Sample records for microcontainers 3d patterned

  1. Fabrication of poly (lactic-co-glycolic acid) microcontainers using solvent evaporation with polydimethylsiloxane stencil

    NASA Astrophysics Data System (ADS)

    Kim, Chul Min; Byul Lee, Han; Kim, Jong Uk; Kim, Gyu Man

    2017-12-01

    We present a fabrication method using polydimethylsiloxane (PDMS) stencils and solvent evaporation to prepare microcontainers with a desired shape made from a biodegradable polymer. Poly(lactic-co-glycolic acid) (PLGA) was used for preparing microcontainers, but most polymers are applicable in the proposed method in which solvent evaporation is used to construct microstructures in confined spaces in the stencil. Microcontainers with various shapes were fabricated by controlling the stencil geometry. Furthermore, a porous structure could be prepared in a micromembrane using water porogen. The porous structure was observed using a field emission scanning electron microscope and mass transfer across the porous membrane was examined using a fluorescent dye. The flexibility of the PDMS stencil allowed the fabrication of microcontainers on a curved surface. Finally, it was demonstrated that microcontainers can be used to contain a localized cell culture. The viability and morphology of cultured cells were observed using confocal microscopy over a period of 3 weeks.

  2. Synthesis of magnetic thermosensitive microcontainers for enzyme immobilization

    NASA Astrophysics Data System (ADS)

    Wang, Jianzhi; Zhao, Guanghui; Wang, Xinyu; Peng, Xiaomen; Li, Yanfeng

    2015-05-01

    We present a new approach for the fabrication of magnetic thermoresponsive polymer microcapsules with mobile magnetic spherical cores. The microcontainers form fried-egg-like structures with a polymer shell layer of 50 nm due to the existence of hollow cavities. The microcontainers undergo a temperature-induced volume phase transition upon changing the temperature and present an impressive magnetic response. The magnetic saturation of these smart microcontainers (42 emu/g) is high enough to meet most requirements of bioapplications. To further investigate the potential application of these smart microcontainers in biotechnology, Candida rugosa lipase was selected for the enzyme immobilization process. The immobilized lipase exhibited excellent thermal stability and reusability in comparison with the free enzyme. The adsorption/release of the lipase from the microcontainers can be controlled by the environmental temperature and magnetic force, thus, offering new potential applications such as in controlled drug delivery, bioseparation, and catalysis.

  3. Preparation of multifunctional polysaccharide microcontainers for lipophilic bioactive agents.

    PubMed

    Borodina, Tatiana N; Grigoriev, Dmitry O; Carillo, Maria A; Hartmann, Jürgen; Moehwald, Helmuth; Shchukin, Dmitry G

    2014-05-14

    Chitosan/xanthan gum microcontainers with a core-shell structure formed due to chemical interactions between polysaccharide chains induced by ultrasonication are presented. Containers were prepared by sonication of water-immiscible (oil-like) liquids in the solution of polysaccharides. One-step fabrication of the container permanent shell is possible, because of the contribution of ultrasonically caused formation of hydrogen bonds and amide linkages. We synthesized containers in a wide size range from 350 nm to 7500 nm, varying in oil/water ratio. The microcontainers were modified with oppositely charged polyelectrolytes and microparticles, which could be used to impart the specified properties to the system. The biocide 4,5-dichloro-2-n-octyl-4-isothiazoline-3-one (DCOIT) was loaded into the proposed containers by utilizing its solution as an oil phase. The following incorporation of the DCOIT containers into the polymer coating demonstrated more sustained antimicrobial activity (∼30%) of the biocide in the encapsulated state, compared to its non-encapsulated form.

  4. Microencapsulation Technologies for Corrosion Protective Coating Applications

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, Jerry; Jolley, Scott; Calle, Luz; Pearman, Benjamin; Zhang, Xuejun

    2015-01-01

    Microencapsulation technologies for functional smart Coatings for autonomous corrosion control have been a research area of strong emphasis during the last decade. This work concerns the development of pH sensitive micro-containers (microparticles and microcapsules) for autonomous corrosion control. This paper presents an overview of the state-of-the-art in the field of microencapsulation for corrosion control applications, as well as the technical details of the pH sensitive microcontainer approach, such as selection criteria for corrosion indicators and corrosion inhibitors; the development and optimization of encapsulation methods; function evaluation before and after incorporation of the microcontainers into coatings; and further optimization to improve coating compatibility and performance.

  5. pH- and thermo-responsive microcontainers as potential drug delivery systems: Morphological characteristic, release and cytotoxicity studies.

    PubMed

    Efthimiadou, Eleni K; Tapeinos, Christos; Tziveleka, Leto-Aikaterini; Boukos, Nikos; Kordas, George

    2014-04-01

    Polymeric pH- and thermo-sensitive microcontainers (MCs) were developed as a potential drug delivery system for cancer therapy. It is well known that cancer cells exhibit notable characteristics such as acidic pH due to glycolytic cycle and higher temperature due to their higher proliferation rate. Based on these characteristics, we constructed a dual pH- and thermo-sensitive material for specific drug release on the pathological tissue. The MC's fabrication is based on a two-step procedure, in which, the first step involves the core synthesis and the second one is related to the shell formation. The core consists of poly(methyl methacrylate (PMMA), while the shell consists of PMMA, poly(isopropylacrylamide), poly(acrylic acid) and poly(divinylbenzene). Three different types of MCs were synthesized based on the seed polymerization method. The synthesized MCs were characterized structurally by Fourier transform infrared and morphologically by scanning electron microscopy. Dynamic light scattering was also used to study their behavior in aqueous solution under different pH and temperature conditions. For the loading and release study, the anthracycline drug daunorubicin (DNR) was used as a model drug, and its release properties were evaluated under different pH and thermo-conditions. Cytotoxicity studies were also carried out against MCF-7 breast cancer and 3T3 mouse embryonic fibroblast cells. According to our results, the synthesized microcontainers present desired pH and thermo behavior and can be applied in drug delivery systems. It is worth mentioning that the synthesized microcontainers which incorporated the drug DNR exhibit higher toxicity than the free drug. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Fabrication of cell container arrays with overlaid surface topographies.

    PubMed

    Truckenmüller, Roman; Giselbrecht, Stefan; Escalante-Marun, Maryana; Groenendijk, Max; Papenburg, Bernke; Rivron, Nicolas; Unadkat, Hemant; Saile, Volker; Subramaniam, Vinod; van den Berg, Albert; van Blitterswijk, Clemens; Wessling, Matthias; de Boer, Jan; Stamatialis, Dimitrios

    2012-02-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a micro- or nanoscale. For microthermoforming, we apply a new process on the basis of temporary back moulding of polymer films and use the novel concept of a perforated-sheet-like mould. Thermal micro- or nanoimprinting is applied for prepatterning. The novel cell container arrays are fabricated from polylactic acid (PLA) films. The thin-walled microcontainer structures have the shape of a spherical calotte merging into a hexagonal shape at their upper circumferential edges. In the arrays, the cell containers are arranged densely packed in honeycomb fashion. The inner surfaces of the highly curved container walls are provided with various topographical micro- and nanopatterns. For a first validation of the microcontainer arrays as in vitro cell culture substrates, C2C12 mouse premyoblasts are cultured in containers with microgrooved surfaces and shown to align along the grooves in the three-dimensional film substrates. In future stem-cell-biological and tissue engineering applications, microcontainers fabricated using the proposed technology may act as geometrically defined artificial microenvironments or niches.

  7. Incorporation of iodine in polymeric microparticles and emulsions

    NASA Astrophysics Data System (ADS)

    Kolontaeva, Olga A.; Khokhlova, Anastasia R.; Markina, Natalia E.; Markin, Alexey V.; Burmistrova, Natalia A.

    2016-04-01

    Application of different methods for formation of microcontainers containing iodine is proposed in this paper. Two types of microcontainers: microemulsions and microparticles have been investigated, conditions and methods for obtaining microcontainers were optimized. Microparticles were formed by layer-by-layer method with cores of calcium carbonate (CaCO3) as templates. Incorporation of complexes of iodine with polymers (chitosan, starch, polyvinyl alcohol) into core, shell and hollow capsules was investigated and loadings of microparticles with iodine were estimated. It was found that the complex of iodine with chitosan adsorbed at CaCO3 core is the most stable under physiological conditions and its value of loading can be 450 μg of I2 per 1 g of CaCO3. Moreover, chitosan was chosen as a ligand because of its biocompatibility and biodegradability as well as very low toxicity while its complex with iodine is very stable. A small amount of microparticles containing a iodine-chitosan complex can be used for prolonged release of iodine in the human body since iodine daily intake for adults is around 100 μg. "Oil-in-water" emulsions were prepared by ultrasonication of iodinated oils (sunflower and linseed) with sodium laurilsulfate (SLS) as surfactant solution. At optimal conditions, the homogenous emulsions remained stable for weeks, with total content of iodine in such emulsion being up to 1% (w/w). The oil:SLS ratio was equal to 1:10 (w/w), optimal duration and power of ultrasound exposure were 1.5 min and 7 W, correspondingly. Favorable application of iodized linseed oil for emulsion preparation with suitable oil microdroplets size was proved.

  8. Testing and Evaluation of Multifunctional Smart Coatings

    NASA Technical Reports Server (NTRS)

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.; Pearman, Benjamin; Zhang, Xuejun

    2015-01-01

    A smart coating system, based on pH sensitive microcontainers (microparticles and microcapsules) has been developed. Various corrosion inhibitors have been encapsulated and incorporated into commercial and formulated coatings to test the functionality imparted on the coating by the incorporation of the inhibitor microcontainers. Coated carbon steel and aluminum alloy panels were tested using salt immersion, salt fog, and coastal atmospheric exposure conditions. This paper provides the details on coating sample preparation, evaluation methods, as well as test results of the inhibiting function of smart coatings.

  9. Biofriendly nanocomposite containers with inhibition properties for the protection of metallic surfaces.

    PubMed

    Vakhitov, T R; Katnov, V E; Grishin, P V; Stepin, S N; Grigoriev, D O

    2017-03-01

    An attempt to combine two 'green' compounds in nanocomposite microcontainers in order to increase protection properties of waterborne acryl-styrene copolymer (ASC) coatings has been made. N -lauroylsarcosine (NLS) served as a corrosion inhibitor, and linseed oil (LO) as a carrier-forming component. LO is compatible with this copolymer and can impart to the coating self-healing properties. For the evaluation of the protective performance, three types of coatings were compared. In the first two, NLS was introduced in the coating formulation in the forms of free powder and micro-containers filled with LO, correspondingly. The last one was a standard ASC coating without inhibitor at all. Low-carbon steel substrates were coated by these formulations by spraying and subjected subsequently to the neutral salt spray test according to DIN ISO 9227. Results of these tests as well as the data obtained by electrochemical study suggest that such containers can be used for the improvement of adhesion of ASC-based coatings to the substrate and for the enhancement of their protective performance upon integrity damage, whereas the barrier properties of intact coatings were decreased.

  10. Catalytic self-propulsion of supramolecular capsules powered by polyoxometalate cargos.

    PubMed

    del Mercato, Loretta L; Carraro, Mauro; Zizzari, Alessandra; Bianco, Monica; Miglietta, Ruggero; Arima, Valentina; Viola, Ilenia; Nobile, Concetta; Sorarù, Antonio; Vilona, Debora; Gigli, Giuseppe; Bonchio, Marcella; Rinaldi, Rosaria

    2014-08-25

    Multicompartment, spherical microcontainers were engineered through a layer-by-layer polyelectrolyte deposition around a fluorescent core while integrating a ruthenium polyoxometalate (Ru4POM), as molecular motor, vis-à-vis its oxygenic, propeller effect, fuelled upon H2O2 decomposition. The resulting chemomechanical system, with average speeds of up to 25 μm s(-1), is amenable for integration into a microfluidic set-up for mixing and displacement of liquids, whereby the propulsion force and the resulting velocity regime can be modulated upon H2O2-controlled addition. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. [Applications of 2D and 3D landscape pattern indices in landscape pattern analysis of mountainous area at county level].

    PubMed

    Lu, Chao; Qi, Wei; Li, Le; Sun, Yao; Qin, Tian-Tian; Wang, Na-Na

    2012-05-01

    Landscape pattern indices are the commonly used tools for the quantitative analysis of landscape pattern. However, the traditional 2D landscape pattern indices neglect the effects of terrain on landscape, existing definite limitations in quantitatively describing the landscape patterns in mountains areas. Taking the Qixia City, a typical mountainous and hilly region in Shandong Province of East China, as a case, this paper compared the differences between 2D and 3D landscape pattern indices in quantitatively describing the landscape patterns and their dynamic changes in mountainous areas. On the basis of terrain structure analysis, a set of landscape pattern indices were selected, including area and density (class area and mean patch size), edge and shape (edge density, landscape shape index, and fractal dimension of mean patch), diversity (Shannon's diversity index and evenness index) , and gathering and spread (contagion index). There existed obvious differences between the 3D class area, mean patch area, and edge density and the corresponding 2D indices, but no significant differences between the 3D landscape shape index, fractal dimension of mean patch, and Shannon' s diversity index and evenness index and the corresponding 2D indices. The 3D contagion index and 2D contagion index had no difference. Because the 3D landscape pattern indices were calculated by using patch surface area and surface perimeter whereas the 2D landscape pattern indices were calculated by adopting patch projective area and projective perimeter, the 3D landscape pattern indices could be relative accurate and efficient in describing the landscape area, density and borderline, in mountainous areas. However, there were no distinct differences in describing landscape shape, diversity, and gathering and spread between the 3D and 2D landscape pattern indices. Generally, by introducing 3D landscape pattern indices to topographic pattern, the description of landscape pattern and its dynamic change would be relatively accurate.

  12. Electrically responsive microreservoires for controllable delivery of dexamethasone in bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Paun, Irina Alexandra; Zamfirescu, Marian; Luculescu, Catalin Romeo; Acasandrei, Adriana Maria; Mustaciosu, Cosmin Catalin; Mihailescu, Mona; Dinescu, Maria

    2017-01-01

    A major concern in orthopedic implants is to decrease the chronic inflammation using specific drug therapies. The newest strategies rely on the controlled delivery of antiinflammatory drugs from carrier biointerfaces designed in the shape of 3D architectures. We report on electrically responsive microreservoires (ERRs) acting as microcontainers for antiinflammatory drugs, as potential biointerfaces in orthopedic implants. The ERRs consist in arrays of vertical microtubes produced by laser direct writing using two photon polymerization effects (2PP_LDW) of a commercially available photoresist, IP-L780. A polypyrrole (conductive)/dexamethasone (drug model) (PPy/Dex) mixture was loaded into the ERRs via a simple immersion process. Then, the ERRs were sealed with a poly(lactic-co-glycolic acid)(PLGA) layer by Matrix Assisted Pulsed Laser Evaporation. ERRs stimulation using voltage cycles between -1 V and +1 V, applied at specific time intervals, at a scan rate of 0.1 V s-1, enabled to control the Dex release. The release time scales were between 150 and 275 h, while the concentrations of Dex released were between 450-460 nM after three applied voltage cycles, for different microreservoires dimensions. The proposed approach was validated in osteoblast-like MG-63 cell cultures. Cell viability and adhesion assays showed that the Dex-loaded ERRs sustained the cells growth and preserved their characteristic polygonal shape. Importantly, for the electrically-stimulated Dex release, the level of the alkaline phosphatase activity increased twice, the osteogenic differentiation surpassed by 1.6 times and the relative level of osteocalcin gene expression was 2.2 times higher as compared with the unstimulated drug release. Overall, the ERRs were able to accelerate the cells osteogenic differentiation via electrically controlled release of Dex.

  13. Reward-based hypertension control by a synthetic brain-dopamine interface.

    PubMed

    Rössger, Katrin; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2013-11-05

    Synthetic biology has significantly advanced the design of synthetic trigger-controlled devices that can reprogram mammalian cells to interface with complex metabolic activities. In the brain, the neurotransmitter dopamine coordinates communication with target neurons via a set of dopamine receptors that control behavior associated with reward-driven learning. This dopamine transmission has recently been suggested to increase central sympathetic outflow, resulting in plasma dopamine levels that correlate with corresponding brain activities. By functionally rewiring the human dopamine receptor D1 (DRD1) via the second messenger cyclic adenosine monophosphate (cAMP) to synthetic promoters containing cAMP response element-binding protein 1(CREB1)-specific cAMP-responsive operator modules, we have designed a synthetic dopamine-sensitive transcription controller that reversibly fine-tunes specific target gene expression at physiologically relevant brain-derived plasma dopamine levels. Following implantation of circuit-transgenic human cell lines insulated by semipermeable immunoprotective microcontainers into mice, the designer device interfaced with dopamine-specific brain activities and produced a systemic expression response when the animal's reward system was stimulated by food, sexual arousal, or addictive drugs. Reward-triggered brain activities were able to remotely program peripheral therapeutic implants to produce sufficient amounts of the atrial natriuretic peptide, which reduced the blood pressure of hypertensive mice to the normal physiologic range. Seamless control of therapeutic transgenes by subconscious behavior may provide opportunities for treatment strategies of the future.

  14. Generation of 3D templates of active sites of proteins with rigid prosthetic groups.

    PubMed

    Nebel, Jean-Christophe

    2006-05-15

    With the increasing availability of protein structures, the generation of biologically meaningful 3D patterns from the simultaneous alignment of several protein structures is an exciting prospect: active sites could be better understood, protein functions and protein 3D structures could be predicted more accurately. Although patterns can already be generated at the fold and topological levels, no system produces high-resolution 3D patterns including atom and cavity positions. To address this challenge, our research focuses on generating patterns from proteins with rigid prosthetic groups. Since these groups are key elements of protein active sites, the generated 3D patterns are expected to be biologically meaningful. In this paper, we present a new approach which allows the generation of 3D patterns from proteins with rigid prosthetic groups. Using 237 protein chains representing proteins containing porphyrin rings, our method was validated by comparing 3D templates generated from homologues with the 3D structure of the proteins they model. Atom positions were predicted reliably: 93% of them had an accuracy of 1.00 A or less. Moreover, similar results were obtained regarding chemical group and cavity positions. Results also suggested our system could contribute to the validation of 3D protein models. Finally, a 3D template was generated for the active site of human cytochrome P450 CYP17, the 3D structure of which is unknown. Its analysis showed that it is biologically meaningful: our method detected the main patterns of the cytochrome P450 superfamily and the motifs linked to catalytic reactions. The 3D template also suggested the position of a residue, which could be involved in a hydrogen bond with CYP17 substrates and the shape and location of a cavity. Comparisons with independently generated 3D models comforted these hypotheses. Alignment software (Nestor3D) is available at http://www.kingston.ac.uk/~ku33185/Nestor3D.html

  15. Development of adaptive bust for female soft body armour using three dimensional (3D) warp interlock fabrics: Three dimensional (3D) design process

    NASA Astrophysics Data System (ADS)

    Abtew, M. A.; Bruniaux, P.; Boussu, F.

    2017-10-01

    The traditional two dimensional (2D) pattern making method for developing female body armour has a negative effect on the ballistic protective performance as well as the comfort of the wearer. This is due to, unlike the male body armour, the female body armour manufacturing involves different darts to accommodate the natural curvature of the female body, i.e. bust area, which will reveals the weak parts at the seam and stitch area while ballistic impact. Moreover, the proper bra size also plays an important role not only in bra design but also in the design of a women’s ballistic vest. The present research study tried to propose the novel 3D designing approach for developing different volumes of breast using feature points (both bust surface and outline points) in the specific 3D adaptive mannequin. Later the flattened 3D bra patterns of this method has been also compare with the 2D standard pattern making in order to modify and match with 2D traditional method. The result indicated that the proposed method which conceives the 3D patterns on the 3D bust is easier to implement and can generate patterns with satisfactory fit and comfort as compared to 2D patterns.

  16. Comparison of two structured illumination techniques based on different 3D illumination patterns

    NASA Astrophysics Data System (ADS)

    Shabani, H.; Patwary, N.; Doblas, A.; Saavedra, G.; Preza, C.

    2017-02-01

    Manipulating the excitation pattern in optical microscopy has led to several super-resolution techniques. Among different patterns, the lateral sinusoidal excitation was used for the first demonstration of structured illumination microscopy (SIM), which provides the fastest SIM acquisition system (based on the number of raw images required) compared to the multi-spot illumination approach. Moreover, 3D patterns that include lateral and axial variations in the illumination have attracted more attention recently as they address resolution enhancement in three dimensions. A threewave (3W) interference technique based on coherent illumination has already been shown to provide super-resolution and optical sectioning in 3D-SIM. In this paper, we investigate a novel tunable technique that creates a 3D pattern from a set of multiple incoherently illuminated parallel slits that act as light sources for a Fresnel biprism. This setup is able to modulate the illumination pattern in the object space both axially and laterally with adjustable modulation frequencies. The 3D forward model for the new system is developed here to consider the effect of the axial modulation due to the 3D patterned illumination. The performance of 3D-SIM based on 3W interference and the tunable system are investigated in simulation and compared based on two different criteria. First, restored images obtained for both 3D-SIM systems using a generalized Wiener filter are compared to determine the effect of the illumination pattern on the reconstruction. Second, the effective frequency response of both systems is studied to determine the axial and lateral resolution enhancement that is obtained in each case.

  17. A temperature microsensor for measuring laser-induced heating in gold nanorods.

    PubMed

    Pacardo, Dennis B; Neupane, Bhanu; Wang, Gufeng; Gu, Zhen; Walker, Glenn M; Ligler, Frances S

    2015-01-01

    Measuring temperature is an extensively explored field of analysis, but measuring a temperature change in a nanoparticle is a new challenge. Here, a microsensor is configured to measure temperature changes in gold nanorods in solution upon laser irradiation. The device consists of a silicon wafer coated with silicon nitride in which a microfabricated resistance temperature detector was embedded and attached to a digital multimeter. A polydimethylsiloxane mold served as a microcontainer for the sample attached on top of the silicon membrane. This enables laser irradiation of the gold nanorods and subsequent measurement of temperature changes. The results showed a temperature increase of 8 to 10 °C and good correlation with theoretical calculations and bulk sample direct temperature measurements. These results demonstrate the suitability of this simple temperature microsensor for determining laser-induced heating profiles of metallic nanomaterials; such measurements will be essential for optimizing therapeutic and catalytic applications.

  18. Microscopic 3D measurement of dynamic scene using optimized pulse-width-modulation binary fringe

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Chen, Qian; Feng, Shijie; Tao, Tianyang; Li, Hui; Zuo, Chao

    2017-10-01

    Microscopic 3-D shape measurement can supply accurate metrology of the delicacy and complexity of MEMS components of the final devices to ensure their proper performance. Fringe projection profilometry (FPP) has the advantages of noncontactness and high accuracy, making it widely used in 3-D measurement. Recently, tremendous advance of electronics development promotes 3-D measurements to be more accurate and faster. However, research about real-time microscopic 3-D measurement is still rarely reported. In this work, we effectively combine optimized binary structured pattern with number-theoretical phase unwrapping algorithm to realize real-time 3-D shape measurement. A slight defocusing of our proposed binary patterns can considerably alleviate the measurement error based on phase-shifting FPP, making the binary patterns have the comparable performance with ideal sinusoidal patterns. Real-time 3-D measurement about 120 frames per second (FPS) is achieved, and experimental result of a vibrating earphone is presented.

  19. Geomfinder: a multi-feature identifier of similar three-dimensional protein patterns: a ligand-independent approach.

    PubMed

    Núñez-Vivanco, Gabriel; Valdés-Jiménez, Alejandro; Besoaín, Felipe; Reyes-Parada, Miguel

    2016-01-01

    Since the structure of proteins is more conserved than the sequence, the identification of conserved three-dimensional (3D) patterns among a set of proteins, can be important for protein function prediction, protein clustering, drug discovery and the establishment of evolutionary relationships. Thus, several computational applications to identify, describe and compare 3D patterns (or motifs) have been developed. Often, these tools consider a 3D pattern as that described by the residues surrounding co-crystallized/docked ligands available from X-ray crystal structures or homology models. Nevertheless, many of the protein structures stored in public databases do not provide information about the location and characteristics of ligand binding sites and/or other important 3D patterns such as allosteric sites, enzyme-cofactor interaction motifs, etc. This makes necessary the development of new ligand-independent methods to search and compare 3D patterns in all available protein structures. Here we introduce Geomfinder, an intuitive, flexible, alignment-free and ligand-independent web server for detailed estimation of similarities between all pairs of 3D patterns detected in any two given protein structures. We used around 1100 protein structures to form pairs of proteins which were assessed with Geomfinder. In these analyses each protein was considered in only one pair (e.g. in a subset of 100 different proteins, 50 pairs of proteins can be defined). Thus: (a) Geomfinder detected identical pairs of 3D patterns in a series of monoamine oxidase-B structures, which corresponded to the effectively similar ligand binding sites at these proteins; (b) we identified structural similarities among pairs of protein structures which are targets of compounds such as acarbose, benzamidine, adenosine triphosphate and pyridoxal phosphate; these similar 3D patterns are not detected using sequence-based methods; (c) the detailed evaluation of three specific cases showed the versatility of Geomfinder, which was able to discriminate between similar and different 3D patterns related to binding sites of common substrates in a range of diverse proteins. Geomfinder allows detecting similar 3D patterns between any two pair of protein structures, regardless of the divergency among their amino acids sequences. Although the software is not intended for simultaneous multiple comparisons in a large number of proteins, it can be particularly useful in cases such as the structure-based design of multitarget drugs, where a detailed analysis of 3D patterns similarities between a few selected protein targets is essential.

  20. Evaluation of 3D metrology potential using a multiple detector CDSEM

    NASA Astrophysics Data System (ADS)

    Hakii, Hidemitsu; Yonekura, Isao; Nishiyama, Yasushi; Tanaka, Keishi; Komoto, Kenji; Murakawa, Tsutomu; Hiroyama, Mitsuo; Shida, Soichi; Kuribara, Masayuki; Iwai, Toshimichi; Matsumoto, Jun; Nakamura, Takayuki

    2012-06-01

    As feature sizes of semiconductor device structures have continuously decreased, needs for metrology tools with high precision and excellent linearity over actual pattern sizes have been growing. And it has become important to measure not only two-dimensional (2D) but also three-dimensional (3D) shapes of patterns at 22 nm node and beyond. To meet requirements for 3D metrology capabilities, various pattern metrology tools have been developed. Among those, we assume that CDSEM metrology is the most qualified candidate in the light of its non-destructive, high throughput measurement capabilities that are expected to be extended to the much-awaited 3D metrology technology. On the basis of this supposition, we have developed the 3D metrology system, in which side wall angles and heights of photomask patterns can be measured with high accuracy through analyzing CDSEM images generated by multi-channel detectors. In this paper, we will discuss our attempts to measure 3D shapes of defect patterns on a photomask by using Advantest's "Multi Vision Metrology SEM" E3630 (MVM-SEM' E3630).

  1. Efficient generation of 3D hologram for American Sign Language using look-up table

    NASA Astrophysics Data System (ADS)

    Park, Joo-Sup; Kim, Seung-Cheol; Kim, Eun-Soo

    2010-02-01

    American Sign Language (ASL) is one of the languages giving the greatest help for communication of the hearing impaired person. Current 2-D broadcasting, 2-D movies are used the ASL to give some information, help understand the situation of the scene and translate the foreign language. These ASL will not be disappeared in future three-dimensional (3-D) broadcasting or 3-D movies because the usefulness of the ASL. On the other hands, some approaches for generation of CGH patterns have been suggested like the ray-tracing method and look-up table (LUT) method. However, these methods have some drawbacks that needs much time or needs huge memory size for look-up table. Recently, a novel LUT (N-LUT) method for fast generation of CGH patterns of 3-D objects with a dramatically reduced LUT without the loss of computational speed was proposed. Therefore, we proposed the method to efficiently generate the holographic ASL in holographic 3DTV or 3-D movies using look-up table method. The proposed method is largely consisted of five steps: construction of the LUT for each ASL images, extraction of characters in scripts or situation, call the fringe patterns for characters in the LUT for each ASL, composition of hologram pattern for 3-D video and hologram pattern for ASL and reconstruct the holographic 3D video with ASL. Some simulation results confirmed the feasibility of the proposed method in efficient generation of CGH patterns for ASL.

  2. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds.

    PubMed

    Lee, Wonjae; Park, Jon

    2016-07-06

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues.

  3. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds

    NASA Astrophysics Data System (ADS)

    Lee, Wonjae; Park, Jon

    2016-07-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues.

  4. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds

    PubMed Central

    Lee, Wonjae; Park, Jon

    2016-01-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues. PMID:27381562

  5. Reduced sleep duration mediates decreases in striatal D2/D3 receptor availability in cocaine abusers

    PubMed Central

    Wiers, C E; Shumay, E; Cabrera, E; Shokri-Kojori, E; Gladwin, T E; Skarda, E; Cunningham, S I; Kim, S W; Wong, T C; Tomasi, D; Wang, G-J; Volkow, N D

    2016-01-01

    Neuroimaging studies have documented reduced striatal dopamine D2/D3 receptor (D2/D3R) availability in cocaine abusers, which has been associated with impaired prefrontal activity and vulnerability for relapse. However, the mechanism(s) underlying the decreases in D2/D3R remain poorly understood. Recent studies have shown that sleep deprivation is associated with a downregulation of striatal D2/D3R in healthy volunteers. As cocaine abusers have disrupted sleep patterns, here we investigated whether reduced sleep duration mediates the relationship between cocaine abuse and low striatal D2/D3R availability. We used positron emission tomography with [11C]raclopride to measure striatal D2/D3R availability in 24 active cocaine abusers and 21 matched healthy controls, and interviewed them about their daily sleep patterns. Compared with controls, cocaine abusers had shorter sleep duration, went to bed later and reported longer periods of sleep disturbances. In addition, cocaine abusers had reduced striatal D2/D3R availability. Sleep duration predicted striatal D2/D3R availability and statistically mediated the relationship between cocaine abuse and striatal D2/D3R availability. These findings suggest that impaired sleep patterns contribute to the low striatal D2/D3R availability in cocaine abusers. As sleep impairments are similarly observed in other types of substance abusers (for example, alcohol and methamphetamine), this mechanism may also underlie reductions in D2/D3R availability in these groups. The current findings have clinical implications suggesting that interventions to improve sleep patterns in cocaine abusers undergoing detoxification might be beneficial in improving their clinical outcomes. PMID:26954979

  6. Vertical visual features have a strong influence on cuttlefish camouflage.

    PubMed

    Ulmer, K M; Buresch, K C; Kossodo, M M; Mäthger, L M; Siemann, L A; Hanlon, R T

    2013-04-01

    Cuttlefish and other cephalopods use visual cues from their surroundings to adaptively change their body pattern for camouflage. Numerous previous experiments have demonstrated the influence of two-dimensional (2D) substrates (e.g., sand and gravel habitats) on camouflage, yet many marine habitats have varied three-dimensional (3D) structures among which cuttlefish camouflage from predators, including benthic predators that view cuttlefish horizontally against such 3D backgrounds. We conducted laboratory experiments, using Sepia officinalis, to test the relative influence of horizontal versus vertical visual cues on cuttlefish camouflage: 2D patterns on benthic substrates were tested versus 2D wall patterns and 3D objects with patterns. Specifically, we investigated the influence of (i) quantity and (ii) placement of high-contrast elements on a 3D object or a 2D wall, as well as (iii) the diameter and (iv) number of 3D objects with high-contrast elements on cuttlefish body pattern expression. Additionally, we tested the influence of high-contrast visual stimuli covering the entire 2D benthic substrate versus the entire 2D wall. In all experiments, visual cues presented in the vertical plane evoked the strongest body pattern response in cuttlefish. These experiments support field observations that, in some marine habitats, cuttlefish will respond to vertically oriented background features even when the preponderance of visual information in their field of view seems to be from the 2D surrounding substrate. Such choices highlight the selective decision-making that occurs in cephalopods with their adaptive camouflage capability.

  7. Bioinspired Layer-by-Layer Microcapsules Based on Cellulose Nanofibers with Switchable Permeability.

    PubMed

    Paulraj, Thomas; Riazanova, Anastasia V; Yao, Kun; Andersson, Richard L; Müllertz, Anette; Svagan, Anna J

    2017-04-10

    Green, all-polysaccharide based microcapsules with mechanically robust capsule walls and fast, stimuli-triggered, and switchable permeability behavior show great promise in applications based on selective and timed permeability. Taking a cue from nature, the build-up and composition of plant primary cell walls inspired the capsule wall assembly, because the primary cell walls in plants exhibit high mechanical properties despite being in a highly hydrated state, primarily owing to cellulose microfibrils. The microcapsules (16 ± 4 μm in diameter) were fabricated using the layer-by-layer technique on sacrificial CaCO 3 templates, using plant polysaccharides (pectin, cellulose nanofibers, and xyloglucan) only. In water, the capsule wall was permeable to labeled dextrans with a hydrodynamic diameter of ∼6.6 nm. Upon exposure to NaCl, the porosity of the capsule wall quickly changed allowing larger molecules (∼12 nm) to permeate. However, the porosity could be restored to its original state by removal of NaCl, by which permeants became trapped inside the capsule's core. The high integrity of cell wall was due to the CNF and the ON/OFF alteration of the permeability properties, and subsequent loading/unloading of molecules, could be repeated several times with the same capsule demonstrating a robust microcontainer with controllable permeability properties.

  8. Analysis of 3D Modeling Software Usage Patterns for K-12 Students

    ERIC Educational Resources Information Center

    Wu, Yi-Chieh; Liao, Wen-Hung; Chi, Ming-Te; Li, Tsai-Yen

    2016-01-01

    In response to the recent trend in maker movement, teachers are learning 3D techniques actively and bringing 3D printing into the classroom to enhance variety and creativity in designing lectures. This study investigates the usage pattern of a 3D modeling software, Qmodel Creator, which is targeted at K-12 students. User logs containing…

  9. Flexible Regenerative Nanoelectronics for Advanced Peripheral Neural Interfaces

    DTIC Science & Technology

    2017-10-01

    these materials will be developed based on 3D printing . Page 4 Task 3. Construct nerve guidance scaffolds comprising of embedded mesh electrodes with...Develop photo mask patterning methods. 1-9 In progress 50% Subtask 2.2.2. Develop 3D printing patterning methods. 9-18 9/1/2017 Milestone(s...research into patterning techniques, we found that 10% gelatin methacrylate (GelMA) base gel was the best for performing 3D printing of the gels

  10. 3D structured illumination microscopy using an incoherent illumination system based on a Fresnel biprism

    NASA Astrophysics Data System (ADS)

    Shabani, H.; Doblas, A.; Saavedra, G.; Preza, C.

    2018-02-01

    Three-dimensional (3D) structured illumination (SI) patterns that include lateral and axial variations have attracted more attention recently as their use in fluorescence microscope enhances the 3D resolution of the native imaging system. 3D SI patterns have already been created by interfering three mutually-coherent waves using a diffraction grating or some electro-optical devices such as spatial light modulators. Here, an interesting approach to generate a 3D SI pattern of tunable modulation frequency is shown. Our proposed illumination system is based on the incoherent illumination of a Fresnel biprism using several equidistant linear sources (i.e., slits). Previously, we investigated and compared numerically this tunable SI microscopy (SIM) system with the one achieved with three-wave interference. In this contribution, we implement our proposed incoherent 3D SIM system of tunable-frequency in an open-setup. We evaluate the axial confinement of the illumination pattern obtained with this system by recording the SI pattern using a mirror sample and different number of slits and compare these data with simulation results. Moreover, we verify that with a higher number of slits used, the axial confinement of the pattern increases, and consequently, the system's optical sectioning capability improves.

  11. Spatial Point Pattern Analysis of Neurons Using Ripley's K-Function in 3D

    PubMed Central

    Jafari-Mamaghani, Mehrdad; Andersson, Mikael; Krieger, Patrik

    2010-01-01

    The aim of this paper is to apply a non-parametric statistical tool, Ripley's K-function, to analyze the 3-dimensional distribution of pyramidal neurons. Ripley's K-function is a widely used tool in spatial point pattern analysis. There are several approaches in 2D domains in which this function is executed and analyzed. Drawing consistent inferences on the underlying 3D point pattern distributions in various applications is of great importance as the acquisition of 3D biological data now poses lesser of a challenge due to technological progress. As of now, most of the applications of Ripley's K-function in 3D domains do not focus on the phenomenon of edge correction, which is discussed thoroughly in this paper. The main goal is to extend the theoretical and practical utilization of Ripley's K-function and corresponding tests based on bootstrap resampling from 2D to 3D domains. PMID:20577588

  12. 3D fingerprint imaging system based on full-field fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Huang, Shujun; Zhang, Zonghua; Zhao, Yan; Dai, Jie; Chen, Chao; Xu, Yongjia; Zhang, E.; Xie, Lili

    2014-01-01

    As an unique, unchangeable and easily acquired biometrics, fingerprint has been widely studied in academics and applied in many fields over the years. The traditional fingerprint recognition methods are based on the obtained 2D feature of fingerprint. However, fingerprint is a 3D biological characteristic. The mapping from 3D to 2D loses 1D information and causes nonlinear distortion of the captured fingerprint. Therefore, it is becoming more and more important to obtain 3D fingerprint information for recognition. In this paper, a novel 3D fingerprint imaging system is presented based on fringe projection technique to obtain 3D features and the corresponding color texture information. A series of color sinusoidal fringe patterns with optimum three-fringe numbers are projected onto a finger surface. From another viewpoint, the fringe patterns are deformed by the finger surface and captured by a CCD camera. 3D shape data of the finger can be obtained from the captured fringe pattern images. This paper studies the prototype of the 3D fingerprint imaging system, including principle of 3D fingerprint acquisition, hardware design of the 3D imaging system, 3D calibration of the system, and software development. Some experiments are carried out by acquiring several 3D fingerprint data. The experimental results demonstrate the feasibility of the proposed 3D fingerprint imaging system.

  13. Efficient generation of holographic news ticker in holographic 3DTV

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Cheol; Kim, Eun-Soo

    2009-08-01

    News ticker is used to show breaking news or news headlines in conventional 2-D broadcasting system. For the case of the breaking news, the fast creation is need, because the information should be sent quickly. In addition, if holographic 3- D broadcasting system is started in the future, news ticker will remain. On the other hands, some approaches for generation of CGH patterns have been suggested like the ray-tracing method and look-up table (LUT) method. However, these methods have some drawbacks that needs much time or needs huge memory size for look-up table. Recently, a novel LUT (N-LUT) method for fast generation of CGH patterns of 3-D objects with a dramatically reduced LUT without the loss of computational speed was proposed. Therefore, we proposed the method to efficiently generate the holographic news ticker in holographic 3DTV or 3-D movies using N-LUT method. The proposed method is largely consisted of five steps: construction of the LUT for each character, extraction of characters in news ticker, generation and shift of the CGH pattern for news ticker using the LUT for each character, composition of hologram pattern for 3-D video and hologram pattern for news ticker and reconstruct the holographic 3D video with news ticker. To confirm the proposed method, moving car in front of the castle is used as a 3D video and the words 'HOLOGRAM CAPTION GENERATOR' is used as a news ticker. From this simulation results confirmed the feasibility of the proposed method in fast generation of CGH patterns for holographic captions.

  14. 3-D laser patterning process utilizing horizontal and vertical patterning

    DOEpatents

    Malba, Vincent; Bernhardt, Anthony F.

    2000-01-01

    A process which vastly improves the 3-D patterning capability of laser pantography (computer controlled laser direct-write patterning). The process uses commercially available electrodeposited photoresist (EDPR) to pattern 3-D surfaces. The EDPR covers the surface of a metal layer conformally, coating the vertical as well as horizontal surfaces. A laser pantograph then patterns the EDPR, which is subsequently developed in a standard, commercially available developer, leaving patterned trench areas in the EDPR. The metal layer thereunder is now exposed in the trench areas and masked in others, and thereafter can be etched to form the desired pattern (subtractive process), or can be plated with metal (additive process), followed by a resist stripping, and removal of the remaining field metal (additive process). This improved laser pantograph process is simpler, faster, move manufacturable, and requires no micro-machining.

  15. Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods.

    PubMed

    Kim, Seung-Cheol; Kim, Eun-Soo

    2009-02-20

    In this paper we propose a new approach for fast generation of computer-generated holograms (CGHs) of a 3D object by using the run-length encoding (RLE) and the novel look-up table (N-LUT) methods. With the RLE method, spatially redundant data of a 3D object are extracted and regrouped into the N-point redundancy map according to the number of the adjacent object points having the same 3D value. Based on this redundancy map, N-point principle fringe patterns (PFPs) are newly calculated by using the 1-point PFP of the N-LUT, and the CGH pattern for the 3D object is generated with these N-point PFPs. In this approach, object points to be involved in calculation of the CGH pattern can be dramatically reduced and, as a result, an increase of computational speed can be obtained. Some experiments with a test 3D object are carried out and the results are compared to those of the conventional methods.

  16. Three dimensional fabrication at small size scales

    PubMed Central

    Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.

    2010-01-01

    Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446

  17. YieldStar based reticle 3D measurements and its application

    NASA Astrophysics Data System (ADS)

    Vaenkatesan, Vidya; Finders, Jo; ten Berge, Peter; Plug, Reinder; Sijben, Anko; Schellekens, Twan; Dillen, Harm; Pocobiej, Wojciech; Jorge, Vasco G.; van Dijck, Jurgen

    2016-09-01

    YieldStar (YS) is an established ASML-built scatterometer that is capable of measuring wafer Critical Dimension (CD), Overlay and Focus. In a recent work, the application range of YS was extended to measure 3D CD patterns on a reticle (pattern CD, height, Side Wall Angle-SWA). The primary motivation for this study came from imaging studies that indicated a need for measuring and controlling reticle 3D topography. CD scanning electron microscope (CD-SEM), Atomic force microscope (AFM), 3D multiple detector SEM (3D-SEM) are the preferred tools for reticle metrology. While these tools serve the industry well, the current research to the impact of reticle 3D involves extensive costs, logistic challenges and increased reticle lead time. YS provides an attractive alternative as it can measure pattern CD, SWA and height in a single measurement and at high throughput. This work demonstrates the capability of YS as a reticle metrology tool.

  18. Moiré-reduction method for slanted-lenticular-based quasi-three-dimensional displays

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhenfeng; Surman, Phil; Zhang, Lei; Rawat, Rahul; Wang, Shizheng; Zheng, Yuanjin; Sun, Xiao Wei

    2016-12-01

    In this paper we present a method for determining the preferred slanted angle for a lenticular film that minimizes moiré patterns in quasi-three-dimensional (Q3D) displays. We evaluate the preferred slanted angles of the lenticular film for the stripe-type sub-pixel structure liquid crystal display (LCD) panel. Additionally, the sub-pixels mapping algorithm of the specific angle is proposed to assign the images to either the right or left eye channel. A Q3D display prototype is built. Compared with the conventional SLF, this newly implemented Q3D display can not only eliminate moiré patterns but also provide 3D images in both portrait and landscape orientations. It is demonstrated that the developed slanted lenticular film (SLF) provides satisfactory 3D images by employing a compact structure, minimum moiré patterns and stabilized 3D contrast.

  19. 3D palmprint data fast acquisition and recognition

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxu; Huang, Shujun; Gao, Nan; Zhang, Zonghua

    2014-11-01

    This paper presents a fast 3D (Three-Dimension) palmprint capturing system and develops an efficient 3D palmprint feature extraction and recognition method. In order to fast acquire accurate 3D shape and texture of palmprint, a DLP projector triggers a CCD camera to realize synchronization. By generating and projecting green fringe pattern images onto the measured palm surface, 3D palmprint data are calculated from the fringe pattern images. The periodic feature vector can be derived from the calculated 3D palmprint data, so undistorted 3D biometrics is obtained. Using the obtained 3D palmprint data, feature matching test have been carried out by Gabor filter, competition rules and the mean curvature. Experimental results on capturing 3D palmprint show that the proposed acquisition method can fast get 3D shape information of palmprint. Some initial experiments on recognition show the proposed method is efficient by using 3D palmprint data.

  20. Poly(acrylic acid) brushes pattern as a 3D functional biosensor surface for microchips

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Mei; Cui, Yi; Cheng, Zhi-Qiang; Song, Lu-Sheng; Wang, Zhi-You; Han, Bao-Hang; Zhu, Jin-Song

    2013-02-01

    Poly(acrylic acid) (PAA) brushes, a novel three dimensional (3D) precursor layer of biosensor or protein microarrays, possess high protein loading level and low non-specific protein adsorption. In this article, we describe a simple and convenient way to fabricate 3D PAA brushes pattern by microcontact printing (μCP) and characterize it with FT-IR and optical microscopy. The carboxyl groups of PAA brushes can be applied to covalently immobilize protein for immunoassay. Thriving 3D space made by patterning PAA brushes thin film is available to enhance protein immobilization, which is confirmed by measuring model protein interaction between human immunoglobulin G (H-IgG) and goat anti-H-IgG (G-H-IgG) with fluorescence microscopy and surface plasmon resonance imaging (SPRi). As expected, the SPRi signals of H-IgG coating on 3D PAA brushes pattern and further measuring specific binding with G-H-IgG are all larger than that of 3D PAA brushes without pattern and 2D bare gold surface. We further revealed that this surface can be used for high-throughput screening and clinical diagnosis by label-free assaying of Hepatitis-B-Virus surface antibody (HBsAb) with Hepatitis-B-Virus surface antigen (HBsAg) concentration array chip. The linearity range for HBsAb assay is wider than that of conventional ELISA method.

  1. 3D Product Development for Loose-Fitting Garments Based on Parametric Human Models

    NASA Astrophysics Data System (ADS)

    Krzywinski, S.; Siegmund, J.

    2017-10-01

    Researchers and commercial suppliers worldwide pursue the objective of achieving a more transparent garment construction process that is computationally linked to a virtual body, in order to save development costs over the long term. The current aim is not to transfer the complete pattern making step to a 3D design environment but to work out basic constructions in 3D that provide excellent fit due to their accurate construction and morphological pattern grading (automatic change of sizes in 3D) in respect of sizes and body types. After a computer-aided derivation of 2D pattern parts, these can be made available to the industry as a basis on which to create more fashionable variations.

  2. Development of wide-angle 2D light scattering static cytometry

    NASA Astrophysics Data System (ADS)

    Xie, Linyan; Liu, Qiao; Shao, Changshun; Su, Xuantao

    2016-10-01

    We have recently developed a 2D light scattering static cytometer for cellular analysis in a label-free manner, which measures side scatter (SSC) light in the polar angular range from 79 to 101 degrees. Compared with conventional flow cytometry, our cytometric technique requires no fluorescent labeling of the cells, and static cytometry measurements can be performed without flow control. In this paper we present an improved label-free static cytometer that can obtain 2D light scattering patterns in a wider angular range. By illuminating the static microspheres on chip with a scanning optical fiber, wide-angle 2D light scattering patterns of single standard microspheres with a mean diameter of 3.87 μm are obtained. The 2D patterns of 3.87 μm microspheres contain both large-angle forward scatter (FSC) and SSC light in the polar angular range from 40 to 100 degrees, approximately. Experimental 2D patterns of 3.87 μm microspheres are in good agreement with Mie theory simulated ones. The wide-angle light scattering measurements may provide a better resolution for particle analysis as compared with the SSC measurements. Two dimensional light scattering patterns of HL-60 human acute leukemia cells are obtained by using our static cytometer. Compared with SSC 2D light scattering patterns, wide-angle 2D patterns contain richer information of the HL-60 cells. The obtaining of 2D light scattering patterns in a wide angular range could help to enhance the capabilities of our label-free static cytometry for cell analysis.

  3. Micro 3D printing using a digital projector and its application in the study of soft materials mechanics.

    PubMed

    Lee, Howon; Fang, Nicholas X

    2012-11-27

    Buckling is a classical topic in mechanics. While buckling has long been studied as one of the major structural failure modes(1), it has recently drawn new attention as a unique mechanism for pattern transformation. Nature is full of such examples where a wealth of exotic patterns are formed through mechanical instability(2-5). Inspired by this elegant mechanism, many studies have demonstrated creation and transformation of patterns using soft materials such as elastomers and hydrogels(6-11). Swelling gels are of particular interest because they can spontaneously trigger mechanical instability to create various patterns without the need of external force(6-10). Recently, we have reported demonstration of full control over buckling pattern of micro-scaled tubular gels using projection micro-stereolithography (PμSL), a three-dimensional (3D) manufacturing technology capable of rapidly converting computer generated 3D models into physical objects at high resolution(12,13). Here we present a simple method to build up a simplified PμSL system using a commercially available digital data projector to study swelling-induced buckling instability for controlled pattern transformation. A simple desktop 3D printer is built using an off-the-shelf digital data projector and simple optical components such as a convex lens and a mirror(14). Cross-sectional images extracted from a 3D solid model is projected on the photosensitive resin surface in sequence, polymerizing liquid resin into a desired 3D solid structure in a layer-by-layer fashion. Even with this simple configuration and easy process, arbitrary 3D objects can be readily fabricated with sub-100 μm resolution. This desktop 3D printer holds potential in the study of soft material mechanics by offering a great opportunity to explore various 3D geometries. We use this system to fabricate tubular shaped hydrogel structure with different dimensions. Fixed on the bottom to the substrate, the tubular gel develops inhomogeneous stress during swelling, which gives rise to buckling instability. Various wavy patterns appear along the circumference of the tube when the gel structures undergo buckling. Experiment shows that circumferential buckling of desired mode can be created in a controlled manner. Pattern transformation of three-dimensionally structured tubular gels has significant implication not only in mechanics and material science, but also in many other emerging fields such as tunable matamaterials.

  4. Image processing and 3D visualization in the interpretation of patterned injury of the skin

    NASA Astrophysics Data System (ADS)

    Oliver, William R.; Altschuler, Bruce R.

    1995-09-01

    The use of image processing is becoming increasingly important in the evaluation of violent crime. While much work has been done in the use of these techniques for forensic purposes outside of forensic pathology, its use in the pathologic examination of wounding has been limited. We are investigating the use of image processing in the analysis of patterned injuries and tissue damage. Our interests are currently concentrated on 1) the use of image processing techniques to aid the investigator in observing and evaluating patterned injuries in photographs, 2) measurement of the 3D shape characteristics of surface lesions, and 3) correlation of patterned injuries with deep tissue injury as a problem in 3D visualization. We are beginning investigations in data-acquisition problems for performing 3D scene reconstructions from the pathology perspective of correlating tissue injury to scene features and trace evidence localization. Our primary tool for correlation of surface injuries with deep tissue injuries has been the comparison of processed surface injury photographs with 3D reconstructions from antemortem CT and MRI data. We have developed a prototype robot for the acquisition of 3D wound and scene data.

  5. Study of blur discrimination for 3D stereo viewing

    NASA Astrophysics Data System (ADS)

    Subedar, Mahesh; Karam, Lina J.

    2014-03-01

    Blur is an important attribute in the study and modeling of the human visual system. Blur discrimination was studied extensively using 2D test patterns. In this study, we present the details of subjective tests performed to measure blur discrimination thresholds using stereoscopic 3D test patterns. Specifically, the effect of disparity on the blur discrimination thresholds is studied on a passive stereoscopic 3D display. The blur discrimination thresholds are measured using stereoscopic 3D test patterns with positive, negative and zero disparity values, at multiple reference blur levels. A disparity value of zero represents the 2D viewing case where both the eyes will observe the same image. The subjective test results indicate that the blur discrimination thresholds remain constant as we vary the disparity value. This further indicates that binocular disparity does not affect blur discrimination thresholds and the models developed for 2D blur discrimination thresholds can be extended to stereoscopic 3D blur discrimination thresholds. We have presented fitting of the Weber model to the 3D blur discrimination thresholds measured from the subjective experiments.

  6. 3D Printed, Microgroove Pattern-Driven Generation of Oriented Ligamentous Architectures.

    PubMed

    Park, Chan Ho; Kim, Kyoung-Hwa; Lee, Yong-Moo; Giannobile, William V; Seol, Yang-Jo

    2017-09-08

    Specific orientations of regenerated ligaments are crucially required for mechanoresponsive properties and various biomechanical adaptations, which are the key interplay to support mineralized tissues. Although various 2D platforms or 3D printing systems can guide cellular activities or aligned organizations, it remains a challenge to develop ligament-guided, 3D architectures with the angular controllability for parallel, oblique or perpendicular orientations of cells required for biomechanical support of organs. Here, we show the use of scaffold design by additive manufacturing for specific topographies or angulated microgroove patterns to control cell orientations such as parallel (0°), oblique (45°) and perpendicular (90°) angulations. These results demonstrate that ligament cells displayed highly predictable and controllable orientations along microgroove patterns on 3D biopolymeric scaffolds. Our findings demonstrate that 3D printed topographical approaches can regulate spatiotemporal cell organizations that offer strong potential for adaptation to complex tissue defects to regenerate ligament-bone complexes.

  7. Estimation of 3D shape from image orientations.

    PubMed

    Fleming, Roland W; Holtmann-Rice, Daniel; Bülthoff, Heinrich H

    2011-12-20

    One of the main functions of vision is to estimate the 3D shape of objects in our environment. Many different visual cues, such as stereopsis, motion parallax, and shading, are thought to be involved. One important cue that remains poorly understood comes from surface texture markings. When a textured surface is slanted in 3D relative to the observer, the surface patterns appear compressed in the retinal image, providing potentially important information about 3D shape. What is not known, however, is how the brain actually measures this information from the retinal image. Here, we explain how the key information could be extracted by populations of cells tuned to different orientations and spatial frequencies, like those found in the primary visual cortex. To test this theory, we created stimuli that selectively stimulate such cell populations, by "smearing" (filtering) images of 2D random noise into specific oriented patterns. We find that the resulting patterns appear vividly 3D, and that increasing the strength of the orientation signals progressively increases the sense of 3D shape, even though the filtering we apply is physically inconsistent with what would occur with a real object. This finding suggests we have isolated key mechanisms used by the brain to estimate shape from texture. Crucially, we also find that adapting the visual system's orientation detectors to orthogonal patterns causes unoriented random noise to look like a specific 3D shape. Together these findings demonstrate a crucial role of orientation detectors in the perception of 3D shape.

  8. 3D documentation and visualization of external injury findings by integration of simple photography in CT/MRI data sets (IprojeCT).

    PubMed

    Campana, Lorenzo; Breitbeck, Robert; Bauer-Kreuz, Regula; Buck, Ursula

    2016-05-01

    This study evaluated the feasibility of documenting patterned injury using three dimensions and true colour photography without complex 3D surface documentation methods. This method is based on a generated 3D surface model using radiologic slice images (CT) while the colour information is derived from photographs taken with commercially available cameras. The external patterned injuries were documented in 16 cases using digital photography as well as highly precise photogrammetry-supported 3D structured light scanning. The internal findings of these deceased were recorded using CT and MRI. For registration of the internal with the external data, two different types of radiographic markers were used and compared. The 3D surface model generated from CT slice images was linked with the photographs, and thereby digital true-colour 3D models of the patterned injuries could be created (Image projection onto CT/IprojeCT). In addition, these external models were merged with the models of the somatic interior. We demonstrated that 3D documentation and visualization of external injury findings by integration of digital photography in CT/MRI data sets is suitable for the 3D documentation of individual patterned injuries to a body. Nevertheless, this documentation method is not a substitution for photogrammetry and surface scanning, especially when the entire bodily surface is to be recorded in three dimensions including all external findings, and when precise data is required for comparing highly detailed injury features with the injury-inflicting tool.

  9. Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser

    PubMed Central

    Hribar, Kolin C.; Meggs, Kyle; Liu, Justin; Zhu, Wei; Qu, Xin; Chen, Shaochen

    2015-01-01

    We report a methodology for three-dimensional (3D) cell patterning in a hydrogel in situ. Gold nanorods within a cell-encapsulating collagen hydrogel absorb a focused near-infrared femtosecond laser beam, locally denaturing the collagen and forming channels, into which cells migrate, proliferate, and align in 3D. Importantly, pattern resolution is tunable based on writing speed and laser power, and high cell viability (>90%) is achieved using higher writing speeds and lower laser intensities. Overall, this patterning technique presents a flexible direct-write method that is applicable in tissue engineering systems where 3D alignment is critical (such as vascular, neural, cardiac, and muscle tissue). PMID:26603915

  10. 3D Chemical Patterning of Micromaterials for Encoded Functionality.

    PubMed

    Ceylan, Hakan; Yasa, Immihan Ceren; Sitti, Metin

    2017-03-01

    Programming local chemical properties of microscale soft materials with 3D complex shapes is indispensable for creating sophisticated functionalities, which has not yet been possible with existing methods. Precise spatiotemporal control of two-photon crosslinking is employed as an enabling tool for 3D patterning of microprinted structures for encoding versatile chemical moieties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. NEW 3D TECHNIQUES FOR RANKING AND PRIORITIZATION OF CHEMICAL INVENTORIES

    EPA Science Inventory

    New three-dimensional quantitative structure activity (3-D QSAR) techniques for prioritizing chemical inventories for endocrine activity will be presented. The Common Reactivity Pattern (COREPA) approach permits identification of common steric and/or electronic patterns associate...

  12. 3D plasmonic nanoarchitectures for extreme light concentration

    NASA Astrophysics Data System (ADS)

    Arnob, Md Masud Parvez; Zhao, Fusheng; Shih, Wei-Chuan

    2017-08-01

    Plasmonic nanomaterials are known to concentrate incident light to their surfaces by collective electron oscillation. Plasmonic hot-spot refers to locations where electromagnetic fields are particularly enhanced relative to the incident field. Traditional plasmonic nanomaterials are 1D (e.g., colloidal nanoparticles) or 2D (lithographically patterned nanostructure arrays) in nature, which typically result in sparse field concentration patterns. To improve efficiency and better utilization of hot-spots, we investigate 3D plasmonic nanoarchitecture where abundant hot-spots are formed in a 3D volumetric fashion, a feature drastically departing from traditional nanostructures.

  13. Transient Rotor Activity During Prolonged 3-Dimensional Phase Mapping in Human Persistent Atrial Fibrillation.

    PubMed

    Pathik, Bhupesh; Kalman, Jonathan M; Walters, Tomos; Kuklik, Pawel; Zhao, Jichao; Madry, Andrew; Prabhu, Sandeep; Nalliah, Chrishan; Kistler, Peter; Lee, Geoffrey

    2018-01-01

    This study sought to validate a 3-dimensional (3D) phase mapping system and determine the distribution of dominant propagation patterns in persistent atrial fibrillation (AF). Currently available systems display phase as simplified 2-dimensional maps. We developed a novel 3D phase mapping system that uses the 3D location of basket catheter electrodes and the patient's 3D left atrial surface geometry to interpolate phase and create a 3D representation of phase progression. Six-min AF recordings from the left atrium were obtained in 14 patients using the Constellation basket catheter and analyzed offline. Exported signals underwent both phase and traditional activation analysis and were then visualized using a novel 3D mapping system. Analysis involved: 1) validation of phase analysis by comparing beat-to-beat AF cycle length calculated using phase inversion with that determined from activation timing in the same 20-s segment; 2) validation of 3D phase by comparing propagation patterns observed using 3D phase with 3D activation in the same 1-min segment; and 3) determining the distribution of dominant propagation patterns in 6-min recordings using 3D phase. There was strong agreement of beat-to-beat AF cycle length between activation analysis and phase inversion (R 2  = 0.91). There was no significant difference between 3D activation and 3D phase in mean percentage of propagation patterns classified as single wavefronts (p = 0.99), focal activations (p = 0.26), disorganized activity (p = 0.76), or multiple wavefronts (p = 0.70). During prolonged 3D phase, single wavefronts were the most common propagation pattern (50.2%). A total of 34 rotors were seen in 9 of 14 patients. All rotors were transient with mean duration of 1.0 ± 0.6 s. Rotors were only observed in areas of high electrode density where the interelectrode distance was significantly shorter than nonrotor sites (7.4 [interquartile range: 6.3 to 14.6] vs. 15.3 mm [interquartile range: 10.1 to 22.2]; p < 0.001). During prolonged 3D phase mapping, transient rotors were observed in 64% of patients and reformed at the same anatomic location in 44% of patients. The electrode density of the basket catheter may limit the detection of rotors. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. Bridging the gap: from 2D cell culture to 3D microengineered extracellular matrices

    PubMed Central

    Li, Yanfen

    2016-01-01

    Historically the culture of mammalian cells in the laboratory has been performed on planar substrates with media cocktails that are optimized to maintain phenotype. However, it is becoming increasingly clear that much of biology discerned from 2D studies does not translate well to the 3D microenvironment. Over the last several decades, 2D and 3D microengineering approaches have been developed that better recapitulate the complex architecture and properties of in vivo tissue. Inspired by the infrastructure of the microelectronics industry, lithographic patterning approaches have taken center stage because of the ease in which cell-sized features can be engineered on surfaces and within a broad range of biocompatible materials. Patterning and templating techniques enable precise control over extracellular matrix properties including: composition, mechanics, geometry, cell-cell contact, and diffusion. In this review article we will explore how the field of engineered extracellular matrices has evolved with the development of new hydrogel chemistry and the maturation of micro- and nano- fabrication. Guided by the spatiotemporal regulation of cell state in developing tissues, we will review the maturation of micropatterning in 2D, pseudo-3D systems, and patterning within 3D hydrogels in the context of translating the information gained from 2D systems to synthetic engineered 3D tissues. PMID:26592366

  15. Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.

    PubMed

    Ming, Yue; Wang, Guangchao; Fan, Chunxiao

    2015-01-01

    With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.

  16. Reusable High Aspect Ratio 3-D Nickel Shadow Mask

    PubMed Central

    Shandhi, M.M.H.; Leber, M.; Hogan, A.; Warren, D.J.; Bhandari, R.; Negi, S.

    2017-01-01

    Shadow Mask technology has been used over the years for resistless patterning and to pattern on unconventional surfaces, fragile substrate and biomaterial. In this work, we are presenting a novel method to fabricate high aspect ratio (15:1) three-dimensional (3D) Nickel (Ni) shadow mask with vertical pattern length and width of 1.2 mm and 40 μm respectively. The Ni shadow mask is 1.5 mm tall and 100 μm wide at the base. The aspect ratio of the shadow mask is 15. Ni shadow mask is mechanically robust and hence easy to handle. It is also reusable and used to pattern the sidewalls of unconventional and complex 3D geometries such as microneedles or neural electrodes (such as the Utah array). The standard Utah array has 100 active sites at the tip of the shaft. Using the proposed high aspect ratio Ni shadow mask, the Utah array can accommodate 300 active sites, 200 of which will be along and around the shaft. The robust Ni shadow mask is fabricated using laser patterning and electroplating techniques. The use of Ni 3D shadow mask will lower the fabrication cost, complexity and time for patterning out-of-plane structures. PMID:29056835

  17. 3D displacement field measurement with correlation based on the micro-geometrical surface texture

    NASA Astrophysics Data System (ADS)

    Bubaker-Isheil, Halima; Serri, Jérôme; Fontaine, Jean-François

    2011-07-01

    Image correlation methods are widely used in experimental mechanics to obtain displacement field measurements. Currently, these methods are applied using digital images of the initial and deformed surfaces sprayed with black or white paint. Speckle patterns are then captured and the correlation is performed with a high degree of accuracy to an order of 0.01 pixels. In 3D, however, stereo-correlation leads to a lower degree of accuracy. Correlation techniques are based on the search for a sub-image (or pattern) displacement field. The work presented in this paper introduces a new correlation-based approach for 3D displacement field measurement that uses an additional 3D laser scanner and a CMM (Coordinate Measurement Machine). Unlike most existing methods that require the presence of markers on the observed object (such as black speckle, grids or random patterns), this approach relies solely on micro-geometrical surface textures such as waviness, roughness and aperiodic random defects. The latter are assumed to remain sufficiently small thus providing an adequate estimate of the particle displacement. The proposed approach can be used in a wide range of applications such as sheet metal forming with large strains. The method proceeds by first obtaining cloud points using the 3D laser scanner mounted on a CMM. These points are used to create 2D maps that are then correlated. In this respect, various criteria have been investigated for creating maps consisting of patterns, which facilitate the correlation procedure. Once the maps are created, the correlation between both configurations (initial and moved) is carried out using traditional methods developed for field measurements. Measurement validation was conducted using experiments in 2D and 3D with good results for rigid displacements in 2D, 3D and 2D rotations.

  18. A 3-D CFD Analysis of the Space Shuttle RSRM With Propellant Fins @ 1 sec. Burn-Back

    NASA Technical Reports Server (NTRS)

    Morstadt, Robert A.

    2003-01-01

    In this study 3-D Computational Fluid Dynamic (CFD) runs have been made for the Space Shuttle RSRM using 2 different grids and 4 different turbulent models, which were the Standard KE, the RNG KE, the Realizable KE, and the Reynolds stress model. The RSRM forward segment consists of 11 fins. By taking advantage of the forward fin symmetry only half of one fin along the axis had to be used in making the grid. This meant that the 3-D model consisted of a pie slice that encompassed 1/22nd of the motor circumference and went along the axis of the entire motor. The 3-D flow patterns in the forward fin region are of particular interest. Close inspection of these flow patterns indicate that 2 counter-rotating axial vortices emerge from each submerged solid propellant fin. Thus, the 3-D CFD analysis allows insight into complicated internal motor flow patterns that are not available from the simpler 2-D axi-symmetric studies. In addition, a comparison is made between the 3-D bore pressure drop and the 2-D axi-symmetric pressure drop.

  19. Three-dimensional patterning in biomedicine: Importance and applications in neuropharmacology.

    PubMed

    Vikram Singh, Ajay; Gharat, Tanmay; Batuwangala, Madu; Park, Byung-Wook; Endlein, Thomas; Sitti, Metin

    2018-04-01

    Nature manufactures biological systems in three dimensions with precisely controlled spatiotemporal profiles on hierarchical length and time scales. In this article, we review 3D patterning of biological systems on synthetic platforms for neuropharmacological applications. We briefly describe 3D versus 2D chemical and topographical patterning methods and their limitations. Subsequently, an overview of introducing a third dimension in neuropharmacological research with delineation of chemical and topographical roles is presented. Finally, toward the end of this article, an explanation of how 3D patterning has played a pivotal role in relevant fields of neuropharmacology to understand neurophysiology during development, normal health, and disease conditions is described. The future prospects of organs-on-a--like devices to mimic patterned blood-brain barrier in the context of neurotherapeutic discovery and development for the prioritization of lead candidates, membrane potential, and toxicity testing are also described. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1369-1382, 2018. © 2017 Wiley Periodicals, Inc.

  20. Disruption of direct 3D telomere-TRF2 interaction through two molecularly disparate mechanisms is a hallmark of primary Hodgkin and Reed-Sternberg cells.

    PubMed

    Knecht, Hans; Johnson, Nathalie A; Haliotis, Tina; Lichtensztejn, Daniel; Mai, Sabine

    2017-07-01

    In classical Hodgkin's lymphoma (cHL), specific changes in the 3D telomere organization cause progression from mononuclear Hodgkin cells (H) to multinucleated Reed-Sternberg cells (RS). In a post-germinal center B-cell in vitro model, permanent latent membrane protein 1 (LMP1) expression, as observed in Epstein-Barr virus (EBV)-associated cHL, results in multinuclearity and complex chromosomal aberrations through downregulation of key element of the shelterin complex, the telomere repeat binding factor 2 (TRF2). Thus, we hypothesized that the three-dimensional (3D) telomere-TRF2 interaction was progressively disturbed during transition from H to RS cells. To this end, we developed and applied for the first time a combined quantitative 3D TRF2-telomere immune fluorescent in situ hybridization (3D TRF2/Telo-Q-FISH) technique to monolayers of primary H and RS cells, and adjacent benign internal control lymphocytes of lymph node biopsy suspensions from diagnostic lymph node biopsies of 14 patients with cHL. We show that H and RS cells are characterized by two distinct patterns of disruption of 3D telomere-TRF2 interaction. Disruption pattern A is defined by massive attrition of telomere signals and a considerable increase of TRF2 signals not associated with telomeres. This pattern is restricted to EBV-negative cHL. Disruption pattern B is defined by telomere de-protection due to an impressive loss of TRF2 signals, physically linked to telomeres. This pattern is typical of, but is not restricted to, LMP1+EBV-associated cHL. In the disruption pattern B group, so-called 'ghost' end-stage RS cells, void of both TRF2 and telomere signals, were identified, whether or not associated with EBV. Our findings demonstrate that two molecularly disparate mechanisms converge on the level of 3D telomere-TRF2 interaction in the formation of RS cells.

  1. 4D Biofabrication of Branching Multicellular Structures: A Morphogenesis Simulation Based on Turing’s Reaction-Diffusion Dynamics

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaolu; Yang, Hao

    2017-12-01

    The recently emerged four-dimensional (4D) biofabrication technique aims to create dynamic three-dimensional (3D) biological structures that can transform their shapes or functionalities with time when an external stimulus is imposed or when cell postprinting self-assembly occurs. The evolution of 3D pattern of branching geometry via self-assembly of cells is critical for 4D biofabrication of artificial organs or tissues with branched geometry. However, it is still unclear that how the formation and evolution of these branching pattern are biologically encoded. We study the 4D fabrication of lung branching structures utilizing a simulation model on the reaction-diffusion mechanism, which is established using partial differential equations of four variables, describing the reaction and diffusion process of morphogens with time during the development process of lung branching. The simulation results present the forming process of 3D branching pattern, and also interpret the behaviors of side branching and tip splitting as the stalk growing, through 3D visualization of numerical simulation.

  2. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.

    PubMed

    Knowlton, Stephanie; Yu, Chu Hsiang; Ersoy, Fulya; Emadi, Sharareh; Khademhosseini, Ali; Tasoglu, Savas

    2016-06-20

    Three-dimensional (3D) printing offers potential to fabricate high-throughput and low-cost fabrication of microfluidic devices as a promising alternative to traditional techniques which enables efficient design iterations in the development stage. In this study, we demonstrate a single-step fabrication of a 3D transparent microfluidic chip using two alternative techniques: a stereolithography-based desktop 3D printer and a two-step fabrication using an industrial 3D printer based on polyjet technology. This method, compared to conventional fabrication using relatively expensive materials and labor-intensive processes, presents a low-cost, rapid prototyping technique to print functional 3D microfluidic chips. We enhance the capabilities of 3D-printed microfluidic devices by coupling 3D cell encapsulation and spatial patterning within photocrosslinkable gelatin methacryloyl (GelMA). The platform presented here serves as a 3D culture environment for long-term cell culture and growth. Furthermore, we have demonstrated the ability to print complex 3D microfluidic channels to create predictable and controllable fluid flow regimes. Here, we demonstrate the novel use of 3D-printed microfluidic chips as controllable 3D cell culture environments, advancing the applicability of 3D printing to engineering physiological systems for future applications in bioengineering.

  3. Determination of displacements and their derivatives from 3D fringe patterns via extended monogenic phasor method

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Lamberti, Luciano

    2018-05-01

    For 1D signals, it is necessary to resort to a 2D abstract space because the concept of phase utilized in the retrieval of fringe pattern analysis information relies on the use of a vectorial function. Fourier and Hilbert transforms provide in-quadrature signals that lead to the very important basic concept of local phase. A 3D abstract space must hence be generated in order to analyze 2D signals. A 3D vector space in a Cartesian complex space is graphically represented by a Poincare sphere. In this study, the extension of the associated spaces is extended to 3D. A 4D hypersphere is defined for that purpose. The proposed approach is illustrated by determining the deformations of the heart left ventricle.

  4. Accelerated time-resolved three-dimensional MR velocity mapping of blood flow patterns in the aorta using SENSE and k-t BLAST.

    PubMed

    Stadlbauer, Andreas; van der Riet, Wilma; Crelier, Gerard; Salomonowitz, Erich

    2010-07-01

    To assess the feasibility and potential limitations of the acceleration techniques SENSE and k-t BLAST for time-resolved three-dimensional (3D) velocity mapping of aortic blood flow. Furthermore, to quantify differences in peak velocity versus heart phase curves. Time-resolved 3D blood flow patterns were investigated in eleven volunteers and two patients suffering from aortic diseases with accelerated PC-MR sequences either in combination with SENSE (R=2) or k-t BLAST (6-fold). Both sequences showed similar data acquisition times and hence acceleration efficiency. Flow-field streamlines were calculated and visualized using the GTFlow software tool in order to reconstruct 3D aortic blood flow patterns. Differences between the peak velocities from single-slice PC-MRI experiments using SENSE 2 and k-t BLAST 6 were calculated for the whole cardiac cycle and averaged for all volunteers. Reconstruction of 3D flow patterns in volunteers revealed attenuations in blood flow dynamics for k-t BLAST 6 compared to SENSE 2 in terms of 3D streamlines showing fewer and less distinct vortices and reduction in peak velocity, which is caused by temporal blurring. Solely by time-resolved 3D MR velocity mapping in combination with SENSE detected pathologic blood flow patterns in patients with aortic diseases. For volunteers, we found a broadening and flattering of the peak velocity versus heart phase diagram between the two acceleration techniques, which is an evidence for the temporal blurring of the k-t BLAST approach. We demonstrated the feasibility of SENSE and detected potential limitations of k-t BLAST when used for time-resolved 3D velocity mapping. The effects of higher k-t BLAST acceleration factors have to be considered for application in 3D velocity mapping. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  5. 3-Dimensional shear wave elastography of breast lesions

    PubMed Central

    Chen, Ya-ling; Chang, Cai; Zeng, Wei; Wang, Fen; Chen, Jia-jian; Qu, Ning

    2016-01-01

    Abstract Color patterns of 3-dimensional (3D) shear wave elastography (SWE) is a promising method in differentiating tumoral nodules recently. This study was to evaluate the diagnostic accuracy of color patterns of 3D SWE in breast lesions, with special emphasis on coronal planes. A total of 198 consecutive women with 198 breast lesions (125 malignant and 73 benign) were included, who underwent conventional ultrasound (US), 3D B-mode, and 3D SWE before surgical excision. SWE color patterns of Views A (transverse), T (sagittal), and C (coronal) were determined. Sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC) were calculated. Distribution of SWE color patterns was significantly different between malignant and benign lesions (P = 0.001). In malignant lesions, “Stiff Rim” was significantly more frequent in View C (crater sign, 60.8%) than in View A (51.2%, P = 0.013) and View T (54.1%, P = 0.035). AUC for combination of “Crater Sign” and conventional US was significantly higher than View A (0.929 vs 0.902, P = 0.004) and View T (0.929 vs 0.907, P = 0.009), and specificity significantly increased (90.4% vs 78.1%, P = 0.013) without significant change in sensitivity (85.6% vs 88.0%, P = 0.664) as compared with conventional US. In conclusion, combination of conventional US with 3D SWE color patterns significantly increased diagnostic accuracy, with “Crater Sign” in coronal plane of the highest value. PMID:27684820

  6. Bridging the Gap: From 2D Cell Culture to 3D Microengineered Extracellular Matrices.

    PubMed

    Li, Yanfen; Kilian, Kristopher A

    2015-12-30

    Historically the culture of mammalian cells in the laboratory has been performed on planar substrates with media cocktails that are optimized to maintain phenotype. However, it is becoming increasingly clear that much of biology discerned from 2D studies does not translate well to the 3D microenvironment. Over the last several decades, 2D and 3D microengineering approaches have been developed that better recapitulate the complex architecture and properties of in vivo tissue. Inspired by the infrastructure of the microelectronics industry, lithographic patterning approaches have taken center stage because of the ease in which cell-sized features can be engineered on surfaces and within a broad range of biocompatible materials. Patterning and templating techniques enable precise control over extracellular matrix properties including: composition, mechanics, geometry, cell-cell contact, and diffusion. In this review article we explore how the field of engineered extracellular matrices has evolved with the development of new hydrogel chemistry and the maturation of micro- and nano- fabrication. Guided by the spatiotemporal regulation of cell state in developing tissues, techniques for micropatterning in 2D, pseudo-3D systems, and patterning within 3D hydrogels will be discussed in the context of translating the information gained from 2D systems to synthetic engineered 3D tissues. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A tissue-like culture system using microstructures: influence of extracellular matrix material on cell adhesion and aggregation.

    PubMed

    Knedlitschek, G; Schneider, F; Gottwald, E; Schaller, T; Eschbach, E; Weibezahn, K F

    1999-02-01

    Special microenvironmental conditions are required to induce and/or maintain specific qualities of differentiated cells. An important parameter is the three-dimensional tissue architecture that cannot be reproduced in conventional monolayer systems. Advanced tissue culture systems will meet many of these demands, but may reach their limits, especially when gradients of specific substances over distinct tissue layers must be established for long-term culture. These limitations may be overcome by incorporating microstructures into tissue-like culture systems. The microstructured cell support presented consists of a flat array of 625 cubic microcontainers with porous bottoms, in which cells can be supplied with specific media from both sides of the tissue layer. Permanent cell lines and primary rat hepatocytes have been used to test the culture system. In order to define reproducible conditions for tissue formation and for cell adherence to the structure, several ECM (extracellular matrix) components were tested for coating of microstructured substrata. The described tissue culture system offers great flexibility in adapting the cell support to specific needs.

  8. Real-Time and High-Resolution 3D Face Measurement via a Smart Active Optical Sensor.

    PubMed

    You, Yong; Shen, Yang; Zhang, Guocai; Xing, Xiuwen

    2017-03-31

    The 3D measuring range and accuracy in traditional active optical sensing, such as Fourier transform profilometry, are influenced by the zero frequency of the captured patterns. The phase-shifting technique is commonly applied to remove the zero component. However, this phase-shifting method must capture several fringe patterns with phase difference, thereby influencing the real-time performance. This study introduces a smart active optical sensor, in which a composite pattern is utilized. The composite pattern efficiently combines several phase-shifting fringes and carrier frequencies. The method can remove zero frequency by using only one pattern. Model face reconstruction and human face measurement were employed to study the validity and feasibility of this method. Results show no distinct decrease in the precision of the novel method unlike the traditional phase-shifting method. The texture mapping technique was utilized to reconstruct a nature-appearance 3D digital face.

  9. Real-Time and High-Resolution 3D Face Measurement via a Smart Active Optical Sensor

    PubMed Central

    You, Yong; Shen, Yang; Zhang, Guocai; Xing, Xiuwen

    2017-01-01

    The 3D measuring range and accuracy in traditional active optical sensing, such as Fourier transform profilometry, are influenced by the zero frequency of the captured patterns. The phase-shifting technique is commonly applied to remove the zero component. However, this phase-shifting method must capture several fringe patterns with phase difference, thereby influencing the real-time performance. This study introduces a smart active optical sensor, in which a composite pattern is utilized. The composite pattern efficiently combines several phase-shifting fringes and carrier frequencies. The method can remove zero frequency by using only one pattern. Model face reconstruction and human face measurement were employed to study the validity and feasibility of this method. Results show no distinct decrease in the precision of the novel method unlike the traditional phase-shifting method. The texture mapping technique was utilized to reconstruct a nature-appearance 3D digital face. PMID:28362349

  10. A 3D Self-Shaping Strategy for Nanoresolution Multicomponent Architectures.

    PubMed

    Su, Meng; Huang, Zhandong; Li, Yifan; Qian, Xin; Li, Zheng; Hu, Xiaotian; Pan, Qi; Li, Fengyu; Li, Lihong; Song, Yanlin

    2018-01-01

    3D printing or fabrication pursues the essential surface behavior manipulation of droplets or a liquid for rapidly and precisely constructing 3D multimaterial architectures. Further development of 3D fabrication desires a self-shaping strategy that can heterogeneously integrate functional materials with disparate electrical or optical properties. Here, a 3D liquid self-shaping strategy is reported for rapidly patterning materials over a series of compositions and accurately achieving micro- and nanoscale structures. The predesigned template selectively pins the droplet, and the surface energy minimization drives the self-shaping processing. The as-prepared 3D circuits assembled by silver nanoparticles carry a current of 208-448 µA at 0.01 V impressed voltage, while the 3D architectures achieved by two different quantum dots show noninterfering optical properties with feature resolution below 3 µm. This strategy can facilely fabricate micro-nanogeometric patterns without a modeling program, which will be of great significance for the development of 3D functional devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Neural patterning of human induced pluripotent stem cells in 3-D cultures for studying biomolecule-directed differential cellular responses.

    PubMed

    Yan, Yuanwei; Bejoy, Julie; Xia, Junfei; Guan, Jingjiao; Zhou, Yi; Li, Yan

    2016-09-15

    Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells/tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capacity of signaling factors that regulate 3-D neural tissue patterning in vitro and differential responses of the resulting neural populations to various biomolecules have not yet been fully understood. By tuning neural patterning of hiPSCs with small molecules targeting sonic hedgehog (SHH) signaling, this study generated different 3-D neuronal cultures that were mainly comprised of either cortical glutamatergic neurons or motor neurons. Abundant glutamatergic neurons were observed following the treatment with an antagonist of SHH signaling, cyclopamine, while Islet-1 and HB9-expressing motor neurons were enriched by an SHH agonist, purmorphamine. In neurons derived with different neural patterning factors, whole-cell patch clamp recordings showed similar voltage-gated Na(+)/K(+) currents, depolarization-evoked action potentials and spontaneous excitatory post-synaptic currents. Moreover, these different neuronal populations exhibited differential responses to three classes of biomolecules, including (1) matrix metalloproteinase inhibitors that affect extracellular matrix remodeling; (2) N-methyl-d-aspartate that induces general neurotoxicity; and (3) amyloid β (1-42) oligomers that cause neuronal subtype-specific neurotoxicity. This study should advance our understanding of hiPSC self-organization and neural tissue development and provide a transformative approach to establish 3-D models for neurological disease modeling and drug discovery. Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells, tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capability of sonic hedgehog-related small molecules to tune different neuronal subtypes in 3-D differentiation from hiPSCs and the differential cellular responses of region-specific neuronal subtypes to various biomolecules have not been fully investigated. By tuning neural patterning of hiPSCs with small molecules targeting sonic hedgehog signaling, this study provides knowledge on the differential susceptibility of region-specific neuronal subtypes derived from hiPSCs to different biomolecules in extracellular matrix remodeling and neurotoxicity. The findings are significant for understanding 3-D neural patterning of hiPSCs for the applications in brain organoid formation, neurological disease modeling, and drug discovery. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Three-Dimensional Biomechanical Analysis of Rearfoot and Forefoot Running.

    PubMed

    Knorz, Sebastian; Kluge, Felix; Gelse, Kolja; Schulz-Drost, Stefan; Hotfiel, Thilo; Lochmann, Matthias; Eskofier, Björn; Krinner, Sebastian

    2017-07-01

    In the running community, a forefoot strike (FFS) pattern is increasingly preferred compared with a rearfoot strike (RFS) pattern. However, it has not been fully understood which strike pattern may better reduce adverse joint forces within the different joints of the lower extremity. To analyze the 3-dimensional (3D) stress pattern in the ankle, knee, and hip joint in runners with either a FFS or RFS pattern. Descriptive laboratory study. In 22 runners (11 habitual rearfoot strikers, 11 habitual forefoot strikers), RFS and FFS patterns were compared at 3.0 m/s (6.7 mph) on a treadmill with integrated force plates and a 3D motion capture analysis system. This combined analysis allowed characterization of the 3D biomechanical forces differentiated for the ankle, knee, and hip joint. The maximum peak force (MPF) and maximum loading rate (LR) were determined in their 3 ordinal components: vertical, anterior-posterior (AP), and medial-lateral (ML). For both strike patterns, the vertical components of the MPF and LR were significantly greater than their AP or ML components. In the vertical axis, FFS was generally associated with a greater MPF but significantly lower LR in all 3 joints. The AP components of MPF and LR were significantly lower for FFS in the knee joint but significantly greater in the ankle and hip joints. The ML components of MPF and LR tended to be greater for FFS but mostly did not reach a level of significance. FFS and RFS were associated with different 3D stress patterns in the ankle, knee, and hip joint, although there was no global advantage of one strike pattern over the other. The multimodal individual assessment for the different anatomic regions demonstrated that FFS seems favorable for patients with unstable knee joints in the AP axis and RFS may be recommended for runners with unstable ankle joints. Different strike patterns show different 3D stress in joints of the lower extremity. Due to either rehabilitation after injuries or training in running sports, rearfoot or forefoot running should be preferred to prevent further damage or injuries caused by inadequate biomechanical load. Runners with a history of knee joint injuries may benefit from FFS whereas RFS may be favorable for runners with a history of ankle joint injuries.

  13. Three-Dimensional Biomechanical Analysis of Rearfoot and Forefoot Running

    PubMed Central

    Knorz, Sebastian; Kluge, Felix; Gelse, Kolja; Schulz-Drost, Stefan; Hotfiel, Thilo; Lochmann, Matthias; Eskofier, Björn; Krinner, Sebastian

    2017-01-01

    Background: In the running community, a forefoot strike (FFS) pattern is increasingly preferred compared with a rearfoot strike (RFS) pattern. However, it has not been fully understood which strike pattern may better reduce adverse joint forces within the different joints of the lower extremity. Purpose: To analyze the 3-dimensional (3D) stress pattern in the ankle, knee, and hip joint in runners with either a FFS or RFS pattern. Study Design: Descriptive laboratory study. Methods: In 22 runners (11 habitual rearfoot strikers, 11 habitual forefoot strikers), RFS and FFS patterns were compared at 3.0 m/s (6.7 mph) on a treadmill with integrated force plates and a 3D motion capture analysis system. This combined analysis allowed characterization of the 3D biomechanical forces differentiated for the ankle, knee, and hip joint. The maximum peak force (MPF) and maximum loading rate (LR) were determined in their 3 ordinal components: vertical, anterior-posterior (AP), and medial-lateral (ML). Results: For both strike patterns, the vertical components of the MPF and LR were significantly greater than their AP or ML components. In the vertical axis, FFS was generally associated with a greater MPF but significantly lower LR in all 3 joints. The AP components of MPF and LR were significantly lower for FFS in the knee joint but significantly greater in the ankle and hip joints. The ML components of MPF and LR tended to be greater for FFS but mostly did not reach a level of significance. Conclusion: FFS and RFS were associated with different 3D stress patterns in the ankle, knee, and hip joint, although there was no global advantage of one strike pattern over the other. The multimodal individual assessment for the different anatomic regions demonstrated that FFS seems favorable for patients with unstable knee joints in the AP axis and RFS may be recommended for runners with unstable ankle joints. Clinical Relevance: Different strike patterns show different 3D stress in joints of the lower extremity. Due to either rehabilitation after injuries or training in running sports, rearfoot or forefoot running should be preferred to prevent further damage or injuries caused by inadequate biomechanical load. Runners with a history of knee joint injuries may benefit from FFS whereas RFS may be favorable for runners with a history of ankle joint injuries. PMID:28812039

  14. Analysis of 3D Scan Measurement Distribution with Application to a Multi-Beam Lidar on a Rotating Platform.

    PubMed

    Morales, Jesús; Plaza-Leiva, Victoria; Mandow, Anthony; Gomez-Ruiz, Jose Antonio; Serón, Javier; García-Cerezo, Alfonso

    2018-01-30

    Multi-beam lidar (MBL) rangefinders are becoming increasingly compact, light, and accessible 3D sensors, but they offer limited vertical resolution and field of view. The addition of a degree-of-freedom to build a rotating multi-beam lidar (RMBL) has the potential to become a common solution for affordable rapid full-3D high resolution scans. However, the overlapping of multiple-beams caused by rotation yields scanning patterns that are more complex than in rotating single beam lidar (RSBL). In this paper, we propose a simulation-based methodology to analyze 3D scanning patterns which is applied to investigate the scan measurement distribution produced by the RMBL configuration. With this purpose, novel contributions include: (i) the adaption of a recent spherical reformulation of Ripley's K function to assess 3D sensor data distribution on a hollow sphere simulation; (ii) a comparison, both qualitative and quantitative, between scan patterns produced by an ideal RMBL based on a Velodyne VLP-16 (Puck) and those of other 3D scan alternatives (i.e., rotating 2D lidar and MBL); and (iii) a new RMBL implementation consisting of a portable tilting platform for VLP-16 scanners, which is presented as a case study for measurement distribution analysis as well as for the discussion of actual scans from representative environments. Results indicate that despite the particular sampling patterns given by a RMBL, its homogeneity even improves that of an equivalent RSBL.

  15. Analysis of 3D Scan Measurement Distribution with Application to a Multi-Beam Lidar on a Rotating Platform

    PubMed Central

    Plaza-Leiva, Victoria; Serón, Javier

    2018-01-01

    Multi-beam lidar (MBL) rangefinders are becoming increasingly compact, light, and accessible 3D sensors, but they offer limited vertical resolution and field of view. The addition of a degree-of-freedom to build a rotating multi-beam lidar (RMBL) has the potential to become a common solution for affordable rapid full-3D high resolution scans. However, the overlapping of multiple-beams caused by rotation yields scanning patterns that are more complex than in rotating single beam lidar (RSBL). In this paper, we propose a simulation-based methodology to analyze 3D scanning patterns which is applied to investigate the scan measurement distribution produced by the RMBL configuration. With this purpose, novel contributions include: (i) the adaption of a recent spherical reformulation of Ripley’s K function to assess 3D sensor data distribution on a hollow sphere simulation; (ii) a comparison, both qualitative and quantitative, between scan patterns produced by an ideal RMBL based on a Velodyne VLP-16 (Puck) and those of other 3D scan alternatives (i.e., rotating 2D lidar and MBL); and (iii) a new RMBL implementation consisting of a portable tilting platform for VLP-16 scanners, which is presented as a case study for measurement distribution analysis as well as for the discussion of actual scans from representative environments. Results indicate that despite the particular sampling patterns given by a RMBL, its homogeneity even improves that of an equivalent RSBL. PMID:29385705

  16. TU-H-CAMPUS-IeP2-05: Breast and Soft Tissue-Equivalent 3D Printed Phantoms for Imaging and Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hintenlang, D; Terracino, B

    Purpose: The study has the goal to demonstrate that breast and soft tissue-equivalent phantoms for dosimetry applications in the diagnostic energy range can be fabricated using common 3D printing methods. Methods: 3D printing provides the opportunity to rapidly prototype uniquely designed objects from a variety of materials. Common 3D printers are usually limited to printing objects based on thermoplastic materials such as PLA, or ABS. The most commonly available plastic is PLA, which has a density significantly greater than soft tissue. We utilized a popular 3D printer to demonstrate that tissue specific phantom materials can be generated through the carefulmore » selection of 3D printing parameters. A series of stepwedges were designed and printed using a Makerbot Replicator2 3D printing system. The print file provides custom adjustment of the infill density, orientation and position of the object on the printer stage, selection of infill patterns, and other control parameters. The x-ray attenuation and uniformity of fabricated phantoms were evaluated and compared to common tissue-equivalent phantom materials, acrylic and BR12. X-ray exposure measurements were made using narrow beam geometry on a clinical mammography unit at 28 kVp on the series of phantoms. The 3D printed phantoms were imaged at 28 kVp to visualize the internal structure and uniformity in different planes of the phantoms. Results: By utilizing specific in-fill density and patterns we are able to produce a phantom closely matching the attenuation characteristics of BR12 at 28 kVp. The in-fill patterns used are heterogeneous, so a judicious selection of fill pattern and the orientation of the fill pattern must be made in order to obtain homogenous attenuation along the intended direction of beam propagation. Conclusions: By careful manipulation of the printing parameters, breast and soft tissue-equivalent phantoms appropriate for use at imaging energies can be fabricated using 3D printing techniques.« less

  17. Marginal and internal fit of pressed lithium disilicate inlays fabricated with milling, 3D printing, and conventional technologies.

    PubMed

    Homsy, Foudda R; Özcan, Mutlu; Khoury, Marwan; Majzoub, Zeina A K

    2018-05-01

    The subtractive and additive computer-aided design and computer-aided manufacturing (CAD-CAM) of lithium disilicate partial coverage restorations is poorly documented. The purpose of this in vitro study was to compare the marginal and internal fit accuracy of lithium disilicate glass-ceramic inlays fabricated with conventional, milled, and 3-dimensional (3D) printed wax patterns. A dentoform mandibular first molar was prepared for a mesio-occlusal ceramic inlay. Five groups of 15 inlays were obtained through conventional impression and manual wax pattern (group CICW); conventional impression, laboratory scanning of the stone die, CAD-CAM milled wax blanks (group CIDW) or 3D printed wax patterns (group CI3DW); and scanning of the master preparation with intraoral scanner and CAD-CAM milled (group DSDW) or 3D printed wax patterns (group DS3DW). The same design was used to produce the wax patterns in the last 4 groups. The replica technique was used to measure marginal and internal adaptation by using stereomicroscopy. Mixed-model ANOVA was used to assess differences according to the groups and discrepancy location (α=.05). Group DSDW showed the smallest marginal discrepancy (24.3 μm) compared with those of groups CICW (45.1 μm), CIDW (33.7 μm), CI3DW (39.8 μm), and DS3DW (39.7 μm) (P<.001). No statistically significant differences were detected among groups CICW, CIDW, CI3DW, and DS3DW relative to the marginal discrepancy. The internal discrepancy was significantly larger than the marginal discrepancy within all groups (P<.001). Lithium disilicate glass-ceramic inlays produced from digital scans and subtractive milling of wax patterns resulted in better marginal and internal fit accuracy than either conventional impression/fabrication or additive 3D manufacturing. Three-dimensional printed wax patterns yielded fit values similar to those of the conventionally waxed inlays. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second

    NASA Astrophysics Data System (ADS)

    Zuo, Chao; Tao, Tianyang; Feng, Shijie; Huang, Lei; Asundi, Anand; Chen, Qian

    2018-03-01

    Fringe projection profilometry is a well-established technique for optical 3D shape measurement. However, in many applications, it is desirable to make 3D measurements at very high speed, especially with fast moving or shape changing objects. In this work, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μFTP), which can realize an acquisition rate up to 10,000 3D frame per second (fps). The high measurement speed is achieved by the number of patterns reduction as well as high-speed fringe projection hardware. In order to capture 3D information in such a short period of time, we focus on the improvement of the phase recovery, phase unwrapping, and error compensation algorithms, allowing to reconstruct an accurate, unambiguous, and distortion-free 3D point cloud with every two projected patterns. We also develop a high-frame-rate fringe projection hardware by pairing a high-speed camera and a DLP projector, enabling binary pattern switching and precisely synchronized image capture at a frame rate up to 20,000 fps. Based on this system, we demonstrate high-quality textured 3D imaging of 4 transient scenes: vibrating cantilevers, rotating fan blades, flying bullet, and bursting balloon, which were previously difficult or even unable to be captured with conventional approaches.

  19. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Chao; Tao, Tianyang; Feng, Shijie

    We report that fringe projection profilometry is a well-established technique for optical 3D shape measurement. However, in many applications, it is desirable to make 3D measurements at very high speed, especially with fast moving or shape changing objects. In this work, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μFTP), which can realize an acquisition rate up to 10,000 3D frame per second (fps). The high measurement speed is achieved by the number of patterns reduction as well as high-speed fringe projection hardware. In order to capture 3D information in such a short period of time,more » we focus on the improvement of the phase recovery, phase unwrapping, and error compensation algorithms, allowing to reconstruct an accurate, unambiguous, and distortion-free 3D point cloud with every two projected patterns. We also develop a high-frame-rate fringe projection hardware by pairing a high-speed camera and a DLP projector, enabling binary pattern switching and precisely synchronized image capture at a frame rate up to 20,000 fps. Lastly, based on this system, we demonstrate high-quality textured 3D imaging of 4 transient scenes: vibrating cantilevers, rotating fan blades, flying bullet, and bursting balloon, which were previously difficult or even unable to be captured with conventional approaches.« less

  20. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second

    DOE PAGES

    Zuo, Chao; Tao, Tianyang; Feng, Shijie; ...

    2017-11-06

    We report that fringe projection profilometry is a well-established technique for optical 3D shape measurement. However, in many applications, it is desirable to make 3D measurements at very high speed, especially with fast moving or shape changing objects. In this work, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μFTP), which can realize an acquisition rate up to 10,000 3D frame per second (fps). The high measurement speed is achieved by the number of patterns reduction as well as high-speed fringe projection hardware. In order to capture 3D information in such a short period of time,more » we focus on the improvement of the phase recovery, phase unwrapping, and error compensation algorithms, allowing to reconstruct an accurate, unambiguous, and distortion-free 3D point cloud with every two projected patterns. We also develop a high-frame-rate fringe projection hardware by pairing a high-speed camera and a DLP projector, enabling binary pattern switching and precisely synchronized image capture at a frame rate up to 20,000 fps. Lastly, based on this system, we demonstrate high-quality textured 3D imaging of 4 transient scenes: vibrating cantilevers, rotating fan blades, flying bullet, and bursting balloon, which were previously difficult or even unable to be captured with conventional approaches.« less

  1. Controllable 3D architectures of aligned carbon nanotube arrays by multi-step processes

    NASA Astrophysics Data System (ADS)

    Huang, Shaoming

    2003-06-01

    An effective way to fabricate large area three-dimensional (3D) aligned CNTs pattern based on pyrolysis of iron(II) phthalocyanine (FePc) by two-step processes is reported. The controllable generation of different lengths and selective growth of the aligned CNT arrays on metal-patterned (e.g., Ag and Au) substrate are the bases for generating such 3D aligned CNTs architectures. By controlling experimental conditions 3D aligned CNT arrays with different lengths/densities and morphologies/structures as well as multi-layered architectures can be fabricated in large scale by multi-step pyrolysis of FePc. These 3D architectures could have interesting properties and be applied for developing novel nanotube-based devices.

  2. 3D-printed coded apertures for x-ray backscatter radiography

    NASA Astrophysics Data System (ADS)

    Muñoz, André A. M.; Vella, Anna; Healy, Matthew J. F.; Lane, David W.; Jupp, Ian; Lockley, David

    2017-09-01

    Many different mask patterns can be used for X-ray backscatter imaging using coded apertures, which can find application in the medical, industrial and security sectors. While some of these patterns may be considered to have a self-supporting structure, this is not the case for some of the most frequently used patterns such as uniformly redundant arrays or any pattern with a high open fraction. This makes mask construction difficult and usually requires a compromise in its design by drilling holes or adopting a no two holes touching version of the original pattern. In this study, this compromise was avoided by 3D printing a support structure that was then filled with a radiopaque material to create the completed mask. The coded masks were manufactured using two different methods, hot cast and cold cast. Hot casting involved casting a bismuth alloy at 80°C into the 3D printed acrylonitrile butadiene styrene mould which produced an absorber with density of 8.6 g cm-3. Cold casting was undertaken at room temperature, when a tungsten/epoxy composite was cast into a 3D printed polylactic acid mould. The cold cast procedure offered a greater density of around 9.6 to 10 g cm-3 and consequently greater X-ray attenuation. It was also found to be much easier to manufacture and more cost effective. A critical review of the manufacturing procedure is presented along with some typical images. In both cases the 3D printing process allowed square apertures to be created avoiding their approximation by circular holes when conventional drilling is used.

  3. Identification of superficial defects in reconstructed 3D objects using phase-shifting fringe projection

    NASA Astrophysics Data System (ADS)

    Madrigal, Carlos A.; Restrepo, Alejandro; Branch, John W.

    2016-09-01

    3D reconstruction of small objects is used in applications of surface analysis, forensic analysis and tissue reconstruction in medicine. In this paper, we propose a strategy for the 3D reconstruction of small objects and the identification of some superficial defects. We applied a technique of projection of structured light patterns, specifically sinusoidal fringes and an algorithm of phase unwrapping. A CMOS camera was used to capture images and a DLP digital light projector for synchronous projection of the sinusoidal pattern onto the objects. We implemented a technique based on a 2D flat pattern as calibration process, so the intrinsic and extrinsic parameters of the camera and the DLP were defined. Experimental tests were performed in samples of artificial teeth, coal particles, welding defects and surfaces tested with Vickers indentation. Areas less than 5cm were studied. The objects were reconstructed in 3D with densities of about one million points per sample. In addition, the steps of 3D description, identification of primitive, training and classification were implemented to recognize defects, such as: holes, cracks, roughness textures and bumps. We found that pattern recognition strategies are useful, when quality supervision of surfaces has enough quantities of points to evaluate the defective region, because the identification of defects in small objects is a demanding activity of the visual inspection.

  4. Relation between the Macroscopic Pattern of Elephant Ivory and Its Three-Dimensional Micro-Tubular Network

    PubMed Central

    Albéric, Marie; Dean, Mason N.; Gourrier, Aurélien; Wagermaier, Wolfgang; Dunlop, John W. C.; Staude, Andreas; Fratzl, Peter; Reiche, Ina

    2017-01-01

    Macroscopic, periodic, dark and bright patterns are observed on sections of elephant tusk, in the dentin part (ivory). The motifs—also called Schreger pattern—vary depending on the orientation in the tusk: on sections perpendicular to the tusk axis, a checkerboard pattern is present whereas on sections longitudinal to it, alternating stripes are observed. This pattern has been used to identify elephant and mammoth ivory in archeological artifacts and informs on the continuous tissue growth mechanisms of tusk. However, its origin, assumed to be related to the 3D structure of empty microtubules surrounded by the ivory matrix has yet to be characterized unequivocally. Based on 2D observations of the ivory microtubules by means of a variety of imaging techniques of three different planes (transverse, longitudinal and tangential to the tusk axis), we show that the dark areas of the macroscopic pattern are due to tubules oblique to the surface whereas bright areas are related to tubules parallel to it. The different microstructures observed in the three planes as well as the 3D data obtained by SR-μCT analysis allow us to propose a 3D model of the microtubule network with helical tubules phase-shifted in the tangential direction. The phase shift is a combination of a continuous phase shift of π every 1 mm with a stepwise phase shift of π/2 every 500 μm. By using 3D modeling, we show how the 3D helical model better represents the experimental microstructure observed in 2D planes compared to previous models in the literature. This brings new information on the origin of the unique Schreger pattern of elephant ivory, crucial for better understanding how archaeological objects were processed and for opening new routes to rethink how biological materials are built. PMID:28125603

  5. Learning Patterns as Criterion for Forming Work Groups in 3D Simulation Learning Environments

    ERIC Educational Resources Information Center

    Maria Cela-Ranilla, Jose; Molías, Luis Marqués; Cervera, Mercè Gisbert

    2016-01-01

    This study analyzes the relationship between the use of learning patterns as a grouping criterion to develop learning activities in the 3D simulation environment at University. Participants included 72 Spanish students from the Education and Marketing disciplines. Descriptive statistics and non-parametric tests were conducted. The process was…

  6. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate.

    PubMed

    Trache, Tudor; Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-12-01

    Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values.

  7. Practical 3-D Beam Pattern Based Channel Modeling for Multi-Polarized Massive MIMO Systems.

    PubMed

    Aghaeinezhadfirouzja, Saeid; Liu, Hui; Balador, Ali

    2018-04-12

    In this paper, a practical non-stationary three-dimensional (3-D) channel models for massive multiple-input multiple-output (MIMO) systems, considering beam patterns for different antenna elements, is proposed. The beam patterns using dipole antenna elements with different phase excitation toward the different direction of travels (DoTs) contributes various correlation weights for rays related towards/from the cluster, thus providing different elevation angle of arrivals (EAoAs) and elevation angle of departures (EAoDs) for each antenna element. These include the movements of the user that makes our channel to be a non-stationary model of clusters at the receiver (RX) on both the time and array axes. In addition, their impacts on 3-D massive MIMO channels are investigated via statistical properties including received spatial correlation. Additionally, the impact of elevation/azimuth angles of arrival on received spatial correlation is discussed. Furthermore, experimental validation of the proposed 3-D channel models on azimuth and elevation angles of the polarized antenna are specifically evaluated and compared through simulations. The proposed 3-D generic models are verified using relevant measurement data.

  8. Practical 3-D Beam Pattern Based Channel Modeling for Multi-Polarized Massive MIMO Systems †

    PubMed Central

    Aghaeinezhadfirouzja, Saeid; Liu, Hui

    2018-01-01

    In this paper, a practical non-stationary three-dimensional (3-D) channel models for massive multiple-input multiple-output (MIMO) systems, considering beam patterns for different antenna elements, is proposed. The beam patterns using dipole antenna elements with different phase excitation toward the different direction of travels (DoTs) contributes various correlation weights for rays related towards/from the cluster, thus providing different elevation angle of arrivals (EAoAs) and elevation angle of departures (EAoDs) for each antenna element. These include the movements of the user that makes our channel to be a non-stationary model of clusters at the receiver (RX) on both the time and array axes. In addition, their impacts on 3-D massive MIMO channels are investigated via statistical properties including received spatial correlation. Additionally, the impact of elevation/azimuth angles of arrival on received spatial correlation is discussed. Furthermore, experimental validation of the proposed 3-D channel models on azimuth and elevation angles of the polarized antenna are specifically evaluated and compared through simulations. The proposed 3-D generic models are verified using relevant measurement data. PMID:29649177

  9. Optofluidic fabrication for 3D-shaped particles

    NASA Astrophysics Data System (ADS)

    Paulsen, Kevin S.; di Carlo, Dino; Chung, Aram J.

    2015-04-01

    Complex three-dimensional (3D)-shaped particles could play unique roles in biotechnology, structural mechanics and self-assembly. Current methods of fabricating 3D-shaped particles such as 3D printing, injection moulding or photolithography are limited because of low-resolution, low-throughput or complicated/expensive procedures. Here, we present a novel method called optofluidic fabrication for the generation of complex 3D-shaped polymer particles based on two coupled processes: inertial flow shaping and ultraviolet (UV) light polymerization. Pillars within fluidic platforms are used to deterministically deform photosensitive precursor fluid streams. The channels are then illuminated with patterned UV light to polymerize the photosensitive fluid, creating particles with multi-scale 3D geometries. The fundamental advantages of optofluidic fabrication include high-resolution, multi-scalability, dynamic tunability, simple operation and great potential for bulk fabrication with full automation. Through different combinations of pillar configurations, flow rates and UV light patterns, an infinite set of 3D-shaped particles is available, and a variety are demonstrated.

  10. Metal oxide multilayer hard mask system for 3D nanofabrication

    NASA Astrophysics Data System (ADS)

    Han, Zhongmei; Salmi, Emma; Vehkamäki, Marko; Leskelä, Markku; Ritala, Mikko

    2018-02-01

    We demonstrate the preparation and exploitation of multilayer metal oxide hard masks for lithography and 3D nanofabrication. Atomic layer deposition (ALD) and focused ion beam (FIB) technologies are applied for mask deposition and mask patterning, respectively. A combination of ALD and FIB was used and a patterning procedure was developed to avoid the ion beam defects commonly met when using FIB alone for microfabrication. ALD grown Al2O3/Ta2O5/Al2O3 thin film stacks were FIB milled with 30 keV gallium ions and chemically etched in 5% tetramethylammonium hydroxide at 50 °C. With metal evaporation, multilayers consisting of amorphous oxides Al2O3 and Ta2O5 can be tailored for use in 2D lift-off processing, in preparation of embedded sub-100 nm metal lines and for multilevel electrical contacts. Good pattern transfer was achieved by lift-off process from the 2D hard mask for micro- and nano-scaled fabrication. As a demonstration of the applicability of this method to 3D structures, self-supporting 3D Ta2O5 masks were made from a film stack on gold particles. Finally, thin film resistors were fabricated by utilizing controlled stiction of suspended Ta2O5 structures.

  11. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Seong, Baekhoon; Nguyen, VuDat; Byun, Doyoung

    2016-02-01

    Recently, the three-dimensional (3D) printing technique has received much attention for shape forming and manufacturing. The fused deposition modeling (FDM) printer is one of the various 3D printers available and has become widely used due to its simplicity, low-cost, and easy operation. However, the FDM technique has a limitation whereby its patterning resolution is too low at around 200 μm. In this paper, we first present a hybrid mechanism of electrohydrodynamic jet printing with the FDM technique, which we name E-FDM. We then develop a novel high-resolution 3D printer based on the E-FDM process. To determine the optimal condition for structuring, we also investigated the effect of several printing parameters, such as temperature, applied voltage, working height, printing speed, flow-rate, and acceleration on the patterning results. This method was capable of fabricating both high resolution 2D and 3D structures with the use of polylactic acid (PLA). PLA has been used to fabricate scaffold structures for tissue engineering, which has different hierarchical structure sizes. The fabrication speed was up to 40 mm/s and the pattern resolution could be improved to 10 μm.

  12. Patterning and manipulating microparticles into a three-dimensional matrix using standing surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Nguyen, T. D.; Tran, V. T.; Fu, Y. Q.; Du, H.

    2018-05-01

    A method based on standing surface acoustic waves (SSAWs) is proposed to pattern and manipulate microparticles into a three-dimensional (3D) matrix inside a microchamber. An optical prism is used to observe the 3D alignment and patterning of the microparticles in the vertical and horizontal planes simultaneously. The acoustic radiation force effectively patterns the microparticles into lines of 3D space or crystal-lattice-like matrix patterns. A microparticle can be positioned precisely at a specified vertical location by balancing the forces of acoustic radiation, drag, buoyancy, and gravity acting on the microparticle. Experiments and finite-element numerical simulations both show that the acoustic radiation force increases gradually from the bottom of the chamber to the top, and microparticles can be moved up or down simply by adjusting the applied SSAW power. Our method has great potential for acoustofluidic applications, building the large-scale structures associated with biological objects and artificial neuron networks.

  13. Control of the interaction strength of photonic molecules by nanometer precise 3D fabrication.

    PubMed

    Rawlings, Colin D; Zientek, Michal; Spieser, Martin; Urbonas, Darius; Stöferle, Thilo; Mahrt, Rainer F; Lisunova, Yuliya; Brugger, Juergen; Duerig, Urs; Knoll, Armin W

    2017-11-28

    Applications for high resolution 3D profiles, so-called grayscale lithography, exist in diverse fields such as optics, nanofluidics and tribology. All of them require the fabrication of patterns with reliable absolute patterning depth independent of the substrate location and target materials. Here we present a complete patterning and pattern-transfer solution based on thermal scanning probe lithography (t-SPL) and dry etching. We demonstrate the fabrication of 3D profiles in silicon and silicon oxide with nanometer scale accuracy of absolute depth levels. An accuracy of less than 1nm standard deviation in t-SPL is achieved by providing an accurate physical model of the writing process to a model-based implementation of a closed-loop lithography process. For transfering the pattern to a target substrate we optimized the etch process and demonstrate linear amplification of grayscale patterns into silicon and silicon oxide with amplification ratios of ∼6 and ∼1, respectively. The performance of the entire process is demonstrated by manufacturing photonic molecules of desired interaction strength. Excellent agreement of fabricated and simulated structures has been achieved.

  14. Dentate gyrus supports slope recognition memory, shades of grey-context pattern separation and recognition memory, and CA3 supports pattern completion for object memory.

    PubMed

    Kesner, Raymond P; Kirk, Ryan A; Yu, Zhenghui; Polansky, Caitlin; Musso, Nick D

    2016-03-01

    In order to examine the role of the dorsal dentate gyrus (dDG) in slope (vertical space) recognition and possible pattern separation, various slope (vertical space) degrees were used in a novel exploratory paradigm to measure novelty detection for changes in slope (vertical space) recognition memory and slope memory pattern separation in Experiment 1. The results of the experiment indicate that control rats displayed a slope recognition memory function with a pattern separation process for slope memory that is dependent upon the magnitude of change in slope between study and test phases. In contrast, the dDG lesioned rats displayed an impairment in slope recognition memory, though because there was no significant interaction between the two groups and slope memory, a reliable pattern separation impairment for slope could not be firmly established in the DG lesioned rats. In Experiment 2, in order to determine whether, the dDG plays a role in shades of grey spatial context recognition and possible pattern separation, shades of grey were used in a novel exploratory paradigm to measure novelty detection for changes in the shades of grey context environment. The results of the experiment indicate that control rats displayed a shades of grey-context pattern separation effect across levels of separation of context (shades of grey). In contrast, the DG lesioned rats displayed a significant interaction between the two groups and levels of shades of grey suggesting impairment in a pattern separation function for levels of shades of grey. In Experiment 3 in order to determine whether the dorsal CA3 (dCA3) plays a role in object pattern completion, a new task requiring less training and using a choice that was based on choosing the correct set of objects on a two-choice discrimination task was used. The results indicated that control rats displayed a pattern completion function based on the availability of one, two, three or four cues. In contrast, the dCA3 lesioned rats displayed a significant interaction between the two groups and the number of available objects suggesting impairment in a pattern completion function for object cues. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Performance Study of the First 2D Prototype of Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deptuch, Gregory; Hoff, James; Jindariani, Sergo

    Extremely fast pattern recognition capabilities are necessary to find and fit billions of tracks at the hardware trigger level produced every second anticipated at high luminosity LHC (HL-LHC) running conditions. Associative Memory (AM) based approaches for fast pattern recognition have been proposed as a potential solution to the tracking trigger. However, at the HL-LHC, there is much less time available and speed performance must be improved over previous systems while maintaining a comparable number of patterns. The Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) Project aims to achieve the target pattern density and performance goal using 3DIC technology. The firstmore » step taken in the VIPRAM work was the development of a 2D prototype (protoVIPRAM00) in which the associative memory building blocks were designed to be compatible with the 3D integration. In this paper, we present the results from extensive performance studies of the protoVIPRAM00 chip in both realistic HL-LHC and extreme conditions. Results indicate that the chip operates at the design frequency of 100 MHz with perfect correctness in realistic conditions and conclude that the building blocks are ready for 3D stacking. We also present performance boundary characterization of the chip under extreme conditions.« less

  16. IMAAAGINE: a webserver for searching hypothetical 3D amino acid side chain arrangements in the Protein Data Bank

    PubMed Central

    Nadzirin, Nurul; Willett, Peter; Artymiuk, Peter J.; Firdaus-Raih, Mohd

    2013-01-01

    We describe a server that allows the interrogation of the Protein Data Bank for hypothetical 3D side chain patterns that are not limited to known patterns from existing 3D structures. A minimal side chain description allows a variety of side chain orientations to exist within the pattern, and generic side chain types such as acid, base and hydroxyl-containing can be additionally deployed in the search query. Moreover, only a subset of distances between the side chains need be specified. We illustrate these capabilities in case studies involving arginine stacks, serine-acid group arrangements and multiple catalytic triad-like configurations. The IMAAAGINE server can be accessed at http://mfrlab.org/grafss/imaaagine/. PMID:23716645

  17. 3D physical modeling for patterning process development

    NASA Astrophysics Data System (ADS)

    Sarma, Chandra; Abdo, Amr; Bailey, Todd; Conley, Will; Dunn, Derren; Marokkey, Sajan; Talbi, Mohamed

    2010-03-01

    In this paper we will demonstrate how a 3D physical patterning model can act as a forensic tool for OPC and ground-rule development. We discuss examples where the 2D modeling shows no issues in printing gate lines but 3D modeling shows severe resist loss in the middle. In absence of corrective measure, there is a high likelihood of line discontinuity post etch. Such early insight into process limitations of prospective ground rules can be invaluable for early technology development. We will also demonstrate how the root cause of broken poly-line after etch could be traced to resist necking in the region of STI step with the help of 3D models. We discuss different cases of metal and contact layouts where 3D modeling gives an early insight in to technology limitations. In addition such a 3D physical model could be used for early resist evaluation and selection for required ground-rule challenges, which can substantially reduce the cycle time for process development.

  18. Three-dimensional reconstruction of prostate cancer architecture with serial immunohistochemical sections: hallmarks of tumour growth, tumour compartmentalisation, and implications for grading and heterogeneity.

    PubMed

    Tolkach, Yuri; Thomann, Stefan; Kristiansen, Glen

    2018-05-01

    Conventional morphology of prostate cancer considers only the two-dimensional (2D) architecture of the tumour. Our aim was to examine the feasibility of three-dimensional (3D) reconstruction of tumour morphology based on multiple consecutive histological sections and to decipher relevant features of prostate cancer architecture. Seventy-five consecutive histological sections (5 μm) of a typical prostate adenocarcinoma (Gleason score of 3 + 4 = 7) were immunostained (pan-cytokeratin) and scanned for further 3D reconstructions with fiji/imagej software. The main findings related to the prostate cancer architecture in this case were: (i) continuity of all glands, with the tumour being an integrated system, even in Gleason pattern 4 with poorly formed glands-no short-range migration of cells by Gleason pattern 4 (poorly formed glands); (ii) no repeated interconnections between the glands, with a tumour building a tree-like branched structure with very 'plastic' branches (maximal depth of investigation 375 μm); (iii) very stark compartmentalisation of the tumour related to extensive branching, the coexistence of independent terminal units of such branches in one 2D slice explaining intratumoral heterogeneity; (iv) evidence of a craniocaudal growth direction in interglandular regions of the prostate and for a lateromedial growth direction in subcapsular posterolateral regions; and (v) a 3D architecture-based description of Gleason pattern 4 with poorly formed glands, and its continuum with Gleason pattern 3. Consecutive histological sections provide high-quality material for 3D reconstructions of the tumour architecture, with excellent resolution. The reconstruction of multiple regions in this typical case of a Gleason score 3 + 4 = 7 tumour provides insights into relevant aspects of tumour growth, the continuity of Gleason patterns 3 and 4, and tumour heterogeneity. © 2018 John Wiley & Sons Ltd.

  19. Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets.

    PubMed

    Gurkan, Umut A; El Assal, Rami; Yildiz, Simin E; Sung, Yuree; Trachtenberg, Alexander J; Kuo, Winston P; Demirci, Utkan

    2014-07-07

    Over the past decade, bioprinting has emerged as a promising patterning strategy to organize cells and extracellular components both in two and three dimensions (2D and 3D) to engineer functional tissue mimicking constructs. So far, tissue printing has neither been used for 3D patterning of mesenchymal stem cells (MSCs) in multiphase growth factor embedded 3D hydrogels nor been investigated phenotypically in terms of simultaneous differentiation into different cell types within the same micropatterned 3D tissue constructs. Accordingly, we demonstrated a biochemical gradient by bioprinting nanoliter droplets encapsulating human MSCs, bone morphogenetic protein 2 (BMP-2), and transforming growth factor β1 (TGF- β1), engineering an anisotropic biomimetic fibrocartilage microenvironment. Assessment of the model tissue construct displayed multiphasic anisotropy of the incorporated biochemical factors after patterning. Quantitative real time polymerase chain reaction (qRT-PCR) results suggested genomic expression patterns leading to simultaneous differentiation of MSC populations into osteogenic and chondrogenic phenotype within the multiphasic construct, evidenced by upregulation of osteogenesis and condrogenesis related genes during in vitro culture. Comprehensive phenotypic network and pathway analysis results, which were based on genomic expression data, indicated activation of differentiation related mechanisms, via signaling pathways, including TGF, BMP, and vascular endothelial growth factor.

  20. Engineering Anisotropic Biomimetic Fibrocartilage Microenvironment by Bioprinting Mesenchymal Stem Cells in Nanoliter Gel Droplets

    PubMed Central

    2015-01-01

    Over the past decade, bioprinting has emerged as a promising patterning strategy to organize cells and extracellular components both in two and three dimensions (2D and 3D) to engineer functional tissue mimicking constructs. So far, tissue printing has neither been used for 3D patterning of mesenchymal stem cells (MSCs) in multiphase growth factor embedded 3D hydrogels nor been investigated phenotypically in terms of simultaneous differentiation into different cell types within the same micropatterned 3D tissue constructs. Accordingly, we demonstrated a biochemical gradient by bioprinting nanoliter droplets encapsulating human MSCs, bone morphogenetic protein 2 (BMP-2), and transforming growth factor β1 (TGF- β1), engineering an anisotropic biomimetic fibrocartilage microenvironment. Assessment of the model tissue construct displayed multiphasic anisotropy of the incorporated biochemical factors after patterning. Quantitative real time polymerase chain reaction (qRT-PCR) results suggested genomic expression patterns leading to simultaneous differentiation of MSC populations into osteogenic and chondrogenic phenotype within the multiphasic construct, evidenced by upregulation of osteogenesis and condrogenesis related genes during in vitro culture. Comprehensive phenotypic network and pathway analysis results, which were based on genomic expression data, indicated activation of differentiation related mechanisms, via signaling pathways, including TGF, BMP, and vascular endothelial growth factor. PMID:24495169

  1. Use of Amplified Fragment Length Polymorphisms for Typing Corynebacterium diphtheriae

    PubMed Central

    De Zoysa, Aruni; Efstratiou, Androulla

    2000-01-01

    Amplified fragment length polymorphism (AFLP) was investigated for the differentiation of Corynebacterium diphtheriae isolates. Analysis using Taxotron revealed 10 distinct AFLP profiles among 57 isolates. Strains with ribotype patterns D1, D4, and D12 could not be distinguished; however, the technique discriminated isolates of ribotype patterns D3, D6, and D7 further. AFLP was rapid, fairly inexpensive, and reproducible and could be used as an alternative to ribotyping. PMID:11015416

  2. Optical patterning and dynamics of torons and hopfions in a chiral nematic with photo-tunable equilibrium pitch

    NASA Astrophysics Data System (ADS)

    Sohn, Hayley; Ackerman, Paul; Smalyukh, Ivan

    Three-dimensional (3D) topological solitons arise in field theories ranging from particle physics to condensed matter and cosmology. They are the 3D counterparts of 2D skyrmions (often called ``baby skyrmions''), which attract a great deal of interest in studies of chiral ferromagnets and enable the emerging field of skyrmionics. In chiral nematic liquid crystals, the stability of such solitons is enhanced by the chiral medium's tendency to twist the director field describing the 3D spatial patterns of molecular alignment. However, their experimental realization, control and detailed studies remain limited. We combine experimental realization and numerical modeling of such light-responsive solitonic structures, including elementary torons and hopfions, in confined chiral nematic liquid crystals with photo-tunable cholesteric pitch. We show that the optical tunability of the pitch allows for using low-intensity light to control the soliton stability, dimensions, spatial patterning and dynamics.

  3. The performance & flow visualization studies of three-dimensional (3-D) wind turbine blade models

    NASA Astrophysics Data System (ADS)

    Sutrisno, Prajitno, Purnomo, W., Setyawan B.

    2016-06-01

    Recently, studies on the design of 3-D wind turbine blades have a less attention even though 3-D blade products are widely sold. In contrary, advanced studies in 3-D helicopter blade tip have been studied rigorously. Studies in wind turbine blade modeling are mostly assumed that blade spanwise sections behave as independent two-dimensional airfoils, implying that there is no exchange of momentum in the spanwise direction. Moreover, flow visualization experiments are infrequently conducted. Therefore, a modeling study of wind turbine blade with visualization experiment is needed to be improved to obtain a better understanding. The purpose of this study is to investigate the performance of 3-D wind turbine blade models with backward-forward swept and verify the flow patterns using flow visualization. In this research, the blade models are constructed based on the twist and chord distributions following Schmitz's formula. Forward and backward swept are added to the rotating blades. Based on this, the additional swept would enhance or diminish outward flow disturbance or stall development propagation on the spanwise blade surfaces to give better blade design. Some combinations, i. e., b lades with backward swept, provide a better 3-D favorable rotational force of the rotor system. The performance of the 3-D wind turbine system model is measured by a torque meter, employing Prony's braking system. Furthermore, the 3-D flow patterns around the rotating blade models are investigated by applying "tuft-visualization technique", to study the appearance of laminar, separated, and boundary layer flow patterns surrounding the 3-dimentional blade system.

  4. New 3D structuring process for non-integrated circuit related technologies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nouri, Lamia; Possémé, Nicolas; Landis, Stéfan; Milesi, Frédéric; Gaillard, Frédéric-Xavier

    2017-04-01

    Fabrication processes that microelectronic developed for Integrated circuit (IC) technologies for decades, do not meet the new emerging structuration's requirements, in particular non-IC related technologies one, such as MEMS/NEMS, Micro-Fluidics, photovoltaics, lenses. Actually complex 3D structuration requires complex lithography patterning approaches such as gray-scale electron beam lithography, laser ablation, focused ion beam lithography, two photon polymerization. It is now challenging to find cheaper and easiest technique to achieve 3D structures. In this work, we propose a straightforward process to realize 3D structuration, intended for silicon based materials (Si, SiN, SiOCH). This structuration technique is based on nano-imprint lithography (NIL), ion implantation and selective wet etching. In a first step a pattern is performed by lithography on a substrate, then ion implantation is realized through a resist mask in order to create localized modifications in the material, thus the pattern is transferred into the subjacent layer. Finally, after the resist stripping, a selective wet etching is carried out to remove selectively the modified material regarding the non-modified one. In this paper, we will first present results achieved with simple 2D line array pattern processed either on Silicon or SiOCH samples. This step have been carried out to demonstrate the feasibility of this new structuration process. SEM pictures reveals that "infinite" selectivity between the implanted areas versus the non-implanted one could be achieved. We will show that a key combination between the type of implanted ion species and wet etching chemistries is required to obtain such results. The mechanisms understanding involved during both implantation and wet etching processes will also be presented through fine characterizations with Photoluminescence, Raman and Secondary Ion Mass Spectrometry (SIMS) for silicon samples, and ellipso-porosimetry and Fourier Transform InfraRed spectroscopy (FTIR) for SiOCH samples. Finally the benefit of this new patterning approach will be presented on 3D patterns structures.

  5. A real-time 3D range image sensor based on a novel tip-tilt-piston micromirror and dual frequency phase shifting

    NASA Astrophysics Data System (ADS)

    Skotheim, Øystein; Schumann-Olsen, Henrik; Thorstensen, Jostein; Kim, Anna N.; Lacolle, Matthieu; Haugholt, Karl-Henrik; Bakke, Thor

    2015-03-01

    Structured light is a robust and accurate method for 3D range imaging in which one or more light patterns are projected onto the scene and observed with an off-axis camera. Commercial sensors typically utilize DMD- or LCD-based LED projectors, which produce good results but have a number of drawbacks, e.g. limited speed, limited depth of focus, large sensitivity to ambient light and somewhat low light efficiency. We present a 3D imaging system based on a laser light source and a novel tip-tilt-piston micro-mirror. Optical interference is utilized to create sinusoidal fringe patterns. The setup allows fast and easy control of both the frequency and the phase of the fringe patterns by altering the axes of the micro-mirror. For 3D reconstruction we have adapted a Dual Frequency Phase Shifting method which gives robust range measurements with sub-millimeter accuracy. The use of interference for generating sine patterns provides high light efficiency and good focusing properties. The use of a laser and a bandpass filter allows easy removal of ambient light. The fast response of the micro-mirror in combination with a high-speed camera and real-time processing on the GPU allows highly accurate 3D range image acquisition at video rates.

  6. From Flatland to Spaceland: Higher Dimensional Patterning with Two-Dimensional Materials.

    PubMed

    Chen, Po-Yen; Liu, Muchun; Wang, Zhongying; Hurt, Robert H; Wong, Ian Y

    2017-06-01

    The creation of three-dimensional (3D) structures from two-dimensional (2D) nanomaterial building blocks enables novel chemical, mechanical or physical functionalities that cannot be realized with planar thin films or in bulk materials. Here, we review the use of emerging 2D materials to create complex out-of-plane surface topographies and 3D material architectures. We focus on recent approaches that yield periodic textures or patterns, and present four techniques as case studies: (i) wrinkling and crumpling of planar sheets, (ii) encapsulation by crumpled nanosheet shells, (iii) origami folding and kirigami cutting to create programmed curvature, and (iv) 3D printing of 2D material suspensions. Work to date in this field has primarily used graphene and graphene oxide as the 2D building blocks, and we consider how these unconventional approaches may be extended to alternative 2D materials and their heterostructures. Taken together, these emerging patterning and texturing techniques represent an intriguing alternative to conventional materials synthesis and processing methods, and are expected to contribute to the development of new composites, stretchable electronics, energy storage devices, chemical barriers, and biomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Three-dimensional digital microfluidic manipulation of droplets in oil medium

    PubMed Central

    Hong, Jiwoo; Kim, Young Kwon; Won, Dong-Joon; Kim, Joonwon; Lee, Sang Joon

    2015-01-01

    We here develop a three-dimensional DMF (3D DMF) platform with patterned electrodes submerged in an oil medium to provide fundamental solutions to the technical limitations of 2D DMF platforms and water–air systems. 3D droplet manipulation on patterned electrodes is demonstrated by programmably controlling electrical signals. We also demonstrate the formation of precipitates on the 3D DMF platform through the reaction of different chemical samples. A droplet containing precipitates, hanging on the top electrode, can be manipulated without adhesion of precipitates to the solid surface. This method could be a good alternative strategy to alleviate the existing problems of 2D DMF systems such as cross-contamination and solute adsorption. In addition, we ascertain the feasibility of temperature-controlled chemical reaction on the 3D DMF platform by introducing a simple heating process. To demonstrate applicability of the 3D DMF system to 3D biological process, we examine the 3D manipulation of droplets containing mouse fibroblasts in the 3D DMF platform. Finally, we show detachment of droplets wrapped by a flexible thin film by adopting the electro-elasto-capillarity (EEC). The employment of the EEC may offer a strong potential in the development of 3D DMF platforms for drug encapsulation and actuation of microelectromechanical devices. PMID:26033440

  8. Forensic microradiology: micro-computed tomography (Micro-CT) and analysis of patterned injuries inside of bone.

    PubMed

    Thali, Michael J; Taubenreuther, Ulrike; Karolczak, Marek; Braun, Marcel; Brueschweiler, Walter; Kalender, Willi A; Dirnhofer, Richard

    2003-11-01

    When a knife is stabbed in bone, it leaves an impression in the bone. The characteristics (shape, size, etc.) may indicate the type of tool used to produce the patterned injury in bone. Until now it has been impossible in forensic sciences to document such damage precisely and non-destructively. Micro-computed tomography (Micro-CT) offers an opportunity to analyze patterned injuries of tool marks made in bone. Using high-resolution Micro-CT and computer software, detailed analysis of three-dimensional (3D) architecture has recently become feasible and allows microstructural 3D bone information to be collected. With adequate viewing software, data from 2D slice of an arbitrary plane can be extracted from 3D datasets. Using such software as a "digital virtual knife," the examiner can interactively section and analyze the 3D sample. Analysis of the bone injury revealed that Micro-CT provides an opportunity to correlate a bone injury to an injury-causing instrument. Even broken knife tips can be graphically and non-destructively assigned to a suspect weapon.

  9. Computational mining for hypothetical patterns of amino acid side chains in protein data bank (PDB)

    NASA Astrophysics Data System (ADS)

    Ghani, Nur Syatila Ab; Firdaus-Raih, Mohd

    2018-04-01

    The three-dimensional structure of a protein can provide insights regarding its function. Functional relationship between proteins can be inferred from fold and sequence similarities. In certain cases, sequence or fold comparison fails to conclude homology between proteins with similar mechanism. Since the structure is more conserved than the sequence, a constellation of functional residues can be similarly arranged among proteins of similar mechanism. Local structural similarity searches are able to detect such constellation of amino acids among distinct proteins, which can be useful to annotate proteins of unknown function. Detection of such patterns of amino acids on a large scale can increase the repertoire of important 3D motifs since available known 3D motifs currently, could not compensate the ever-increasing numbers of uncharacterized proteins to be annotated. Here, a computational platform for an automated detection of 3D motifs is described. A fuzzy-pattern searching algorithm derived from IMagine an Amino Acid 3D Arrangement search EnGINE (IMAAAGINE) was implemented to develop an automated method for searching of hypothetical patterns of amino acid side chains in Protein Data Bank (PDB), without the need for prior knowledge on related sequence or structure of pattern of interest. We present an example of the searches, which is the detection of a hypothetical pattern derived from known structural motif of C2H2 structural pattern from zinc fingers. The conservation of particular patterns of amino acid side chains in unrelated proteins is highlighted. This approach can act as a complementary method for available structure- and sequence-based platforms and may contribute in improving functional association between proteins.

  10. 3D Dewetting for Crystal Patterning: Toward Regular Single-Crystalline Belt Arrays and Their Functionality.

    PubMed

    Wu, Yuchen; Feng, Jiangang; Su, Bin; Jiang, Lei

    2016-03-16

    Arrays of unidirectional dewetting behaviors can be generated by using 3D-wettability-difference micropillars, yielding highly ordered organic single-crystalline belt arrays. These patterned organic belts show an improved mobility record and can be used as flexible pressure sensors with high sensitivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fabrication of Al2O3 coated 2D TiO2 nanoparticle photonic crystal layers by reverse nano-imprint lithography and plasma enhanced atomic layer deposition.

    PubMed

    Kim, Ki-Kang; Ko, Ki-Young; Ahn, Jinho

    2013-10-01

    This paper reports simple process to enhance the extraction efficiency of photoluminescence (PL) from Eu-doped yttrium oxide (Y2O3:Eu3+) thin-film phosphor (TFP). Two-dimensional (2D) photonic crystal layer (PCL) was fabricated on Y2O3:Eu3+ phosphor films by reverse nano-imprint method using TiO2 nanoparticle solution as a nano-imprint resin and a 2D hole-patterned PDMS stamp. Atomic scale controlled Al2O3 deposition was performed onto this 2D nanoparticle PCL for the optimization of the photonic crystal pattern size and stabilization of TiO2 nanoparticle column structure. As a result, the light extraction efficiency of the Y2O3:Eu3+ phosphor film was improved by 2.0 times compared to the conventional Y2O3:Eu3+ phosphor film.

  12. Fabrication of Thickness-Controllable Micropatterned Polyelectrolyte-Film/Nanoparticle Surfaces by Using the Plasma Oxidation Method.

    PubMed

    Zhu, Chun-Tao; Ma, Sheng-Hua; Zhang, Ying; Wang, Xue-Jing; Lv, Peng; Han, Xiao-Jun

    2016-04-05

    We have demonstrated a novel way to form thickness-controllable polyelectrolyte-film/nanoparticle patterns by using a plasma etching technique to form, first, a patterned self-assembled monolayer surface, followed by layer-by-layer assembly of polyelectrolyte-films/nanoparticles. Octadecyltrimethoxysilane (ODS) and (3-aminopropyl)triethoxysilane (APTES) self-assembled monolayers (SAMs) were used for polyelectrolyte-film and nanoparticle patterning, respectively. The resolution of the proposed patterning method can easily reach approximately 2.5 μm. The height of the groove structure was tunable from approximately 2.5 to 150 nm. The suspended lipid membrane across the grooves was fabricated by incubating the patterned polyelectrolyte groove arrays in solutions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) giant unilamellar vesicles (GUVs). The method demonstrated here reveals a new path to create patterned 2D or 3D structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. 2D DOST based local phase pattern for face recognition

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2017-05-01

    A new two dimensional (2-D) Discrete Orthogonal Stcokwell Transform (DOST) based Local Phase Pattern (LPP) technique has been proposed for efficient face recognition. The proposed technique uses 2-D DOST as preliminary preprocessing and local phase pattern to form robust feature signature which can effectively accommodate various 3D facial distortions and illumination variations. The S-transform, is an extension of the ideas of the continuous wavelet transform (CWT), is also known for its local spectral phase properties in time-frequency representation (TFR). It provides a frequency dependent resolution of the time-frequency space and absolutely referenced local phase information while maintaining a direct relationship with the Fourier spectrum which is unique in TFR. After utilizing 2-D Stransform as the preprocessing and build local phase pattern from extracted phase information yield fast and efficient technique for face recognition. The proposed technique shows better correlation discrimination compared to alternate pattern recognition techniques such as wavelet or Gabor based face recognition. The performance of the proposed method has been tested using the Yale and extended Yale facial database under different environments such as illumination variation and 3D changes in facial expressions. Test results show that the proposed technique yields better performance compared to alternate time-frequency representation (TFR) based face recognition techniques.

  14. Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson's Ratio and Superelasticity.

    PubMed

    Zhang, Qiangqiang; Xu, Xiang; Lin, Dong; Chen, Wenli; Xiong, Guoping; Yu, Yikang; Fisher, Timothy S; Li, Hui

    2016-03-16

    A hyperbolically patterned 3D graphene metamaterial (GM) with negative Poisson's ratio and superelasticity is highlighted. It is synthesized by a modified hydrothermal approach and subsequent oriented freeze-casting strategy. GM presents a tunable Poisson's ratio by adjusting the structural porosity, macroscopic aspect ratio (L/D), and freeze-casting conditions. Such a GM suggests promising applications as soft actuators, sensors, robust shock absorbers, and environmental remediation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. HOSVD-Based 3D Active Appearance Model: Segmentation of Lung Fields in CT Images.

    PubMed

    Wang, Qingzhu; Kang, Wanjun; Hu, Haihui; Wang, Bin

    2016-07-01

    An Active Appearance Model (AAM) is a computer vision model which can be used to effectively segment lung fields in CT images. However, the fitting result is often inadequate when the lungs are affected by high-density pathologies. To overcome this problem, we propose a Higher-order Singular Value Decomposition (HOSVD)-based Three-dimensional (3D) AAM. An evaluation was performed on 310 diseased lungs form the Lung Image Database Consortium Image Collection. Other contemporary AAMs operate directly on patterns represented by vectors, i.e., before applying the AAM to a 3D lung volume,it has to be vectorized first into a vector pattern by some technique like concatenation. However, some implicit structural or local contextual information may be lost in this transformation. According to the nature of the 3D lung volume, HOSVD is introduced to represent and process the lung in tensor space. Our method can not only directly operate on the original 3D tensor patterns, but also efficiently reduce the computer memory usage. The evaluation resulted in an average Dice coefficient of 97.0 % ± 0.59 %, a mean absolute surface distance error of 1.0403 ± 0.5716 mm, a mean border positioning errors of 0.9187 ± 0.5381 pixel, and a Hausdorff Distance of 20.4064 ± 4.3855, respectively. Experimental results showed that our methods delivered significant and better segmentation results, compared with the three other model-based lung segmentation approaches, namely 3D Snake, 3D ASM and 3D AAM.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devpura, S; Li, H; Liu, C

    Purpose: To correlate dose distributions computed using six algorithms for recurrent early stage non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiotherapy (SBRT), with outcome (local failure). Methods: Of 270 NSCLC patients treated with 12Gyx4, 20 were found to have local recurrence prior to the 2-year time point. These patients were originally planned with 1-D pencil beam (1-D PB) algorithm. 4D imaging was performed to manage tumor motion. Regions of local failures were determined from follow-up PET-CT scans. Follow-up CT images were rigidly fused to the planning CT (pCT), and recurrent tumor volumes (Vrecur) were mapped to themore » pCT. Dose was recomputed, retrospectively, using five algorithms: 3-D PB, collapsed cone convolution (CCC), anisotropic analytical algorithm (AAA), AcurosXB, and Monte Carlo (MC). Tumor control probability (TCP) was computed using the Marsden model (1,2). Patterns of failure were classified as central, in-field, marginal, and distant for Vrecur ≥95% of prescribed dose, 95–80%, 80–20%, and ≤20%, respectively (3). Results: Average PTV D95 (dose covering 95% of the PTV) for 3-D PB, CCC, AAA, AcurosXB, and MC relative to 1-D PB were 95.3±2.1%, 84.1±7.5%, 84.9±5.7%, 86.3±6.0%, and 85.1±7.0%, respectively. TCP values for 1-D PB, 3-D PB, CCC, AAA, AcurosXB, and MC were 98.5±1.2%, 95.7±3.0, 79.6±16.1%, 79.7±16.5%, 81.1±17.5%, and 78.1±20%, respectively. Patterns of local failures were similar for 1-D and 3D PB plans, which predicted that the majority of failures occur in centraldistal regions, with only ∼15% occurring distantly. However, with convolution/superposition and MC type algorithms, the majority of failures (65%) were predicted to be distant, consistent with the literature. Conclusion: Based on MC and convolution/superposition type algorithms, average PTV D95 and TCP were ∼15% lower than the planned 1-D PB dose calculation. Patterns of failure results suggest that MC and convolution/superposition type algorithms predict different outcomes for patterns of failure relative to PB algorithms. Work supported in part by Varian Medical Systems, Palo Alto, CA.« less

  17. Microfabricating 3D Structures by Laser Origami

    DTIC Science & Technology

    2011-11-09

    10.1117/2.1201111.003952 Microfabricating 3D structures by laser origami Alberto Piqué, Scott Mathews, Andrew Birnbaum, and Nicholas Charipar A new...folding known as origami allows the transformation of flat patterns into 3D shapes. A similar approach can be used to generate 3D structures com...materials Figure 1. (A–C) Schematic illustrating the steps in the laser origami process and (D) a resulting folded out-of-plane 3D structure. that can

  18. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors

    PubMed Central

    Yuan, Liang (Leon); Herman, Peter R.

    2016-01-01

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems. PMID:26922872

  19. Three-dimensional chimera patterns in networks of spiking neuron oscillators

    NASA Astrophysics Data System (ADS)

    Kasimatis, T.; Hizanidis, J.; Provata, A.

    2018-05-01

    We study the stable spatiotemporal patterns that arise in a three-dimensional (3D) network of neuron oscillators, whose dynamics is described by the leaky integrate-and-fire (LIF) model. More specifically, we investigate the form of the chimera states induced by a 3D coupling matrix with nonlocal topology. The observed patterns are in many cases direct generalizations of the corresponding two-dimensional (2D) patterns, e.g., spheres, layers, and cylinder grids. We also find cylindrical and "cross-layered" chimeras that do not have an equivalent in 2D systems. Quantitative measures are calculated, such as the ratio of synchronized and unsynchronized neurons as a function of the coupling range, the mean phase velocities, and the distribution of neurons in mean phase velocities. Based on these measures, the chimeras are categorized in two families. The first family of patterns is observed for weaker coupling and exhibits higher mean phase velocities for the unsynchronized areas of the network. The opposite holds for the second family, where the unsynchronized areas have lower mean phase velocities. The various measures demonstrate discontinuities, indicating criticality as the parameters cross from the first family of patterns to the second.

  20. Single shot laser speckle based 3D acquisition system for medical applications

    NASA Astrophysics Data System (ADS)

    Khan, Danish; Shirazi, Muhammad Ayaz; Kim, Min Young

    2018-06-01

    The state of the art techniques used by medical practitioners to extract the three-dimensional (3D) geometry of different body parts requires a series of images/frames such as laser line profiling or structured light scanning. Movement of the patients during scanning process often leads to inaccurate measurements due to sequential image acquisition. Single shot structured techniques are robust to motion but the prevalent challenges in single shot structured light methods are the low density and algorithm complexity. In this research, a single shot 3D measurement system is presented that extracts the 3D point cloud of human skin by projecting a laser speckle pattern using a single pair of images captured by two synchronized cameras. In contrast to conventional laser speckle 3D measurement systems that realize stereo correspondence by digital correlation of projected speckle patterns, the proposed system employs KLT tracking method to locate the corresponding points. The 3D point cloud contains no outliers and sufficient quality of 3D reconstruction is achieved. The 3D shape acquisition of human body parts validates the potential application of the proposed system in the medical industry.

  1. Optimizing Micromixer Surfaces To Deter Biofouling.

    PubMed

    Waters, James T; Liu, Ya; Li, Like; Balazs, Anna C

    2018-03-07

    Using computational modeling, we show that the dynamic interplay between a flowing fluid and the appropriately designed surface relief pattern can inhibit the fouling of the substrate. We specifically focus on surfaces that are decorated with three-dimensional (3D) chevron or sawtooth "micromixer" patterns and model the fouling agents (e.g., cells) as spherical microcapsules. The interaction between the imposed shear flow and the chevrons on the surface generates 3D vortices in the system. We pinpoint a range of shear rates where the forces from these vortices can rupture the bonds between the two mobile microcapsules near the surface. Notably, the patterned surface offers fewer points of attachment than a flat substrate, and the shear flows readily transport the separated capsules away from the layer. We contrast the performance of surfaces that encompass rectangular posts, chevrons, and asymmetric sawtooth patterns and thereby identify the geometric factors that cause the sawtooth structure to be most effective at disrupting the bonding between the capsules. By breaking up nascent clusters of contaminant cells, these 3D relief patterns can play a vital role in disrupting the biofouling of surfaces immersed in flowing fluids.

  2. Creutzfeldt-Jakob Disease Mimicking Alzheimer Disease and Dementia With Lewy Bodies-Findings of FDG PET With 3-Dimensional Stereotactic Surface Projection.

    PubMed

    Miyazawa, Nobuhiko

    2017-05-01

    A 78-year-old man received a diagnosis of sporadic Creutzfeldt-Jakob disease based on symptoms and findings of MRI, FDG PET, and cerebrospinal fluid markers. PET with 3-dimensional stereotactic surface projection (3D-SSP) showed that the distribution of hypometabolism mimicked that of Alzheimer disease. A 68-year-old woman was treated under a diagnosis of convulsion. Findings of MRI, PET, familial history, and cerebrospinal fluid markers revealed familial Creutzfeldt-Jakob disease. FDG PET with 3D-SSP disclosed that the hypometabolic pattern mimicked that of dementia with Lewy bodies. FDG PET with 3D-SSP can demonstrate similar patterns in various neurodegenerative disorders.

  3. Structured Light Based 3d Scanning for Specular Surface by the Combination of Gray Code and Phase Shifting

    NASA Astrophysics Data System (ADS)

    Zhang, Yujia; Yilmaz, Alper

    2016-06-01

    Surface reconstruction using coded structured light is considered one of the most reliable techniques for high-quality 3D scanning. With a calibrated projector-camera stereo system, a light pattern is projected onto the scene and imaged by the camera. Correspondences between projected and recovered patterns are computed in the decoding process, which is used to generate 3D point cloud of the surface. However, the indirect illumination effects on the surface, such as subsurface scattering and interreflections, will raise the difficulties in reconstruction. In this paper, we apply maximum min-SW gray code to reduce the indirect illumination effects of the specular surface. We also analysis the errors when comparing the maximum min-SW gray code and the conventional gray code, which justifies that the maximum min-SW gray code has significant superiority to reduce the indirect illumination effects. To achieve sub-pixel accuracy, we project high frequency sinusoidal patterns onto the scene simultaneously. But for specular surface, the high frequency patterns are susceptible to decoding errors. Incorrect decoding of high frequency patterns will result in a loss of depth resolution. Our method to resolve this problem is combining the low frequency maximum min-SW gray code and the high frequency phase shifting code, which achieves dense 3D reconstruction for specular surface. Our contributions include: (i) A complete setup of the structured light based 3D scanning system; (ii) A novel combination technique of the maximum min-SW gray code and phase shifting code. First, phase shifting decoding with sub-pixel accuracy. Then, the maximum min-SW gray code is used to resolve the ambiguity resolution. According to the experimental results and data analysis, our structured light based 3D scanning system enables high quality dense reconstruction of scenes with a small number of images. Qualitative and quantitative comparisons are performed to extract the advantages of our new combined coding method.

  4. Impact of culture conditions on β-carotene encapsulation using Yarrowia lipolytica cells

    NASA Astrophysics Data System (ADS)

    Dang, Tran Hai; Minh, Ho Thi Thu; Van Nhi, Tran Nguyen; Ngoc, Ta Thi Minh

    2017-09-01

    Yeast cell was reported as an effective natural preformed material for use in encapsulation of hydrophobic compounds. The encapsulation process was normally considered as passive transfer through cellular wall and cellular membrane. Beside solubility of hydrophobic compound in phospholipid membrane or plasmolysis, membrane characteristics of yeast cell which are differed between strains and influenced by culture conditions are main factors involving the accumulation of hydrophobic compound into yeast cell. In this study, the oleaginous yeast Yarrowia lipolytica was used as micro-container shell to encapsulate a high hydrophobic compound - β-carotene. Yeast cell was cultured under different conditions and wet yeast biomass was incubated with β-carotene which was dissolved in soybean oil overnight. β-carotene accumulation was then extracted and evaluated by UV-VIS spectrometry. Optimization of culture condition was investigated using the Box-Behnken model. β-carotene encapsulation efficiency in Y. lipolytica was showed to be affected by both pH of medium and agitation conditions. The highest β-carotene encapsulation efficiency was optimized at 42.8 μg/g with Y. lipolytica cultured at pH 4.5, medium volume equal to 115 ml and agitation speed at 211 rpm.

  5. Does shape co-variation between the skull and the mandible have functional consequences? A 3D approach for a 3D problem

    PubMed Central

    Cornette, Raphaël; Baylac, Michel; Souter, Thibaud; Herrel, Anthony

    2013-01-01

    Morpho-functional patterns are important drivers of phenotypic diversity given their importance in a fitness-related context. Although modularity of the mandible and skull has been studied extensively in mammals, few studies have explored shape co-variation between these two structures. Despite being developmentally independent, the skull and mandible form a functionally integrated unit. In the present paper we use 3D surface geometric morphometric methods allowing us to explore the form of both skull and mandible in its 3D complexity using the greater white-toothed shrew as a model. This approach allows an accurate 3D description of zones devoid of anatomical landmarks that are functionally important. Two-block partial least-squares approaches were used to describe the co-variation of form between skull and mandible. Moreover, a 3D biomechanical model was used to explore the functional consequences of the observed patterns of co-variation. Our results show the efficiency of the method in investigations of complex morpho-functional patterns. Indeed, the description of shape co-variation between the skull and the mandible highlighted the location and the intensity of their functional relationships through the jaw adductor muscles linking these two structures. Our results also demonstrated that shape co-variation in form between the skull and mandible has direct functional consequences on the recruitment of muscles during biting. PMID:23964811

  6. A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks.

    PubMed

    Yuk, Hyunwoo; Zhao, Xuanhe

    2018-02-01

    Direct ink writing (DIW) has demonstrated great potential as a multimaterial multifunctional fabrication method in areas as diverse as electronics, structural materials, tissue engineering, and soft robotics. During DIW, viscoelastic inks are extruded out of a 3D printer's nozzle as printed fibers, which are deposited into patterns when the nozzle moves. Hence, the resolution of printed fibers is commonly limited by the nozzle's diameter, and the printed pattern is limited by the motion paths. These limits have severely hampered innovations and applications of DIW 3D printing. Here, a new strategy to exceed the limits of DIW 3D printing by harnessing deformation, instability, and fracture of viscoelastic inks is reported. It is shown that a single nozzle can print fibers with resolution much finer than the nozzle diameter by stretching the extruded ink, and print various thickened or curved patterns with straight nozzle motions by accumulating the ink. A quantitative phase diagram is constructed to rationally select parameters for the new strategy. Further, applications including structures with tunable stiffening, 3D structures with gradient and programmable swelling properties, all printed with a single nozzle are demonstrated. The current work demonstrates that the mechanics of inks plays a critical role in developing 3D printing technology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. 3D capillary stop valves for versatile patterning inside microfluidic chips.

    PubMed

    Papadimitriou, V A; Segerink, L I; van den Berg, A; Eijkel, J C T

    2018-02-13

    The patterning of antibodies in microfluidics chips is always a delicate process that is usually done in an open chip before bonding. Typical bonding techniques such as plasma treatment can harm the antibodies with as result that they are removed from our fabrication toolbox. Here we propose a method, based on capillary phenomena using 3D capillary valves, that autonomously and conveniently allows us to pattern liquids inside closed chips. We theoretically analyse the system and demonstrate how our analysis can be used as a design tool for various applications. Chips patterned with the method were used for simple immunodetection of a cardiac biomarker which demonstrates its suitability for antibody patterning. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Laser direct-write for fabrication of three-dimensional paper-based devices.

    PubMed

    He, P J W; Katis, I N; Eason, R W; Sones, C L

    2016-08-16

    We report the use of a laser-based direct-write (LDW) technique that allows the design and fabrication of three-dimensional (3D) structures within a paper substrate that enables implementation of multi-step analytical assays via a 3D protocol. The technique is based on laser-induced photo-polymerisation, and through adjustment of the laser writing parameters such as the laser power and scan speed we can control the depths of hydrophobic barriers that are formed within a substrate which, when carefully designed and integrated, produce 3D flow paths. So far, we have successfully used this depth-variable patterning protocol for stacking and sealing of multi-layer substrates, for assembly of backing layers for two-dimensional (2D) lateral flow devices and finally for fabrication of 3D devices. Since the 3D flow paths can also be formed via a single laser-writing process by controlling the patterning parameters, this is a distinct improvement over other methods that require multiple complicated and repetitive assembly procedures. This technique is therefore suitable for cheap, rapid and large-scale fabrication of 3D paper-based microfluidic devices.

  9. Three-dimensional reconstruction of tetraploid↔diploid chimaeric mouse blastocysts

    PubMed Central

    EVERETT, CLARE A.; STARK, MARGARET H.; WEST, JOHN D.; DAVIDSON, DUNCAN; BALDOCK, RICHARD A.

    2000-01-01

    Studies of tetraploid↔diploid (4n↔2n) mouse chimaeras have demonstrated unequal contributions of 4n cells to different tissues of the midgestation conceptus. Such a pattern has also been reported in chimaeras as early as E3.5d, which show an enhanced contribution of 4n cells to the mural trophectoderm (Everett & West, 1996). In this study, sectioned 4n↔2n and 2n↔2n control chimaeric blastocysts were digitised and reconstructed in 3 dimensions (3-D). The 3-D images revealed only limited mixing of cells from the 2 contributing embryos of individual blastocysts in both chimaera groups. Consequently, the distribution pattern of the 2 cell types was dependent on the spatial relationship between the orientation of the blastocyst and the boundary between the 2 clusters of cells. The distribution patterns observed were not strikingly different for 4n↔2n and 2n↔2n chimaeras, each showing some transgenic positive cell contribution in all 3 identifiable developmental lineages. It was notable, however, that in all 4n↔2n blastocysts at least some 4n cells were located adjacent to the blastocyst cavity. Such a consistent pattern was not evident in 2n↔2n chimaeras. This study has demonstrated the value of 3-D reconstructions for the analysis of spatial relationships of 2 cell populations in chimaeric mouse blastocysts. PMID:10853956

  10. A High-Resolution 3D Separated-Local-Field Experiment by Means of Magic-Angle Turning

    PubMed

    Hu; Alderman; Pugmire; Grant

    1997-05-01

    A 3D separated-local-field (SLF) experiment based on the 2D PHORMAT technique is described. In the 3D experiment, the conventional 2D SLF powder pattern for each chemically inequivalent carbon is separated according to their different isotropic chemical shifts. The dipolar coupling constant of a C-H pair, hence the bond distance, and the relative orientation of the chemical-shift tensor to the C-H vector can all be determined for the protonated carbons with a single measurement. As the sample turns at only about 30 Hz in a MAT experiment, the SLF patterns obtained approach those of a stationary sample, and an accuracy in the measurement similar to that obtained on a stationary sample is expected. The technique is demonstrated on 2,6-dimethoxynaphthalene, where the 13 C-1 H separated-local-field powder patterns for the six chemically inequivalent carbons are clearly identified and measured. The observed dipolar coupling for the methoxy carbon is effectively reduced by the fast rotation of the group about its C3 symmetry axis. The average angle between the C-H bond direction and the C3 rotation axis in the OCH3 group is found to be about 66°.

  11. Trace element mobility in dolomitic argillites of the Mesoproterozoic Belt-Purcell Supergroup, Western North America

    NASA Astrophysics Data System (ADS)

    González-Álvarez, Ignacio; Kerrich, Robert

    2011-04-01

    The Belt-Purcell Supergroup comprises dolomite-rich stratigraphic units in a dominantly siliciclastic succession, where sedimentation spans 1400-1470 Ma. Dolomitic units are variable mixtures of co-sedimented argillite and primary carbonate post-depositionally converted to secondary dolomite. Based on rare earth element (REE) relationships three distinct REE patterns are identified in the dolomite-rich units: Type 1 (T1d; d = dolomitic sample) with REE patterns parallel to post-Archean Upper Continental Crust (PA-UCC), albeit at lower absolute abundances due to dilution by carbonate content; Type 2 (T2d) with Heavy REE (HREE) enrichment but Light REE (LREE) depletion relative to T1d; and Type 3 (T3d) with enrichment in LREE and HREE relative to T1d, but erratic Middle REE (MREE) patterns. There is a progressive increase of ΣREE from T1d through T2d to T3d, whereas for ΣLREE/ΣHREE T2d < T1d < T3d. T1d-T2d and T3d represent three different "snapshots" of a continuous process. In terms of timing, dolomitization of calcite primary sediment in all samples likely took place broadly during burial diagenesis, as inferred for most Proterozoic dolomites. T1d is easily explained by provenance: however, T2d and T3d cannot be related to provenance, weathering or sedimentary sorting processes to explain higher concentrations of HREE referenced to PA-UCC and consequently developed in the sediment from a T1d precursor. The same three REE signatures have been described in previous studies in counterpart siliciclastic counterparts throughout the Belt-Purcell Supergroup at three different locations. Mobility of normally stable REE is accompanied by mobility of normally isochemical high field strength elements (HFSE) in T2d and T3d to give REE/REE, HFSE/HFSE, REE/HFSE and Y/HREE fractionations. No specific REE-HFSE signatures are apparent in the carbonate-rich units as compared to their non-dolomitic siliciclastic counterparts. This unusual mobility of REE and HFSE reflected in T2d and T3d is attributed to alkaline oxidizing post-depositional brines. Salinity was derived from seawater-sediment reactions, dissolution of evaporite minerals, and the smectite-illite transformation, whereas alkaline oxidizing conditions were promoted by groundwater interaction with mafic units in the basin, CO 2 introduced into the system during episodic rifting with mantle degassing, and interaction of syn-sedimentary mafic intrusions with carbonate units at early stages of BPS deposition. Intermittent brine activity, inducing T2d and T3d patterns, spanned >1 Ga as recorded by secondary monazite grains with age distributions that correspond to large scale tectono-thermal events in Laurentia. Post-depositional processes and redistribution of carbonate can have an impact on transitional stratigraphic contacts between dolomitic and siliciclastic units which may have been incorrectly described as primary due to sedimentary environment changes.

  12. Printing of Patterned, Engineered E. coli Biofilms with a Low-Cost 3D Printer.

    PubMed

    Schmieden, Dominik T; Basalo Vázquez, Samantha J; Sangüesa, Héctor; van der Does, Marit; Idema, Timon; Meyer, Anne S

    2018-05-18

    Biofilms can grow on virtually any surface available, with impacts ranging from endangering the lives of patients to degrading unwanted water contaminants. Biofilm research is challenging due to the high degree of biofilm heterogeneity. A method for the production of standardized, reproducible, and patterned biofilm-inspired materials could be a boon for biofilm research and allow for completely new engineering applications. Here, we present such a method, combining 3D printing with genetic engineering. We prototyped a low-cost 3D printer that prints bioink, a suspension of bacteria in a solution of alginate that solidifies on a calcium-containing substrate. We 3D-printed Escherichia coli in different shapes and in discrete layers, after which the cells survived in the printing matrix for at least 1 week. When printed bacteria were induced to form curli fibers, the major proteinaceous extracellular component of E. coli biofilms, they remained adherent to the printing substrate and stably spatially patterned even after treatment with a matrix-dissolving agent, indicating that a biofilm-mimicking structure had formed. This work is the first demonstration of patterned, biofilm-inspired living materials that are produced by genetic control over curli formation in combination with spatial control by 3D printing. These materials could be used as living, functional materials in applications such as water filtration, metal ion sequestration, or civil engineering, and potentially as standardizable models for certain curli-containing biofilms.

  13. Viewpoint Invariant Gesture Recognition and 3D Hand Pose Estimation Using RGB-D

    ERIC Educational Resources Information Center

    Doliotis, Paul

    2013-01-01

    The broad application domain of the work presented in this thesis is pattern classification with a focus on gesture recognition and 3D hand pose estimation. One of the main contributions of the proposed thesis is a novel method for 3D hand pose estimation using RGB-D. Hand pose estimation is formulated as a database retrieval problem. The proposed…

  14. Characteristics of digital micromirror projection for 3D shape measurement at extreme speed

    NASA Astrophysics Data System (ADS)

    Höfling, Roland; Aswendt, Petra; Leischnig, Frank; Förster, Matthias

    2015-03-01

    3D shape measurement is one of the growing industrial applications of the Texas Instruments DLP® micro-mirror device. This paper presents investigations on precision and repeatability of that spatial light modulators output when it is driven up to its high-speed limit. The study concerns the basic switching behavior of the individual micro-mirror at different frame rates ranging over three orders of magnitude. The 3D shape measuring methodologies are focused on phase encoded triangulation, i.e. the projection of sinusoidal patterns. The DLP chip is a bi-stable device providing an on/off pattern at each certain moment in time, i.e. it has a native binary output. Sinusoidal patterns are the result of either a temporal integration of multiple on/off patterns or a spatial integration within one on/off pattern. Both approaches are studied experimentally with respect to precision and stability of the pattern output. The STAR-07 industrial projection unit, based upon the 0.7" DLP Discovery™4100 chipset, has been used for this work and the pattern frame rates cover the range from 225 frames per second (fps) to 50,000 fps. The STAR-07 output is detected by a photodiode, amplified, and analyzed in a Yokogawa digital storage oscilloscope. All results prove the very high precision and repeatability of the STAR-07 pattern projection, up to the extreme speed of 50,000 fps.

  15. 3D mapping of breast surface using digital fringe projection

    NASA Astrophysics Data System (ADS)

    Vairavan, Rajendaran; Retnasamy, Vithyacharan; Mohamad Shahimin, Mukhzeer; Sauli, Zaliman; Leng, Lai Siang; Wan Norhaimi, Wan Mokhzani; Marimuthu, Rajeswaran; Abdullah, Othman; Kirtsaeng, Supap

    2017-02-01

    Optical sensing technique has inherited non-contact nature for generating 3D surface mapping where its application ranges from MEMS component characterization, corrosion analysis, and vibration analysis. In particular, the digital fringe projection is utilized for 3D mapping of objects through the illumination of structured light for medical application extending from oral dental measurements, lower back deformation analysis, monitoring of scoliosis and 3D face reconstruction for biometric identification. However, the usage of digital fringe projection for 3D mapping of human breast is very minimal. Thus, this paper addresses the application of digital fringe projection for 3D mapping of breast surface based on total non-contact nature. In this work, phase shift method is utilized to perform the 3D mapping. The phase shifted fringe pattern are displayed through a digital projector onto the breast surface, and the distorted fringe patterns are captured by a CCD camera. A phase map is produced, and phase unwrapping was executed to obtain the 3D surface mapping of the breast. The surface height profile from 3D fringe projection was compared with the surface height measured by a direct method using electronic digital vernier caliper. Preliminary results showed the feasibility of digital fringe projection in providing a 3D mapping of breast and its application could be further extended for breast carcinoma detection.

  16. Methods and devices for fabricating three-dimensional nanoscale structures

    DOEpatents

    Rogers, John A.; Jeon, Seokwoo; Park, Jangung

    2010-04-27

    The present invention provides methods and devices for fabricating 3D structures and patterns of 3D structures on substrate surfaces, including symmetrical and asymmetrical patterns of 3D structures. Methods of the present invention provide a means of fabricating 3D structures having accurately selected physical dimensions, including lateral and vertical dimensions ranging from 10s of nanometers to 1000s of nanometers. In one aspect, methods are provided using a mask element comprising a conformable, elastomeric phase mask capable of establishing conformal contact with a radiation sensitive material undergoing photoprocessing. In another aspect, the temporal and/or spatial coherence of electromagnetic radiation using for photoprocessing is selected to fabricate complex structures having nanoscale features that do not extend entirely through the thickness of the structure fabricated.

  17. Fabrication of 3D SiO x structures using patterned PMMA sacrificial layer

    NASA Astrophysics Data System (ADS)

    Li, Zhiqin; Xiang, Quan; Zheng, Mengjie; Bi, Kaixi; Chen, Yiqin; Chen, Keqiu; Duan, Huigao

    2018-02-01

    Three-dimensional (3D) nanofabrication based on electron-beam lithography (EBL) has drawn wide attention for various applications with its high patterning resolution and design flexibility. In this work, we present a bilayer EBL process to obtain 3D freestanding SiO x structures via the release of the bottom sacrificial layer. This new kind of bilayer process enables us to define various 3D freestanding SiO x structures with high resolution and low edge roughness. As a proof of concept for applications, metal-coated freestanding SiO x microplates with an underlying air gap were fabricated to form asymmetric Fabry-Perot resonators, which can be utilized for colorimetric refractive index sensing and thus also have application potential for biochemical detection, anti-counterfeiting and smart active nano-optical devices.

  18. Three-dimensional reconstruction for coherent diffraction patterns obtained by XFEL.

    PubMed

    Nakano, Miki; Miyashita, Osamu; Jonic, Slavica; Song, Changyong; Nam, Daewoong; Joti, Yasumasa; Tama, Florence

    2017-07-01

    The three-dimensional (3D) structural analysis of single particles using an X-ray free-electron laser (XFEL) is a new structural biology technique that enables observations of molecules that are difficult to crystallize, such as flexible biomolecular complexes and living tissue in the state close to physiological conditions. In order to restore the 3D structure from the diffraction patterns obtained by the XFEL, computational algorithms are necessary as the orientation of the incident beam with respect to the sample needs to be estimated. A program package for XFEL single-particle analysis based on the Xmipp software package, that is commonly used for image processing in 3D cryo-electron microscopy, has been developed. The reconstruction program has been tested using diffraction patterns of an aerosol nanoparticle obtained by tomographic coherent X-ray diffraction microscopy.

  19. Motion processing with two eyes in three dimensions.

    PubMed

    Rokers, Bas; Czuba, Thaddeus B; Cormack, Lawrence K; Huk, Alexander C

    2011-02-11

    The movement of an object toward or away from the head is perhaps the most critical piece of information an organism can extract from its environment. Such 3D motion produces horizontally opposite motions on the two retinae. Little is known about how or where the visual system combines these two retinal motion signals, relative to the wealth of knowledge about the neural hierarchies involved in 2D motion processing and binocular vision. Canonical conceptions of primate visual processing assert that neurons early in the visual system combine monocular inputs into a single cyclopean stream (lacking eye-of-origin information) and extract 1D ("component") motions; later stages then extract 2D pattern motion from the cyclopean output of the earlier stage. Here, however, we show that 3D motion perception is in fact affected by the comparison of opposite 2D pattern motions between the two eyes. Three-dimensional motion sensitivity depends systematically on pattern motion direction when dichoptically viewing gratings and plaids-and a novel "dichoptic pseudoplaid" stimulus provides strong support for use of interocular pattern motion differences by precluding potential contributions from conventional disparity-based mechanisms. These results imply the existence of eye-of-origin information in later stages of motion processing and therefore motivate the incorporation of such eye-specific pattern-motion signals in models of motion processing and binocular integration.

  20. Tuning the Growth Pattern in 2D Confinement Regime of Sm2O3 and the Emerging Room Temperature Unusual Superparamagnetism

    PubMed Central

    Guria, Amit K.; Dey, Koushik; Sarkar, Suresh; Patra, Biplab K.; Giri, Saurav; Pradhan, Narayan

    2014-01-01

    Programming the reaction chemistry for superseding the formation of Sm2O3 in a competitive process of formation and dissolution, the crystal growth patterns are varied and two different nanostructures of Sm2O3 in 2D confinement regime are designed. Among these, the regular and self-assembled square platelets nanostructures exhibit paramagnetic behavior analogous to the bulk Sm2O3. But, the other one, 2D flower like shaped nanostructure, formed by irregular crystal growth, shows superparamagnetism at room temperature which is unusual for bulk paramagnet. It has been noted that the variation in the crystal growth pattern is due to the difference in the binding ability of two organic ligands, oleylamine and oleic acid, used for the synthesis and the magnetic behavior of the nanostructures is related to the defects incorporated during the crystal growth. Herein, we inspect the formation chemistry and plausible origin of contrasting magnetism of these nanostructures of Sm2O3. PMID:25269458

  1. A Multi-Modal Face Recognition Method Using Complete Local Derivative Patterns and Depth Maps

    PubMed Central

    Yin, Shouyi; Dai, Xu; Ouyang, Peng; Liu, Leibo; Wei, Shaojun

    2014-01-01

    In this paper, we propose a multi-modal 2D + 3D face recognition method for a smart city application based on a Wireless Sensor Network (WSN) and various kinds of sensors. Depth maps are exploited for the 3D face representation. As for feature extraction, we propose a new feature called Complete Local Derivative Pattern (CLDP). It adopts the idea of layering and has four layers. In the whole system, we apply CLDP separately on Gabor features extracted from a 2D image and depth map. Then, we obtain two features: CLDP-Gabor and CLDP-Depth. The two features weighted by the corresponding coefficients are combined together in the decision level to compute the total classification distance. At last, the probe face is assigned the identity with the smallest classification distance. Extensive experiments are conducted on three different databases. The results demonstrate the robustness and superiority of the new approach. The experimental results also prove that the proposed multi-modal 2D + 3D method is superior to other multi-modal ones and CLDP performs better than other Local Binary Pattern (LBP) based features. PMID:25333290

  2. In Situ 3D Coherent X-ray Diffraction Imaging of Shock Experiments: Possible?

    NASA Astrophysics Data System (ADS)

    Barber, John

    2011-03-01

    In traditional coherent X-ray diffraction imaging (CXDI), a 2D or quasi-2D object is illuminated by a beam of coherent X-rays to produce a diffraction pattern, which is then manipulated via a process known as iterative phase retrieval to reconstruct an image of the original 2D sample. Recently, there have been dramatic advances in methods for performing fully 3D CXDI of a sample from a single diffraction pattern [Raines et al, Nature 463 214-7 (2010)], and these methods have been used to image samples tens of microns in size using soft X-rays. In this work, I explore the theoretical possibility of applying 3D CXDI techniques to the in situ imaging of the interaction between a shock front and a polycrystal, a far more stringent problem. A delicate trade-off is required between photon energy, spot size, imaging resolution, and the dimensions of the experimental setup. In this talk, I will outline the experimental and computational requirements for performing such an experiment, and I will present images and movies from simulations of one such hypothetical experiment, including both the time-resolved X-ray diffraction patterns and the time-resolved sample imagery.

  3. Three-dimensional imaging of nanoscale materials by using coherent x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Jianwei

    X-ray crystallography is currently the primary methodology used to determine the 3D structure of materials and macromolecules. However, many nanostructures, disordered materials, biomaterials, hybrid materials and biological specimens are noncrystalline and, hence, their structures are not accessible by X-ray crystallography. Probing these structures therefore requires the employment of different approaches. A very promising technique currently under rapid development is X-ray diffraction microscopy (or lensless imaging), in which the coherent X-ray diffraction pattern of a noncrystalline specimen is measured and then directly phased to obtain a high-resolution image. Through the DOE support over the past three years, we have applied X-raymore » diffraction microscopy to quantitative imaging of GaN quantum dot particles, and revealed the internal GaN-Ga2O3 core shell structure in three dimensions. By exploiting the abrupt change in the scattering cross-section near electronic resonances, we carried out the first experimental demonstration of resonant X-ray diffraction microscopy for element specific imaging. We performed nondestructive and quantitative imaging of buried Bi structures inside a Si crystal by directly phasing coherent X-ray diffraction patterns acquired below and above the Bi M5 edge. We have also applied X-ray diffraction microscopy to nondestructive imaging of mineral crystals inside biological composite materials - intramuscular fish bone - at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization and proposed a dynamic mechanism to account for the nucleation and growth of mineral crystals in the collagen matrix. In addition, we have also discovered a novel 3D imaging modality, denoted ankylography, which allows for complete 3D structure determination without the necessity of sample titling or scanning. We showed that when the diffraction pattern of a finite object is sampled at a sufficiently fine scale on the Ewald sphere, the 3D structure of the object is determined by the 2D spherical pattern. We confirmed the theoretical analysis by performing 3D numerical reconstructions of a sodium silicate glass structure at 2 A resolution from a 2D spherical diffraction pattern alone. As X-ray free electron lasers are under rapid development worldwide, ankylography may open up a new horizon to obtain the 3D structure of a non-crystalline specimen from a single pulse and allow time-resolved 3D structure determination of disordered materials.« less

  4. Hoxa2 and Hoxb2 control dorsoventral patterns of neuronal development in the rostral hindbrain.

    PubMed

    Davenne, M; Maconochie, M K; Neun, R; Pattyn, A; Chambon, P; Krumlauf, R; Rijli, F M

    1999-04-01

    Little is known about how the generation of specific neuronal types at stereotypic positions within the hindbrain is linked to Hox gene-mediated patterning. Here, we show that during neurogenesis, Hox paralog group 2 genes control both anteroposterior (A-P) and dorsoventral (D-V) patterning. Hoxa2 and Hoxb2 differentially regulate, in a rhombomere-specific manner, the expression of several genes in broad D-V-restricted domains or narrower longitudinal columns of neuronal progenitors, immature neurons, and differentiating neuronal subtypes. Moreover, Hoxa2 and Hoxb2 can functionally synergize in controlling the development of ventral neuronal subtypes in rhombomere 3 (r3). Thus, in addition to their roles in A-P patterning, Hoxa2 and Hoxb2 have distinct and restricted functions along the D-V axis during neurogenesis, providing insights into how neuronal fates are assigned at stereotypic positions within the hindbrain.

  5. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Data Analysis and Visualization; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,'' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii)more » evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.« less

  6. Aging and visual 3-D shape recognition from motion.

    PubMed

    Norman, J Farley; Adkins, Olivia C; Dowell, Catherine J; Hoyng, Stevie C; Shain, Lindsey M; Pedersen, Lauren E; Kinnard, Jonathan D; Higginbotham, Alexia J; Gilliam, Ashley N

    2017-11-01

    Two experiments were conducted to evaluate the ability of younger and older adults to recognize 3-D object shape from patterns of optical motion. In Experiment 1, participants were required to identify dotted surfaces that rotated in depth (i.e., surface structure portrayed using the kinetic depth effect). The task difficulty was manipulated by limiting the surface point lifetimes within the stimulus apparent motion sequences. In Experiment 2, the participants identified solid, naturally shaped objects (replicas of bell peppers, Capsicum annuum) that were defined by occlusion boundary contours, patterns of specular highlights, or combined optical patterns containing both boundary contours and specular highlights. Significant and adverse effects of increased age were found in both experiments. Despite the fact that previous research has found that increases in age do not reduce solid shape discrimination, our current results indicated that the same conclusion does not hold for shape identification. We demonstrated that aging results in a reduction in the ability to visually recognize 3-D shape independent of how the 3-D structure is defined (motions of isolated points, deformations of smooth optical fields containing specular highlights, etc.).

  7. Nucleation sites of Ge nanoislands grown on pit-patterned Si substrate prepared by electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Smagina, Zh. V.; Zinovyev, V. A.; Rudin, S. A.; Novikov, P. L.; Rodyakina, E. E.; Dvurechenskii, A. V.

    2018-04-01

    Regular pit-patterned Si(001) substrates were prepared by electron-beam lithography followed by plasma chemical etching. The geometry of the pits was controlled by varying the etching conditions and the electron-beam exposure duration. It was shown that the location of three-dimensional (3D) Ge nanoislands subsequently grown on the pit-patterned Si substrates depends on the shape of the pit bottom. In the case of pits having a sharp bottom, 3D Ge islands nucleate inside the pits. For pits with a wide flat bottom, the 3D Ge island nucleation takes place at the pit periphery. This effect is attributed to the strain relaxation depending not only on the initial pit shape, but also on its evolution during the Ge wetting layer deposition. It was shown by Monte Carlo simulations that in the case of a pit with a pointed bottom, the relaxation is most effective inside the pit, while for a pit with a wide bottom, the most relaxed area migrates during Ge deposition from the pit bottom to its edges, where 3D Ge islands nucleate.

  8. Performance analysis of a brushless dc motor due to magnetization distribution in a continuous ring magnet

    NASA Astrophysics Data System (ADS)

    Hur, Jin; Jung, In-Soung; Sung, Ha-Gyeong; Park, Soon-Sup

    2003-05-01

    This paper represents the force performance of a brushless dc motor with a continuous ring-type permanent magnet (PM), considering its magnetization patterns: trapezoidal, trapezoidal with dead zone, and unbalanced trapezoidal magnetization with dead zone. The radial force density in PM motor causes vibration, because vibration is induced the traveling force from the rotating PM acting on the stator. Magnetization distribution of the PM as well as the shape of the teeth determines the distribution of force density. In particular, the distribution has a three-dimensional (3-D) pattern because of overhang, that is, it is not uniform in axial direction. Thus, the analysis of radial force density required dynamic analysis considering the 3-D shape of the teeth and overhang. The results show that the force density as a source of vibration varies considerably depending on the overhang and magnetization distribution patterns. In addition, the validity of the developed method, coupled 3-D equivalent magnetic circuit network method, with driving circuit and motion equation, is confirmed by comparison of conventional method using 3D finite element method.

  9. 3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls.

    PubMed

    Farshchian, Bahador; Amirsadeghi, Alborz; Choi, Junseo; Park, Daniel S; Kim, Namwon; Park, Sunggook

    2017-01-01

    Microfluidic devices where the microchannel walls were decorated with micro and nanostructures were fabricated using 3D nanomolding. Using 3D molded microfluidic devices with microchannel walls decorated with microscale gratings, the fluid mixing behavior was investigated through experiments and numerical simulation. The use of microscale gratings in the micromixer was predicated by the fact that large obstacles in a microchannel enhances the mixing performance. Slanted ratchet gratings on the channel walls resulted in a helical flow along the microchannel, thus increasing the interfacial area between fluids and cutting down the diffusion length. Increasing the number of walls decorated with continuous ratchet gratings intensified the strength of the helical flow, enhancing mixing further. When ratchet gratings on the surface of the top cover plate were aligned in a direction to break the continuity of gratings from the other three walls, a stack of two helical flows was formed one above each other. This work concludes that the 3D nanomolding process can be a cost-effective tool for scaling-up the fabrication of microfluidic mixers with improved mixing efficiencies.Graphical abstractIn this paper we show that a micromixer with patterned walls can be fabricated using 3D nanomolding and solvent-assisted bonding to manipulate the flow patterns to improve mixing.

  10. Fold pattern formation in 3D

    NASA Astrophysics Data System (ADS)

    Schmid, Daniel W.; Dabrowski, Marcin; Krotkiewski, Marcin

    2010-05-01

    The vast majority of studies concerned with folding focus on 2D and assume that the resulting fold structures are cylindrically extended in the out of place direction. This simplification is often justified as fold aspect ratios, length/width, are quite large. However, folds always exhibit finite aspect ratios and it is unclear what controls this (cf. Fletcher 1995). Surprisingly little is known about the fold pattern formation in 3D for different in-plane loading conditions. Even more complicated is the pattern formation when several folding events are superposed. Let us take the example of a plane strain pure shear superposed by the same kind of deformation but rotated by 90 degrees. The text book prediction for this event is the formation of an egg carton structure; relevant analogue models either agree and produce type 1 interference patterns or contradict and produce type 2. In order to map out 3D fold pattern formation we have performed a systematic parameter space investigation using BILAMIN, our efficient unstructured mesh finite element Stokes solver. BILAMIN is capable of solving problems with more than half a billion unknowns. This allows us to study fold patterns that emerge in randomly (red noise) perturbed layers. We classify the resulting structures with differential geometry tools. Our results show that there is a relationship between fold aspect ratio and in-plane loading conditions. We propose that this finding can be used to determine the complete parameter set potentially contained in the geometry of three dimensional folds: mechanical properties of natural rocks, maximum strain, and relative strength of the in-plane far-field load components. Furthermore, we show how folds in 3D amplify and that there is a second deformation mode, besides continuous amplification, where compression leads to a lateral rearrangement of blocks of folds. Finally, we demonstrate that the textbook prediction of egg carton shaped dome and basin structures resulting from folding instabilities in constriction is largely oversimplified. The fold patterns resulting in this setting are curved, elongated folds with random orientation. Reference Fletcher, R. C. 1995. 3-Dimensional Folding and Necking of a Power-Law Layer - Are Folds Cylindrical, and, If So, Do We Understand Why. Tectonophysics 147(1-4), 65-83.

  11. Investigation of Dynamic Crack Coalescence Using a Gypsum-Like 3D Printing Material

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Zhao, Gao-Feng; Zhu, Jianbo; Zhao, Yi-Xin; Shen, Luming

    2016-10-01

    Dynamic crack coalescence attracts great attention in rock mechanics. However, specimen preparation in experimental study is a time-consuming and difficult procedure. In this work, a gypsum-like material by powder bed and inkjet 3D printing technique was applied to produce specimens with preset cracks for split Hopkinson pressure bar (SHPB) test. From micro X-ray CT test, it was found that the 3D printing technique could successfully prepare specimens that contain preset cracks with width of 0.2 mm. Basic mechanical properties of the 3D printing material, i.e., the elastic modulus, the Poisson's ratio, the density, the compressive strength, the indirect tensile strength, and the fracture toughness, were obtained and reported. Unlike 3D printed specimens using polylactic acid, these gypsum-like specimens can produce failure patterns much closer to those observed in classical rock mechanical tests. Finally, the dynamic crack coalescence of the 3D printed specimens with preset cracks were captured using a high-speed camera during SHPB tests. Failure patterns of these 3D printed specimens are similar to the specimens made by Portland cement concrete. Our results indicate that sample preparation by 3D printing is highly competitive due to its quickness in prototyping, precision and flexibility on the geometry, and high material homogeneity.

  12. Anti-spoof touchless 3D fingerprint recognition system using single shot fringe projection and biospeckle analysis

    NASA Astrophysics Data System (ADS)

    Chatterjee, Amit; Bhatia, Vimal; Prakash, Shashi

    2017-08-01

    Fingerprint is a unique, un-alterable and easily collected biometric of a human being. Although it is a 3D biological characteristic, traditional methods are designed to provide only a 2D image. This touch based mapping of 3D shape to 2D image losses information and leads to nonlinear distortions. Moreover, as only topographic details are captured, conventional systems are potentially vulnerable to spoofing materials (e.g. artificial fingers, dead fingers, false prints, etc.). In this work, we demonstrate an anti-spoof touchless 3D fingerprint detection system using a combination of single shot fringe projection and biospeckle analysis. For fingerprint detection using fringe projection, light from a low power LED source illuminates a finger through a sinusoidal grating. The fringe pattern modulated because of features on the fingertip is captured using a CCD camera. Fourier transform method based frequency filtering is used for the reconstruction of 3D fingerprint from the captured fringe pattern. In the next step, for spoof detection using biospeckle analysis a visuo-numeric algorithm based on modified structural function and non-normalized histogram is proposed. High activity biospeckle patterns are generated because of interaction of collimated laser light with internal fluid flow of the real finger sample. This activity reduces abruptly in case of layered fake prints, and is almost absent in dead or fake fingers. Furthermore, the proposed setup is fast, low-cost, involves non-mechanical scanning and is highly stable.

  13. Foreshock Patterns Preceding Great Earthquakes in the Subduction Zone of Chile

    NASA Astrophysics Data System (ADS)

    Papadopoulos, G. A.; Minadakis, G.

    2016-10-01

    Foreshock activity is considered as one of the most promising precursory changes for the main shock prediction in the short term. Averaging over several foreshock sequences has shown that foreshocks are characterized by distinct 3D patterns: their epicenters move towards the main shock epicenter, event count accelerates, and b-value drops. However, these space-time-size patterns were verified so far only in a very few individual cases mainly due to inadequate seismicity catalogue data. We have investigated 3D foreshock patterns before the M w 8.8 Maule in 27 February 2010, M w 8.1 Iquique in 1 April 2014, and M w 8.4 Illapel in 16 September 2015 great earthquakes in the Chile subduction zone. To avoid biased results, no a priori spatiotemporal definitions of foreshocks were inserted. The procedure was based on pattern recognition from statistically significant seismicity changes in the three domains. The pattern recognition in one domain was independent of the pattern recognition in another domain. We found and verified with two independent catalogue data sets (CSN, IPOC) that within a critical area of ca. 65 km from the main shock epicenter, the 2014 event was preceded by distinct foreshock 3D patterns. A nearly weak foreshock stage (20 January-14 March 2014) was followed by a main-strong stage (15 March-1 April 2014) highly significant in all domains, although foreshock activity slightly decreased in about the last 5 days. Seismic moment release also accelerated in the last stage due to the occurrence of a cluster of very strong foreshock events. Foreshock activity very likely occurred in the hanging-wall fault domain on the South American Plate overriding Nazca Plate. The 2014 foreshock activity was quite similar to the one preceding the 6 Apr. 2009 L' Aquila (Italy) M w 6.3 earthquake associated with normal faulting. Using the 2014 earthquake as a reference event, we observed that similar foreshock 3D patterns preceded the 2010 and 2015 earthquakes within critical distances of about 170 and 50 km, respectively. However, the foreshock activities were only weak in both the cases likely because of poor catalogue completeness.

  14. Topologically Micropatterned Collagen and Poly(ε-caprolactone) Struts Fabricated Using the Poly(vinyl alcohol) Fibrillation/Leaching Process To Develop Efficiently Engineered Skeletal Muscle Tissue.

    PubMed

    Kim, Minseong; Kim, WonJin; Kim, GeunHyung

    2017-12-20

    Optimally designed three-dimensional (3D) biomedical scaffolds for skeletal muscle tissue regeneration pose significant research challenges. Currently, most studies on scaffolds focus on the two-dimensional (2D) surface structures that are patterned in the micro-/nanoscales with various repeating sizes and shapes to induce the alignment of myoblasts and myotube formation. The 2D patterned surface clearly provides effective analytical results of pattern size and shape of the myoblast alignment and differentiation. However, it is inconvenient in terms of the direct application for clinical usage due to the limited thickness and 3D shapeability. Hence, the present study suggests an innovative hydrogel or synthetic structure that consists of uniaxially surface-patterned cylindrical struts for skeleton muscle regeneration. The alignment of the pattern on the hydrogel (collagen) and poly(ε-caprolactone) struts was attained with the fibrillation of poly(vinyl alcohol) and the leaching process. Various cell culture results indicate that the C2C12 cells on the micropatterned collagen structure were fully aligned, and that a significantly high level of myotube formation was achieved when compared to the collagen structures that were not treated with the micropatterning process.

  15. Real-time tricolor phase measuring profilometry based on CCD sensitivity calibration

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Cao, Yiping; He, Dawu; Chen, Cheng

    2017-02-01

    A real-time tricolor phase measuring profilometry (RTPMP) based on charge coupled device (CCD) sensitivity calibration is proposed. Only one colour fringe pattern whose red (R), green (G) and blue (B) components are, respectively, coded as three sinusoidal phase-shifting gratings with an equivalent shifting phase of 2π/3 is needed and sent to an appointed flash memory on a specialized digital light projector (SDLP). A specialized time-division multiplexing timing sequence actively controls the SDLP to project the fringe patterns in R, G and B channels sequentially onto the measured object in one over seventy-two of a second and meanwhile actively controls a high frame rate monochrome CCD camera to capture the corresponding deformed patterns synchronously with the SDLP. So the sufficient information for reconstructing the three-dimensional (3D) shape in one over twenty-four of a second is obtained. Due to the different spectral sensitivity of the CCD camera to RGB lights, the captured deformed patterns from R, G and B channels cannot share the same peak and valley, which will lead to lower accuracy or even failing to reconstruct the 3D shape. So a deformed pattern amending method based on CCD sensitivity calibration is developed to guarantee the accurate 3D reconstruction. The experimental results verify the feasibility of the proposed RTPMP method. The proposed RTPMP method can obtain the 3D shape at over the video frame rate of 24 frames per second, avoid the colour crosstalk completely and be effective for measuring real-time changing object.

  16. Site-specific strong ground motion prediction using 2.5-D modelling

    NASA Astrophysics Data System (ADS)

    Narayan, J. P.

    2001-08-01

    An algorithm was developed using the 2.5-D elastodynamic wave equation, based on the displacement-stress relation. One of the most significant advantages of the 2.5-D simulation is that the 3-D radiation pattern can be generated using double-couple point shear-dislocation sources in the 2-D numerical grid. A parsimonious staggered grid scheme was adopted instead of the standard staggered grid scheme, since this is the only scheme suitable for computing the dislocation. This new 2.5-D numerical modelling avoids the extensive computational cost of 3-D modelling. The significance of this exercise is that it makes it possible to simulate the strong ground motion (SGM), taking into account the energy released, 3-D radiation pattern, path effects and local site conditions at any location around the epicentre. The slowness vector (py) was used in the supersonic region for each layer, so that all the components of the inertia coefficient are positive. The double-couple point shear-dislocation source was implemented in the numerical grid using the moment tensor components as the body-force couples. The moment per unit volume was used in both the 3-D and 2.5-D modelling. A good agreement in the 3-D and 2.5-D responses for different grid sizes was obtained when the moment per unit volume was further reduced by a factor equal to the finite-difference grid size in the case of the 2.5-D modelling. The components of the radiation pattern were computed in the xz-plane using 3-D and 2.5-D algorithms for various focal mechanisms, and the results were in good agreement. A comparative study of the amplitude behaviour of the 3-D and 2.5-D wavefronts in a layered medium reveals the spatial and temporal damped nature of the 2.5-D elastodynamic wave equation. 3-D and 2.5-D simulated responses at a site using a different strike direction reveal that strong ground motion (SGM) can be predicted just by rotating the strike of the fault counter-clockwise by the same amount as the azimuth of the site with respect to the epicentre. This adjustment is necessary since the response is computed keeping the epicentre, focus and the desired site in the same xz-plane, with the x-axis pointing in the north direction.

  17. Evaluation of the recurrence pattern of gastric cancer after laparoscopic gastrectomy with D2 lymphadenectomy.

    PubMed

    Kawamura, Yuichiro; Satoh, Seiji; Umeki, Yusuke; Ishida, Yoshinori; Suda, Koichi; Uyama, Ichiro

    2016-01-01

    The aim of this study was to analyze the oncological aspects of gastric cancer following laparoscopic gastrectomy with D2 lymphadenectomy (LG-D2). We retrospectively evaluated the long-term outcomes of 354 patients who underwent LG-D2 for primary gastric cancer. Recurrence patterns and predictors of peritoneal metastasis were analyzed. Median follow-up time was 43.8 months. Five-year overall survival rates for yp/pStages I, II, and III gastric cancer were 93.7, 78.5, and 42.2 %, respectively. Recurrence was observed in 86 patients. Peritoneal metastasis was the most frequent recurrence pattern (n = 51), followed by hepatic metastasis (n = 17). Lymphatic recurrence at distant sites was observed in 10 patients. No locoregional lymph node metastasis or local recurrence was seen. Nine of 51 cases of peritoneal recurrence were detected by probe laparoscopy. Peritoneal recurrence rates were significantly higher in yp/pT4 and yp/pN3 diseases compared with yp/pT ≤ 3 and yp/pN ≤ 2 diseases. Multivariate analyses demonstrated that yp/pT4, yp/pN3, tumor size ≥70 mm, vascular invasion, and undifferentiated tumors were predictors of peritoneal recurrence following LG-D2. Long-term outcomes of gastric cancer following LG-D2, including recurrence patterns and predictors of peritoneal metastasis, were comparable to those following open D2 gastrectomy. LG-D2 showed good local control. Probe laparoscopy after LG may be effective in detecting peritoneal recurrence, which is not determined with less invasive examinations, including a CT scan. Future large-scale prospective studies are desirable to evaluate not only surgical but also oncological benefits and safety of LG-D2 for advanced gastric cancer.

  18. Cryptotomography: reconstructing 3D Fourier intensities from randomly oriented single-shot diffraction patterns (CXIDB ID 9)

    DOE Data Explorer

    Loh, Ne-Te Duane

    2011-08-01

    These 2000 single-shot diffraction patterns include were either background-scattering only or hits (background-scattering plus diffraction signal from sub-micron ellipsoidal particles at random, undetermined orientations). Candidate hits were identified by eye, and the remainder were presumed as background. 54 usable, background-subtracted hits in this set (procedure in referenced article) were used to reconstruct the 3D diffraction intensities of the average ellipsoidal particle.

  19. Write-Read 3D Patterning with a Dual-Channel Nanopipette.

    PubMed

    Momotenko, Dmitry; Page, Ashley; Adobes-Vidal, Maria; Unwin, Patrick R

    2016-09-27

    Nanopipettes are becoming extremely versatile and powerful tools in nanoscience for a wide variety of applications from imaging to nanoscale sensing. Herein, the capabilities of nanopipettes to build complex free-standing three-dimensional (3D) nanostructures are demonstrated using a simple double-barrel nanopipette device. Electrochemical control of ionic fluxes enables highly localized delivery of precursor species from one channel and simultaneous (dynamic and responsive) ion conductance probe-to-substrate distance feedback with the other for reliable high-quality patterning. Nanopipettes with 30-50 nm tip opening dimensions of each channel allowed confinement of ionic fluxes for the fabrication of high aspect ratio copper pillar, zigzag, and Γ-like structures, as well as permitted the subsequent topographical mapping of the patterned features with the same nanopipette probe as used for nanostructure engineering. This approach offers versatility and robustness for high-resolution 3D "printing" (writing) and read-out at the nanoscale.

  20. Kaleidoscopic imaging patterns of complex structures fabricated by laser-induced deformation

    PubMed Central

    Zhang, Haoran; Yang, Fengyou; Dong, Jianjie; Du, Lena; Wang, Chuang; Zhang, Jianming; Guo, Chuan Fei; Liu, Qian

    2016-01-01

    Complex surface structures have stimulated a great deal of interests due to many potential applications in surface devices. However, in the fabrication of complex surface micro-/nanostructures, there are always great challenges in precise design, or good controllability, or low cost, or high throughput. Here, we present a route for the accurate design and highly controllable fabrication of surface quasi-three-dimensional (quasi-3D) structures based on a thermal deformation of simple two-dimensional laser-induced patterns. A complex quasi-3D structure, coaxially nested convex–concave microlens array, as an example, demonstrates our capability of design and fabrication of surface elements with this method. Moreover, by using only one relief mask with the convex–concave microlens structure, we have gotten hundreds of target patterns at different imaging planes, offering a cost-effective solution for mass production in lithography and imprinting, and portending a paradigm in quasi-3D manufacturing. PMID:27910852

  1. A Straightforward Approach for 3D Bacterial Printing

    PubMed Central

    2017-01-01

    Sustainable and personally tailored materials production is an emerging challenge to society. Living organisms can produce and pattern an extraordinarily wide range of different molecules in a sustainable way. These natural systems offer an abundant source of inspiration for the development of new environmentally friendly materials production techniques. In this paper, we describe the first steps toward the 3-dimensional printing of bacterial cultures for materials production and patterning. This methodology combines the capability of bacteria to form new materials with the reproducibility and tailored approach of 3D printing systems. For this purpose, a commercial 3D printer was modified for bacterial systems, and new alginate-based bioink chemistry was developed. Printing temperature, printhead speed, and bioink extrusion rate were all adapted and customized to maximize bacterial health and spatial resolution of printed structures. Our combination of 3D printing technology with biological systems enables a sustainable approach for the production of numerous new materials. PMID:28225616

  2. A Straightforward Approach for 3D Bacterial Printing.

    PubMed

    Lehner, Benjamin A E; Schmieden, Dominik T; Meyer, Anne S

    2017-07-21

    Sustainable and personally tailored materials production is an emerging challenge to society. Living organisms can produce and pattern an extraordinarily wide range of different molecules in a sustainable way. These natural systems offer an abundant source of inspiration for the development of new environmentally friendly materials production techniques. In this paper, we describe the first steps toward the 3-dimensional printing of bacterial cultures for materials production and patterning. This methodology combines the capability of bacteria to form new materials with the reproducibility and tailored approach of 3D printing systems. For this purpose, a commercial 3D printer was modified for bacterial systems, and new alginate-based bioink chemistry was developed. Printing temperature, printhead speed, and bioink extrusion rate were all adapted and customized to maximize bacterial health and spatial resolution of printed structures. Our combination of 3D printing technology with biological systems enables a sustainable approach for the production of numerous new materials.

  3. Digital holographic tomography method for 3D observation of domain patterns in ferroelectric single crystals

    NASA Astrophysics Data System (ADS)

    Mokrý, Pavel; Psota, Pavel; Steiger, Kateřina; Václavík, Jan; Vápenka, David; Doleček, Roman; Vojtíšek, Petr; Sládek, Juraj; Lédl, Vít.

    2016-11-01

    We report on the development and implementation of the digital holographic tomography for the three-dimensio- nal (3D) observations of the domain patterns in the ferroelectric single crystals. Ferroelectric materials represent a group of materials, whose macroscopic dielectric, electromechanical, and elastic properties are greatly in uenced by the presence of domain patterns. Understanding the role of domain patterns on the aforementioned properties require the experimental techniques, which allow the precise 3D measurements of the spatial distribution of ferroelectric domains in the single crystal. Unfortunately, such techniques are rather limited at this time. The most frequently used piezoelectric atomic force microscopy allows 2D observations on the ferroelectric sample surface. Optical methods based on the birefringence measurements provide parameters of the domain patterns averaged over the sample volume. In this paper, we analyze the possibility that the spatial distribution of the ferroelectric domains can be obtained by means of the measurement of the wavefront deformation of the transmitted optical wave. We demonstrate that the spatial distribution of the ferroelectric domains can be determined by means of the measurement of the spatial distribution of the refractive index. Finally, it is demonstrated that the measurements of wavefront deformations generated in ferroelectric polydomain systems with small variations of the refractive index provide data, which can be further processed by means of the conventional tomographic methods.

  4. Three-Dimensional Effects on Multi-Element High Lift Computations

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Lee-Rausch, Elizabeth M.; Watson, Ralph D.

    2002-01-01

    In an effort to discover the causes for disagreement between previous 2-D computations and nominally 2-D experiment for flow over the 3-clement McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, document's venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using 3-D structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects of the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of all off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too earl or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower die the levels near maximum lift conditions.

  5. Dirac electrons in Moiré superlattice: From two to three dimensions

    NASA Astrophysics Data System (ADS)

    Hu, Chen; Michaud-Rioux, Vincent; Kong, Xianghua; Guo, Hong

    2017-11-01

    Moiré patterns in van der Waals (vdW) heterostructures bring novel physical effects to the materials. We report theoretical investigations of the Moiré pattern formed by graphene (Gr) on hexagonal boron nitride (h BN). For both the two-dimensional (2D) flat-sheet and the freestanding three-dimensional (3D) wavelike film geometries, the behaviors of Dirac electrons are strongly modulated by the local high-symmetry stacking configurations of the Moiré pattern. In the 2D flat sheet, the secondary Dirac cone (SDC) dispersion emerges due to the stacking-selected localization of SDC wave functions, while the original Dirac cone (ODC) gap is suppressed due to an overall effect of ODC wave functions. In the freestanding 3D wavelike Moiré structure, we predict that a specific local stacking in the Moiré superlattice is promoted at the expense of other local stackings, leading to an electronic structure more similar to that of the perfectly matching flat Gr/h BN than that of the flat-sheet 2D Moiré pattern. To capture the overall picture of the Moiré superlattice, supercells containing 12 322 atoms are simulated by first principles.

  6. Absence of rotational activity detected using 2-dimensional phase mapping in the corresponding 3-dimensional phase maps in human persistent atrial fibrillation.

    PubMed

    Pathik, Bhupesh; Kalman, Jonathan M; Walters, Tomos; Kuklik, Pawel; Zhao, Jichao; Madry, Andrew; Sanders, Prashanthan; Kistler, Peter M; Lee, Geoffrey

    2018-02-01

    Current phase mapping systems for atrial fibrillation create 2-dimensional (2D) maps. This process may affect the accurate detection of rotors. We developed a 3-dimensional (3D) phase mapping technique that uses the 3D locations of basket electrodes to project phase onto patient-specific left atrial 3D surface anatomy. We sought to determine whether rotors detected in 2D phase maps were present at the corresponding time segments and anatomical locations in 3D phase maps. One-minute left atrial atrial fibrillation recordings were obtained in 14 patients using the basket catheter and analyzed off-line. Using the same phase values, 2D and 3D phase maps were created. Analysis involved determining the dominant propagation patterns in 2D phase maps and evaluating the presence of rotors detected in 2D phase maps in the corresponding 3D phase maps. Using 2D phase mapping, the dominant propagation pattern was single wavefront (36.6%) followed by focal activation (34.0%), disorganized activity (23.7%), rotors (3.3%), and multiple wavefronts (2.4%). Ten transient rotors were observed in 9 of 14 patients (64%). The mean rotor duration was 1.1 ± 0.7 seconds. None of the 10 rotors observed in 2D phase maps were seen at the corresponding time segments and anatomical locations in 3D phase maps; 4 of 10 corresponded with single wavefronts in 3D phase maps, 2 of 10 with 2 simultaneous wavefronts, 1 of 10 with disorganized activity, and in 3 of 10 there was no coverage by the basket catheter at the corresponding 3D anatomical location. Rotors detected in 2D phase maps were not observed in the corresponding 3D phase maps. These findings may have implications for current systems that use 2D phase mapping. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  7. Regulation of dopaminergic neuron firing by heterogeneous dopamine autoreceptors in the substantia nigra pars compacta.

    PubMed

    Jang, Jin Young; Jang, Miae; Kim, Shin Hye; Um, Ki Bum; Kang, Yun Kyung; Kim, Hyun Jin; Chung, Sungkwon; Park, Myoung Kyu

    2011-03-01

    Dopamine (DA) receptors generate many cellular signals and play various roles in locomotion, motivation, hormone production, and drug abuse. According to the location and expression types of the receptors in the brain, DA signals act in either stimulatory or inhibitory manners. Although DA autoreceptors in the substantia nigra pars compacta are known to regulate firing activity, the exact expression patterns and roles of DA autoreceptor types on the firing activity are highly debated. Therefore, we performed individual correlation studies between firing activity and receptor expression patterns using acutely isolated rat substantia nigra pars compacta DA neurons. When we performed single-cell RT-PCR experiments, D(1), D(2)S, D(2)L, D(3), and D(5) receptor mRNA were heterogeneously expressed in the order of D(2)L > D(2)S > D(3) > D(5) > D(1). Stimulation of D(2) receptors with quinpirole suppressed spontaneous firing similarly among all neurons expressing mRNA solely for D(2)S, D(2)L, or D(3) receptors. However, quinpirole most strongly suppressed spontaneous firing in the neurons expressing mRNA for both D(2) and D(3) receptors. These data suggest that D(2) S, D(2)L, and D(3) receptors are able to equally suppress firing activity, but that D(2) and D(3) receptors synergistically suppress firing. This diversity in DA autoreceptors could explain the various actions of DA in the brain. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  8. High-precision real-time 3D shape measurement based on a quad-camera system

    NASA Astrophysics Data System (ADS)

    Tao, Tianyang; Chen, Qian; Feng, Shijie; Hu, Yan; Zhang, Minliang; Zuo, Chao

    2018-01-01

    Phase-shifting profilometry (PSP) based 3D shape measurement is well established in various applications due to its high accuracy, simple implementation, and robustness to environmental illumination and surface texture. In PSP, higher depth resolution generally requires higher fringe density of projected patterns which, in turn, lead to severe phase ambiguities that must be solved with additional information from phase coding and/or geometric constraints. However, in order to guarantee the reliability of phase unwrapping, available techniques are usually accompanied by increased number of patterns, reduced amplitude of fringe, and complicated post-processing algorithms. In this work, we demonstrate that by using a quad-camera multi-view fringe projection system and carefully arranging the relative spatial positions between the cameras and the projector, it becomes possible to completely eliminate the phase ambiguities in conventional three-step PSP patterns with high-fringe-density without projecting any additional patterns or embedding any auxiliary signals. Benefiting from the position-optimized quad-camera system, stereo phase unwrapping can be efficiently and reliably performed by flexible phase consistency checks. Besides, redundant information of multiple phase consistency checks is fully used through a weighted phase difference scheme to further enhance the reliability of phase unwrapping. This paper explains the 3D measurement principle and the basic design of quad-camera system, and finally demonstrates that in a large measurement volume of 200 mm × 200 mm × 400 mm, the resultant dynamic 3D sensing system can realize real-time 3D reconstruction at 60 frames per second with a depth precision of 50 μm.

  9. Light-Output Enhancement of GaN-Based Light-Emitting Diodes with Three-Dimensional Backside Reflectors Patterned by Microscale Cone Array

    PubMed Central

    Hu, Jinyong; Wang, Hong

    2014-01-01

    Three-dimensional (3D) backside reflector, compared with flat reflectors, can improve the probability of finding the escape cone for reflecting lights and thus enhance the light-extraction efficiency (LEE) for GaN-based light-emitting diode (LED) chips. A triangle-lattice of microscale SiO2 cone array followed by a 16-pair Ti3O5/SiO2 distributed Bragg reflector (16-DBR) was proposed to be attached on the backside of sapphire substrate, and the light-output enhancement was demonstrated by numerical simulation and experiments. The LED chips with flat reflectors or 3D reflectors were simulated using Monte Carlo ray tracing method. It is shown that the LEE increases as the reflectivity of backside reflector increases, and the light-output can be significantly improved by 3D reflectors compared to flat counterparts. It can also be observed that the LEE decreases as the refractive index of the cone material increases. The 3D 16-DBR patterned by microscale SiO2 cone array benefits large enhancement of LEE. This microscale pattern was prepared by standard photolithography and wet-etching technique. Measurement results show that the 3D 16-DBR can provide 12.1% enhancement of wall-plug efficiency, which is consistent with the simulated value of 11.73% for the enhancement of LEE. PMID:25133262

  10. Skin tissue generation by laser cell printing.

    PubMed

    Koch, Lothar; Deiwick, Andrea; Schlie, Sabrina; Michael, Stefanie; Gruene, Martin; Coger, Vincent; Zychlinski, Daniela; Schambach, Axel; Reimers, Kerstin; Vogt, Peter M; Chichkov, Boris

    2012-07-01

    For the aim of ex vivo engineering of functional tissue substitutes, Laser-assisted BioPrinting (LaBP) is under investigation for the arrangement of living cells in predefined patterns. So far three-dimensional (3D) arrangements of single or two-dimensional (2D) patterning of different cell types have been presented. It has been shown that cells are not harmed by the printing procedure. We now demonstrate for the first time the 3D arrangement of vital cells by LaBP as multicellular grafts analogous to native archetype and the formation of tissue by these cells. For this purpose, fibroblasts and keratinocytes embedded in collagen were printed in 3D as a simple example for skin tissue. To study cell functions and tissue formation process in 3D, different characteristics, such as cell localisation and proliferation were investigated. We further analysed the formation of adhering and gap junctions, which are fundamental for tissue morphogenesis and cohesion. In this study, it was demonstrated that LaBP is an outstanding tool for the generation of multicellular 3D constructs mimicking tissue functions. These findings are promising for the realisation of 3D in vitro models and tissue substitutes for many applications in tissue engineering. Copyright © 2012 Wiley Periodicals, Inc.

  11. Automated branching pattern report generation for laparoscopic surgery assistance

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Matsuzaki, Tetsuro; Hayashi, Yuichiro; Kitasaka, Takayuki; Misawa, Kazunari; Mori, Kensaku

    2015-05-01

    This paper presents a method for generating branching pattern reports of abdominal blood vessels for laparoscopic gastrectomy. In gastrectomy, it is very important to understand branching structure of abdominal arteries and veins, which feed and drain specific abdominal organs including the stomach, the liver and the pancreas. In the real clinical stage, a surgeon creates a diagnostic report of the patient anatomy. This report summarizes the branching patterns of the blood vessels related to the stomach. The surgeon decides actual operative procedure. This paper shows an automated method to generate a branching pattern report for abdominal blood vessels based on automated anatomical labeling. The report contains 3D rendering showing important blood vessels and descriptions of branching patterns of each vessel. We have applied this method for fifty cases of 3D abdominal CT scans and confirmed the proposed method can automatically generate branching pattern reports of abdominal arteries.

  12. Differential patterns of 2D location versus depth decoding along the visual hierarchy.

    PubMed

    Finlayson, Nonie J; Zhang, Xiaoli; Golomb, Julie D

    2017-02-15

    Visual information is initially represented as 2D images on the retina, but our brains are able to transform this input to perceive our rich 3D environment. While many studies have explored 2D spatial representations or depth perception in isolation, it remains unknown if or how these processes interact in human visual cortex. Here we used functional MRI and multi-voxel pattern analysis to investigate the relationship between 2D location and position-in-depth information. We stimulated different 3D locations in a blocked design: each location was defined by horizontal, vertical, and depth position. Participants remained fixated at the center of the screen while passively viewing the peripheral stimuli with red/green anaglyph glasses. Our results revealed a widespread, systematic transition throughout visual cortex. As expected, 2D location information (horizontal and vertical) could be strongly decoded in early visual areas, with reduced decoding higher along the visual hierarchy, consistent with known changes in receptive field sizes. Critically, we found that the decoding of position-in-depth information tracked inversely with the 2D location pattern, with the magnitude of depth decoding gradually increasing from intermediate to higher visual and category regions. Representations of 2D location information became increasingly location-tolerant in later areas, where depth information was also tolerant to changes in 2D location. We propose that spatial representations gradually transition from 2D-dominant to balanced 3D (2D and depth) along the visual hierarchy. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Micropatterned 2D Hybrid Perovskite Thin Films with Enhanced Photoluminescence Lifetimes.

    PubMed

    Kamminga, Machteld E; Fang, Hong-Hua; Loi, Maria Antonietta; Ten Brink, Gert H; Blake, Graeme R; Palstra, Thomas T M; Ten Elshof, Johan E

    2018-04-18

    The application of luminescent materials in display screens and devices requires micropatterned structures. In this work, we have successfully printed microstructures of a two-dimensional (2D), orange-colored organic/inorganic hybrid perovskite ((C 6 H 5 CH 2 NH 3 ) 2 PbI 4 ) using two different soft lithography techniques. Notably, both techniques yield microstructures with very high aspect ratios in the range of 1.5-1.8. X-ray diffraction reveals a strong preferential orientation of the crystallites along the c-axis in both patterned structures, when compared to nonpatterned, drop-casted thin films. Furthermore, (time-resolved) photoluminescence (PL) measurements reveal that the optical properties of (C 6 H 5 CH 2 NH 3 ) 2 PbI 4 are conserved upon patterning. We find that the larger grain sizes of the patterned films with respect to the nonpatterned film give rise to an enhanced PL lifetime. Thus, our results demonstrate easy and cost-effective ways to manufacture patterns of 2D organic/inorganic hybrid perovskites, while even improving their optical properties. This demonstrates the potential use of color-tunable 2D hybrids in optoelectronic devices.

  14. Pixel-by-pixel absolute phase retrieval using three phase-shifted fringe patterns without markers

    NASA Astrophysics Data System (ADS)

    Jiang, Chufan; Li, Beiwen; Zhang, Song

    2017-04-01

    This paper presents a method that can recover absolute phase pixel by pixel without embedding markers on three phase-shifted fringe patterns, acquiring additional images, or introducing additional hardware component(s). The proposed three-dimensional (3D) absolute shape measurement technique includes the following major steps: (1) segment the measured object into different regions using rough priori knowledge of surface geometry; (2) artificially create phase maps at different z planes using geometric constraints of structured light system; (3) unwrap the phase pixel by pixel for each region by properly referring to the artificially created phase map; and (4) merge unwrapped phases from all regions into a complete absolute phase map for 3D reconstruction. We demonstrate that conventional three-step phase-shifted fringe patterns can be used to create absolute phase map pixel by pixel even for large depth range objects. We have successfully implemented our proposed computational framework to achieve absolute 3D shape measurement at 40 Hz.

  15. Three-Dimensional Analysis of Enamel Crack Behavior Using Optical Coherence Tomography.

    PubMed

    Segarra, M S; Shimada, Y; Sadr, A; Sumi, Y; Tagami, J

    2017-03-01

    The aim of this study was to nondestructively analyze enamel crack behavior on different areas of teeth using 3D swept source-optical coherence tomography (SS-OCT). Ten freshly extracted human teeth of each type on each arch ( n = 80 teeth) were inspected for enamel crack patterns on functional, contact and nonfunctional, or noncontact areas using 3D SS-OCT. The predominant crack pattern for each location on each specimen was noted and analyzed. The OCT observations were validated by direct observations of sectioned specimens under confocal laser scanning microscopy (CLSM). Cracks appeared as bright lines with SS-OCT, with 3 crack patterns identified: Type I - superficial horizontal cracks; Type II - vertically (occluso-gingival) oriented cracks; and Type III - hybrid or complicated cracks, a combination of a Type I and Type III cracks, which may or may not be confluent with each other. Type II cracks were predominant on noncontacting surfaces of incisors and canines and nonfunctional cusps of posterior teeth. Type I and III cracks were predominant on the contacting surfaces of incisors, cusps of canines, and functional cusps of posterior teeth. Cracks originating from the dental-enamel junction and enamel tufts, crack deflections, and the initiation of new cracks within the enamel (internal cracks) were observed as bright areas. CLSM observations corroborated the SS-OCT findings. We found that crack pattern, tooth type, and the location of the crack on the tooth exhibited a strong correlation. We show that the use of 3D SS-OCT permits for the nondestructive 3D imaging and analysis of enamel crack behavior in whole human teeth in vitro. 3D SS-OCT possesses potential for use in clinical studies for the analysis of enamel crack behavior.

  16. Cell patterning by laser-assisted bioprinting.

    PubMed

    Devillard, Raphaël; Pagès, Emeline; Correa, Manuela Medina; Kériquel, Virginie; Rémy, Murielle; Kalisky, Jérôme; Ali, Muhammad; Guillotin, Bertrand; Guillemot, Fabien

    2014-01-01

    The aim of tissue engineering is to produce functional three-dimensional (3D) tissue substitutes. Regarding native organ and tissue complexity, cell density and cell spatial 3D organization, which influence cell behavior and fate, are key parameters in tissue engineering. Laser-Assisted Bioprinting (LAB) allows one to print cells and liquid materials with a cell- or picoliter-level resolution. Thus, LAB seems to be an emerging and promising technology to fabricate tissue-like structures that have the physiological functionality of their native counterparts. This technology has additional advantages such as automation, reproducibility, and high throughput. It makes LAB compatible with the (industrial) fabrication of 3D constructs of physiologically relevant sizes. Here we present exhaustively the numerous steps that allow printing of viable cells with a well-preserved micrometer pattern. To facilitate the understanding of the whole cell patterning experiment using LAB, it is discussed in two parts: (1) preprocessing: laser set-up, bio-ink cartridge and bio-paper preparation, and pattern design; and (2) processing: bio-ink printing on the bio-paper. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Correlation of field seismic refraction data with 3-D laboratory ultrasonic sounding data during exploration of a dimension stone deposit

    NASA Astrophysics Data System (ADS)

    Přikryl, Richard; Vilhelm, Jan; Lokajíček, Tomáš; Pros, Zdeněk; Klíma, Karel

    2004-05-01

    Multidirectional field seismic refraction data have been combined with 3-D laboratory ultrasonic sounding data in a preliminary exploration of a new dimension stone deposit in the Czech Republic. Rock fabric was interpreted from a detailed laboratory analysis of a 3-D P-wave velocity pattern and can be classified as pronounced orthorhombic due to a complex tectonometamorphic history of the rock. The P-wave velocity pattern recorded from laboratory measurements can be satisfactorily correlated with the anisotropy of P-wave velocity data acquired from field seismic refraction data. Rock fabric anisotropy also contributes to the observed anisotropy of strength and static deformational properties.

  18. Brain histamine depletion enhances the behavioural sequences complexity of mice tested in the open-field: Partial reversal effect of the dopamine D2/D3 antagonist sulpiride.

    PubMed

    Santangelo, Andrea; Provensi, Gustavo; Costa, Alessia; Blandina, Patrizio; Ricca, Valdo; Crescimanno, Giuseppe; Casarrubea, Maurizio; Passani, M Beatrice

    2017-02-01

    Markers of histaminergic dysregulation were found in several neuropsychiatric disorders characterized by repetitive behaviours, thoughts and stereotypies. We analysed the effect of acute histamine depletion by means of i. c.v. injections of alpha-fluoromethylhistidine, a blocker of histidine decarboxylase, on the temporal organization of motor sequences of CD1 mice behaviour in the open-field test. An ethogram encompassing 9 behavioural components was employed. Durations and frequencies were only slightly affected by treatments. However, as revealed by multivariate t-pattern analysis, histamine depletion was associated with a striking increase in the number of behavioural patterns. We found 42 patterns of different composition occurring, on average, 520.90 ± 50.23 times per mouse in the histamine depleted (HD) group, whereas controls showed 12 different patterns occurring on average 223.30 ± 20.64 times. Exploratory and grooming behaviours clustered separately, and the increased pattern complexity involved exclusively exploratory patterns. To test the hypothesis of a histamine-dopamine interplay on behavioural pattern phenotype, non-sedative doses of the D2/D3 antagonist sulpiride (12.5-25-50 mg/kg) were additionally administered to different groups of HD mice. Sulpiride counterbalanced the enhancement of exploratory patterns of different composition, but it did not affect the mean number of patterns at none of the doses used. Our results provide new insights on the role of histamine on repetitive behavioural sequences of freely moving mice. Histamine deficiency is correlated with a general enhancement of pattern complexity. This study supports a putative involvement of histamine in the pathophysiology of tics and related disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. 3D-shape of objects with straight line-motion by simultaneous projection of color coded patterns

    NASA Astrophysics Data System (ADS)

    Flores, Jorge L.; Ayubi, Gaston A.; Di Martino, J. Matías; Castillo, Oscar E.; Ferrari, Jose A.

    2018-05-01

    In this work, we propose a novel technique to retrieve the 3D shape of dynamic objects by the simultaneous projection of a fringe pattern and a homogeneous light pattern which are both coded in two of the color channels of a RGB image. The fringe pattern, red channel, is used to retrieve the phase by phase-shift algorithms with arbitrary phase-step, while the homogeneous pattern, blue channel, is used to match pixels from the test object in consecutive images, which are acquired at different positions, and thus, to determine the speed of the object. The proposed method successfully overcomes the standard requirement of projecting fringes of two different frequencies; one frequency to extract object information and the other one to retrieve the phase. Validation experiments are presented.

  20. Fast and low-cost structured light pattern sequence projection.

    PubMed

    Wissmann, Patrick; Forster, Frank; Schmitt, Robert

    2011-11-21

    We present a high-speed and low-cost approach for structured light pattern sequence projection. Using a fast rotating binary spatial light modulator, our method is potentially capable of projection frequencies in the kHz domain, while enabling pattern rasterization as low as 2 μm pixel size and inherently linear grayscale reproduction quantized at 12 bits/pixel or better. Due to the circular arrangement of the projected fringe patterns, we extend the widely used ray-plane triangulation method to ray-cone triangulation and provide a detailed description of the optical calibration procedure. Using the proposed projection concept in conjunction with the recently published coded phase shift (CPS) pattern sequence, we demonstrate high accuracy 3-D measurement at 200 Hz projection frequency and 20 Hz 3-D reconstruction rate. © 2011 Optical Society of America

  1. 3D Pathology Volumetric Technique: A Method for Calculating Breast Tumour Volume from Whole-Mount Serial Section Images

    PubMed Central

    Clarke, G. M.; Murray, M.; Holloway, C. M. B.; Liu, K.; Zubovits, J. T.; Yaffe, M. J.

    2012-01-01

    Tumour size, most commonly measured by maximum linear extent, remains a strong predictor of survival in breast cancer. Tumour volume, proportional to the number of tumour cells, may be a more accurate surrogate for size. We describe a novel “3D pathology volumetric technique” for lumpectomies and compare it with 2D measurements. Volume renderings and total tumour volume are computed from digitized whole-mount serial sections using custom software tools. Results are presented for two lumpectomy specimens selected for tumour features which may challenge accurate measurement of tumour burden with conventional, sampling-based pathology: (1) an infiltrative pattern admixed with normal breast elements; (2) a localized invasive mass separated from the in situ component by benign tissue. Spatial relationships between key features (tumour foci, close or involved margins) are clearly visualized in volume renderings. Invasive tumour burden can be underestimated using conventional pathology, compared to the volumetric technique (infiltrative pattern: 30% underestimation; localized mass: 3% underestimation for invasive tumour, 44% for in situ component). Tumour volume approximated from 2D measurements (i.e., maximum linear extent), assuming elliptical geometry, was seen to overestimate volume compared to the 3D volumetric calculation (by a factor of 7x for the infiltrative pattern; 1.5x for the localized invasive mass). PMID:23320179

  2. 3D structural patterns in scalable, elastomeric scaffolds guide engineered tissue architecture.

    PubMed

    Kolewe, Martin E; Park, Hyoungshin; Gray, Caprice; Ye, Xiaofeng; Langer, Robert; Freed, Lisa E

    2013-08-27

    Microfabricated elastomeric scaffolds with 3D structural patterns are created by semiautomated layer-by-layer assembly of planar polymer sheets with through-pores. The mesoscale interconnected pore architectures governed by the relative alignment of layers are shown to direct cell and muscle-like fiber orientation in both skeletal and cardiac muscle, enabling scale up of tissue constructs towards clinically relevant dimensions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Inkjet printing-based volumetric display projecting multiple full-colour 2D patterns

    NASA Astrophysics Data System (ADS)

    Hirayama, Ryuji; Suzuki, Tomotaka; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Naruse, Makoto; Nakayama, Hirotaka; Kakue, Takashi; Ito, Tomoyoshi

    2017-04-01

    In this study, a method to construct a full-colour volumetric display is presented using a commercially available inkjet printer. Photoreactive luminescence materials are minutely and automatically printed as the volume elements, and volumetric displays are constructed with high resolution using easy-to-fabricate means that exploit inkjet printing technologies. The results experimentally demonstrate the first prototype of an inkjet printing-based volumetric display composed of multiple layers of transparent films that yield a full-colour three-dimensional (3D) image. Moreover, we propose a design algorithm with 3D structures that provide multiple different 2D full-colour patterns when viewed from different directions and experimentally demonstrate prototypes. It is considered that these types of 3D volumetric structures and their fabrication methods based on widely deployed existing printing technologies can be utilised as novel information display devices and systems, including digital signage, media art, entertainment and security.

  4. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Liu, Yifei; Manjubala, Inderchand; Roschger, Paul; Schell, Hanna; Duda, Georg N.; Fratzl, Peter

    2010-10-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  5. Design and testing of the first 2D Prototype Vertically Integrated Pattern Recognition Associative Memory

    NASA Astrophysics Data System (ADS)

    Liu, T.; Deptuch, G.; Hoff, J.; Jindariani, S.; Joshi, S.; Olsen, J.; Tran, N.; Trimpl, M.

    2015-02-01

    An associative memory-based track finding approach has been proposed for a Level 1 tracking trigger to cope with increasing luminosities at the LHC. The associative memory uses a massively parallel architecture to tackle the intrinsically complex combinatorics of track finding algorithms, thus avoiding the typical power law dependence of execution time on occupancy and solving the pattern recognition in times roughly proportional to the number of hits. This is of crucial importance given the large occupancies typical of hadronic collisions. The design of an associative memory system capable of dealing with the complexity of HL-LHC collisions and with the short latency required by Level 1 triggering poses significant, as yet unsolved, technical challenges. For this reason, an aggressive R&D program has been launched at Fermilab to advance state of-the-art associative memory technology, the so called VIPRAM (Vertically Integrated Pattern Recognition Associative Memory) project. The VIPRAM leverages emerging 3D vertical integration technology to build faster and denser Associative Memory devices. The first step is to implement in conventional VLSI the associative memory building blocks that can be used in 3D stacking; in other words, the building blocks are laid out as if it is a 3D design. In this paper, we report on the first successful implementation of a 2D VIPRAM demonstrator chip (protoVIPRAM00). The results show that these building blocks are ready for 3D stacking.

  6. Design and testing of the first 2D Prototype Vertically Integrated Pattern Recognition Associative Memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T.; Deptuch, G.; Hoff, J.

    An associative memory-based track finding approach has been proposed for a Level 1 tracking trigger to cope with increasing luminosities at the LHC. The associative memory uses a massively parallel architecture to tackle the intrinsically complex combinatorics of track finding algorithms, thus avoiding the typical power law dependence of execution time on occupancy and solving the pattern recognition in times roughly proportional to the number of hits. This is of crucial importance given the large occupancies typical of hadronic collisions. The design of an associative memory system capable of dealing with the complexity of HL-LHC collisions and with the shortmore » latency required by Level 1 triggering poses significant, as yet unsolved, technical challenges. For this reason, an aggressive R&D program has been launched at Fermilab to advance state of-the-art associative memory technology, the so called VIPRAM (Vertically Integrated Pattern Recognition Associative Memory) project. The VIPRAM leverages emerging 3D vertical integration technology to build faster and denser Associative Memory devices. The first step is to implement in conventional VLSI the associative memory building blocks that can be used in 3D stacking, in other words, the building blocks are laid out as if it is a 3D design. In this paper, we report on the first successful implementation of a 2D VIPRAM demonstrator chip (protoVIPRAM00). The results show that these building blocks are ready for 3D stacking.« less

  7. A universal approach to fabricate ordered colloidal crystals arrays based on electrostatic self-assembly.

    PubMed

    Zhang, Xun; Zhang, Junhu; Zhu, Difu; Li, Xiao; Zhang, Xuemin; Wang, Tieqiang; Yang, Bai

    2010-12-07

    We present a novel and simple method to fabricate two-dimensional (2D) poly(styrene sulfate) (PSS, negatively charged) colloidal crystals on a positively charged substrate. Our strategy contains two separate steps: one is the three-dimensional (3D) assembly of PSS particles in ethanol, and the other is electrostatic adsorption in water. First, 3D assembly in ethanol phase eliminates electrostatic attractions between colloids and the substrate. As a result, high-quality colloidal crystals are easily generated, for electrostatic attractions are unfavorable for the movement of colloidal particles during convective self-assembly. Subsequently, top layers of colloidal spheres are washed away in the water phase, whereas well-packed PSS colloids that are in contact with the substrate are tightly linked due to electrostatic interactions, resulting in the formation of ordered arrays of 2D colloidal spheres. Cycling these processes leads to the layer-by-layer assembly of 3D colloidal crystals with controllable layers. In addition, this strategy can be extended to the fabrication of patterned 2D colloidal crystals on patterned polyelectrolyte surfaces, not only on planar substrates but also on nonplanar substrates. This straightforward method may open up new possibilities for practical use of colloidal crystals of excellent quality, various patterns, and controllable fashions.

  8. Feedback-based, system-level properties of vertebrate-microbial interactions.

    PubMed

    Rivas, Ariel L; Jankowski, Mark D; Piccinini, Renata; Leitner, Gabriel; Schwarz, Daniel; Anderson, Kevin L; Fair, Jeanne M; Hoogesteijn, Almira L; Wolter, Wilfried; Chaffer, Marcelo; Blum, Shlomo; Were, Tom; Konah, Stephen N; Kempaiah, Prakash; Ong'echa, John M; Diesterbeck, Ulrike S; Pilla, Rachel; Czerny, Claus-Peter; Hittner, James B; Hyman, James M; Perkins, Douglas J

    2013-01-01

    Improved characterization of infectious disease dynamics is required. To that end, three-dimensional (3D) data analysis of feedback-like processes may be considered. To detect infectious disease data patterns, a systems biology (SB) and evolutionary biology (EB) approach was evaluated, which utilizes leukocyte data structures designed to diminish data variability and enhance discrimination. Using data collected from one avian and two mammalian (human and bovine) species infected with viral, parasite, or bacterial agents (both sensitive and resistant to antimicrobials), four data structures were explored: (i) counts or percentages of a single leukocyte type, such as lymphocytes, neutrophils, or macrophages (the classic approach), and three levels of the SB/EB approach, which assessed (ii) 2D, (iii) 3D, and (iv) multi-dimensional (rotating 3D) host-microbial interactions. In all studies, no classic data structure discriminated disease-positive (D+, or observations in which a microbe was isolated) from disease-negative (D-, or microbial-negative) groups: D+ and D- data distributions overlapped. In contrast, multi-dimensional analysis of indicators designed to possess desirable features, such as a single line of observations, displayed a continuous, circular data structure, whose abrupt inflections facilitated partitioning into subsets statistically significantly different from one another. In all studies, the 3D, SB/EB approach distinguished three (steady, positive, and negative) feedback phases, in which D- data characterized the steady state phase, and D+ data were found in the positive and negative phases. In humans, spatial patterns revealed false-negative observations and three malaria-positive data classes. In both humans and bovines, methicillin-resistant Staphylococcus aureus (MRSA) infections were discriminated from non-MRSA infections. More information can be extracted, from the same data, provided that data are structured, their 3D relationships are considered, and well-conserved (feedback-like) functions are estimated. Patterns emerging from such structures may distinguish well-conserved from recently developed host-microbial interactions. Applications include diagnosis, error detection, and modeling.

  9. Coupling Graphene Sheets with Magnetic Nanoparticles for Energy Storage and Microelectronics

    DTIC Science & Technology

    2015-08-13

    sheets obtained from three different synthetic methods: (i) electrochemical exfoliation of highly oriented pyrolytic graphite ( HOPG ) [8], (ii...Figure 8d, the characteristic lattice fringes of ɤ-Fe2O3 nanoparticles in graphene sheet is shown. Typical X-ray diffraction ( XRD ) patterns of the HOPG ...pattern in honey comb crystal lattice, (c) TEM (d) HRTEM image of graphene- PyDop1-MNP hybrid, (e) XRD pattern of the HOPG , exfoliated graphene, PyDop1

  10. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform

    PubMed Central

    Rizvi, Imran; Moon, Sangjun; Hasan, Tayyaba; Demirci, Utkan

    2013-01-01

    In vitro 3D cancer models that provide a more accurate representation of disease in vivo are urgently needed to improve our understanding of cancer pathology and to develop better cancer therapies. However, development of 3D models that are based on manual ejection of cells from micropipettes suffer from inherent limitations such as poor control over cell density, limited repeatability, low throughput, and, in the case of coculture models, lack of reproducible control over spatial distance between cell types (e.g., cancer and stromal cells). In this study, we build on a recently introduced 3D model in which human ovarian cancer (OVCAR-5) cells overlaid on Matrigel™ spontaneously form multicellular acini. We introduce a high-throughput automated cell printing system to bioprint a 3D coculture model using cancer cells and normal fibroblasts micropatterned on Matrigel™. Two cell types were patterned within a spatially controlled microenvironment (e.g., cell density, cell-cell distance) in a high-throughput and reproducible manner; both cell types remained viable during printing and continued to proliferate following patterning. This approach enables the miniaturization of an established macro-scale 3D culture model and would allow systematic investigation into the multiple unknown regulatory feedback mechanisms between tumor and stromal cells and provide a tool for high-throughput drug screening. PMID:21298805

  11. Integrated optical 3D digital imaging based on DSP scheme

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Peng, Xiang; Gao, Bruce Z.

    2008-03-01

    We present a scheme of integrated optical 3-D digital imaging (IO3DI) based on digital signal processor (DSP), which can acquire range images independently without PC support. This scheme is based on a parallel hardware structure with aid of DSP and field programmable gate array (FPGA) to realize 3-D imaging. In this integrated scheme of 3-D imaging, the phase measurement profilometry is adopted. To realize the pipeline processing of the fringe projection, image acquisition and fringe pattern analysis, we present a multi-threads application program that is developed under the environment of DSP/BIOS RTOS (real-time operating system). Since RTOS provides a preemptive kernel and powerful configuration tool, with which we are able to achieve a real-time scheduling and synchronization. To accelerate automatic fringe analysis and phase unwrapping, we make use of the technique of software optimization. The proposed scheme can reach a performance of 39.5 f/s (frames per second), so it may well fit into real-time fringe-pattern analysis and can implement fast 3-D imaging. Experiment results are also presented to show the validity of proposed scheme.

  12. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation

    PubMed Central

    Zhou, Xuan; Castro, Nathan J.; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-01-01

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm2 intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application. PMID:27597635

  13. Cell origami: self-folding of three-dimensional cell-laden microstructures driven by cell traction force.

    PubMed

    Kuribayashi-Shigetomi, Kaori; Onoe, Hiroaki; Takeuchi, Shoji

    2012-01-01

    This paper describes a method of generating three-dimensional (3D) cell-laden microstructures by applying the principle of origami folding technique and cell traction force (CTF). We harness the CTF as a biological driving force to fold the microstructures. Cells stretch and adhere across multiple microplates. Upon detaching the microplates from a substrate, CTF causes the plates to lift and fold according to a prescribed pattern. This self-folding technique using cells is highly biocompatible and does not involve special material requirements for the microplates and hinges to induce folding. We successfully produced various 3D cell-laden microstructures by just changing the geometry of the patterned 2D plates. We also achieved mass-production of the 3D cell-laden microstructures without causing damage to the cells. We believe that our methods will be useful for biotechnology applications that require analysis of cells in 3D configurations and for self-assembly of cell-based micro-medical devices.

  14. Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures.

    PubMed

    Jia, Chao; Bian, Huiyang; Gao, Tingting; Jiang, Feng; Kierzewski, Iain Michael; Wang, Yilin; Yao, Yonggang; Chen, Liheng; Shao, Ziqiang; Zhu, J Y; Hu, Liangbing

    2017-08-30

    Cellulose nanomaterials have attracted much attention in a broad range of fields such as flexible electronics, tissue engineering, and 3D printing for their excellent mechanical strength and intriguing optical properties. Economic, sustainable, and eco-friendly production of cellulose nanomaterials with high thermal stability, however, remains a tremendous challenge. Here versatile cellulose nanocrystals (DM-OA-CNCs) are prepared through fully recyclable oxalic acid (OA) hydrolysis along with disk-milling (DM) pretreatment of bleached kraft eucalyptus pulp. Compared with the commonly used cellulose nanocrystals from sulfuric acid hydrolysis, DM-OA-CNCs show several advantages including large aspect ratio, carboxylated surface, and excellent thermal stability along with high yield. We also successfully demonstrate the fabrication of high-performance films and 3D-printed patterns using DM-OA-CNCs. The high-performance films with high transparency, ultralow haze, and excellent thermal stability have the great potential for applications in flexible electronic devices. The 3D-printed patterns with porous structures can be potentially applied in the field of tissue engineering as scaffolds.

  15. Speleogenesis, geometry, and topology of caves: A quantitative study of 3D karst conduits

    NASA Astrophysics Data System (ADS)

    Jouves, Johan; Viseur, Sophie; Arfib, Bruno; Baudement, Cécile; Camus, Hubert; Collon, Pauline; Guglielmi, Yves

    2017-12-01

    Karst systems are hierarchically spatially organized three-dimensional (3D) networks of conduits behaving as drains for groundwater flow. Recently, geostatistical approaches proposed to generate karst networks from data and parameters stemming from analogous observed karst features. Other studies have qualitatively highlighted relationships between speleogenetic processes and cave patterns. However, few studies have been performed to quantitatively define these relationships. This paper reports a quantitative study of cave geometries and topologies that takes the underlying speleogenetic processes into account. In order to study the spatial organization of caves, a 3D numerical database was built from 26 caves, corresponding to 621 km of cumulative cave passages representative of the variety of karst network patterns. The database includes 3D speleological surveys for which the speleogenetic context is known, allowing the polygenic karst networks to be divided into 48 monogenic cave samples and classified into four cave patterns: vadose branchwork (VB), water-table cave (WTC), looping cave (LC), and angular maze (AM). Eight morphometric cave descriptors were calculated, four geometrical parameters (width-height ratio, tortuosity, curvature, and vertical index) and four topological ones (degree of node connectivity, α and γ graph indices, and ramification index) respectively. The results were validated by statistical analyses (Kruskal-Wallis test and PCA). The VB patterns are clearly distinct from AM ones and from a third group including WTC and LC. A quantitative database of cave morphology characteristics is provided, depending on their speleogenetic processes. These characteristics can be used to constrain and/or validate 3D geostatistical simulations. This study shows how important it is to relate the geometry and connectivity of cave networks to recharge and flow processes. Conversely, the approach developed here provides proxies to estimate the evolution of the vadose zone to epiphreatic and phreatic zones in limestones from the quantitative analysis of existing cave patterns.

  16. [The monophasic pattern in oral glucose tolerance test as a predictive risk factor of type 2 diabetes in obese paediatric patients].

    PubMed

    Herrera-Martínez, Aura D; Enes, Patricia; Martín-Frías, María; Roldán, Belén; Yelmo, Rosa; Barrio, Raquel

    2017-10-01

    The onset of obesity at young ages is strongly associated with the early development of type 2diabetes (T2D). The shape of the curves of glucose and insulin curves during an oral glucose tolerance test (OGTT) could predict the risk of developing T2D. To analyse the morphology of the OGTT and determine T2D risk factors in a mainly Caucasian population of children and adolescents. Observational retrospective study including 588 patients (309 males, 279 females) with a mean age of 11.1±2years, and of whom 90.3% were Caucasian. Risk factors for T2D were compared in patients with a monophasic or biphasic pattern during the performance of an OGTT, as well as anthropometric and biochemical variables, insulin resistance, and beta-cell function. The shape of the glucose curve was monophasic in 50.2% of patients (50.8% male), biphasic in 48.5% (47.6% males), and indeterminate in 1.3%. The monophasic pattern showed lower insulin-sensitivity and worse beta-cell function. Patients with a biphasic pattern had a higher BMI, waist circumference, and blood pressure, although the results were not significant. Latin-American patients had significantly lower serum glucose levels with higher insulin levels during the OGTT. The pattern of response to an OGTT reflects different metabolic phenotypes. Paediatric patients with a biphasic pattern have lower risk-profiling for T2D. The performing of an OGTT could be useful to implement early intervention strategies in children and adolescents with obesity, in order to prevent the development of pre-diabetes or T2D. Copyright © 2016 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting

    PubMed Central

    Ma, Xuanyi; Qu, Xin; Zhu, Wei; Li, Yi-Shuan; Yuan, Suli; Zhang, Hong; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Zanella, Fabian; Feng, Gen-Sheng; Sheikh, Farah; Chien, Shu; Chen, Shaochen

    2016-01-01

    The functional maturation and preservation of hepatic cells derived from human induced pluripotent stem cells (hiPSCs) are essential to personalized in vitro drug screening and disease study. Major liver functions are tightly linked to the 3D assembly of hepatocytes, with the supporting cell types from both endodermal and mesodermal origins in a hexagonal lobule unit. Although there are many reports on functional 2D cell differentiation, few studies have demonstrated the in vitro maturation of hiPSC-derived hepatic progenitor cells (hiPSC-HPCs) in a 3D environment that depicts the physiologically relevant cell combination and microarchitecture. The application of rapid, digital 3D bioprinting to tissue engineering has allowed 3D patterning of multiple cell types in a predefined biomimetic manner. Here we present a 3D hydrogel-based triculture model that embeds hiPSC-HPCs with human umbilical vein endothelial cells and adipose-derived stem cells in a microscale hexagonal architecture. In comparison with 2D monolayer culture and a 3D HPC-only model, our 3D triculture model shows both phenotypic and functional enhancements in the hiPSC-HPCs over weeks of in vitro culture. Specifically, we find improved morphological organization, higher liver-specific gene expression levels, increased metabolic product secretion, and enhanced cytochrome P450 induction. The application of bioprinting technology in tissue engineering enables the development of a 3D biomimetic liver model that recapitulates the native liver module architecture and could be used for various applications such as early drug screening and disease modeling. PMID:26858399

  18. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting.

    PubMed

    Ma, Xuanyi; Qu, Xin; Zhu, Wei; Li, Yi-Shuan; Yuan, Suli; Zhang, Hong; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Zanella, Fabian; Feng, Gen-Sheng; Sheikh, Farah; Chien, Shu; Chen, Shaochen

    2016-02-23

    The functional maturation and preservation of hepatic cells derived from human induced pluripotent stem cells (hiPSCs) are essential to personalized in vitro drug screening and disease study. Major liver functions are tightly linked to the 3D assembly of hepatocytes, with the supporting cell types from both endodermal and mesodermal origins in a hexagonal lobule unit. Although there are many reports on functional 2D cell differentiation, few studies have demonstrated the in vitro maturation of hiPSC-derived hepatic progenitor cells (hiPSC-HPCs) in a 3D environment that depicts the physiologically relevant cell combination and microarchitecture. The application of rapid, digital 3D bioprinting to tissue engineering has allowed 3D patterning of multiple cell types in a predefined biomimetic manner. Here we present a 3D hydrogel-based triculture model that embeds hiPSC-HPCs with human umbilical vein endothelial cells and adipose-derived stem cells in a microscale hexagonal architecture. In comparison with 2D monolayer culture and a 3D HPC-only model, our 3D triculture model shows both phenotypic and functional enhancements in the hiPSC-HPCs over weeks of in vitro culture. Specifically, we find improved morphological organization, higher liver-specific gene expression levels, increased metabolic product secretion, and enhanced cytochrome P450 induction. The application of bioprinting technology in tissue engineering enables the development of a 3D biomimetic liver model that recapitulates the native liver module architecture and could be used for various applications such as early drug screening and disease modeling.

  19. Reconstitution of a Patterned Neural Tube from Single Mouse Embryonic Stem Cells.

    PubMed

    Ishihara, Keisuke; Ranga, Adrian; Lutolf, Matthias P; Tanaka, Elly M; Meinhardt, Andrea

    2017-01-01

    The recapitulation of tissue development and patterning in three-dimensional (3D) culture is an important dimension of stem cell research. Here, we describe a 3D culture protocol in which single mouse ES cells embedded in Matrigel under neural induction conditions clonally form a lumen containing, oval-shaped epithelial structure within 3 days. By Day 7 an apicobasally polarized neuroepithelium with uniformly dorsal cell identity forms. Treatment with retinoic acid at Day 2 results in posteriorization and self-organization of dorsal-ventral neural tube patterning. Neural tube organoid growth is also supported by pure laminin gels as well as poly(ethylene glycol) (PEG)-based artificial extracellular matrix hydrogels, which can be fine-tuned for key microenvironment characteristics. The rapid generation of a simple, patterned tissue in well-defined culture conditions makes the neural tube organoid a tractable model for studying neural stem cell self-organization.

  20. A high-resolution (13)C 3D CSA-CSA-CSA correlation experiment by means of magic angle turning.

    PubMed

    Hu, J Z; Ye, C; Pugmire, R J; Grant, D M

    2000-08-01

    It is shown in this paper that a previously reported 90 degrees sample flipping (13)C 2D CSA-CSA correlation experiment may be carried out alternatively by employing constant slow sample rotation about the magic angle axis and by synchronizing the read pulse to 13 of the rotor cycle. A high-resolution 3D CSA-CSA-CSA correlation experiment based on the magic angle turning technique is reported in which the conventional 90 degrees 2D CSA-CSA powder pattern for each carbon in a system containing a number of inequivalent carbons may be separated according to the isotropic chemical shift value. The technique is demonstrated on 1,2,3-trimethoxybenzene in which all of the overlapping powder patterns that cannot be segregated by the 2D CSA-CSA experiment are resolved successfully by the 3D CSA-CSA-CSA experiment, including even the two methoxy groups (M(1) and M(3)) whose isotropic shifts, confirmed by high-speed MAS, are separated by only 1 ppm. A difference of 4 ppm in the principal value component (delta(33)) between M(1) and M(3) is readily obtained. Copyright 2000 Academic Press.

  1. Semaphorin 3G Provides a Repulsive Guidance Cue to Lymphatic Endothelial Cells via Neuropilin-2/PlexinD1.

    PubMed

    Liu, Xinyi; Uemura, Akiyoshi; Fukushima, Yoko; Yoshida, Yutaka; Hirashima, Masanori

    2016-11-22

    The vertebrate circulatory system is composed of closely related blood and lymphatic vessels. It has been shown that lymphatic vascular patterning is regulated by blood vessels during development, but its molecular mechanisms have not been fully elucidated. Here, we show that the artery-derived ligand semaphorin 3G (Sema3G) and the endothelial cell receptor PlexinD1 play a role in lymphatic vascular patterning. In mouse embryonic back skin, genetic inactivation of Sema3G or PlexinD1 results in abnormal artery-lymph alignment and reduced lymphatic vascular branching. Conditional ablation in mice demonstrates that PlexinD1 is primarily required in lymphatic endothelial cells (LECs). In vitro analyses show that Sema3G binds to neuropilin-2 (Nrp2), which forms a receptor complex with PlexinD1. Sema3G induces cell collapse in an Nrp2/PlexinD1-dependent manner. Our findings shed light on a molecular mechanism by which LECs are distributed away from arteries and form a branching network during lymphatic vascular development. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Three-Dimensional Analysis of Internal Adaptations of Crowns Cast from Resin Patterns Fabricated Using Computer-Aided Design/Computer-Assisted Manufacturing Technologies.

    PubMed

    Liu, Yushu; Ye, Hongqiang; Wang, Yong; Zhao, Yijao; Sun, Yuchun; Zhou, Yongsheng

    2018-05-17

    To evaluate the internal adaptations of cast crowns made from resin patterns produced using three different computer-aided design/computer-assisted manufacturing technologies. A full-crown abutment made of zirconia was digitized using an intraoral scanner, and the design of the crown was finished on the digital model. Resin patterns were fabricated using a fused deposition modeling (FDM) 3D printer (LT group), a digital light projection (DLP) 3D printer (EV group), or a five-axis milling machine (ZT group). All patterns were cast in cobalt-chromium alloy crowns. Crowns made from traditional handmade wax patterns (HM group) were used as controls. Each group contained 10 samples. The internal gaps of the patterns were analyzed using a 3D replica method and optical digitization. The results were compared using Kruskal-Wallis analysis of variance (ANOVA), a one-sample t test, and signed rank test (α = .05). For the LT group, the marginal and axial gaps were significantly larger than in the other three groups (P < .05), but the occlusal adaptation did not reveal a significant difference (P > .05). In the ZT group, the axial gap was slightly smaller than in the HM group (P < .0083). All the means of gaps in all areas in the four groups were less than 150 μm. Casting crowns using casting patterns made from all three CAD/CAM systems could not produce the prescribed parameters, but the crowns showed clinically acceptable internal adaptations.

  3. Effects of lighting pattern and photoperiod on egg production and egg quality of a native chicken under free-range condition.

    PubMed

    Geng, A L; Zhang, Y; Zhang, J; Wang, H H; Chu, Q; Liu, H G

    2018-04-14

    The paper aimed to study the effects of lighting pattern and photoperiod alone and in combination on egg production, egg quality in Beijing You Chicken (BYC). A total of 630 19-wk-old BYC laying hens were randomly allocated to 6 groups with 105 birds each, 3 replicates per group, reared in individually lit floor pens with separate outdoor areas. A 2 × 3 factorial experiment (2 lighting patterns: continuous and intermittent lighting; 3 photoperiods: 16, 14, 12 h) was arranged, including 16L:8D (6:00 to 22:00) for group 1; 12L:2D:4L:6D (6:00 to 18:00, 20:00 to 24:00) for group 2; 14L:10D (6:00 to 20:00) for group 3; 10L:2D:4L:8D (6:00 to 16:00, 18:00 to 22:00) for group 4; 12L:12D (6:00 to 18:00) for group 5, and 8L:4D:4L:8D (6:00 to 14:00, 18:00 to 22:00) for group 6, respectively. Egg production parameters were calculated for 22 to 43, 44 to 57, and 22 to 57 wk, and egg quality parameters were measured at the end of 37 and 57 wk. The results showed that the egg production of BYC was not significantly affected by lighting pattern, photoperiod alone, or in combination during 22 to 43 and 22 to 57 wk (P > 0.05), but average feed intake in 12 h groups was significantly higher than those in 14 and 16 h groups during 22 to 43 and 22 to 57 wk (P < 0.05). Egg mass and feed egg ratio were significantly affected by lighting pattern, photoperiod alone, and in combination during 44 to 57 wk (P < 0.05). Egg mass was significantly higher (P = 0.05) and feed egg ratio was significantly lower (P = 0.03) in continuous groups than in intermittent groups. There were significant effects for eggshell thickness, albumen height, haugh unit, and egg grade by lighting pattern alone (P < 0.05) at 37 wk. The study suggested that 1) the egg production was not significantly affected by lighting pattern alone during 22 to 57 wk (P > 0.05), but the photoperiod significantly affected average feed intake (P < 0.05); 2) continuous lighting is better for the egg production during 44 to 57 wk, and intermittent lighting is better for egg quality of the native bird at 37 wk; 3) 12 h lighting is enough for meeting the requirement of the native chicken during the laying period; (4) no change in photoperiod from the rearing to the production phase (12 to 12 L) will have long-lasting effects on egg production or egg quality under the present condition.

  4. Comparative Evaluation of the Etching Pattern of Er,Cr:YSGG & Acid Etching on Extracted Human Teeth-An ESEM Analysis

    PubMed Central

    Mazumdar, Dibyendu; Ranjan, Shashi; Krishna, Naveen Kumar; Kole, Ravindra; Singh, Priyankar; Lakiang, Deirimika; Jayam, Chiranjeevi

    2016-01-01

    Introduction Etching of enamel and dentin surfaces increases the surface area of the substrate for better bonding of the tooth colored restorative materials. Acid etching is the most commonly used method. Recently, hard tissue lasers have been used for this purpose. Aim The aim of the present study was to evaluate and compare the etching pattern of Er,Cr:YSGG and conventional etching on extracted human enamel and dentin specimens. Materials and Methods Total 40 extracted non-diseased teeth were selected, 20 anterior and 20 posterior teeth each for enamel and dentin specimens respectively. The sectioned samples were polished by 400 grit Silicon Carbide (SiC) paper to a thickness of 1.0 ± 0.5 mm. The enamel and dentin specimens were grouped as: GrE1 & GrD1 as control specimens, GrE2 & GrD2 were acid etched and GrE3 & GrD3 were lased. Acid etching was done using Conditioner 36 (37 % phosphoric acid) according to manufacturer instructions. Laser etching was done using Er,Cr:YSGG (Erbium, Chromium : Ytrium Scandium Gallium Garnet) at power settings of 3W, air 70% and water 20%. After surface treatment with assigned agents the specimens were analyzed under ESEM (Environmental Scanning Electron Microscope) at X1000 and X5000 magnification. Results Chi Square and Student “t” statistical analysis was used to compare smear layer removal and etching patterns between GrE2-GrE3. GrD2 and GrD3 were compared for smear layer removal and diameter of dentinal tubule opening using the same statistical analysis. Chi-square test for removal of smear layer in any of the treated surfaces i.e., GrE2-E3 and GrD2-D3 did not differ significantly (p>0.05). While GrE2 showed predominantly type I etching pattern (Chi-square=2.78, 0.05

    0.10) and GrE3 showed type III etching (Chi-square=4.50, p<0.05). The tubule diameters were measured using GSA (Gesellschaft fur Softwareentwicklung und Analytik, Germany) image analyzer and the ‘t’ value of student ‘t’ test was 18.10 which was a highly significant result (p<.001). GrD2 had a mean dentinal tubule diameter of 2.78μm and GrD3 of 1.09μm. Conclusion The present study revealed type I etching pattern after acid etching, while type III etching pattern in enamel after laser etching. The lased dentin showed preferential removal of intertubular dentin while acid etching had more effect on the peritubular dentin. No significant differences was observed in removal of smear layer between the acid etched and lased groups. Although diameter of the exposed dentinal tubules was lesser after lased treatment in comparison to acid etching, further long term in vivo studies are needed with different parameters to establish the usage of Er,Cr:YSGG as a sole etching agent. PMID:27437337

  5. General 3D Airborne Antenna Radiation Pattern Code Users Manual.

    DTIC Science & Technology

    1983-02-01

    AD-A 30 359 GENERAL 3D AIRBORNEANTENNA RADIATION PATTERN CODE USERS MANUA (U) OHIO STATE UNIV COLUMBUS ELECTROSCIENCE LAB H HCHUNGET AL FEB 83 RADC...F30602-79-C-0068 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKAREA A WORK UNIT NUMEEfRS The Ohio State University...Computer Program 20, ABSTRACT (Coaffivme on reverse side it ntecessar a" 141etifIr &V block mUbef) This report describes a computer program and how it may

  6. Pattern Informatics Approach to Earthquake Forecasting in 3D

    NASA Astrophysics Data System (ADS)

    Toya, Y.; Tiampo, K. F.; Rundle, J. B.; Chen, C.; Li, H.; Klein, W.

    2009-05-01

    Natural seismicity is correlated across multiple spatial and temporal scales, but correlations in seismicity prior to a large earthquake are locally subtle (e.g. seismic quiescence) and often prominent in broad scale (e.g., seismic activation), resulting in local and regional seismicity patterns, e.g. a Mogi's donut. Recognizing that patterns in seismicity rate are reflecting the regional dynamics of the directly unobservable crustal stresses, the Pattern Informatics (PI) approach was introduced by Tiampo et al. in 2002 [Europhys. Lett., 60 (3), 481-487,] Rundle et al., 2002 [PNAS 99, suppl. 1, 2514-2521.] In this study, we expand the PI approach to forecasting earthquakes into the third, or vertical dimension, and illustrate its further improvement in the forecasting performance through case studies of both natural and synthetic data. The PI characterizes rapidly evolving spatio-temporal seismicity patterns as angular drifts of a unit state vector in a high dimensional correlation space, and systematically identifies anomalous shifts in seismic activity with respect to the regional background. 3D PI analysis is particularly advantageous over 2D analysis in resolving vertically overlapped seismicity anomalies in a highly complex tectonic environment. Case studies will help to illustrate some important properties of the PI forecasting tool. [Submitted to: Concurrency and Computation: Practice and Experience, Wiley, Special Issue: ACES2008.

  7. Direct laser interference patterning for decreased bacterial attachment

    NASA Astrophysics Data System (ADS)

    Guenther, Denise; Valle, Jaoine; Burgui, Saioa; Gil, Carmen; Solano, Cristina; Toledo-Arana, Alejandro; Helbig, Ralf; Werner, Carsten; Lasa, Inigo; Lasagni, Andrés. F.

    2016-03-01

    In the past 15 years, many efforts were made to create functionalized artificial surfaces showing special anti-bacterial and anti-biofouling properties. Thereby, the topography of medical relevant materials plays an important role. However, the targeted fabrication of promising surface structures like hole-, lamella- and pyramid-like patterns with feature sizes in the sub-micrometer range in a one-step process is still a challenge. Optical and e-beam lithography, molding and selfassembly layers show a great potential to design topographies for this purpose. At the same time, most of these techniques are based on sequential processes, require masks or molds and thus are very device relevant and time consuming. In this work, we present the Direct Laser Interference Patterning (DLIP) technology as a capable method for the fast, flexible and direct fabrication of periodic micrometer- and submicrometer structures. This method offers the possibility to equip large plain areas and curved devices with 1D, 2D and 3D patterns. Simple 1D (e.g. lines) and complex 3D (e.g. lamella, pillars) patterns with periodic distances from 0.5 μm to 5 μm were fabricated on polymeric materials (polyimide, polystyrene). Subsequently, we characterized the adhesion behavior of Staphylococcus epidermidis and S. aureus bacteria under in vitro and in vivo conditions. The results revealed that the topographies have a significant impact on bacteria adhesion. On the one side, one-dimensional line-like structures especially with dimensions of the bacteria enhanced microbe attachment. While on the other hand, complex three-dimensional patterns prevented biofilm formation even after implantation and contamination in living organisms.

  8. Atmospheric Nitrogen Trifluoride: Optimized emission estimates using 2-D and 3-D Chemical Transport Models from 1973-2008

    NASA Astrophysics Data System (ADS)

    Ivy, D. J.; Rigby, M. L.; Prinn, R. G.; Muhle, J.; Weiss, R. F.

    2009-12-01

    We present optimized annual global emissions from 1973-2008 of nitrogen trifluoride (NF3), a powerful greenhouse gas which is not currently regulated by the Kyoto Protocol. In the past few decades, NF3 production has dramatically increased due to its usage in the semiconductor industry. Emissions were estimated through the 'pulse-method' discrete Kalman filter using both a simple, flexible 2-D 12-box model used in the Advanced Global Atmospheric Gases Experiment (AGAGE) network and the Model for Ozone and Related Tracers (MOZART v4.5), a full 3-D atmospheric chemistry model. No official audited reports of industrial NF3 emissions are available, and with limited information on production, a priori emissions were estimated using both a bottom-up and top-down approach with two different spatial patterns based on semiconductor perfluorocarbon (PFC) emissions from the Emission Database for Global Atmospheric Research (EDGAR v3.2) and Semiconductor Industry Association sales information. Both spatial patterns used in the models gave consistent results, showing the robustness of the estimated global emissions. Differences between estimates using the 2-D and 3-D models can be attributed to transport rates and resolution differences. Additionally, new NF3 industry production and market information is presented. Emission estimates from both the 2-D and 3-D models suggest that either the assumed industry release rate of NF3 or industry production information is still underestimated.

  9. High-speed 3D imaging using digital binary defocusing method vs sinusoidal method

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Hyun, Jae-Sang; Li, Beiwen

    2017-02-01

    This paper presents our research findings on high-speed 3D imaging using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of 8-bit computer generated sinusoidal patterns (a.k.a, the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: the commercially available inexpensive projector, and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.

  10. Dietary patterns and odds of Type 2 diabetes in Beirut, Lebanon: a case-control study.

    PubMed

    Naja, Farah; Hwalla, Nahla; Itani, Leila; Salem, Maya; Azar, Sami T; Zeidan, Maya Nabhani; Nasreddine, Lara

    2012-12-27

    In Lebanon, Type 2 diabetes (T2D) has a major public health impact through high disease prevalence, significant downstream pathophysiologic effects, and enormous financial liabilities. Diet is an important environmental factor in the development and prevention of T2D. Dietary patterns may exert greater effects on health than individual foods, nutrients, or food groups. The objective of this study is to examine the association between dietary patterns and the odds of T2D among Lebanese adults. Fifty-eight recently diagnosed cases of T2D and 116 population-based age, sex, and place of residence matched control participants were interviewed. Data collection included a standard socio-demographic and lifestyle questionnaire. Dietary intake was evaluated by a semi-quantitative 97-item food frequency questionnaire. Anthropometric measurements including weight, height, waist circumference, and percent body fat were also obtained. Dietary patterns were identified by factor analysis. Multivariate logistic regression analysis was used to evaluate the associations of extracted patterns with T2D. Pearson correlations between these patterns and obesity markers, energy, and nutrient intakes were also examined. Four dietary patterns were identified: Refined Grains & Desserts, Traditional Lebanese, Fast Food and Meat & Alcohol. While scores of the "Refined Grains & Desserts" had the highest correlations with energy (r = 0.74) and carbohydrates (r = 0.22), those of the "Fast Food" had the highest correlation with fat intake (r = 0.34). After adjustment for socio-demographic and lifestyle characteristics, scores of the Refined Grains & Desserts and Fast Food patterns were associated with higher odds of T2D (OR: 3.85, CI: 1.13-11.23 and OR: 2.80, CI: 1.14-5.59; respectively) and scores of the Traditional Lebanese pattern were inversely associated with the odds of T2D (OR: 0.46, CI: 0.22-0.97). The findings of this study demonstrate direct associations of the Refined Grains & Desserts and Fast Food patterns with T2D and an inverse association between the Traditional Lebanese pattern and the disease among Lebanese adults. These results may guide the development of nutrition interventions for the prevention and management of T2D among Lebanese adults.

  11. Adaptive kernel regression for freehand 3D ultrasound reconstruction

    NASA Astrophysics Data System (ADS)

    Alshalalfah, Abdel-Latif; Daoud, Mohammad I.; Al-Najar, Mahasen

    2017-03-01

    Freehand three-dimensional (3D) ultrasound imaging enables low-cost and flexible 3D scanning of arbitrary-shaped organs, where the operator can freely move a two-dimensional (2D) ultrasound probe to acquire a sequence of tracked cross-sectional images of the anatomy. Often, the acquired 2D ultrasound images are irregularly and sparsely distributed in the 3D space. Several 3D reconstruction algorithms have been proposed to synthesize 3D ultrasound volumes based on the acquired 2D images. A challenging task during the reconstruction process is to preserve the texture patterns in the synthesized volume and ensure that all gaps in the volume are correctly filled. This paper presents an adaptive kernel regression algorithm that can effectively reconstruct high-quality freehand 3D ultrasound volumes. The algorithm employs a kernel regression model that enables nonparametric interpolation of the voxel gray-level values. The kernel size of the regression model is adaptively adjusted based on the characteristics of the voxel that is being interpolated. In particular, when the algorithm is employed to interpolate a voxel located in a region with dense ultrasound data samples, the size of the kernel is reduced to preserve the texture patterns. On the other hand, the size of the kernel is increased in areas that include large gaps to enable effective gap filling. The performance of the proposed algorithm was compared with seven previous interpolation approaches by synthesizing freehand 3D ultrasound volumes of a benign breast tumor. The experimental results show that the proposed algorithm outperforms the other interpolation approaches.

  12. A Real-Time Interactive System for Facial Makeup of Peking Opera

    NASA Astrophysics Data System (ADS)

    Cai, Feilong; Yu, Jinhui

    In this paper we present a real-time interactive system for making facial makeup of Peking Opera. First, we analyze the process of drawing facial makeup and characteristics of the patterns used in it, and then construct a SVG pattern bank based on local features like eye, nose, mouth, etc. Next, we pick up some SVG patterns from the pattern bank and composed them to make a new facial makeup. We offer a vector-based free form deformation (FFD) tool to edit patterns and, based on editing, our system creates automatically texture maps for a template head model. Finally, the facial makeup is rendered on the 3D head model in real time. Our system offers flexibility in designing and synthesizing various 3D facial makeup. Potential applications of the system include decoration design, digital museum exhibition and education of Peking Opera.

  13. D3D augmented reality imaging system: proof of concept in mammography.

    PubMed

    Douglas, David B; Petricoin, Emanuel F; Liotta, Lance; Wilson, Eugene

    2016-01-01

    The purpose of this article is to present images from simulated breast microcalcifications and assess the pattern of the microcalcifications with a technical development called "depth 3-dimensional (D3D) augmented reality". A computer, head display unit, joystick, D3D augmented reality software, and an in-house script of simulated data of breast microcalcifications in a ductal distribution were used. No patient data was used and no statistical analysis was performed. The D3D augmented reality system demonstrated stereoscopic depth perception by presenting a unique image to each eye, focal point convergence, head position tracking, 3D cursor, and joystick fly-through. The D3D augmented reality imaging system offers image viewing with depth perception and focal point convergence. The D3D augmented reality system should be tested to determine its utility in clinical practice.

  14. Multi-dimensional computer simulation of MHD combustor hydrodynamics

    NASA Astrophysics Data System (ADS)

    Berry, G. F.; Chang, S. L.; Lottes, S. A.; Rimkus, W. A.

    1991-04-01

    Argonne National Laboratory is investigating the nonreacting jet gas mixing patterns in an MHD second stage combustor by using a 2-D multiphase hydrodynamics computer program and a 3-D single phase hydrodynamics computer program. The computer simulations are intended to enhance the understanding of flow and mixing patterns in the combustor, which in turn may lead to improvement of the downstream MHD channel performance. A 2-D steady state computer model, based on mass and momentum conservation laws for multiple gas species, is used to simulate the hydrodynamics of the combustor in which a jet of oxidizer is injected into an unconfined cross stream gas flow. A 3-D code is used to examine the effects of the side walls and the distributed jet flows on the non-reacting jet gas mixing patterns. The code solves the conservation equations of mass, momentum, and energy, and a transport equation of a turbulence parameter and allows permeable surfaces to be specified for any computational cell.

  15. Three-Dimensional Effects in Multi-Element High Lift Computations

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; LeeReusch, Elizabeth M.; Watson, Ralph D.

    2003-01-01

    In an effort to discover the causes for disagreement between previous two-dimensional (2-D) computations and nominally 2-D experiment for flow over the three-element McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, documents venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side-wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using three-dimensional (3-D) structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects on the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of an off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too early or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower the lift levels near maximum lift conditions.

  16. Effects of 3 dimensional crystal geometry and orientation on 1D and 2D time-scale determinations of magmatic processes using olivine and orthopyroxene

    NASA Astrophysics Data System (ADS)

    Shea, Thomas; Krimer, Daniel; Costa, Fidel; Hammer, Julia

    2014-05-01

    One of the achievements in recent years in volcanology is the determination of time-scales of magmatic processes via diffusion in minerals and its addition to the petrologists' and volcanologists' toolbox. The method typically requires one-dimensional modeling of randomly cut crystals from two-dimensional thin sections. Here we address the question whether using 1D (traverse) or 2D (surface) datasets exploited from randomly cut 3D crystals introduces a bias or dispersion in the time-scales estimated, and how this error can be improved or eliminated. Computational simulations were performed using a concentration-dependent, finite-difference solution to the diffusion equation in 3D. The starting numerical models involved simple geometries (spheres, parallelepipeds), Mg/Fe zoning patterns (either normal or reverse), and isotropic diffusion coefficients. Subsequent models progressively incorporated more complexity, 3D olivines possessing representative polyhedral morphologies, diffusion anisotropy along the different crystallographic axes, and more intricate core-rim zoning patterns. Sections and profiles used to compare 1, 2 and 3D diffusion models were selected to be (1) parallel to the crystal axes, (2) randomly oriented but passing through the olivine center, or (3) randomly oriented and sectioned. Results show that time-scales estimated on randomly cut traverses (1D) or surfaces (2D) can be widely distributed around the actual durations of 3D diffusion (~0.2 to 10 times the true diffusion time). The magnitude over- or underestimations of duration are a complex combination of the geometry of the crystal, the zoning pattern, the orientation of the cuts with respect to the crystallographic axes, and the degree of diffusion anisotropy. Errors on estimated time-scales retrieved from such models may thus be significant. Drastic reductions in the uncertainty of calculated diffusion times can be obtained by following some simple guidelines during the course of data collection (i.e. selection of crystals and concentration profiles, acquisition of crystallographic orientation data), thus allowing derivation of robust time-scales.

  17. All-optical bidirectional neural interfacing using hybrid multiphoton holographic optogenetic stimulation.

    PubMed

    Paluch-Siegler, Shir; Mayblum, Tom; Dana, Hod; Brosh, Inbar; Gefen, Inna; Shoham, Shy

    2015-07-01

    Our understanding of neural information processing could potentially be advanced by combining flexible three-dimensional (3-D) neuroimaging and stimulation. Recent developments in optogenetics suggest that neurophotonic approaches are in principle highly suited for noncontact stimulation of network activity patterns. In particular, two-photon holographic optical neural stimulation (2P-HONS) has emerged as a leading approach for multisite 3-D excitation, and combining it with temporal focusing (TF) further enables axially confined yet spatially extended light patterns. Here, we study key steps toward bidirectional cell-targeted 3-D interfacing by introducing and testing a hybrid new 2P-TF-HONS stimulation path for accurate parallel optogenetic excitation into a recently developed hybrid multiphoton 3-D imaging system. The system is shown to allow targeted all-optical probing of in vitro cortical networks expressing channelrhodopsin-2 using a regeneratively amplified femtosecond laser source tuned to 905 nm. These developments further advance a prospective new tool for studying and achieving distributed control over 3-D neuronal circuits both in vitro and in vivo.

  18. Signatures of personality on dense 3D facial images.

    PubMed

    Hu, Sile; Xiong, Jieyi; Fu, Pengcheng; Qiao, Lu; Tan, Jingze; Jin, Li; Tang, Kun

    2017-03-06

    It has long been speculated that cues on the human face exist that allow observers to make reliable judgments of others' personality traits. However, direct evidence of association between facial shapes and personality is missing from the current literature. This study assessed the personality attributes of 834 Han Chinese volunteers (405 males and 429 females), utilising the five-factor personality model ('Big Five'), and collected their neutral 3D facial images. Dense anatomical correspondence was established across the 3D facial images in order to allow high-dimensional quantitative analyses of the facial phenotypes. In this paper, we developed a Partial Least Squares (PLS) -based method. We used composite partial least squares component (CPSLC) to test association between the self-tested personality scores and the dense 3D facial image data, then used principal component analysis (PCA) for further validation. Among the five personality factors, agreeableness and conscientiousness in males and extraversion in females were significantly associated with specific facial patterns. The personality-related facial patterns were extracted and their effects were extrapolated on simulated 3D facial models.

  19. Sparsity-based fast CGH generation using layer-based approach for 3D point cloud model

    NASA Astrophysics Data System (ADS)

    Kim, Hak Gu; Jeong, Hyunwook; Ro, Yong Man

    2017-03-01

    Computer generated hologram (CGH) is becoming increasingly important for a 3-D display in various applications including virtual reality. In the CGH, holographic fringe patterns are generated by numerically calculating them on computer simulation systems. However, a heavy computational cost is required to calculate the complex amplitude on CGH plane for all points of 3D objects. This paper proposes a new fast CGH generation based on the sparsity of CGH for 3D point cloud model. The aim of the proposed method is to significantly reduce computational complexity while maintaining the quality of the holographic fringe patterns. To that end, we present a new layer-based approach for calculating the complex amplitude distribution on the CGH plane by using sparse FFT (sFFT). We observe the CGH of a layer of 3D objects is sparse so that dominant CGH is rapidly generated from a small set of signals by sFFT. Experimental results have shown that the proposed method is one order of magnitude faster than recently reported fast CGH generation.

  20. Fringe-projection profilometry based on two-dimensional empirical mode decomposition.

    PubMed

    Zheng, Suzhen; Cao, Yiping

    2013-11-01

    In 3D shape measurement, because deformed fringes often contain low-frequency information degraded with random noise and background intensity information, a new fringe-projection profilometry is proposed based on 2D empirical mode decomposition (2D-EMD). The fringe pattern is first decomposed into numbers of intrinsic mode functions by 2D-EMD. Because the method has partial noise reduction, the background components can be removed to obtain the fundamental components needed to perform Hilbert transformation to retrieve the phase information. The 2D-EMD can effectively extract the modulation phase of a single direction fringe and an inclined fringe pattern because it is a full 2D analysis method and considers the relationship between adjacent lines of a fringe patterns. In addition, as the method does not add noise repeatedly, as does ensemble EMD, the data processing time is shortened. Computer simulations and experiments prove the feasibility of this method.

  1. Light-driven 3D droplet manipulation on flexible optoelectrowetting devices fabricated by a simple spin-coating method.

    PubMed

    Jiang, Dongyue; Park, Sung-Yong

    2016-05-21

    Technical advances in electrowetting-on-dielectric (EWOD) over the past few years have extended our attraction to three-dimensional (3D) devices capable of providing more flexibility and functionality with larger volumetric capacity than conventional 2D planar ones. However, typical 3D EWOD devices require complex and expensive fabrication processes for patterning and wiring of pixelated electrodes that also restrict the minimum droplet size to be manipulated. Here, we present a flexible single-sided continuous optoelectrowetting (SCOEW) device which is not only fabricated by a spin-coating method without the need for patterning and wiring processes, but also enables light-driven 3D droplet manipulations. To provide photoconductive properties, previous optoelectrowetting (OEW) devices have used amorphous silicon (a-Si) typically fabricated through high-temperature processes over 300 °C such as CVD or PECVD. However, most of the commercially-available flexible substrates such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) experience serious thermal deformation under such high-temperature processes. Because of this compatibility issue of conventional OEW devices with flexible substrates, light-driven 3D droplet manipulations have not yet been demonstrated on flexible substrates. Our study overcomes this compatibility issue by using a polymer-based photoconductive material, titanium oxide phthalocyanine (TiOPc) and thus SCOEW devices can be simply fabricated on flexible substrates through a low-cost, spin-coating method. In this paper, analytical studies were conducted to understand the effects of light patterns on static contact angles and EWOD forces. For experimental validations of our study, flexible SCOEW devices were successfully fabricated through the TiOPc-based spin-coating method and light-driven droplet manipulations (e.g. transportation, merging, and splitting) have been demonstrated on various 3D terrains such as inclined, vertical, upside-down, and curved surfaces. Our flexible SCOEW technology offers the benefits of device simplicity, flexibility, and functionality over conventional EWOD and OEW devices by enabling optical droplet manipulations on a 3D featureless surface.

  2. A three-dimensional bioprinting system for use with a hydrogel-based biomaterial and printing parameter characterization.

    PubMed

    Song, Seung-Joon; Choi, Jaesoon; Park, Yong-Doo; Lee, Jung-Joo; Hong, So Young; Sun, Kyung

    2010-11-01

    Bioprinting is an emerging technology for constructing tissue or bioartificial organs with complex three-dimensional (3D) structures. It provides high-precision spatial shape forming ability on a larger scale than conventional tissue engineering methods, and simultaneous multiple components composition ability. Bioprinting utilizes a computer-controlled 3D printer mechanism for 3D biological structure construction. To implement minimal pattern width in a hydrogel-based bioprinting system, a study on printing characteristics was performed by varying printer control parameters. The experimental results showed that printing pattern width depends on associated printer control parameters such as printing flow rate, nozzle diameter, and nozzle velocity. The system under development showed acceptable feasibility of potential use for accurate printing pattern implementation in tissue engineering applications and is another example of novel techniques for regenerative medicine based on computer-aided biofabrication system. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  3. 3D measurement using circular gratings

    NASA Astrophysics Data System (ADS)

    Harding, Kevin

    2013-09-01

    3D measurement using methods of structured light are well known in the industry. Most such systems use some variation of straight lines, either as simple lines or with some form of encoding. This geometry assumes the lines will be projected from one side and viewed from another to generate the profile information. But what about applications where a wide triangulation angle may not be practical, particularly at longer standoff distances. This paper explores the use of circular grating patterns projected from a center point to achieve 3D information. Originally suggested by John Caulfield around 1990, the method had some interesting potential, particularly if combined with alternate means of measurement from traditional triangulation including depth from focus methods. The possible advantages of a central reference point in the projected pattern may offer some different capabilities not as easily attained with a linear grating pattern. This paper will explore the pros and cons of the method and present some examples of possible applications.

  4. Micropatterned 2D Hybrid Perovskite Thin Films with Enhanced Photoluminescence Lifetimes

    PubMed Central

    2018-01-01

    The application of luminescent materials in display screens and devices requires micropatterned structures. In this work, we have successfully printed microstructures of a two-dimensional (2D), orange-colored organic/inorganic hybrid perovskite ((C6H5CH2NH3)2PbI4) using two different soft lithography techniques. Notably, both techniques yield microstructures with very high aspect ratios in the range of 1.5–1.8. X-ray diffraction reveals a strong preferential orientation of the crystallites along the c-axis in both patterned structures, when compared to nonpatterned, drop-casted thin films. Furthermore, (time-resolved) photoluminescence (PL) measurements reveal that the optical properties of (C6H5CH2NH3)2PbI4 are conserved upon patterning. We find that the larger grain sizes of the patterned films with respect to the nonpatterned film give rise to an enhanced PL lifetime. Thus, our results demonstrate easy and cost-effective ways to manufacture patterns of 2D organic/inorganic hybrid perovskites, while even improving their optical properties. This demonstrates the potential use of color-tunable 2D hybrids in optoelectronic devices. PMID:29578335

  5. Issues and Challenges of Teaching and Learning in 3D Virtual Worlds: Real Life Case Studies

    ERIC Educational Resources Information Center

    Pfeil, Ulrike; Ang, Chee Siang; Zaphiris, Panayiotis

    2009-01-01

    We aimed to study the characteristics and usage patterns of 3D virtual worlds in the context of teaching and learning. To achieve this, we organised a full-day workshop to explore, discuss and investigate the educational use of 3D virtual worlds. Thirty participants took part in the workshop. All conversations were recorded and transcribed for…

  6. A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics.

    PubMed

    Shin, Su Ryon; Farzad, Raziyeh; Tamayol, Ali; Manoharan, Vijayan; Mostafalu, Pooria; Zhang, Yu Shrike; Akbari, Mohsen; Jung, Sung Mi; Kim, Duckjin; Comotto, Mattia; Annabi, Nasim; Al-Hazmi, Faten Ebrahim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2016-05-01

    The development of electrically conductive carbon nanotube-based inks is reported. Using these inks, 2D and 3D structures are printed on various flexible substrates such as paper, hydrogels, and elastomers. The printed patterns have mechanical and electrical properties that make them beneficial for various biological applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hybrid inorganic-organic capsules for efficient intracellular delivery of novel siRNAs against influenza A (H1N1) virus infection.

    PubMed

    Timin, Alexander S; Muslimov, Albert R; Petrova, Aleksandra V; Lepik, Kirill V; Okilova, Maria V; Vasin, Andrey V; Afanasyev, Boris V; Sukhorukov, Gleb B

    2017-03-07

    The implementation of RNAi technology into the clinical practice has been significantly postponing due to the issues regarding to the delivery of naked siRNA predominantly to target cells. Here we report the approach to enhance the efficiency of siRNA delivery by encapsulating the siRNA into new carrier systems which are obtained via the combination of widely used layer-by-layer technique and in situ modification by sol-gel chemistry. We used three types of siRNAs (NP-717, NP-1155 and NP-1496) in encapsulated form as new therapeutic agents against H1N1 influenza virus infection. By employing the hybrid microcontainers for the siRNA encapsulation we demonstrate the reduction of viral nucleoprotein (NP) level and inhibition of influenza virus production in infected cell lines (MDCK and A549). The obtained hybrid carriers based on assembled biodegradable polyelectrolytes and sol-gel coating possess several advantages such as a high cell uptake efficiency, low toxicity, efficient intracellular delivery of siRNAs and the protection of siRNAs from premature degradation before reaching the target cells. These findings underpin a great potential of versatile microencapsulation technology for the development of anti-viral RNAi delivery systems against influenza virus infection.

  8. FPGA Based Adaptive Rate and Manifold Pattern Projection for Structured Light 3D Camera System †

    PubMed Central

    Lee, Sukhan

    2018-01-01

    The quality of the captured point cloud and the scanning speed of a structured light 3D camera system depend upon their capability of handling the object surface of a large reflectance variation in the trade-off of the required number of patterns to be projected. In this paper, we propose and implement a flexible embedded framework that is capable of triggering the camera single or multiple times for capturing single or multiple projections within a single camera exposure setting. This allows the 3D camera system to synchronize the camera and projector even for miss-matched frame rates such that the system is capable of projecting different types of patterns for different scan speed applications. This makes the system capturing a high quality of 3D point cloud even for the surface of a large reflectance variation while achieving a high scan speed. The proposed framework is implemented on the Field Programmable Gate Array (FPGA), where the camera trigger is adaptively generated in such a way that the position and the number of triggers are automatically determined according to camera exposure settings. In other words, the projection frequency is adaptive to different scanning applications without altering the architecture. In addition, the proposed framework is unique as it does not require any external memory for storage because pattern pixels are generated in real-time, which minimizes the complexity and size of the application-specific integrated circuit (ASIC) design and implementation. PMID:29642506

  9. Metal1 patterning study for random-logic applications with 193i, using calibrated OPC for litho and etch

    NASA Astrophysics Data System (ADS)

    Mailfert, Julien; Van de Kerkhove, Jeroen; De Bisschop, Peter; De Meyer, Kristin

    2014-03-01

    A Metal1-layer (M1) patterning study is conducted on 20nm node (N20) for random-logic applications. We quantified the printability performance on our test vehicle for N20, corresponding to Poly/M1 pitches of 90/64nm, and with a selected minimum M1 gap size of 70nm. The Metal1 layer is patterned with 193nm immersion lithography (193i) using Negative Tone Developer (NTD) resist, and a double-patterning Litho-Etch-Litho-Etch (LELE) process. Our study is based on Logic test blocks that we OPCed with a combination of calibrated models for litho and for etch. We report the Overlapping Process Window (OPW), based on a selection of test structures measured after-etch. We find that most of the OPW limiting structures are EOL (End-of-Line) configurations. Further analysis of these individual OPW limiters will reveal that they belong to different types, such as Resist 3D (R3D) and Mask 3D (M3D) sensitive structures, limiters related to OPC (Optical Proximity Corrections) options such as assist placement, or the choice of CD metrics and tolerances for calculation of the process windows itself. To guide this investigation, we will consider a `reference OPC' case to be compared with other solutions. In addition, rigorous simulations and OPC verifications will complete the after-etch measurements to help us to validate our experimental findings.

  10. Patterns of linkage disequilibrium and haplotype distribution in disease candidate genes.

    PubMed

    Long, Ji-Rong; Zhao, Lan-Juan; Liu, Peng-Yuan; Lu, Yan; Dvornyk, Volodymyr; Shen, Hui; Liu, Yong-Jun; Zhang, Yuan-Yuan; Xiong, Dong-Hai; Xiao, Peng; Deng, Hong-Wen

    2004-05-24

    The adequacy of association studies for complex diseases depends critically on the existence of linkage disequilibrium (LD) between functional alleles and surrounding SNP markers. We examined the patterns of LD and haplotype distribution in eight candidate genes for osteoporosis and/or obesity using 31 SNPs in 1,873 subjects. These eight genes are apolipoprotein E (APOE), type I collagen alpha1 (COL1A1), estrogen receptor-alpha (ER-alpha), leptin receptor (LEPR), parathyroid hormone (PTH)/PTH-related peptide receptor type 1 (PTHR1), transforming growth factor-beta1 (TGF-beta1), uncoupling protein 3 (UCP3), and vitamin D (1,25-dihydroxyvitamin D3) receptor (VDR). Yin yang haplotypes, two high-frequency haplotypes composed of completely mismatching SNP alleles, were examined. To quantify LD patterns, two common measures of LD, D' and r2, were calculated for the SNPs within the genes. The haplotype distribution varied in the different genes. Yin yang haplotypes were observed only in PTHR1 and UCP3. D' ranged from 0.020 to 1.000 with the average of 0.475, whereas the average r2 was 0.158 (ranging from 0.000 to 0.883). A decay of LD was observed as the intermarker distance increased, however, there was a great difference in LD characteristics of different genes or even in different regions within gene. The differences in haplotype distributions and LD patterns among the genes underscore the importance of characterizing genomic regions of interest prior to association studies.

  11. Perceiving environmental structure from optical motion

    NASA Technical Reports Server (NTRS)

    Lappin, Joseph S.

    1991-01-01

    Generally speaking, one of the most important sources of optical information about environmental structure is known to be the deforming optical patterns produced by the movements of the observer (pilot) or environmental objects. As an observer moves through a rigid environment, the projected optical patterns of environmental objects are systematically transformed according to their orientations and positions in 3D space relative to those of the observer. The detailed characteristics of these deforming optical patterns carry information about the 3D structure of the objects and about their locations and orientations relative to those of the observer. The specific geometrical properties of moving images that may constitute visually detected information about the shapes and locations of environmental objects is examined.

  12. Positive Oct -3/4 and D2-40 Immunohistochemical Expression in Germ Cells and Suspected Histology Pattern of Intratubular Germ Cell Neoplasia in Boys with Cryptorchidism Vanish after the Age of 2 Years.

    PubMed

    Thorup, Jorgen; Clasen-Linde, Erik; Cortes, Dina

    2017-08-01

    Introduction  Intratubular germ cell neoplasia (ITGCN) is a precursor to testicular germ cell cancer. Adult germ cell cancer immunohistochemical markers may fail to detect ITGCN in prepubertal boys with congenital cryptorchidism, because positive immunohistochemistry is commonly seen in boys younger than the age of 2 years, where most orchiopexies are performed. The aim of the study was to evaluate the diagnostic challenge to differentiate between a histological pattern of ITGCN and a histological pattern with some atypical germ cells and all positive cancer immunohistochemical markers, but no increased risk of malignancy. Materials and Methods  Histology sections from 373 testicular biopsies from 289 boys aged 1 month to 2 years operated for cryptorchidism were incubated with primary antibodies including anti-placental-like-alkaline phosphatase, antiOct-3/4, anti-C-kit, anti-D2-40, and in case of repeat biopsy with anti-stem cell factor (SCF) receptor. Results  The prevalence of Oct-3/4 and D2-40-positive staining of germ cells in testicular biopsies were in age groups less than 6 months, 100% and 50%; 6-12 months, 60% and 17%; and 1-2 years, 12% and 4%. A 1 year, 1-month-old boy with Prader-Willi syndrome treated with growth hormone had ITGCN in both cryptorchid testes. In another three bilateral nonsyndromic cases, 8 months, 8 months and 1-year-old, a histological pattern in accordance with ITGCN was found. These three boys had a repeat biopsy from both testes performed at the age of 3 years, 4 months, 3.5 years, and 3 years, 10months, respectively. In all cases, the Oct-3/4 and D2-40 positive germ cells turned negative and the histological pattern normalized completely. The primary biopsies had SCF negative germ cells. Conclusion  This study is valuable in identifying the age-related change in Oct-3/4 or D2-40 immunopositive germ cells in seminiferous tubules. An ITGCN-like histological pattern in nonsyndromic cryptorchidism will vanish after the age of 3 years. Even when immunohistochemistry is applied, prepubertal ITGCN is so rarely demonstrated in cryptorchid testes, that it is not plausible that ITGCN generally originates during fetal development in cryptorchidism. Georg Thieme Verlag KG Stuttgart · New York.

  13. Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting

    PubMed Central

    Mun, Jiwon; Ju, Jaehyung; Thurman, James

    2016-01-01

    One of the typical methods to manufacture 3D lattice metals is the direct-metal additive manufacturing (AM) process such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In spite of its potential processing capability, the direct AM method has several disadvantages such as high cost, poor surface finish of final products, limitation in material selection, high thermal stress, and anisotropic properties of parts. We propose a cost-effective method to manufacture 3D lattice metals. The objective of this study is to provide a detailed protocol on fabrication of 3D lattice metals having a complex shape and a thin wall thickness; e.g., octet truss made of Al and Cu alloys having a unit cell length of 5 mm and a cell wall thickness of 0.5 mm. An overall experimental procedure is divided into eight sections: (a) 3D printing of sacrificial patterns (b) melt-out of support materials (c) removal of residue of support materials (d) pattern assembly (e) investment (f) burn-out of sacrificial patterns (g) centrifugal casting (h) post-processing for final products. The suggested indirect AM technique provides the potential to manufacture ultra-lightweight lattice metals; e.g., lattice structures with Al alloys. It appears that the process parameters should be properly controlled depending on materials and lattice geometry, observing the final products of octet truss metals by the indirect AM technique. PMID:27214495

  14. Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting.

    PubMed

    Mun, Jiwon; Ju, Jaehyung; Thurman, James

    2016-05-14

    One of the typical methods to manufacture 3D lattice metals is the direct-metal additive manufacturing (AM) process such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In spite of its potential processing capability, the direct AM method has several disadvantages such as high cost, poor surface finish of final products, limitation in material selection, high thermal stress, and anisotropic properties of parts. We propose a cost-effective method to manufacture 3D lattice metals. The objective of this study is to provide a detailed protocol on fabrication of 3D lattice metals having a complex shape and a thin wall thickness; e.g., octet truss made of Al and Cu alloys having a unit cell length of 5 mm and a cell wall thickness of 0.5 mm. An overall experimental procedure is divided into eight sections: (a) 3D printing of sacrificial patterns (b) melt-out of support materials (c) removal of residue of support materials (d) pattern assembly (e) investment (f) burn-out of sacrificial patterns (g) centrifugal casting (h) post-processing for final products. The suggested indirect AM technique provides the potential to manufacture ultra-lightweight lattice metals; e.g., lattice structures with Al alloys. It appears that the process parameters should be properly controlled depending on materials and lattice geometry, observing the final products of octet truss metals by the indirect AM technique.

  15. Adaptation of video game UVW mapping to 3D visualization of gene expression patterns

    NASA Astrophysics Data System (ADS)

    Vize, Peter D.; Gerth, Victor E.

    2007-01-01

    Analysis of gene expression patterns within an organism plays a critical role in associating genes with biological processes in both health and disease. During embryonic development the analysis and comparison of different gene expression patterns allows biologists to identify candidate genes that may regulate the formation of normal tissues and organs and to search for genes associated with congenital diseases. No two individual embryos, or organs, are exactly the same shape or size so comparing spatial gene expression in one embryo to that in another is difficult. We will present our efforts in comparing gene expression data collected using both volumetric and projection approaches. Volumetric data is highly accurate but difficult to process and compare. Projection methods use UV mapping to align texture maps to standardized spatial frameworks. This approach is less accurate but is very rapid and requires very little processing. We have built a database of over 180 3D models depicting gene expression patterns mapped onto the surface of spline based embryo models. Gene expression data in different models can easily be compared to determine common regions of activity. Visualization software, both Java and OpenGL optimized for viewing 3D gene expression data will also be demonstrated.

  16. Build Angle: Does It Influence the Accuracy of 3D-Printed Dental Restorations Using Digital Light-Processing Technology?

    PubMed

    Osman, Reham B; Alharbi, Nawal; Wismeijer, Daniel

    The aim of this study was to evaluate the effect of the build orientation/build angle on the dimensional accuracy of full-coverage dental restorations manufactured using digital light-processing technology (DLP-AM). A full dental crown was digitally designed and 3D-printed using DLP-AM. Nine build angles were used: 90, 120, 135, 150, 180, 210, 225, 240, and 270 degrees. The specimens were digitally scanned using a high-resolution optical surface scanner (IScan D104i, Imetric). Dimensional accuracy was evaluated using the digital subtraction technique. The 3D digital files of the scanned printed crowns (test model) were exported in standard tessellation language (STL) format and superimposed on the STL file of the designed crown [reference model] using Geomagic Studio 2014 (3D Systems). The root mean square estimate (RMSE) values were evaluated, and the deviation patterns on the color maps were further assessed. The build angle influenced the dimensional accuracy of 3D-printed restorations. The lowest RMSE was recorded for the 135-degree and 210-degree build angles. However, the overall deviation pattern on the color map was more favorable with the 135-degree build angle in contrast with the 210-degree build angle where the deviation was observed around the critical marginal area. Within the limitations of this study, the recommended build angle using the current DLP system was 135 degrees. Among the selected build angles, it offers the highest dimensional accuracy and the most favorable deviation pattern. It also offers a self-supporting crown geometry throughout the building process.

  17. Performance Analysis of Polymorphous Computing Architectures

    DTIC Science & Technology

    2001-01-01

    G H F Proc 5 : 4 : 3 11 1 Figure 3. Self-timed execution. D C B F G H E D B H EA CG...F D C B F G H E D B H EA CG F AProc 1 Proc 2 Proc 3 Proc 4 Proc 5 185 cution pattern when the application graph in Figure 2 is executed in a self...transform, a quadra- E Figure 10. Self-timed execution with first-iteration actors denoted by T. D B H E CG F D C B F G H E D B H EA CG F A 18 T T T

  18. Multizone Paper Platform for 3D Cell Cultures

    PubMed Central

    Derda, Ratmir; Hong, Estrella; Mwangi, Martin; Mammoto, Akiko; Ingber, Donald E.; Whitesides, George M.

    2011-01-01

    In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously (“cells-in-gels-in-paper” or CiGiP), this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM) gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers) containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, “sections” all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures. PMID:21573103

  19. Robust surface reconstruction by design-guided SEM photometric stereo

    NASA Astrophysics Data System (ADS)

    Miyamoto, Atsushi; Matsuse, Hiroki; Koutaki, Gou

    2017-04-01

    We present a novel approach that addresses the blind reconstruction problem in scanning electron microscope (SEM) photometric stereo for complicated semiconductor patterns to be measured. In our previous work, we developed a bootstrapping de-shadowing and self-calibration (BDS) method, which automatically calibrates the parameter of the gradient measurement formulas and resolves shadowing errors for estimating an accurate three-dimensional (3D) shape and underlying shadowless images. Experimental results on 3D surface reconstruction demonstrated the significance of the BDS method for simple shapes, such as an isolated line pattern. However, we found that complicated shapes, such as line-and-space (L&S) and multilayered patterns, produce deformed and inaccurate measurement results. This problem is due to brightness fluctuations in the SEM images, which are mainly caused by the energy fluctuations of the primary electron beam, variations in the electronic expanse inside a specimen, and electrical charging of specimens. Despite these being essential difficulties encountered in SEM photometric stereo, it is difficult to model accurately all the complicated physical phenomena of electronic behavior. We improved the robustness of the surface reconstruction in order to deal with these practical difficulties with complicated shapes. Here, design data are useful clues as to the pattern layout and layer information of integrated semiconductors. We used the design data as a guide of the measured shape and incorporated a geometrical constraint term to evaluate the difference between the measured and designed shapes into the objective function of the BDS method. Because the true shape does not necessarily correspond to the designed one, we use an iterative scheme to develop proper guide patterns and a 3D surface that provides both a less distorted and more accurate 3D shape after convergence. Extensive experiments on real image data demonstrate the robustness and effectiveness of our method.

  20. A new way of measuring wiggling pattern in SADP for 3D NAND technology

    NASA Astrophysics Data System (ADS)

    Mi, Jian; Chen, Ziqi; Tu, Li Ming; Mao, Xiaoming; Liu, Gong Cai; Kawada, Hiroki

    2018-03-01

    A new metrology method of quantitatively measuring wiggling patterns in a Self-Aligned Double Patterning (SADP) process for 2D NAND technology has been developed with a CD-SEM metrology program on images from a Review-SEM system. The metrology program provided accurate modeling of various wiggling patterns. The Review-SEM system provided a-few-micrometer-wide Field of View (FOV), which exceeds precision-guaranteed FOV of a conventional CD-SEM. The result has been effectively verified by visual inspection on vertically compressed images compared with Wiggling Index from this new method. A best-known method (BKM) system has been developed with connected HW and SW to automatically measure wiggling patterns.

  1. Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator.

    PubMed

    Jiang, Wenwen; Ong, Frank; Johnson, Kevin M; Nagle, Scott K; Hope, Thomas A; Lustig, Michael; Larson, Peder E Z

    2018-06-01

    To achieve motion robust high resolution 3D free-breathing pulmonary MRI utilizing a novel dynamic 3D image navigator derived directly from imaging data. Five-minute free-breathing scans were acquired with a 3D ultrashort echo time (UTE) sequence with 1.25 mm isotropic resolution. From this data, dynamic 3D self-navigating images were reconstructed under locally low rank (LLR) constraints and used for motion compensation with one of two methods: a soft-gating technique to penalize the respiratory motion induced data inconsistency, and a respiratory motion-resolved technique to provide images of all respiratory motion states. Respiratory motion estimation derived from the proposed dynamic 3D self-navigator of 7.5 mm isotropic reconstruction resolution and a temporal resolution of 300 ms was successful for estimating complex respiratory motion patterns. This estimation improved image quality compared to respiratory belt and DC-based navigators. Respiratory motion compensation with soft-gating and respiratory motion-resolved techniques provided good image quality from highly undersampled data in volunteers and clinical patients. An optimized 3D UTE sequence combined with the proposed reconstruction methods can provide high-resolution motion robust pulmonary MRI. Feasibility was shown in patients who had irregular breathing patterns in which our approach could depict clinically relevant pulmonary pathologies. Magn Reson Med 79:2954-2967, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermele, Michael; Chen, Xie

    Here, we introduce a method, dubbed the flux-fusion anomaly test, to detect certain anomalous symmetry fractionalization patterns in two-dimensional symmetry-enriched topological (SET) phases. We focus on bosonic systems with Z2 topological order and a symmetry group of the form G=U(1)xG', where G' is an arbitrary group that may include spatial symmetries and/or time reversal. The anomalous fractionalization patterns we identify cannot occur in strictly d=2 systems but can occur at surfaces of d=3 symmetry-protected topological (SPT) phases. This observation leads to examples of d=3 bosonic topological crystalline insulators (TCIs) that, to our knowledge, have not previously been identified. In somemore » cases, these d=3 bosonic TCIs can have an anomalous superfluid at the surface, which is characterized by nontrivial projective transformations of the superfluid vortices under symmetry. The basic idea of our anomaly test is to introduce fluxes of the U(1) symmetry and to show that some fractionalization patterns cannot be extended to a consistent action of G' symmetry on the fluxes. For some anomalies, this can be described in terms of dimensional reduction to d=1 SPT phases. We apply our method to several different symmetry groups with nontrivial anomalies, including G=U(1)×Z T 2 and G=U(1)×Z P 2, where Z T 2 and Z P 2 are time-reversal and d=2 reflection symmetry, respectively.« less

  3. Zn concentration in esophageal tissue in patients with and without upper gastrointestinal disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, R.K.H.; Kadakia, S.C.; Maydonovitch, C.

    1986-03-05

    Measurements of tissue Zn in humans with upper gastrointestinal disease could provide information about underlying pathophysiology but these data have never been obtained. With recent endoscopic methods they obtained 2-6 mg pinch mucosal biopsies of epithelium and lamina propria from proximal (P), middle (M) and distal (D) areas of esophagus under direct vision through a flexible 1 cm endoscope in 35 subjects without gastrointestinal disease (N) and in 35 patients with the following endoscopically proven gastrointestinal pathology: 12 with esophagitis (E), 14 with duodenal ulcer disease (DU) and 9 with gastritis (G). Samples were dried, weighed, digested with HNO/sub 3/,more » dried, resuspended in 3% HNO/sub 3/ and Zn estimated by flame atomic absorption spectrophotometry. Esophageal Zn in N decreased progressively as biopsies extended from P to D (P, 108 +/- 29 ..mu..g/g dry weight, Mean +/- SEM; M, 158 +/- 23; D, 134 +/- 16) but this pattern was generally reversed in patients, with D consistently demonstrating Zn elevated 50-120% above normal. The greatest increase was in G in whom Zn in D was more than twice normal (DU, 290 +/- 76, p < 0.01). These are the first Zn levels obtained from esophagus in living human subjects and indicate (1) a specific pattern of Zn distribution in normal esophagus and (2) a significantly altered pattern in D in several diseases of the upper gastrointestinal tract.« less

  4. High speed stereovision setup for position and motion estimation of fertilizer particles leaving a centrifugal spreader.

    PubMed

    Hijazi, Bilal; Cool, Simon; Vangeyte, Jürgen; Mertens, Koen C; Cointault, Frédéric; Paindavoine, Michel; Pieters, Jan G

    2014-11-13

    A 3D imaging technique using a high speed binocular stereovision system was developed in combination with corresponding image processing algorithms for accurate determination of the parameters of particles leaving the spinning disks of centrifugal fertilizer spreaders. Validation of the stereo-matching algorithm using a virtual 3D stereovision simulator indicated an error of less than 2 pixels for 90% of the particles. The setup was validated using the cylindrical spread pattern of an experimental spreader. A 2D correlation coefficient of 90% and a Relative Error of 27% was found between the experimental results and the (simulated) spread pattern obtained with the developed setup. In combination with a ballistic flight model, the developed image acquisition and processing algorithms can enable fast determination and evaluation of the spread pattern which can be used as a tool for spreader design and precise machine calibration.

  5. Single-shot three-dimensional reconstruction based on structured light line pattern

    NASA Astrophysics Data System (ADS)

    Wang, ZhenZhou; Yang, YongMing

    2018-07-01

    Reconstruction of the object by single-shot is of great importance in many applications, in which the object is moving or its shape is non-rigid and changes irregularly. In this paper, we propose a single-shot structured light 3D imaging technique that calculates the phase map from the distorted line pattern. This technique makes use of the image processing techniques to segment and cluster the projected structured light line pattern from one single captured image. The coordinates of the clustered lines are extracted to form a low-resolution phase matrix which is then transformed to full-resolution phase map by spline interpolation. The 3D shape of the object is computed from the full-resolution phase map and the 2D camera coordinates. Experimental results show that the proposed method was able to reconstruct the three-dimensional shape of the object robustly from one single image.

  6. Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels.

    PubMed

    Soman, Pranav; Chung, Peter H; Zhang, A Ping; Chen, Shaochen

    2013-11-01

    Complex 3D interfacial arrangements of cells are found in several in vivo biosystems such as blood vasculature, renal glomeruli, and intestinal villi. Current tissue engineering techniques fail to develop suitable 3D microenvironments to evaluate the concurrent effects of complex topography and cell encapsulation. There is a need to develop new fabrication approaches that control cell density and distribution within complex 3D features. In this work, we present a dynamic projection printing process that allows rapid construction of complex 3D structures using custom-defined computer-aided-design (CAD) files. Gelatin-methacrylate (GelMA) constructs featuring user-defined spiral, pyramid, flower, and dome micro-geometries were fabricated with and without encapsulated cells. Encapsulated cells demonstrate good cell viability across all geometries both on the scaffold surface and internal to the structures. Cells respond to geometric cues individually as well as collectively throughout the larger-scale patterns. Time-lapse observations also reveal the dynamic nature of mechanical interactions between cells and micro-geometry. When compared to conventional cell-seeding, cell encapsulation within complex 3D patterned scaffolds provides long-term control over proliferation, cell morphology, and geometric guidance. Overall, this biofabrication technique offers a flexible platform to evaluate cell interactions with complex 3D micro-features, with the ability to scale-up towards high-throughput screening platforms. © 2013 Wiley Periodicals, Inc.

  7. Surface Topography and Mechanical Strain Promote Keratocyte Phenotype and Extracellular Matrix Formation in a Biomimetic 3D Corneal Model.

    PubMed

    Zhang, Wei; Chen, Jialin; Backman, Ludvig J; Malm, Adam D; Danielson, Patrik

    2017-03-01

    The optimal functionality of the native corneal stroma is mainly dependent on the well-ordered arrangement of extracellular matrix (ECM) and the pressurized structure. In order to develop an in vitro corneal model, it is crucial to mimic the in vivo microenvironment of the cornea. In this study, the influence of surface topography and mechanical strain on keratocyte phenotype and ECM formation within a biomimetic 3D corneal model is studied. By modifying the surface topography of materials, it is found that patterned silk fibroin film with 600 grooves mm -1 optimally supports cell alignment and ECM arrangement. Furthermore, treatment with 3% dome-shaped mechanical strain, which resembles the shape and mechanics of native cornea, significantly enhances the expression of keratocyte markers as compared to flat-shaped strain. Accordingly, a biomimetic 3D corneal model, in the form of a collagen-modified, silk fibroin-patterned construct subjected to 3% dome-shaped strain, is created. Compared to traditional 2D cultures, it supports a significantly higher expression of keratocyte and ECM markers, and in conclusion better maintains keratocyte phenotype, alignment, and fusiform cell shape. Therefore, the novel biomimetic 3D corneal model developed in this study serves as a useful in vitro 3D culture model to improve current 2D cultures for corneal studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 3D Geodynamic Modelling Reveals Stress and Strain Partitioning within Continental Rifting

    NASA Astrophysics Data System (ADS)

    Rey, P. F.; Mondy, L. S.; Duclaux, G.; Moresi, L. N.

    2014-12-01

    The relative movement between two divergent rigid plates on a sphere can be described using a Euler pole and an angular velocity. On Earth, this typically results in extensional velocities increasing linearly as a function of the distance from the pole (for example in the South Atlantic, North Atlantic, Woodlark Basin, Red Sea Basin, etc.). This property has strong implications for continental rifting and the formation of passive margins, given the role that extensional velocity plays on both rift style (wide or narrow), fault pattern, subsidence histories, and magmatism. Until now, this scissor-style opening has been approached via suites of 2D numerical models of contrasting extensional velocities, complimenting field geology and geophysics. New advances in numerical modelling tools and computational hardware have enabled us to investigate the geodynamics of this problem in a 3D self-consistent high-resolution context. Using Underworld at a grid resolution of 2 km over a domain of 500 km x 500 km x 180 km, we have explored the role of the velocity gradient on the strain pattern, style of rifting, and decompression melting, along the margin. We find that the three dimensionality of this problem is important. The rise of the asthenosphere is enhanced in 2D models compared to 3D numerical solutions, due to the limited volume of material available in 2D. This leads to oceanisation occurring significantly sooner in 2D models. The 3D model shows that there is a significant time and space dependent flows parallel to the rift-axis. A similar picture emerges from the stress field, showing time and space partitioning, including regions of compression separating areas dominated by extension. The strain pattern shows strong zonation along the rift axis, with increasingly localised deformation with extension velocity and though time.

  9. k-t accelerated aortic 4D flow MRI in under two minutes: Feasibility and impact of resolution, k-space sampling patterns, and respiratory navigator gating on hemodynamic measurements.

    PubMed

    Bollache, Emilie; Barker, Alex J; Dolan, Ryan Scott; Carr, James C; van Ooij, Pim; Ahmadian, Rouzbeh; Powell, Alex; Collins, Jeremy D; Geiger, Julia; Markl, Michael

    2018-01-01

    To assess the performance of highly accelerated free-breathing aortic four-dimensional (4D) flow MRI acquired in under 2 minutes compared to conventional respiratory gated 4D flow. Eight k-t accelerated nongated 4D flow MRI (parallel MRI with extended and averaged generalized autocalibrating partially parallel acquisition kernels [PEAK GRAPPA], R = 5, TRes = 67.2 ms) using four k y -k z Cartesian sampling patterns (linear, center-out, out-center-out, random) and two spatial resolutions (SRes1 = 3.5 × 2.3 × 2.6 mm 3 , SRes2 = 4.5 × 2.3 × 2.6 mm 3 ) were compared in vitro (aortic coarctation flow phantom) and in 10 healthy volunteers, to conventional 4D flow (16 mm-navigator acceptance window; R = 2; TRes = 39.2 ms; SRes = 3.2 × 2.3 × 2.4 mm 3 ). The best k-t accelerated approach was further assessed in 10 patients with aortic disease. The k-t accelerated in vitro aortic peak flow (Qmax), net flow (Qnet), and peak velocity (Vmax) were lower than conventional 4D flow indices by ≤4.7%, ≤ 11%, and ≤22%, respectively. In vivo k-t accelerated acquisitions were significantly shorter but showed a trend to lower image quality compared to conventional 4D flow. Hemodynamic indices for linear and out-center-out k-space samplings were in agreement with conventional 4D flow (Qmax ≤ 13%, Qnet ≤ 13%, Vmax ≤ 17%, P > 0.05). Aortic 4D flow MRI in under 2 minutes is feasible with moderate underestimation of flow indices. Differences in k-space sampling patterns suggest an opportunity to mitigate image artifacts by an optimal trade-off between scan time, acceleration, and k-space sampling. Magn Reson Med 79:195-207, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Greater adherence to a Mediterranean dietary pattern is associated with improved plasma lipid profile: the Aragon Health Workers Study cohort.

    PubMed

    Peñalvo, José L; Oliva, Belén; Sotos-Prieto, Mercedes; Uzhova, Irina; Moreno-Franco, Belén; León-Latre, Montserrat; Ordovás, José María

    2015-04-01

    There is wide recognition of the importance of healthy eating in cardiovascular health promotion. The purpose of this study was to identify the main dietary patterns among a Spanish population, and to determine their relationship with plasma lipid profiles. A cross-sectional analysis was conducted of data from 1290 participants of the Aragon Workers Health Study cohort. Standardized protocols were used to collect clinical and biochemistry data. Diet was assessed through a food frequency questionnaire, quantifying habitual intake over the past 12 months. The main dietary patterns were identified by factor analysis. The association between adherence to dietary patterns and plasma lipid levels was assessed by linear and logistic regression. Two dietary patterns were identified: a Mediterranean dietary pattern, high in vegetables, fruits, fish, white meat, nuts, and olive oil, and a Western dietary pattern, high in red meat, fast food, dairy, and cereals. Compared with the participants in the lowest quintile of adherence to the Western dietary pattern, those in the highest quintile had 4.6 mg/dL lower high-density lipoprotein cholesterol levels (P < .001), 8 mg/dL lower apolipoprotein A1 levels (P = .005) and a greater risk of having decreased high-density lipoprotein cholesterol (odds ratio = 3.19; 95% confidence interval, 1.36-7.5; P-trend = .03). Participants adhering to the Mediterranean dietary pattern had 3.3mg/dL higher high-density lipoprotein cholesterol levels (P < .001), and a ratio of triglycerides to high-density lipoprotein cholesterol that was 0.43 times lower (P = .043). Adherence to the Mediterranean dietary pattern is associated with improved lipid profile compared with a Western dietary pattern, which was associated with a lower odds of optimal high-density lipoprotein cholesterol levels in this population. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  11. Laminin promotes vascular network formation in 3D in vitro collagen scaffolds by regulating VEGF uptake.

    PubMed

    Stamati, Katerina; Priestley, John V; Mudera, Vivek; Cheema, Umber

    2014-09-10

    Angiogenesis is an essential neovascularisation process, which if recapitulated in 3D in vitro, will provide better understanding of endothelial cell (EC) behaviour. Various cell types and growth factors are involved, with vascular endothelial growth factor (VEGF) and its receptors VEGFR1 and VEGFR2 key components. We were able to control the aggregation pattern of ECs in 3D collagen hydrogels, by varying the matrix composition and/or having a source of cells signalling angiogenic proteins. These aggregation patterns reflect the different developmental pathways that ECs take to form different sized tubular structures. Cultures with added laminin and thus increased expression of α6 integrin showed a significant increase (p<0.05) in VEGFR2 positive ECs and increased VEGF uptake. This resulted in the end-to-end network aggregation of ECs. In cultures without laminin and therefore low α6 integrin expression, VEGFR2 levels and VEGF uptake were significantly lower (p<0.05). These ECs formed contiguous sheets, analogous to the 'wrapping' pathway in development. We have identified a key linkage between integrin expression on ECs and their uptake of VEGF, regulated by VEGFR2, resulting in different aggregation patterns in 3D. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Projection-Based 3D Printing of Cell Patterning Scaffolds with Multiscale Channels.

    PubMed

    Xue, Dai; Wang, Yancheng; Zhang, Jiaxin; Mei, Deqing; Wang, Yue; Chen, Shaochen

    2018-06-13

    To fully actualize artificial, cell-laden biological models in tissue engineering, such as 3D organoids and organs-on-a-chip systems, cells need to be patterned such that they can precisely mimic natural microenvironments in vitro. Despite increasing interest in this area, patterning cells at multiscale (∼10 μm to 10 mm) remains a significant challenge in bioengineering. Here, we report a projection-based 3D printing system that achieves rapid and high-resolution fabrication of hydrogel scaffolds featuring intricate channels for multiscale cell patterning. Using this system, we were able to use biocompatible poly(ethylene glycol)diacrylate in fabricating a variety of scaffold architectures, ranging from regular geometries such as serpentine, spiral, and fractal-like to more irregular/intricate geometries, such as biomimetic arborescent and capillary networks. A red food dye solution was able to freely fill all channels in the scaffolds, from the trunk (>1100 μm in width) to the small branch (∼17 μm in width) without an external pump. The dimensions of the printed scaffolds remained stable over 3 days while being immersed in Dulbecco's phosphate-buffered saline at 37 °C, and a penetration analysis revealed that these scaffolds are suitable for metabolic and nutrient transport. Cell patterning experiments showed that red fluorescent protein-transfected A549 human nonsmall lung cancer cells adhered well in the scaffolds' channels, and showed further attachment and penetration during cell culture proliferation.

  13. In vivo biomarker expression patterns are preserved in 3D cultures of Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windus, Louisa C.E.; Kiss, Debra L.; Glover, Tristan

    2012-11-15

    Here we report that Prostate Cancer (PCa) cell-lines DU145, PC3, LNCaP and RWPE-1 grown in 3D matrices in contrast to conventional 2D monolayers, display distinct differences in cell morphology, proliferation and expression of important biomarker proteins associated with cancer progression. Consistent with in vivo growth rates, in 3D cultures, all PCa cell-lines were found to proliferate at significantly lower rates in comparison to their 2D counterparts. Moreover, when grown in a 3D matrix, metastatic PC3 cell-lines were found to mimic more precisely protein expression patterns of metastatic tumour formation as found in vivo. In comparison to the prostate epithelial cell-linemore » RWPE-1, metastatic PC3 cell-lines exhibited a down-regulation of E-cadherin and {alpha}6 integrin expression and an up-regulation of N-cadherin, Vimentin and {beta}1 integrin expression and re-expressed non-transcriptionally active AR. In comparison to the non-invasive LNCaP cell-lines, PC3 cells were found to have an up-regulation of chemokine receptor CXCR4, consistent with a metastatic phenotype. In 2D cultures, there was little distinction in protein expression between metastatic, non-invasive and epithelial cells. These results suggest that 3D cultures are more representative of in vivo morphology and may serve as a more biologically relevant model in the drug discovery pipeline. -- Highlights: Black-Right-Pointing-Pointer We developed and optimised 3D culturing techniques for Prostate Cancer cell-lines. Black-Right-Pointing-Pointer We investigated biomarker expression in 2D versus 3D culture techniques. Black-Right-Pointing-Pointer Metastatic PC3 cells re-expressed non-transcriptionally active androgen receptor. Black-Right-Pointing-Pointer Metastatic PCa cell lines retain in vivo-like antigenic profiles in 3D cultures.« less

  14. 3D-PRINTING OF TRANSPARENT BIO-MICROFLUIDIC DEVICES IN PEG-DA

    PubMed Central

    Urrios, Arturo; Parra-Cabrera, Cesar; Bhattacharjee, Nirveek; Gonzalez-Suarez, Alan M.; Rigat-Brugarolas, Luis G.; Nallapatti, Umashree; Samitier, Josep; DeForest, Cole A.; Posas, Francesc; Garcia-Cordero, José L.; Folch, Albert

    2016-01-01

    The vast majority of microfluidic systems are molded in poly(dimethylsiloxane) (PDMS) by soft lithography due to the favorable properties of PDMS: biocompatible, elastomeric, transparent, gas-permeable, inexpensive, and copyright-free. However, PDMS molding involves tedious manual labor, which makes PDMS devices prone to assembly failures and difficult to disseminate to research and clinical settings. Furthermore, the fabrication procedures limit the 3D complexity of the devices to layered designs. Stereolithography (SL), a form of 3D-printing, has recently attracted attention as a way to customize the fabrication of biomedical devices due to its automated, assembly-free 3D fabrication, rapidly decreasing costs, and fast-improving resolution and throughput. However, existing SL resins are not biocompatible and patterning transparent resins at high resolution remains difficult. Here we report procedures for the preparation and patterning of a transparent resin based on low-MW poly(ethylene glycol) diacrylate (MW 250) (PEG-DA-250). The 3D-printed devices are highly transparent and cells can be cultured on PEG-DA-250 prints for several days. This biocompatible SL resin and printing process solves some of the main drawbacks of 3D-printed microfluidic devices: biocompatibility and transparency. In addition, it should also enable the production of non-microfluidic biomedical devices. PMID:27217203

  15. Feedback-Based, System-Level Properties of Vertebrate-Microbial Interactions

    PubMed Central

    Rivas, Ariel L.; Jankowski, Mark D.; Piccinini, Renata; Leitner, Gabriel; Schwarz, Daniel; Anderson, Kevin L.; Fair, Jeanne M.; Hoogesteijn, Almira L.; Wolter, Wilfried; Chaffer, Marcelo; Blum, Shlomo; Were, Tom; Konah, Stephen N.; Kempaiah, Prakash; Ong’echa, John M.; Diesterbeck, Ulrike S.; Pilla, Rachel; Czerny, Claus-Peter; Hittner, James B.; Hyman, James M.; Perkins, Douglas J.

    2013-01-01

    Background Improved characterization of infectious disease dynamics is required. To that end, three-dimensional (3D) data analysis of feedback-like processes may be considered. Methods To detect infectious disease data patterns, a systems biology (SB) and evolutionary biology (EB) approach was evaluated, which utilizes leukocyte data structures designed to diminish data variability and enhance discrimination. Using data collected from one avian and two mammalian (human and bovine) species infected with viral, parasite, or bacterial agents (both sensitive and resistant to antimicrobials), four data structures were explored: (i) counts or percentages of a single leukocyte type, such as lymphocytes, neutrophils, or macrophages (the classic approach), and three levels of the SB/EB approach, which assessed (ii) 2D, (iii) 3D, and (iv) multi-dimensional (rotating 3D) host-microbial interactions. Results In all studies, no classic data structure discriminated disease-positive (D+, or observations in which a microbe was isolated) from disease-negative (D–, or microbial-negative) groups: D+ and D– data distributions overlapped. In contrast, multi-dimensional analysis of indicators designed to possess desirable features, such as a single line of observations, displayed a continuous, circular data structure, whose abrupt inflections facilitated partitioning into subsets statistically significantly different from one another. In all studies, the 3D, SB/EB approach distinguished three (steady, positive, and negative) feedback phases, in which D– data characterized the steady state phase, and D+ data were found in the positive and negative phases. In humans, spatial patterns revealed false-negative observations and three malaria-positive data classes. In both humans and bovines, methicillin-resistant Staphylococcus aureus (MRSA) infections were discriminated from non-MRSA infections. Conclusions More information can be extracted, from the same data, provided that data are structured, their 3D relationships are considered, and well-conserved (feedback-like) functions are estimated. Patterns emerging from such structures may distinguish well-conserved from recently developed host-microbial interactions. Applications include diagnosis, error detection, and modeling. PMID:23437039

  16. Highly noise-tolerant hybrid algorithm for phase retrieval from a single-shot spatial carrier fringe pattern

    NASA Astrophysics Data System (ADS)

    Dong, Zhichao; Cheng, Haobo

    2018-01-01

    A highly noise-tolerant hybrid algorithm (NTHA) is proposed in this study for phase retrieval from a single-shot spatial carrier fringe pattern (SCFP), which effectively combines the merits of spatial carrier phase shift method and two dimensional continuous wavelet transform (2D-CWT). NTHA firstly extracts three phase-shifted fringe patterns from the SCFP with one pixel malposition; then calculates phase gradients by subtracting the reference phase from the other two target phases, which are retrieved respectively from three phase-shifted fringe patterns by 2D-CWT; finally, reconstructs the phase map by a least square gradient integration method. Its typical characters include but not limited to: (1) doesn't require the spatial carrier to be constant; (2) the subtraction mitigates edge errors of 2D-CWT; (3) highly noise-tolerant, because not only 2D-CWT is noise-insensitive, but also the noise in the fringe pattern doesn't directly take part in the phase reconstruction as in previous hybrid algorithm. Its feasibility and performances are validated extensively by simulations and contrastive experiments to temporal phase shift method, Fourier transform and 2D-CWT methods.

  17. Robust phase recovery in temporal speckle pattern interferometry using a 3D directional wavelet transform.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2009-08-01

    We propose an approach based on a 3D directional wavelet transform to retrieve optical phase distributions in temporal speckle pattern interferometry. We show that this approach can effectively recover phase distributions in time series of speckle interferograms that are affected by sets of adjacent nonmodulated pixels. The performance of this phase retrieval approach is analyzed by introducing a temporal carrier in the out-of-plane interferometer setup and assuming modulation loss and noise effects. The advantages and limitations of this approach are finally discussed.

  18. Multiplexed phase-space imaging for 3D fluorescence microscopy.

    PubMed

    Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura

    2017-06-26

    Optical phase-space functions describe spatial and angular information simultaneously; examples of optical phase-space functions include light fields in ray optics and Wigner functions in wave optics. Measurement of phase-space enables digital refocusing, aberration removal and 3D reconstruction. High-resolution capture of 4D phase-space datasets is, however, challenging. Previous scanning approaches are slow, light inefficient and do not achieve diffraction-limited resolution. Here, we propose a multiplexed method that solves these problems. We use a spatial light modulator (SLM) in the pupil plane of a microscope in order to sequentially pattern multiplexed coded apertures while capturing images in real space. Then, we reconstruct the 3D fluorescence distribution of our sample by solving an inverse problem via regularized least squares with a proximal accelerated gradient descent solver. We experimentally reconstruct a 101 Megavoxel 3D volume (1010×510×500µm with NA 0.4), demonstrating improved acquisition time, light throughput and resolution compared to scanning aperture methods. Our flexible patterning scheme further allows sparsity in the sample to be exploited for reduced data capture.

  19. 3-D QSARS FOR RANKING AND PRIORITIZATION OF LARGE CHEMICAL DATASETS: AN EDC CASE STUDY

    EPA Science Inventory

    The COmmon REactivity Pattern (COREPA) approach is a three-dimensional structure activity (3-D QSAR) technique that permits identification and quantification of specific global and local steroelectronic characteristics associated with a chemical's biological activity. It goes bey...

  20. A COMPUTER MODEL OF LUNG MORPHOLOGY TO ANALYZE SPECT IMAGES

    EPA Science Inventory

    Measurement of the three-dimensional (3-D) spatial distribution of aerosol deposition can be performed using Single Photon Emission Computed Tomography (SPECT). The advantage of using 3-D techniques over planar gamma imaging is that deposition patterns can be related to real lun...

  1. Etched distributed Bragg reflectors as three-dimensional photonic crystals: photonic bands and density of states.

    PubMed

    Pavarini, E; Andreani, L C

    2002-09-01

    The photonic band dispersion and density of states (DOS) are calculated for the three-dimensional (3D) hexagonal structure corresponding to a distributed Bragg reflector patterned with a 2D triangular lattice of circular holes. Results for the Si/SiO(2) and GaAs/Al(x)Ga(1-x)As systems determine the optimal parameters for which a gap in the 2D plane occurs and overlaps the 1D gap of the multilayer. The DOS is considerably reduced in correspondence with the overlap of 2D and 1D gaps. Also, the local density of states (i.e., the DOS weighted with the squared electric field at a given point) has strong variations depending on the position. Both results imply substantial changes of spontaneous emission rates and patterns for a local emitter embedded in the structure and make this system attractive for the fabrication of a 3D photonic crystal with controlled radiative properties.

  2. Quantifying frontal plane knee motion during single limb squats: reliability and validity of 2-dimensional measures.

    PubMed

    Gwynne, Craig R; Curran, Sarah A

    2014-12-01

    Clinical assessment of lower limb kinematics during dynamic tasks may identify individuals who demonstrate abnormal movement patterns that may lead to etiology of exacerbation of knee conditions such as patellofemoral joint (PFJt) pain. The purpose of this study was to determine the reliability, validity and associated measurement error of a clinically appropriate two-dimensional (2-D) procedure of quantifying frontal plane knee alignment during single limb squats. Nine female and nine male recreationally active subjects with no history of PFJt pain had frontal plane limb alignment assessed using three-dimensional (3-D) motion analysis and digital video cameras (2-D analysis) while performing single limb squats. The association between 2-D and 3-D measures was quantified using Pearson's product correlation coefficients. Intraclass correlation coefficients (ICCs) were determined for within- and between-session reliability of 2-D data and standard error of measurement (SEM) was used to establish measurement error. Frontal plane limb alignment assessed with 2-D analysis demonstrated good correlation compared with 3-D methods (r = 0.64 to 0.78, p < 0.001). Within-session (0.86) and between-session ICCs (0.74) demonstrated good reliability for 2-D measures and SEM scores ranged from 2° to 4°. 2-D measures have good consistency and may provide a valid measure of lower limb alignment when compared to existing 3-D methods. Assessment of lower limb kinematics using 2-D methods may be an accurate and clinically useful alternative to 3-D motion analysis when identifying individuals who demonstrate abnormal movement patterns associated with PFJt pain. 2b.

  3. Automated Recognition of 3D Features in GPIR Images

    NASA Technical Reports Server (NTRS)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a directed-graph data structure. Relative to past approaches, this multiaxis approach offers the advantages of more reliable detections, better discrimination of objects, and provision of redundant information, which can be helpful in filling gaps in feature recognition by one of the component algorithms. The image-processing class also includes postprocessing algorithms that enhance identified features to prepare them for further scrutiny by human analysts (see figure). Enhancement of images as a postprocessing step is a significant departure from traditional practice, in which enhancement of images is a preprocessing step.

  4. High-Resolution Printing of 3D Structures Using an Electrohydrodynamic Inkjet with Multiple Functional Inks.

    PubMed

    An, Byeong Wan; Kim, Kukjoo; Lee, Heejoo; Kim, So-Yun; Shim, Yulhui; Lee, Dae-Young; Song, Jun Yeob; Park, Jang-Ung

    2015-08-05

    Electrohydrodynamic-inkjet-printed high-resolution complex 3D structures with multiple functional inks are demonstrated. Printed 3D structures can have a variety of fine patterns, such as vertical or helix-shaped pillars and straight or rounded walls, with high aspect ratios (greater than ≈50) and narrow diameters (≈0.7 μm). Furthermore, the formation of freestanding, bridge-like Ag wire structures on plastic substrates suggests substantial potentials as high-precision, flexible 3D interconnects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Eating patterns and type 2 diabetes risk in men: breakfast omission, eating frequency, and snacking1234

    PubMed Central

    Mekary, Rania A; Giovannucci, Edward; Willett, Walter C; van Dam, Rob M

    2012-01-01

    Background: Little is known about the association between eating patterns and type 2 diabetes (T2D) risk. Objective: The objective of this study was to prospectively examine associations between breakfast omission, eating frequency, snacking, and T2D risk in men. Design: Eating patterns were assessed in 1992 in a cohort of 29,206 US men in the Health Professionals Follow-Up Study who were free of T2D, cardiovascular disease, and cancer and were followed for 16 y. We used Cox proportional hazards analysis to evaluate associations with incident T2D. Results: We documented 1944 T2D cases during follow-up. After adjustment for known risk factors for T2D, including BMI, men who skipped breakfast had 21% higher risk of T2D than did men who consumed breakfast (RR: 1.21; 95% CI: 1.07, 1.35). Compared with men who ate 3 times/d, men who ate 1–2 times/d had a higher risk of T2D (RR: 1.25; 95% CI: 1.08, 1.45). These findings persisted after stratification by BMI or diet quality. Additional snacks beyond the 3 main meals (breakfast, lunch, and dinner) were associated with increased T2D risk, but these associations were attenuated after adjustment for BMI. Conclusions: Breakfast omission was associated with an increased risk of T2D in men even after adjustment for BMI. A direct association between snacking between meals and T2D risk was mediated by BMI. PMID:22456660

  6. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    DOEpatents

    Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.

    1996-12-17

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.

  7. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    DOEpatents

    Anderson, Roger N.; Boulanger, Albert; Bagdonas, Edward P.; Xu, Liqing; He, Wei

    1996-01-01

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells.

  8. Fabrication, patterning and luminescence properties of X 2-Y 2SiO 5:A (A=Eu 3+, Tb 3+, Ce 3+) phosphor films via sol-gel soft lithography

    NASA Astrophysics Data System (ADS)

    Han, X. M.; Lin, J.; Fu, J.; Xing, R. B.; Yu, M.; Zhou, Y. H.; Pang, M. L.

    2004-04-01

    X 2-Y 2SiO 5:A (A=Eu 3+, Tb 3+, Ce 3+) phosphor films and their patterning were fabricated by a sol-gel process combined with a soft lithography. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), scanning electron microscopy (SEM) optical microscopy and photoluminescence (PL) were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 900 °C with X 1-Y 2SiO 5, which transformed completely to X 2-Y 2SiO 5 at 1250 °C. Patterned thin films with different band widths (5 μm spaced by 5 μm and 16 μm spaced by 24 μm) were obtained by a soft lithography technique (micromoulding in capillaries, MIMIC). The SEM and AFM study revealed that the nonpatterned phosphor films were uniform and crack free, and the films mainly consisted of closely packed grains with an average size of 350 nm. The doped rare earth ions (A) showed their characteristic emissions in X 2-Y 2SiO 5 phosphor films, i.e., 5D 0- 7F J ( J=0,1,2,3,4) for Eu 3+, 5D 3, 4- 7F J ( J=6,5,4,3) for Tb 3+ and 5d ( 2D)-4f ( 2F 2/5, 2/7) for Ce 3+, respectively. The optimum doping concentrations for Eu 3+, Tb 3+ were determined to be 13 and 8 mol% of Y 3+ in X 2-Y 2SiO 5 films, respectively.

  9. A computational model of cerebral cortex folding.

    PubMed

    Nie, Jingxin; Guo, Lei; Li, Gang; Faraco, Carlos; Stephen Miller, L; Liu, Tianming

    2010-05-21

    The geometric complexity and variability of the human cerebral cortex have long intrigued the scientific community. As a result, quantitative description of cortical folding patterns and the understanding of underlying folding mechanisms have emerged as important research goals. This paper presents a computational 3D geometric model of cerebral cortex folding initialized by MRI data of a human fetal brain and deformed under the governance of a partial differential equation modeling cortical growth. By applying different simulation parameters, our model is able to generate folding convolutions and shape dynamics of the cerebral cortex. The simulations of this 3D geometric model provide computational experimental support to the following hypotheses: (1) Mechanical constraints of the skull regulate the cortical folding process. (2) The cortical folding pattern is dependent on the global cell growth rate of the whole cortex. (3) The cortical folding pattern is dependent on relative rates of cell growth in different cortical areas. (4) The cortical folding pattern is dependent on the initial geometry of the cortex. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. 3D-fabrication of tunable and high-density arrays of crystalline silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Wilbers, J. G. E.; Berenschot, J. W.; Tiggelaar, R. M.; Dogan, T.; Sugimura, K.; van der Wiel, W. G.; Gardeniers, J. G. E.; Tas, N. R.

    2018-04-01

    In this report, a procedure for the 3D-nanofabrication of ordered, high-density arrays of crystalline silicon nanostructures is described. Two nanolithography methods were utilized for the fabrication of the nanostructure array, viz. displacement Talbot lithography (DTL) and edge lithography (EL). DTL is employed to perform two (orthogonal) resist-patterning steps to pattern a thin Si3N4 layer. The resulting patterned double layer serves as an etch mask for all further etching steps for the fabrication of ordered arrays of silicon nanostructures. The arrays are made by means of anisotropic wet etching of silicon in combination with an isotropic retraction etch step of the etch mask, i.e. EL. The procedure enables fabrication of nanostructures with dimensions below 15 nm and a potential density of 1010 crystals cm-2.

  11. Multivoxel Pattern Analysis Reveals 3D Place Information in the Human Hippocampus.

    PubMed

    Kim, Misun; Jeffery, Kate J; Maguire, Eleanor A

    2017-04-19

    The spatial world is three dimensional (3D) and humans and other animals move both horizontally and vertically within it. Extant neuroscientific studies have typically investigated spatial navigation on a horizontal 2D plane, leaving much unknown about how 3D spatial information is represented in the brain. Specifically, horizontal and vertical information may be encoded in the same or different neural structures with equal or unequal sensitivity. Here, we investigated these possibilities using fMRI while participants were passively moved within a 3D lattice structure as if riding a rollercoaster. Multivoxel pattern analysis was used to test for the existence of information relating to where and in which direction participants were heading in this virtual environment. Behaviorally, participants had similarly accurate memory for vertical and horizontal locations and the right anterior hippocampus (HC) expressed place information that was sensitive to changes along both horizontal and vertical axes. This is suggestive of isotropic 3D place encoding. In contrast, participants indicated their heading direction faster and more accurately when they were heading in a tilted-up or tilted-down direction. This direction information was expressed in the right retrosplenial cortex and posterior HC and was only sensitive to vertical pitch, which could reflect the importance of the vertical (gravity) axis as a reference frame. Overall, our findings extend previous knowledge of how we represent the spatial world and navigate within it by taking into account the important third dimension. SIGNIFICANCE STATEMENT The spatial world is 3D. We can move horizontally across surfaces, but also vertically, going up slopes or stairs. Little is known about how the brain supports representations of 3D space. A key question is whether horizontal and vertical information is equally well represented. Here, we measured fMRI response patterns while participants moved within a virtual 3D environment and found that the anterior hippocampus (HC) expressed location information that was sensitive to the vertical and horizontal axes. In contrast, information about heading direction, found in retrosplenial cortex and posterior HC, favored the vertical axis, perhaps due to gravity effects. These findings provide new insights into how we represent our spatial 3D world and navigate within it. Copyright © 2017 Kim et al.

  12. Dietary patterns and odds of Type 2 diabetes in Beirut, Lebanon: a case–control study

    PubMed Central

    2012-01-01

    Background In Lebanon, Type 2 diabetes (T2D) has a major public health impact through high disease prevalence, significant downstream pathophysiologic effects, and enormous financial liabilities. Diet is an important environmental factor in the development and prevention of T2D. Dietary patterns may exert greater effects on health than individual foods, nutrients, or food groups. The objective of this study is to examine the association between dietary patterns and the odds of T2D among Lebanese adults. Methods Fifty-eight recently diagnosed cases of T2D and 116 population-based age, sex, and place of residence matched control participants were interviewed. Data collection included a standard socio-demographic and lifestyle questionnaire. Dietary intake was evaluated by a semi-quantitative 97-item food frequency questionnaire. Anthropometric measurements including weight, height, waist circumference, and percent body fat were also obtained. Dietary patterns were identified by factor analysis. Multivariate logistic regression analysis was used to evaluate the associations of extracted patterns with T2D. Pearson correlations between these patterns and obesity markers, energy, and nutrient intakes were also examined. Results Four dietary patterns were identified: Refined Grains & Desserts, Traditional Lebanese, Fast Food and Meat & Alcohol. While scores of the “Refined Grains & Desserts” had the highest correlations with energy (r = 0.74) and carbohydrates (r = 0.22), those of the “Fast Food” had the highest correlation with fat intake (r = 0.34). After adjustment for socio-demographic and lifestyle characteristics, scores of the Refined Grains & Desserts and Fast Food patterns were associated with higher odds of T2D (OR: 3.85, CI: 1.13-11.23 and OR: 2.80, CI: 1.14-5.59; respectively) and scores of the Traditional Lebanese pattern were inversely associated with the odds of T2D (OR: 0.46, CI: 0.22-0.97). Conclusions The findings of this study demonstrate direct associations of the Refined Grains & Desserts and Fast Food patterns with T2D and an inverse association between the Traditional Lebanese pattern and the disease among Lebanese adults. These results may guide the development of nutrition interventions for the prevention and management of T2D among Lebanese adults. PMID:23270372

  13. Speckle-field digital holographic microscopy.

    PubMed

    Park, YongKeun; Choi, Wonshik; Yaqoob, Zahid; Dasari, Ramachandra; Badizadegan, Kamran; Feld, Michael S

    2009-07-20

    The use of coherent light in conventional holographic phase microscopy (HPM) poses three major drawbacks: poor spatial resolution, weak depth sectioning, and fixed pattern noise due to unwanted diffraction. Here, we report a technique which can overcome these drawbacks, but maintains the advantage of phase microscopy - high contrast live cell imaging and 3D imaging. A speckle beam of a complex spatial pattern is used for illumination to reduce fixed pattern noise and to improve optical sectioning capability. By recording of the electric field of speckle, we demonstrate high contrast 3D live cell imaging without the need for axial scanning - neither objective lens nor sample stage. This technique has great potential in studying biological samples with improved sensitivity, resolution and optical sectioning capability.

  14. Two-photon excited microscale colour centre patterns in Ag-activated phosphate glass written using a focused proton beam

    NASA Astrophysics Data System (ADS)

    Kurobori, Toshio; Kada, Wataru; Shirao, Taichi; Satoh, Takahiro

    2018-02-01

    We report a demonstration of microscale patterns in Ag-activated phosphate glass fabricated using a focused proton beam with an energy range of 1-3 MeV. Various microscale patterns are based on blue and orange radiophotoluminescent (RPL) centres. Two- and three-dimensional (2D and 3D) microstructures are visualised by combining two-photon confocal microscopy with femtosecond (fs) laser pulses generated from a mode-locked Ti:sapphire laser operating at 700 nm. The reconstructed images are analytically evaluated using lateral/axial dose mapping and RPL spectra. In addition, the advantages of two-photon excitation applied to Ag-activated phosphate glass are discussed, and this method is compared with single-photon excitation.

  15. FracPaQ: a MATLAB™ Toolbox for the Quantification of Fracture Patterns

    NASA Astrophysics Data System (ADS)

    Healy, D.; Rizzo, R. E.; Cornwell, D. G.; Timms, N.; Farrell, N. J.; Watkins, H.; Gomez-Rivas, E.; Smith, M.

    2016-12-01

    The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. This presentation describes an open source toolbox to quantify fracture patterns, including distributions in fracture attributes and their spatial variation. Software has been developed to quantify fracture patterns from 2-D digital images, such as thin section micrographs, geological maps, outcrop or aerial photographs or satellite images. The toolbox comprises a suite of MATLAB™ scripts based on published quantitative methods for the analysis of fracture attributes: orientations, lengths, intensity, density and connectivity. An estimate of permeability in 2-D is made using a parallel plate model. The software provides an objective and consistent methodology for quantifying fracture patterns and their variations in 2-D across a wide range of length scales. Our current focus for the application of the software is on quantifying the fracture patterns in and around fault zones. There is a large body of published work on the quantification of relatively simple joint patterns, but fault zones present a bigger, and arguably more important, challenge. The method presented is inherently scale independent, and a key task will be to analyse and integrate quantitative fracture pattern data from micro- to macro-scales. Planned future releases will incorporate multi-scale analyses based on a wavelet method to look for scale transitions, and combining fracture traces from multiple 2-D images to derive the statistically equivalent 3-D fracture pattern.

  16. Modelling and formation of spatiotemporal patterns of fractional predation system in subdiffusion and superdiffusion scenarios

    NASA Astrophysics Data System (ADS)

    Owolabi, Kolade M.; Atangana, Abdon

    2018-02-01

    This paper primarily focused on the question of how population diffusion can affect the formation of the spatial patterns in the spatial fraction predator-prey system by Turing mechanisms. Our numerical findings assert that modeling by fractional reaction-diffusion equations should be considered as an appropriate tool for studying the fundamental mechanisms of complex spatiotemporal dynamics. We observe that pure Hopf instability gives rise to the formation of spiral patterns in 2D and pure Turing instability destroys the spiral pattern and results to the formation of chaotic or spatiotemporal spatial patterns. Existence and permanence of the species is also guaranteed with the 3D simulations at some instances of time for subdiffusive and superdiffusive scenarios.

  17. Rigorous assessment of patterning solution of metal layer in 7 nm technology node

    NASA Astrophysics Data System (ADS)

    Gao, Weimin; Ciofi, Ivan; Saad, Yves; Matagne, Philippe; Bachmann, Michael; Gillijns, Werner; Lucas, Kevin; Demmerle, Wolfgang; Schmoeller, Thomas

    2016-01-01

    In a 7 nm node (N7), the logic design requires a critical poly pitch of 42 to 45 nm and a metal 1 (M1) pitch of 28 to 32 nm. Such high-pattern density pushes the 193 immersion lithography solution toward its limit and also brings extremely complex patterning scenarios. The N7 M1 layer may require a self-aligned quadruple patterning (SAQP) with a triple litho-etch (LE3) block process. Therefore, the whole patterning process flow requires multiple exposure+etch+deposition processes and each step introduces a particular impact on the pattern profiles and the topography. In this study, we have successfully integrated a simulation tool that enables emulation of the whole patterning flow with realistic process-dependent three-dimensional (3-D) profile and topology. We use this tool to study the patterning process variations of the N7 M1 layer including the overlay control, the critical dimension uniformity budget, and the lithographic process window (PW). The resulting 3-D pattern structure can be used to optimize the process flow, verify design rules, extract parasitics, and most importantly, simulate the electric field, and identify hot spots for dielectric reliability. As an example application, the maximum electric field at M1 tip-to-tip, which is one of the most critical patterning locations, has been simulated and extracted. The approach helps to investigate the impact of process variations on dielectric reliability. We have also assessed the alternative M1 patterning flow with a single exposure block using extreme ultraviolet lithography (EUVL) and analyzed its advantages compared to the LE3 block approach.

  18. VDR regulation of microRNA differs across prostate cell models suggesting extremely flexible control of transcription.

    PubMed

    Singh, Prashant K; Long, Mark D; Battaglia, Sebastiano; Hu, Qiang; Liu, Song; Sucheston-Campbell, Lara E; Campbell, Moray J

    2015-01-01

    The Vitamin D Receptor (VDR) is a member of the nuclear receptor superfamily and is of therapeutic interest in cancer and other settings. Regulation of microRNA (miRNA) by the VDR appears to be important to mediate its actions, for example, to control cell growth. To identify if and to what extent VDR-regulated miRNA patterns change in prostate cancer progression, we undertook miRNA microarray analyses in 7 cell models representing non-malignant and malignant prostate cells (RWPE-1, RWPE-2, HPr1, HPr1AR, LNCaP, LNCaP-C4-2, and PC-3). To focus on primary VDR regulatory events, we undertook expression analyses after 30 minutes treatment with 1α,25(OH)2D3. Across all models, 111 miRNAs were significantly modulated by 1α,25(OH)2D3 treatment. Of these, only 5 miRNAs were modulated in more than one cell model, and of these, only 3 miRNAs were modulated in the same direction. The patterns of miRNA regulation, and the networks they targeted, significantly distinguished the different cell types. Integration of 1α,25(OH)2D3-regulated miRNAs with published VDR ChIP-seq data showed significant enrichment of VDR peaks in flanking regions of miRNAs. Furthermore, mRNA and miRNA expression analyses in non-malignant RWPE-1 cells revealed patterns of miRNA and mRNA co-regulation; specifically, 13 significant reciprocal patterns were identified and these patterns were also observed in TCGA prostate cancer data. Lastly, motif search analysis revealed differential motif enrichment within VDR peaks flanking mRNA compared to miRNA genes. Together, this study revealed that miRNAs are rapidly regulated in a highly cell-type specific manner, and are significantly co-integrated with mRNA regulation.

  19. Histone modifications in the male germ line of Drosophila.

    PubMed

    Hennig, Wolfgang; Weyrich, Alexandra

    2013-02-22

    In the male germ line of Drosophila chromatin remains decondensed and highly transcribed during meiotic prophase until it is rapidly compacted. A large proportion of the cell cycle-regulated histone H3.1 is replaced by H3.3, a histone variant encoded outside the histone repeat cluster and not subject to cell cycle controlled expression. We investigated histone modification patterns in testes of D. melanogaster and D. hydei. In somatic cells of the testis envelope and in germ cells these modification patterns differ from those typically seen in eu- and heterochromatin of other somatic cells. During the meiotic prophase some modifications expected in active chromatin are not found or are found at low level. The absence of H4K16ac suggests that dosage compensation does not take place. Certain histone modifications correspond to either the cell cycle-regulated histone H3.1 or to the testis-specific variant H3.3. In spermatogonia we found H3K9 methylation in cytoplasmic histones, most likely corresponding to the H3.3 histone variant. Most histone modifications persist throughout the meiotic divisions. The majority of modifications persist until the early spermatid nuclei, and only a minority further persist until the final chromatin compaction stages before individualization of the spermatozoa. Histone modification patterns in the male germ line differ from expected patterns. They are consistent with an absence of dosage compensation of the X chromosome during the male meiotic prophase. The cell cycle-regulated histone variant H3.1 and H3.3, expressed throughout the cell cycle, also vary in their modification patterns. Postmeiotically, we observed a highly complex pattern of the histone modifications until late spermatid nuclear elongation stages. This may be in part due to postmeiotic transcription and in part to differential histone replacement during chromatin condensation.

  20. 3D mouse shape reconstruction based on phase-shifting algorithm for fluorescence molecular tomography imaging system.

    PubMed

    Zhao, Yue; Zhu, Dianwen; Baikejiang, Reheman; Li, Changqing

    2015-11-10

    This work introduces a fast, low-cost, robust method based on fringe pattern and phase shifting to obtain three-dimensional (3D) mouse surface geometry for fluorescence molecular tomography (FMT) imaging. We used two pico projector/webcam pairs to project and capture fringe patterns from different views. We first calibrated the pico projectors and the webcams to obtain their system parameters. Each pico projector/webcam pair had its own coordinate system. We used a cylindrical calibration bar to calculate the transformation matrix between these two coordinate systems. After that, the pico projectors projected nine fringe patterns with a phase-shifting step of 2π/9 onto the surface of a mouse-shaped phantom. The deformed fringe patterns were captured by the corresponding webcam respectively, and then were used to construct two phase maps, which were further converted to two 3D surfaces composed of scattered points. The two 3D point clouds were further merged into one with the transformation matrix. The surface extraction process took less than 30 seconds. Finally, we applied the Digiwarp method to warp a standard Digimouse into the measured surface. The proposed method can reconstruct the surface of a mouse-sized object with an accuracy of 0.5 mm, which we believe is sufficient to obtain a finite element mesh for FMT imaging. We performed an FMT experiment using a mouse-shaped phantom with one embedded fluorescence capillary target. With the warped finite element mesh, we successfully reconstructed the target, which validated our surface extraction approach.

  1. Ultra-fine structures of Pd-Ag-HAp nanoparticle deposition on protruded TiO2 barrier layer for dental implant

    NASA Astrophysics Data System (ADS)

    Jang, Jae-Myung; Kim, Seung-Dai; Park, Tae-Eon; Choe, Han-Cheol

    2018-02-01

    The biocompatibility structure of an implant surface is of great importance to the formation of new bone tissue around the dental implant and also has a significant chemical reaction in the osseointegration process. Thus, ultra-fine Pd-Ag-HAp nanoparticles have been electrodeposited on protruded TiO2 barrier layer in mixed electrolyte solutions. Unusual protrusions patterns, which are assigned to Pd-Ag-HAp nanoparticles, can be clearly differentiated from a TiO2 nanotube oxide layer formed by an anodizing process. In the chemical bonding state, the surface characteristics of Pd/Ag/HAp compounds have been investigated by FE-SEM, EDS mapping analysis, and XPS analysis. The mapping dots of the elements including Ti, Ca, Pd, Ag, and P showed a homogeneous distribution throughout the entire surface when deposited onto the protruded TiO2 barrier layer. The XPS spectra of Ti-2p, O-1S, Pd-3d, and Ag-3d have been investigated, with the major XPS peak indicating Pd-3d. The Ag-3d level was clearly observed with further scanning of the Ca-2p region. Based on the results of the chemical states, the structural properties of the protrusion patterns were also examined after being deposited onto the barrier oxide film, resulting in the representative protrusion patterns being mainly composed of Pd-Ag-HAp compounds. The results of the soaking evaluation showed that the protrusion patterns and the protruded TiO2 barrier layer were all effective in regards to biocompatibility.

  2. From 1D to 3D: Tunable Sub-10 nm Gaps in Large Area Devices.

    PubMed

    Zhou, Ziwei; Zhao, Zhiyuan; Yu, Ye; Ai, Bin; Möhwald, Helmuth; Chiechi, Ryan C; Yang, Joel K W; Zhang, Gang

    2016-04-20

    Tunable sub-10 nm 1D nanogaps are fabricated based on nanoskiving. The electric field in different sized nanogaps is investigated theoretically and experimentally, yielding nonmonotonic dependence and an optimized gap-width (5 nm). 2D nanogap arrays are fabricated to pack denser gaps combining surface patterning techniques. Innovatively, 3D multistory nanogaps are built via a stacking procedure, processing higher integration, and much improved electric field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Rapid Prototyping across the Spectrum: RF to Optical 3D Electromagnetic Structures

    DTIC Science & Technology

    2015-11-17

    34Imprintable, Bendable, and Shape-Conformable Polymer Electrolytes for Versatile-Shaped Lithium - Ion Batteries ," Advanced Materials, vol. 25, pp. 1395-1400...center; and (d) close-up of light aperture etched with a focused ion beam [104] ............ 22 Figure 16: (a) Conformal antenna patterned by...where the features are defined using focused ion beam milling (e.g. fishnet patterns) [20], standard micro-/nano- lithography processes that are

  4. Accelerating simulation for the multiple-point statistics algorithm using vector quantization

    NASA Astrophysics Data System (ADS)

    Zuo, Chen; Pan, Zhibin; Liang, Hao

    2018-03-01

    Multiple-point statistics (MPS) is a prominent algorithm to simulate categorical variables based on a sequential simulation procedure. Assuming training images (TIs) as prior conceptual models, MPS extracts patterns from TIs using a template and records their occurrences in a database. However, complex patterns increase the size of the database and require considerable time to retrieve the desired elements. In order to speed up simulation and improve simulation quality over state-of-the-art MPS methods, we propose an accelerating simulation for MPS using vector quantization (VQ), called VQ-MPS. First, a variable representation is presented to make categorical variables applicable for vector quantization. Second, we adopt a tree-structured VQ to compress the database so that stationary simulations are realized. Finally, a transformed template and classified VQ are used to address nonstationarity. A two-dimensional (2D) stationary channelized reservoir image is used to validate the proposed VQ-MPS. In comparison with several existing MPS programs, our method exhibits significantly better performance in terms of computational time, pattern reproductions, and spatial uncertainty. Further demonstrations consist of a 2D four facies simulation, two 2D nonstationary channel simulations, and a three-dimensional (3D) rock simulation. The results reveal that our proposed method is also capable of solving multifacies, nonstationarity, and 3D simulations based on 2D TIs.

  5. 3D delivered dose assessment using a 4DCT-based motion model

    PubMed Central

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Seco, Joao; Mishra, Pankaj; Lewis, John H.

    2015-01-01

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basis DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images reconstructed from kV and MV projections compared to the ground truth, which is clinically comparable to 4DCT (0.093%). For the second XCAT phantom that has an irregular breathing pattern, the errors are 0.81% and 1.75% for kV and MV reconstructions, both of which are better than that of 4DCT (4.01%). In the case of real patient, although it is impossible to obtain the actual delivered dose, the dose estimation is clinically reasonable and demonstrates differences between 4DCT and MV reconstruction-based dose estimates. Conclusions: With the availability of kV or MV projection images, the proposed approach is able to assess delivered doses for all respiratory phases during treatment. Compared to the planning dose based on 4DCT, the dose estimation using reconstructed 3D fluoroscopic images was as good as 4DCT for regular respiratory pattern and was a better dose estimation for the irregular respiratory pattern. PMID:26127043

  6. 3D delivered dose assessment using a 4DCT-based motion model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basismore » DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images reconstructed from kV and MV projections compared to the ground truth, which is clinically comparable to 4DCT (0.093%). For the second XCAT phantom that has an irregular breathing pattern, the errors are 0.81% and 1.75% for kV and MV reconstructions, both of which are better than that of 4DCT (4.01%). In the case of real patient, although it is impossible to obtain the actual delivered dose, the dose estimation is clinically reasonable and demonstrates differences between 4DCT and MV reconstruction-based dose estimates. Conclusions: With the availability of kV or MV projection images, the proposed approach is able to assess delivered doses for all respiratory phases during treatment. Compared to the planning dose based on 4DCT, the dose estimation using reconstructed 3D fluoroscopic images was as good as 4DCT for regular respiratory pattern and was a better dose estimation for the irregular respiratory pattern.« less

  7. Grasping trajectories in a virtual environment adhere to Weber's law.

    PubMed

    Ozana, Aviad; Berman, Sigal; Ganel, Tzvi

    2018-06-01

    Virtual-reality and telerobotic devices simulate local motor control of virtual objects within computerized environments. Here, we explored grasping kinematics within a virtual environment and tested whether, as in normal 3D grasping, trajectories in the virtual environment are performed analytically, violating Weber's law with respect to object's size. Participants were asked to grasp a series of 2D objects using a haptic system, which projected their movements to a virtual space presented on a computer screen. The apparatus also provided object-specific haptic information upon "touching" the edges of the virtual targets. The results showed that grasping movements performed within the virtual environment did not produce the typical analytical trajectory pattern obtained during 3D grasping. Unlike as in 3D grasping, grasping trajectories in the virtual environment adhered to Weber's law, which indicates relative resolution in size processing. In addition, the trajectory patterns differed from typical trajectories obtained during 3D grasping, with longer times to complete the movement, and with maximum grip apertures appearing relatively early in the movement. The results suggest that grasping movements within a virtual environment could differ from those performed in real space, and are subjected to irrelevant effects of perceptual information. Such atypical pattern of visuomotor control may be mediated by the lack of complete transparency between the interface and the virtual environment in terms of the provided visual and haptic feedback. Possible implications of the findings to movement control within robotic and virtual environments are further discussed.

  8. Comparative Simulations of 2D and 3D Mixed Convection Flow in a Faulted Basin: an Example from the Yarmouk Gorge, Israel and Jordan

    NASA Astrophysics Data System (ADS)

    Magri, F.; Inbar, N.; Raggad, M.; Möller, S.; Siebert, C.; Möller, P.; Kuehn, M.

    2014-12-01

    Lake Kinneret (Lake Tiberias or Sea of Galilee) is the most important freshwater reservoir in the Northern Jordan Valley. Simulations that couple fluid flow, heat and mass transport are built to understand the mechanisms responsible for the salinization of this important resource. Here the effects of permeability distribution on 2D and 3D convective patterns are compared. 2D simulations indicate that thermal brine in Haon and some springs in the Yamourk Gorge (YG) are the result of mixed convection, i.e. the interaction between the regional flow from the bordering heights and thermally-driven flow (Magri et al., 2014). Calibration of the calculated temperature profiles suggests that the faults in Haon and the YG provides paths for ascending hot waters, whereas the fault in the Golan recirculates water between 1 and 2 km depths. At higher depths, faults induce 2D layered convection in the surrounding units. The 2D assumption for a faulted basin can oversimplify the system, and the conclusions might not be fully correct. The 3D results also point to mixed convection as the main mechanism for the thermal anomalies. However, in 3D the convective structures are more complex allowing for longer flow paths and residence times. In the fault planes, hydrothermal convection develops in a finger regime enhancing inflow and outflow of heat in the system. Hot springs can form locally at the surface along the fault trace. By contrast, the layered cells extending from the faults into the surrounding sediments are preserved and are similar to those simulated in 2D. The results are consistent with the theory from Zhao et al. (2003), which predicts that 2D and 3D patterns have the same probability to develop given the permeability and temperature ranges encountered in geothermal fields. The 3D approach has to be preferred to the 2D in order to capture all patterns of convective flow, particularly in the case of planar high permeability regions such as faults. Magri, F., et al., 2014. Potential salinization mechanisms of drinking water due to large-scale flow of brines across faults in the Tiberias Basin. Geophysical Research Abstracts, Vol. 16, Abstract No: EGU2014-8236-1, Wien, AustriaZhao, C., et al., 2003. Convective instability of 3-D fluid-saturated geological fault zones heated from below. Geophysical Journal International, 155, 213-220

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, X; Wuu, C; Admovics, J

    Purpose: A 3-D radiochromic plastic dosimeter has been used to cross-test the isocentricity of a high resolution image-guided small animal microirradiation platform. In this platform, the mouse stage rotating for cone beam CT imaging is perpendicular to the gantry rotation for sub-millimeter radiation delivery. A 3-D dosimeter can be used to verify both imaging and irradiation coordinates. Methods: A 3-D dosimeter and optical CT scanner were used in this study. In the platform, both mouse stage and gantry can rotate 360° with rotation axis perpendicular to each other. Isocentricity and coincidence of mouse stage and gantry rotations were evaluated usingmore » star patterns. A 3-D dosimeter was placed on mouse stage with center at platform isocenter approximately. For CBCT isocentricity, with gantry moved to 90°, the mouse stage rotated horizontally while the x-ray was delivered to the dosimeter at certain angles. For irradiation isocentricity, the gantry rotated 360° to deliver beams to the dosimeter at certain angles for star patterns. The uncertainties and agreement of both CBCT and irradiation isocenters can be determined from the star patterns. Both procedures were repeated 3 times using 3 dosimeters to determine short-term reproducibility. Finally, dosimeters were scanned using optical CT scanner to obtain the results. Results: The gantry isocentricity is 0.9 ± 0.1 mm and mouse stage rotation isocentricity is about 0.91 ± 0.11 mm. Agreement between the measured isocenters of irradiation and imaging coordinates was determined. The short-term reproducibility test yielded 0.5 ± 0.1 mm between the imaging isocenter and the irradiation isocenter, with a maximum displacement of 0.7 ± 0.1 mm. Conclusion: The 3-D dosimeter can be very useful in precise verification of targeting for a small animal irradiation research. In addition, a single 3-D dosimeter can provide information in both geometric and dosimetric uncertainty, which is crucial for translational studies.« less

  10. Ten-year chemical signatures associated with long-range transport observed in the free troposphere over the central North Atlantic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, B.; Owen, R. C.; Perlinger, J. A.

    Ten-year observations of trace gases at Pico Mountain Observatory (PMO), a free troposphere site in the central North Atlantic, were classified by transport patterns using the Lagrangian particle dispersion model, FLEXPART. The classification enabled identifying trace gas mixing ratios associated with background air and long- range transport of continental emissions, which were defined as chemical signatures. Comparison between the chemical signatures revealed the impacts of natural and anthropogenic sources, as well as chemical and physical processes during long transport, on air composition in the remote North Atlantic. Transport of North American anthropogenic emissions (NA-Anthro) and summertime wildfire plumes (Fire) significantlymore » enhanced CO and O 3 at PMO. Summertime CO enhancements caused by NA-Anthro were found to have been decreasing by a rate of 0.67 ± 0.60 ppbv/year in the ten-year period, due possibly to reduction of emissions in North America. Downward mixing from the upper troposphere and stratosphere due to the persistent Azores-Bermuda anticyclone causes enhanced O 3 and nitrogen oxides. The d [O 3]/d [CO] value was used to investigate O 3 sources and chemistry in different transport patterns. The transport pattern affected by Fire had the lowest d [O 3]/d [CO], which was likely due to intense CO production and depressed O 3 production in wildfire plumes. Slightly enhanced O 3 and d [O 3]/d [CO] were found in the background air, suggesting that weak downward mixing from the upper troposphere is common at PMO. Enhancements of both butane isomers were found during upslope flow periods, indicating contributions from local sources. The consistent ratio of butane isomers associated with the background air and NA-anthro implies no clear difference in the oxidation rates of the butane isomers during long transport. Based on observed relationships between non-methane hydrocarbons, the averaged photochemical age of the air masses at PMO was estimated to be 11 ± 4 days.« less

  11. Ten-year chemical signatures associated with long-range transport observed in the free troposphere over the central North Atlantic

    DOE PAGES

    Zhang, B.; Owen, R. C.; Perlinger, J. A.; ...

    2017-03-06

    Ten-year observations of trace gases at Pico Mountain Observatory (PMO), a free troposphere site in the central North Atlantic, were classified by transport patterns using the Lagrangian particle dispersion model, FLEXPART. The classification enabled identifying trace gas mixing ratios associated with background air and long- range transport of continental emissions, which were defined as chemical signatures. Comparison between the chemical signatures revealed the impacts of natural and anthropogenic sources, as well as chemical and physical processes during long transport, on air composition in the remote North Atlantic. Transport of North American anthropogenic emissions (NA-Anthro) and summertime wildfire plumes (Fire) significantlymore » enhanced CO and O 3 at PMO. Summertime CO enhancements caused by NA-Anthro were found to have been decreasing by a rate of 0.67 ± 0.60 ppbv/year in the ten-year period, due possibly to reduction of emissions in North America. Downward mixing from the upper troposphere and stratosphere due to the persistent Azores-Bermuda anticyclone causes enhanced O 3 and nitrogen oxides. The d [O 3]/d [CO] value was used to investigate O 3 sources and chemistry in different transport patterns. The transport pattern affected by Fire had the lowest d [O 3]/d [CO], which was likely due to intense CO production and depressed O 3 production in wildfire plumes. Slightly enhanced O 3 and d [O 3]/d [CO] were found in the background air, suggesting that weak downward mixing from the upper troposphere is common at PMO. Enhancements of both butane isomers were found during upslope flow periods, indicating contributions from local sources. The consistent ratio of butane isomers associated with the background air and NA-anthro implies no clear difference in the oxidation rates of the butane isomers during long transport. Based on observed relationships between non-methane hydrocarbons, the averaged photochemical age of the air masses at PMO was estimated to be 11 ± 4 days.« less

  12. 3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique

    PubMed Central

    Wang, Yajun; Laughner, Jacob I.; Efimov, Igor R.; Zhang, Song

    2013-01-01

    This paper presents a two-frequency binary phase-shifting technique to measure three-dimensional (3D) absolute shape of beating rabbit hearts. Due to the low contrast of the cardiac surface, the projector and the camera must remain focused, which poses challenges for any existing binary method where the measurement accuracy is low. To conquer this challenge, this paper proposes to utilize the optimal pulse width modulation (OPWM) technique to generate high-frequency fringe patterns, and the error-diffusion dithering technique to produce low-frequency fringe patterns. Furthermore, this paper will show that fringe patterns produced with blue light provide the best quality measurements compared to fringe patterns generated with red or green light; and the minimum data acquisition speed for high quality measurements is around 800 Hz for a rabbit heart beating at 180 beats per minute. PMID:23482151

  13. Effects of early afterdepolarizations on excitation patterns in an accurate model of the human ventricles

    PubMed Central

    Seemann, Gunnar; Panfilov, Alexander V.; Vandersickel, Nele

    2017-01-01

    Early Afterdepolarizations, EADs, are defined as the reversal of the action potential before completion of the repolarization phase, which can result in ectopic beats. However, the series of mechanisms of EADs leading to these ectopic beats and related cardiac arrhythmias are not well understood. Therefore, we aimed to investigate the influence of this single cell behavior on the whole heart level. For this study we used a modified version of the Ten Tusscher-Panfilov model of human ventricular cells (TP06) which we implemented in a 3D ventricle model including realistic fiber orientations. To increase the likelihood of EAD formation at the single cell level, we reduced the repolarization reserve (RR) by reducing the rapid delayed rectifier Potassium current and raising the L-type Calcium current. Varying these parameters defined a 2D parametric space where different excitation patterns could be classified. Depending on the initial conditions, by either exciting the ventricles with a spiral formation or burst pacing protocol, we found multiple different spatio-temporal excitation patterns. The spiral formation protocol resulted in the categorization of a stable spiral (S), a meandering spiral (MS), a spiral break-up regime (SB), spiral fibrillation type B (B), spiral fibrillation type A (A) and an oscillatory excitation type (O). The last three patterns are a 3D generalization of previously found patterns in 2D. First, the spiral fibrillation type B showed waves determined by a chaotic bi-excitable regime, i.e. mediated by both Sodium and Calcium waves at the same time and in same tissue settings. In the parameter region governed by the B pattern, single cells were able to repolarize completely and different (spiral) waves chaotically burst into each other without finishing a 360 degree rotation. Second, spiral fibrillation type A patterns consisted of multiple small rotating spirals. Single cells failed to repolarize to the resting membrane potential hence prohibiting the Sodium channel gates to recover. Accordingly, we found that Calcium waves mediated these patterns. Third, a further reduction of the RR resulted in a more exotic parameter regime whereby the individual cells behaved independently as oscillators. The patterns arose due to a phase-shift of different oscillators as disconnection of the cells resulted in continuation of the patterns. For all patterns, we computed realistic 9 lead ECGs by including a torso model. The B and A type pattern exposed the behavior of Ventricular Tachycardia (VT). We conclude that EADs at the single cell level can result in different types of cardiac fibrillation at the tissue and 3D ventricle level. PMID:29216239

  14. A 3D stand generator for central Appalachian hardwood forests

    Treesearch

    Jingxin Wang; Yaoxiang Li; Gary W. Miller

    2002-01-01

    A 3-dimensional (3D) stand generator was developed for central Appalachian hardwood forests. It was designed for a harvesting simulator to examine the interactions of stand, harvest, and machine. The Component Object Model (COM) was used to design and implement the program. Input to the generator includes species composition, stand density, and spatial pattern. Output...

  15. Three-dimensional finite amplitude electroconvection in dielectric liquids

    NASA Astrophysics Data System (ADS)

    Luo, Kang; Wu, Jian; Yi, Hong-Liang; Tan, He-Ping

    2018-02-01

    Charge injection induced electroconvection in a dielectric liquid lying between two parallel plates is numerically simulated in three dimensions (3D) using a unified lattice Boltzmann method (LBM). Cellular flow patterns and their subcritical bifurcation phenomena of 3D electroconvection are numerically investigated for the first time. A unit conversion is also derived to connect the LBM system to the real physical system. The 3D LBM codes are validated by three carefully chosen cases and all results are found to be highly consistent with the analytical solutions or other numerical studies. For strong injection, the steady state roll, polygon, and square flow patterns are observed under different initial disturbances. Numerical results show that the hexagonal cell with the central region being empty of charge and centrally downward flow is preferred in symmetric systems under random initial disturbance. For weak injection, the numerical results show that the flow directly passes from the motionless state to turbulence once the system loses its linear stability. In addition, the numerically predicted linear and finite amplitude stability criteria of different flow patterns are discussed.

  16. Different implications of the dorsal and ventral hippocampus on contextual memory retrieval after stress.

    PubMed

    Pierard, C; Dorey, R; Henkous, N; Mons, N; Béracochéa, D

    2017-09-01

    This study assessed the relative contributions of dorsal (dHPC) and ventral (vHPC) hippocampus regions in mediating the rapid effects of an acute stress on contextual memory retrieval. Indeed, we previously showed that an acute stress (3 electric footschocks; 0.9 mA each) delivered 15 min before the 24 h-test inversed the memory retrieval pattern in a contextual discrimination task. Specifically, mice learned in a four-hole board two successive discriminations (D1 and D2) varying by the color and texture of the floor. Twenty-four hours later, nonstressed animals remembered accurately D1 but not D2 whereas stressed mice showed an opposite memory retrieval pattern, D2 being more accurately remembered than D1. We showed here that, at the time of memory testing in that task, stressed animals exhibited no significant changes neither in pCREB activity nor in the time-course evolution of corticosterone into the vHPC; in contrast, a significant decrease in pCREB activity and a significant increase in corticosterone were observed in the dHPC as compared to nonstressed mice. Moreover, local infusion of the anesthetic lidocaine into the vHPC 15 min before the onset of the stressor did not modify the memory retrieval pattern in nonstress and stress conditions whereas lidocaine infusion into the dHPC induced in nonstressed mice an memory retrieval pattern similar to that observed in stressed animals. The overall set of data shows that memory retrieval in nonstress condition involved primarily the dHPC and that the inversion of memory retrieval pattern after stress is linked to a dHPC but not vHPC dysfunction. © 2017 Wiley Periodicals, Inc.

  17. Speckle-based three-dimensional velocity measurement using spatial filtering velocimetry.

    PubMed

    Iversen, Theis F Q; Jakobsen, Michael L; Hanson, Steen G

    2011-04-10

    We present an optical method for measuring the real-time three-dimensional (3D) translational velocity of a diffusely scattering rigid object observed through an imaging system. The method is based on a combination of the motion of random speckle patterns and regular fringe patterns. The speckle pattern is formed in the observation plane of the imaging system due to reflection from an area of the object illuminated by a coherent light source. The speckle pattern translates in response to in-plane translation of the object, and the presence of an angular offset reference wave coinciding with the speckle pattern in the observation plane gives rise to interference, resulting in a fringe pattern that translates in response to the out-of-plane translation of the object. Numerical calculations are performed to evaluate the dynamic properties of the intensity distribution and the response of realistic spatial filters designed to measure the three components of the object's translational velocity. Furthermore, experimental data are presented that demonstrate full 3D velocity measurement. © 2011 Optical Society of America

  18. Sub-10-nm suspended nano-web formation by direct laser writing

    NASA Astrophysics Data System (ADS)

    Wang, Sihao; Yu, Ye; Liu, Hailong; Lim, Kevin T. P.; Madurai Srinivasan, Bharathi; Zhang, Yong Wei; Yang, Joel K. W.

    2018-06-01

    A diffraction-limited three-dimensional (3D) direct laser writing (DLW) system based on two-photon polymerization can routinely pattern structures at the 100 nm length scale. Several schemes have been developed to improve the patterning resolution of 3D DLW but often require customized resist formulations or multi-wavelength exposures. Here, we introduce a scheme to produce suspended nano-webs with feature sizes below 10 nm in IP-Dip resist using sub-threshold exposure conditions in a commercial DLW system. The narrowest suspended lines (nano-webs) measured 7 nm in width. Larger ∼20 nm nano-webs were patterned with ∼80% yield at increased laser powers. In addition, closely spaced nano-gaps with a center-to-center distance of 33 nm were produced by patterning vertically displaced suspended lines followed by metal deposition and liftoff. We provide hypotheses and present preliminary results for a mechanism involving the initiation of a percolative path and a strain-induced narrowing in the nano-web formation. Our approach allows selective features to be patterned with dimensions comparable to the sub-10 nm patterning capability of electron-beam lithography (EBL).

  19. Flux-fusion anomaly test and bosonic topological crystalline insulators

    DOE PAGES

    Hermele, Michael; Chen, Xie

    2016-10-13

    Here, we introduce a method, dubbed the flux-fusion anomaly test, to detect certain anomalous symmetry fractionalization patterns in two-dimensional symmetry-enriched topological (SET) phases. We focus on bosonic systems with Z2 topological order and a symmetry group of the form G=U(1)xG', where G' is an arbitrary group that may include spatial symmetries and/or time reversal. The anomalous fractionalization patterns we identify cannot occur in strictly d=2 systems but can occur at surfaces of d=3 symmetry-protected topological (SPT) phases. This observation leads to examples of d=3 bosonic topological crystalline insulators (TCIs) that, to our knowledge, have not previously been identified. In somemore » cases, these d=3 bosonic TCIs can have an anomalous superfluid at the surface, which is characterized by nontrivial projective transformations of the superfluid vortices under symmetry. The basic idea of our anomaly test is to introduce fluxes of the U(1) symmetry and to show that some fractionalization patterns cannot be extended to a consistent action of G' symmetry on the fluxes. For some anomalies, this can be described in terms of dimensional reduction to d=1 SPT phases. We apply our method to several different symmetry groups with nontrivial anomalies, including G=U(1)×Z T 2 and G=U(1)×Z P 2, where Z T 2 and Z P 2 are time-reversal and d=2 reflection symmetry, respectively.« less

  20. Patterns of circulating fat-soluble vitamins and carotenoids and risk of frailty in four European cohorts of older adults.

    PubMed

    Pilleron, Sophie; Weber, Daniela; Pérès, Karine; Colpo, Marco; Gomez-Cabrero, David; Stuetz, Wolfgang; Dartigues, Jean-François; Ferrucci, Luigi; Bandinelli, Stefania; Garcia-Garcia, Francisco Jose; Grune, Tilman; Féart, Catherine

    2018-01-27

    To investigate the cross-sectional and prospective associations between patterns of serum fat-soluble micronutrients and frailty in four European cohorts of older adults 65 years of age and older. Participants from the Three-City (Bordeaux, France), AMI (Gironde, France), TSHA (Toledo, Spain) and InCHIANTI (Tuscany, Italy) cohorts with available data on serum α-carotene, β-carotene, lycopene, cryptoxanthin, lutein + zeaxanthin, retinol, α-tocopherol, γ-tocopherol and 25-hydroxyvitamin D3 (25(OH)D) were included. A principal component (PC) analysis was used to derive micronutrient patterns. Frailty was defined using Fried's criteria. Multivariate logistic regression models adjusted for socio-demographic and health-related covariates were performed to assess the association between micronutrient patterns and prevalent frailty in 1324 participants, and the risk of frailty in 915 initially non-frail participants. Three different patterns were identified: the first pattern was characterized by higher serum carotenoids and α-tocopherol levels; the second was characterized by high loadings for serum vitamins A and E levels and low loadings for carotenes level; the third one had the highest loading for serum 25(OH)D and cryptoxanthin level and the lowest loading for vitamin A and E. A significant cross-sectional association was only observed between the seconnd PC and prevalent frailty (p = 0.02). Compared to the highest quartile, participants in the lowest quartile-i.e., high carotenes and low vitamins E and A levels-had higher odds of frailty (Odds ratio = 2.2; 95% confidence interval 1.3-3.8). No association with the risk of frailty was observed. These findings suggest that some specific micronutrient patterns are markers but not predictors of frailty in these European cohorts of older adults.

  1. Patterns of C-reactive protein ratio response to antibiotics in pediatric sepsis: A prospective cohort study.

    PubMed

    Lanziotti, Vanessa Soares; Póvoa, Pedro; Prata-Barbosa, Arnaldo; Pulcheri, Lucas Berbet; Rabello, Ligia S C F; Lapa E Silva, José Roberto; Soares, Marcio; Salluh, Jorge I F

    2018-04-01

    Evaluate sequential C-reactive protein (CRP) measurements and patterns of CRP-ratio response to antibiotic therapy during first 7days in Pediatric Intensive Care Unit (PICU) of septic children. Prospective, cohort study of children (1month-12years) admitted at 3 PICUs, with diagnosis of sepsis with <72h course. CRP-ratio was calculated in relation to D0_CRP value. Children were classified according to an individual pattern of CRP-ratio response: fast - CRP_D4 of therapy was <0.4 of D0_CRP; slow - continuous but slow decrease of CRP; non - CRP remained ≥0.8 of D0_CRP; biphasic - initial CRP decrease to levels <0.8 of D0_CRP followed by secondary rise ≥0.8. 103 septic children (age-median: 2yrs; 54% male) were prospectively included (infection focus: 65% respiratory, 12.5% central nervous system). Overall PICU mortality was 11.7%. 102 children could be classified according to a predefined CRP-ratio response pattern. Time-dependent analysis of CRP-ratio and CRP course of the different patterns were significantly different. Besides, PICU mortality rate was significantly different according CRP-ratio response patterns: fast response 4.5%; slow response 5.8%; non-response 29.4%; biphasic response 42.8%. In pediatric sepsis, CRP-ratio serial evaluation was useful in early identification of patients with poor outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Current perspectives on selective dopamine D3 receptor antagonists as pharmacotherapeutics for addictions and related disorders

    PubMed Central

    Heidbreder, Christian A.; Newman, Amy H.

    2011-01-01

    Repeated exposure to drugs of abuse produces long-term molecular and neurochemical changes that may explain the core features of addiction, such as the compulsive seeking and taking of the drug, as well as the risk of relapse. A growing number of new molecular and cellular targets of addictive drugs have been identified, and rapid advances are being made in relating those targets to specific behavioral phenotypes in animal models of addiction. In this context, the pattern of expression of the dopamine (DA) D3 receptor in the rodent and human brain and changes in this pattern in response to drugs of abuse have contributed primarily to direct research efforts toward the development of selective DA D3 receptor antagonists. Growing preclinical evidence indicates that these compounds may actually regulate the motivation to self-administer drugs and disrupt drug-associated cue-induced craving. This report will be divided into three parts. First, preclinical evidence in support of the efficacy of selective DA D3 receptor antagonists in animal models of drug addiction will be reviewed. The effects of mixed DA D2/D3 receptor antagonists will not be discussed here because most of these compounds have low selectivity at the D3 versus D2 receptor, and their efficacy profile is related primarily to functional antagonism at D2 receptors and possibly interactions with other neurotransmitter systems. Second, major advances in medicinal chemistry for the identification and optimization of selective DA D3 receptor antagonists and partial agonists will be analyzed. Third, translational research from preclinical efficacy studies to so-called proof-of-concept studies for drug addiction indications will be discussed. PMID:20201845

  3. Current perspectives on selective dopamine D(3) receptor antagonists as pharmacotherapeutics for addictions and related disorders.

    PubMed

    Heidbreder, Christian A; Newman, Amy H

    2010-02-01

    Repeated exposure to drugs of abuse produces long-term molecular and neurochemical changes that may explain the core features of addiction, such as the compulsive seeking and taking of the drug, as well as the risk of relapse. A growing number of new molecular and cellular targets of addictive drugs have been identified, and rapid advances are being made in relating those targets to specific behavioral phenotypes in animal models of addiction. In this context, the pattern of expression of the dopamine (DA) D(3) receptor in the rodent and human brain and changes in this pattern in response to drugs of abuse have contributed primarily to direct research efforts toward the development of selective DA D(3) receptor antagonists. Growing preclinical evidence indicates that these compounds may actually regulate the motivation to self-administer drugs and disrupt drug-associated cue-induced craving. This report will be divided into three parts. First, preclinical evidence in support of the efficacy of selective DA D(3) receptor antagonists in animal models of drug addiction will be reviewed. The effects of mixed DA D(2)/D(3) receptor antagonists will not be discussed here because most of these compounds have low selectivity at the D(3) versus D(2) receptor, and their efficacy profile is related primarily to functional antagonism at D(2) receptors and possibly interactions with other neurotransmitter systems. Second, major advances in medicinal chemistry for the identification and optimization of selective DA D(3) receptor antagonists and partial agonists will be analyzed. Third, translational research from preclinical efficacy studies to so-called proof-of-concept studies for drug addiction indications will be discussed.

  4. The imaging features of the meniscal roots on isotropic 3D MRI in young asymptomatic volunteers.

    PubMed

    Wang, Ping; Zhang, Cheng-Zhou; Zhang, Di; Liu, Quan-Yuan; Zhong, Xiao-Fei; Yin, Zhi-Jie; Wang, Bin

    2018-05-01

    This study aimed to describe clearly the normal imaging features of the meniscal roots on the magnetic resonance imaging (MRI) with a 3-dimensional (3D) proton density-weighted (PDW) sequence at 3T. A total of 60 knees of 31 young asymptomatic volunteers were examined using a 3D MRI. The insertion patterns, constitution patterns, and MR signals of the meniscal roots were recorded. The anterior root of the medial meniscus (ARMM), the anterior root of the lateral meniscus (ARLM), and the posterior root of the medial meniscus (PRMM) had 1 insertion site, whereas the posterior root of the lateral meniscus (PRLM) can be divided into major and minor insertion sites. The ARLM and the PRMM usually consisted of multiple fiber bundles (≥3), whereas the ARMM and the PRLM often consisted of a single fiber bundle. The ARMM and the PRLM usually appeared as hypointense, whereas the ARLM and the PRMM typically exhibited mixed signals. The meniscal roots can be complex and diverse, and certain characteristics of them were observed on 3D MRI. Understanding the normal imaging features of the meniscal roots is extremely beneficial for further diagnosis of root tears.

  5. Time-dependent effects of repeated THC treatment on dopamine D2/3 receptor-mediated signalling in midbrain and striatum.

    PubMed

    Tournier, Benjamin B; Tsartsalis, Stergios; Dimiziani, Andrea; Millet, Philippe; Ginovart, Nathalie

    2016-09-15

    This study examined the time-course of alterations in levels and functional sensitivities of dopamine D2/3 receptors (D2/3R) during the course and up to 6 weeks following cessation of chronic treatment with Delta(9)-Tetrahydrocannabinol (THC) in rats. THC treatment led to an increase in D2/3R levels in striatum, as assessed using [(3)H]-(+)-PHNO, that was readily observable after one week of treatment, remained stably elevated during the subsequent 2 weeks of treatment, but fully reversed within 2 weeks of THC discontinuation. THC-induced D2/3R alterations were more pronounced and longer lasting in the dopamine cell body regions of the midbrain, wherein [(3)H]-(+)-PHNO binding was still elevated at 2 weeks but back to control values at 6 weeks after THC cessation. Parallel analyses of the psychomotor effects of pre- and post-synaptic doses of quinpirole also showed a pattern of D2/3R functional supersensitivity indicative of more rapid subsidence in striatum than in midbrain following drug cessation. These results indicate that chronic THC is associated with a biochemical and functional sensitization of D2/3R signaling, that these responses show a region-specific temporal pattern and are fully reversible following drug discontinuation. These results suggest that an increased post-synaptic D2/3R function and a decreased DA presynaptic signaling, mediated by increased D2/3R autoinhibition, may predominate during distinct phases of withdrawal and may contribute both to the mechanisms leading to relapse and to cannabinoid withdrawal symptoms. The different rates of normalization of D2/3R function in striatum and midbrain may be critical information for the development of new pharmacotherapies for cannabis dependence. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Evaluation of endoscopic entire 3D image acquisition of the digestive tract using a stereo endoscope

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Kayo; Watabe, Kenji; Fujinaga, Tetsuji; Iijima, Hideki; Tsujii, Masahiko; Takahashi, Hideya; Takehara, Tetsuo; Yamada, Kenji

    2017-02-01

    Because the view angle of the endoscope is narrow, it is difficult to get the whole image of the digestive tract at once. If there are more than two lesions in the digestive tract, it is hard to understand the 3D positional relationship among the lesions. Virtual endoscopy using CT is a present standard method to get the whole view of the digestive tract. Because the virtual endoscopy is designed to detect the irregularity of the surface, it cannot detect lesions that lack irregularity including early cancer. In this study, we propose a method of endoscopic entire 3D image acquisition of the digestive tract using a stereo endoscope. The method is as follows: 1) capture sequential images of the digestive tract by moving the endoscope, 2) reconstruct 3D surface pattern for each frame by stereo images, 3) estimate the position of the endoscope by image analysis, 4) reconstitute the entire image of the digestive tract by combining the 3D surface pattern. To confirm the validity of this method, we experimented with a straight tube inside of which circles were allocated at equal distance of 20 mm. We captured sequential images and the reconstituted image of the tube revealed that the distance between each circle was 20.2 +/- 0.3 mm (n=7). The results suggest that this method of endoscopic entire 3D image acquisition may help us understand 3D positional relationship among the lesions such as early esophageal cancer that cannot be detected by virtual endoscopy using CT.

  7. Estimation of Phase in Fringe Projection Technique Using High-order Instantaneous Moments Based Method

    NASA Astrophysics Data System (ADS)

    Gorthi, Sai Siva; Rajshekhar, G.; Rastogi, Pramod

    2010-04-01

    For three-dimensional (3D) shape measurement using fringe projection techniques, the information about the 3D shape of an object is encoded in the phase of a recorded fringe pattern. The paper proposes a high-order instantaneous moments based method to estimate phase from a single fringe pattern in fringe projection. The proposed method works by approximating the phase as a piece-wise polynomial and subsequently determining the polynomial coefficients using high-order instantaneous moments to construct the polynomial phase. Simulation results are presented to show the method's potential.

  8. Homochiral 3D Metal-Organic Frameworks from Chiral 1D Rods: 6 – Way Helical Packing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Sung M.; Moon, Dohyun; Jeong, Kyung S.

    2011-07-20

    The chiral 3D MOFs resulted from the packing of chiral 1D SBBs were studied. It was demonstrated that the final packing pattern is dependent on the dimension of SBB's. In addition, we were able to identify a new plywood-like network from ligand 2H2 exhibiting an unprecedented six-way chiral helical packing motif, which can be added on the list of invariant rod packings.

  9. Motion-oriented high speed 3-D measurements by binocular fringe projection using binary aperiodic patterns.

    PubMed

    Feng, Shijie; Chen, Qian; Zuo, Chao; Tao, Tianyang; Hu, Yan; Asundi, Anand

    2017-01-23

    Fringe projection is an extensively used technique for high speed three-dimensional (3-D) measurements of dynamic objects. To precisely retrieve a moving object at pixel level, researchers prefer to project a sequence of fringe images onto its surface. However, the motion often leads to artifacts in reconstructions due to the sequential recording of the set of patterns. In order to reduce the adverse impact of the movement, we present a novel high speed 3-D scanning technique combining the fringe projection and stereo. Firstly, promising measuring speed is achieved by modifying the traditional aperiodic sinusoidal patterns so that the fringe images can be cast at kilohertz with the widely used defocusing strategy. Next, a temporal intensity tracing algorithm is developed to further alleviate the influence of motion by accurately tracing the ideal intensity for stereo matching. Then, a combined cost measure is suggested to robustly estimate the cost for each pixel and lastly a three-step framework of refinement follows not only to eliminate outliers caused by the motion but also to obtain sub-pixel disparity results for 3-D reconstructions. In comparison with the traditional method where the effect of motion is not considered, experimental results show that the reconstruction accuracy for dynamic objects can be improved by an order of magnitude with the proposed method.

  10. Clinical, biological, and microbiological pattern associated with ventriculostomy-related infection: a retrospective longitudinal study.

    PubMed

    Mounier, Roman; Lobo, David; Cook, Fabrice; Fratani, Alexandre; Attias, Arie; Martin, Mathieu; Chedevergne, Karin; Bardon, Jean; Tazi, Sanaa; Nebbad, Biba; Bloc, Sébastien; Plaud, Benoît; Dhonneur, Gilles

    2015-12-01

    Our aim was to describe the pattern of ventriculostomy-related infection (VRI) development using a dynamic approach. Retrospective longitudinal study. We analyzed the files of 449 neurosurgical patients who underwent placement of external ventricular drain (EVD). During the study period, CSF sampling was performed on a daily base setting. VRI was defined as a positive CSF culture resulting in antibiotic treatment. For VRI patients, we arbitrary defined day 0 (D0) as the day antibiotic treatment was started. In these patients, we compared dynamic changes in clinical and biological parameters at four pre-determined time points: (D-4, D-3, D-2, D-1) with those of D0. For all CSF-positive cultures, we compared CSF biochemical markers' evolution pattern between VRI patients and the others, considered as a control cohort. Thirty-two suffered from VRI. Peripheral white blood cell count did not differ between D-4-D0. Median body temperature, CSF cell count, median Glasgow Coma Scale, CSF protein, and glucose concentrations were significantly different between D-4, D-3, D-2, and D0. At D0, 100 % of CSF samples yielded organisms in culture. The physician caring for the patient decided to treat VRI based upon positive CSF culture in only 28 % (9/32) of cases. In the control cohort, CSF markers' profile trends to normalize, while it worsens in the VRI patients. We showed that clinical symptoms and biological abnormalities of VRI evolved over time. Our data suggest that VRI decision to treat relies upon a bundle of evidence, including dynamic changes in CSF laboratory exams combined with microbiological analysis.

  11. Multilevel-3D Bit Patterned Magnetic Media with 8 Signal Levels Per Nanocolumn

    PubMed Central

    Amos, Nissim; Butler, John; Lee, Beomseop; Shachar, Meir H.; Hu, Bing; Tian, Yuan; Hong, Jeongmin; Garcia, Davil; Ikkawi, Rabee M.; Haddon, Robert C.; Litvinov, Dmitri; Khizroev, Sakhrat

    2012-01-01

    This letter presents an experimental study that shows that a 3rd physical dimension may be used to further increase information packing density in magnetic storage devices. We demonstrate the feasibility of at least quadrupling the magnetic states of magnetic-based data storage devices by recording and reading information from nanopillars with three magnetically-decoupled layers. Magneto-optical Kerr effect microscopy and magnetic force microscopy analysis show that both continuous (thin film) and patterned triple-stack magnetic media can generate eight magnetically-stable states. This is in comparison to only two states in conventional magnetic recording. Our work further reveals that ferromagnetic interaction between magnetic layers can be reduced by combining Co/Pt and Co/Pd multilayers media. Finally, we are showing for the first time an MFM image of multilevel-3D bit patterned media with 8 discrete signal levels. PMID:22808105

  12. Multilevel-3D bit patterned magnetic media with 8 signal levels per nanocolumn.

    PubMed

    Amos, Nissim; Butler, John; Lee, Beomseop; Shachar, Meir H; Hu, Bing; Tian, Yuan; Hong, Jeongmin; Garcia, Davil; Ikkawi, Rabee M; Haddon, Robert C; Litvinov, Dmitri; Khizroev, Sakhrat

    2012-01-01

    This letter presents an experimental study that shows that a 3(rd) physical dimension may be used to further increase information packing density in magnetic storage devices. We demonstrate the feasibility of at least quadrupling the magnetic states of magnetic-based data storage devices by recording and reading information from nanopillars with three magnetically-decoupled layers. Magneto-optical Kerr effect microscopy and magnetic force microscopy analysis show that both continuous (thin film) and patterned triple-stack magnetic media can generate eight magnetically-stable states. This is in comparison to only two states in conventional magnetic recording. Our work further reveals that ferromagnetic interaction between magnetic layers can be reduced by combining Co/Pt and Co/Pd multilayers media. Finally, we are showing for the first time an MFM image of multilevel-3D bit patterned media with 8 discrete signal levels.

  13. Patch-based iterative conditional geostatistical simulation using graph cuts

    NASA Astrophysics Data System (ADS)

    Li, Xue; Mariethoz, Gregoire; Lu, DeTang; Linde, Niklas

    2016-08-01

    Training image-based geostatistical methods are increasingly popular in groundwater hydrology even if existing algorithms present limitations that often make real-world applications difficult. These limitations include a computational cost that can be prohibitive for high-resolution 3-D applications, the presence of visual artifacts in the model realizations, and a low variability between model realizations due to the limited pool of patterns available in a finite-size training image. In this paper, we address these issues by proposing an iterative patch-based algorithm which adapts a graph cuts methodology that is widely used in computer graphics. Our adapted graph cuts method optimally cuts patches of pixel values borrowed from the training image and assembles them successively, each time accounting for the information of previously stitched patches. The initial simulation result might display artifacts, which are identified as regions of high cost. These artifacts are reduced by iteratively placing new patches in high-cost regions. In contrast to most patch-based algorithms, the proposed scheme can also efficiently address point conditioning. An advantage of the method is that the cut process results in the creation of new patterns that are not present in the training image, thereby increasing pattern variability. To quantify this effect, a new measure of variability is developed, the merging index, quantifies the pattern variability in the realizations with respect to the training image. A series of sensitivity analyses demonstrates the stability of the proposed graph cuts approach, which produces satisfying simulations for a wide range of parameters values. Applications to 2-D and 3-D cases are compared to state-of-the-art multiple-point methods. The results show that the proposed approach obtains significant speedups and increases variability between realizations. Connectivity functions applied to 2-D models transport simulations in 3-D models are used to demonstrate that pattern continuity is preserved.

  14. Effect of dietary supplementation of gallic acid on nitrogen balance, nitrogen excretion pattern and urinary nitrogenous constituents in beef cattle.

    PubMed

    Wei, Chen; Yang, Kai; Zhao, Guangyong; Lin, Shixin; Xu, Zhiwei

    2016-10-01

    The objective of the trial was to study the effects of dietary supplementation of gallic acid (GA) on nitrogen (N) balance, N excretion pattern and urinary N constituents in beef cattle. In a 4 × 4 Latin square design, four male 30-month-old Simmental cattle (443 ± 22 kg live weight) received four levels of GA (purity ≥ 98.5%), i.e. 0, 5.3, 10.5, 21.1 g/kg DM, added to a basal ration. Each experimental period lasted 17 d, consisting of 12 d adaptation and 5 d sampling. The results showed that supplementation of GA at 5.3, 10.5 or 21.1 g/kg DM did not affect the N balance but regulated the N excretion pattern by increasing the ratio of faecal N/urinary N and decreasing the ratio of urinary urea N/total urinary N in beef cattle fed at maintenance level.

  15. International Collaboration Patterns and Effecting Factors of Emerging Technologies

    PubMed Central

    Bai, Xu; Liu, Yun

    2016-01-01

    With the globalization of the world economy, international innovation collaboration has taken place all over the world. This study selects three emerging technologies (3D printing, big data and carbon nanotubes and graphene technology) among 20 countries as the research objects, using three patent-based indicators and network relationship analysis to reflect international collaboration patterns. Then we integrate empirical analyses to show effecting factors of international collaboration degrees by using panel data. The results indicate that while 3D printing technology is associated with a “balanced collaboration” mode, big data technology is more accurately described by a radial pattern, centered on the United States, and carbon nanotubes and graphene technology exhibits “small-world” characteristics in this respect. It also shows that the factors GDP per capita (GPC), R&D expenditure (RDE) and the export of global trade value (ETV) negatively affect the level of international collaboration. It could be useful for China and other developing countries to make international scientific and technological collaboration strategies and policies in the future. PMID:27911926

  16. Computational optical tomography using 3-D deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh; Bui, Vy; Nehmetallah, George

    2018-04-01

    Deep convolutional neural networks (DCNNs) offer a promising performance for many image processing areas, such as super-resolution, deconvolution, image classification, denoising, and segmentation, with outstanding results. Here, we develop for the first time, to our knowledge, a method to perform 3-D computational optical tomography using 3-D DCNN. A simulated 3-D phantom dataset was first constructed and converted to a dataset of phase objects imaged on a spatial light modulator. For each phase image in the dataset, the corresponding diffracted intensity image was experimentally recorded on a CCD. We then experimentally demonstrate the ability of the developed 3-D DCNN algorithm to solve the inverse problem by reconstructing the 3-D index of refraction distributions of test phantoms from the dataset from their corresponding diffraction patterns.

  17. Idiopathic interstitial pneumonias and emphysema: detection and classification using a texture-discriminative approach

    NASA Astrophysics Data System (ADS)

    Fetita, C.; Chang-Chien, K. C.; Brillet, P. Y.; Pr"teux, F.; Chang, R. F.

    2012-03-01

    Our study aims at developing a computer-aided diagnosis (CAD) system for fully automatic detection and classification of pathological lung parenchyma patterns in idiopathic interstitial pneumonias (IIP) and emphysema using multi-detector computed tomography (MDCT). The proposed CAD system is based on three-dimensional (3-D) mathematical morphology, texture and fuzzy logic analysis, and can be divided into four stages: (1) a multi-resolution decomposition scheme based on a 3-D morphological filter was exploited to discriminate the lung region patterns at different analysis scales. (2) An additional spatial lung partitioning based on the lung tissue texture was introduced to reinforce the spatial separation between patterns extracted at the same resolution level in the decomposition pyramid. Then, (3) a hierarchic tree structure was exploited to describe the relationship between patterns at different resolution levels, and for each pattern, six fuzzy membership functions were established for assigning a probability of association with a normal tissue or a pathological target. Finally, (4) a decision step exploiting the fuzzy-logic assignments selects the target class of each lung pattern among the following categories: normal (N), emphysema (EM), fibrosis/honeycombing (FHC), and ground glass (GDG). According to a preliminary evaluation on an extended database, the proposed method can overcome the drawbacks of a previously developed approach and achieve higher sensitivity and specificity.

  18. 3D assembly of upconverting NaYF4 nanocrystals by AFM nanoxerography: creation of anti-counterfeiting microtags

    NASA Astrophysics Data System (ADS)

    Sangeetha, Neralagatta M.; Moutet, Pierre; Lagarde, Delphine; Sallen, Gregory; Urbaszek, Bernhard; Marie, Xavier; Viau, Guillaume; Ressier, Laurence

    2013-09-01

    Formation of 3D close-packed assemblies of upconverting NaYF4 colloidal nanocrystals (NCs) on surfaces, by Atomic Force Microscopy (AFM) nanoxerography is presented. The surface potential of the charge patterns, the NC concentration, the polarizability of the NCs and the polarity of the dispersing solvent are identified as the key parameters controlling the assembly of NaYF4 NCs into micropatterns of the desired 3D architecture. This insight allowed us to fabricate micrometer sized Quick Response (QR) codes encoded in terms of upconversion luminescence intensity or color. Topographically hidden messages could also be readily incorporated within these microtags. This work demonstrates that AFM nanoxerography has enormous potential for generating high-security anti-counterfeiting microtags.Formation of 3D close-packed assemblies of upconverting NaYF4 colloidal nanocrystals (NCs) on surfaces, by Atomic Force Microscopy (AFM) nanoxerography is presented. The surface potential of the charge patterns, the NC concentration, the polarizability of the NCs and the polarity of the dispersing solvent are identified as the key parameters controlling the assembly of NaYF4 NCs into micropatterns of the desired 3D architecture. This insight allowed us to fabricate micrometer sized Quick Response (QR) codes encoded in terms of upconversion luminescence intensity or color. Topographically hidden messages could also be readily incorporated within these microtags. This work demonstrates that AFM nanoxerography has enormous potential for generating high-security anti-counterfeiting microtags. Electronic supplementary information (ESI) available: Detailed experimental procedures for the synthesis of upconverting NaYF4 nanocrystals and their transmission electron microscopy images. KFM and AFM images corresponding to the assembly of positively charged β-NaYF4:Er3+,Yb3+ nanocrystals from water suspensions by AFM nanoxerography. Photoluminescence spectra of β-NaYF4:Er3+,Yb3+ nanocrystals in a hexane suspension and assembled on charge patterns. See DOI: 10.1039/c3nr02734a

  19. Flexible fabrication of multi-scale integrated 3D periodic nanostructures with phase mask

    NASA Astrophysics Data System (ADS)

    Yuan, Liang Leon

    Top-down fabrication of artificial nanostructures, especially three-dimensional (3D) periodic nanostructures, that forms uniform and defect-free structures over large area with the advantages of high throughput and rapid processing and in a manner that can further monolithically integrate into multi-scale and multi-functional devices is long-desired but remains a considerable challenge. This thesis study advances diffractive optical element (DOE) based 3D laser holographic nanofabrication of 3D periodic nanostructures and develops new kinds of DOEs for advanced diffracted-beam control during the fabrication. Phase masks, as one particular kind of DOE, are a promising direction for simple and rapid fabrication of 3D periodic nanostructures by means of Fresnel diffraction interference lithography. When incident with a coherent beam of light, a suitable phase mask (e.g. with 2D nano-grating) can create multiple diffraction orders that are inherently phase-locked and overlap to form a 3D light interference pattern in the proximity of the DOE. This light pattern is typically recorded in photosensitive materials including photoresist to develop into 3D photonic crystal nanostructure templates. Two kinds of advanced phase masks were developed that enable delicate phase control of multiple diffraction beams. The first exploits femtosecond laser direct writing inside fused silica to assemble multiple (up to nine) orthogonally crossed (2D) grating layers, spaced on Talbot planes to overcome the inherent weak diffraction efficiency otherwise found in low-contrast volume gratings. A systematic offsetting of orthogonal grating layers to establish phase offsets over 0 to pi/2 range provided precise means for controlling the 3D photonic crystal structure symmetry between body centered tetragonal (BCT) and woodpile-like tetragonal (wTTR). The second phase mask consisted of two-layered nanogratings with small sub-wavelength grating periods and phase offset control. That was designed with isotropic properties attractive for generating a complete photonic band gap (PBG). An isolation layer was used between adjacent polymer layers to offer a reversal coating for sample preparation of scanning electron microscopy (SEM) imaging and top surface planarization. Electron beam lithography has been employed to fabricate a multi-level nano-grating phase mask that produces a diamond-like 3D nanostructure via phase mask lithography, promising for creating photonic crystal (PC) templates that can be inverted with high-index materials and form a complete PBG at telecommunication wavelengths. A laser scanning holographic method for 3D exposure in thick photoresist is introduced that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form highly uniform 3D nanostructure with beam size scaled to small 200 microm diameter. Further direct-write holography demonstrates monolithical writing of multi-scale lab-on-a-chip with multiple functionalities including on-chip integrated fluorescence. Various 3D periodic nanostructures are demonstrated over a 15 mmx15 mm area, through full 40 microm photoresist thickness and with uniform structural and optical properties revealed by focused ion beam (FIB) milling, SEM imaging and stopband measures. The lateral and axial periods scale from respective 1500 nm to 570 nm and 9.2 microm to 1.2 microm to offer a Gamma-Z stopband at 1.5 microm. Overall, laser scanning is presented as a facile means to embed 3D PC nanostructure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems.

  20. Additive Manufacturing of Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Van Humbeeck, Jan

    2018-04-01

    Selective Laser Melting (SLM) is an additive manufacturing production process, also called 3D printing, in which functional, complex parts are produced by selectively melting patterns in consecutive layers of powder with a laser beam. The pattern the laser beam is following is controlled by software that calculates the pattern by slicing a 3D CAD model of the part to be constructed. Apart from SLM, also other additive manufacturing techniques such as EBM (Electron Beam Melting), FDM (Fused Deposition Modelling), WAAM (Wire Arc Additive Manufacturing), LENS (Laser Engineered Net Shaping such as Laser Cladding) and binder jetting allow to construct complete parts layer upon layer. But since more experience of AM of shape memory alloys is collected by SLM, this paper will overview the potentials, limits and problems of producing NiTi parts by SLM.

  1. Diurnal Variability and Emission Pattern of Decamethylcyclopentasiloxane (D5) from the Application of Personal Care Products in Two North American Cities.

    PubMed

    Coggon, Matthew M; McDonald, Brian C; Vlasenko, Alexander; Veres, Patrick R; Bernard, François; Koss, Abigail R; Yuan, Bin; Gilman, Jessica B; Peischl, Jeff; Aikin, Kenneth C; DuRant, Justin; Warneke, Carsten; Li, Shao-Meng; de Gouw, Joost A

    2018-05-15

    Decamethylcyclopentasiloxane (D 5 ) is a cyclic volatile methyl siloxane (cVMS) that is widely used in consumer products and commonly observed in urban air. This study quantifies the ambient mixing ratios of D 5 from ground sites in two North American cities (Boulder, CO, USA, and Toronto, ON, CA). From these data, we estimate the diurnal emission profile of D 5 in Boulder, CO. Ambient mixing ratios were consistent with those measured at other urban locations; however, the diurnal pattern exhibited similarities with those of traffic-related compounds such as benzene. Mobile measurements and vehicle experiments demonstrate that emissions of D 5 from personal care products are coincident in time and place with emissions of benzene from motor vehicles. During peak commuter times, the D 5 /benzene ratio (w/w) is in excess of 0.3, suggesting that the mass emission rate of D 5 from personal care product usage is comparable to that of benzene due to traffic. The diurnal emission pattern of D 5 is estimated using the measured D 5 /benzene ratio and inventory estimates of benzene emission rates in Boulder. The hourly D 5 emission rate is observed to peak between 6:00 and 7:00 AM and subsequently follow an exponential decay with a time constant of 9.2 h. This profile could be used by models to constrain temporal emission patterns of personal care products.

  2. Evaluation of accuracy of synthetic waveforms for subduction-zone earthquakes by using a land-ocean unified 3D structure model

    NASA Astrophysics Data System (ADS)

    Okamoto, Taro; Takenaka, Hiroshi; Nakamura, Takeshi

    2018-06-01

    Seismic wave propagation from shallow subduction-zone earthquakes can be strongly affected by 3D heterogeneous structures, such as oceanic water and sedimentary layers with irregular thicknesses. Synthetic waveforms must incorporate these effects so that they reproduce the characteristics of the observed waveforms properly. In this paper, we evaluate the accuracy of synthetic waveforms for small earthquakes in the source area of the 2011 Tohoku-Oki earthquake ( M JMA 9.0) at the Japan Trench. We compute the synthetic waveforms on the basis of a land-ocean unified 3D structure model using our heterogeneity, oceanic layer, and topography finite-difference method. In estimating the source parameters, we apply the first-motion augmented moment tensor (FAMT) method that we have recently proposed to minimize biases due to inappropriate source parameters. We find that, among several estimates, only the FAMT solutions are located very near the plate interface, which demonstrates the importance of using a 3D model for ensuring the self-consistency of the structure model, source position, and source mechanisms. Using several different filter passbands, we find that the full waveforms with periods longer than about 10 s can be reproduced well, while the degree of waveform fitting becomes worse for periods shorter than about 10 s. At periods around 4 s, the initial body waveforms can be modeled, but the later large-amplitude surface waves are difficult to reproduce correctly. The degree of waveform fitting depends on the source location, with better fittings for deep sources near land. We further examine the 3D sensitivity kernels: for the period of 12.8 s, the kernel shows a symmetric pattern with respect to the straight path between the source and the station, while for the period of 6.1 s, a curved pattern is obtained. Also, the range of the sensitive area becomes shallower for the latter case. Such a 3D spatial pattern cannot be predicted by 1D Earth models and indicates the strong effects of 3D heterogeneity on short-period ( ≲ 10s) waveforms. Thus, it would be necessary to consider such 3D effects when improving the structure and source models.

  3. The Cluster Variation Method: A Primer for Neuroscientists.

    PubMed

    Maren, Alianna J

    2016-09-30

    Effective Brain-Computer Interfaces (BCIs) require that the time-varying activation patterns of 2-D neural ensembles be modelled. The cluster variation method (CVM) offers a means for the characterization of 2-D local pattern distributions. This paper provides neuroscientists and BCI researchers with a CVM tutorial that will help them to understand how the CVM statistical thermodynamics formulation can model 2-D pattern distributions expressing structural and functional dynamics in the brain. The premise is that local-in-time free energy minimization works alongside neural connectivity adaptation, supporting the development and stabilization of consistent stimulus-specific responsive activation patterns. The equilibrium distribution of local patterns, or configuration variables , is defined in terms of a single interaction enthalpy parameter ( h ) for the case of an equiprobable distribution of bistate (neural/neural ensemble) units. Thus, either one enthalpy parameter (or two, for the case of non-equiprobable distribution) yields equilibrium configuration variable values. Modeling 2-D neural activation distribution patterns with the representational layer of a computational engine, we can thus correlate variational free energy minimization with specific configuration variable distributions. The CVM triplet configuration variables also map well to the notion of a M = 3 functional motif. This paper addresses the special case of an equiprobable unit distribution, for which an analytic solution can be found.

  4. The Cluster Variation Method: A Primer for Neuroscientists

    PubMed Central

    Maren, Alianna J.

    2016-01-01

    Effective Brain–Computer Interfaces (BCIs) require that the time-varying activation patterns of 2-D neural ensembles be modelled. The cluster variation method (CVM) offers a means for the characterization of 2-D local pattern distributions. This paper provides neuroscientists and BCI researchers with a CVM tutorial that will help them to understand how the CVM statistical thermodynamics formulation can model 2-D pattern distributions expressing structural and functional dynamics in the brain. The premise is that local-in-time free energy minimization works alongside neural connectivity adaptation, supporting the development and stabilization of consistent stimulus-specific responsive activation patterns. The equilibrium distribution of local patterns, or configuration variables, is defined in terms of a single interaction enthalpy parameter (h) for the case of an equiprobable distribution of bistate (neural/neural ensemble) units. Thus, either one enthalpy parameter (or two, for the case of non-equiprobable distribution) yields equilibrium configuration variable values. Modeling 2-D neural activation distribution patterns with the representational layer of a computational engine, we can thus correlate variational free energy minimization with specific configuration variable distributions. The CVM triplet configuration variables also map well to the notion of a M = 3 functional motif. This paper addresses the special case of an equiprobable unit distribution, for which an analytic solution can be found. PMID:27706022

  5. Autonomous Hazard Checks Leave Patterned Rover Tracks on Mars Stereo

    NASA Image and Video Library

    2011-05-18

    A dance-step pattern is visible in the wheel tracks near the left edge of this scene recorded by NASA Mars Exploration Rover Opportunity on Mars on April 1, 2011. 3D glasses are necessary to view this image.

  6. COREPA-M: NEW MULTI-DIMENSIONAL FUNCTIONALITY OF THE COREPA METHOD

    EPA Science Inventory

    The COmmon REactivity PAttern (COREPA) method is a recently developed pattern recognition technique accounting for conformational flexibility of chemicals in 3-D quantitative structure-activity relationships (QSARs). The method is based on the assumption that non-congeneric chemi...

  7. SU-E-T-151: Breathing Synchronized Delivery (BSD) Planning for RapicArc Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, W; Chen, M; Jiang, S

    2015-06-15

    Purpose: To propose a workflow for breathing synchronized delivery (BSD) planning for RapicArc treatment. Methods: The workflow includes three stages: screening/simulation, planning, and delivery. In the screening/simulation stage, a 4D CT with the corresponding breathing pattern is acquired for each of the selected patients, who are able to follow their own breathing pattern. In the planning stage, one breathing phase is chosen as the reference, and contours are delineated on the reference image. Deformation maps to other phases are performed along with contour propagation. Based on the control points of the initial 3D plan for the reference phase and themore » respiration trace, the correlation with respiration phases, the leaf sequence and gantry angles is determined. The beamlet matrices are calculated with the corresponding breathing phase and deformed to the reference phase. Using the 4D dose evaluation tool and the original 3D plan DVHs criteria, the leaf sequence is further optimized to meet the planning objectives and the machine constraints. In the delivery stage, the patients are instructed to follow the programmed breathing patterns of their own, and all other parts are the same as the conventional Rapid-Arc delivery. Results: Our plan analysis is based on comparison of the 3D plan with a static target (SD), 3D plan with motion delivery (MD), and the BSD plan. Cyclic motion of range 0 cm to 3 cm was simulated for phantoms and lung CT. The gain of the BSD plan over MD is significant and concordant for both simulation and lung 4DCT, indicating the benefits of 4D planning. Conclusion: Our study shows that the BSD plan can approach the SD plan quality. However, such BSD scheme relies on the patient being able to follow the same breathing curve that is used in the planning stage during radiation delivery. Funded by Varian Medical Systems.« less

  8. 3D/Additive Printing Manufacturing: A Brief History and Purchasing Guide

    ERIC Educational Resources Information Center

    Hughes, Bill; Wilson, Greg

    2016-01-01

    3D printing is recognized as a collection of technologies known as rapid prototyping, solid freeform fabrication, and most commonly, additive manufacturing (AM). With these emerging technologies it is possible to print (but not limited to): architectural models, discontinued car-part foundry patterns, industry-wide prototypes, human tissues, the…

  9. 3D printed plano-freeform optics for non-coherent discontinuous beam shaping

    NASA Astrophysics Data System (ADS)

    Assefa, Bisrat G.; Saastamoinen, Toni; Biskop, Joris; Kuittinen, Markku; Turunen, Jari; Saarinen, Jyrki

    2018-03-01

    The design, fabrication, and characterization of freeform optics for LED-based complex target irradiance distribution are challenging. Here, we investigate a 3D printing technology called Printoptical® technology in order to relax or push forward both the fabrication limits and LED-based applications of thick freeform lenses with small slope features. The freeform designs are carried out with an assumption of small-sized LED source using an existing point-source-based Tailoring method, which is available in the semi-commercial software. The numerical methods of the designs are characterized by ray-tracing software. The irradiance patterns of the 3D printed freeform lenses are promising considering the average shape conformity deviation of around ± 40 µm and center area surface roughness around ± 12 nm, which is to our knowledge by far the best result reported for 3D printed freeform lenses with a thickness greater than 1 mm. Applications of freeform lenses with discontinuous target irradiance distribution patterns are expected in eco-friendly energy efficient lighting such as in zebra-cross lighting.

  10. Experimental Investigation of Spatially-Periodic Scalar Patterns in an Inline Mixer

    NASA Astrophysics Data System (ADS)

    Baskan, Ozge; Speetjens, Michel F. M.; Clercx, Herman J. H.

    2015-11-01

    Spatially persisting patterns with exponentially decaying intensities form during the downstream evolution of passive scalars in three-dimensional (3D) spatially periodic flows due to the coupled effect of the chaotic nature of the flow and the diffusivity of the material. This has been investigated in many computational and theoretical studies on 3D spatially-periodic flow fields. However, in the limit of zero-diffusivity, the evolution of the scalar fields results in more detailed structures that can only be captured by experiments due to limitations in the computational tools. Our study employs the-state-of-the-art experimental methods to analyze the evolution of 3D advective scalar field in a representative inline mixer, called Quatro static mixer. The experimental setup consists of an optically accessible test section with transparent internal elements, accommodating a pressure-driven pipe flow and equipped with 3D Laser-Induced Fluorescence. The results reveal that the continuous process of stretching and folding of material creates finer structures as the flow progresses, which is an indicator of chaotic advection and the experiments outperform the simulations by revealing far greater level of detail.

  11. 3D printed plano-freeform optics for non-coherent discontinuous beam shaping

    NASA Astrophysics Data System (ADS)

    Assefa, Bisrat G.; Saastamoinen, Toni; Biskop, Joris; Kuittinen, Markku; Turunen, Jari; Saarinen, Jyrki

    2018-06-01

    The design, fabrication, and characterization of freeform optics for LED-based complex target irradiance distribution are challenging. Here, we investigate a 3D printing technology called Printoptical® technology in order to relax or push forward both the fabrication limits and LED-based applications of thick freeform lenses with small slope features. The freeform designs are carried out with an assumption of small-sized LED source using an existing point-source-based Tailoring method, which is available in the semi-commercial software. The numerical methods of the designs are characterized by ray-tracing software. The irradiance patterns of the 3D printed freeform lenses are promising considering the average shape conformity deviation of around ± 40 µm and center area surface roughness around ± 12 nm, which is to our knowledge by far the best result reported for 3D printed freeform lenses with a thickness greater than 1 mm. Applications of freeform lenses with discontinuous target irradiance distribution patterns are expected in eco-friendly energy efficient lighting such as in zebra-cross lighting.

  12. Embedded 3D shape measurement system based on a novel spatio-temporal coding method

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Tian, Jindong; Tian, Yong; Li, Dong

    2016-11-01

    Structured light measurement has been wildly used since 1970s in industrial component detection, reverse engineering, 3D molding, robot navigation, medical and many other fields. In order to satisfy the demand for high speed, high precision and high resolution 3-D measurement for embedded system, a new patterns combining binary and gray coding principle in space are designed and projected onto the object surface orderly. Each pixel corresponds to the designed sequence of gray values in time - domain, which is treated as a feature vector. The unique gray vector is then dimensionally reduced to a scalar which could be used as characteristic information for binocular matching. In this method, the number of projected structured light patterns is reduced, and the time-consuming phase unwrapping in traditional phase shift methods is avoided. This algorithm is eventually implemented on DM3730 embedded system for 3-D measuring, which consists of an ARM and a DSP core and has a strong capability of digital signal processing. Experimental results demonstrated the feasibility of the proposed method.

  13. High-accuracy 3D measurement system based on multi-view and structured light

    NASA Astrophysics Data System (ADS)

    Li, Mingyue; Weng, Dongdong; Li, Yufeng; Zhang, Longbin; Zhou, Haiyun

    2013-12-01

    3D surface reconstruction is one of the most important topics in Spatial Augmented Reality (SAR). Using structured light is a simple and rapid method to reconstruct the objects. In order to improve the precision of 3D reconstruction, we present a high-accuracy multi-view 3D measurement system based on Gray-code and Phase-shift. We use a camera and a light projector that casts structured light patterns on the objects. In this system, we use only one camera to take photos on the left and right sides of the object respectively. In addition, we use VisualSFM to process the relationships between each perspective, so the camera calibration can be omitted and the positions to place the camera are no longer limited. We also set appropriate exposure time to make the scenes covered by gray-code patterns more recognizable. All of the points above make the reconstruction more precise. We took experiments on different kinds of objects, and a large number of experimental results verify the feasibility and high accuracy of the system.

  14. Measurement of Strain Distributions in Mouse Femora with 3D-Digital Speckle Pattern Interferometry

    PubMed Central

    Yang, Lianxiang; Zhang, Ping; Liu, Sheng; Samala, Praveen R; Su, Min; Yokota, Hiroki

    2007-01-01

    Bone is a mechanosensitive tissue that adapts its mass, architecture and mechanical properties to external loading. Appropriate mechanical loads offer an effective means to stimulate bone remodeling and prevent bone loss. A role of in situ strain in bone is considered essential in enhancement of bone formation, and establishing a quantitative relationship between 3D strain distributions and a rate of local bone formation is important. Digital speckle pattern interferometry (DSPI) can achieve whole-field, non-contacting measurements of microscopic deformation for high-resolution determination of 3D strain distributions. However, the current system does not allow us to derive accurate strain distributions because of complex surface contours inherent to biological samples. Through development of a custom-made piezoelectric loading device as well as a new DSPI-based force calibration system, we built an advanced DSPI system and integrated local contour information to deformation data. Using a mouse femur in response to a knee loading modality as a model system, we determined 3D strain distributions and discussed effectiveness and limitations of the described system. PMID:18670581

  15. Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes.

    PubMed

    Kwon, M-W; Kim, S-C; Yoon, S-E; Ho, Y-S; Kim, E-S

    2015-02-09

    A new object tracking mask-based novel-look-up-table (OTM-NLUT) method is proposed and implemented on graphics-processing-units (GPUs) for real-time generation of holographic videos of three-dimensional (3-D) scenes. Since the proposed method is designed to be matched with software and memory structures of the GPU, the number of compute-unified-device-architecture (CUDA) kernel function calls and the computer-generated hologram (CGH) buffer size of the proposed method have been significantly reduced. It therefore results in a great increase of the computational speed of the proposed method and enables real-time generation of CGH patterns of 3-D scenes. Experimental results show that the proposed method can generate 31.1 frames of Fresnel CGH patterns with 1,920 × 1,080 pixels per second, on average, for three test 3-D video scenarios with 12,666 object points on three GPU boards of NVIDIA GTX TITAN, and confirm the feasibility of the proposed method in the practical application of electro-holographic 3-D displays.

  16. Three-directional motion-compensation mask-based novel look-up table on graphics processing units for video-rate generation of digital holographic videos of three-dimensional scenes.

    PubMed

    Kwon, Min-Woo; Kim, Seung-Cheol; Kim, Eun-Soo

    2016-01-20

    A three-directional motion-compensation mask-based novel look-up table method is proposed and implemented on graphics processing units (GPUs) for video-rate generation of digital holographic videos of three-dimensional (3D) scenes. Since the proposed method is designed to be well matched with the software and memory structures of GPUs, the number of compute-unified-device-architecture kernel function calls can be significantly reduced. This results in a great increase of the computational speed of the proposed method, allowing video-rate generation of the computer-generated hologram (CGH) patterns of 3D scenes. Experimental results reveal that the proposed method can generate 39.8 frames of Fresnel CGH patterns with 1920×1080 pixels per second for the test 3D video scenario with 12,088 object points on dual GPU boards of NVIDIA GTX TITANs, and they confirm the feasibility of the proposed method in the practical application fields of electroholographic 3D displays.

  17. Automated visual inspection for polished stone manufacture

    NASA Astrophysics Data System (ADS)

    Smith, Melvyn L.; Smith, Lyndon N.

    2003-05-01

    Increased globalisation of the ornamental stone market has lead to increased competition and more rigorous product quality requirements. As such, there are strong motivators to introduce new, more effective, inspection technologies that will help enable stone processors to reduce costs, improve quality and improve productivity. Natural stone surfaces may contain a mixture of complex two-dimensional (2D) patterns and three-dimensional (3D) features. The challenge in terms of automated inspection is to develop systems able to reliably identify 3D topographic defects, either naturally occurring or resulting from polishing, in the presence of concomitant complex 2D stochastic colour patterns. The resulting real-time analysis of the defects may be used in adaptive process control, in order to avoid the wasteful production of defective product. An innovative approach, using structured light and based upon an adaptation of the photometric stereo method, has been pioneered and developed at UWE to isolate and characterize mixed 2D and 3D surface features. The method is able to undertake tasks considered beyond the capabilities of existing surface inspection techniques. The approach has been successfully applied to real stone samples, and a selection of experimental results is presented.

  18. Protein Bricks: 2D and 3D Bio-Nanostructures with Shape and Function on Demand.

    PubMed

    Jiang, Jianjuan; Zhang, Shaoqing; Qian, Zhigang; Qin, Nan; Song, Wenwen; Sun, Long; Zhou, Zhitao; Shi, Zhifeng; Chen, Liang; Li, Xinxin; Mao, Ying; Kaplan, David L; Gilbert Corder, Stephanie N; Chen, Xinzhong; Liu, Mengkun; Omenetto, Fiorenzo G; Xia, Xiaoxia; Tao, Tiger H

    2018-05-01

    Precise patterning of polymer-based biomaterials for functional bio-nanostructures has extensive applications including biosensing, tissue engineering, and regenerative medicine. Remarkable progress is made in both top-down (based on lithographic methods) and bottom-up (via self-assembly) approaches with natural and synthetic biopolymers. However, most methods only yield 2D and pseudo-3D structures with restricted geometries and functionalities. Here, it is reported that precise nanostructuring on genetically engineered spider silk by accurately directing ion and electron beam interactions with the protein's matrix at the nanoscale to create well-defined 2D bionanopatterns and further assemble 3D bionanoarchitectures with shape and function on demand, termed "Protein Bricks." The added control over protein sequence and molecular weight of recombinant spider silk via genetic engineering provides unprecedented lithographic resolution (approaching the molecular limit), sharpness, and biological functions compared to natural proteins. This approach provides a facile method for patterning and immobilizing functional molecules within nanoscopic, hierarchical protein structures, which sheds light on a wide range of biomedical applications such as structure-enhanced fluorescence and biomimetic microenvironments for controlling cell fate. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. 3D face analysis by using Mesh-LBP feature

    NASA Astrophysics Data System (ADS)

    Wang, Haoyu; Yang, Fumeng; Zhang, Yuming; Wu, Congzhong

    2017-11-01

    Objective: Face Recognition is one of the widely application of image processing. Corresponding two-dimensional limitations, such as the pose and illumination changes, to a certain extent restricted its accurate rate and further development. How to overcome the pose and illumination changes and the effects of self-occlusion is the research hotspot and difficulty, also attracting more and more domestic and foreign experts and scholars to study it. 3D face recognition fusing shape and texture descriptors has become a very promising research direction. Method: Our paper presents a 3D point cloud based on mesh local binary pattern grid (Mesh-LBP), then feature extraction for 3D face recognition by fusing shape and texture descriptors. 3D Mesh-LBP not only retains the integrity of the 3D geometry, is also reduces the need for recognition process of normalization steps, because the triangle Mesh-LBP descriptor is calculated on 3D grid. On the other hand, in view of multi-modal consistency in face recognition advantage, construction of LBP can fusing shape and texture information on Triangular Mesh. In this paper, some of the operators used to extract Mesh-LBP, Such as the normal vectors of the triangle each face and vertex, the gaussian curvature, the mean curvature, laplace operator and so on. Conclusion: First, Kinect devices obtain 3D point cloud face, after the pretreatment and normalization, then transform it into triangular grid, grid local binary pattern feature extraction from face key significant parts of face. For each local face, calculate its Mesh-LBP feature with Gaussian curvature, mean curvature laplace operator and so on. Experiments on the our research database, change the method is robust and high recognition accuracy.

  20. Adaptive pixel-to-pixel projection intensity adjustment for measuring a shiny surface using orthogonal color fringe pattern projection

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Gao, Nan; Wang, Xiangjun; Zhang, Zonghua

    2018-05-01

    Three-dimensional (3D) shape measurement based on fringe pattern projection techniques has been commonly used in various fields. One of the remaining challenges in fringe pattern projection is that camera sensor saturation may occur if there is a large range of reflectivity variation across the surface that causes measurement errors. To overcome this problem, a novel fringe pattern projection method is proposed to avoid image saturation and maintain high-intensity modulation for measuring shiny surfaces by adaptively adjusting the pixel-to-pixel projection intensity according to the surface reflectivity. First, three sets of orthogonal color fringe patterns and a sequence of uniform gray-level patterns with different gray levels are projected onto a measured surface by a projector. The patterns are deformed with respect to the object surface and captured by a camera from a different viewpoint. Subsequently, the optimal projection intensity at each pixel is determined by fusing different gray levels and transforming the camera pixel coordinate system into the projector pixel coordinate system. Finally, the adapted fringe patterns are created and used for 3D shape measurement. Experimental results on a flat checkerboard and shiny objects demonstrate that the proposed method can measure shiny surfaces with high accuracy.

  1. Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Gao, Nan; Wang, Xiangjun; Zhang, Zonghua

    2018-03-01

    Phase-based fringe projection methods have been commonly used for three-dimensional (3D) measurements. However, image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. Existing solutions are complex. This paper proposes an adaptive projection intensity adjustment method to avoid image saturation and maintain good fringe modulation in measuring objects with a high range of surface reflectivities. The adapted fringe patterns are created using only one prior step of fringe-pattern projection and image capture. First, a set of phase-shifted fringe patterns with maximum projection intensity value of 255 and a uniform gray level pattern are projected onto the surface of an object. The patterns are reflected from and deformed by the object surface and captured by a digital camera. The best projection intensities corresponding to each saturated-pixel clusters are determined by fitting a polynomial function to transform captured intensities to projected intensities. Subsequently, the adapted fringe patterns are constructed using the best projection intensities at projector pixel coordinate. Finally, the adapted fringe patterns are projected for phase recovery and 3D shape calculation. The experimental results demonstrate that the proposed method achieves high measurement accuracy even for objects with a high range of surface reflectivities.

  2. Geoinformation techniques for the 3D visualisation of historic buildings and representation of a building's pathology

    NASA Astrophysics Data System (ADS)

    Tsilimantou, Elisavet; Delegou, Ekaterini; Ioannidis, Charalabos; Moropoulou, Antonia

    2016-08-01

    In this paper, the documentation of an historic building registered as Cultural Heritage asset is presented. The aim of the survey is to create a 3D geometric representation of a historic building and in accordance with multidisciplinary study extract useful information regarding the extent of degradation, constructions' durability etc. For the implementation of the survey, a combination of different types of acquisition technologies is used. The project focuses on the study of Villa Klonaridi, in Athens, Greece. For the complete documentation of the building, conventional topography, photogrammetric and laser scanning techniques is combined. Close range photogrammetric techniques are used for the acquisition of the façades and architectural details. One of the main objectives is the development of an accurate 3D model, where the photorealistic representation of the building is achieved, along with the decay pathology, historical phases and architectural components. In order to achieve a suitable graphical representation for the study of the material and decay patterns beyond the 2D representation, 3D modelling and additional information modelling is performed for comparative analysis. The study provides various conclusions regarding the scale of deterioration obtained by the 2D and 3D analysis respectively. Considering the variation in material and decay patterns, comparative results are obtained regarding the degradation of the building. Overall, the paper describes a process performed on a Historic Building, where the 3D digital acquisition of the monuments' structure is realized with the combination of close range surveying and laser scanning methods.

  3. Extension of the dielectric breakdown model for simulation of viscous fingering at finite viscosity ratios.

    PubMed

    Doorwar, Shashvat; Mohanty, Kishore K

    2014-07-01

    Immiscible displacement of viscous oil by water in a petroleum reservoir is often hydrodynamically unstable. Due to similarities between the physics of dielectric breakdown and immiscible flow in porous media, we extend the existing dielectric breakdown model to simulate viscous fingering patterns for a wide range of viscosity ratios (μ(r)). At low values of power-law index η, the system behaves like a stable Eden growth model and as the value of η is increased to unity, diffusion limited aggregation-like fractals appear. This model is compared with our two-dimensional (2D) experiments to develop a correlation between the viscosity ratio and the power index, i.e., η = 10(-5)μ(r)(0.8775). The 2D and three-dimensional (3D) simulation data appear scalable. The fingering pattern in 3D simulations at finite viscosity ratios appear qualitatively similar to the few experimental results published in the literature.

  4. Labeling and Other Effects of Actinomycin D on Human Chromosomes*

    PubMed Central

    Miles, Charles P.

    1970-01-01

    3H-actinomycin D, a guanine-binding agent, labels fixed human chromosomes nonrandomly. Actinomycin D added in G2 inhibits secondary constrictions and breaks chromosomes. There is some tendency for label to be concentrated at the ends of chromosomes and near the centromere. Labeling with 3H-thymidine in the late stage of DNA synthesis shows a different pattern and in general lacks the telomeric concentrations. The sites of actinomycin D-induced breaks do not show good correspondence with the sites of actinomycin D label. Images PMID:5267140

  5. Photometry unlocks 3D information from 2D localization microscopy data.

    PubMed

    Franke, Christian; Sauer, Markus; van de Linde, Sebastian

    2017-01-01

    We developed a straightforward photometric method, temporal, radial-aperture-based intensity estimation (TRABI), that allows users to extract 3D information from existing 2D localization microscopy data. TRABI uses the accurate determination of photon numbers in different regions of the emission pattern of single emitters to generate a z-dependent photometric parameter. This method can determine fluorophore positions up to 600 nm from the focal plane and can be combined with biplane detection to further improve axial localization.

  6. Components, Assembly and Electrochemical Properties of Three-Dimensional Battery Architectures

    DTIC Science & Technology

    2016-03-01

    batteries is directed at our project on 3-D lithium - ion batteries where improvements in materials and fabrication methods are expected to facilitate...reporting period, we focused on new materials and electrode array fabrication processes for 3-D lithium - ion batteries and made substantial progress. In...to facilitate the assembly of a full 3-D lithium - ion battery system. a Pattern silicon dioxide etch I I I I I mask b DRIE etch silicon posts c I I

  7. A novel 3D deformation measurement method under optical microscope for micro-scale bulge-test

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Xie, Huimin

    2017-11-01

    A micro-scale 3D deformation measurement method combined with optical microscope is proposed in this paper. The method is based on gratings and phase shifting algorithm. By recording the grating images before and after deformation from two symmetrical angles and calculating the phases of the grating patterns, the 3D deformation field of the specimen can be extracted from the phases of the grating patterns. The proposed method was applied to the micro-scale bulge test. A micro-scale thermal/mechanical coupling bulge-test apparatus matched with the super-depth microscope was exploited. With the gratings fabricated onto the film, the deformed morphology of the bulged film was measured reliably. The experimental results show that the proposed method and the exploited bulge-test apparatus can be used to characterize the thermal/mechanical properties of the films at micro-scale successfully.

  8. Exploration of depth modeling mode one lossless wedgelets storage strategies for 3D-high efficiency video coding

    NASA Astrophysics Data System (ADS)

    Sanchez, Gustavo; Marcon, César; Agostini, Luciano Volcan

    2018-01-01

    The 3D-high efficiency video coding has introduced tools to obtain higher efficiency in 3-D video coding, and most of them are related to the depth maps coding. Among these tools, the depth modeling mode-1 (DMM-1) focuses on better encoding edges regions of depth maps. The large memory required for storing all wedgelet patterns is one of the bottlenecks in the DMM-1 hardware design of both encoder and decoder since many patterns must be stored. Three algorithms to reduce the DMM-1 memory requirements and a hardware design targeting the most efficient among these algorithms are presented. Experimental results demonstrate that the proposed solutions surpass related works reducing up to 78.8% of the wedgelet memory, without degrading the encoding efficiency. Synthesis results demonstrate that the proposed algorithm reduces almost 75% of the power dissipation when compared to the standard approach.

  9. Multiple imputation to deal with missing EQ-5D-3L data: Should we impute individual domains or the actual index?

    PubMed

    Simons, Claire L; Rivero-Arias, Oliver; Yu, Ly-Mee; Simon, Judit

    2015-04-01

    Missing data are a well-known and widely documented problem in cost-effectiveness analyses alongside clinical trials using individual patient-level data. Current methodological research recommends multiple imputation (MI) to deal with missing health outcome data, but there is little guidance on whether MI for multi-attribute questionnaires, such as the EQ-5D-3L, should be carried out at domain or at summary score level. In this paper, we evaluated the impact of imputing individual domains versus imputing index values to deal with missing EQ-5D-3L data using a simulation study and developed recommendations for future practice. We simulated missing data in a patient-level dataset with complete EQ-5D-3L data at one point in time from a large multinational clinical trial (n = 1,814). Different proportions of missing data were generated using a missing at random (MAR) mechanism and three different scenarios were studied. The performance of using each method was evaluated using root mean squared error and mean absolute error of the actual versus predicted EQ-5D-3L indices. In large sample sizes (n > 500) and a missing data pattern that follows mainly unit non-response, imputing domains or the index produced similar results. However, domain imputation became more accurate than index imputation with pattern of missingness following an item non-response. For smaller sample sizes (n < 100), index imputation was more accurate. When MI models were misspecified, both domain and index imputations were inaccurate for any proportion of missing data. The decision between imputing the domains or the EQ-5D-3L index scores depends on the observed missing data pattern and the sample size available for analysis. Analysts conducting this type of exercises should also evaluate the sensitivity of the analysis to the MAR assumption and whether the imputation model is correctly specified.

  10. Space-time evolution of a growth fold (Betic Cordillera, Spain). Evidences from 3D geometrical modelling

    NASA Astrophysics Data System (ADS)

    Martin-Rojas, Ivan; Alfaro, Pedro; Estévez, Antonio

    2014-05-01

    We present a study that encompasses several software tools (iGIS©, ArcGIS©, Autocad©, etc.) and data (geological mapping, high resolution digital topographic data, high resolution aerial photographs, etc.) to create a detailed 3D geometric model of an active fault propagation growth fold. This 3D model clearly shows structural features of the analysed fold, as well as growth relationships and sedimentary patterns. The results obtained permit us to discuss the kinematics and structural evolution of the fold and the fault in time and space. The study fault propagation fold is the Crevillente syncline. This fold represents the northern limit of the Bajo Segura Basin, an intermontane basin in the Eastern Betic Cordillera (SE Spain) developed from upper Miocene on. 3D features of the Crevillente syncline, including growth pattern, indicate that limb rotation and, consequently, fault activity was higher during Messinian than during Tortonian; consequently, fault activity was also higher. From Pliocene on our data point that limb rotation and fault activity steadies or probably decreases. This in time evolution of the Crevillente syncline is not the same all along the structure; actually the 3D geometric model indicates that observed lateral heterogeneity is related to along strike variation of fault displacement.

  11. Theoretical Radiation Patterns of NAVSPASUR Transmitter Antennas

    DTIC Science & Technology

    1988-11-30

    NAVSPASUR handbooks[7,8]. Our calculated north-south 3 dB far-field beamwidth of 0.0210 agrees with the reported value, as does the first sidelobe level ...in Fig. 18, has far-field 3 dB beamwidth and first side lobe levels which agree with the reported values 0.220 and -13 dB, respectively. 3 Again, the...L. Berg .::, UT1 rAT pu;blic release 3 Novemer 198e I 30 November 1988 I I I = i i I I I29I /I I I EXECUTIVE SUMMARY I Interferometrics Inc. has

  12. Circumferential resection margin positivity after preoperative chemoradiotherapy based on magnetic resonance imaging for locally advanced rectal cancer: implication of boost radiotherapy to the involved mesorectal fascia.

    PubMed

    Kim, Kyung Hwan; Park, Min Jung; Lim, Joon Seok; Kim, Nam Kyu; Min, Byung Soh; Ahn, Joong Bae; Kim, Tae Il; Kim, Ho Geun; Koom, Woong Sub

    2016-04-01

    To identify patients who are at a higher risk of pathologic circumferential resection margin involvement using preoperative magnetic resonance imaging. Between October 2008 and November 2012, 165 patients with locally advanced rectal cancer (cT4 or cT3 with <2 mm distance from tumour to mesorectal fascia) who received preoperative chemoradiotherapy were analysed. The morphologic patterns on post-chemoradiotherapy magnetic resonance imaging were categorized into five patterns from Pattern A (most-likely negative pathologic circumferential resection margin) to Pattern E (most-likely positive pathologic circumferential resection margin). In addition, the location of mesorectal fascia involvement was classified as lateral, posterior and anterior. The diagnostic accuracy of the morphologic criteria was calculated using receiver operating characteristic curve analysis. Pathologic circumferential resection margin involvement was identified in 17 patients (10.3%). The diagnostic accuracy of predicting pathologic circumferential resection margin involvement was 0.73 using the five-scale magnetic resonance imaging pattern. The sensitivity, specificity, positive predictive value and negative predictive value for predicting pathologic circumferential resection margin involvement were 76.5, 65.5, 20.3 and 96.0%, respectively, when cut-off was set between Patterns C and D. On multivariate logistic regression, the magnetic resonance imaging patterns D and E (P= 0.005) and posterior or lateral mesorectal fascia involvement (P= 0.017) were independently associated with increased probability of pathologic circumferential resection margin involvement. The rate of pathologic circumferential resection margin involvement was 30.0% when the patient had Pattern D or E with posterior or lateral mesorectal fascia involvement. Patients who are at a higher risk of pathologic circumferential resection margin involvement can be identified using preoperative magnetic resonance imaging although the predictability is moderate. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. 3D Printed Programmable Release Capsules.

    PubMed

    Gupta, Maneesh K; Meng, Fanben; Johnson, Blake N; Kong, Yong Lin; Tian, Limei; Yeh, Yao-Wen; Masters, Nina; Singamaneni, Srikanth; McAlpine, Michael C

    2015-08-12

    The development of methods for achieving precise spatiotemporal control over chemical and biomolecular gradients could enable significant advances in areas such as synthetic tissue engineering, biotic-abiotic interfaces, and bionanotechnology. Living organisms guide tissue development through highly orchestrated gradients of biomolecules that direct cell growth, migration, and differentiation. While numerous methods have been developed to manipulate and implement biomolecular gradients, integrating gradients into multiplexed, three-dimensional (3D) matrices remains a critical challenge. Here we present a method to 3D print stimuli-responsive core/shell capsules for programmable release of multiplexed gradients within hydrogel matrices. These capsules are composed of an aqueous core, which can be formulated to maintain the activity of payload biomolecules, and a poly(lactic-co-glycolic) acid (PLGA, an FDA approved polymer) shell. Importantly, the shell can be loaded with plasmonic gold nanorods (AuNRs), which permits selective rupturing of the capsule when irradiated with a laser wavelength specifically determined by the lengths of the nanorods. This precise control over space, time, and selectivity allows for the ability to pattern 2D and 3D multiplexed arrays of enzyme-loaded capsules along with tunable laser-triggered rupture and release of active enzymes into a hydrogel ambient. The advantages of this 3D printing-based method include (1) highly monodisperse capsules, (2) efficient encapsulation of biomolecular payloads, (3) precise spatial patterning of capsule arrays, (4) "on the fly" programmable reconfiguration of gradients, and (5) versatility for incorporation in hierarchical architectures. Indeed, 3D printing of programmable release capsules may represent a powerful new tool to enable spatiotemporal control over biomolecular gradients.

  14. 3-D DNA methylation phenotypes correlate with cytotoxicity levels in prostate and liver cancer cell models

    PubMed Central

    2013-01-01

    Background The spatial organization of the genome is being evaluated as a novel indicator of toxicity in conjunction with drug-induced global DNA hypomethylation and concurrent chromatin reorganization. 3D quantitative DNA methylation imaging (3D-qDMI) was applied as a cell-by-cell high-throughput approach to investigate this matter by assessing genome topology through represented immunofluorescent nuclear distribution patterns of 5-methylcytosine (MeC) and global DNA (4,6-diamidino-2-phenylindole = DAPI) in labeled nuclei. Methods Differential progression of global DNA hypomethylation was studied by comparatively dosing zebularine (ZEB) and 5-azacytidine (AZA). Treated and untreated (control) human prostate and liver cancer cells were subjected to confocal scanning microscopy and dedicated 3D image analysis for the following features: differential nuclear MeC/DAPI load and codistribution patterns, cell similarity based on these patterns, and corresponding differences in the topology of low-intensity MeC (LIM) and low in intensity DAPI (LID) sites. Results Both agents generated a high fraction of similar MeC phenotypes across applied concentrations. ZEB exerted similar effects at 10–100-fold higher drug concentrations than its AZA analogue: concentration-dependent progression of global cytosine demethylation, validated by measuring differential MeC levels in repeat sequences using MethyLight, and the concurrent increase in nuclear LIM densities correlated with cellular growth reduction and cytotoxicity. Conclusions 3D-qDMI demonstrated the capability of quantitating dose-dependent drug-induced spatial progression of DNA demethylation in cell nuclei, independent from interphase cell-cycle stages and in conjunction with cytotoxicity. The results support the notion of DNA methylation topology being considered as a potential indicator of causal impacts on chromatin distribution with a conceivable application in epigenetic drug toxicology. PMID:23394161

  15. Docking pose selection by interaction pattern graph similarity: application to the D3R grand challenge 2015

    NASA Astrophysics Data System (ADS)

    Slynko, Inna; Da Silva, Franck; Bret, Guillaume; Rognan, Didier

    2016-09-01

    High affinity ligands for a given target tend to share key molecular interactions with important anchoring amino acids and therefore often present quite conserved interaction patterns. This simple concept was formalized in a topological knowledge-based scoring function (GRIM) for selecting the most appropriate docking poses from previously X-rayed interaction patterns. GRIM first converts protein-ligand atomic coordinates (docking poses) into a simple 3D graph describing the corresponding interaction pattern. In a second step, proposed graphs are compared to that found from template structures in the Protein Data Bank. Last, all docking poses are rescored according to an empirical score (GRIMscore) accounting for overlap of maximum common subgraphs. Taking the opportunity of the public D3R Grand Challenge 2015, GRIM was used to rescore docking poses for 36 ligands (6 HSP90α inhibitors, 30 MAP4K4 inhibitors) prior to the release of the corresponding protein-ligand X-ray structures. When applied to the HSP90α dataset, for which many protein-ligand X-ray structures are already available, GRIM provided very high quality solutions (mean rmsd = 1.06 Å, n = 6) as top-ranked poses, and significantly outperformed a state-of-the-art scoring function. In the case of MAP4K4 inhibitors, for which preexisting 3D knowledge is scarce and chemical diversity is much larger, the accuracy of GRIM poses decays (mean rmsd = 3.18 Å, n = 30) although GRIM still outperforms an energy-based scoring function. GRIM rescoring appears to be quite robust with comparison to the other approaches competing for the same challenge (42 submissions for the HSP90 dataset, 27 for the MAP4K4 dataset) as it ranked 3rd and 2nd respectively, for the two investigated datasets. The rescoring method is quite simple to implement, independent on a docking engine, and applicable to any target for which at least one holo X-ray structure is available.

  16. Identification of a deleterious phase in photocatalyst based on Cd1 - xZnxS/Zn(OH)2 by simulated XRD patterns.

    PubMed

    Cherepanova, Svetlana; Markovskaya, Dina; Kozlova, Ekaterina

    2017-06-01

    The X-ray diffraction (XRD) pattern of a deleterious phase in the photocatalyst based on Cd 1 - x Zn x S/Zn(OH) 2 contains two relatively intense asymmetric peaks with d-spacings of 2.72 and 1.56 Å. Very small diffraction peaks with interplanar distances of (d) ≃ 8.01, 5.40, 4.09, 3.15, 2.49 and 1.35 Å are characteristic of this phase but not always observed. To identify this phase, the XRD patterns for sheet-like hydroxide β-Zn(OH) 2 and sheet-like hydrozincite Zn 5 (CO 3 ) 2 (OH) 6 as well as for turbostratic hydrozincite were simulated. It is shown that the XRD pattern calculated on the basis of the last model gives the best correspondence with experimental data. Distances between layers in the turbostratically disordered hydrozincite fluctuate around d ≃ 8.01 Å. This average layer-to-layer distance is significantly higher than the interlayer distance 6.77 Å in the ordered Zn 5 (CO 3 ) 2 (OH) 6 probably due to a deficiency of CO 3 2- anions, excess OH - and the presence of water molecules in the interlayers. It is shown by variable-temperature XRD and thermogravimetric analysis (TGA) that the nanocrystalline turbostratic nonstoichiometric hydrozincite-like phase is quite thermostable. It decomposes into ZnO in air above 473 K.

  17. 3D Numerical Models of the Effect of Diking on the Faulting Pattern at Incipient Continental Rifts and Steady-State Spreading Centers

    NASA Astrophysics Data System (ADS)

    Tian, X.; Choi, E.; Buck, W. R.

    2015-12-01

    The offset of faults and related topographic relief varies hugely at both continental rifts and mid-ocean ridges (MORs). In some areas fault offset is measured in 10s of meters while in places marked by core complexes it is measured in 10s of kilometers. Variation in the magma supply is thought to control much of these differences. Magma supply is most usefully described by the ratio (M) between rates of lithospheric extension accommodated by magmatic dike intrusion and that occurring via faulting. 2D models with different values of M successfully explain much of the observed cross-sectional structure seen at rifts and ridges. However, magma supply varies along the axis of extension and the interactions between the tectonics and magmatism are inevitably three-dimensional. We investigate the consequences of this along-axis variation in diking in terms of faulting patterns and the associated structures using a 3D parallel geodynamic modeling code, SNAC. Many observed 3D structural features are reproduced: e.g., abyssal hill, oceanic core complex (OCC), inward fault jump, mass wasting, hourglass-shaped median valley, corrugation and mullion structure. An estimated average value of M = 0.65 is suggested as a boundary value for separating abyssal hills and OCCs formation. Previous inconsistency in the M range for OCC formation between 2D model results (M = 0.3˜0.5) and field observations (M < 0.3 or M > 0.5) is reconciled by the along-ridge coupling between different faulting regimes. We also propose asynchronous faulting-induced tensile failure as a new possibility for explaining corrugations seen on the surface of core complexes. For continental rifts, we will describe a suite of 2D and 3D model calculations with a range of initial lithospheric structures and values of M. In one set of the 2D models we limit the extensional tectonic force and show how this affects the maximum topographic relief produced across the rift. We are also interested in comparing models in which the value of M varies as the rift evolves with observations from real rifts and continental margins. Finally, we plan to show how the faulting pattern in 3D can depend on the distribution of dike opening rate along segments for incipient continental rifts.

  18. Effects of blur and repeated testing on sensitivity estimates with frequency doubling perimetry.

    PubMed

    Artes, Paul H; Nicolela, Marcelo T; McCormick, Terry A; LeBlanc, Raymond P; Chauhan, Balwantray C

    2003-02-01

    To investigate the effect of blur and repeated testing on sensitivity with frequency doubling technology (FDT) perimetry. One eye of 12 patients with glaucoma (mean deviation [MD] mean, -2.5 dB, range +0.5 to -4.3 dB) and 11 normal control subjects underwent six consecutive tests with the FDT N30 threshold program in each of two sessions. In session 1, blur was induced by trial lenses (-6.00, -3.00, 0.00, +3.00, and +6.00 D, in random order). In session 2, only the effects of repeated testing were evaluated. The MD and pattern standard deviation (PSD) indices were evaluated as functions of blur and of test order. By correcting the data of session 1 for the reduction of sensitivity with repeated testing (session 2), the effect of blur on FDT sensitivities was established, and its clinical consequences evaluated on total- and pattern-deviation probability maps. FDT sensitivities decreased with blur (by <0.5 dB/D) and with repeated testing (by approximately 2 dB between the first and sixth tests). Blur and repeated testing independently led to larger numbers of locations with significant total and pattern deviation. Sensitivity reductions were similar in normal control subjects and patients with glaucoma, at central and peripheral test locations and at locations with high and low sensitivities. However, patients with glaucoma showed larger deterioration in the total-deviation-probability maps. To optimize the performance of the device, refractive errors should be corrected and immediate retesting avoided. Further research is needed to establish the cause of sensitivity loss with repeated FDT testing.

  19. Digital 3D holographic display using scattering layers for enhanced viewing angle and image size

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonseung; Lee, KyeoReh; Park, Jongchan; Park, YongKeun

    2017-05-01

    In digital 3D holographic displays, the generation of realistic 3D images has been hindered by limited viewing angle and image size. Here we demonstrate a digital 3D holographic display using volume speckle fields produced by scattering layers in which both the viewing angle and the image size are greatly enhanced. Although volume speckle fields exhibit random distributions, the transmitted speckle fields have a linear and deterministic relationship with the input field. By modulating the incident wavefront with a digital micro-mirror device, volume speckle patterns are controlled to generate 3D images of micrometer-size optical foci with 35° viewing angle in a volume of 2 cm × 2 cm × 2 cm.

  20. Tensile properties of ADI material in water and gaseous environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajnovic, Dragan, E-mail: draganr@uns.ac.rs; Balos, Sebastian; Sidjanin, Leposava

    2015-03-15

    Austempered ductile iron (ADI) is an advanced type of heat treated ductile iron, having comparable mechanical properties as forged steels. However, it was found that in contact with water the mechanical properties of austempered ductile irons decrease, especially their ductility. Despite considerable scientific attention, the cause of this phenomenon remains unclear. Some authors suggested that hydrogen or small atom chemisorption causes the weakening of the surface atomic bonds. To get additional reliable data of that phenomenon, in this paper, two different types of austempered ductile irons were tensile tested in various environments, such as: argon, helium, hydrogen gas and water.more » It was found that only the hydrogen gas and water gave a statistically significant decrease in mechanical properties, i.e. cause embrittlement. Furthermore, the fracture surface analysis revealed that the morphology of the embrittled zone near the specimen surface shares similarities to the fatigue micro-containing striation-like lines, which indicates that the morphology of the brittle zone may be caused by cyclic local-chemisorption, micro-embrittlement and local-fracture. - Highlights: • In contact with water and other liquids the ADI suddenly exhibits embrittlement. • The embrittlement is more pronounced in water than in the gaseous hydrogen. • The hydrogen chemisorption into ADI surface causes the formation of a brittle zone. • The ADI austempered at lower temperatures (300 °C) is more resistant to embrittlement.« less

  1. 802GHz integrated horn antennas imaging array

    NASA Technical Reports Server (NTRS)

    Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.; Dave, Hemant; Chin, Gordon

    1991-01-01

    Pattern measurements at 802GHz of a single element in 256-element integrated horn imaging array are presented. The integrated-horn antenna consists of a dipole-antenna suspended on a 1-micron dielectric membrane inside a pyramidal cavity etched in silicon. The theoretical far-field patterns, calculated using reciprocity and Floquet-modes representation of the free-space field, agree well with the measured far-field patterns at 802GHz. The associated directivity for a 1.40 lambda horn aperture, calculated from the measured E and H-plane patterns is 12.3dB + or - 0.2dB. This work demonstrates that high-efficiency integrated-horn antennas are easily scalable to terahertz frequencies and could be used for radio-astronomical and plasma-diagnostic applications.

  2. Assessing D-Region Ionospheric Electron Densities with Transionospheric VLF Signals

    NASA Astrophysics Data System (ADS)

    Worthington, E. R.; Cohen, M.

    2016-12-01

    Very Low Frequency (VLF, 3-30 kHz) electromagnetic radiation emitted from ground-based sources, such as VLF transmitters or lightning strokes, is generally confined between the Earth's surface and the base of the ionosphere. These boundaries result in waveguide-like propagation modes that travel away from the source, often over great distances. In the vicinity of the source, a unique interference pattern exists that is largely determined by the D-region of the ionosphere which forms the upper boundary. A small portion of this VLF radiation escapes the ionosphere allowing the waveguide interference pattern to be observable to satellites in low-earth orbit (LEO). Techniques for estimating D-region electron densities using VLF satellite measurements are presented. These techniques are then validated using measurements taken by the satellite DEMETER. During its six-year mission, DEMETER completed hundreds of passes above well-characterized VLF transmitters while taking measurements of electric and magnetic field strengths. The waveguide interference pattern described above is clearly visible in these measurements, and features from the interference pattern are used to derive D-region electron density profiles.

  3. Voronoi Cell Patterns: theoretical model and application to submonolayer growth

    NASA Astrophysics Data System (ADS)

    González, Diego Luis; Einstein, T. L.

    2012-02-01

    We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We apply our model to describe the Voronoi cell patterns of island nucleation for critical island sizes i=0,1,2,3. Experimental results for the Voronoi cells of InAs/GaAs quantum dots are also described by our model.

  4. The deviations of the Al6Li3Cu quasicrystal from icosahedral symmetry : a reminiscence of a cubic crystal

    NASA Astrophysics Data System (ADS)

    Donnadieu, Patricia

    1994-05-01

    The (Al6Li3Cu) (T2) quasicrystals are known to exhibit large deviations from the icosahedral symmetry. Series of electron diffraction patterns are used to investigate these imperfections in as-cast T, samples. A detailed analysis of the 5-fold and 3-fold symmetry diffraction patterns shows that they are compatible with the m3 point group instead of the m35 icosahedral group. This symmetry reduction is interprétéd as reminiscent of the cubic approximant phase (R-Al5Li3Cu) rather than of higher order approximant phases. This interpretation is supported by previous observations on crystal/quasicrystal phase transformation in the AlLiCu system. Les quasicristaux de phase T2(Al6Li3Cu) montrent d'importantes déviations à la symétrie icosaédrique. Ces imperfections sont mises en évidence par diffraction électronique dans des échantillons de phase T2 brut de coulée. Un examen détaillé des diagrammes de diffraction de symétrie d'ordre 3 et 5 révèle qu'ils sont compatibles avec le groupe ponctuel m3 au lieu du groupe de l'icosaèdre (m35). Cette réduction de symétrie est interprétée comme une réminiscence de la phase cubique approximante (R-Al5Li3Cu) et non l'apparition d'approximant d'ordre plus élevé. Cette interprétation est suggérée par des observations antérieures sur la transformation cristal/quasicristal dans le système AlLiCu.

  5. Bio-inspired enhancement of friction and adhesion at the polydimethylsiloxane-intestine interface and biocompatibility characterization.

    PubMed

    Zhang, Hongyu; Wang, Yi; Vasilescu, Steven; Gu, Zhibin; Sun, Tao

    2017-05-01

    An active navigation of self-propelled miniaturized robot along the intestinal tract without injuring the soft tissue remains a challenge as yet. Particularly in this case an effective control of the interfacial friction and adhesion between the material used and the soft tissue is crucial. In the present study, we investigated the frictional and adhesive properties between polydimethylsiloxane (PDMS, microscopically patterned with micro-pillar arrays and non-patterned with a flat surface) and rabbit small intestinal tract using a universal material tester. The friction coefficient-time plot and adhesive force-time plot were recorded during the friction test (sliding speed: 0.25mm/s; normal loading: 0.4N) and adhesion test (preloading: 0.5N; hoisting speed: 2.5×10 -3 mm/s). In addition, biocompatibility of the PDMS samples was characterized in terms of cell morphology (scanning electron microscope) and cell cytotoxicity (alamarBlue assay) using human vascular endothelial cells (HUVECs). The results demonstrated that the interfacial friction (0.27 vs 0.19) and adhesion (34.9mN vs 26.7mN) were greatly increased using microscopically patterned PDMS, in comparison with non-patterned PDMS. HUVECs adhered to and proliferated on non-patterned/microscopically patterned PDMS very well, with a relative cell viability of about 90% following seeding at 1d, 3d, and 5d. The favorable enhancement of the frictional and adhesive properties, along with the excellent biocompatibility of the microscopically patterned PDMS, makes it a propitious choice for clinical application of self-propelled miniaturized robots. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Identity Activities

    DTIC Science & Technology

    2016-08-03

    individual or organization knows or says about another individual         Core personal Addresses Employment Educational Military Service...rhythm; handwriting ; type/keyboard pattern; posture/bearing; gait/limp; gestures). Appendix D D-8 JDN X-XX (3) Financial Transactions. Any

  7. RipleyGUI: software for analyzing spatial patterns in 3D cell distributions

    PubMed Central

    Hansson, Kristin; Jafari-Mamaghani, Mehrdad; Krieger, Patrik

    2013-01-01

    The true revolution in the age of digital neuroanatomy is the ability to extensively quantify anatomical structures and thus investigate structure-function relationships in great detail. To facilitate the quantification of neuronal cell patterns we have developed RipleyGUI, a MATLAB-based software that can be used to detect patterns in the 3D distribution of cells. RipleyGUI uses Ripley's K-function to analyze spatial distributions. In addition the software contains statistical tools to determine quantitative statistical differences, and tools for spatial transformations that are useful for analyzing non-stationary point patterns. The software has a graphical user interface making it easy to use without programming experience, and an extensive user manual explaining the basic concepts underlying the different statistical tools used to analyze spatial point patterns. The described analysis tool can be used for determining the spatial organization of neurons that is important for a detailed study of structure-function relationships. For example, neocortex that can be subdivided into six layers based on cell density and cell types can also be analyzed in terms of organizational principles distinguishing the layers. PMID:23658544

  8. A Visual Servoing-Based Method for ProCam Systems Calibration

    PubMed Central

    Berry, Francois; Aider, Omar Ait; Mosnier, Jeremie

    2013-01-01

    Projector-camera systems are currently used in a wide field of applications, such as 3D reconstruction and augmented reality, and can provide accurate measurements, depending on the configuration and calibration. Frequently, the calibration task is divided into two steps: camera calibration followed by projector calibration. The latter still poses certain problems that are not easy to solve, such as the difficulty in obtaining a set of 2D–3D points to compute the projection matrix between the projector and the world. Existing methods are either not sufficiently accurate or not flexible. We propose an easy and automatic method to calibrate such systems that consists in projecting a calibration pattern and superimposing it automatically on a known printed pattern. The projected pattern is provided by a virtual camera observing a virtual pattern in an OpenGL model. The projector displays what the virtual camera visualizes. Thus, the projected pattern can be controlled and superimposed on the printed one with the aid of visual servoing. Our experimental results compare favorably with those of other methods considering both usability and accuracy. PMID:24084121

  9. Bio-inspired patterned networks (BIPS) for development of wearable/disposable biosensors

    NASA Astrophysics Data System (ADS)

    McLamore, E. S.; Convertino, M.; Hondred, John; Das, Suprem; Claussen, J. C.; Vanegas, D. C.; Gomes, C.

    2016-05-01

    Here we demonstrate a novel approach for fabricating point of care (POC) wearable electrochemical biosensors based on 3D patterning of bionanocomposite networks. To create Bio-Inspired Patterned network (BIPS) electrodes, we first generate fractal network in silico models that optimize transport of network fluxes according to an energy function. Network patterns are then inkjet printed onto flexible substrate using conductive graphene ink. We then deposit fractal nanometal structures onto the graphene to create a 3D nanocomposite network. Finally, we biofunctionalize the surface with biorecognition agents using covalent bonding. In this paper, BIPS are used to develop high efficiency, low cost biosensors for measuring glucose as a proof of concept. Our results on the fundamental performance of BIPS sensors show that the biomimetic nanostructures significantly enhance biosensor sensitivity, accuracy, response time, limit of detection, and hysteresis compared to conventional POC non fractal electrodes (serpentine, interdigitated, and screen printed electrodes). BIPs, in particular Apollonian patterned BIPS, represent a new generation of POC biosensors based on nanoscale and microscale fractal networks that significantly improve electrical connectivity, leading to enhanced sensor performance.

  10. Evaluation of the effect scan pattern has on the trueness and precision of six intraoral digital impression systems.

    PubMed

    Mennito, Anthony S; Evans, Zachary P; Lauer, Abigail W; Patel, Ravi B; Ludlow, Mark E; Renne, Walter G

    2018-03-01

    Clinicians have been slow to adopt digital impression technologies due possibly to perceived technique sensitivities involved in data acquisition. This research has two aims: determine whether scan pattern and sequence affects the accuracy of the three-dimensional (3D) model created from this digital impression and to compare the 5 imaging systems with regards to their scanning accuracy for sextant impressions. Six digital intraoral impression systems were used to scan a typodont sextant with optical properties similar to natural teeth. The impressions were taken using five different scan patterns and the resulting digital models were overlayed on a master digital model to determine the accuracy of each scanner performing each scan pattern. Furthermore, regardless of scan pattern, each digital impression system was evaluated for accuracy to the other systems in this same manner. No differences of significance were noted in the accuracy of 3D models created using six distinct scan patterns with one exception involving the CEREC Omnicam. Planmeca Planscan was determined to be the truest scanner while 3Shape Trios was determined to be the most precise for sextant impression making. Scan pattern does not significantly affect the accuracy of the resulting digital model for sextant scanning. Companies who make digital impression systems often recommend a scan pattern specific for their system. However, every clinical scanning scenario is different and may require a different approach. Knowing how important scan pattern is with regards to accuracy would be helpful for guiding a growing number of practitioners who are utilizing this technology. © 2018 Wiley Periodicals, Inc.

  11. Towards microscale electrohydrodynamic three-dimensional printing

    NASA Astrophysics Data System (ADS)

    He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen

    2016-02-01

    It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics.

  12. System and technique for retrieving depth information about a surface by projecting a composite image of modulated light patterns

    NASA Technical Reports Server (NTRS)

    Hassebrook, Laurence G. (Inventor); Lau, Daniel L. (Inventor); Guan, Chun (Inventor)

    2010-01-01

    A technique, associated system and program code, for retrieving depth information about at least one surface of an object, such as an anatomical feature. Core features include: projecting a composite image comprising a plurality of modulated structured light patterns, at the anatomical feature; capturing an image reflected from the surface; and recovering pattern information from the reflected image, for each of the modulated structured light patterns. Pattern information is preferably recovered for each modulated structured light pattern used to create the composite, by performing a demodulation of the reflected image. Reconstruction of the surface can be accomplished by using depth information from the recovered patterns to produce a depth map/mapping thereof. Each signal waveform used for the modulation of a respective structured light pattern, is distinct from each of the other signal waveforms used for the modulation of other structured light patterns of a composite image; these signal waveforms may be selected from suitable types in any combination of distinct signal waveforms, provided the waveforms used are uncorrelated with respect to each other. The depth map/mapping to be utilized in a host of applications, for example: displaying a 3-D view of the object; virtual reality user-interaction interface with a computerized device; face--or other animal feature or inanimate object--recognition and comparison techniques for security or identification purposes; and 3-D video teleconferencing/telecollaboration.

  13. System and technique for retrieving depth information about a surface by projecting a composite image of modulated light patterns

    NASA Technical Reports Server (NTRS)

    Guan, Chun (Inventor); Hassebrook, Laurence G. (Inventor); Lau, Daniel L. (Inventor)

    2008-01-01

    A technique, associated system and program code, for retrieving depth information about at least one surface of an object. Core features include: projecting a composite image comprising a plurality of modulated structured light patterns, at the object; capturing an image reflected from the surface; and recovering pattern information from the reflected image, for each of the modulated structured light patterns. Pattern information is preferably recovered for each modulated structured light pattern used to create the composite, by performing a demodulation of the reflected image. Reconstruction of the surface can be accomplished by using depth information from the recovered patterns to produce a depth map/mapping thereof. Each signal waveform used for the modulation of a respective structured light pattern, is distinct from each of the other signal waveforms used for the modulation of other structured light patterns of a composite image; these signal waveforms may be selected from suitable types in any combination of distinct signal waveforms, provided the waveforms used are uncorrelated with respect to each other. The depth map/mapping to be utilized in a host of applications, for example: displaying a 3-D view of the object; virtual reality user-interaction interface with a computerized device; face--or other animal feature or inanimate object--recognition and comparison techniques for security or identification purposes; and 3-D video teleconferencing/telecollaboration.

  14. Three-Dimensional Organotypic Co-Culture Model of Intestinal Epithelial Cells and Macrophages to Study "Salmonella Enterica" Colonization Patterns

    NASA Technical Reports Server (NTRS)

    Ott, Mark; Yang, J; Barilla, J.; Crabbe, A.; Sarker, S. F.; Liu, Y.

    2017-01-01

    Three-dimensional/3-D organotypic models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by 2-D monolayers and respond to Salmonella in ways that reflect in vivo infections. To further enhance the physiological relevance of 3-D models to more closely approximate in vivo intestinal microenvironments during infection, we developed and validated a novel 3-D intestinal co-culture model containing multiple epithelial cell types and phagocytic macrophages, and applied to study enteric infection by different Salmonella pathovars.

  15. FracPaQ: a MATLAB™ toolbox for the quantification of fracture patterns

    NASA Astrophysics Data System (ADS)

    Healy, David; Rizzo, Roberto; Farrell, Natalie; Watkins, Hannah; Cornwell, David; Gomez-Rivas, Enrique; Timms, Nick

    2017-04-01

    The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. This presentation describes an open source toolbox to quantify fracture patterns, including distributions in fracture attributes and their spatial variation. Software has been developed to quantify fracture patterns from 2-D digital images, such as thin section micrographs, geological maps, outcrop or aerial photographs or satellite images. The toolbox comprises a suite of MATLAB™ scripts based on published quantitative methods for the analysis of fracture attributes: orientations, lengths, intensity, density and connectivity. An estimate of permeability in 2-D is made using a parallel plate model. The software provides an objective and consistent methodology for quantifying fracture patterns and their variations in 2-D across a wide range of length scales. Our current focus for the application of the software is on quantifying crack and fracture patterns in and around fault zones. There is a large body of published work on the quantification of relatively simple joint patterns, but fault zones present a bigger, and arguably more important, challenge. The methods presented are inherently scale independent, and a key task will be to analyse and integrate quantitative fracture pattern data from micro- to macro-scales. New features in this release include multi-scale analyses based on a wavelet method to look for scale transitions, support for multi-colour traces in the input file processed as separate fracture sets, and combining fracture traces from multiple 2-D images to derive the statistically equivalent 3-D fracture pattern expressed as a 2nd rank crack tensor.

  16. The Pandora multi-algorithm approach to automated pattern recognition in LAr TPC detectors

    NASA Astrophysics Data System (ADS)

    Marshall, J. S.; Blake, A. S. T.; Thomson, M. A.; Escudero, L.; de Vries, J.; Weston, J.; MicroBooNE Collaboration

    2017-09-01

    The development and operation of Liquid Argon Time Projection Chambers (LAr TPCs) for neutrino physics has created a need for new approaches to pattern recognition, in order to fully exploit the superb imaging capabilities offered by this technology. The Pandora Software Development Kit provides functionality to aid the process of designing, implementing and running pattern recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition: individual algorithms each address a specific task in a particular topology; a series of many tens of algorithms then carefully builds-up a picture of the event. The input to the Pandora pattern recognition is a list of 2D Hits. The output from the chain of over 70 algorithms is a hierarchy of reconstructed 3D Particles, each with an identified particle type, vertex and direction.

  17. A numerical analysis of the aortic blood flow pattern during pulsed cardiopulmonary bypass.

    PubMed

    Gramigna, V; Caruso, M V; Rossi, M; Serraino, G F; Renzulli, A; Fragomeni, G

    2015-01-01

    In the modern era, stroke remains a main cause of morbidity after cardiac surgery despite continuing improvements in the cardiopulmonary bypass (CPB) techniques. The aim of the current work was to numerically investigate the blood flow in aorta and epiaortic vessels during standard and pulsed CPB, obtained with the intra-aortic balloon pump (IABP). A multi-scale model, realized coupling a 3D computational fluid dynamics study with a 0D model, was developed and validated with in vivo data. The presence of IABP improved the flow pattern directed towards the epiaortic vessels with a mean flow increase of 6.3% and reduced flow vorticity.

  18. Investigation of the 3D temperature distribution patterns above the Antarctic Peninsula using remote sensing data - A contribution for polar climate monitoring

    NASA Astrophysics Data System (ADS)

    Wachter, Paul; Höppner, Kathrin; Jacobeit, Jucundus; Diedrich, Erhard

    2015-04-01

    West Antarctica and the Antarctic Peninsula are in the focus of current studies on a changing environment and climate of the polar regions. A recently founded Junior Researchers Group at the German Aerospace Center (DLR) is studying changing processes in cryosphere and atmosphere above the Antarctic Peninsula. It is the aim of the group to make use of long-term remote sensing data sets of the land and ice surfaces and the atmosphere in order to characterize environmental changes in this highly sensitive region. One of the PhD projects focuses on the investigation of the 3D temperature distribution patterns above the Antarctic Peninsula. Temperature data sets ranging from MODIS land surface temperatures up to middle atmosphere data of AURA/MLS will be evaluated over the last approx. 12 years. This 3-dimensional view allows comprehensive investigations of the thermal structure and spatio-temporal characteristics of the southern polar atmosphere. Tropospheric data sets will be analyzed by multivariate statistical methods and will allow the identification of dominant atmospheric circulation patterns as well as their temporal variability. An overview of the data sets and first results will be presented.

  19. Preprocessing of region of interest localization based on local surface curvature analysis for three-dimensional reconstruction with multiresolution

    NASA Astrophysics Data System (ADS)

    Li, Wanjing; Schütze, Rainer; Böhler, Martin; Boochs, Frank; Marzani, Franck S.; Voisin, Yvon

    2009-06-01

    We present an approach to integrate a preprocessing step of the region of interest (ROI) localization into 3-D scanners (laser or stereoscopic). The definite objective is to make the 3-D scanner intelligent enough to localize rapidly in the scene, during the preprocessing phase, the regions with high surface curvature, so that precise scanning will be done only in these regions instead of in the whole scene. In this way, the scanning time can be largely reduced, and the results contain only pertinent data. To test its feasibility and efficiency, we simulated the preprocessing process under an active stereoscopic system composed of two cameras and a video projector. The ROI localization is done in an iterative way. First, the video projector projects a regular point pattern in the scene, and then the pattern is modified iteratively according to the local surface curvature of each reconstructed 3-D point. Finally, the last pattern is used to determine the ROI. Our experiments showed that with this approach, the system is capable to localize all types of objects, including small objects with small depth.

  20. Hybrid helical magnetic microrobots obtained by 3D template-assisted electrodeposition.

    PubMed

    Zeeshan, Muhammad A; Grisch, Roman; Pellicer, Eva; Sivaraman, Kartik M; Peyer, Kathrin E; Sort, Jordi; Özkale, Berna; Sakar, Mahmut S; Nelson, Bradley J; Pané, Salvador

    2014-04-09

    Hybrid helical magnetic microrobots are achieved by sequential electrodeposition of a CoNi alloy and PPy inside a photoresist template patterned by 3D laser lithography. A controlled actuation of the microrobots by a rotating magnetic field is demonstrated in a fluidic environment. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection

    NASA Astrophysics Data System (ADS)

    Zuo, Chao; Chen, Qian; Gu, Guohua; Feng, Shijie; Feng, Fangxiaoyu; Li, Rubin; Shen, Guochen

    2013-08-01

    This paper introduces a high-speed three-dimensional (3-D) shape measurement technique for dynamic scenes by using bi-frequency tripolar pulse-width-modulation (TPWM) fringe projection. Two wrapped phase maps with different wavelengths can be obtained simultaneously by our bi-frequency phase-shifting algorithm. Then the two phase maps are unwrapped using a simple look-up-table based number-theoretical approach. To guarantee the robustness of phase unwrapping as well as the high sinusoidality of projected patterns, TPWM technique is employed to generate ideal fringe patterns with slight defocus. We detailed our technique, including its principle, pattern design, and system setup. Several experiments on dynamic scenes were performed, verifying that our method can achieve a speed of 1250 frames per second for fast, dense, and accurate 3-D measurements.

  2. Fringe periods of color moirés in contact-type 3-D displays.

    PubMed

    Lee, Hyoung; Kim, Sung-Kyu; Sohn, Kwanghoon; Son, Jung-Young; Chernyshov, Oleksii O

    2016-06-27

    A mathematical formula of calculating the fringe periods of the color moirés appearing at the contact-type 3-D displays is derived. It is typical that the color moirés are chirped and the period of the line pattern in viewing zone forming optics is more than two times of that of the pixel pattern in the display panel. These make impossible to calculate the fringe periods of the color moirés with the conventional beat frequency formula. The derived formula work very well for any combination of two line patterns having either a same line period or different line periods. This is experimentally proved. Furthermore, it is also shown that the fringe period can be expressed in terms of the viewing distance and focal length of the viewing zone forming optics.

  3. Aging and the perception of 3-D shape from dynamic patterns of binocular disparity.

    PubMed

    Norman, J Farley; Crabtree, Charles E; Herrmann, Molly; Thompson, Sarah R; Shular, Cassandra F; Clayton, Anna Marie

    2006-01-01

    In two experiments, we investigated the ability of younger and older observers to perceive and discriminate 3-D shape from static and dynamic patterns of binocular disparity. In both experiments, the younger observers' discrimination accuracies were 20% higher than those of the older observers. Despite this quantitative difference, in all other respects the older observers performed similarly to the younger observers. Both age groups were similarly affected by changes in the magnitude of binocular disparity, by reductions in binocular correspondence, and by increases in the speed of stereoscopic motion. In addition, observers in both age groups exhibited an advantage in performance for dynamic stereograms when the patterns of binocular disparity contained significant amounts of correspondence "noise." The process of aging does affect stereopsis, but the effects are quantitative rather than qualitative.

  4. 3D Printing of Living Responsive Materials and Devices.

    PubMed

    Liu, Xinyue; Yuk, Hyunwoo; Lin, Shaoting; Parada, German Alberto; Tang, Tzu-Chieh; Tham, Eléonore; de la Fuente-Nunez, Cesar; Lu, Timothy K; Zhao, Xuanhe

    2018-01-01

    3D printing has been intensively explored to fabricate customized structures of responsive materials including hydrogels, liquid-crystal elastomers, shape-memory polymers, and aqueous droplets. Herein, a new method and material system capable of 3D-printing hydrogel inks with programed bacterial cells as responsive components into large-scale (3 cm), high-resolution (30 μm) living materials, where the cells can communicate and process signals in a programmable manner, are reported. The design of 3D-printed living materials is guided by quantitative models that account for the responses of programed cells in printed microstructures of hydrogels. Novel living devices are further demonstrated, enabled by 3D printing of programed cells, including logic gates, spatiotemporally responsive patterning, and wearable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Laboratory Instrumentation Design Research for Scalable Next Generation Epitaxy: Non-Equilibrium Wide Application Epitaxial Patterning by Intelligent Control (NEW-EPIC). Volume 1. 3D Composition/Doping Control via Micromiror Patterned Deep UV Photodesorption: Revolutionary in situ Characterization/Control

    DTIC Science & Technology

    2009-02-19

    magnesium dopant concentration. A digital micromirror device is introduced to pattern incident UV radiation during InGaN growth, demonstrating that the...magnesium dopant concentration. A digital micromirror device is introduced to pattern incident UV radiation during InGaN growth, demonstrating that the...successful compositional patterning of InGaN using in situ digital micromirror device (DMD) patterning of ultraviolet (UV

  6. New database for improving virtual system “body-dress”

    NASA Astrophysics Data System (ADS)

    Yan, J. Q.; Zhang, S. C.; Kuzmichev, V. E.; Adolphe, D. C.

    2017-10-01

    The aim of this exploration is to develop a new database of solid algorithms and relations between the dress fit and the fabric mechanical properties, the pattern block construction for improving the reality of virtual system “body-dress”. In virtual simulation, the system “body-clothing” sometimes shown distinct results with reality, especially when important changes in pattern block and fabrics were involved. In this research, to enhance the simulation process, diverse fit parameters were proposed: bottom height of dress, angle of front center contours, air volume and its distribution between dress and dummy. Measurements were done and optimized by ruler, camera, 3D body scanner image processing software and 3D modeling software. In the meantime, pattern block indexes were measured and fabric properties were tested by KES. Finally, the correlation and linear regression equations between indexes of fabric properties, pattern blocks and fit parameters were investigated. In this manner, new database could be extended in programming modules of virtual design for more realistic results.

  7. Topographical analysis of corneal astigmatism in patients with tilted-disc syndrome.

    PubMed

    Bozkurt, Banu; Irkec, Murat; Gedik, Sansal; Orhan, Mehmet; Erdener, Uğur

    2002-07-01

    To evaluate the corneal topography in patients with tilted-disc syndrome to determine the relationship between optic disc dysversion and corneal astigmatism and the pattern of astigmatism in these patients. The study included 23 eyes of the 13 tilted-disc syndrome patients with spheric refractive errors ranging between +1.00 D and -9.00 D (mean -4.00 +/- 3.4 D) and astigmatic errors ranging between -0.50 and -4.50 D (mean -1.95 +/- 0.93 D). Corneal topography was performed by computer-assisted videokeratoscope topographic modelling system 2 (TMS-2) and incidence of corneal astigmatism, corneal topographic patterns, and mean values of the topographic indices were determined. Corneal topographic analysis showed corneal astigmatism in 22 out of 23 patients with tilted discs. Corneal astigmatism was symmetric bow tie pattern in 10 eyes (45.45%), asymmetric bow tie pattern in 11 eyes (50%) and irregular in 1 eye (4.5%). Among the patients with bow tie pattern group (21 eyes), 14 eyes had with-the-rule astigmatism, 1 eye had against-the-rule astigmatism, and 6 eyes had oblique astigmatism. In 18 eyes, astigmatism was corneal, whereas combined corneal and lenticular in 4 eyes and lenticular in 1 eye. In the majority of tilted-disc cases, ocular astigmatism is mainly corneal. Morphogenetic factors in the development of the tilted disc might possibly influence the corneal development in such a way to result in corneal astigmatism.

  8. 3-D printed composites with ultrasonically arranged complex microstructure

    NASA Astrophysics Data System (ADS)

    Llewellyn-Jones, Thomas M.; Drinkwater, Bruce W.; Trask, Richard S.

    2016-04-01

    This paper demonstrates the efficacy of implementing ultrasonic manipulation within a modified form of stereolithographic 3D printing to form complex microstructures in printed components. Currently 3D printed components are limited both in terms of structural performance and specialised functionality. This study aims to demonstrate a novel method for 3D printing composite materials, by arranging microparticles suspended within a photocurable resin. The resin is selectively cured by a 3-axis gantry-mounted 405nm laser. Ultrasonic forces are used to arrange the microfibres into predetermined patterns within the resin, with unidirectional microfibre alignment and a hexagonal lattice structure demonstrated. An example of dynamic microstructure variation within a single print layer is also presented.

  9. 3D shape measurement with thermal pattern projection

    NASA Astrophysics Data System (ADS)

    Brahm, Anika; Reetz, Edgar; Schindwolf, Simon; Correns, Martin; Kühmstedt, Peter; Notni, Gunther

    2016-12-01

    Structured light projection techniques are well-established optical methods for contactless and nondestructive three-dimensional (3D) measurements. Most systems operate in the visible wavelength range (VIS) due to commercially available projection and detection technology. For example, the 3D reconstruction can be done with a stereo-vision setup by finding corresponding pixels in both cameras followed by triangulation. Problems occur, if the properties of object materials disturb the measurements, which are based on the measurement of diffuse light reflections. For example, there are existing materials in the VIS range that are too transparent, translucent, high absorbent, or reflective and cannot be recorded properly. To overcome these challenges, we present an alternative thermal approach that operates in the infrared (IR) region of the electromagnetic spectrum. For this purpose, we used two cooled mid-wave (MWIR) cameras (3-5 μm) to detect emitted heat patterns, which were introduced by a CO2 laser. We present a thermal 3D system based on a GOBO (GOes Before Optics) wheel projection unit and first 3D analyses for different system parameters and samples. We also show a second alternative approach based on an incoherent (heat) source, to overcome typical disadvantages of high-power laser-based systems, such as industrial health and safety considerations, as well as high investment costs. Thus, materials like glass or fiber-reinforced composites can be measured contactless and without the need of additional paintings.

  10. Three-dimensional Model of Tissue and Heavy Ions Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Sundaresan, Alamelu; Huff, Janice L.; Cucinotta, Francis A.

    2007-01-01

    A three-dimensional tissue model was incorporated into a new Monte Carlo algorithm that simulates passage of heavy ions in a tissue box . The tissue box was given as a realistic model of tissue based on confocal microscopy images. The action of heavy ions on the cellular matrix for 2- or 3-dimensional cases was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix), and as a multi-layer obtained from confocal microscopy (3-d case). Image segmentation was used to identify cells with precise areas/volumes in an irradiated cell culture monolayer, and slices of tissue with many cell layers. The cells were then inserted into the model box of the simulated physical space pixel by pixel. In the case of modeled tissues (3-d), the tissue box had periodic boundary conditions imposed, which extrapolates the technique to macroscopic volumes of tissue. For the real tissue (3-d), specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated from current experimental data. A spatial correlation function indicating a higher spatial concentration of damaged cells from heavy ions relative to the low-LET radiation cell damage pattern is presented. The spatial correlation effects among necrotic cells can help studying microlesions in organs, and probable effects of directionality of heavy ion radiation on epithelium and endothelium.

  11. DLP-based 3D metrology by structured light or projected fringe technology for life sciences and industrial metrology

    NASA Astrophysics Data System (ADS)

    Frankowski, G.; Hainich, R.

    2009-02-01

    Since the mid-eighties, a fundamental idea for achieving measuring accuracy in projected fringe technology was to consider the projected fringe pattern as an interferogram and evaluate it on the basis of advanced algorithms widely used for phase measuring in real-time interferometry. A fundamental requirement for obtaining a sufficiently high degree of measuring accuracy with this so-called "phase measuring projected fringe technology" is that the projected fringes, analogous to interference fringes, must have a cos2-shaped intensity distribution. Until the mid-nineties, this requirement for the projected fringe pattern measurement technology presented a basic handicap for its wide application in 3D metrology. This situation changed abruptly, when in the nineties Texas Instruments introduced to the market advanced digital light projection on the basis of micro mirror based projection systems, socalled DLP technology, which also facilitated the generation and projection of cos2-shaped intensity and/or fringe patterns. With this DLP technology, which from its original approach was actually oriented towards completely different applications such as multimedia projection, Texas Instruments boosted phase-measuring fringe projection in optical 3D metrology to a worldwide breakthrough both for medical as well as industrial applications. A subject matter of the lecture will be to present the fundamental principles and the resulting advantages of optical 3D metrology based on phase-measuring fringe projection using DLP technology. Further will be presented and discussed applications of the measurement technology in medical engineering and industrial metrology.

  12. Biofilm three-dimensional architecture influences in situ pH distribution pattern on the human enamel surface

    PubMed Central

    Xiao, Jin; Hara, Anderson T; Kim, Dongyeop; Zero, Domenick T; Koo, Hyun; Hwang, Geelsu

    2017-01-01

    To investigate how the biofilm three-dimensional (3D) architecture influences in situ pH distribution patterns on the enamel surface. Biofilms were formed on human tooth enamel in the presence of 1% sucrose or 0.5% glucose plus 0.5% fructose. At specific time points, biofilms were exposed to a neutral pH buffer to mimic the buffering of saliva and subsequently pulsed with 1% glucose to induce re-acidification. Simultaneous 3D pH mapping and architecture of intact biofilms was performed using two-photon confocal microscopy. The enamel surface and mineral content characteristics were examined successively via optical profilometry and microradiography analyses. Sucrose-mediated biofilm formation created spatial heterogeneities manifested by complex networks of bacterial clusters (microcolonies). Acidic regions (pH<5.5) were found only in the interior of microcolonies, which impedes rapid neutralization (taking more than 120 min for neutralization). Glucose exposure rapidly re-created the acidic niches, indicating formation of diffusion barriers associated with microcolonies structure. Enamel demineralization (white spots), rougher surface, deeper lesion and more mineral loss appeared to be associated with the localization of these bacterial clusters at the biofilm-enamel interface. Similar 3D architecture was observed in plaque-biofilms formed in vivo in the presence of sucrose. The formation of complex 3D architectures creates spatially heterogeneous acidic microenvironments in close proximity of enamel surface, which might correlate with the localized pattern of the onset of carious lesions (white spot like) on teeth. PMID:28452377

  13. Structured light optical microscopy for three-dimensional reconstruction of technical surfaces

    NASA Astrophysics Data System (ADS)

    Kettel, Johannes; Reinecke, Holger; Müller, Claas

    2016-04-01

    In microsystems technology quality control of micro structured surfaces with different surface properties is playing an ever more important role. The process of quality control incorporates three-dimensional (3D) reconstruction of specularand diffusive reflecting technical surfaces. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution to solve this problem providing high vertical and lateral resolution. However, 3D reconstruction of specular reflecting technical surfaces still remains a challenge to optical measurement principles. In this paper we present a measurement principle based on structured light optical microscopy which enables 3D reconstruction of specular- and diffusive reflecting technical surfaces. It is realized using two light paths of a stereo microscope equipped with different magnification levels. The right optical path of the stereo microscope is used to project structured light onto the object surface. The left optical path is used to capture the structured illuminated object surface with a camera. Structured light patterns are generated by a Digital Light Processing (DLP) device in combination with a high power Light Emitting Diode (LED). Structured light patterns are realized as a matrix of discrete light spots to illuminate defined areas on the object surface. The introduced measurement principle is based on multiple and parallel processed point measurements. Analysis of the measured Point Spread Function (PSF) by pattern recognition and model fitting algorithms enables the precise calculation of 3D coordinates. Using exemplary technical surfaces we demonstrate the successful application of our measurement principle.

  14. Fabrication of 3D surface structures using grayscale lithography

    NASA Astrophysics Data System (ADS)

    Stilson, Christopher; Pal, Rajan; Coutu, Ronald A.

    2014-03-01

    The ability to design and develop 3D microstructures is important for microelectromechanical systems (MEMS) fabrication. Previous techniques used to create 3D devices included tedious steps in direct writing and aligning patterns onto a substrate followed by multiple photolithography steps using expensive, customized equipment. Additionally, these techniques restricted batch processing and placed limits on achievable shapes. Gray-scale lithography enables the fabrication of a variety of shapes using a single photolithography step followed by reactive ion etching (RIE). Micromachining 3D silicon structures for MEMS can be accomplished using gray-scale lithography along with dry anisotropic etching. In this study, we investigated: using MATLAB for mask designs; feasibility of using 1 μm Heidelberg mask maker to direct write patterns onto photoresist; using RIE processing to etch patterns into a silicon substrate; and the ability to tailor etch selectivity for precise fabrication. To determine etch rates and to obtain desired etch selectivity, parameters such as gas mixture, gas flow, and electrode power were studied. This process successfully demonstrates the ability to use gray-scale lithography and RIE for use in the study of micro-contacts. These results were used to produce a known engineered non-planer surface for testing micro-contacts. Surface structures are between 5 μm and 20 μm wide with varying depths and slopes based on mask design and etch rate selectivity. The engineered surfaces will provide more insight into contact geometries and failure modes of fixed-fixed micro-contacts.

  15. Engineering Breast Cancer Microenvironments and 3D Bioprinting

    PubMed Central

    Belgodere, Jorge A.; King, Connor T.; Bursavich, Jacob B.; Burow, Matthew E.; Martin, Elizabeth C.; Jung, Jangwook P.

    2018-01-01

    The extracellular matrix (ECM) is a critical cue to direct tumorigenesis and metastasis. Although two-dimensional (2D) culture models have been widely employed to understand breast cancer microenvironments over the past several decades, the 2D models still exhibit limited success. Overwhelming evidence supports that three dimensional (3D), physiologically relevant culture models are required to better understand cancer progression and develop more effective treatment. Such platforms should include cancer-specific architectures, relevant physicochemical signals, stromal–cancer cell interactions, immune components, vascular components, and cell-ECM interactions found in patient tumors. This review briefly summarizes how cancer microenvironments (stromal component, cell-ECM interactions, and molecular modulators) are defined and what emerging technologies (perfusable scaffold, tumor stiffness, supporting cells within tumors and complex patterning) can be utilized to better mimic native-like breast cancer microenvironments. Furthermore, this review emphasizes biophysical properties that differ between primary tumor ECM and tissue sites of metastatic lesions with a focus on matrix modulation of cancer stem cells, providing a rationale for investigation of underexplored ECM proteins that could alter patient prognosis. To engineer breast cancer microenvironments, we categorized technologies into two groups: (1) biochemical factors modulating breast cancer cell-ECM interactions and (2) 3D bioprinting methods and its applications to model breast cancer microenvironments. Biochemical factors include matrix-associated proteins, soluble factors, ECMs, and synthetic biomaterials. For the application of 3D bioprinting, we discuss the transition of 2D patterning to 3D scaffolding with various bioprinting technologies to implement biophysical cues to model breast cancer microenvironments. PMID:29881724

  16. Clinical Application of an Open-Source 3D Volume Rendering Software to Neurosurgical Approaches.

    PubMed

    Fernandes de Oliveira Santos, Bruno; Silva da Costa, Marcos Devanir; Centeno, Ricardo Silva; Cavalheiro, Sergio; Antônio de Paiva Neto, Manoel; Lawton, Michael T; Chaddad-Neto, Feres

    2018-02-01

    Preoperative recognition of the anatomic individualities of each patient can help to achieve more precise and less invasive approaches. It also may help to anticipate potential complications and intraoperative difficulties. Here we describe the use, accuracy, and precision of a free tool for planning microsurgical approaches using 3-dimensional (3D) reconstructions from magnetic resonance imaging (MRI). We used the 3D volume rendering tool of a free open-source software program for 3D reconstruction of images of surgical sites obtained by MRI volumetric acquisition. We recorded anatomic reference points, such as the sulcus and gyrus, and vascularization patterns for intraoperative localization of lesions. Lesion locations were confirmed during surgery by intraoperative ultrasound and/or electrocorticography and later by postoperative MRI. Between August 2015 and September 2016, a total of 23 surgeries were performed using this technique for 9 low-grade gliomas, 7 high-grade gliomas, 4 cortical dysplasias, and 3 arteriovenous malformations. The technique helped delineate lesions with an overall accuracy of 2.6 ± 1.0 mm. 3D reconstructions were successfully performed in all patients, and images showed sulcus, gyrus, and venous patterns corresponding to the intraoperative images. All lesion areas were confirmed both intraoperatively and at the postoperative evaluation. With the technique described herein, it was possible to successfully perform 3D reconstruction of the cortical surface. This reconstruction tool may serve as an adjunct to neuronavigation systems or may be used alone when such a system is unavailable. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Precision process calibration and CD predictions for low-k1 lithography

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Park, Sangbong; Berger, Gabriel; Coskun, Tamer H.; de Vocht, Joep; Chen, Fung; Yu, Linda; Hsu, Stephen; van den Broeke, Doug; Socha, Robert; Park, Jungchul; Gronlund, Keith; Davis, Todd; Plachecki, Vince; Harris, Tom; Hansen, Steve; Lambson, Chuck

    2005-06-01

    Leading resist calibration for sub-0.3 k1 lithography demands accuracy <2nm for CD through pitch. An accurately calibrated resist process is the prerequisite for establishing production-worthy manufacturing under extreme low k1. From an integrated imaging point of view, the following key components must be simultaneously considered during the calibration - high numerical aperture (NA>0.8) imaging characteristics, customized illuminations (measured vs. modeled pupil profiles), resolution enhancement technology (RET) mask with OPC, reticle metrology, and resist thin film substrate. For imaging at NA approaching unity, polarized illumination can impact significantly the contrast formation in the resist film stack, and therefore it is an important factor to consider in the CD-based resist calibration. For aggressive DRAM memory core designs at k1<0.3, pattern-specific illumination optimization has proven to be critical for achieving the required imaging performance. Various optimization techniques from source profile optimization with fixed mask design to the combined source and mask optimization have been considered for customer designs and available imaging capabilities. For successful low-k1 process development, verification of the optimization results can only be made with a sufficiently tunable resist model that can predicate the wafer printing accurately under various optimized process settings. We have developed, for resist patterning under aggressive low-k1 conditions, a novel 3D diffusion model equipped with double-Gaussian convolution in each dimension. Resist calibration with the new diffusion model has demonstrated a fitness and CD predication accuracy that rival or outperform the traditional 3D physical resist models. In this work, we describe our empirical approach to achieving the nm-scale precision for advanced lithography process calibrations, using either measured 1D CD through-pitch or 2D memory core patterns. We show that for ArF imaging, the current resist development and diffusion modeling can readily achieve ~1-2nm max CD errors for common 1D through-pitch and aggressive 2D memory core resist patterns. Sensitivities of the calibrated models to various process parameters are analyzed, including the comparison between the measured and modeled (Gaussian or GRAIL) pupil profiles. We also report our preliminary calibration results under selected polarized illumination conditions.

  18. An Automatic Registration Algorithm for 3D Maxillofacial Model

    NASA Astrophysics Data System (ADS)

    Qiu, Luwen; Zhou, Zhongwei; Guo, Jixiang; Lv, Jiancheng

    2016-09-01

    3D image registration aims at aligning two 3D data sets in a common coordinate system, which has been widely used in computer vision, pattern recognition and computer assisted surgery. One challenging problem in 3D registration is that point-wise correspondences between two point sets are often unknown apriori. In this work, we develop an automatic algorithm for 3D maxillofacial models registration including facial surface model and skull model. Our proposed registration algorithm can achieve a good alignment result between partial and whole maxillofacial model in spite of ambiguous matching, which has a potential application in the oral and maxillofacial reparative and reconstructive surgery. The proposed algorithm includes three steps: (1) 3D-SIFT features extraction and FPFH descriptors construction; (2) feature matching using SAC-IA; (3) coarse rigid alignment and refinement by ICP. Experiments on facial surfaces and mandible skull models demonstrate the efficiency and robustness of our algorithm.

  19. Fibrous dosage forms by wet 3D-micro-patterning: process design, manufacture, and drug release rate.

    PubMed

    Blaesi, Aron H; Saka, Nannaji

    2018-06-19

    Recently, we have introduced fibrous dosage forms prepared by 3D-micro-patterning of drug-laden viscous melts. Such dosage forms enable predictable microstructures and increased drug release rates, and they can be manufactured continuously. However, melt processing is not applicable if the melting temperature of the formulation is greater than the degradation temperature of the drug or of the excipient. In this work, therefore, a continuous wet micro-patterning process that operates at ambient temperature is presented. The excipient is plasticized by a solvent and the patterned dosage form is solidified by air drying. Process models show that the micro-patterning time is the ratio of the fiber length in the dosage form and the velocity of the fiber stream. It was 1.3 minutes in the experiments, but can be reduced further. The drying time is limited by the diffusive flux of solvent through the fibers: it was about 3 minutes for the experimental conditions. Furthermore, models are developed to illustrate the effects of fiber radius, inter-fiber spacing, viscosity of the drug-excipient-solvent mixture, and drying conditions on the microstructure of the dosage form. Models and experimental results show that for a viscosity of the wet fibers of the order 10 3 Pa·s, both the patterned microstructure is well preserved and the crossed fibers are well bonded. Finally, the drug release rate by the dosage forms is experimentally determined and theoretically modeled. The results of the experiments validate the models fairly. Copyright © 2018. Published by Elsevier B.V.

  20. Comparison of marginal and internal adaptation of copings fabricated from three different fabrication techniques: An in vitro study.

    PubMed

    Arora, Aman; Yadav, Avneet; Upadhyaya, Viram; Jain, Prachi; Verma, Mrinalini

    2018-01-01

    The purpose of this study was to compare the marginal and internal adaptation of cobalt-chromium (Co-Cr) copings fabricated from conventional wax pattern, three-dimensional (3D)-printed resin pattern, and laser sintering technique. A total of thirty copings were made, out of which ten copings were made from 3D-printed resin pattern (Group A), ten from inlay wax pattern (Group B), and ten copings were obtained from direct metal laser sintering (DMLS) technique (Group C). All the thirty samples were seated on their respective dies and sectioned carefully using a laser jet cutter and were evaluated for marginal and internal gaps at the predetermined areas using a stereomicroscope. The values were then analyzed using one-way ANOVA test and post hoc Bonferroni test. One-way ANOVA showed lowest mean marginal discrepancy for DMLS and highest value for copings fabricated from inlay wax. The values for internal discrepancy were highest for DMLS (169.38) and lowest for 3D-printed resin pattern fabricated copings (133.87). Post hoc Bonferroni test for both marginal and internal discrepancies showed nonsignificant difference when Group A was compared to Group B ( P > 0.05) and significant when Group A was compared with Group C ( P < 0.05). Group B showed significant difference ( P < 0.05) when compared with Group C. Marginal and internal discrepancies of all the three casting techniques were within clinically acceptable values. Marginal fit of DMLS was superior as compared to other two techniques, whereas when internal fit was evaluated, conventional technique showed the best internal fit.

  1. 3D sensitivity encoded ellipsoidal MR spectroscopic imaging of gliomas at 3T☆

    PubMed Central

    Ozturk-Isik, Esin; Chen, Albert P.; Crane, Jason C.; Bian, Wei; Xu, Duan; Han, Eric T.; Chang, Susan M.; Vigneron, Daniel B.; Nelson, Sarah J.

    2010-01-01

    Purpose The goal of this study was to implement time efficient data acquisition and reconstruction methods for 3D magnetic resonance spectroscopic imaging (MRSI) of gliomas at a field strength of 3T using parallel imaging techniques. Methods The point spread functions, signal to noise ratio (SNR), spatial resolution, metabolite intensity distributions and Cho:NAA ratio of 3D ellipsoidal, 3D sensitivity encoding (SENSE) and 3D combined ellipsoidal and SENSE (e-SENSE) k-space sampling schemes were compared with conventional k-space data acquisition methods. Results The 3D SENSE and e-SENSE methods resulted in similar spectral patterns as the conventional MRSI methods. The Cho:NAA ratios were highly correlated (P<.05 for SENSE and P<.001 for e-SENSE) with the ellipsoidal method and all methods exhibited significantly different spectral patterns in tumor regions compared to normal appearing white matter. The geometry factors ranged between 1.2 and 1.3 for both the SENSE and e-SENSE spectra. When corrected for these factors and for differences in data acquisition times, the empirical SNRs were similar to values expected based upon theoretical grounds. The effective spatial resolution of the SENSE spectra was estimated to be same as the corresponding fully sampled k-space data, while the spectra acquired with ellipsoidal and e-SENSE k-space samplings were estimated to have a 2.36–2.47-fold loss in spatial resolution due to the differences in their point spread functions. Conclusion The 3D SENSE method retained the same spatial resolution as full k-space sampling but with a 4-fold reduction in scan time and an acquisition time of 9.28 min. The 3D e-SENSE method had a similar spatial resolution as the corresponding ellipsoidal sampling with a scan time of 4:36 min. Both parallel imaging methods provided clinically interpretable spectra with volumetric coverage and adequate SNR for evaluating Cho, Cr and NAA. PMID:19766422

  2. Spatial Pattern of Cell Damage in Tissue from Heavy Ions

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Huff, Janice L.; Cucinotta, Francis A.

    2007-01-01

    A new Monte Carlo algorithm was developed that can model passage of heavy ions in a tissue, and their action on the cellular matrix for 2- or 3-dimensional cases. The build-up of secondaries such as projectile fragments, target fragments, other light fragments, and delta-rays was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix). A simple model of tissue was given as abstract spheres with close approximation to real cell geometries (3-d cell matrix), as well as a realistic model of tissue was proposed based on microscopy images. Image segmentation was used to identify cells in an irradiated cell culture monolayer, or slices of tissue. The cells were then inserted into the model box pixel by pixel. In the case of cell monolayers (2-d), the image size may exceed the modeled box size. Such image was is moved with respect to the box in order to sample as many cells as possible. In the case of the simple tissue (3-d), the tissue box is modeled with periodic boundary conditions, which extrapolate the technique to macroscopic volumes of tissue. For real tissue, specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated based on BNL data, and other experimental data.

  3. Poster - 38: On the physical and dosimetric properties of 3D printed electron bolus fabricated using polylactic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, David; Jensen, Martin; Rickey, Daniel W

    Purpose: 3D printing technology could simplify and improve electron bolus fabrication. The purpose of this study was to characterize the density, dimensional accuracy, uniformity, and attenuation of PLA boluses fabricated with a low-cost 3D printer. Methods: Several solid square slabs were printed with specific requested dimensions and 100% infill using different fill patterns. These pieces were imaged using an x-ray flat panel imager in order to check for uniformity of the prints. Percentage depth doses (PDDs) were measured downstream of the slabs in solid water using a parallel plate chamber and compared to measurements in water in order to characterizemore » attenuation. The dimensions of the PLA slabs were measured using digital calipers. The slabs were also weighed to find their density. Results: The fill pattern used to create boluses can affect the attenuation of the bolus. Fill patterns should be chosen carefully and quality assurance should be done for each printed piece. PLA causes the electron PDD to shift towards shallower depths, compared to water, by 1.7 mm for each centimeter of PLA. Agreement with design dimensions was within 1 mm in the plane of the printer bed, and within 1/3 of a millimeter (roughly the thickness of a single layer), perpendicular to the printer bed. Average density was in the range 1.20 – 1.22. Conclusions: 3D printing shows great promise for use in fabricating electron bolus. This work indicates that printed PLA can be a suitable material provided the increased attenuation is properly accounted for.« less

  4. Radiologic evaluation of vasculobiliary anatomy in the umbilical fissure.

    PubMed

    Ji, Gu-Wei; Zhu, Fei-Peng; Wang, Ke; Xia, Yong-Xiang; Jiao, Chen-Yu; Shao, Zi-Cheng; Li, Xiang-Cheng

    2017-06-15

    Preoperative evaluation of vasculobiliary anatomy in the umbilical fissure (U-point) is pivotal for perihilar cholangiocarcinoma (PCCA) applied to right-sided hepatectomy. The purpose of our study was to review the vasculobiliary anatomy in the U-point using three-dimensional (3D) reconstruction technique, to investigate the diagnostic ability of 2D scans to evaluate anatomic variations, and to discuss its surgical implications. A retrospective study of 159 patients with Bismuth type I, II, and IIIa PCCA, who received surgery at our institution from November 2012 to September 2016, was conducted. Anatomic structures were assessed using multidetector computed tomography (MDCT) by one hepatobiliary surgeon, whereas 3D images were reconstructed by an independent radiologist. Normal confluence pattern of left biliary system was defined as the left medial segmental bile duct (B4) joining the common trunk of segment II (B2) and segment III (B3) ducts, whereas aberrant confluence patterns were classified into 3 types: type I, triple confluence of B2, B3, and B4; type II, B2 draining into the common trunk of B3 and B4; type III, other patterns. Surgical anatomy of B4 was classified into the central, peripheral, and combined type according to its relation to the hepatic confluence. The lengths from the bile duct branch of Spiegel's lobe (B1l) to the orifice of B4 and the junction of B2 and B3 were measured on 3D images. The anatomy of left hepatic artery (LHA) was classified according to different origins and the spatial relationship related to the U-point. 3D reconstruction revealed that normal confluence pattern of left biliary system was observed in 71.1% (113/159) of all patients, and variant patterns were type I in 11.9% (19/159), type II in 12.6% (20/159), and type III in 4.4% (7/159). The length from B1l to the junction of B2 and B3 was 12.1 ± 3.1 mm in type I variation, which was significantly shorter than that in normal configuration (30.0 ± 6.8 mm, P < 0.001) but significantly longer than that in type II variation (9.6 ± 3.4 mm, P = 0.019). Surgical anatomy of B4: the peripheral type was most commonly seen (74.2%, 118/159), followed by central type (15.7%, 25/159) and combined type (10.1%, 16/159). The distance between the B1l and B4 was 8.4 ± 2.4 mm in central and combined type, which was significantly shorter than that in peripheral type (14.5 ± 4.1 mm, P < 0.001). A replaced or accessory LHA from the left gastric artery was present in 6 (3.8%) and 9 (5.7%) patients, respectively. LHA running along the left caudal position of U-point was present in 143 cases (89.9%), along the right cranial position of U-point in nine cases (5.7 %), and combined position in seven cases (4.4%). Interobserver agreement of two imaging modalities was almost perfect in biliary confluence pattern (kappa = 0.90; 95% confidence interval: 0.79-1.00), substantial in surgical anatomy of B4 (kappa = 0.74; 95% confidence interval: 0.62-0.86), and perfect in LHA (kappa = 1.00). Thoroughly understanding the imaging characters of surgical anatomy in the U-point may be benefit for preoperative evaluation of PCCA by successive review of 2D images alone, whereas 3D reconstruction technique allows detailed hepatic anatomy and individualized surgical planning for advanced cases. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Mapping Cortical Laminar Structure in the 3D BigBrain.

    PubMed

    Wagstyl, Konrad; Lepage, Claude; Bludau, Sebastian; Zilles, Karl; Fletcher, Paul C; Amunts, Katrin; Evans, Alan C

    2018-07-01

    Histological sections offer high spatial resolution to examine laminar architecture of the human cerebral cortex; however, they are restricted by being 2D, hence only regions with sufficiently optimal cutting planes can be analyzed. Conversely, noninvasive neuroimaging approaches are whole brain but have relatively low resolution. Consequently, correct 3D cross-cortical patterns of laminar architecture have never been mapped in histological sections. We developed an automated technique to identify and analyze laminar structure within the high-resolution 3D histological BigBrain. We extracted white matter and pial surfaces, from which we derived histologically verified surfaces at the layer I/II boundary and within layer IV. Layer IV depth was strongly predicted by cortical curvature but varied between areas. This fully automated 3D laminar analysis is an important requirement for bridging high-resolution 2D cytoarchitecture and in vivo 3D neuroimaging. It lays the foundation for in-depth, whole-brain analyses of cortical layering.

  6. Grayscale imbalance correction in real-time phase measuring profilometry

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Cao, Yiping; He, Dawu; Chen, Cheng

    2016-10-01

    Grayscale imbalance correction in real-time phase measuring profilometry (RPMP) is proposed. In the RPMP, the sufficient information is obtained to reconstruct the 3D shape of the measured object in one over twenty-four of a second. Only one color fringe pattern whose R, G and B channels are coded as three sinusoidal phase-shifting gratings with an equivalent shifting phase of 2π/3 is sent to a flash memory on a specialized digital light projector (SDLP). And then the SDLP projects the fringe patterns in R, G and B channels sequentially onto the measured object in one over seventy-two of a second and meanwhile a monochrome CCD camera captures the corresponding deformed patterns synchronously with the SDLP. Because the deformed patterns from three color channels are captured at different time, the color crosstalk is avoided completely. But due to the monochrome CCD camera's different spectral sensitivity to R, G and B tricolor, there will be grayscale imbalance among these deformed patterns captured at R, G and B channels respectively which may result in increasing measuring errors or even failing to reconstruct the 3D shape. So a new grayscale imbalance correction method based on least square method is developed. The experimental results verify the feasibility of the proposed method.

  7. Patterns of c-reactive protein RATIO response in severe community-acquired pneumonia: a cohort study.

    PubMed

    Coelho, Luís M; Salluh, Jorge I F; Soares, Márcio; Bozza, Fernando A; Verdeal, Juan Carlos R; Castro-Faria-Neto, Hugo C; Lapa e Silva, José Roberto; Bozza, Patrícia T; Póvoa, Pedro

    2012-12-12

    Community-acquired pneumonia (CAP) requiring intensive care unit (ICU) admission remains a severe medical condition, presenting ICU mortality rates reaching 30%. The aim of this study was to assess the value of different patterns of C-reactive protein (CRP)-ratio response to antibiotic therapy in patients with severe CAP requiring ICU admission as an early maker of outcome. In total, 191 patients with severe CAP were prospectively included and CRP was sampled every other day from D1 to D7 of antibiotic prescription. CRP-ratio was calculated in relation to D1 CRP concentration. Patients were classified according to an individual pattern of CRP-ratio response with the following criteria: fast response - when D5 CRP was less than or equal to 0.4 of D1 CRP concentration; slow response - when D5 CRP was > 0.4 and D7 less than or equal to 0.8 of D1 CRP concentration; nonresponse - when D7 CRP was > 0.8 of D1 CRP concentration. Comparison between ICU survivors and non-survivors was performed. CRP-ratio from D1 to D7 decreased faster in survivors than in non-survivors (p = 0.01). The ability of CRP-ratio by D5 to predict ICU outcome assessed by the area under the ROC curve was 0.73 (95% Confidence Interval, 0.64 - 0.82). By D5, a CRP concentration above 0.5 of the initial level was a marker of poor outcome (sensitivity 0.81, specificity 0.58, positive likelihood ratio 1.93, negative likelihood ratio 0.33). The time-dependent analysis of CRP-ratio of the three patterns (fast response n = 66; slow response n = 81; nonresponse n = 44) was significantly different between groups (p < 0.001). The ICU mortality rate was considerably different according to the patterns of CRP-ratio response: fast response 4.8%, slow response 17.3% and nonresponse 36.4% (p < 0.001). In severe CAP, sequential evaluation of CRP-ratio was useful in the early identification of patients with poor outcome. The evaluation of CRP-ratio pattern of response to antibiotics during the first week of therapy was useful in the recognition of the individual clinical evolution.

  8. Dynamics of spacing adjustment and recovery mechanisms of ABAC-type growth pattern in ternary eutectic systems

    NASA Astrophysics Data System (ADS)

    Mohagheghi, Samira; Şerefoğlu, Melis

    2017-07-01

    In directionally solidified 2D samples at ternary eutectic compositions, the stable three-phase pattern is established to be lamellar structure with ABAC stacking, where A, B, and C are crystalline phases. Beyond the stability limits of the ABAC pattern, the system uses various spacing adjustment mechanisms to revert to the stable regime. In this study, the dynamics of spacing adjustment and recovery mechanisms of isotropic ABAC patterns were investigated using three-phase In-Bi-Sn alloy. Unidirectional solidification experiments were performed on 23.0 and 62.7 μm-thick samples, where solidification front was monitored in real-time from both sides of the sample using a particular microscopy system. At these thicknesses, the pattern was found to be 2D during steady-state growth, i.e. both top and bottom microstructures were the same. However, during spacing adjustment and recovery mechanisms, 3D features were observed. Dynamics of two major instabilities, lamellae branching and elimination, were quantified. After these instabilities, two key ABAC pattern recovery mechanisms, namely, phase invasion and phase exchange processes, were identified and analyzed. After elimination, ABAC pattern is recovered by either continuous eliminations of all phases or by phase exchange. After branching, the recovery mechanisms are established to be phase invasion and phase exchange.

  9. Three dimensional magnetic fields in extra high speed modified Lundell alternators computed by a combined vector-scalar magnetic potential finite element method

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A.; Wang, R.; Secunde, R.

    1992-01-01

    A 3D finite element (FE) approach was developed and implemented for computation of global magnetic fields in a 14.3 kVA modified Lundell alternator. The essence of the new method is the combined use of magnetic vector and scalar potential formulations in 3D FEs. This approach makes it practical, using state of the art supercomputer resources, to globally analyze magnetic fields and operating performances of rotating machines which have truly 3D magnetic flux patterns. The 3D FE-computed fields and machine inductances as well as various machine performance simulations of the 14.3 kVA machine are presented in this paper and its two companion papers.

  10. Eating patterns and type 2 diabetes risk in older women: breakfast consumption and eating frequency123

    PubMed Central

    Mekary, Rania A; Giovannucci, Edward; Cahill, Leah; Willett, Walter C; van Dam, Rob M

    2013-01-01

    Background: Little is known about the association between eating patterns and type 2 diabetes (T2D) risk in women. Objective: The objective was to examine prospectively associations between regular breakfast consumption, eating frequency, and T2D risk in women. Design: Eating pattern was assessed in 2002 in a cohort of 46,289 US women in the Nurses’ Health Study who were free of T2D, cardiovascular disease, or cancer and were followed for 6 y. We used Cox proportional hazards analysis to evaluate associations with incident T2D. Results: We documented 1560 T2D cases during follow-up. After adjustment for known risk factors for T2D—except for body mass index (BMI), a potential mediator—women who consumed breakfast irregularly (0–6 times/wk) were at higher risk of T2D than were women who consumed breakfast daily (RR: 1.28; 95% CI: 1.14, 1.44). This association was moderately attenuated after adjustment for BMI (RR: 1.20; 95% CI: 1.07, 1.35). In comparison with women who ate 3 times/d, the RRs were 1.09 (0.84, 1.41) for women who ate 1–2 times/d, 1.13 (1.00, 1.27) for women who ate 4–5 times/d, and 0.99 (0.81, 1.21) for women who ate ≥6 times/d. Among irregular breakfast consumers, women with a higher eating frequency (≥4 times/d) had a significantly greater T2D risk (RR: 1.47; 95% CI: 1.23, 1.75) than did women who consumed breakfast daily and ate 1–3 times/d. Adjustment for BMI attenuated this association (RR: 1.24; 95% CI: 1.04, 1.48). Conclusion: Irregular breakfast consumption was associated with a higher T2D risk in women, which was partially but not entirely mediated by BMI. PMID:23761483

  11. Application of two- and three-dimensional computational fluid dynamics models to complex ecological stream flows

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Diplas, Panayiotis

    2008-01-01

    SummaryComplex flow patterns generated by irregular channel topography, such as boulders, submerged large woody debris, riprap and spur dikes, provide unique habitat for many aquatic organisms. Numerical modeling of the flow structures surrounding these obstructions is challenging, yet it represents an important tool for aquatic habitat assessment. In this study, the ability of two- (2-D) and three-dimensional (3-D) computational fluid dynamics models to reproduce these localized complex flow features is examined. The 3-D model is validated with laboratory data obtained from the literature for the case of a flow around a hemisphere under emergent and submerged conditions. The performance of the 2-D and 3-D models is then evaluated by comparing the numerical results with field measurements of flow around several boulders located at a reach of the Smith River, a regulated mountainous stream, obtained at base and peak flows. Close agreement between measured values and the velocity profiles predicted by the two models is obtained outside the wakes behind the hemisphere and boulders. However, the results suggest that in the vicinity of these obstructions the 3-D model is better suited for reproducing the circulation flow behavior at both low and high discharges. Application of the 2-D and 3-D models to meso-scale stream flows of ecological significance is furthermore demonstrated by using a recently developed spatial hydraulic metric to quantify flow complexity surrounding a number of brown trout spawning sites. It is concluded that the 3-D model can provide a much more accurate description of the heterogeneous velocity patterns favored by many aquatic species over a broad range of flows, especially under deep flow conditions when the various obstructions are submerged. Issues pertaining to selection of appropriate models for a variety of flow regimes and potential implication of the 3-D model on the development of better habitat suitability criteria are discussed. The research suggests ways of improving the modeling practices for ecosystem management studies.

  12. Printed Antenna Array with Flat-Top Radiation Pattern

    NASA Astrophysics Data System (ADS)

    Milijić, Marija R.; Nešić, Aleksandar D.; Milovanović, Bratislav D.; Nešić, Dušan A.

    2018-04-01

    A printed antenna array consisting of 10 wideband symmetrical pentagonal dipoles is presented. The feed network of impedance transformers is employed to provide appropriate amplitude and phase distribution necessary to obtain flat top beam pattern. The measured results demonstrate excellent radiation characteristics including 38° flat gain region with maximum ripple of 3.5 dB at the centre frequency. Furthermore, the proposed antenna that is placed in corner reflector with angle of 60° has good gain (17 dBi) and side lobe suppression (18.9 dB). Although it is designed at the centre frequency fc=12 GHz, it was shown to be capable of shaping a good flat top radiation pattern within a fractional bandwidth at least 6 % of centre frequency. Also, proposed antenna features cheap, simple and easy fabrication that makes it suitable for mass production.

  13. Nanostructured superhydrophobic substrates trigger the development of 3D neuronal networks.

    PubMed

    Limongi, Tania; Cesca, Fabrizia; Gentile, Francesco; Marotta, Roberto; Ruffilli, Roberta; Barberis, Andrea; Dal Maschio, Marco; Petrini, Enrica Maria; Santoriello, Stefania; Benfenati, Fabio; Di Fabrizio, Enzo

    2013-02-11

    The generation of 3D networks of primary neurons is a big challenge in neuroscience. Here, a novel method is presented for a 3D neuronal culture on superhydrophobic (SH) substrates. How nano-patterned SH devices stimulate neurons to build 3D networks is investigated. Scanning electron microscopy and confocal imaging show that soon after plating neurites adhere to the nanopatterned pillar sidewalls and they are subsequently pulled between pillars in a suspended position. These neurons display an enhanced survival rate compared to standard cultures and develop mature networks with physiological excitability. These findings underline the importance of using nanostructured SH surfaces for directing 3D neuronal growth, as well as for the design of biomaterials for neuronal regeneration. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device.

    PubMed

    Shin, Seungwoo; Kim, Doyeon; Kim, Kyoohyun; Park, YongKeun

    2018-06-15

    We present a multimodal approach for measuring the three-dimensional (3D) refractive index (RI) and fluorescence distributions of live cells by combining optical diffraction tomography (ODT) and 3D structured illumination microscopy (SIM). A digital micromirror device is utilized to generate structured illumination patterns for both ODT and SIM, which enables fast and stable measurements. To verify its feasibility and applicability, the proposed method is used to measure the 3D RI distribution and 3D fluorescence image of various samples, including a cluster of fluorescent beads, and the time-lapse 3D RI dynamics of fluorescent beads inside a HeLa cell, from which the trajectory of the beads in the HeLa cell is analyzed using spatiotemporal correlations.

  15. Dynamic characteristics of a pump-turbine during hydraulic transients of a model pumped-storage system: 3D CFD simulation

    NASA Astrophysics Data System (ADS)

    Zhang, X. X.; Cheng, Y. G.; Xia, L. S.; Yang, J. D.

    2014-03-01

    The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q11 and M11 in different moving directions of the dynamic trajectories give different n11. The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q11 and M11 in different moving directions of the dynamic trajectories.

  16. Application of multi-resolution 3D techniques in crime scene documentation with bloodstain pattern analysis.

    PubMed

    Hołowko, Elwira; Januszkiewicz, Kamil; Bolewicki, Paweł; Sitnik, Robert; Michoński, Jakub

    2016-10-01

    In forensic documentation with bloodstain pattern analysis (BPA) it is highly desirable to obtain non-invasively overall documentation of a crime scene, but also register in high resolution single evidence objects, like bloodstains. In this study, we propose a hierarchical 3D scanning platform designed according to the top-down approach known from the traditional forensic photography. The overall 3D model of a scene is obtained via integration of laser scans registered from different positions. Some parts of a scene being particularly interesting are documented using midrange scanner, and the smallest details are added in the highest resolution as close-up scans. The scanning devices are controlled using developed software equipped with advanced algorithms for point cloud processing. To verify the feasibility and effectiveness of multi-resolution 3D scanning in crime scene documentation, our platform was applied to document a murder scene simulated by the BPA experts from the Central Forensic Laboratory of the Police R&D, Warsaw, Poland. Applying the 3D scanning platform proved beneficial in the documentation of a crime scene combined with BPA. The multi-resolution 3D model enables virtual exploration of a scene in a three-dimensional environment, distance measurement, and gives a more realistic preservation of the evidences together with their surroundings. Moreover, high-resolution close-up scans aligned in a 3D model can be used to analyze bloodstains revealed at the crime scene. The result of BPA such as trajectories, and the area of origin are visualized and analyzed in an accurate model of a scene. At this stage, a simplified approach considering the trajectory of blood drop as a straight line is applied. Although the 3D scanning platform offers a new quality of crime scene documentation with BPA, some of the limitations of the technique are also mentioned. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Research on complex 3D tree modeling based on L-system

    NASA Astrophysics Data System (ADS)

    Gang, Chen; Bin, Chen; Yuming, Liu; Hui, Li

    2018-03-01

    L-system as a fractal iterative system could simulate complex geometric patterns. Based on the field observation data of trees and knowledge of forestry experts, this paper extracted modeling constraint rules and obtained an L-system rules set. Using the self-developed L-system modeling software the L-system rule set was parsed to generate complex tree 3d models.The results showed that the geometrical modeling method based on l-system could be used to describe the morphological structure of complex trees and generate 3D tree models.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, X.; Patel, D.J.

    The authors report on two-dimensional proton NMR studies of echinomycin complexes with the self-complementary d(A1-C2-G3-Tr) and d(T1-C2-G3-A4) duplexes in aqueous solution. The exchangeable and nonexchangeable antibiotic and nucleic acid protons in the 1 echinomycin per tetranucleotide duplex complexes have been assigned from analyses of scalar coupling and distance connectivities in two-dimensional data sets records in H/sub 2/O and D/sub 2/O solution. An analysis of the intermolecular NOE patterns for both complexes combined with large upfield imino proton and large downfield phosphorus complexation chemical shift changes demonstrates that the two quinoxaline chromophores of echinomycin bisintercalate into the minor groove surrounding themore » dC-dG step of each tetranucleotide duplex. Further, the quinoxaline rings selectively stack between A1 and C2 bases in the d(ACGT) complex and between T1 and C2 bases in the d(TCGA) complex. The intermolecular NOE patterns and the base and sugar proton chemical shifts for residues C2 and G3 are virtually identical for the d(ACGT) and d(TCGA) complexes. A large set of intermolecular contacts established from nuclear Overhauser effects (NOEs) between antibiotic and nucleic acid protons in the echinomycin-tetranucleotide complexes in solution are consistent with corresponding contacts reported for echinomycin-oligonucleotide complexes in the crystalline state. The authors demonstrate that the G x G base pairs adopt Watson-Crick pairing in both d(ACGT) and d(TCGA) complexes in solution. By contrast, the A1 x T4 base pairs adopt Hoogsteen pairing for the echinomycin-d(A1-C2-G3-Tr) complex while the T1 x A4 base pairs adopt Watson-Crick pairing for the echinomycin-d(T1-C2-G3-A4) complex in aqueous solution. These results emphasize the role of sequence in discriminating between Watson-Crick and Hoogsteen pairs at base pairs flanking the echinomycin bisintercalation site in solution.« less

  19. Coupling Graphene Sheets with Iron Oxide Nanoparticles for Energy Storage and Microelectronics

    DTIC Science & Technology

    2015-08-13

    of highly oriented pyrolytic graphite ( HOPG ) flake. Two electrode system containing platinum as counter electrode and HOPG as working electrode is... XRD ) patterns of the HOPG , exfoliated graphene, PyDop1-ɤ-Fe2O3 and PyDop1-ɤ-Fe2O3-graphene are given in Figure 1e. HOPG show a very sharp diffraction...atoms arranged in hexagonal pattern in honey comb crystal lattice, (c) TEM (d) HRTEM image of graphene- PyDop1-MNP hybrid, (e) XRD pattern of the HOPG

  20. Three-dimensional integrated circuits for lab-on-chip dielectrophoresis of nanometer scale particles

    NASA Astrophysics Data System (ADS)

    Dickerson, Samuel J.; Noyola, Arnaldo J.; Levitan, Steven P.; Chiarulli, Donald M.

    2007-01-01

    In this paper, we present a mixed-technology micro-system for electronically manipulating and optically detecting virusscale particles in fluids that is designed using 3D integrated circuit technology. During the 3D fabrication process, the top-most chip tier is assembled upside down and the substrate material is removed. This places the polysilicon layer, which is used to create geometries with the process' minimum feature size, in close proximity to a fluid channel etched into the top of the stack. By taking advantage of these processing features inherent to "3D chip-stacking" technology, we create electrode arrays that have a gap spacing of 270 nm. Using 3D CMOS technology also provides the ability to densely integrate analog and digital control circuitry for the electrodes by using the additional levels of the chip stack. We show simulations of the system with a physical model of a Kaposi's sarcoma-associated herpes virus, which has a radius of approximately 125 nm, being dielectrophoretically arranged into striped patterns. We also discuss how these striped patterns of trapped nanometer scale particles create an effective diffraction grating which can then be sensed with macro-scale optical techniques.

  1. Development of a metrological atomic force microscope with a tip-tilting mechanism for 3D nanometrology

    NASA Astrophysics Data System (ADS)

    Kizu, Ryosuke; Misumi, Ichiko; Hirai, Akiko; Kinoshita, Kazuto; Gonda, Satoshi

    2018-07-01

    A metrological atomic force microscope with a tip-tilting mechanism (tilting-mAFM) has been developed to expand the capabilities of 3D nanometrology, particularly for high-resolution topography measurements at the surfaces of vertical sidewalls and for traceable measurements of nanodevice linewidth. In the tilting-mAFM, the probe tip is tilted from vertical to 16° at maximum such that the probe tip can touch and trace the vertical sidewall of a nanometer-scale structure; the probe of a conventional atomic force microscope cannot reach the vertical surface because of its finite cone angle. Probe displacement is monitored in three axes by using high-resolution laser interferometry, which is traceable to the SI unit of length. A central-symmetric 3D scanner with a parallel spring structure allows probe scanning with extremely low interaxial crosstalk. A unique technique for scanning vertical sidewalls was also developed and applied. The experimental results indicated high repeatability in the scanned profiles and sidewall angle measurements. Moreover, the 3D measurement of a line pattern was demonstrated, and the data from both sidewalls were successfully stitched together with subnanometer accuracy. Finally, the critical dimension of the line pattern was obtained.

  2. Terrestrial laser scanning point clouds time series for the monitoring of slope movements: displacement measurement using image correlation and 3D feature tracking

    NASA Astrophysics Data System (ADS)

    Bornemann, Pierrick; Jean-Philippe, Malet; André, Stumpf; Anne, Puissant; Julien, Travelletti

    2016-04-01

    Dense multi-temporal point clouds acquired with terrestrial laser scanning (TLS) have proved useful for the study of structure and kinematics of slope movements. Most of the existing deformation analysis methods rely on the use of interpolated data. Approaches that use multiscale image correlation provide a precise and robust estimation of the observed movements; however, for non-rigid motion patterns, these methods tend to underestimate all the components of the movement. Further, for rugged surface topography, interpolated data introduce a bias and a loss of information in some local places where the point cloud information is not sufficiently dense. Those limits can be overcome by using deformation analysis exploiting directly the original 3D point clouds assuming some hypotheses on the deformation (e.g. the classic ICP algorithm requires an initial guess by the user of the expected displacement patterns). The objective of this work is therefore to propose a deformation analysis method applied to a series of 20 3D point clouds covering the period October 2007 - October 2015 at the Super-Sauze landslide (South East French Alps). The dense point clouds have been acquired with a terrestrial long-range Optech ILRIS-3D laser scanning device from the same base station. The time series are analyzed using two approaches: 1) a method of correlation of gradient images, and 2) a method of feature tracking in the raw 3D point clouds. The estimated surface displacements are then compared with GNSS surveys on reference targets. Preliminary results tend to show that the image correlation method provides a good estimation of the displacement fields at first order, but shows limitations such as the inability to track some deformation patterns, and the use of a perspective projection that does not maintain original angles and distances in the correlated images. Results obtained with 3D point clouds comparison algorithms (C2C, ICP, M3C2) bring additional information on the displacement fields. Displacement fields derived from both approaches are then combined and provide a better understanding of the landslide kinematics.

  3. Temporal pattern changes in duodenal protein tyrosine nitration events in response to Eimeria acervulina infection in chickens.

    PubMed

    Elsasser, Ted H; Miska, Kate; Kahl, Stanislaw; Fetterer, Raymond H; Martínez Ramirez, Alfredo

    2018-06-04

    Intracellular generation of nitric oxide (NO) and superoxide anion (SOA) can result in the formation of 3'-nitrotyrosine proteins (NTp). Nitrated proteins usually are associated with significant perturbation in protein function, apoptosis, autophagy, and cell death. We undertook the present study to establish the temporal dynamics of NTp generation in cytokeratin-18-positive epithelial cells (ETCs) of broiler chickens in response to infection with Eimeria acervulina. Duodenal tissue was harvested from noninfected (NOI) and infected (INF) broilers on days (d) 1, 3, 6, 7, and 10 postinfection (PI) and fixed, embedded, and sectioned for quantitative image analysis, immunohistochemistry with antibodies specific to NTp and the SOA-generating enzyme xanthine oxidase (XO). The pixel density characteristics for NTp and XO representative of ETCs demonstrated that NTp and XO increased in intestinal villi as early as d1 PI (P < 0.05 vs. NOI). Progressive increases in NTp were evident in ETCs through d6 PI. For XO, increases in cell content increased only through d3. On d6 and d7 PI, high levels of NTp were present in immune infiltrating cells (IIC) where no XO was detected. The increases in ETC NTp occurred in a defined pattern, significant by villus-to-crypt location for day of infection, initiating in the distal villus and progressing down into the crypts. Two NTp patterns were observed for ETCs: a high level associated with ETCs harboring parasites and a low-level increase in ETCs not containing Eimeria but in proximity to such. The data suggest that NTp and XO responses may mediate some of the processes through which ETCs respond to Eimeria to limit the extent of infection by this pathogen.

  4. Algorithm of pulmonary emphysema extraction using thoracic 3D CT images

    NASA Astrophysics Data System (ADS)

    Saita, Shinsuke; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Ohmatsu, Hironobu; Tominaga, Keigo; Eguchi, Kenji; Moriyama, Noriyuki

    2007-03-01

    Recently, due to aging and smoking, emphysema patients are increasing. The restoration of alveolus which was destroyed by emphysema is not possible, thus early detection of emphysema is desired. We describe a quantitative algorithm for extracting emphysematous lesions and quantitatively evaluate their distribution patterns using low dose thoracic 3-D CT images. The algorithm identified lung anatomies, and extracted low attenuation area (LAA) as emphysematous lesion candidates. Applying the algorithm to thoracic 3-D CT images and then by follow-up 3-D CT images, we demonstrate its potential effectiveness to assist radiologists and physicians to quantitatively evaluate the emphysematous lesions distribution and their evolution in time interval changes.

  5. Algorithm of pulmonary emphysema extraction using low dose thoracic 3D CT images

    NASA Astrophysics Data System (ADS)

    Saita, S.; Kubo, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Omatsu, H.; Tominaga, K.; Eguchi, K.; Moriyama, N.

    2006-03-01

    Recently, due to aging and smoking, emphysema patients are increasing. The restoration of alveolus which was destroyed by emphysema is not possible, thus early detection of emphysema is desired. We describe a quantitative algorithm for extracting emphysematous lesions and quantitatively evaluate their distribution patterns using low dose thoracic 3-D CT images. The algorithm identified lung anatomies, and extracted low attenuation area (LAA) as emphysematous lesion candidates. Applying the algorithm to 100 thoracic 3-D CT images and then by follow-up 3-D CT images, we demonstrate its potential effectiveness to assist radiologists and physicians to quantitatively evaluate the emphysematous lesions distribution and their evolution in time interval changes.

  6. School Dropouts: Patterns and Policies.

    ERIC Educational Resources Information Center

    Natriello, Gary, Ed.

    This book collects articles that examine the patterns of dropping out evident among American youth, and the policies developed and implemented to reduce the incidence of dropping out. The following chapters (and their authors) are included: (1) Introduction (G. Natriello); (2) Can We Help Dropouts? Thinking about the Undoable (D. Mann); (3) Large…

  7. Germanium growth on electron beam lithography patterned Si3N4/Si(001) substrate using molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sarkar, Subhendu Sinha; Katiyar, Ajit K.; Sarkar, Arijit; Dhar, Achintya; Rudra, Arun; Khatri, Ravinder K.; Ray, Samit Kumar

    2018-04-01

    It is important to investigate the growth dynamics of Ge adatoms under different surface stress regimes of the patterned dielectric to control the selective growth of self-assembled Ge nanostructures on silicon. In the present work, we have studied the growth of Ge by molecular beam epitaxy on nanometer scale patterned Si3N4/Si(001) substrates generated using electron beam lithography. The pitch of the patterns has been varied to investigate its effect on the growth of Ge in comparison to un-patterned Si3N4. For the patterned Si3N4 film, Ge did not desorbed completely from the Si3N4 film and hence no site selective growth pattern is observed. Instead, depending upon the pitch, Ge growth has occurred in different growth modes around the openings in the Si3N4. For the un-patterned substrate, the morphology exhibits the occurrence of uniform 3D clustering of Ge adatoms on Si3N4 film. This variation in the growth modes of Ge is attributed to the variation of residual stress in the Si3N4 film for different pitch of holes, which has been confirmed theoretically through Comsol Multiphysics simulation. The variation in stress for different pitches resulted in modulation of surface energy of the Si3N4 film leading to the different growth modes of Ge.

  8. Neurite outgrowth at the interface of 2D and 3D growth environments

    NASA Astrophysics Data System (ADS)

    Kofron, Celinda M.; Fong, Vivian J.; Hoffman-Kim, Diane

    2009-02-01

    Growing neurons navigate complex environments, but in vitro systems for studying neuronal growth typically limit the cues to flat surfaces or a single type of cue, thereby limiting the resulting growth. Here we examined the growth of neurons presented with two-dimensional (2D) substrate-bound cues when these cues were presented in conjunction with a more complex three-dimensional (3D) architecture. Dorsal root ganglia (DRG) explants were cultured at the interface between a collagen I matrix and a glass coverslip. Laminin (LN) or chondroitin sulfate proteoglycans (CSPG) were uniformly coated on the surface of the glass coverslip or patterned in 50 µm tracks by microcontact printing. Quantitative analysis of neurite outgrowth with a novel grid system at multiple depths in the gel revealed several interesting trends. Most of the neurites extended at the surface of the gel when LN was presented whereas more neurites extended into the gel when CSPG was presented. Patterning of cues did not affect neurite density or depth of growth. However, neurite outgrowth near the surface of the gel aligned with LN patterns, and these extensions were significantly longer than neurites extended in other cultures. In interface cultures, DRG growth patterns varied with the type of cue where neurite density was higher in cultures presenting LN than in cultures presenting CSPG. These results represent an important step toward understanding how neurons integrate local structural and chemical cues to make net growth decisions.

  9. Microdroplet engineering for microbioassay and synthesis of functional structured porous particles

    NASA Astrophysics Data System (ADS)

    Rastogi, Vinayak

    We present methods where sessile or suspended microdroplets are used to develop applications in the areas of bio-detection, photonics, drug delivery and catalysis. The first technique we report is for droplet-on-a-chip microbioassays. The assays are performed in droplet micro-containers suspended on the surface of high density fluorinated oil and are based on the process of agglutination of antibody-coated particles. Droplet microbioassays for the detection of Ricin were designed and their performance was compared to the standard handheld field assays. These droplet microbioassays were found to be 10 times more sensitive in terms of analyte concentration while requiring 100 times smaller volumes. We developed a model for the agglutination kinetics and mass transfer processes inside the droplets, which correlates well with the experimental data. The second technique that we developed uses droplet templates dispensed on superhydrophobic substrates for the fabrication of a new class of three dimensional hierarchical microsphere assemblies. The technique is termed Dry Self Assembly (DSA) since the fabricated supraparticles are easily detached from the substrate and collected unlike methods where assembled structures are suspended in liquid environment. The sessile droplet templates cast the final supraparticles into light diffracting near-spherical assemblies. When illuminated with a collimated beam of light, the structures exhibit unique ring shaped color diffraction patterns on their surface. The experimental observations for the angular position and wavelength corresponding to a spot on the rings are interpreted using a surface diffraction grating model. We also tailored the DSA method to produce both shape-anisotropic and composition-anisotropic supraparticles. The shape anisotropy was demonstrated by fabricating "doughnut" assemblies using droplets of both pure silica suspensions and silica mixed with gold nanoparticles. The composition anisotropy was realized by redistribution of magnetic nanoparticles in droplets containing mixtures of latex and magnetic particle suspensions. The redistribution is dictated by the pattern of magnetic field to which the droplet templates are introduced during drying. We developed new types of patchy magnetic particles that can find application in targeted drug delivery. The latex matrix can be infused with a drug and the magnetic patch(es) facilitate remote manipulation of the carrier. A new microfluidic chip was developed for the in-vitro characterization of drug/material release rate from the porous latex network in a live environment. The release rate of dye (drug simulant) from the porous supports is quantified and interpreted on the basis of diffusion/dissolution based mass transfer models. The technique has the potential to perform simultaneous screening of multiple samples and replace the conventional bulk laboratory setup needed for determining the release profiles in drug development process.

  10. Complex genomic rearrangement in CCS-LacZ transgenic mice.

    PubMed

    Stroud, Dina Myers; Darrow, Bruce J; Kim, Sang Do; Zhang, Jie; Jongbloed, Monique R M; Rentschler, Stacey; Moskowitz, Ivan P G; Seidman, Jonathan; Fishman, Glenn I

    2007-02-01

    The cardiac conduction system (CCS)-lacZ insertional mouse mutant strain genetically labels the developing and mature CCS. This pattern of expression is presumed to reflect the site of transgene integration rather than regulatory elements within the transgene proper. We sought to characterize the genomic structure of the integration locus and identify nearby gene(s) that might potentially confer the observed CCS-specific transcription. We found rearrangement of chromosome 7 between regions D1 and E1 with altered transcription of multiple genes in the D1 region. Several lines of evidence suggested that regulatory elements from at least one gene, Slco3A1, influenced CCS-restricted reporter gene expression. In embryonic hearts, Slco3A1 was expressed in a spatial pattern similar to the CCS-lacZ transgene and was similarly neuregulin-responsive. At later stages, however, expression patterns of the transgene and Slco3A1 diverged, suggesting that the Slco3A1 locus may be necessary, but not sufficient to confer CCS-specific transgene expression in the CCS-lacZ line. (c) 2007 Wiley-Liss, Inc.

  11. Second-harmonic patterned polarization-analyzed reflection confocal microscope

    NASA Astrophysics Data System (ADS)

    Okoro, Chukwuemeka; Toussaint, Kimani C.

    2017-08-01

    We introduce the second-harmonic patterned polarization-analyzed reflection confocal (SPPARC) microscope-a multimodal imaging platform that integrates Mueller matrix polarimetry with reflection confocal and second-harmonic generation (SHG) microscopy. SPPARC microscopy provides label-free three-dimensional (3-D), SHG-patterned confocal images that lend themselves to spatially dependent, linear polarimetric analysis for extraction of rich polarization information based on the Mueller calculus. To demonstrate its capabilities, we use SPPARC microscopy to analyze both porcine tendon and ligament samples and find differences in both circular degree-of-polarization and depolarization parameters. Moreover, using the collagen-generated SHG signal as an endogenous counterstain, we show that the technique can be used to provide 3-D polarimetric information of the surrounding extrafibrillar matrix plus cells or EFMC region. The unique characteristics of SPPARC microscopy holds strong potential for it to more accurately and quantitatively describe microstructural changes in collagen-rich samples in three spatial dimensions.

  12. Automated deep-phenotyping of the vertebrate brain

    PubMed Central

    Allalou, Amin; Wu, Yuelong; Ghannad-Rezaie, Mostafa; Eimon, Peter M; Yanik, Mehmet Fatih

    2017-01-01

    Here, we describe an automated platform suitable for large-scale deep-phenotyping of zebrafish mutant lines, which uses optical projection tomography to rapidly image brain-specific gene expression patterns in 3D at cellular resolution. Registration algorithms and correlation analysis are then used to compare 3D expression patterns, to automatically detect all statistically significant alterations in mutants, and to map them onto a brain atlas. Automated deep-phenotyping of a mutation in the master transcriptional regulator fezf2 not only detects all known phenotypes but also uncovers important novel neural deficits that were overlooked in previous studies. In the telencephalon, we show for the first time that fezf2 mutant zebrafish have significant patterning deficits, particularly in glutamatergic populations. Our findings reveal unexpected parallels between fezf2 function in zebrafish and mice, where mutations cause deficits in glutamatergic neurons of the telencephalon-derived neocortex. DOI: http://dx.doi.org/10.7554/eLife.23379.001 PMID:28406399

  13. Endoscopic patterns of gastric mucosa and its clinicopathological significance

    PubMed Central

    Yang, Jian-Min; Chen, Lei; Fan, Yu-Lin; Li, Xiang-Hong; Yu, Xin; Fang, Dian-Chun

    2003-01-01

    AIM: To explore the correlation of magnifying endoscopic patterns and histopathology, Helicobacter pylori (H. pylori) infection of the gastric mucosa. METHODS: Gastric mucosal patterns in 140 patients with chronic gastritis were studied using Olympus GIF-Q240Z magnifying endoscope. Histopathological examination, rapid urease test and Warrthin-Starry staining were taken with biopsy samples from the magnified sites of stomach. The magnifying endoscopic patterns were compared with histopathological results and H. pylori detection. RESULTS: The pit patterns of gastric mucosa were classified as types A (round spot), B (short rod), C (branched), D (reticular) and E (villus). The detection rate of chronic atrophic gastritis (CAG) by magnifying endoscopy was 94.3% (33/35), which was significantly higher than that by routine endoscopy (22.9%, 8/35) (P < 0.01). The pit patterns of 31 cases of intestinal metaplasia (IM) appeared as type E in 18 cases (58.1%), type D in 8 cases (25.8%) and type C in 5 cases (16.1%). Fourteen out of 18 patients (77.8%) with complete type (type I) of IM appeared as type E of pit patterns, whereas only 4 of 13 (30.8%) patients with incomplete type (types II and III) of IM appeared as type E (P < 0.05). Collecting venules in the anterior of lower part of gastric corpus were subgrouped into types R (regular), I (irregular) and D (disappeared). H. pylori infection was found in 12.2% (9/74), 60% (9/15) and 84.3% (43/51) cases in these types respectively. H. pylori infection rate in type R was significantly lower than that in other two types (P < 0.01). CONCLUSION: Magnifying endoscopy may have an obvious value in diagnosing chronic atrophic gastritis, intestinal metaplasia and H. pylori infection. PMID:14606095

  14. The Genotypic Population Structure of Mycobacterium tuberculosis Complex from Moroccan Patients Reveals a Predominance of Euro-American Lineages

    PubMed Central

    Lahlou, Ouafae; Millet, Julie; Chaoui, Imane; Sabouni, Radia; Filali-Maltouf, Abdelkarim; Akrim, Mohammed; El Mzibri, Mohammed; Rastogi, Nalin; El Aouad, Rajae

    2012-01-01

    Background Tuberculosis (TB) remains a major health problem in Morocco. Characterization of circulating Mycobacterium tuberculosis genotypic lineages, important to understand the dynamic of the disease, was hereby addressed for the first time at a national level. Methodology/Principal Findings Spoligotyping was performed on a panel of 592 M. tuberculosis complex strains covering a 2-year period (2004–2006). It identified 129 patterns: 105 (n = 568 strains) corresponded to a SIT number in the SITVIT2 database, while 24 patterns were labeled as orphan. A total of 523 (88.3%) strains were clustered vs. 69 or 11.7% unclustered. Classification of strains within 3 large phylogenetical groups was as follows: group 1– ancestral/TbD1+/PGG1 (EAI, Bovis, Africanum), group 2– modern/TbD1−/PGG1 group (Beijing, CAS), group 3– evolutionary recent/TbD1−/PGG2/3 (Haarlem, X, S, T, LAM; alternatively designated as the Euro-American lineage). As opposed to group 3 strains (namely LAM, Haarlem, and T) that predominated (86.5% of all isolates), 6 strains belonged to group 2 (Beijing n = 5, CAS n = 1), and 3 strains (BOV_1 n = 2, BOV_4-CAPRAE) belonged to ancestral group 1 (EAI and AFRI lineage strains were absent). 12-loci MIRU-VNTR typing of the Casablanca subgroup (n = 114 strains) identified 71 patterns: 48 MITs and 23 orphan patterns; it allowed to reduce the clustering rate from 72.8% to 29.8% and the recent transmission rate from 64% to 20.2%. Conclusion The M. tuberculosis population structure in Morocco is highly homogeneous, and is characterized by the predominance of the Euro-American lineages, namely LAM, Haarlem, and T, which belong to the “evolutionary recent” TbD1−/PGG2/3 phylogenetic group. The combination of spoligotyping and MIRUs decreased the clustering rate significantly, and should now be systematically applied in larger studies. The methods used in this study appear well suited to monitor the M. tuberculosis population structure for an enhanced TB management program in Morocco. PMID:23077552

  15. SABRE: ligand/structure-based virtual screening approach using consensus molecular-shape pattern recognition.

    PubMed

    Wei, Ning-Ning; Hamza, Adel

    2014-01-27

    We present an efficient and rational ligand/structure shape-based virtual screening approach combining our previous ligand shape-based similarity SABRE (shape-approach-based routines enhanced) and the 3D shape of the receptor binding site. Our approach exploits the pharmacological preferences of a number of known active ligands to take advantage of the structural diversities and chemical similarities, using a linear combination of weighted molecular shape density. Furthermore, the algorithm generates a consensus molecular-shape pattern recognition that is used to filter and place the candidate structure into the binding pocket. The descriptor pool used to construct the consensus molecular-shape pattern consists of four dimensional (4D) fingerprints generated from the distribution of conformer states available to a molecule and the 3D shapes of a set of active ligands computed using SABRE software. The virtual screening efficiency of SABRE was validated using the Database of Useful Decoys (DUD) and the filtered version (WOMBAT) of 10 DUD targets. The ligand/structure shape-based similarity SABRE algorithm outperforms several other widely used virtual screening methods which uses the data fusion of multiscreening tools (2D and 3D fingerprints) and demonstrates a superior early retrieval rate of active compounds (EF(0.1%) = 69.0% and EF(1%) = 98.7%) from a large size of ligand database (∼95,000 structures). Therefore, our developed similarity approach can be of particular use for identifying active compounds that are similar to reference molecules and predicting activity against other targets (chemogenomics). An academic license of the SABRE program is available on request.

  16. Window-based method for approximating the Hausdorff in three-dimensional range imagery

    DOEpatents

    Koch, Mark W [Albuquerque, NM

    2009-06-02

    One approach to pattern recognition is to use a template from a database of objects and match it to a probe image containing the unknown. Accordingly, the Hausdorff distance can be used to measure the similarity of two sets of points. In particular, the Hausdorff can measure the goodness of a match in the presence of occlusion, clutter, and noise. However, existing 3D algorithms for calculating the Hausdorff are computationally intensive, making them impractical for pattern recognition that requires scanning of large databases. The present invention is directed to a new method that can efficiently, in time and memory, compute the Hausdorff for 3D range imagery. The method uses a window-based approach.

  17. Study on dielectric and piezoelectric properties of 0.7 Pb(Mg1/3Nb2/3)O3-0.3 PbTiO3 single crystal with nano-patterned composite electrode

    PubMed Central

    Chang, Wei-Yi; Huang, Wenbin; Bagal, Abhijeet; Chang, Chih-Hao; Tian, Jian; Han, Pengdi; Jiang, Xiaoning

    2013-01-01

    Effect of nano-patterned composite electrode and backswitching poling technique on dielectric and piezoelectric properties of 0.7 Pb(Mg1/3Nb2/3)O3-0.3 PbTiO3 was studied in this paper. Composite electrode consists of Mn nano-patterns with pitch size of 200 nm, and a blanket layer of Ti/Au was fabricated using a nanolithography based lift-off process, heat treatment, and metal film sputtering. Composite electrode and backswitching poling resulted in 27% increase of d33 and 25% increase of dielectric constant, and we believe that this is attributed to regularly defined nano-domains and irreversible rhombohedral to monoclinic phase transition in crystal. The results indicate that nano-patterned composite electrode and backswitching poling has a great potential in domain engineering of relaxor single crystals for advanced devices. PMID:24170960

  18. Early first trimester maternal 'high fish and olive oil and low meat' dietary pattern is associated with accelerated human embryonic development.

    PubMed

    Parisi, Francesca; Rousian, Melek; Steegers-Theunissen, Régine P M; Koning, Anton H J; Willemsen, Sten P; de Vries, Jeanne H M; Cetin, Irene; Steegers, Eric A P

    2018-04-20

    Maternal dietary patterns were associated with embryonic growth and congenital anomalies. We aim to evaluate associations between early first trimester maternal dietary patterns and embryonic morphological development among pregnancies with non-malformed outcome. A total of 228 strictly dated, singleton pregnancies without congenital malformations were enrolled in a periconceptional hospital-based cohort. Principal component analysis was performed to extract early first trimester maternal dietary patterns from food frequency questionnaires. Serial transvaginal three-dimensional ultrasound (3D US) scans were performed between 6 +0 and 10 +2 gestational weeks and internal and external morphological criteria were used to define Carnegie stages in a virtual reality system. Associations between dietary patterns and Carnegie stages were investigated using linear mixed models. A total of 726 3D US scans were included (median: three scans per pregnancy). The 'high fish and olive oil and low meat' dietary pattern was associated with accelerated embryonic development in the study population (β = 0.12 (95%CI: 0.00; 0.24), p < 0.05). Weak adherence to this dietary pattern delayed embryonic development by 2.1 days (95%CI: 1.6; 2.6) compared to strong adherence. The 'high vegetables, fruit and grain' dietary pattern accelerated embryonic development in the strictly dated spontaneous pregnancy subgroup without adjustment for energy intake. Early first trimester maternal dietary patterns impacts human embryonic morphological development among pregnancies without congenital malformations. The clinical meaning of delayed embryonic development needs further investigation.

  19. TU-F-17A-04: Respiratory Phase-Resolved 3D MRI with Isotropic High Spatial Resolution: Determination of the Average Breathing Motion Pattern for Abdominal Radiotherapy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Z; Pang, J; Yang, W

    Purpose: To develop a retrospective 4D-MRI technique (respiratory phase-resolved 3D-MRI) for providing an accurate assessment of tumor motion secondary to respiration. Methods: A 3D projection reconstruction (PR) sequence with self-gating (SG) was developed for 4D-MRI on a 3.0T MRI scanner. The respiration-induced shift of the imaging target was recorded by SG signals acquired in the superior-inferior direction every 15 radial projections (i.e. temporal resolution 98 ms). A total of 73000 radial projections obtained in 8-min were retrospectively sorted into 10 time-domain evenly distributed respiratory phases based on the SG information. Ten 3D image sets were then reconstructed offline. The techniquemore » was validated on a motion phantom (gadolinium-doped water-filled box, frequency of 10 and 18 cycles/min) and humans (4 healthy and 2 patients with liver tumors). Imaging protocol included 8-min 4D-MRI followed by 1-min 2D-realtime (498 ms/frame) MRI as a reference. Results: The multiphase 3D image sets with isotropic high spatial resolution (1.56 mm) permits flexible image reformatting and visualization. No intra-phase motion-induced blurring was observed. Comparing to 2D-realtime, 4D-MRI yielded similar motion range (phantom: 10.46 vs. 11.27 mm; healthy subject: 25.20 vs. 17.9 mm; patient: 11.38 vs. 9.30 mm), reasonable displacement difference averaged over the 10 phases (0.74mm; 3.63mm; 1.65mm), and excellent cross-correlation (0.98; 0.96; 0.94) between the two displacement series. Conclusion: Our preliminary study has demonstrated that the 4D-MRI technique can provide high-quality respiratory phase-resolved 3D images that feature: a) isotropic high spatial resolution, b) a fixed scan time of 8 minutes, c) an accurate estimate of average motion pattern, and d) minimal intra-phase motion artifact. This approach has the potential to become a viable alternative solution to assess the impact of breathing on tumor motion and determine appropriate treatment margins. Comparison with 4D-CT in a clinical setting is warranted to assess the value of 4D-MRI in radiotherapy planning. This work supported in part by grant 1R03CA173273-01.« less

  20. Structural characterization of the lipid A region of Aeromonas salmonicida subsp. salmonicida lipopolysaccharide.

    PubMed

    Wang, Zhan; Li, Jianjun; Altman, Eleonora

    2006-12-11

    The lipid A components of Aeromonas salmonicida subsp. salmonicida from strains A449, 80204-1 and an in vivo rough isolate were isolated by mild acid hydrolysis of the lipopolysaccharide. Structural studies carried out by a combination of fatty acid, electrospray ionization-mass spectrometry and nuclear magnetic resonance analyses confirmed that the structure of lipid A was conserved among different isolates of A. salmonicida subsp. salmonicida. All analyzed strains contained three major lipid A molecules differing in acylation patterns corresponding to tetra-, penta- and hexaacylated lipid A species and comprising 4'-monophosphorylated beta-2-amino-2-deoxy-d-glucopyranose-(1-->6)-2-amino-2-deoxy-d-glucopyranose disaccharide, where the reducing end 2-amino-2-deoxy-d-glucose was present primarily in the alpha-pyranose form. Electrospray ionization-tandem mass spectrometry fragment pattern analysis, including investigation of the inner-ring fragmentation, allowed the localization of fatty acyl residues on the disaccharide backbone of lipid A. The tetraacylated lipid A structure containing 3-(dodecanoyloxy)tetradecanoic acid at N-2',3-hydroxytetradecanoic acid at N-2 and 3-hydroxytetradecanoic acid at O-3, respectively, was found. The pentaacyl lipid A molecule had a similar fatty acid distribution pattern and, additionally, carried 3-hydroxytetradecanoic acid at O-3'. In the hexaacylated lipid A structure, 3-hydroxytetradecanoic acid at O-3' was esterified with a secondary 9-hexadecenoic acid. Interestingly, lipid A of the in vivo rough isolate contained predominantly tetra- and pentaacylated lipid A species suggesting that the presence of the hexaacyl lipid A was associated with the smooth-form lipopolysaccharide.

  1. Foods and dietary patterns that are healthy, low-cost, and environmentally sustainable: a case study of optimization modeling for New Zealand.

    PubMed

    Wilson, Nick; Nghiem, Nhung; Ni Mhurchu, Cliona; Eyles, Helen; Baker, Michael G; Blakely, Tony

    2013-01-01

    Global health challenges include non-communicable disease burdens, ensuring food security in the context of rising food prices, and environmental constraints around food production, e.g., greenhouse gas [GHG] emissions. We therefore aimed to consider optimized solutions to the mix of food items in daily diets for a developed country population: New Zealand (NZ). We conducted scenario development and linear programming to model 16 diets (some with uncertainty). Data inputs included nutrients in foods, food prices, food wastage and food-specific GHG emissions. This study identified daily dietary patterns that met key nutrient requirements for as little as a median of NZ$ 3.17 per day (US$ 2.41/d) (95% simulation interval [SI] = NZ$ 2.86 to 3.50/d). Diets that included "more familiar meals" for New Zealanders, increased the cost. The optimized diets also had low GHG emission profiles compared with the estimate for the 'typical NZ diet' e.g., 1.62 kg CO2e/d for one scenario (95%SI = 1.39 to 1.85 kg CO2e) compared with 10.1 kg CO2e/d, respectively. All of the optimized low-cost and low-GHG dietary patterns had likely health advantages over the current NZ dietary pattern, i.e., lower cardiovascular disease and cancer risk. We identified optimal foods and dietary patterns that would lower the risk of non-communicable diseases at low cost and with low greenhouse gas emission profiles. These results could help guide central and local government decisions around which foods to focus policies on. That is which foods are most suitable for: food taxes (additions and exemptions); healthy food vouchers and subsidies; and for increased use by public institutions involved in food preparation.

  2. [Spatial characteristics analysis of Huizhou-Styled Village based on ideal ecosystem model and 3D landscape indices: A case in Chengkan, China].

    PubMed

    Yao, Meng Yuan; Yan, Shi Jiang; Wu, Yan Lan

    2016-12-01

    Huizhou-Styled Village is a typical representative of the traditional Chinese ancient villages. It preserves plentiful information of the regional culture and ecological connotation. The Huizhou-Style is the apotheosis of harmony between the Chinese ancient people and nature. The research and protection of Huizhou-Styled Village plays a very important role in fields of ecology, geography, architecture and esthetics. This paper took Chengkan Village of Anhui Province as an exa-mple, and proposed a new model of ideal ecosystem oriented in theories of Feng-shui and psychological field. The new method of characterizing 3D landscape index was introduced to explore the spatial patterns of Huizhou-Styled Village and the functionality of the composited landscape components in a quantitative way. The results indicated that, Chengkan Village showed a spatially composited pattern of "mountain-forest-village-river-forest". It formed an ideal settlement ring structure with human architecture in the center and natural landscape around in the horizontal and vertical horizons. The traditional method based on the projection distance caused the deviation of the landscape index, such as underestimating the area and distance of landscape patch. The 3D landscape index of average patch area was 6.7% higher than the 2D landscape index. The increasing rate ofarea proportion in 3D index was 1.0% higher than that of 2D index in forest lands. Area proportion of the other landscapes decreased, especially the artificial landscapes like construction and cropland landscapes. The area and perimeter metric were underestimated, whereas the shape metric and the diversity metric were overestimated. This caused the underestimation of the dominance of natural patches was underestimated and the overestimation of the dominance of artificial patches during the analysis of landscape pattern. The 3D landscape index showed that the natural elements and their combination in Chengkan Village ecosystem reflected better ecological function, the key elements and the composited landscape ecosystem preserved higher stability, connectivity and aggregation. The quantitative confirmation showed that the Huizhou-Styled Village represented by Chengkan Village is an ideal ecosystem.

  3. Bioinspired, Mobile Robots With High Stability, Functionality and Low Cost

    DTIC Science & Technology

    2014-02-19

    actuators with complex actuating modes (e.g., extending and multiple bending modes; Figure 5-3). Figure 5-1. (left panel) 3D printed molds...failure (e.g., cellulose , KevlarTM, polystyrene). We designed a two part mold (Figure 6-a) to pattern the exterior and interior pleating and then...variety of objects. The 3D molding technique used to fabricate this actuator, however, limits the pneumatic channel geometry. To achieve pneu-net

  4. Fast 3D shape measurements with reduced motion artifacts

    NASA Astrophysics Data System (ADS)

    Feng, Shijie; Zuo, Chao; Chen, Qian; Gu, Guohua

    2017-10-01

    Fringe projection is an extensively used technique for high speed three-dimensional (3D) measurements of dynamic objects. However, the motion often leads to artifacts in reconstructions due to the sequential recording of the set of patterns. In order to reduce the adverse impact of the movement, we present a novel high speed 3D scanning technique combining the fringe projection and stereo. Firstly, promising measuring speed is achieved by modifying the traditional aperiodic sinusoidal patterns so that the fringe images can be cast at kilohertz with the widely used defocusing strategy. Next, a temporal intensity tracing algorithm is developed to further alleviate the influence of motion by accurately tracing the ideal intensity for stereo matching. Then, a combined cost measure is suggested to robustly estimate the cost for each pixel. In comparison with the traditional method where the effect of motion is not considered, experimental results show that the reconstruction accuracy for dynamic objects can be improved by an order of magnitude with the proposed method.

  5. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo

    NASA Astrophysics Data System (ADS)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery.

  6. Geometric features of workspace and joint-space paths of 3D reaching movements.

    PubMed

    Klein Breteler, M D; Meulenbroek, R G; Gielen, S C

    1998-11-01

    The present study focuses on geometric features of workspace and joint-space paths of three-dimensional reaching movements. Twelve subjects repeatedly performed a three-segment, triangular-shaped movement pattern in an approximately 60 degrees tilted horizontal plane. Task variables elicited movement patterns that varied in position, rotational direction and speed. Trunk, arm, hand and finger-tip movements were recorded by means of a 3D motion-tracking system. Angular excursions of the shoulder and elbow joints were extracted from position data. Analyses of the shape of 3D workspace and joint-space paths focused on the extent to which the submovements were produced in a plane, and on the curvature of the central parts of the submovements. A systematic tendency to produce movements in a plane was found in addition to an increase of finger-tip path curvature with increasing speed. The findings are discussed in relation to the role of optimization principles in trajectory-formation models.

  7. Reality and Surreality of 3-D Displays: Holodeck and Beyond

    DTIC Science & Technology

    2000-01-01

    are 2-D interference patterns and may, in principal, be written on a 2-D recording medium whose response is a function of intensity (e.g. photographic...devices based on reflective digital micromirror devices ( DMD ), or 1-D grading light valves. Photorefractive crystals include tantalum dioxide, lithium...Hologram readout is a diffractive interference phenomenon, which becomes significant when electromagnetic radiation encounters structures (e.g. pixels of

  8. Imaging performance improvement of coherent extreme-ultraviolet scatterometry microscope with high-harmonic-generation extreme-ultraviolet source

    NASA Astrophysics Data System (ADS)

    Mamezaki, Daiki; Harada, Tetsuo; Nagata, Yutaka; Watanabe, Takeo

    2017-06-01

    In extreme-ultraviolet (EUV) lithography, the development of a review apparatus for the EUV mask pattern at an exposure wavelength of 13.5 nm is required. The EUV mask is composed of an absorber pattern and a Mo/Si multilayer on a glass substrate. This mask pattern has a three-dimensional (3D) structure. The 3D structure would modulate the EUV reflection phase, which would cause focus and pattern shifts. Thus, the review of the EUV phase image is also important. We have developed a coherent EUV scatterometry microscope (CSM), which is a simple microscope without objective optics. The EUV phase and intensity images were reconstructed with diffraction images by ptychography. For a standalone mask review, the high-harmonic-generation (HHG) EUV source was employed. In this study, we updated the sample stage, pump-laser reduction system, and gas-pressure control system to reconstruct the image. As a result, an 88 nm line-and-space pattern and a cross-line pattern were reconstructed. In addition, a particle defect of 2 µm diameter was well reconstructed. This demonstrated the high capability of the standalone CSM, which can hence be used in factories, such as mask shops and semiconductor fabrication plants.

  9. Observation of EUVL mask using coherent EUV scatterometry microscope with high-harmonic-generation EUV source

    NASA Astrophysics Data System (ADS)

    Mamezaki, Daiki; Harada, Tetsuo; Nagata, Yutaka; Watanabe, Takeo

    2017-07-01

    In extreme ultraviolet (EUV) lithography, development of review tools for EUV mask pattern and phase defect at working wavelength of 13.5 nm is required. The EUV mask is composed of an absorber pattern (50 - 70 nm thick) and Mo/Si multilayer (280 nm thick) on a glass substrate. This mask pattern seems three-dimensional (3D) structure. This 3D structure would modulate EUV reflection phase, which would cause focus and pattern shifts. Thus, EUV phase imaging is important to evaluate this phase modulation. We have developed coherent EUV scatterometry microscope (CSM), which is a simple microscope without objective optics. EUV phase and intensity image are reconstructed with diffraction images by ptychography with coherent EUV illumination. The high-harmonic-generation (HHG) EUV source was employed for standalone CSM system. In this study, we updated HHG system of pump-laser reduction and gas-pressure control. Two types of EUV mask absorber patterns were observed. An 88-nm lines-and-spaces and a cross-line patterns were clearly reconstructed by ptychography. In addition, a natural defect with 2-μm diameter on the cross-line was well reconstructed. This demonstrated the high capability of the standalone CSM, which system will be used in the factories, such as mask shops and semiconductor fabrication plants.

  10. 1-Dimensional AgVO3 nanowires hybrid with 2-dimensional graphene nanosheets to create 3-dimensional composite aerogels and their improved electrochemical properties

    NASA Astrophysics Data System (ADS)

    Liang, Liying; Xu, Yimeng; Lei, Yong; Liu, Haimei

    2014-03-01

    Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability.Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability. Electronic supplementary information (ESI) available: Preparation, characterization, SEM images, XRD patterns, and XPS of AgVO3/GAs. See DOI: 10.1039/c3nr06899d

  11. Optimizing countershading camouflage.

    PubMed

    Cuthill, Innes C; Sanghera, N Simon; Penacchio, Olivier; Lovell, Paul George; Ruxton, Graeme D; Harris, Julie M

    2016-11-15

    Countershading, the widespread tendency of animals to be darker on the side that receives strongest illumination, has classically been explained as an adaptation for camouflage: obliterating cues to 3D shape and enhancing background matching. However, there have only been two quantitative tests of whether the patterns observed in different species match the optimal shading to obliterate 3D cues, and no tests of whether optimal countershading actually improves concealment or survival. We use a mathematical model of the light field to predict the optimal countershading for concealment that is specific to the light environment and then test this prediction with correspondingly patterned model "caterpillars" exposed to avian predation in the field. We show that the optimal countershading is strongly illumination-dependent. A relatively sharp transition in surface patterning from dark to light is only optimal under direct solar illumination; if there is diffuse illumination from cloudy skies or shade, the pattern provides no advantage over homogeneous background-matching coloration. Conversely, a smoother gradation between dark and light is optimal under cloudy skies or shade. The demonstration of these illumination-dependent effects of different countershading patterns on predation risk strongly supports the comparative evidence showing that the type of countershading varies with light environment.

  12. Coherent 3D nanostructure of γ-Al{sub 2}O{sub 3}: Simulation of whole X-ray powder diffraction pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakharukova, V.P., E-mail: verapakh@catalysis.ru; Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk; Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Novosibirsk 630090

    2017-02-15

    The structure and nanostructure features of nanocrystalline γ-Al{sub 2}O{sub 3} obtained by dehydration of boehmite with anisotropic platelet-shaped particles were investigated. The original models of 3D coherent nanostructure of γ-Al{sub 2}O{sub 3} were constructed. The models of nanostructured γ-Al{sub 2}O{sub 3} particles were first confirmed by a direct simulation of powder X–Ray diffraction (XRD) patterns using the Debye Scattering Equation (DSE) with assistance of high-resolution transmission electron microscopy (HRTEM) study. The average crystal structure of γ-Al{sub 2}O{sub 3} was shown to be tetragonally distorted. The experimental results revealed that thin γ-Al{sub 2}O{sub 3} platelets were heterogeneous on a nanometer scalemore » and nanometer-sized building blocks were separated by partially coherent interfaces. The XRD simulation results showed that a specific packing of the primary crystalline blocks in the nanostructured γ-Al{sub 2}O{sub 3} particles with formation of planar defects on (001), (100), and (101) planes nicely accounted for pronounced diffuse scattering, anisotropic peak broadening and peak shifts in the experimental XRD pattern. The identified planar defects in cation sublattice seem to be described as filling cation non-spinel sites in existing crystallographic models of γ-Al{sub 2}O{sub 3} structure. The overall findings provided an insight into the complex nanostructure, which is intrinsic to the metastable γ-Al{sub 2}O{sub 3} oxide. - Highlights: • Thin plate-like crystallites of γ-Al{sub 2}O{sub 3} were obtained. • Models of 3D coherent nanostructure of γ-Al{sub 2}O{sub 3} were constructed. • Models were verified by simulating XRD patterns using the Debye Scattering Equation. • Specific broadening of XRD peaks was explained in terms of planar defects. • Primary crystalline blocks in γ-Al{sub 2}O{sub 3} are separated by partially coherent interfaces.« less

  13. Verification of real sensor motion for a high-dynamic 3D measurement inspection system

    NASA Astrophysics Data System (ADS)

    Breitbarth, Andreas; Correns, Martin; Zimmermann, Manuel; Zhang, Chen; Rosenberger, Maik; Schambach, Jörg; Notni, Gunther

    2017-06-01

    Inline three-dimensional measurements are a growing part of optical inspection. Considering increasing production capacities and economic aspects, dynamic measurements under motion are inescapable. Using a sequence of different pattern, like it is generally done in fringe projection systems, relative movements of the measurement object with respect to the 3d sensor between the images of one pattern sequence have to be compensated. Based on the application of fully automated optical inspection of circuit boards at an assembly line, the knowledge of the relative speed of movement between the measurement object and the 3d sensor system should be used inside the algorithms of motion compensation. Optimally, this relative speed is constant over the whole measurement process and consists of only one motion direction to avoid sensor vibrations. The quantified evaluation of this two assumptions and the error impact on the 3d accuracy are content of the research project described by this paper. For our experiments we use a glass etalon with non-transparent circles and transmitted light. Focused on the circle borders, this is one of the most reliable methods to determine subpixel positions using a couple of searching rays. The intersection point of all rays characterize the center of each circle. Based on these circle centers determined with a precision of approximately 1=50 pixel, the motion vector between two images could be calculated and compared with the input motion vector. Overall, the results are used to optimize the weight distribution of the 3d sensor head and reduce non-uniformly vibrations. Finally, there exists a dynamic 3d measurement system with an error of motion vectors about 4 micrometer. Based on this outcome, simulations result in a 3d standard deviation at planar object regions of 6 micrometers. The same system yields a 3d standard deviation of 9 µm without the optimization of weight distribution.

  14. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes.

    PubMed

    Zhang, Yihui; Yan, Zheng; Nan, Kewang; Xiao, Dongqing; Liu, Yuhao; Luan, Haiwen; Fu, Haoran; Wang, Xizhu; Yang, Qinglin; Wang, Jiechen; Ren, Wen; Si, Hongzhi; Liu, Fei; Yang, Lihen; Li, Hejun; Wang, Juntong; Guo, Xuelin; Luo, Hongying; Wang, Liang; Huang, Yonggang; Rogers, John A

    2015-09-22

    Assembly of 3D micro/nanostructures in advanced functional materials has important implications across broad areas of technology. Existing approaches are compatible, however, only with narrow classes of materials and/or 3D geometries. This paper introduces ideas for a form of Kirigami that allows precise, mechanically driven assembly of 3D mesostructures of diverse materials from 2D micro/nanomembranes with strategically designed geometries and patterns of cuts. Theoretical and experimental studies demonstrate applicability of the methods across length scales from macro to nano, in materials ranging from monocrystalline silicon to plastic, with levels of topographical complexity that significantly exceed those that can be achieved using other approaches. A broad set of examples includes 3D silicon mesostructures and hybrid nanomembrane-nanoribbon systems, including heterogeneous combinations with polymers and metals, with critical dimensions that range from 100 nm to 30 mm. A 3D mechanically tunable optical transmission window provides an application example of this Kirigami process, enabled by theoretically guided design.

  15. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes

    PubMed Central

    Zhang, Yihui; Yan, Zheng; Nan, Kewang; Xiao, Dongqing; Liu, Yuhao; Luan, Haiwen; Fu, Haoran; Wang, Xizhu; Yang, Qinglin; Wang, Jiechen; Ren, Wen; Si, Hongzhi; Liu, Fei; Yang, Lihen; Li, Hejun; Wang, Juntong; Guo, Xuelin; Luo, Hongying; Wang, Liang; Huang, Yonggang; Rogers, John A.

    2015-01-01

    Assembly of 3D micro/nanostructures in advanced functional materials has important implications across broad areas of technology. Existing approaches are compatible, however, only with narrow classes of materials and/or 3D geometries. This paper introduces ideas for a form of Kirigami that allows precise, mechanically driven assembly of 3D mesostructures of diverse materials from 2D micro/nanomembranes with strategically designed geometries and patterns of cuts. Theoretical and experimental studies demonstrate applicability of the methods across length scales from macro to nano, in materials ranging from monocrystalline silicon to plastic, with levels of topographical complexity that significantly exceed those that can be achieved using other approaches. A broad set of examples includes 3D silicon mesostructures and hybrid nanomembrane–nanoribbon systems, including heterogeneous combinations with polymers and metals, with critical dimensions that range from 100 nm to 30 mm. A 3D mechanically tunable optical transmission window provides an application example of this Kirigami process, enabled by theoretically guided design. PMID:26372959

  16. 2D virtual texture on 3D real object with coded structured light

    NASA Astrophysics Data System (ADS)

    Molinier, Thierry; Fofi, David; Salvi, Joaquim; Gorria, Patrick

    2008-02-01

    Augmented reality is used to improve color segmentation on human body or on precious no touch artifacts. We propose a technique to project a synthesized texture on real object without contact. Our technique can be used in medical or archaeological application. By projecting a suitable set of light patterns onto the surface of a 3D real object and by capturing images with a camera, a large number of correspondences can be found and the 3D points can be reconstructed. We aim to determine these points of correspondence between cameras and projector from a scene without explicit points and normals. We then project an adjusted texture onto the real object surface. We propose a global and automatic method to virtually texture a 3D real object.

  17. Tidal Dissipation Within the Jupiter Moon Io - A Numerical Approach

    NASA Astrophysics Data System (ADS)

    Steinke, Teresa; van der Wal, Wouter; Hu, Haiyang; Vermeersen, Bert

    2017-04-01

    Satellite images and recent Earth-based observations of the innermost of the Galilean moons reveal a conspicuous pattern of volcanic hotspots and paterae on its surface. This pattern is associated with the heat flux originating from tidal dissipation in Io's mantle and asthenosphere. As shown by many analytical studies [e.g. Segatz et al. 1988], the local heat flux pattern depends on the rheology and structure of the satellite's interior and therefore could reveal constraints on Io's present interior. However, non-linear processes, different rheologies, and in particular lateral variations arising from the spatial heating pattern are difficult to incorporate in analytical 1D models but might be crucial. This motivates the development of a 3D finite element model of a layered body disturbed by a tidal potential. As a first step of this project we present a 3D finite element model of a spherically stratified body of linear viscoelastic rheology. For validation, we compare the resulting tidal deformation and local heating patterns with the results obtained by analytical models. Numerical errors increase with lower values of the asthenosphere viscosity. Currently, the numerical model allows realistic simulation down to viscosities of 1018 Pa s. Furthermore, we investigate an adequate way to deal with the relaxation of false modes that arise at the onset of the periodic tidal potential series in the numerical approach. Segatz, M., Spohn, T., Ross, M. N., Schubert, G. (1988). Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus, 75(2), 187-206.

  18. Volume moiré tomography based on projection extraction by spatial phase shifting of double crossed gratings

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Guo, Zhenyan; Song, Yang; Han, Jun

    2018-01-01

    To realize volume moiré tomography (VMT) for the real three-dimensional (3D) diagnosis of combustion fields, according to 3D filtered back projection (FBP) reconstruction algorithm, the radial derivatives of the projected phase should be measured firstly. In this paper, a simple spatial phase-shifting moiré deflectometry with double cross gratings is presented to measure the radial first-order derivative of the projected phase. Based on scalar diffraction theory, the explicit analytical intensity distributions of moiré patterns on different diffracted orders are derived, and the spatial shifting characteristics are analyzed. The results indicate that the first-order derivatives of the projected phase in two mutually perpendicular directions are involved in moiré patterns, which can be combined to compute the radial first-order derivative. And multiple spatial phase-shifted moiré patterns can be simultaneously obtained; the phase-shifted values are determined by the parameters of the system. A four-step phase-shifting algorithm is proposed for phase extraction, and its accuracy is proved by numerical simulations. Finally, the moiré deflectometry is used to measure the radial first-order derivative of projected phase of a propane flame with plane incident wave, and the 3D temperature distribution is reconstructed.

  19. CD uniformity control for thick resist process

    NASA Astrophysics Data System (ADS)

    Huang, Chi-hao; Liu, Yu-Lin; Wang, Weihung; Yang, Mars; Yang, Elvis; Yang, T. H.; Chen, K. C.

    2017-03-01

    In order to meet the increasing storage capacity demand and reduce bit cost of NAND flash memories, 3D stacked flash cell array has been proposed. In constructing 3D NAND flash memories, the higher bit number per area is achieved by increasing the number of stacked layers. Thus the so-called "staircase" patterning to form electrical connection between memory cells and word lines has become one of the primarily critical processes in 3D memory manufacture. To provide controllable critical dimension (CD) with good uniformity involving thick photo-resist has also been of particular concern for staircase patterning. The CD uniformity control has been widely investigated with relatively thinner resist associated with resolution limit dimension but thick resist coupling with wider dimension. This study explores CD uniformity control associated with thick photo-resist processing. Several critical parameters including exposure focus, exposure dose, baking condition, pattern size and development recipe, were found to strongly correlate with the thick photo-resist profile accordingly affecting the CD uniformity control. To minimize the within-wafer CD variation, the slightly tapered resist profile is proposed through well tailoring the exposure focus and dose together with optimal development recipe. Great improvements on DCD (ADI CD) and ECD (AEI CD) uniformity as well as line edge roughness were achieved through the optimization of photo resist profile.

  20. Non-destructive 3D shape measurement of transparent and black objects with thermal fringes

    NASA Astrophysics Data System (ADS)

    Brahm, Anika; Rößler, Conrad; Dietrich, Patrick; Heist, Stefan; Kühmstedt, Peter; Notni, Gunther

    2016-05-01

    Fringe projection is a well-established optical method for the non-destructive contactless three-dimensional (3D) measurement of object surfaces. Typically, fringe sequences in the visible wavelength range (VIS) are projected onto the surfaces of objects to be measured and are observed by two cameras in a stereo vision setup. The reconstruction is done by finding corresponding pixels in both cameras followed by triangulation. Problems can occur if the properties of some materials disturb the measurements. If the objects are transparent, translucent, reflective, or strongly absorbing in the VIS range, the projected patterns cannot be recorded properly. To overcome these challenges, we present a new alternative approach in the infrared (IR) region of the electromagnetic spectrum. For this purpose, two long-wavelength infrared (LWIR) cameras (7.5 - 13 μm) are used to detect the emitted heat radiation from surfaces which is induced by a pattern projection unit driven by a CO2 laser (10.6 μm). Thus, materials like glass or black objects, e.g. carbon fiber materials, can be measured non-destructively without the need of any additional paintings. We will demonstrate the basic principles of this heat pattern approach and show two types of 3D systems based on a freeform mirror and a GOBO wheel (GOes Before Optics) projector unit.

  1. Enhancing the discrimination accuracy between metastases, gliomas and meningiomas on brain MRI by volumetric textural features and ensemble pattern recognition methods.

    PubMed

    Georgiadis, Pantelis; Cavouras, Dionisis; Kalatzis, Ioannis; Glotsos, Dimitris; Athanasiadis, Emmanouil; Kostopoulos, Spiros; Sifaki, Koralia; Malamas, Menelaos; Nikiforidis, George; Solomou, Ekaterini

    2009-01-01

    Three-dimensional (3D) texture analysis of volumetric brain magnetic resonance (MR) images has been identified as an important indicator for discriminating among different brain pathologies. The purpose of this study was to evaluate the efficiency of 3D textural features using a pattern recognition system in the task of discriminating benign, malignant and metastatic brain tissues on T1 postcontrast MR imaging (MRI) series. The dataset consisted of 67 brain MRI series obtained from patients with verified and untreated intracranial tumors. The pattern recognition system was designed as an ensemble classification scheme employing a support vector machine classifier, specially modified in order to integrate the least squares features transformation logic in its kernel function. The latter, in conjunction with using 3D textural features, enabled boosting up the performance of the system in discriminating metastatic, malignant and benign brain tumors with 77.14%, 89.19% and 93.33% accuracy, respectively. The method was evaluated using an external cross-validation process; thus, results might be considered indicative of the generalization performance of the system to "unseen" cases. The proposed system might be used as an assisting tool for brain tumor characterization on volumetric MRI series.

  2. Comparison of CT-derived Ventilation Maps with Deposition Patterns of Inhaled Microspheres in Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob, Rick E.; Lamm, W. J.; Einstein, Daniel R.

    2015-04-01

    Purpose: Computer models for inhalation toxicology and drug-aerosol delivery studies rely on ventilation pattern inputs for predictions of particle deposition and vapor uptake. However, changes in lung mechanics due to disease can impact airflow dynamics and model results. It has been demonstrated that non-invasive, in vivo, 4DCT imaging (3D imaging at multiple time points in the breathing cycle) can be used to map heterogeneities in ventilation patterns under healthy and disease conditions. The purpose of this study was to validate ventilation patterns measured from CT imaging by exposing the same rats to an aerosol of fluorescent microspheres (FMS) and examiningmore » particle deposition patterns using cryomicrotome imaging. Materials and Methods: Six male Sprague-Dawley rats were intratracheally instilled with elastase to a single lobe to induce a heterogeneous disease. After four weeks, rats were imaged over the breathing cycle by CT then immediately exposed to an aerosol of ~1µm FMS for ~5 minutes. After the exposure, the lungs were excised and prepared for cryomicrotome imaging, where a 3D image of FMS deposition was acquired using serial sectioning. Cryomicrotome images were spatially registered to match the live CT images to facilitate direct quantitative comparisons of FMS signal intensity with the CT-based ventilation maps. Results: Comparisons of fractional ventilation in contiguous, non-overlapping, 3D regions between CT-based ventilation maps and FMS images showed strong correlations in fractional ventilation (r=0.888, p<0.0001). Conclusion: We conclude that ventilation maps derived from CT imaging are predictive of the 1µm aerosol deposition used in ventilation-perfusion heterogeneity inhalation studies.« less

  3. An architecture for integrating planar and 3D cQED devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axline, C.; Reagor, M.; Heeres, R.

    Numerous loss mechanisms can limit coherence and scalability of planar and 3D-based circuit quantum electrodynamics (cQED) devices, particularly due to their packaging. The low loss and natural isolation of 3D enclosures make them good candidates for coherent scaling. We introduce a coaxial transmission line device architecture with coherence similar to traditional 3D cQED systems. Measurements demonstrate well-controlled external and on-chip couplings, a spectrum absent of cross-talk or spurious modes, and excellent resonator and qubit lifetimes. We integrate a resonator-qubit system in this architecture with a seamless 3D cavity, and separately pattern a qubit, readout resonator, Purcell filter, and high-Q striplinemore » resonator on a single chip. Device coherence and its ease of integration make this a promising tool for complex experiments.« less

  4. Dietary patterns in patients with advanced cancer: implications for anorexia-cachexia therapy.

    PubMed

    Hutton, Joanne L; Martin, Lisa; Field, Catherine J; Wismer, Wendy V; Bruera, Eduardo D; Watanabe, Sharon M; Baracos, Vickie E

    2006-11-01

    Severe malnutrition and wasting are considered hallmarks of advanced malignant disease, and clinical research into anorexia-cachexia therapy and nutritional support for cancer patients is ongoing. However, information on typical dietary intakes and food choices for this population is notably lacking; proposed therapies for anorexia and wasting are not framed within the context of current intake. The objective of the study was to characterize the food intake patterns of patients with advanced cancer. Patients with advanced cancer (n = 151) recruited from a regional cancer center and palliative-care program completed a 3-d dietary record a mean (+/-SD) 8 +/- 7 mo before death. Food items were categorized according to macronutrient content and dietary use and subsequently entered into cluster analysis. Wide variations in intakes of energy (range: 4-53 kcal . kg body wt(-1) . d(-1); x +/- SD: 25.1 +/- 10.0 kcal . kg body wt(-1) . d(-1)) and protein (range: 0.2-2.7 g . kg body wt(-1) . d(-1); x +/- SD: 1.0 +/- 0.4 g . kg body wt(-1) . d(-1)) were observed. Even the subjects with the highest intakes had a recent history of weight loss, which suggests that the diets of those persons were consistently inadequate for weight maintenance. Cluster analysis found 3 dietary patterns that differed in food choice and caloric intake. Low intakes and a high risk of weight loss were associated with decreased frequency of eating and dietary profiles with little variety and unusually high proportions of liquids. These data provide a glimpse into dietary habits toward the end of life. Unique dietary patterns were found in this nutritionally vulnerable patient population.

  5. 3D Rheological Modeling of NW Intraplate Europe, Deciphering Spatial Integrated strength patterns, Mechanical Strong Layering and EET

    NASA Astrophysics Data System (ADS)

    Beekman, F.; Hardebol, N.; Cloetingh, S.; Tesauro, M.

    2006-12-01

    Better understanding of 3D rheological heterogeneity of the European Lithosphere provide the key to tie the recorded intraplate deformation pattern to stress fields transmitted into plate interior from plate boundary forces. The first order strain patterns result from stresses transmitted through the European lithosphere that is marked by a patchwork of high strength variability from inherited structural and compositional heterogeneities and upper mantle thermal perturbations. As the lithospheric rheology depends primarily on its spatial structure, composition and thermal estate, the 3D strength model for the European lithosphere relies on a 3D compositional model that yields the compositional heterogeneities and an iteratively calculated thermal cube using Fouriers law for heat conduction. The accurate appraisal of spatial strength variability results from proper mapping and integration of the geophysical compositional and thermal input parameters. Therefore, much attention has been paid to a proper description of first order structural and tectonic features that facilitate compilation of the compositional and thermal input models. As such, the 3D strength model reflects the thermo-mechanical structure inherited from the Europeans polyphase deformation history. Major 3D spatial mechanical strength variability has been revealed. The East-European and Fennoscandian Craton to the NE exhibit high strength (30-50 1012 N/m) from low mantle temperatures and surface heatflow of 35-60 mW/m2 while central and western Europe reflect a polyphase Phanerozoic thermo- tectonic history. Here, regions with high rigidity are formed primarily by patches of thermally stabilized Variscan Massifs (e.g. Rhenish, Armorican, Bohemian, and Iberian Massif) with low heatflow and lithospheric thickness values (50-65 mW/m2; 110-150 km) yielding strengths of ~15-25 1012 N/m. In contrast, major axis of weakened lithosphere coincides with Cenozoic Rift System (e.g. Upper and Lower Rhine Grabens, Pannonian Basin and Massif Central) attributed to the presence of tomographically imaged plumes. This study has elucidated the memory of the present-days Europeans lithosphere induced by compositional and thermal heterogeneities. The resulting lateral strength variations has a clear signature of the pst lithospheres polyphase deformation and also entails active tectonics, tectonically induced topography and surface processes.

  6. Volumetric display containing multiple two-dimensional color motion pictures

    NASA Astrophysics Data System (ADS)

    Hirayama, R.; Shiraki, A.; Nakayama, H.; Kakue, T.; Shimobaba, T.; Ito, T.

    2014-06-01

    We have developed an algorithm which can record multiple two-dimensional (2-D) gradated projection patterns in a single three-dimensional (3-D) object. Each recorded pattern has the individual projected direction and can only be seen from the direction. The proposed algorithm has two important features: the number of recorded patterns is theoretically infinite and no meaningful pattern can be seen outside of the projected directions. In this paper, we expanded the algorithm to record multiple 2-D projection patterns in color. There are two popular ways of color mixing: additive one and subtractive one. Additive color mixing used to mix light is based on RGB colors and subtractive color mixing used to mix inks is based on CMY colors. We made two coloring methods based on the additive mixing and subtractive mixing. We performed numerical simulations of the coloring methods, and confirmed their effectiveness. We also fabricated two types of volumetric display and applied the proposed algorithm to them. One is a cubic displays constructed by light-emitting diodes (LEDs) in 8×8×8 array. Lighting patterns of LEDs are controlled by a microcomputer board. The other one is made of 7×7 array of threads. Each thread is illuminated by a projector connected with PC. As a result of the implementation, we succeeded in recording multiple 2-D color motion pictures in the volumetric displays. Our algorithm can be applied to digital signage, media art and so forth.

  7. Automatic respiration tracking for radiotherapy using optical 3D camera

    NASA Astrophysics Data System (ADS)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New images can be accurately represented as weighted summation of those eigen-vectors, which can be easily discriminated with a trained classifier. We developed algorithms, software and integrated with an O3D imaging system to perform the respiration tracking automatically. The resulting respiration tracking system requires no human intervene during it tracking operation. Experimental results show that our approach to respiration tracking is more accurate and robust than the methods using manual selected markers, even in the presence of incomplete imaging data.

  8. 10 CFR 712.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... test. Alcohol use disorder means a maladaptive pattern in which a person's intake of alcohol is great... licensed Ph.D., or Psy.D., in clinical psychology who has been nominated by the SOMD and approved by the... examination; (4) Appropriate laboratory tests and measurements; and (5) Appropriate psychological and...

  9. Initial spatio-temporal domain expansion of the Modelfest database

    NASA Astrophysics Data System (ADS)

    Carney, Thom; Mozaffari, Sahar; Sun, Sean; Johnson, Ryan; Shirvastava, Sharona; Shen, Priscilla; Ly, Emma

    2013-03-01

    The first Modelfest group publication appeared in the SPIE Human Vision and Electronic Imaging conference proceedings in 1999. "One of the group's goals is to develop a public database of test images with threshold data from multiple laboratories for designing and testing HVS (Human Vision Models)." After extended discussions the group selected a set of 45 static images thought to best meet that goal and collected psychophysical detection data which is available on the WEB and presented in the 2000 SPIE conference proceedings. Several groups have used these datasets to test spatial modeling ideas. Further discussions led to the preliminary stimulus specification for extending the database into the temporal domain which was published in the 2002 conference proceeding. After a hiatus of 12 years, some of us have collected spatio-temporal thresholds on an expanded stimulus set of 41 video clips; the original specification included 35 clips. The principal change involved adding one additional spatial pattern beyond the three originally specified. The stimuli consisted of 4 spatial patterns, Gaussian Blob, 4 c/d Gabor patch, 11.3 c/d Gabor patch and a 2D white noise patch. Across conditions the patterns were temporally modulated over a range of approximately 0-25 Hz as well as temporal edge and pulse modulation conditions. The display and data collection specifications were as specified by the Modelfest groups in the 2002 conference proceedings. To date seven subjects have participated in this phase of the data collection effort, one of which also participated in the first phase of Modelfest. Three of the spatio-temporal stimuli were identical to conditions in the original static dataset. Small differences in the thresholds were evident and may point to a stimulus limitation. The temporal CSF peaked between 4 and 8 Hz for the 0 c/d (Gaussian blob) and 4 c/d patterns. The 4 c/d and 11.3 c/d Gabor temporal CSF was low pass while the 0 c/d pattern was band pass. This preliminary expansion of the Modelfest dataset needs the participation of additional laboratories to evaluate the impact of different methods on threshold estimates and increase the subject base. We eagerly await the addition of new data from interested researchers. It remains to be seen how accurately general HVS models will predict thresholds across both Modelfest datasets.

  10. A rare 3D chloro-laced Mn(II) metal-organic framework to show sensitive probing effect to Hg2+

    NASA Astrophysics Data System (ADS)

    Ming, Mei; Bai, Na

    2017-10-01

    Two 3D Mn(II) metal-organic frameworks (MOFs), [Mn(L-Cl)(DMA)](H2O) (1) and Mn(L-CH3)(DMA) (2) (H2L-Cl = 2,2'-dichloro-4,4'-azodibenzoic acid, H2L-CH3 = 2,2'-dimethyl-4,4'-azodibenzoic acid) were synthesized under similar solvothermal condition. Both MOFs crystallize in the orthorhombic system and show the 3D rod-packing networks in 2-fold interpenetrated pattern with sra topology. Due to the different substituent laces of MOFs (-Cl vs -CH3), only MOF 1 shows highly selective and sensitive fluorescence sensing effect for detecting Hg2+ ion.

  11. Vitamin D3 analogs stimulate hair growth in nude mice.

    PubMed

    Vegesna, Vijaya; O'Kelly, James; Uskokovic, Milan; Said, Jonathan; Lemp, Nathan; Saitoh, Takayuki; Ikezoe, Takayuki; Binderup, Lise; Koeffler, H Phillip

    2002-11-01

    The active form of vitamin D3 can regulate epidermal keratinization by inducing terminal differentiation; and mice lacking the vitamin D receptor display defects leading to postnatal alopecia. These observations implicate the vitamin D3 pathway in regulation of hair growth. We tested the ability of 1,25 dihydroxyvitamin D3 and its synthetic analogs to stimulate hair growth in biege/nude/xid (BNX) nu/nu (nude) mice exhibiting congenital alopecia. Nude mice were treated with different vitamin D3 analogs at doses that we had previously found to be the highest dose without inducing toxicity (hypercalcemia). The mice were monitored for hair growth and were scored according to a defined scale. Skin samples were taken for histological observation of hair follicles and for extraction of RNA and protein. Vitamin D3 analogs dramatically stimulated the hair growth of nude mice, although parental 1,25 dihydroxyvitamin D3 had no effect. Hair growth occurred in a cyclical pattern, accompanied by formation of normal hair follicles and increased expression of certain keratins (Ha7, Ha8, and Hb3). Vitamin D3 analogs seem to act on keratinocytes to initiate hair follicle cycling and stimulate hair growth in mice that otherwise do not grow hair.

  12. Analysis of the Origin of Atypical Scanning Laser Polarimetry Patterns by Polarization-Sensitive Optical Coherence Tomography

    PubMed Central

    Götzinger, Erich; Pircher, Michael; Baumann, Bernhard; Hirn, Cornelia; Vass, Clemens; Hitzenberger, Christoph K.

    2010-01-01

    Purpose To analyze the physical origin of atypical scanning laser polarimetry (SLP) patterns. To compare polarization-sensitive optical coherence tomography (PS-OCT) scans to SLP images. To present a method to obtain pseudo-SLP images by PS-OCT that are free of atypical artifacts. Methods Forty-one eyes of healthy subjects, subjects with suspected glaucoma, and patients with glaucoma were imaged by SLP (GDx VCC) and a prototype spectral domain PS-OCT system. The PS-OCT system acquires three-dimensional (3D) datasets of intensity, retardation, and optic axis orientation simultaneously within 3 seconds. B-scans of intensity and retardation and en face maps of retinal nerve fiber layer (RNFL) retardation were derived from the 3D PS-OCT datasets. Results were compared with those obtained by SLP. Results Twenty-two eyes showed atypical retardation patterns, and 19 eyes showed normal patterns. From the 22 atypical eyes, 15 showed atypical patterns in both imaging modalities, five were atypical only in SLP images, and two were atypical only in PS-OCT images. In most (15 of 22) atypical cases, an increased penetration of the probing beam into the birefringent sclera was identified as the source of atypical patterns. In such cases, the artifacts could be eliminated in PS-OCT images by depth segmentation and exclusion of scleral signals. Conclusions PS-OCT provides deeper insight into the contribution of different fundus layers to SLP images. Increased light penetration into the sclera can distort SLP retardation patterns of the RNFL. PMID:19036999

  13. Pattern mining of user interaction logs for a post-deployment usability evaluation of a radiology PACS client.

    PubMed

    Jorritsma, Wiard; Cnossen, Fokie; Dierckx, Rudi A; Oudkerk, Matthijs; van Ooijen, Peter M A

    2016-01-01

    To perform a post-deployment usability evaluation of a radiology Picture Archiving and Communication System (PACS) client based on pattern mining of user interaction log data, and to assess the usefulness of this approach compared to a field study. All user actions performed on the PACS client were logged for four months. A data mining technique called closed sequential pattern mining was used to automatically extract frequently occurring interaction patterns from the log data. These patterns were used to identify usability issues with the PACS. The results of this evaluation were compared to the results of a field study based usability evaluation of the same PACS client. The interaction patterns revealed four usability issues: (1) the display protocols do not function properly, (2) the line measurement tool stays active until another tool is selected, rather than being deactivated after one use, (3) the PACS's built-in 3D functionality does not allow users to effectively perform certain 3D-related tasks, (4) users underuse the PACS's customization possibilities. All usability issues identified based on the log data were also found in the field study, which identified 48 issues in total. Post-deployment usability evaluation based on pattern mining of user interaction log data provides useful insights into the way users interact with the radiology PACS client. However, it reveals few usability issues compared to a field study and should therefore not be used as the sole method of usability evaluation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Association of serum vitamin D concentrations with dietary patterns in children and adolescents.

    PubMed

    Ganji, Vijay; Martineau, Bernadette; Van Fleit, William Edmund

    2018-06-04

    Because children have been advised on the dangers of sun exposure, diet is an important contributor of serum 25 hydroxyvitamin D [25(OH)D] concentrations. Aim of this study was to determine whether serum 25(OH)D concentrations were associated with any specific dietary patterns in US children. Data from 2 cycles of National Health and Nutrition Examination Survey (NHANES) 2003-2004 and 2005-2006 for individuals aged 2 to ≤19 y, were used to study relation between dietary patterns and serum 25(OH)D. We derived 2 major dietary patterns based on the food frequency questionnaire data. These were labeled as High-Fat-Low-Vegetable Dietary (HFLVD) pattern and Prudent Dietary (PD) pattern. In multivariate adjusted analysis, there was no significant relationship between serum 25(OH)D concentrations and tertiles of HFLVD and PD dietary pattern scores in all subjects, boys, and girls. When dietary patterns scores were used as a continuous variable in adjusted analysis, children (all) with higher PD contribution scores to overall diet showed a significant positive relation with serum 25(OH)D (β = 59.1, P = 0.017). When data were stratified by sex, a significant positive relation was observed in girls between serum 25(OH)D concentration and PD pattern scores (β = 82.1, P = 0.015). A significant negative relation was observed in girls between serum 25(OH)D and HFLVD pattern scores (β = - 88.5, P = 0.016). Overall, serum 25(OH)D were associated with PD pattern but not with HFLVD pattern in US children. In public health perspective, it is important to encourage children, especially girls who are consuming HFLVD pattern to shift to healthier diet.

  15. Docking pose selection by interaction pattern graph similarity: application to the D3R grand challenge 2015.

    PubMed

    Slynko, Inna; Da Silva, Franck; Bret, Guillaume; Rognan, Didier

    2016-09-01

    High affinity ligands for a given target tend to share key molecular interactions with important anchoring amino acids and therefore often present quite conserved interaction patterns. This simple concept was formalized in a topological knowledge-based scoring function (GRIM) for selecting the most appropriate docking poses from previously X-rayed interaction patterns. GRIM first converts protein-ligand atomic coordinates (docking poses) into a simple 3D graph describing the corresponding interaction pattern. In a second step, proposed graphs are compared to that found from template structures in the Protein Data Bank. Last, all docking poses are rescored according to an empirical score (GRIMscore) accounting for overlap of maximum common subgraphs. Taking the opportunity of the public D3R Grand Challenge 2015, GRIM was used to rescore docking poses for 36 ligands (6 HSP90α inhibitors, 30 MAP4K4 inhibitors) prior to the release of the corresponding protein-ligand X-ray structures. When applied to the HSP90α dataset, for which many protein-ligand X-ray structures are already available, GRIM provided very high quality solutions (mean rmsd = 1.06 Å, n = 6) as top-ranked poses, and significantly outperformed a state-of-the-art scoring function. In the case of MAP4K4 inhibitors, for which preexisting 3D knowledge is scarce and chemical diversity is much larger, the accuracy of GRIM poses decays (mean rmsd = 3.18 Å, n = 30) although GRIM still outperforms an energy-based scoring function. GRIM rescoring appears to be quite robust with comparison to the other approaches competing for the same challenge (42 submissions for the HSP90 dataset, 27 for the MAP4K4 dataset) as it ranked 3rd and 2nd respectively, for the two investigated datasets. The rescoring method is quite simple to implement, independent on a docking engine, and applicable to any target for which at least one holo X-ray structure is available.

  16. Patterned corneal collagen crosslinking for astigmatism: Computational modeling study

    PubMed Central

    Seven, Ibrahim; Roy, Abhijit Sinha; Dupps, William J.

    2014-01-01

    PURPOSE To test the hypothesis that spatially selective corneal stromal stiffening can alter corneal astigmatism and assess the effects of treatment orientation, pattern, and material model complexity in computational models using patient-specific geometries. SETTING Cornea and Refractive Surgery Service, Academic Eye Institute, Cleveland, Ohio, USA. DESIGN Computational modeling study. METHODS Three-dimensional corneal geometries from 10 patients with corneal astigmatism were exported from a clinical tomography system (Pentacam). Corneoscleral finite element models of each eye were generated. Four candidate treatment patterns were simulated, and the effects of treatment orientation and magnitude of stiffening on anterior curvature and aberrations were studied. The effect of material model complexity on simulated outcomes was also assessed. RESULTS Pretreatment anterior corneal astigmatism ranged from 1.22 to 3.92 diopters (D) in a series that included regular and irregular astigmatic patterns. All simulated treatment patterns oriented on the flat axis resulted in mean reductions in corneal astigmatism and depended on the pattern geometry. The linear bow-tie pattern produced a greater mean reduction in astigmatism (1.08 D ± 0.13 [SD]; range 0.74 to 1.23 D) than other patterns tested under an assumed 2-times increase in corneal stiffness, and it had a nonlinear relationship to the degree of stiffening. The mean astigmatic effect did not change significantly with a fiber- or depth-dependent model, but it did affect the coupling ratio. CONCLUSIONS In silico simulations based on patient-specific geometries suggest that clinically significant reductions in astigmatism are possible with patterned collagen crosslinking. Effect magnitude was dependent on patient-specific geometry, effective stiffening pattern, and treatment orientation. PMID:24767795

  17. Complex bud architecture and cell-specific chemical patterns enable supercooling of Picea abies bud primordial

    USDA-ARS?s Scientific Manuscript database

    Bud primordia of Picea abies, despite a frozen shoot, stay ice free down to -50 °C by a mechanism termed supercooling whose biophysical and biochemical requirements are poorly understood. Bud architecture was assessed by 3D-reconstruction, supercooling and freezing patterns by infrared video thermog...

  18. Inverse Tomo-Lithography for Making Microscopic 3D Parts

    NASA Technical Reports Server (NTRS)

    White, Victor; Wiberg, Dean

    2003-01-01

    According to a proposal, basic x-ray lithography would be extended to incorporate a technique, called inverse tomography, that would enable the fabrication of microscopic three-dimensional (3D) objects. The proposed inverse tomo-lithographic process would make it possible to produce complex shaped, submillimeter-sized parts that would be difficult or impossible to make in any other way. Examples of such shapes or parts include tapered helices, paraboloids with axes of different lengths, and even Archimedean screws that could serve as rotors in microturbines. The proposed inverse tomo-lithographic process would be based partly on a prior microfabrication process known by the German acronym LIGA (lithographie, galvanoformung, abformung, which means lithography, electroforming, molding). In LIGA, one generates a precise, high-aspect ratio pattern by exposing a thick, x-ray-sensitive resist material to an x-ray beam through a mask that contains the pattern. One can electrodeposit metal into the developed resist pattern to form a precise metal part, then dissolve the resist to free the metal. Aspect ratios of 100:1 and patterns into resist thicknesses of several millimeters are possible.

  19. Single-shot real-time three dimensional measurement based on hue-height mapping

    NASA Astrophysics Data System (ADS)

    Wan, Yingying; Cao, Yiping; Chen, Cheng; Fu, Guangkai; Wang, Yapin; Li, Chengmeng

    2018-06-01

    A single-shot three-dimensional (3D) measurement based on hue-height mapping is proposed. The color fringe pattern is encoded by three sinusoidal fringes with the same frequency but different shifting phase into red (R), green (G) and blue (B) color channels, respectively. It is found that the hue of the captured color fringe pattern on the reference plane maintains monotonic in one period even it has the color crosstalk. Thus, unlike the traditional color phase shifting technique, the hue information is utilized to decode the color fringe pattern and map to the pixels of the fringe displacement in the proposed method. Because the monotonicity of the hue is limited within one period, displacement unwrapping is proposed to obtain the continuous displacement that is finally used to map to the height distribution. This method directly utilizes the hue under the effect of color crosstalk for mapping the height so that no color calibration is involved. Also, as it requires only single shot deformed color fringe pattern, this method can be applied into the real-time or dynamic 3D measurements.

  20. Phagocytizing activity of PMN from severe trauma patients in different post-traumatic phases during the 10-days post-injury course.

    PubMed

    Sturm, Ramona; Heftrig, David; Mörs, Katharina; Wagner, Nils; Kontradowitz, Kerstin; Jurida, Katrin; Marzi, Ingo; Relja, Borna

    2017-02-01

    Phagocytizing leukocytes (granulocytes and monocytes) play a fundamental role in immunological defense against pathogens and clearance of cellular debris after tissue injury due to trauma. According to the "two-hit hypothesis", phagocytes become primed due to/after trauma. Subsequently, a secondary stimulus may lead to their exaggerated response. This immune dysfunction can result in serious infectious complications, also depending on trauma injury pattern. Here, we investigated the phagocytizing capacity of leukocytes, and its correlation to trauma injury pattern. Peripheral whole blood was taken daily from 29 severely injured trauma patients (TP, Injury Severity Score, ISS≥28) for ten days (1-10) following admission to the emergency department (ED). Sixteen healthy volunteers served as controls (HV). Samples were incubated with opsonized Staphylococcus aureus labelled with pHrodo fluorescent reagent and the percentage of phagocytizing activity was assessed by flow cytometry. Abbreviated Injury Scales (AIS)≥3 of head, chest and extremities were used for injury pattern analysis. Overall distribution of active phagocytes (out of 100% phagocytizing leukocytes) in TP included granulocytes with 28.6±1.5% and monocytes with 59.3±1.9% at ED, and was comparable to HV (31.5±1.6% granulocytes and 60.1±1.6% monocytes). The percentage of phagocytizing granulocytes increased significantly after D2 (39.1±1.2%), while the percentage of phagocytizing monocytes (52.0±1.2%, p<0.05) decreased after D2. These changes persisted during the whole time course. Phagocytizing activity of granulocytes (27.9±2.8%) and monocytes (55.2±3.3%) was significantly decreased at ED compared to HV (42.4±4.1% and 78.1±3.1%, respectively). After D2 up to D10, phagocytizing activity was significantly enhanced in granulocytes. Phagocytizing activity of monocytes remained decreased on D1 and has risen continuously during the ten days time course to values comparable to HV. No significant differences in phagocytosis could be associated to certain injury pattern. Our data demonstrate that the increasing percentage of phagocytizing granulocytes may indicate their enhanced mobilization out of bone marrow persisting until post-injury day 10. Furthermore, an initially decreased phagocytizing activity of granulocytes is strongly increased in the 10-days post-injury course. The altered activity of phagocytes due to injury could not be linked to any trauma injury pattern, and emerged rather as a general characteristic of phagocytes after severe trauma. Copyright © 2016. Published by Elsevier GmbH.

  1. Fast three-dimensional inner volume excitations using parallel transmission and optimized k-space trajectories.

    PubMed

    Davids, Mathias; Schad, Lothar R; Wald, Lawrence L; Guérin, Bastien

    2016-10-01

    To design short parallel transmission (pTx) pulses for excitation of arbitrary three-dimensional (3D) magnetization patterns. We propose a joint optimization of the pTx radiofrequency (RF) and gradient waveforms for excitation of arbitrary 3D magnetization patterns. Our optimization of the gradient waveforms is based on the parameterization of k-space trajectories (3D shells, stack-of-spirals, and cross) using a small number of shape parameters that are well-suited for optimization. The resulting trajectories are smooth and sample k-space efficiently with few turns while using the gradient system at maximum performance. Within each iteration of the k-space trajectory optimization, we solve a small tip angle least-squares RF pulse design problem. Our RF pulse optimization framework was evaluated both in Bloch simulations and experiments on a 7T scanner with eight transmit channels. Using an optimized 3D cross (shells) trajectory, we were able to excite a cube shape (brain shape) with 3.4% (6.2%) normalized root-mean-square error in less than 5 ms using eight pTx channels and a clinical gradient system (Gmax  = 40 mT/m, Smax  = 150 T/m/s). This compared with 4.7% (41.2%) error for the unoptimized 3D cross (shells) trajectory. Incorporation of B0 robustness in the pulse design significantly altered the k-space trajectory solutions. Our joint gradient and RF optimization approach yields excellent excitation of 3D cube and brain shapes in less than 5 ms, which can be used for reduced field of view imaging and fat suppression in spectroscopy by excitation of the brain only. Magn Reson Med 76:1170-1182, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  2. The Regulation of Aldehyde Oxidase in Imaginal Wing Discs of Drosophila Hybrids: Evidence for cis- and trans-Acting Control Elements

    PubMed Central

    Sprey, Th. E.; Kuhn, David T.

    1987-01-01

    The aldehyde oxidase (Aldox) distribution pattern was determined for wing discs of partial hybrids between D. melanogaster and D. simulans. In these animals the regulation of Aldox activity is not uniform over the disc epithelium as both cis-dominant and trans -acting control were evident in different regions of the disc. The Aldox expression was shown to be regulated by loci on the X chromosome, 2L and 3R of D. melanogaster and 2R and 3R of D. simulans. PMID:17246366

  3. Synthesis on structure and properties of zinc nanocrystal in high ordered 3D nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathyaseelan, B., E-mail: bsseelan03@gmail.com; Manigandan, A.; Anbarasu, V.

    2015-06-24

    The wet impregnation method was employed to prepare ZnO encapsulated in mesoporous silica (ZnO/KIT-6). The prepared ZnO/KIT-6 samples have been studied by X-ray diffraction, transmission electron microscope, and nitrogen adsorption–desorption isotherm. The low angle powder XRD patterns of Calcined ZnO/KIT-6 materials showed a phase that can be indexed to cubic Ia3d. Tem images revealed well ordered cubic 3D nanoporous chennels. The ZnO encapsulated in KIT-6 can be used as light-emitting diodes and ultraviolet nanolasers.

  4. BRDF-dependent accuracy of array-projection-based 3D sensors.

    PubMed

    Heist, Stefan; Kühmstedt, Peter; Tünnermann, Andreas; Notni, Gunther

    2017-03-10

    In order to perform high-speed three-dimensional (3D) shape measurements with structured light systems, high-speed projectors are required. One possibility is an array projector, which allows pattern projection at several tens of kilohertz by switching on and off the LEDs of various slide projectors. The different projection centers require a separate analysis, as the intensity received by the cameras depends on the projection direction and the object's bidirectional reflectance distribution function (BRDF). In this contribution, we investigate the BRDF-dependent errors of array-projection-based 3D sensors and propose an error compensation process.

  5. Wigner analysis of three dimensional pupil with finite lateral aperture

    PubMed Central

    Chen, Hsi-Hsun; Oh, Se Baek; Zhai, Xiaomin; Tsai, Jui-Chang; Cao, Liang-Cai; Barbastathis, George; Luo, Yuan

    2015-01-01

    A three dimensional (3D) pupil is an optical element, most commonly implemented on a volume hologram, that processes the incident optical field on a 3D fashion. Here we analyze the diffraction properties of a 3D pupil with finite lateral aperture in the 4-f imaging system configuration, using the Wigner Distribution Function (WDF) formulation. Since 3D imaging pupil is finite in both lateral and longitudinal directions, the WDF of the volume holographic 4-f imager theoretically predicts distinct Bragg diffraction patterns in phase space. These result in asymmetric profiles of diffracted coherent point spread function between degenerate diffraction and Bragg diffraction, elucidating the fundamental performance of volume holographic imaging. Experimental measurements are also presented, confirming the theoretical predictions. PMID:25836443

  6. Medical image retrieval system using multiple features from 3D ROIs

    NASA Astrophysics Data System (ADS)

    Lu, Hongbing; Wang, Weiwei; Liao, Qimei; Zhang, Guopeng; Zhou, Zhiming

    2012-02-01

    Compared to a retrieval using global image features, features extracted from regions of interest (ROIs) that reflect distribution patterns of abnormalities would benefit more for content-based medical image retrieval (CBMIR) systems. Currently, most CBMIR systems have been designed for 2D ROIs, which cannot reflect 3D anatomical features and region distribution of lesions comprehensively. To further improve the accuracy of image retrieval, we proposed a retrieval method with 3D features including both geometric features such as Shape Index (SI) and Curvedness (CV) and texture features derived from 3D Gray Level Co-occurrence Matrix, which were extracted from 3D ROIs, based on our previous 2D medical images retrieval system. The system was evaluated with 20 volume CT datasets for colon polyp detection. Preliminary experiments indicated that the integration of morphological features with texture features could improve retrieval performance greatly. The retrieval result using features extracted from 3D ROIs accorded better with the diagnosis from optical colonoscopy than that based on features from 2D ROIs. With the test database of images, the average accuracy rate for 3D retrieval method was 76.6%, indicating its potential value in clinical application.

  7. Eating Patterns and Health Outcomes in Patients With Type 2 Diabetes.

    PubMed

    Aguiar Sarmento, Roberta; Peçanha Antonio, Juliana; Lamas de Miranda, Ingrid; Bellicanta Nicoletto, Bruna; Carnevale de Almeida, Jussara

    2018-01-01

    To evaluate the relationship between eating patterns and therapeutic target's achieving in patients with type 2 diabetes. In this cross-sectional study, patients underwent clinical, laboratory, and nutritional evaluations. Dietary intake was assessed by a quantitative food frequency questionnaire and eating patterns identified by cluster analysis. The therapeutic targets were as follows: blood pressure, <140/90 mm Hg; BMI, <25 kg/m 2 (<27 kg/m 2 for elderly); waist circumference, <94 cm for men and <80 cm for women; fasting plasma glucose, <130 mg/dL; HbA1c, <7%; triglycerides, <150 mg/dL; HDL-cholesterol, >40 mg/dL for men and >50 mg/dL for women; LDL-cholesterol, <100 mg/dL. One hundred ninety seven patients were studied. We identified two eating patterns: "unhealthy" (n = 100)-high consumption of refined carbohydrates, ultra-processed foods, sweets and desserts ( P < 0.05); and "healthy" (n = 97)-high intake of whole carbohydrates, dairy, white meat, fish, fruits and vegetables ( P < 0.05). The healthy group more frequently achieved therapeutic targets for fasting plasma glucose, HbA1c, and LDL-cholesterol than the unhealthy group. Poisson regression confirmed the association of healthy eating pattern with attaining the therapeutic target for fasting plasma glucose [PR, 1.59 (95% CI, 1.01 to 2.34); P = 0.018], HbA1c [PR, 2.09 (95% CI, 1.17 to 3.74); P = 0.013], and LDL-cholesterol [PR, 1.37 (95% CI, 1.01 to 1.86); P = 0.042]. A healthy eating pattern, including the frequent intake of whole carbohydrates, dairy, white meat, fish, fruits, and vegetables, is associated with reduced fasting plasma glucose, HbA1c, and LDL cholesterol levels in patients with type 2 diabetes.

  8. Patient Preferences and Physician Practice Patterns Regarding Breast Radiotherapy

    DTIC Science & Technology

    2011-01-01

    breast irradiation (HF-WBI) 62%, partial breast irradiation ( PBI ) 28%, and conventionally fractionated whole breast irradiation (CF-WBI) 10%. By...comparison, 82% of physicians use CF-WBI for more than 2/3 of women and 56% never use HF-WBI. With respect to PBI , 62% of women preferred three...dimensional (3D)- PBI and 38% favor brachytherapy- PBI , whereas 36% of physicians offer 3D- PBI and 66% offer brachytherapy- PBI . 70% of women prefer once-daily

  9. Geometric, Statistical, and Topological Modeling of Intrinsic Data Manifolds: Application to 3D Shapes

    DTIC Science & Technology

    2009-01-01

    representation to a simple curve in 3D by using the Whitney embedding theorem. In a very ludic way, we propose to combine phases one and two to...elimination principle which takes advantage of the designed parametrization. To further refine discrimination among objects, we introduce a post...packing numbers and design of principal curves. IEEE transactions on Pattern Analysis and Machine Intel- ligence, 22(3):281-297, 2000. [68] M. H. Yang, Face

  10. SSVEP-based BCI for manipulating three-dimensional contents and devices

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Cho, Sungjin; Whang, Mincheol; Ju, Byeong-Kwon; Park, Min-Chul

    2012-06-01

    Brain Computer Interface (BCI) studies have been done to help people manipulate electronic devices in a 2D space but less has been done for a vigorous 3D environment. The purpose of this study was to investigate the possibility of applying Steady State Visual Evoked Potentials (SSVEPs) to a 3D LCD display. Eight subjects (4 females) ranging in age between 20 to 26 years old participated in the experiment. They performed simple navigation tasks on a simple 2D space and virtual environment with/without 3D flickers generated by a Flim-Type Patterned Retarder (FPR). The experiments were conducted in a counterbalanced order. The results showed that 3D stimuli enhanced BCI performance, but no significant effects were found due to the small number of subjects. Visual fatigue that might be evoked by 3D stimuli was negligible in this study. The proposed SSVEP BCI combined with 3D flickers can allow people to control home appliances and other equipment such as wheelchairs, prosthetics, and orthotics without encountering dangerous situations that may happen when using BCIs in real world. 3D stimuli-based SSVEP BCI would motivate people to use 3D displays and vitalize the 3D related industry due to its entertainment value and high performance.

  11. High-efficiency aperiodic two-dimensional high-contrast-grating hologram

    NASA Astrophysics Data System (ADS)

    Qiao, Pengfei; Zhu, Li; Chang-Hasnain, Connie J.

    2016-03-01

    High efficiency phase holograms are designed and implemented using aperiodic two-dimensional (2D) high-contrast gratings (HCGs). With our design algorithm and an in-house developed rigorous coupled-wave analysis (RCWA) package for periodic 2D HCGs, the structural parameters are obtained to achieve a full 360-degree phase-tuning range of the reflected or transmitted wave, while maintaining the power efficiency above 90%. For given far-field patterns or 3D objects to reconstruct, we can generate the near-field phase distribution through an iterative process. The aperiodic HCG phase plates we design for holograms are pixelated, and the local geometric parameters for each pixel to achieve desired phase alternation are extracted from our periodic HCG designs. Our aperiodic HCG holograms are simulated using the 3D finite-difference time-domain method. The simulation results confirm that the desired far-field patterns are successfully produced under illumination at the designed wavelength. The HCG holograms are implemented on the quartz wafers, using amorphous silicon as the high-index material. We propose HCG designs at both visible and infrared wavelengths, and our simulation confirms the reconstruction of 3D objects. The high-contrast gratings allow us to realize low-cost, compact, flat, and integrable holograms with sub-micrometer thicknesses.

  12. 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials.

    PubMed

    Li, Yi-Chen; Zhang, Yu Shrike; Akpek, Ali; Shin, Su Ryon; Khademhosseini, Ali

    2016-12-02

    Four-dimensional (4D) bioprinting, encompassing a wide range of disciplines including bioengineering, materials science, chemistry, and computer sciences, is emerging as the next-generation biofabrication technology. By utilizing stimuli-responsive materials and advanced three-dimensional (3D) bioprinting strategies, 4D bioprinting aims to create dynamic 3D patterned biological structures that can transform their shapes or behavior under various stimuli. In this review, we highlight the potential use of various stimuli-responsive materials for 4D printing and their extension into biofabrication. We first discuss the state of the art and limitations associated with current 3D printing modalities and their transition into the inclusion of the additional time dimension. We then suggest the potential use of different stimuli-responsive biomaterials as the bioink that may achieve 4D bioprinting where transformation of fabricated biological constructs can be realized. We finally conclude with future perspectives.

  13. 3D Self-Localisation From Angle of Arrival Measurements

    DTIC Science & Technology

    2009-04-01

    systems can provide precise position information. However, there are situations where GPS is not adequate such as indoor, underwater, extraterrestrial or...Transactions on Pattern Analysis and Machine Intelligence , Vol. 22, No. 6, June 2000, pp 610-622. 7. Torrieri, D.J., "Statistical Theory of Passive Location

  14. UDOF direct improvement by modulating mask absorber thickness

    NASA Astrophysics Data System (ADS)

    Yu, Tuan-Yen; Lio, En Chuan; Chen, Po Tsang; Wei, Chih I.; Chen, Yi Ting; Peng, Ming Chun; Chou, William; Yu, Chun Chi

    2016-10-01

    As the process generation migrate to advanced and smaller dimension or pitch, the mask and resist 3D effects will impact the lithography focus common window severely because of both individual depth-of-focus (iDOF) range decrease and center mismatch. Furthermore, some chemical or thermal factors, such as PEB (Post Exposure Bake) also worsen the usable depth-of-focus (uDOF) performance. So the mismatch of thru-pitch iDOF center should be considered as a lithography process integration issue, and more complicated to partition the 3D effects induced by optical or chemical factors. In order to reduce the impact of 3D effects induced by both optical and chemical issues, and improve iDOF center mismatch, we would like to propose a mask absorber thickness offset approach, which is directly to compensate the iDOF center bias by adjusting mask absorber thickness, for iso, semi-iso or dense characteristics in line, space or via patterns to enlarge common process window, i.e uDOF, which intends to provide similar application as Flexwave[1] (ASML trademark). By the way, since mask absorber thickness offset approach is similar to focus tuning or change on wafer lithography process, it could be acted as the process tuning method of photoresist (PR) profile optimization locally, PR scum improvement in specific patterns or to modulate etching bias to meet process integration request. For mass production consideration, and available material, current att-PSM blank, quartz, MoSi with chrome layer as hard-mask in reticle process, will be implemented in this experiment, i.e. chrome will be kept remaining above partial thru-pitch patterns, and act as the absorber thickness bias in different patterns. And then, from the best focus offset of thru-pitch patterns, the iDOF center shifts could be directly corrected and to enlarge uDOF by increasing the overlap of iDOF. Finally, some negative tone development (NTD) result in line patterns will be demonstrated as well.

  15. Perceived crosstalk assessment on patterned retarder 3D display

    NASA Astrophysics Data System (ADS)

    Zou, Bochao; Liu, Yue; Huang, Yi; Wang, Yongtian

    2014-03-01

    CONTEXT: Nowadays, almost all stereoscopic displays suffer from crosstalk, which is one of the most dominant degradation factors of image quality and visual comfort for 3D display devices. To deal with such problems, it is worthy to quantify the amount of perceived crosstalk OBJECTIVE: Crosstalk measurements are usually based on some certain test patterns, but scene content effects are ignored. To evaluate the perceived crosstalk level for various scenes, subjective test may bring a more correct evaluation. However, it is a time consuming approach and is unsuitable for real­ time applications. Therefore, an objective metric that can reliably predict the perceived crosstalk is needed. A correct objective assessment of crosstalk for different scene contents would be beneficial to the development of crosstalk minimization and cancellation algorithms which could be used to bring a good quality of experience to viewers. METHOD: A patterned retarder 3D display is used to present 3D images in our experiment. By considering the mechanism of this kind of devices, an appropriate simulation of crosstalk is realized by image processing techniques to assign different values of crosstalk to each other between image pairs. It can be seen from the literature that the structures of scenes have a significant impact on the perceived crosstalk, so we first extract the differences of the structural information between original and distorted image pairs through Structural SIMilarity (SSIM) algorithm, which could directly evaluate the structural changes between two complex-structured signals. Then the structural changes of left view and right view are computed respectively and combined to an overall distortion map. Under 3D viewing condition, because of the added value of depth, the crosstalk of pop-out objects may be more perceptible. To model this effect, the depth map of a stereo pair is generated and the depth information is filtered by the distortion map. Moreover, human attention is one of important factors for crosstalk assessment due to the fact that when viewing 3D contents, perceptual salient regions are highly likely to be a major contributor to determining the quality of experience of 3D contents. To take this into account, perceptual significant regions are extracted, and a spatial pooling technique is used to combine structural distortion map, depth map and visual salience map together to predict the perceived crosstalk more precisely. To verify the performance of the proposed crosstalk assessment metric, subjective experiments are conducted with 24 participants viewing and rating 60 simuli (5 scenes * 4 crosstalk levels * 3 camera distances). After an outliers removal and statistical process, the correlation with subjective test is examined using Pearson and Spearman rank-order correlation coefficient. Furthermore, the proposed method is also compared with two traditional 2D metrics, PSNR and SSIM. The objective score is mapped to subjective scale using a nonlinear fitting function to directly evaluate the performance of the metric. RESULIS: After the above-mentioned processes, the evaluation results demonstrate that the proposed metric is highly correlated with the subjective score when compared with the existing approaches. Because the Pearson coefficient of the proposed metric is 90.3%, it is promising for objective evaluation of the perceived crosstalk. NOVELTY: The main goal of our paper is to introduce an objective metric for stereo crosstalk assessment. The novelty contributions are twofold. First, an appropriate simulation of crosstalk by considering the characteristics of patterned retarder 3D display is developed. Second, an objective crosstalk metric based on visual attention model is introduced.

  16. Fabrication of patterned surface by soft lithographic technique for confinement of lipid bilayer

    NASA Astrophysics Data System (ADS)

    Moulick, Ranjita Ghosh; Mayer, Dirk

    2018-04-01

    In this paper we demonstrated that a 3D pattern can be well transferred from a silicon Master to a gold substrate using µcontact printing. In this process 1-Octadecanthiol served as an ink and printing followed by etching generated the desired pattern on the gold substrate. The prepatterned substrate was also used for lipid vesicle fusion and revealed that lipid molecules selectively bind to the gold layer.

  17. Proof-of-concept: 3D bioprinting of pigmented human skin constructs.

    PubMed

    Ng, Wei Long; Qi, Jovina Tan Zhi; Yeong, Wai Yee; Naing, May Win

    2018-01-23

    Three-dimensional (3D) pigmented human skin constructs have been fabricated using a 3D bioprinting approach. The 3D pigmented human skin constructs are obtained from using three different types of skin cells (keratinocytes, melanocytes and fibroblasts from three different skin donors) and they exhibit similar constitutive pigmentation (pale pigmentation) as the skin donors. A two-step drop-on-demand bioprinting strategy facilitates the deposition of cell droplets to emulate the epidermal melanin units (pre-defined patterning of keratinocytes and melanocytes at the desired positions) and manipulation of the microenvironment to fabricate 3D biomimetic hierarchical porous structures found in native skin tissue. The 3D bioprinted pigmented skin constructs are compared to the pigmented skin constructs fabricated by conventional a manual-casting approach; in-depth characterization of both the 3D pigmented skin constructs has indicated that the 3D bioprinted skin constructs have a higher degree of resemblance to native skin tissue in term of the presence of well-developed stratified epidermal layers and the presence of a continuous layer of basement membrane proteins as compared to the manually-cast samples. The 3D bioprinting approach facilitates the development of 3D in vitro pigmented human skin constructs for potential toxicology testing and fundamental cell biology research.

  18. Direct single-layered fabrication of 3D concavo convex patterns in nano-stereolithography

    NASA Astrophysics Data System (ADS)

    Lim, T. W.; Park, S. H.; Yang, D. Y.; Kong, H. J.; Lee, K. S.

    2006-09-01

    A nano-surfacing process (NSP) is proposed to directly fabricate three-dimensional (3D) concavo convex-shaped microstructures such as micro-lens arrays using two-photon polymerization (TPP), a promising technique for fabricating arbitrary 3D highly functional micro-devices. In TPP, commonly utilized methods for fabricating complex 3D microstructures to date are based on a layer-by-layer accumulating technique employing two-dimensional sliced data derived from 3D computer-aided design data. As such, this approach requires much time and effort for precise fabrication. In this work, a novel single-layer exposure method is proposed in order to improve the fabricating efficiency for 3D concavo convex-shaped microstructures. In the NSP, 3D microstructures are divided into 13 sub-regions horizontally with consideration of the heights. Those sub-regions are then expressed as 13 characteristic colors, after which a multi-voxel matrix (MVM) is composed with the characteristic colors. Voxels with various heights and diameters are generated to construct 3D structures using a MVM scanning method. Some 3D concavo convex-shaped microstructures were fabricated to estimate the usefulness of the NSP, and the results show that it readily enables the fabrication of single-layered 3D microstructures.

  19. Going Virtual… or Not: Development and Testing of a 3D Virtual Astronomy Environment

    NASA Astrophysics Data System (ADS)

    Ruzhitskaya, L.; Speck, A.; Ding, N.; Baldridge, S.; Witzig, S.; Laffey, J.

    2013-04-01

    We present our preliminary results of a pilot study of students' knowledge transfer of an astronomy concept into a new environment. We also share our discoveries on what aspects of a 3D environment students consider being motivational and discouraging for their learning. This study was conducted among 64 non-science major students enrolled in an astronomy laboratory course. During the course, students learned the concept and applications of Kepler's laws using a 2D interactive environment. Later in the semester, the students were placed in a 3D environment in which they were asked to conduct observations and to answers a set of questions pertaining to the Kepler's laws of planetary motion. In this study, we were interested in observing scrutinizing and assessing students' behavior: from choices that they made while creating their avatars (virtual representations) to tools they choose to use, to their navigational patterns, to their levels of discourse in the environment. These helped us to identify what features of the 3D environment our participants found to be helpful and interesting and what tools created unnecessary clutter and distraction. The students' social behavior patterns in the virtual environment together with their answers to the questions helped us to determine how well they understood Kepler's laws, how well they could transfer the concepts to a new situation, and at what point a motivational tool such as a 3D environment becomes a disruption to the constructive learning. Our founding confirmed that students construct deeper knowledge of a concept when they are fully immersed in the environment.

  20. Variability in glutenin subunit composition of Mediterranean durum wheat germplasm and its relationship with gluten strength.

    PubMed

    Nazco, R; Peña, R J; Ammar, K; Villegas, D; Crossa, J; Moragues, M; Royo, C

    2014-06-01

    The allelic composition at five glutenin loci was assessed by one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (1D SDS-PAGE) on a set of 155 landraces (from 21 Mediterranean countries) and 18 representative modern varieties. Gluten strength was determined by SDS-sedimentation on samples grown under rainfed conditions during 3 years in north-eastern Spain. One hundred and fourteen alleles/banding patterns were identified (25 at Glu-1 and 89 at Glu-2 / Glu-3 loci); 0·85 of them were in landraces at very low frequency and 0·72 were unreported. Genetic diversity index was 0·71 for landraces and 0·38 for modern varieties. All modern varieties exhibited medium to strong gluten type with none of their 13 banding patterns having a significant effect on gluten-strength type. Ten banding patterns significantly affected gluten strength in landraces. Alleles Glu-B1e (band 20), Glu-A3a (band 6), Glu-A3d (bands 6 + 11), Glu-B3a (bands 2 + 4+15 + 19) and Glu-B2a (band 12) significantly increased the SDS-value, and their effects were associated with their frequency. Two alleles, Glu-A3b (band 5) and Glu-B2b (null), significantly reduced gluten strength, but only the effect of the latter locus could be associated with its frequency. Only three rare banding patterns affected gluten strength significantly: Glu-B1a (band 7), found in six landraces, had a negative effect, whereas banding patterns 2 + 4+14 + 15 + 18 and 2 + 4+15 + 18 + 19 at Glu-B3 had a positive effect. Landraces with outstanding gluten strength were more frequent in eastern than in western Mediterranean countries. The geographical pattern displayed from the frequencies of Glu-A1c is discussed.

Top