rates and changes in sedimentary microbial community structures. The presence of VA had no effect on sedimentary nitrate reduction rates at environmental concentrations, whereas a change in bacterial (16S rDNA) and denitrifying (nosZ) community structures was observed (determined by polymerase chain reaction-denaturing gradient gel electrophoresis). The bacterial and denitrifying community structure within the sediment changed upon VA exposure indicating a selection of a non-susceptible VA population.

  16. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrificationmore » mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in greatest abundance in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are low but are also expected to be in measurable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, {sup 241}Pu, and {sup 241}Am. These are present due to their partial volatility and some entrainment in the off-gas system. This report discusses results of optimized {sup 99}Tc decontamination testing of the simulant. Testing examined use of inorganic reducing agents for {sup 99}Tc. Testing focused on minimizing the quantity of sorbents/reactants added, and minimizing mixing time to reach the decontamination targets in this simulant formulation. Stannous chloride and ferrous sulfate were tested as reducing agents to determine the minimum needed to convert soluble pertechnetate to the insoluble technetium dioxide. The reducing agents were tried with and without sorbents. The sorbents, hydroxyapatite and sodium oxalate, were expected to sorb the precipitated technetium dioxide and facilitate removal. The Phase 1 tests examined a broad range of conditions and used the initial baseline simulant. The Phase 2 tests narrowed the conditions based on Phase 1 results, and used a slightly modified simulant. Test results indicate that excellent removal of {sup 99}Tc was achieved using SnCl{sub 2} as a reductant, and was effective with or without sorption onto hydroxyapatite. This reaction worked even in the presence of air (which could oxidize the stannous ion) and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >199 in one hour with only 1 g/L of SnCl{sub 2}. Prior work had shown that it was much less effective at alkaline pH. The only deleterious effect observed was that the chromium co-precipitates with the {sup 99}c during the SnCl{sub 2} reduction. This effect was anticipated, and would have to be considered when managing disposition paths of this stream. Reduction using FeSO{sub 4} was not effective at removing {sup 99}Tc, but did remove the Cr. Chromium is present due to partial volatility and entrainment in the off-gas, and is highly oxidizing, so would be expected to react with reducing agents more quickly than pertechnetate. Testing showed that sufficient reducing agent must be added to completely reduce the chromium before the technetium is reduced and removed. Other radionuclides are also present in this off-gas condensate stream. To enable sending this stream to the Hanford ETF, and thereby divert it from the recycle where it impacts the LAW glass volume, several of these also need to be removed. Samples from optimized conditions were also measured for actinide removal in order to examine the effect of the Tc-removal process on the actinides. Plutonium was also removed by the SnCl{sub 2} precipitation process. Results of this separation testing indicate that sorption/precipitation is a viable concept and has the potential to decontaminate the {sup 99}Tc from the stream, allowing it to be diverted away from WTP and thus eliminating the impact of the recycled halides and sulfate on the LAW glass volume. Based on the results, a possible treatment scenario could involve the use of a reductive precipitation agent (SnCl{sub 2}) with or without sorbent at neutral pH to remove the Tc. Although hydroxyapatite was not necessary to effect the {sup 99}Tc removal, it may be beneficial in solid-liquid separations. Other testing will examine removal of the other radionuclides. This testing was the second phase of testing, which aimed at optimizing the process by examining the minimum amount of reductant needed and the minimum reaction time. Although results indicated that SnCl{sub 2} was effective, further work on a pH-adjusted Fe(SO{sub 4}) mixture are needed. Additional tasks are needed to examine removal of the other radionuclides, solid-liquid separation technologies, slurry rheology measurements, composition variability impacts, corrosion and erosion, and slurry storage and immobilization.« less

  17. Quantifying microbial activity in deep subsurface sediments using a tritium based hydrognease enzyme assay

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Nickel, J.; Kallmeyer, J.

    2012-12-01

    Microbial life is widespread in Earth's subsurface and estimated to represent a significant fraction of Earth's total living biomass. However, very little is known about subsurface microbial activity and its fundamental role in biogeochemical cycles of carbon and other biologically important elements. Hydrogen is one of the most important elements in subsurface anaerobic microbial metabolism. Heterotrophic and chemoautotrophic microorganisms use hydrogen in their metabolic pathways. They either consume or produce protons for ATP synthesis. Hydrogenase (H2ase) is a ubiquitous intracellular enzyme that catalyzes the interconversion of molecular hydrogen and/or water into protons and electrons. The protons are used for the synthesis of ATP, thereby coupling energy generating metabolic processes to electron acceptors such as CO2 or sulfate. H2ase enzyme targets a key metabolic compound in cellular metabolism therefore the assay can be used as a measure for total microbial activity without the need to identify any specific metabolic process. Using the highly sensitive tritium assay we measured H2ase enzyme activity in the organic-rich sediments of Lake Van, a saline, alkaline lake in eastern Turkey, in marine sediments of the Barents Sea and in deep subseafloor sediments from the Nankai Trough. H2ase activity could be quantified at all depths of all sites but the activity distribution varied widely with depth and between sites. At the Lake Van sites H2ase activity ranged from ca. 20 mmol H2 cm-3d-1 close to the sediment-water interface to 0.5 mmol H2 cm-3d-1 at a depth of 0.8 m. In samples from the Barents Sea H2ase activity ranged between 0.1 to 2.5 mmol H2 cm-3d-1 down to a depth of 1.60 m. At all sites the sulfate reduction rate profile followed the upper part of the H2ase activity profile until sulfate reduction reached the minimum detection limit (ca. 10 pmol cm-3d-1). H2ase activity could still be quantified after the decline of sulfate reduction, indicating that other microbial processes are becoming quantitatively more important. Similarly, H2ase activity could be quantified at greater depths (ca. 400 mbsf) in Nankai Trough sediments. Nankai Trough is one of the world's most geologically active accretionary wedges, where the Philippine Plate is subducting under the southwest of Japan. Due to the transient faulting, huge amounts of energy are liberated that enhance chemical transformations of organic and inorganic matter. An increase in H2ase activity could be observed at greater depth, which suggests that microbial activity is stimulated by the fault activity. Current techniques for the quantification of microbial activity in deep sediments have already reached their physical and technical limits and-in many cases- are still not sensitive enough to quantify extremely low rates of microbial activity. Additional to the quantification of specific processes, estimates of total microbial activity will provide valuable information on energy flux and microbial metabolism in the subsurface biosphere and other low-energy environments as well as help identifying hotspots of microbial activity. The tritium H2ase assay has a potential to become a valuable tool to measure total subsurface microbial activity.

  18. Aerobic sulfate reduction in microbial mats

    NASA Technical Reports Server (NTRS)

    Canfield, Donald E.; Des Marais, David J.

    1991-01-01

    Measurements of bacterial sulfate reduction and dissolved oxygen (O2) in hypersaline bacterial mats from Baja California, Mexico, revealed that sulfate reduction occurred consistently within the well-oxygenated photosynthetic zone of the mats. This evidence that dissimilatory sulfate reduction can occur in the presence of O2 challenges the conventional view that sulfate reduction is a strictly anaerobic process. At constant temperature, the rates of sulfate reduction in oxygenated mats during daytime were similar to rates in anoxic mats at night: thus, during a 24-hour cycle, variations in light and O2 have little effect on rates of sulfate reduction in these mats.

  19. Real-time evaluation of two light delivery systems for photodynamic disinfection of Candida albicans biofilm in curved root canals.

    PubMed

    Sabino, C P; Garcez, A S; Núñez, S C; Ribeiro, M S; Hamblin, M R

    2015-08-01

    Antimicrobial photodynamic therapy (APDT) combined with endodontic treatment has been recognized as an alternative approach to complement conventional root canal disinfection methods on bacterial biofilms. We developed an in  vitro model of bioluminescent Candida albicans biofilm inside curved dental root canals and investigated the microbial reduction produced when different light delivery methods are employed. Each light delivery method was evaluated in respect to the light distribution provided inside curved root canals. After conventional endodontic preparation, teeth were sterilized before canals were contaminated by a bioluminescent strain of C. albicans (CEC789). Methylene blue (90 μM) was introduced into the canals and then irradiated (λ = 660 nm, P = 100 mW, beam diameter = 2 mm) with laser tip either in contact with pulp chamber or within the canal using an optical diffuser fiber. Light distribution was evaluated by CCD camera, and microbial reduction was monitored through bioluminescence imaging. Our findings demonstrated that the bioluminescent C. albicans biofilm model had good reproducibility and uniformity. Light distribution in dental tissue was markedly dependent on the light delivery system, and this strategy was directly related to microbial destruction. Both light delivery systems performed significant fungal inactivation. However, when irradiation was performed with optical diffuser fiber, microbial burden reduction was nearly 100 times more effective. Bioluminescence is an interesting real-time analysis to endodontic C. albicans biofilm inactivation. APDT showed to be an effective way to inactivate C. albicans biofilms. Diffuser fibers provided optimized light distribution inside curved root canals and significantly increased APDT efficiency.

  20. Biogeochemical Signals from Deep Microbial Life in Terrestrial Crust

    PubMed Central

    Fukuda, Akari; Komatsu, Daisuke D.; Hirota, Akinari; Watanabe, Katsuaki; Togo, Yoko; Morikawa, Noritoshi; Hagiwara, Hiroki; Aosai, Daisuke; Iwatsuki, Teruki; Tsunogai, Urumu; Nagao, Seiya; Ito, Kazumasa; Mizuno, Takashi

    2014-01-01

    In contrast to the deep subseafloor biosphere, a volumetrically vast and stable habitat for microbial life in the terrestrial crust remains poorly explored. For the long-term sustainability of a crustal biome, high-energy fluxes derived from hydrothermal circulation and water radiolysis in uranium-enriched rocks are seemingly essential. However, the crustal habitability depending on a low supply of energy is unknown. We present multi-isotopic evidence of microbially mediated sulfate reduction in a granitic aquifer, a representative of the terrestrial crust habitat. Deep meteoric groundwater was collected from underground boreholes drilled into Cretaceous Toki granite (central Japan). A large sulfur isotopic fractionation of 20–60‰ diagnostic to microbial sulfate reduction is associated with the investigated groundwater containing sulfate below 0.2 mM. In contrast, a small carbon isotopic fractionation (<30‰) is not indicative of methanogenesis. Except for 2011, the concentrations of H2 ranged mostly from 1 to 5 nM, which is also consistent with an aquifer where a terminal electron accepting process is dominantly controlled by ongoing sulfate reduction. High isotopic ratios of mantle-derived 3He relative to radiogenic 4He in groundwater and the flux of H2 along adjacent faults suggest that, in addition to low concentrations of organic matter (<70 µM), H2 from deeper sources might partly fuel metabolic activities. Our results demonstrate that the deep biosphere in the terrestrial crust is metabolically active and playing a crucial role in the formation of reducing groundwater even under low-energy fluxes. PMID:25517230

  1. Real-time evaluation of two light delivery systems for photodynamic disinfection of Candida albicans biofilm in curved root canals

    PubMed Central

    Sabino, C. P.; Garcez, A. S.; Núñez, S. C.; Ribeiro, M. S.; Hamblin, M. R.

    2014-01-01

    Antimicrobial photodynamic therapy (APDT) combined with endodontic treatment has been recognized as an alternative approach to complement conventional root canal disinfection methods on bacterial biofilms. We developed an in vitro model of bioluminescent Candida albicans biofilm inside curved dental root canals and investigated the microbial reduction produced when different light delivery methods are employed. Each light delivery method was evaluated in respect to the light distribution provided inside curved root canals. After conventional endodontic preparation, teeth were sterilized before canals were contaminated by a bioluminescent strain of C. albicans (CEC789). Methylene blue (90 µM) was introduced into the canals and then irradiated (λ=660 nm, P=100 mW, beam diameter=2 mm) with laser tip either in contact with pulp chamber or within the canal using an optical diffuser fiber. Light distribution was evaluated by CCD camera, and microbial reduction was monitored through bioluminescence imaging. Our findings demonstrated that the bioluminescent C. albicans biofilm model had good reproducibility and uniformity. Light distribution in dental tissue was markedly dependent on the light delivery system, and this strategy was directly related to microbial destruction. Both light delivery systems performed significant fungal inactivation. However, when irradiation was performed with optical diffuser fiber, microbial burden reduction was nearly 100 times more effective. Bioluminescence is an interesting real-time analysis to endodontic C. albicans biofilm inactivation. APDT showed to be an effective way to inactivate C. albicans biofilms. Diffuser fibers provided optimized light distribution inside curved root canals and significantly increased APDT efficiency. PMID:25060900

  2. Characterization of microbially Fe(III)-reduced nontronite: Environmental cell-transmission electron microscopy study

    USGS Publications Warehouse

    Kim, Jin-wook; Furukawa, Yoko; Daulton, Tyrone L.; Lavoie, Dawn L.; Newell, Steven W.

    2003-01-01

    Microstructural changes induced by the microbial reduction of Fe(III) in nontronite by Shewanella oneidensis were studied using environmental cell (EC)-transmission electron microscopy (TEM), conventional TEM, and X-ray powder diffraction (XRD). Direct observations of clays by EC-TEM in their hydrated state allowed for the first time an accurate and unambiguous TEM measurement of basal layer spacings and the contraction of layer spacing caused by microbial effects, most likely those of Fe(III) reduction. Non-reduced and Fe(III)-reduced nontronite, observed by EC-TEM, exhibited fringes with mean d001 spacings of 1.50 nm (standard deviation, σ = 0.08 nm) and 1.26 nm (σ = 0.10 nm), respectively. In comparison, the same samples embedded with Nanoplast resin, sectioned by microtome, and observed using conventional TEM, displayed layer spacings of 1.0–1.1 nm (non-reduced) and 1.0 nm (reduced). The results from Nanoplast-embedded samples are typical of conventional TEM studies, which have measured nearly identical layer spacings regardless of Fe oxidation state. Following Fe(III) reduction, both EC- and conventional TEM showed an increase in the order of nontronite selected area electron diffraction patterns while the images exhibited fewer wavy fringes and fewer layer terminations. An increase in stacking order in reduced nontronite was also suggested by XRD measurements. In particular, the ratio of the valley to peak intensity (v/p) of the 1.7 nm basal 001 peak of ethylene glycolated nontronite was measured at 0.65 (non-reduced) and 0.85 (microbially reduced).

  3. Microbial iron redox cycling in a circumneutral-pH groundwater seep.

    PubMed

    Blöthe, Marco; Roden, Eric E

    2009-01-01

    The potential for microbially mediated redox cycling of iron (Fe) in a circumneutral-pH groundwater seep in north central Alabama was studied. Incubation of freshly collected seep material under anoxic conditions with acetate-lactate or H(2) as an electron donor revealed the potential for rapid Fe(III) oxide reduction (ca. 700 to 2,000 micromol liter(-1) day(-1)). Fe(III) reduction at lower but significant rates took place in unamended controls (ca. 300 micromol liter(-1) day(-1)). Culture-based enumerations (most probable numbers [MPNs]) revealed significant numbers (10(2) to 10(6) cells ml(-1)) of organic carbon- and H(2)-oxidizing dissimilatory Fe(III)-reducing microorganisms. Three isolates with the ability to reduce Fe(III) oxides by dissimilatory or fermentative metabolism were obtained (Geobacter sp. strain IST-3, Shewanella sp. strain IST-21, and Bacillus sp. strain IST-38). MPN analysis also revealed the presence of microaerophilic Fe(II)-oxidizing microorganisms (10(3) to 10(5) cells ml(-1)). A 16S rRNA gene library from the iron seep was dominated by representatives of the Betaproteobacteria including Gallionella, Leptothrix, and Comamonas species. Aerobic Fe(II)-oxidizing Comamonas sp. strain IST-3 was isolated. The 16S rRNA gene sequence of this organism is 100% similar to the type strain of the betaproteobacterium Comamonas testosteroni (M11224). Testing of the type strain showed no Fe(II) oxidation. Collectively our results suggest that active microbial Fe redox cycling occurred within this habitat and support previous conceptual models for how microbial Fe oxidation and reduction can be coupled in surface and subsurface sedimentary environments.

  4. EFFECT OF CONTAMINANT AND ORGANIC MATTER BIOAVAILABILITY ON THE MICROBIAL DEHALOGENATION OF SEDIMENT-BOUND CHLOROBENZENES. (R825513C007)

    EPA Science Inventory

    The extent of reductive dechlorination occurring in contaminated, estuarine sediments was investigated. Contaminant and organic matter bioavailability and their effect on the reductive dechlorination of sediment-bound chlorobenzenes was the main focus of the work presented her...

  5. Microbial minimalism: genome reduction in bacterial pathogens.

    PubMed

    Moran, Nancy A

    2002-03-08

    When bacterial lineages make the transition from free-living or facultatively parasitic life cycles to permanent associations with hosts, they undergo a major loss of genes and DNA. Complete genome sequences are providing an understanding of how extreme genome reduction affects evolutionary directions and metabolic capabilities of obligate pathogens and symbionts.

  6. Review of current technologies for reduction of Salmonella populations on almonds

    USDA-ARS?s Scientific Manuscript database

    After the 2001 and 2004 Salmonellosis outbreaks that were associated with raw almonds, ensuring the microbial safety of almonds by treating them to achieve a minimum 4-log reduction of Salmonella population became mandatory in California, the world’s largest almond producer. In this paper, we summa...

  7. Effect of Natural Organic Matter on the Reduction of Nitroaromatics by Fe(II) Species

    EPA Science Inventory

    Although natural organic matter is a necessary electron source for the microbial mediated development of redox zones in nature, uncertainty still exists regarding its role(s) in the reduction of chemicals. This work studied the effect of Suwannee river humic acid (SRHA) on the r...

  8. MICROBIAL REDUCTIVE DECHLORINATION OF HEXACHLORO-1,3-BUTADIENE IN A METHANOGENIC ENRICHMENT CULTURE. (R825513C007)

    EPA Science Inventory

    Sequential reductive dechlorination of hexachloro-1,3-butadiene (HCBD) was achieved by a mixed, methanogenic culture enriched from a contaminated estuarine sediment. Both methanol and lactate served as carbon and electron sources. Methanol was stoichiometrically converted to m...

  9. A systematic review of presacral extramedullary haematopoiesis: a diagnosis to be considered for presacral masses.

    PubMed

    Zhou, P P; Clark, E; Kapadia, M R

    2016-11-01

    Presacral masses are uncommon and have malignant potential; treatment typically includes surgical excision. However, there are conditions such as extramedullary haematopoiesis (EMH) which are benign. The present study aimed to summarize the presentation of presacral EMH in our institution, to review the literature and to offer management strategies for this rare condition. The literature was searched for articles related to presacral EMH, and case reports were collected from articles meeting the inclusion criteria. We collected data on patient demographics, diagnostic investigation, management and the results of treatment. Thirty-nine patients were included in the systematic review. Initial imaging included computed tomography (CT), magnetic resonance imaging (MRI) or ultrasound (US) suggestive of EMH. Some patients then underwent a technetium scan (n = 7, 18%), biopsy of the presacral lesion (n = 27, 69%) or excision of the entire mass (n = 3, 8%). All patients who underwent technetium scan were confirmed to have EMH, demonstrating enhancement similar to bone marrow. Patients who underwent technetium scan and presacral mass biopsy had concordant results confirming presacral EMH (n = 5, 13%). Data on management were available for 35/39 (90%) with most patients followed by clinical observation (n = 20, 51%). Symptomatic patients were treated with radiotherapy (15%), surgical excision (15%) or hydroxyurea (5%) and blood transfusions (10%). Most (81%, n = 17/21) patients whose outcome was reported remained asymptomatic or experienced pain relief. Although uncommon, EMH should be considered in the differential diagnosis of a presacral mass. Presacral EMH is a benign condition that can be suspected on CT or MRI and confirmed with technetium scan. Patients may not necessarily need to undergo biopsy to confirm haematopoietic elements. Unlike other presacral masses, patients diagnosed with presacral EMH can be managed by observation. If symptomatic, radiotherapy or surgical excision may be offered. Colorectal Disease © 2016 The Association of Coloproctology of Great Britain and Ireland.

  10. Impacts of chemical gradients on microbial community structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E.

    Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower’. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobicmore » and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.« less

  11. Impacts of chemical gradients on microbial community structure

    DOE PAGES

    Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E.; ...

    2017-01-17

    Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower’. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobicmore » and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.« less

  12. Microbial ecology and biogeochemistry of continental Antarctic soils.

    PubMed

    Cowan, Don A; Makhalanyane, Thulani P; Dennis, Paul G; Hopkins, David W

    2014-01-01

    The Antarctica Dry Valleys are regarded as the coldest hyperarid desert system on Earth. While a wide variety of environmental stressors including very low minimum temperatures, frequent freeze-thaw cycles and low water availability impose severe limitations to life, suitable niches for abundant microbial colonization exist. Antarctic desert soils contain much higher levels of microbial diversity than previously thought. Edaphic niches, including cryptic and refuge habitats, microbial mats and permafrost soils all harbor microbial communities which drive key biogeochemical cycling processes. For example, lithobionts (hypoliths and endoliths) possess a genetic capacity for nitrogen and carbon cycling, polymer degradation, and other system processes. Nitrogen fixation rates of hypoliths, as assessed through acetylene reduction assays, suggest that these communities are a significant input source for nitrogen into these oligotrophic soils. Here we review aspects of microbial diversity in Antarctic soils with an emphasis on functionality and capacity. We assess current knowledge regarding adaptations to Antarctic soil environments and highlight the current threats to Antarctic desert soil communities.

  13. Solar energy powered microbial fuel cell with a reversible bioelectrode.

    PubMed

    Strik, David P B T B; Hamelers, Hubertus V M; Buisman, Cees J N

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel cells is the pH membrane gradient which reduces cell voltage and power output. This problem is caused by acid production at the anode, alkaline production at the cathode, and the nonspecific proton exchange through the membrane. Here we report a solution for a new kind of solar energy powered microbial fuel cell via development of a reversible bioelectrode responsible for both biocatalyzed anodic and cathodic electron transfer. Anodic produced protons were used for the cathodic reduction reaction which held the formation of a pH membrane gradient. The microbial fuel cell continuously generated electricity and repeatedly reversed polarity dependent on aeration or solar energy exposure. Identified organisms within biocatalyzing biofilm of the reversible bioelectrode were algae, (cyano)bacteria and protozoa. These results encourage application of solar energy powered microbial fuel cells.

  14. Impacts of chemical gradients on microbial community structure

    PubMed Central

    Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E; Kattelmann, Ines; Sharma, Ritin; Hamann, Emmo; Hargesheimer, Theresa; Kraft, Beate; Lenk, Sabine; Geelhoed, Jeanine S; Hettich, Robert L; Strous, Marc

    2017-01-01

    Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower'. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobic and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems. PMID:28094795

  15. Impacts of chemical gradients on microbial community structure.

    PubMed

    Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E; Kattelmann, Ines; Sharma, Ritin; Hamann, Emmo; Hargesheimer, Theresa; Kraft, Beate; Lenk, Sabine; Geelhoed, Jeanine S; Hettich, Robert L; Strous, Marc

    2017-04-01

    Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the 'redox tower'. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobic and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.

  16. Visible-light-enhanced Cr(VI) reduction at Pd-decorated silicon nanowire photocathode in photoelectrocatalytic microbial fuel cell.

    PubMed

    Han, He-Xing; Shi, Chen; Zhang, Nan; Yuan, Li; Sheng, Guo-Ping

    2018-10-15

    Hexavalent chromium (Cr(VI)) is a prominent toxic metal with significant adverse human health effects. Photocatalytic reduction of Cr(VI) to less-toxic trivalent chromium (Cr(III)) is a promising method for removing Cr(VI) from aquatic environments. However, this technique often suffers from electron-hole recombination of semiconductors and poor reduction efficiency. The photoelectrocatalytic microbial fuel cell (Photo-MFC), which can use wastewater and light to recover electricity, has recently been proven to improve the separation of photocarriers of semiconductors and enhance cathodic reduction of pollutants. Here, the reduction of Cr(VI) was investigated in a Photo-MFC with a Pd-decorated p-type silicon nanowire (Pd/SiNW) photocathode and a bioanode under visible light. The Cr(VI) reduction efficiency reached 98.7% in 8 h under visible light, which was much higher than that under dark condition (56.2%) and open-circuit condition (19.4%). The enhanced Cr(VI) removal was mainly attributed to the synergistic effect of Pd/SiNW photocathode and bioanode. Cr(VI) reduction in the Photo-MFC fitted well with pseudo-first-order kinetics. The kinetics constants and reduction efficiencies of Cr(VI) decreased with the increase of pH, initial Cr(VI) concentration and external resistance. This work provides a promising alternative to mitigate Cr(VI) pollution in aquatic environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Cr isotope fractionation factors for Cr(VI) reduction by a metabolically diverse group of bacteria

    NASA Astrophysics Data System (ADS)

    Basu, Anirban; Johnson, Thomas M.; Sanford, Robert A.

    2014-10-01

    Reduction of Cr(VI) is an important process that determines the geochemical behavior, mobility and bioavailability of Cr in both terrestrial and marine environments. Many metabolically diverse microorganisms possess Cr(VI) reduction capacity. Cr(VI) reduction fractionates Cr isotopes and thus 53Cr/52Cr ratios can be used to monitor Cr(VI) reduction and redox conditions. The magnitude of isotopic fractionation (ε) for a variety of microbial reduction mechanisms must be known for accurate interpretation of observed shifts in 53Cr/52Cr ratios. We determined isotopic fractionation factors for Cr(VI) reduction by metal reducers Geobacter sulfurreducens and Shewanella sp. strain NR, a denitrifying soil bacterium Pseudomonas stutzeri DCP-Ps1, and a sulfate reducer Desulfovibrio vulgaris. All bacteria investigated in this study produced significant Cr isotope fractionation. The fractionation (ε) for G. sulfurreducens, Shewanella sp. (NR), P. stutzeri DCP-Ps1, and D. vulgaris were -3.03‰ ± 0.12‰, -2.17‰ ± 0.22‰, -3.14‰ ± 0.13‰, and -3.01‰ ± 0.11‰, respectively. Despite differences in microbial strains in this study, the ε did not vary significantly except for Shewanella sp. (NR). Our results suggest that strong isotopic fractionation is induced during Cr(VI) reduction under electron donor poor (∼300 μM) conditions.

  18. Reduction and removal of heptavalent technetium from solution by Escherichia coli.

    PubMed

    Lloyd, J R; Cole, J A; Macaskie, L E

    1997-03-01

    Anaerobic, but not aerobic, cultures of Escherichia coli accumulated Tc(VII) and reduced it to a black insoluble precipitate. Tc was the predominant element detected when the precipitate was analyzed by proton-induced X-ray emission. Electron microscopy in combination with energy-dispersive X-ray analysis showed that the site of Tc deposition was intracellular. It is proposed that Tc precipitation was a result of enzymatically mediated reduction of Tc(VII) to an insoluble oxide. Formate was an effective electron donor for Tc(VII) reduction which could be replaced by pyruvate, glucose, or glycerol but not by acetate, lactate, succinate, or ethanol. Mutants defective in the synthesis of the transcription factor FNR, in molybdenum cofactor (molybdopterin guanine dinucleotide [MGD]) synthesis, or in formate dehydrogenase H synthesis were all defective in Tc(VII) reduction, implicating a role for the formate hydrogenlyase complex in Tc(VII) reduction. The following observations confirmed that the hydrogenase III (Hyc) component of formate hydrogenlyase in both essential and sufficient for Tc(VII) reduction: (i) dihydrogen could replace formate as an effective electron donor for Tc(VII) reduction by wild-type bacteria and mutants defective in MGD synthesis; (ii) the inability of fnr mutants to reduce Tc(VII) can be suppressed phenotypically by growth with 250 microM Ni2+ and formate; (iii) Tc(VII) reduction is defective in a hyc mutant; (iv) the ability to reduce Tc(VII) was repressed during anaerobic growth in the presence of nitrate, but this repression was counteracted by the addition of formate to the growth medium; (v) H2, but not formate, was an effective electron donor for a Sel- mutant which is unable to incorporate selenocysteine into any of the three known formate dehydrogenases of E. coli. This appears to be the first report of Hyc functioning as an H2-oxidizing hydrogenase or as a dissimilatory metal ion reductase in enteric bacteria.

  19. Biological Oxidation of Fe(II) in Reduced Nontronite Coupled with Nitrate Reduction by Pseudogulbenkiania sp. Strain 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.

    Nitrate contamination in soils, sediments, and water bodies is a significant issue. Although much is known about nitrate degradation in these environments, especially via microbial pathways, a complete understanding of all degradation processes, especially in clay mineral-rich soils, is still lacking. The objective of this study was to study the potential of removing nitrate contaminant using structural Fe(II) in clay mineral nontronite. Specifically, the coupled processes of microbial oxidation of Fe(II) in microbially reduced nontronite (NAu-2) and nitrate reduction by Pseudogulbenkiania species strain 2002 was investigated. Bio-oxidation experiments were conducted in bicarbonate-buffered medium under both growth and nongrowth conditions. Themore » extents of Fe(II) oxidation and nitrate reduction were measured by wet chemical methods. X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), and 57Fe-Mössbauer spectroscopy were used to observe mineralogical changes associated with Fe(III) reduction and Fe(II) oxidation in nontronite. The bio-oxidation extent under growth and nongrowth conditions reached 93% and 57%, respectively. Over the same time period, nitrate was completely reduced under both conditions to nitrogen gas (N2), via an intermediate product nitrite. Magnetite was a mineral product of nitrate-dependent Fe(II) oxidation, as evidenced by XRD data and TEM diffraction patterns. The results of this study highlight the importance of iron-bearing clay minerals in the global nitrogen cycle with potential applications in nitrate removal in soils.« less

  20. Proposed modification to the specification for dry heat microbial reduction of spacecraft hardware for future US missions

    NASA Astrophysics Data System (ADS)

    James; Spry, A.; Beaudet, Robert; Schubert, Wayne

    Dry heat microbial reduction (DHMR) is the primary technique used to reduce the microbial load of spacecraft and component parts to comply with planetary protection requirements. Often, manufacturing processes involve heating flight hardware to high temperatures for purposes other than planetary protection DHMR. At present, the existing specification in NASA document NPR8020.12C, describing the process lethality on B. atrophaeus (ATCC 9372) bacterial spores, does not allow for additional planetary protection bioburden reduction credit for processing outside a narrow temperature, time and humidity window. However, recent studies (Schubert et al., COSPAR 2008) from a comprehensive multi-year laboratory research effort have generated enhanced data sets on four aspects of the current specification: time and temperature combination effects, the effect that humidity has on spore lethality, the lethality for spores with exceptionally high thermal resistance (so called "hardies"), and the extended exposure requirement for encapsulated microorganisms. This paper describes proposed modifications to the specification, based on the data set generated in the referenced study. The proposed modifications are intended to broaden the scope of the current specification while still maintaining a confident conservative interpretation of the lethality of the DHMR process on microorganisms. Potential cost and schedule benefits to future missions utilizing the revised specification will be highlighted.

  1. Disturbed subsurface microbial communities follow equivalent trajectories despite different structural starting points: Microbial community succession and disturbance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handley, Kim M.; Wrighton, Kelly C.; Miller, Christopher S.

    2014-04-18

    Microbial community structure, and niche and neutral processes can all influence response to disturbance. Here, we provide experimental evidence for niche versus neutral and founding community effects during a bioremediation-related organic carbon disturbance. Subsurface sediment, partitioned into 22 flow-through columns, was stimulated in situ by the addition of acetate as a carbon and electron donor source. This drove the system into a new transient biogeochemical state characterized by iron reduction and enriched Desulfuromonadales, Comamonadaceae and Bacteroidetes lineages. After approximately 1 month conditions favoured sulfate reduction, and were accompanied by a substantial increase in the relative abundance of Desulfobulbus, Desulfosporosinus, Desulfitobacteriummore » and Desulfotomaculum. Two subsets of four to five columns each were switched from acetate to lactate amendment during either iron (earlier) or sulfate (later) reduction. Hence, subsets had significantly different founding communities. All lactate treatments exhibited lower relative abundances of Desulfotomaculum and Bacteroidetes, enrichments of Clostridiales and Psychrosinus species, and a temporal succession from highly abundant Clostridium sensu stricto to Psychrosinus. Regardless of starting point, lactate-switch communities followed comparable structural trajectories, whereby convergence was evident 9 to 16 days after each switch, and significant after 29 to 34 days of lactate addition. Results imply that neither the founding community nor neutral processes influenced succession following perturbation.« less

  2. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate‐reducing benthic microbial populations

    PubMed Central

    Saad, Sainab; Bhatnagar, Srijak; Tegetmeyer, Halina E.; Geelhoed, Jeanine S.; Strous, Marc

    2017-01-01

    Summary For the anaerobic remineralization of organic matter in marine sediments, sulfate reduction coupled to fermentation plays a key role. Here, we enriched sulfate‐reducing/fermentative communities from intertidal sediments under defined conditions in continuous culture. We transiently exposed the cultures to oxygen or nitrate twice daily and investigated the community response. Chemical measurements, provisional genomes and transcriptomic profiles revealed trophic networks of microbial populations. Sulfate reducers coexisted with facultative nitrate reducers or aerobes enabling the community to adjust to nitrate or oxygen pulses. Exposure to oxygen and nitrate impacted the community structure, but did not suppress fermentation or sulfate reduction as community functions, highlighting their stability under dynamic conditions. The most abundant sulfate reducer in all cultures, related to Desulfotignum balticum, appeared to have coupled both acetate‐ and hydrogen oxidation to sulfate reduction. We describe a novel representative of the widespread uncultured candidate phylum Fermentibacteria (formerly candidate division Hyd24‐12). For this strictly anaerobic, obligate fermentative bacterium, we propose the name ‘USabulitectum silens’ and identify it as a partner of sulfate reducers in marine sediments. Overall, we provide insights into the function of fermentative, as well as sulfate‐reducing microbial communities and their adaptation to a dynamic environment. PMID:28836729

  3. Master apical file size - smaller or larger: a systematic review of microbial reduction.

    PubMed

    Aminoshariae, A; Kulild, J

    2015-11-01

    The purpose of this systematic review was to determine, in patients undergoing root canal treatment, whether apical enlargement of canals affected microbial reduction. A PICO (population, intervention, comparison and outcome) strategy was developed to identify previously published studies dealing with apical size of canal and microbial reduction. The MEDLINE, Embase, Cochrane and PubMed databases were searched. Additionally, the bibliographies of all relevant articles and textbooks were manually searched. Based on inclusion and exclusion criteria, two reviewers independently selected the relevant articles. Due to the variety of methodologies and different techniques used to measure outcome for master apical file enlargement, it was not possible to standardize the research data and to apply a meta-analysis. Seven articles were identified that met the inclusion criteria. Five of the seven articles generally concluded that canal enlargement reduced bioburden in the root canal system. Two articles reported no difference in canals enlarged to size 25 or 40. The results of the systematic review confirmed that more evidence-based research in this area is needed. With the limited information currently available, the best current available clinical evidence suggests that contemporary chemomechanical debridement techniques with canal enlargement techniques do not eliminate bacteria during root canal treatment at any size. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  4. Bioreduction and immobilization of uranium in situ: a case study at a USA Department of Energy radioactive waste site, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weimin; Carley, Jack M; Watson, David B

    Bioremediation of uranium contaminated groundwater was tested by delivery of ethanol as an electron donor source to stimulate indigenous microbial bioactivity for reduction and immobilization of uranium in situ, followed by tests of stability of uranium sequestration in the bioreduced area via delivery of dissolved oxygen or nitrate at the US Department of energy's Integrated Field Research Challenge site located at Oak Ridge, Tennessee, USA. After long term treatment that spanned years, uranium in groundwater was reduced from 40-60 mg {center_dot} L{sup -1} to <0.03 mg {center_dot} L{sup -1}, below the USA EPA standard for drinking water. The bioreduced uraniummore » was stable under anaerobic or anoxic conditions, but addition of DO and nitrate to the bioreduced zone caused U remobilization. The change in the microbial community and functional microorganisms related to uranium reduction and oxidation were characterized. The delivery of ethanol as electron donor stimulated the activities of indigenous microorganisms for reduction of U(VI) to U(IV). Results indicated that the immobilized U could be partially remobilized by D0 and nitrate via microbial activity. An anoxic environmental condition without nitrate is essential to maintain the stability of bioreduced uranium.« less

  5. Effect of ferrihydrite biomineralization on methanogenesis in an anaerobic incubation from paddy soil

    NASA Astrophysics Data System (ADS)

    Zhuang, Li; Xu, Jielong; Tang, Jia; Zhou, Shungui

    2015-05-01

    Microbial reduction of Fe(III) can be one of the major factors controlling methane production from anaerobic sedimentary environments, such as paddy soils and wetlands. Although secondary iron mineralization following Fe(III) reduction is a process that occurs naturally over time, it has not yet been considered in methanogenic systems. This study performed a long-term anaerobic incubation of a paddy soil and ferrihydrite-supplemented soil cultures to investigate methanogenesis during ferrihydrite biomineralization. The results revealed that the long-term effect of ferrihydrite on methanogenesis may be enhancement rather than suppression documented in previous studies. During initial microbial ferrihydrite reduction, methanogenesis was suppressed; however, the secondary minerals of magnetite formation was simultaneous with facilitated methanogenesis in terms of average methane production rate and acetate utilization rate. In the phase of magnetite formation, microbial community analysis revealed a strong stimulation of the bacterial Geobacter, Bacillus, and Sedimentibacter and the archaeal Methanosarcina in the ferrihydrite-supplemented cultures. Direct electric syntrophy between Geobacter and Methanosarcina via conductive magnetite is the plausible mechanism for methanogenesis acceleration along with magnetite formation. Our data suggested that a change in iron mineralogy might affect the conversion of anaerobic organic matter to methane and might provide a fresh perspective on the mitigation of methane emissions from paddy soils by ferric iron fertilization.

  6. Effect of Antimicrobial Interventions on the Oral Microbiota Associated with Early Childhood Caries.

    PubMed

    Li, Yihong; Tanner, Anne

    2015-01-01

    The purposes of this systematic literature review were to identify research-based evidence for an effect of antimicrobial therapeutic approaches on the cariogenic microbiota and early childhood caries (ECC) outcomes; and to review methods used to perform microbial assessments in clinical studies of ECC. Multiple databases were searched; only clinical cohort studies and randomized controlled trials published from 1998 to 2014 were selected. A total of 471 titles and abstracts were identified; 114 studies met the inclusion criteria for a full review, from which 41 studies were included in the meta-analyses. In most of the reviewed studies, moderate reductions in cariogenic bacterial levels, mainly in mutans streptococci (MS), were demonstrated following the use of antimicrobial agents, but bacterial regrowth occurred and new carious lesions developed once the treatment had ceased, particularly in high-risk children. Relatively consistent findings suggested that anti-cariogenic microbial interventions in mothers significantly reduced MS acquisition by children. However, studies of the long-term benefits of ECC prevention are lacking. Based on the meta-analyses, antimicrobial interventions and treatments show temporary reductions in MS colonization levels. However, there is insufficient evidence to indicate that the approaches used produced sustainable effects on cariogenic microbial colonization or ECC reduction and prevention.

  7. Microbial Sulfate Reduction Enhances Arsenic Mobility Downstream of Zerovalent-Iron-Based Permeable Reactive Barrier.

    PubMed

    Kumar, Naresh; Couture, Raoul-Marie; Millot, Romain; Battaglia-Brunet, Fabienne; Rose, Jérôme

    2016-07-19

    We assessed the potential of zerovalent-iron- (Fe(0)) based permeable reactive barrier (PRB) systems for arsenic (As) remediation in the presence or absence of microbial sulfate reduction. We conducted long-term (200 day) flow-through column experiments to investigate the mechanisms of As transformation and mobility in aquifer sediment (in particular, the PRB downstream linkage). Changes in As speciation in the aqueous phase were monitored continuously. Speciation in the solid phase was determined at the end of the experiment using X-ray absorption near-edge structure (XANES) spectroscopy analysis. We identified thio-As species in solution and AsS in solid phase, which suggests that the As(V) was reduced to As(III) and precipitated as AsS under sulfate-reducing conditions and remained as As(V) under abiotic conditions, even with low redox potential and high Fe(II) content (4.5 mM). Our results suggest that the microbial sulfate reduction plays a key role in the mobilization of As from Fe-rich aquifer sediment under anoxic conditions. Furthermore, they illustrate that the upstream-downstream linkage of PRB affects the speciation and mobility of As in downstream aquifer sediment, where up to 47% of total As initially present in the sediment was leached out in the form of mobile thio-As species.

  8. The role of macrobiota in structuring microbial communities along rocky shores

    DOE PAGES

    Pfister, Catherine A.; Gilbert, Jack A.; Gibbons, Sean M.

    2014-10-16

    Rocky shore microbial diversity presents an excellent system to test for microbial habitat specificity or generality, enabling us to decipher how common macrobiota shape microbial community structure. At two coastal locations in the northeast Pacific Ocean, we show that microbial composition was significantly different between inert surfaces, the biogenic surfaces that included rocky shore animals and an alga, and the water column plankton. While all sampled entities had a core of common OTUs, rare OTUs drove differences among biotic and abiotic substrates. For the mussel Mytilus californianus, the shell surface harbored greater alpha diversity compared to internal tissues of themore » gill and siphon. Strikingly, a 7-year experimental removal of this mussel from tidepools did not significantly alter the microbial community structure of microbes associated with inert surfaces when compared with unmanipulated tidepools. However, bacterial taxa associated with nitrate reduction had greater relative abundance with mussels present, suggesting an impact of increased animal-derived nitrogen on a subset of microbial metabolism. Because the presence of mussels did not affect the structure and diversity of the microbial community on adjacent inert substrates, microbes in this rocky shore environment may be predominantly affected through direct physical association with macrobiota.« less

  9. The role of macrobiota in structuring microbial communities along rocky shores

    PubMed Central

    Gilbert, Jack A.; Gibbons, Sean M.

    2014-01-01

    Rocky shore microbial diversity presents an excellent system to test for microbial habitat specificity or generality, enabling us to decipher how common macrobiota shape microbial community structure. At two coastal locations in the northeast Pacific Ocean, we show that microbial composition was significantly different between inert surfaces, the biogenic surfaces that included rocky shore animals and an alga, and the water column plankton. While all sampled entities had a core of common OTUs, rare OTUs drove differences among biotic and abiotic substrates. For the mussel Mytilus californianus, the shell surface harbored greater alpha diversity compared to internal tissues of the gill and siphon. Strikingly, a 7-year experimental removal of this mussel from tidepools did not significantly alter the microbial community structure of microbes associated with inert surfaces when compared with unmanipulated tidepools. However, bacterial taxa associated with nitrate reduction had greater relative abundance with mussels present, suggesting an impact of increased animal-derived nitrogen on a subset of microbial metabolism. Because the presence of mussels did not affect the structure and diversity of the microbial community on adjacent inert substrates, microbes in this rocky shore environment may be predominantly affected through direct physical association with macrobiota. PMID:25337459

  10. Microbial communities and soil fertility in flood irrigated orchards under different management systems in eastern spain

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, Alicia; García-Orenes, Fuensanta; Caravaca, Fuensanta; Roldán, Antonio

    2016-04-01

    Unsuitable land management such as the excessive use of herbicides can lead to a loss of soil fertility and a drastic reduction in the abundance of microbial populations and their functions related to nutrient cycling. Microbial communities are the most sensitive and rapid indicators of perturbations in agroecosystems. A field experiment was performed in an orange-trees orchard (Citrus sinensis) to assess the long-term effect of three different management systems on the soil microbial community biomass, structure and composition (phospholipid fatty acids (PLFAs) total, pattern, and abundance). The three agricultural systems assayed were established 30 years ago: herbicides (Glyphosate (N-(phosphonomethyl)glycine) with inorganic fertilizers (H), intensive ploughing and inorganic fertilizers (NPK 15%) (P) and organic farming (chipped pruned branches and weeds, manure from sheep and goats) (O). Nine soil samples were taken from each system. The results showed that the management practices including herbicides and intensive ploughing had similar results on soil microbial properties, while organic fertilization significantly increased microbial biomass, shifted the structure and composition of the soil microbial community, and stimulated microbial activity, when compared to inorganic fertilization systems; thus, enhancing the sustainability of this agroecosystem under semiarid conditions.

  11. Microbial Energetics Beneath the Taylor Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Mikucki, J. A.; Turchyn, A. V.; Farquhar, J.; Priscu, J. C.; Schrag, D. P.; Pearson, A.

    2007-12-01

    Subglacial microbiology is controlled by glacier hydrology, bedrock lithology, and the preglacial ecosystem. These factors can all affect metabolic function by influencing electron acceptor and donor availability in the subglacial setting leaving biogeochemical signatures that can be used to determine ecosystem processes. Blood Falls, an iron-rich, episodic subglacial outflow from the Taylor Glacier in the McMurdo Dry Valleys Antarctica provides an example of how microbial community structure and function can provide insight into subglacial hydrology. This subglacial outflow contains cryoconcentrated, Pliocene-age seawater salts that pooled in the upper Taylor Valley and was subsequently covered by the advance of the Taylor Glacier. Biogeochemical measurements, culture-based techniques, and genomic analysis were used to characterize microbes and chemistry associated with the subglacial outflow. The isotopic composition of important geochemical substrates (i.e., δ34Ssulfate, Δ33Ssulfate, δ18Osulfate, δ18Owater, Δ14SDIC) were also measured to provide more detail on subglacial microbial energetics. Typically, subglacial systems, when driven to anoxia by the hydrolysis of organic matter, will follow a continuum of redox chemistries utilizing electron acceptors with decreasing reduction potential (e.g., Fe (III), sulfate, CO2). Our data provide no evidence for sulfate reduction below the Taylor Glacier despite high dissolved organic carbon (450 μM C) and measurable metabolic activity. We contend that, in the case of the Taylor Glacier, the in situ bioenergetic reduction potential has been 'short-circuited' at Fe(III)-reduction and excludes sulfate reduction and methanogenesis. Given the length of time that this marine system has been isolated from phototrophic production (~2 Mya) the ability to degrade and consume increasingly recalcitrant organic carbon is likely an important component to the observed redox chemistry. Our work indicates that glacier hydrology imparts strong feedbacks on the availability of oxygen as an electron acceptor and may be a robust regulator of the in situ metabolism. This biogeochemical regulation in turn affects the chemical nature of subglacial efflux. Blood Falls demonstrates that measurements of geochemistry and microbial diversity can support models of subglacial hydrology.

  12. Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: Model validation and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Chen, Mingjie; Abriola, Linda M.; Amos, Benjamin K.; Suchomel, Eric J.; Pennell, Kurt D.; Löffler, Frank E.; Christ, John A.

    2013-08-01

    Reductive dechlorination catalyzed by organohalide-respiring bacteria is often considered for remediation of non-aqueous phase liquid (NAPL) source zones due to cost savings, ease of implementation, regulatory acceptance, and sustainability. Despite knowledge of the key dechlorinators, an understanding of the processes and factors that control NAPL dissolution rates and detoxification (i.e., ethene formation) is lacking. A recent column study demonstrated a 5-fold cumulative enhancement in tetrachloroethene (PCE) dissolution and ethene formation (Amos et al., 2009). Spatial and temporal monitoring of key geochemical and microbial (i.e., Geobacter lovleyi and Dehalococcoides mccartyi strains) parameters in the column generated a data set used herein as the basis for refinement and testing of a multiphase, compositional transport model. The refined model is capable of simulating the reactive transport of multiple chemical constituents produced and consumed by organohalide-respiring bacteria and accounts for substrate limitations and competitive inhibition. Parameter estimation techniques were used to optimize the values of sensitive microbial kinetic parameters, including maximum utilization rates, biomass yield coefficients, and endogenous decay rates. Comparison and calibration of model simulations with the experimental data demonstrate that the model is able to accurately reproduce measured effluent concentrations, while delineating trends in dechlorinator growth and reductive dechlorination kinetics along the column. Sensitivity analyses performed on the optimized model parameters indicate that the rates of PCE and cis-1,2-dichloroethene (cis-DCE) transformation and Dehalococcoides growth govern bioenhanced dissolution, as long as electron donor (i.e., hydrogen flux) is not limiting. Dissolution enhancements were shown to be independent of cis-DCE accumulation; however, accumulation of cis-DCE, as well as column length and flow rate (i.e., column residence time), strongly influenced the extent of reductive dechlorination. When cis-DCE inhibition was neglected, the model over-predicted ethene production ten-fold, while reductions in residence time (i.e., a two-fold decrease in column length or two-fold increase in flow rate) resulted in a more than 70% decline in ethene production. These results suggest that spatial and temporal variations in microbial community composition and activity must be understood to model, predict, and manage bioenhanced NAPL dissolution.

  13. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic.

    PubMed

    Wang, Ning; Xue, Xi-Mei; Juhasz, Albert L; Chang, Zhi-Zhou; Li, Hong-Bo

    2017-01-01

    Previous studies have shown that biochar enhances microbial reduction of iron (Fe) oxyhydroxide under anaerobic incubation. However, there is a lack of data on its influence on arsenic (As) release from As-contaminated paddy soils. In this study, paddy soil slurries (120 mg As kg -1 ) were incubated under anaerobic conditions for 60 days with and without the addition of biochar (3%, w/w) prepared from rice straw at 500 °C. Arsenic release, Fe reduction, and As fractionation were determined at 1, 10, 20, 30, and 60 d, while Illumina sequencing and real-time PCR were used to characterize changes in soil microbial community structure and As transformation function genes. During the first month of incubation, As released into soil solution increased sharply from 27.9 and 55.9 to 486 and 630 μg kg -1 in unamended and biochar amended slurries, with inorganic trivalent As (As III ) being the dominant specie (52.7-91.0% of total As). Compared to unamended slurries, biochar addition increased As and ferrous ion (Fe 2+ ) concentrations in soil solution but decreased soil As concentration in the amorphous Fe/Al oxide fraction (F3). Difference in released As between biochar and unamended treatments (ΔAs) increased with incubation time, showing strong linear relationships (R 2  = 0.23-0.33) with ΔFe 2+ and ΔF3, confirming increased As release due to enhanced Fe reduction. Biochar addition increased the abundance of Fe reducing bacteria such as Clostridum (27.3% vs. 22.7%), Bacillus (3.34% vs. 2.39%), and Caloramator (4.46% vs. 3.88%). In addition, copy numbers in biochar amended slurries of respiratory As reducing (arrA) and detoxifying reducing genes (arsC) increased 19.0 and 1.70 fold, suggesting microbial reduction of pentavalent As (As V ) adsorbed on Fe oxides to As III , further contributing to increased As release. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Cyanobacterial mats: Microanalysis of community metabolism

    NASA Technical Reports Server (NTRS)

    Cohen, Y.; Bermudes, D.; Fischer, U.; Haddad, R.; Prufert, L.; Scheulderman-Suylen, T.; Shaw, T.

    1985-01-01

    The microbial communities in two sites were studied using several approaches: (1) light microscopy; (2) the measurement of microprofiles of oxygen and sulfide at the surface of the microbial mat; (3) the study of diurnal variation of oxygen and sulfides; (4) in situ measurement of photosynthesis and sulfate reduction and study of the coupling of these two processes; (5) measurement of glutathione in the upper layers of the microbial mat as a possible oxygen quencher; (6) measurement of reduced iron as a possible intermediate electron donor along the established redoxcline in the mats; (7) measurement of dissolved phosphate as an indicator of processes of break down of organic matter in these systems; and (8) measurement of carbon dioxide in the interstitial water and its delta C-13 in an attempt to understand the flow of CO2 through the systems. Microbial processes of primary production and initial degradation at the most active zone of the microbial mat were analyzed.

  15. Surface reflectance degradation by microbial communities

    DOE PAGES

    Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.; ...

    2015-11-05

    Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophicmore » microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.« less

  16. First Investigation of the Microbiology of the Deepest Layer of Ocean Crust

    PubMed Central

    Mason, Olivia U.; Nakagawa, Tatsunori; Rosner, Martin; Van Nostrand, Joy D.; Zhou, Jizhong; Maruyama, Akihiko; Fisk, Martin R.; Giovannoni, Stephen J.

    2010-01-01

    The gabbroic layer comprises the majority of ocean crust. Opportunities to sample this expansive crustal environment are rare because of the technological demands of deep ocean drilling; thus, gabbroic microbial communities have not yet been studied. During the Integrated Ocean Drilling Program Expeditions 304 and 305, igneous rock samples were collected from 0.45-1391.01 meters below seafloor at Hole 1309D, located on the Atlantis Massif (30 °N, 42 °W). Microbial diversity in the rocks was analyzed by denaturing gradient gel electrophoresis and sequencing (Expedition 304), and terminal restriction fragment length polymorphism, cloning and sequencing, and functional gene microarray analysis (Expedition 305). The gabbroic microbial community was relatively depauperate, consisting of a low diversity of proteobacterial lineages closely related to Bacteria from hydrocarbon-dominated environments and to known hydrocarbon degraders, and there was little evidence of Archaea. Functional gene diversity in the gabbroic samples was analyzed with a microarray for metabolic genes (“GeoChip”), producing further evidence of genomic potential for hydrocarbon degradation - genes for aerobic methane and toluene oxidation. Genes coding for anaerobic respirations, such as nitrate reduction, sulfate reduction, and metal reduction, as well as genes for carbon fixation, nitrogen fixation, and ammonium-oxidation, were also present. Our results suggest that the gabbroic layer hosts a microbial community that can degrade hydrocarbons and fix carbon and nitrogen, and has the potential to employ a diversity of non-oxygen electron acceptors. This rare glimpse of the gabbroic ecosystem provides further support for the recent finding of hydrocarbons in deep ocean gabbro from Hole 1309D. It has been hypothesized that these hydrocarbons might originate abiotically from serpentinization reactions that are occurring deep in the Earth's crust, raising the possibility that the lithic microbial community reported here might utilize carbon sources produced independently of the surface biosphere. PMID:21079766

  17. Examination of B. subtilis var. niger Spore Killing by Dry Heat Methods

    NASA Technical Reports Server (NTRS)

    Kempf, Michael J.; Kirschner, Larry E.

    2004-01-01

    Dry heat microbial reduction is the only NASA approved sterilization method to reduce the microbial bioburden on space-flight hardware prior to launch. Reduction of the microbial bioburden on spacecraft is necessary to meet planetary protection requirements specific for the mission. Microbial bioburden reduction also occurs if a spacecraft enters a planetary atmosphere (e.g., Mars) and is heated due to frictional forces. Temperatures reached during atmospheric entry events (>200 C) are sufficient to damage or destroy flight hardware and also kill microbial spores that reside on the in-bound spacecraft. The goal of this research is to determine the survival rates of bacterial spores when they are subjected to conditions similar to those the spacecraft would encounter (i.e., temperature, pressure, etc.). B. subtilis var. niger spore coupons were exposed to a range of temperatures from 125 C to 200 C in a vacuum oven (at <1 Torr). After the exposures, the spores were removed by sonication, dilutions were made, and the spores were plated using the pour plate method with tryptic soy agar. After 3 days incubation at 32 C, the number of colony-forming units was counted. Lethality rate constants and D-values were calculated at each temperature. The calculated D-values were: 27 minutes (at 125 C), 13 minutes (at 135 C), and <0.1 minutes (at 150 C). The 125 C and 135 C survivor curves appeared as concavedownward curves. The 150 C survivor curve appeared as a straight-line. Due to the prolonged ramp-up time to the exposure conditions, spore killing during the ramp-up resulted in insufficient data to draw curves for exposures at 160 C, 175 C, and 200 C. Exploratory experiments using novel techniques, with short ramp times, for performing high temperature exposures were also examined. Several of these techniques, such as vacuum furnaces, thermal spore exposure vessels, and laser heating of the coupons, will be discussed.

  18. Microbial Community Response of an Organohalide Respiring Enrichment Culture to Permanganate Oxidation.

    PubMed

    Sutton, Nora B; Atashgahi, Siavash; Saccenti, Edoardo; Grotenhuis, Tim; Smidt, Hauke; Rijnaarts, Huub H M

    2015-01-01

    While in situ chemical oxidation is often used to remediate tetrachloroethene (PCE) contaminated locations, very little is known about its influence on microbial composition and organohalide respiration (OHR) activity. Here, we investigate the impact of oxidation with permanganate on OHR rates, the abundance of organohalide respiring bacteria (OHRB) and reductive dehalogenase (rdh) genes using quantitative PCR, and microbial community composition through sequencing of 16S rRNA genes. A PCE degrading enrichment was repeatedly treated with low (25 μmol), medium (50 μmol), or high (100 μmol) permanganate doses, or no oxidant treatment (biotic control). Low and medium treatments led to higher OHR rates and enrichment of several OHRB and rdh genes, as compared to the biotic control. Improved degradation rates can be attributed to enrichment of (1) OHRB able to also utilize Mn oxides as a terminal electron acceptor and (2) non-dechlorinating community members of the Clostridiales and Deltaproteobacteria possibly supporting OHRB by providing essential co-factors. In contrast, high permanganate treatment disrupted dechlorination beyond cis-dichloroethene and caused at least a 2-4 orders of magnitude reduction in the abundance of all measured OHRB and rdh genes, as compared to the biotic control. High permanganate treatments resulted in a notably divergent microbial community, with increased abundances of organisms affiliated with Campylobacterales and Oceanospirillales capable of dissimilatory Mn reduction, and decreased abundance of presumed supporters of OHRB. Although OTUs classified within the OHR-supportive order Clostridiales and OHRB increased in abundance over the course of 213 days following the final 100 μmol permanganate treatment, only limited regeneration of PCE dechlorination was observed in one of three microcosms, suggesting strong chemical oxidation treatments can irreversibly disrupt OHR. Overall, this detailed investigation into dose-dependent changes of microbial composition and activity due to permanganate treatment provides insight into the mechanisms of OHR stimulation or disruption upon chemical oxidation.

  19. Microbial Community Response of an Organohalide Respiring Enrichment Culture to Permanganate Oxidation

    PubMed Central

    Sutton, Nora B.; Atashgahi, Siavash; Saccenti, Edoardo; Grotenhuis, Tim; Smidt, Hauke; Rijnaarts, Huub H. M.

    2015-01-01

    While in situ chemical oxidation is often used to remediate tetrachloroethene (PCE) contaminated locations, very little is known about its influence on microbial composition and organohalide respiration (OHR) activity. Here, we investigate the impact of oxidation with permanganate on OHR rates, the abundance of organohalide respiring bacteria (OHRB) and reductive dehalogenase (rdh) genes using quantitative PCR, and microbial community composition through sequencing of 16S rRNA genes. A PCE degrading enrichment was repeatedly treated with low (25 μmol), medium (50 μmol), or high (100 μmol) permanganate doses, or no oxidant treatment (biotic control). Low and medium treatments led to higher OHR rates and enrichment of several OHRB and rdh genes, as compared to the biotic control. Improved degradation rates can be attributed to enrichment of (1) OHRB able to also utilize Mn oxides as a terminal electron acceptor and (2) non-dechlorinating community members of the Clostridiales and Deltaproteobacteria possibly supporting OHRB by providing essential co-factors. In contrast, high permanganate treatment disrupted dechlorination beyond cis-dichloroethene and caused at least a 2–4 orders of magnitude reduction in the abundance of all measured OHRB and rdh genes, as compared to the biotic control. High permanganate treatments resulted in a notably divergent microbial community, with increased abundances of organisms affiliated with Campylobacterales and Oceanospirillales capable of dissimilatory Mn reduction, and decreased abundance of presumed supporters of OHRB. Although OTUs classified within the OHR-supportive order Clostridiales and OHRB increased in abundance over the course of 213 days following the final 100 μmol permanganate treatment, only limited regeneration of PCE dechlorination was observed in one of three microcosms, suggesting strong chemical oxidation treatments can irreversibly disrupt OHR. Overall, this detailed investigation into dose-dependent changes of microbial composition and activity due to permanganate treatment provides insight into the mechanisms of OHR stimulation or disruption upon chemical oxidation. PMID:26244346

  20. First investigation of the microbiology of the deepest layer of ocean crust.

    PubMed

    Mason, Olivia U; Nakagawa, Tatsunori; Rosner, Martin; Van Nostrand, Joy D; Zhou, Jizhong; Maruyama, Akihiko; Fisk, Martin R; Giovannoni, Stephen J

    2010-11-05

    The gabbroic layer comprises the majority of ocean crust. Opportunities to sample this expansive crustal environment are rare because of the technological demands of deep ocean drilling; thus, gabbroic microbial communities have not yet been studied. During the Integrated Ocean Drilling Program Expeditions 304 and 305, igneous rock samples were collected from 0.45-1391.01 meters below seafloor at Hole 1309D, located on the Atlantis Massif (30 °N, 42 °W). Microbial diversity in the rocks was analyzed by denaturing gradient gel electrophoresis and sequencing (Expedition 304), and terminal restriction fragment length polymorphism, cloning and sequencing, and functional gene microarray analysis (Expedition 305). The gabbroic microbial community was relatively depauperate, consisting of a low diversity of proteobacterial lineages closely related to Bacteria from hydrocarbon-dominated environments and to known hydrocarbon degraders, and there was little evidence of Archaea. Functional gene diversity in the gabbroic samples was analyzed with a microarray for metabolic genes ("GeoChip"), producing further evidence of genomic potential for hydrocarbon degradation--genes for aerobic methane and toluene oxidation. Genes coding for anaerobic respirations, such as nitrate reduction, sulfate reduction, and metal reduction, as well as genes for carbon fixation, nitrogen fixation, and ammonium-oxidation, were also present. Our results suggest that the gabbroic layer hosts a microbial community that can degrade hydrocarbons and fix carbon and nitrogen, and has the potential to employ a diversity of non-oxygen electron acceptors. This rare glimpse of the gabbroic ecosystem provides further support for the recent finding of hydrocarbons in deep ocean gabbro from Hole 1309D. It has been hypothesized that these hydrocarbons might originate abiotically from serpentinization reactions that are occurring deep in the Earth's crust, raising the possibility that the lithic microbial community reported here might utilize carbon sources produced independently of the surface biosphere.

Top