Sample records for microcontroller based system

  1. Remote control of microcontroller-based infant stimulating system.

    PubMed

    Burunkaya, M; Güler, I

    2000-04-01

    In this paper, a remote-controlled and microcontroller-based cradle is designed and constructed. This system is also called Remote Control of Microcontroller-Based Infant Stimulation System or the RECOMBIS System. Cradle is an infant stimulating system that provides relaxation and sleeping for the baby. RECOMBIS system is designed for healthy full-term newborns to provide safe infant care and provide relaxation and sleeping for the baby. A microcontroller-based electronic circuit was designed and implemented for RECOMBIS system. Electromagnets were controlled by 8-bit PIC16F84 microcontroller, which is programmed using MPASM package. The system works by entering preset values from the keyboard, or pulse code modulated radio frequency remote control system. The control of the system and the motion range were tested. The test results showed that the system provided a good performance.

  2. Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor

    NASA Astrophysics Data System (ADS)

    Hazarika, D.; Pegu, D. S.

    2013-03-01

    This paper describes a micro-controller based instrumentation system to monitor air pressure using optical fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins. The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.

  3. A low-cost microcontroller-based system to monitor crop temperature and water status

    USDA-ARS?s Scientific Manuscript database

    A prototype microcontroller-based system was developed to automate the measurement and recording of soil-moisture status and canopy-, air-, and soil-temperature levels in cropped fields. Measurements of these conditions within the cropping system are often used to assess plant stress, and can assis...

  4. A PIC microcontroller-based system for real-life interfacing of external peripherals with a mobile robot

    NASA Astrophysics Data System (ADS)

    Singh, N. Nirmal; Chatterjee, Amitava; Rakshit, Anjan

    2010-02-01

    The present article describes the development of a peripheral interface controller (PIC) microcontroller-based system for interfacing external add-on peripherals with a real mobile robot, for real life applications. This system serves as an important building block of a complete integrated vision-based mobile robot system, integrated indigenously in our laboratory. The system is composed of the KOALA mobile robot in conjunction with a personal computer (PC) and a two-camera-based vision system where the PIC microcontroller is used to drive servo motors, in interrupt-driven mode, to control additional degrees of freedom of the vision system. The performance of the developed system is tested by checking it under the control of several user-specified commands, issued from the PC end.

  5. Implementation of software-based sensor linearization algorithms on low-cost microcontrollers.

    PubMed

    Erdem, Hamit

    2010-10-01

    Nonlinear sensors and microcontrollers are used in many embedded system designs. As the input-output characteristic of most sensors is nonlinear in nature, obtaining data from a nonlinear sensor by using an integer microcontroller has always been a design challenge. This paper discusses the implementation of six software-based sensor linearization algorithms for low-cost microcontrollers. The comparative study of the linearization algorithms is performed by using a nonlinear optical distance-measuring sensor. The performance of the algorithms is examined with respect to memory space usage, linearization accuracy and algorithm execution time. The implementation and comparison results can be used for selection of a linearization algorithm based on the sensor transfer function, expected linearization accuracy and microcontroller capacity. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Control of dental prosthesis system with microcontroller.

    PubMed

    Kapidere, M; Müldür, S; Güler, I

    2000-04-01

    In this study, a microcontroller-based electronic circuit was designed and implemented for dental prosthesis curing system. Heater, compressor and valve were controlled by 8-bit PIC16C64 microcontroller which is programmed using MPASM package. The temperature and time were controlled automatically by preset values which were inputted from keyboard while the pressure was kept constant. Calibration was controlled and the working range was tested. The test results showed that the system provided a good performance.

  7. Efforts toward an autonomous wheelchair - biomed 2011.

    PubMed

    Barrett, Steven; Streeter, Robert

    2011-01-01

    An autonomous wheelchair is in development to provide mobility to those with significant physical challenges. The overall goal of the project is to develop a wheelchair that is fully autonomous with the ability to navigate about an environment and negotiate obstacles. As a starting point for the project, we have reversed engineered the joystick control system of an off-the-shelf commercially available wheelchair. The joystick control has been replaced with a microcontroller based system. The microcontroller has the capability to interface with a number of subsystems currently under development including wheel odometers, obstacle avoidance sensors, and ultrasonic-based wall sensors. This paper will discuss the microcontroller based system and provide a detailed system description. Results of this study may be adapted to commercial or military robot control.

  8. Low-Cost Undergraduate Control Systems Experiments Using Microcontroller-Based Control of a DC Motor

    ERIC Educational Resources Information Center

    Gunasekaran, M.; Potluri, R.

    2012-01-01

    This paper presents low-cost experiments for a control systems laboratory module that is worth one and a third credits. The experiments are organized around the microcontroller-based control of a permanent magnet dc motor. The experimental setups were built in-house. Except for the operating system, the software used is primarily freeware or free…

  9. Investigating Cell-Material Interactions of Magnetospirillum magneticum as an Approach for Probing Submerged Surface Structural Integrity

    DTIC Science & Technology

    2012-07-01

    developed a microscope- based , offset Helmholtz coil system with a custom-designed microcontroller. We have developed a microfabrication approach for...implemented an experimental model system using ferromagnetic beads. We have applied direct and frequency based magnetic fields for controlling magnetotactic...fields. Expanded Accomplishments We have developed a microscope- based , offset Helmholtz coil system with a custom- designed microcontroller. To be

  10. A new microcontroller-based human brain hypothermia system.

    PubMed

    Kapidere, Metin; Ahiska, Raşit; Güler, Inan

    2005-10-01

    Many studies show that artificial hypothermia of brain in conditions of anesthesia with the rectal temperature lowered down to 33 degrees C produces pronounced prophylactic effect protecting the brain from anoxia. Out of the methods employed now in clinical practice for reducing the oxygen consumption by the cerebral tissue, the most efficacious is craniocerebral hypothermia (CCH). It is finding even more extensive application in cardiovascular surgery, neurosurgery, neurorenimatology and many other fields of medical practice. In this study, a microcontroller-based designed human brain hypothermia system (HBHS) is designed and constructed. The system is intended for cooling and heating the brain. HBHS consists of a thermoelectric hypothermic helmet, a control and a power unit. Helmet temperature is controlled by 8-bit PIC16F877 microcontroller which is programmed using MPLAB editor. Temperature is converted to 10-bit digital and is controlled automatically by the preset values which have been already entered in the microcontroller. Calibration is controlled and the working range is tested. Temperature of helmet is controlled between -5 and +46 degrees C by microcontroller, with the accuracy of +/-0.5 degrees C.

  11. Development of Low-Cost Microcontroller-Based Interface for Data Acquisition and Control of Microbioreactor Operation.

    PubMed

    Husain, Abdul Rashid; Hadad, Yaser; Zainal Alam, Muhd Nazrul Hisham

    2016-10-01

    This article presents the development of a low-cost microcontroller-based interface for a microbioreactor operation. An Arduino MEGA 2560 board with 54 digital input/outputs, including 15 pulse-width-modulation outputs, has been chosen to perform the acquisition and control of the microbioreactor. The microbioreactor (volume = 800 µL) was made of poly(dimethylsiloxane) and poly(methylmethacrylate) polymers. The reactor was built to be equipped with sensors and actuators for the control of reactor temperature and the mixing speed. The article discusses the circuit of the microcontroller-based platform, describes the signal conditioning steps, and evaluates the capacity of the proposed low-cost microcontroller-based interface in terms of control accuracy and system responses. It is demonstrated that the proposed microcontroller-based platform is able to operate parallel microbioreactor operation with satisfactory performances. Control accuracy at a deviation less than 5% of the set-point values and responses in the range of few seconds have been recorded. © 2015 Society for Laboratory Automation and Screening.

  12. [Design of modulating intermediate frequency electrotherapy system based on microcontroller unit].

    PubMed

    Yu, Xuefei; Liu, Xianfeng; Peng, Daming

    2010-12-01

    This article is devoted to the design of a system for modulating intermediate frequency electrotherapy waveform output. Prescriptions with different output waveform combinations were produced using microcontroller unit (MCU). The rich output waveforms effectively improve tolerance of human adaptability and achieve a therapeutic effect.

  13. Microcontroller-based wireless recorder for biomedical signals.

    PubMed

    Chien, C-N; Hsu, H-W; Jang, J-K; Rau, C-L; Jaw, F-S

    2005-01-01

    A portable multichannel system is described for the recording of biomedical signals wirelessly. Instead of using the conversional time-division analog-modulation method, the technique of digital multiplexing was applied to increase the number of signal channels to 4. Detailed design considerations and functional allocation of the system is discussed. The frontend unit was modularly designed to condition the input signal in an optimal manner. Then, the microcontroller handled the tasks of data conversion, wireless transmission, as well as providing the ability of simple preprocessing such as waveform averaging or rectification. The low-power nature of this microcontroller affords the benefit of battery operation and hence, patient isolation of the system. Finally, a single-chip receiver, which compatible with the RF transmitter of the microcontroller, was used to implement a compact interface with the host computer. An application of this portable recorder for low-back pain studies is shown. This device can simultaneously record one ECG and two surface EMG wirelessly, thus, is helpful in relieving patients' anxiety devising clinical measurement. Such an approach, microcontroller-based wireless measurement, could be an important trend for biomedical instrumentation and we help that this paper could be useful for other colleagues.

  14. A microcontroller-based microwave free-space measurement system for permittivity determination of lossy liquid materials.

    PubMed

    Hasar, U C

    2009-05-01

    A microcontroller-based noncontact and nondestructive microwave free-space measurement system for real-time and dynamic determination of complex permittivity of lossy liquid materials has been proposed. The system is comprised of two main sections--microwave and electronic. While the microwave section provides for measuring only the amplitudes of reflection coefficients, the electronic section processes these data and determines the complex permittivity using a general purpose microcontroller. The proposed method eliminates elaborate liquid sample holder preparation and only requires microwave components to perform reflection measurements from one side of the holder. In addition, it explicitly determines the permittivity of lossy liquid samples from reflection measurements at different frequencies without any knowledge on sample thickness. In order to reduce systematic errors in the system, we propose a simple calibration technique, which employs simple and readily available standards. The measurement system can be a good candidate for industrial-based applications.

  15. Detection of Lock on Radar System Based on Ultrasonic US 100 Sensor And Arduino Uno R3 With Image Processing GUI

    NASA Astrophysics Data System (ADS)

    Baskoro, F.; Reynaldo, B. R.

    2018-04-01

    The development of electronics technology especially in the field of microcontroller occurs very rapidly. There have been many applications and useful use of microcontroller in everyday life as well as in laboratory research. In this study used Arduino Uno R3 as microcontroller-based platform ATMega328 as a sensor distance meter to know the distance of an object with high accuracy. The method used is to utilize the function Timer / Counter in Arduino UNO R3. On the Arduino Uno R3 platform, there is ATMEL ATmega328 microcontroller which has a frequency generating speed up to 20 MHz, 16-bit enumeration capability and using C language as its programming. With the Arduino Uno R3 platform, the ATmega328 microcontroller can be programmed with Arduino IDE software that is simpler and easier because it has been supported by libraries and many support programs. The result of this research is distance measurement to know the location of an object using US ultrasonic wave sensor US 100 with Arduino Uno R3 based on ATMega328 microcontroller which then the result will be displayed using Image Processing.

  16. Application of neural based estimation algorithm for gait phases of above knee prosthesis.

    PubMed

    Tileylioğlu, E; Yilmaz, A

    2015-01-01

    In this study, two gait phase estimation methods which utilize a rule based quantization and an artificial neural network model respectively are developed and applied for the microcontroller based semi-active knee prosthesis in order to respond user demands and adapt environmental conditions. In this context, an experimental environment in which gait data collected synchronously from both inertial and image based measurement systems has been set up. The inertial measurement system that incorporates MEM accelerometers and gyroscopes is used to perform direct motion measurement through the microcontroller, while the image based measurement system is employed for producing the verification data and assessing the success of the prosthesis. Embedded algorithms dynamically normalize the input data prior to gait phase estimation. The real time analyses of two methods revealed that embedded ANN based approach performs slightly better in comparison with the rule based algorithm and has advantage of being easily-scalable, thus able to accommodate additional input parameters considering the microcontroller constraints.

  17. Personal Computer-less (PC-less) Microcontroller Training Kit

    NASA Astrophysics Data System (ADS)

    Somantri, Y.; Wahyudin, D.; Fushilat, I.

    2018-02-01

    The need of microcontroller training kit is necessary for practical work of students of electrical engineering education. However, to use available training kit not only costly but also does not meet the need of laboratory requirements. An affordable and portable microcontroller kit could answer such problem. This paper explains the design and development of Personal Computer Less (PC-Less) Microcontroller Training Kit. It was developed based on Lattepanda processor and Arduino microcontroller as target. The training kit equipped with advanced input-output interfaces that adopted the concept of low cost and low power system. The preliminary usability testing proved this device can be used as a tool for microcontroller programming and industrial automation training. By adopting the concept of portability, the device could be operated in the rural area which electricity and computer infrastructure are limited. Furthermore, the training kit is suitable for student of electrical engineering student from university and vocational high school.

  18. Development of a Microcontroller-based Battery Charge Controller for an Off-grid Photovoltaic System

    NASA Astrophysics Data System (ADS)

    Rina, Z. S.; Amin, N. A. M.; Hashim, M. S. M.; Majid, M. S. A.; Rojan, M. A.; Zaman, I.

    2017-08-01

    A development of a microcontroller-based charge controller for a 12V battery has been explained in this paper. The system is designed based on a novel algorithm to couple existing solar photovoltaic (PV) charging and main grid supply charging power source. One of the main purposes of the hybrid charge controller is to supply a continuous charging power source to the battery. Furthermore, the hybrid charge controller was developed to shorten the battery charging time taken. The algorithm is programmed in an Arduino Uno R3 microcontroller that monitors the battery voltage and generates appropriate commands for the charging power source selection. The solar energy is utilized whenever the solar irradiation is high. The main grid supply will be only consumed whenever the solar irradiation is low. This system ensures continuous charging power supply and faster charging of the battery.

  19. Development and evaluation of an open-source, low-cost distributed sensor network for environmental monitoring applications

    NASA Astrophysics Data System (ADS)

    Gunawardena, N.; Pardyjak, E. R.; Stoll, R.; Khadka, A.

    2018-02-01

    Over the last decade there has been a proliferation of low-cost sensor networks that enable highly distributed sensor deployments in environmental applications. The technology is easily accessible and rapidly advancing due to the use of open-source microcontrollers. While this trend is extremely exciting, and the technology provides unprecedented spatial coverage, these sensors and associated microcontroller systems have not been well evaluated in the literature. Given the large number of new deployments and proposed research efforts using these technologies, it is necessary to quantify the overall instrument and microcontroller performance for specific applications. In this paper, an Arduino-based weather station system is presented in detail. These low-cost energy-budget measurement stations, or LEMS, have now been deployed for continuous measurements as part of several different field campaigns, which are described herein. The LEMS are low-cost, flexible, and simple to maintain. In addition to presenting the technical details of the LEMS, its errors are quantified in laboratory and field settings. A simple artificial neural network-based radiation-error correction scheme is also presented. Finally, challenges and possible improvements to microcontroller-based atmospheric sensing systems are discussed.

  20. Rapid feedback control and stabilization of an optical tweezers with a budget microcontroller

    NASA Astrophysics Data System (ADS)

    Nino, Daniel; Wang, Haowei; Milstein, Joshua N.

    2014-09-01

    Laboratories ranging the scientific disciplines employ feedback control to regulate variables within their experiments, from the flow of liquids within a microfluidic device to the temperature within a cell incubator. We have built an inexpensive, yet fast and rapidly deployed, feedback control system that is straightforward and flexible to implement from a commercially available Arduino Due microcontroller. This is in comparison with the complex, time-consuming and often expensive electronics that are commonly implemented. As an example of its utility, we apply our feedback controller to the task of stabilizing the main trapping laser of an optical tweezers. The feedback controller, which is inexpensive yet fast and rapidly deployed, was implemented from hacking an open source Arduino Due microcontroller. Our microcontroller based feedback system can stabilize the laser intensity to a few tenths of a per cent at 200 kHz, which is an order of magnitude better than the laser's base specifications, illustrating the utility of these devices.

  1. ETHERNET BASED EMBEDDED SYSTEM FOR FEL DIAGNOSTICS AND CONTROLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jianxun Yan; Daniel Sexton; Steven Moore

    2006-10-24

    An Ethernet based embedded system has been developed to upgrade the Beam Viewer and Beam Position Monitor (BPM) systems within the free-electron laser (FEL) project at Jefferson Lab. The embedded microcontroller was mounted on the front-end I/O cards with software packages such as Experimental Physics and Industrial Control System (EPICS) and Real Time Executive for Multiprocessor System (RTEMS) running as an Input/Output Controller (IOC). By cross compiling with the EPICS, the RTEMS kernel, IOC device supports, and databases all of these can be downloaded into the microcontroller. The first version of the BPM electronics based on the embedded controller wasmore » built and is currently running in our FEL system. The new version of BPM that will use a Single Board IOC (SBIOC), which integrates with an Field Programming Gate Array (FPGA) and a ColdFire embedded microcontroller, is presently under development. The new system has the features of a low cost IOC, an open source real-time operating system, plug&play-like ease of installation and flexibility, and provides a much more localized solution.« less

  2. Built-In Diagnostics (BID) Of Equipment/Systems

    NASA Technical Reports Server (NTRS)

    Granieri, Michael N.; Giordano, John P.; Nolan, Mary E.

    1995-01-01

    Diagnostician(TM)-on-Chip (DOC) technology identifies faults and commands systems reconfiguration. Smart microcontrollers operating in conjunction with other system-control circuits, command self-correcting system/equipment actions in real time. DOC microcontroller generates commands for associated built-in test equipment to stimulate unit of equipment diagnosed, collects and processes response data obtained by built-in test equipment, and performs diagnostic reasoning on response data, using diagnostic knowledge base derived from design data.

  3. An embedded Simplified Fuzzy ARTMAP implemented on a microcontroller for food classification.

    PubMed

    Garcia-Breijo, Eduardo; Garrigues, Jose; Sanchez, Luis Gil; Laguarda-Miro, Nicolas

    2013-08-13

    In the present study, a portable system based on a microcontroller has been developed to classify different kinds of honeys. In order to do this classification, a Simplified Fuzzy ARTMAP network (SFA) implemented in a microcontroller has been used. Due to memory limits when working with microcontrollers, it is necessary to optimize the use of both program and data memory. Thus, a Graphical User Interface (GUI) for MATLAB® has been developed in order to optimize the necessary parameters to programme the SFA in a microcontroller. The measures have been carried out by potentiometric techniques using a multielectrode made of seven different metals. Next, the neural network has been trained on a PC by means of the GUI in Matlab using the data obtained in the experimental phase. The microcontroller has been programmed with the obtained parameters and then, new samples have been analysed using the portable system in order to test the model. Results are very promising, as an 87.5% recognition rate has been achieved in the training phase, which suggests that this kind of procedures can be successfully used not only for honey classification, but also for many other kinds of food.

  4. An Embedded Simplified Fuzzy ARTMAP Implemented on a Microcontroller for Food Classification

    PubMed Central

    Garcia-Breijo, Eduardo; Garrigues, Jose; Sanchez, Luis Gil; Laguarda-Miro, Nicolas

    2013-01-01

    In the present study, a portable system based on a microcontroller has been developed to classify different kinds of honeys. In order to do this classification, a Simplified Fuzzy ARTMAP network (SFA) implemented in a microcontroller has been used. Due to memory limits when working with microcontrollers, it is necessary to optimize the use of both program and data memory. Thus, a Graphical User Interface (GUI) for MATLAB® has been developed in order to optimize the necessary parameters to programme the SFA in a microcontroller. The measures have been carried out by potentiometric techniques using a multielectrode made of seven different metals. Next, the neural network has been trained on a PC by means of the GUI in Matlab using the data obtained in the experimental phase. The microcontroller has been programmed with the obtained parameters and then, new samples have been analysed using the portable system in order to test the model. Results are very promising, as an 87.5% recognition rate has been achieved in the training phase, which suggests that this kind of procedures can be successfully used not only for honey classification, but also for many other kinds of food. PMID:23945736

  5. Design of low-cost general purpose microcontroller based neuromuscular stimulator.

    PubMed

    Koçer, S; Rahmi Canal, M; Güler, I

    2000-04-01

    In this study, a general purpose, low-cost, programmable, portable and high performance stimulator is designed and implemented. For this purpose, a microcontroller is used in the design of the stimulator. The duty cycle and amplitude of the designed system can be controlled using a keyboard. The performance test of the system has shown that the results are reliable. The overall system can be used as the neuromuscular stimulator under safe conditions.

  6. Voltage control in Z-source inverter using low cost microcontroller for undergraduate approach

    NASA Astrophysics Data System (ADS)

    Zulkifli, Shamsul Aizam; Sewang, Mohd Rizal; Salimin, Suriana; Shah, Noor Mazliza Badrul

    2017-09-01

    This paper is focussing on controlling the output voltage of Z-Source Inverter (ZSI) using a low cost microcontroller with MATLAB-Simulink that has been used for interfacing the voltage control at the output of ZSI. The key advantage of this system is the ability of a low cost microcontroller to process the voltage control blocks based on the mathematical equations created in MATLAB-Simulink. The Proportional Integral (PI) control equations are been applied and then, been downloaded to the microcontroller for observing the changes on the voltage output regarding to the changes on the reference on the PI. The system has been simulated in MATLAB and been verified with the hardware setup. As the results, the Raspberry Pi and Arduino that have been used in this work are able to respond well when there is a change of ZSI output. It proofed that, by applying/introducing this method to student in undergraduate level, it will help the student to understand more on the process of the power converter combine with a control feedback function that can be applied at low cost microcontroller.

  7. Sensor Systems Based on FPGAs and Their Applications: A Survey

    PubMed Central

    de la Piedra, Antonio; Braeken, An; Touhafi, Abdellah

    2012-01-01

    In this manuscript, we present a survey of designs and implementations of research sensor nodes that rely on FPGAs, either based upon standalone platforms or as a combination of microcontroller and FPGA. Several current challenges in sensor networks are distinguished and linked to the features of modern FPGAs. As it turns out, low-power optimized FPGAs are able to enhance the computation of several types of algorithms in terms of speed and power consumption in comparison to microcontrollers of commercial sensor nodes. We show that architectures based on the combination of microcontrollers and FPGA can play a key role in the future of sensor networks, in fields where processing capabilities such as strong cryptography, self-testing and data compression, among others, are paramount.

  8. Throughput, latency and cost comparisons of microcontroller-based implementations of wireless sensor network (WSN) in high jump sports

    NASA Astrophysics Data System (ADS)

    Ahmad, Afandi; Roslan, Muhammad Faris; Amira, Abbes

    2017-09-01

    In high jump sports, approach take-off speed and force during the take-off are two (2) main important parts to gain maximum jump. To measure both parameters, wireless sensor network (WSN) that contains microcontroller and sensor are needed to describe the results of speed and force for jumpers. Most of the microcontroller exhibit transmission issues in terms of throughput, latency and cost. Thus, this study presents the comparison of wireless microcontrollers in terms of throughput, latency and cost, and the microcontroller that have best performances and cost will be implemented in high jump wearable device. In the experiments, three (3) parts have been integrated - input, process and output. Force (for ankle) and global positioning system (GPS) sensor (for body waist) acts as an input for data transmission. These data were then being processed by both microcontrollers, ESP8266 and Arduino Yun Mini to transmit the data from sensors to the server (host-PC) via message queuing telemetry transport (MQTT) protocol. The server acts as receiver and the results was calculated from the MQTT log files. At the end, results obtained have shown ESP8266 microcontroller had been chosen since it achieved high throughput, low latency and 11 times cheaper in term of prices compared to Arduino Yun Mini microcontroller.

  9. On-chip temperature-based digital signal processing for customized wireless microcontroller

    NASA Astrophysics Data System (ADS)

    Farhah Razanah Faezal, Siti; Isa, Mohd Nazrin Md; Harun, Azizi; Nizam Mohyar, Shaiful; Bahari Jambek, Asral

    2017-11-01

    Increases in die size and power density inside system-on-chip (SoC) design have brought thermal issue inside the system. Uneven heat-up and increasing in temperature offset on-chip has become a major factor that can limits the system performance. This paper presents the design and simulation of a temperature-based digital signal processing for modern system-on-chip design using the Verilog HDL. This design yields continuous monitoring of temperature and reacts to specified conditions. The simulation of the system has been done on Altera Quartus Software v. 14. With system above, microcontroller can achieve nominal power dissipation and operation is within the temperature range due to the incorporate of an interrupt-based system.

  10. RTOS kernel in portable electrocardiograph

    NASA Astrophysics Data System (ADS)

    Centeno, C. A.; Voos, J. A.; Riva, G. G.; Zerbini, C.; Gonzalez, E. A.

    2011-12-01

    This paper presents the use of a Real Time Operating System (RTOS) on a portable electrocardiograph based on a microcontroller platform. All medical device digital functions are performed by the microcontroller. The electrocardiograph CPU is based on the 18F4550 microcontroller, in which an uCOS-II RTOS can be embedded. The decision associated with the kernel use is based on its benefits, the license for educational use and its intrinsic time control and peripherals management. The feasibility of its use on the electrocardiograph is evaluated based on the minimum memory requirements due to the kernel structure. The kernel's own tools were used for time estimation and evaluation of resources used by each process. After this feasibility analysis, the migration from cyclic code to a structure based on separate processes or tasks able to synchronize events is used; resulting in an electrocardiograph running on one Central Processing Unit (CPU) based on RTOS.

  11. Microcontroller-based real-time QRS detection.

    PubMed

    Sun, Y; Suppappola, S; Wrublewski, T A

    1992-01-01

    The authors describe the design of a system for real-time detection of QRS complexes in the electrocardiogram based on a single-chip microcontroller (Motorola 68HC811). A systematic analysis of the instrumentation requirements for QRS detection and of the various design techniques is also given. Detection algorithms using different nonlinear transforms for the enhancement of QRS complexes are evaluated by using the ECG database of the American Heart Association. The results show that the nonlinear transform involving multiplication of three adjacent, sign-consistent differences in the time domain gives a good performance and a quick response. When implemented with an appropriate sampling rate, this algorithm is also capable of rejecting pacemaker spikes. The eight-bit single-chip microcontroller provides sufficient throughput and shows a satisfactory performance. Implementation of multiple detection algorithms in the same system improves flexibility and reliability. The low chip count in the design also favors maintainability and cost-effectiveness.

  12. Approaching the design of a failsafe turbine monitor with simple microcontroller blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapolin, R.E.

    1995-12-31

    The proper approach to early instrumentation design for tasks like failsafe turbine monitoring permits meeting requirements without resorting to traditional complex special-purpose electronics. Instead a small network of basic microcontroller building blocks can split the effort with each block optimized for its portion of the overall system. This paper discusses approaching design by partitioning intricate system specifications to permit each block to be optimized to the safety level appropriate for its portion of the overall task while retaining and production and reliability advantages of having common simple modules. It illustrates that approach with a modular microcontroller-based speed monitor which metmore » user needs for the latest in power plant monitoring equipment.« less

  13. Development of small and inexpensive digital data acquisition systems using a microcontroller-based approach†

    PubMed Central

    Naivar, Mark A.; Wilder, Mark E.; Habbersett, Robert C.; Woods, Travis A.; Sebba, David S.; Nolan, John P.; Graves, Steven W.

    2014-01-01

    Fully digital data acquisition systems for use in flow cytometry provide excellent flexibility and precision. Here, we demonstrate the development of a low cost, small, and low power digital flow cytometry data acquisition system using a single microcontroller chip with an integrated analog to digital converter (ADC). Our demonstration system uses a commercially available evaluation board making the system simple to integrate into a flow cytometer. We have evaluated this system using calibration microspheres analyzed on commercial, slow-flow, and CCD based flow cytometers. In our evaluations, our demonstration data system clearly resolves all eight peaks of a Rainbow microsphere set on both a slow-flow flow cytometer and a retrofitted BD FACScalibur, which indicates it has the sensitivity and resolution required for most flow cytometry applications. It is also capable of millisecond time resolution, full waveform collection, and selective triggering of data collection from a CCD camera. The capability of our demonstration system suggests that the use of microcontrollers for flow cytometry digital data-acquisition will be increasingly valuable for extending the life of older cytometers and provides a compelling data-system design approach for low-cost, portable flow cytometers. PMID:19852060

  14. Development of small and inexpensive digital data acquisition systems using a microcontroller-based approach.

    PubMed

    Naivar, Mark A; Wilder, Mark E; Habbersett, Robert C; Woods, Travis A; Sebba, David S; Nolan, John P; Graves, Steven W

    2009-12-01

    Fully digital data acquisition systems for use in flow cytometry provide excellent flexibility and precision. Here, we demonstrate the development of a low cost, small, and low power digital flow cytometry data acquisition system using a single microcontroller chip with an integrated analog to digital converter (ADC). Our demonstration system uses a commercially available evaluation board making the system simple to integrate into a flow cytometer. We have evaluated this system using calibration microspheres analyzed on commercial, slow-flow, and CCD-based flow cytometers. In our evaluations, our demonstration data system clearly resolves all eight peaks of a Rainbow microsphere set on both a slow-flow flow cytometer and a retrofitted BD FACScalibur, which indicates it has the sensitivity and resolution required for most flow cytometry applications. It is also capable of millisecond time resolution, full waveform collection, and selective triggering of data collection from a CCD camera. The capability of our demonstration system suggests that the use of microcontrollers for flow cytometry digital data-acquisition will be increasingly valuable for extending the life of older cytometers and provides a compelling data-system design approach for low-cost, portable flow cytometers.

  15. An Architectural Framework for Describing Supervisory Control and Data Acquisition (SCADA) Systems

    DTIC Science & Technology

    2004-09-01

    having one of two possible values, described as 0 or 1. Boundary A logical segregation of related components in a system. The segregation may be based ...Depending on the sophistication of the microcontroller in the RTU, it can be configured to act as a relay station for other RTUs which cannot...communicate directly with a master station, or the microcontroller can communicate on a peer-to-peer basis with other RTUs. RTUs are generally remotely

  16. Implementing a Microcontroller Watchdog with a Field-Programmable Gate Array (FPGA)

    NASA Technical Reports Server (NTRS)

    Straka, Bartholomew

    2013-01-01

    Reliability is crucial to safety. Redundancy of important system components greatly enhances reliability and hence safety. Field-Programmable Gate Arrays (FPGAs) are useful for monitoring systems and handling the logic necessary to keep them running with minimal interruption when individual components fail. A complete microcontroller watchdog with logic for failure handling can be implemented in a hardware description language (HDL.). HDL-based designs are vendor-independent and can be used on many FPGAs with low overhead.

  17. Smart measurement system for resistive (bridge) or capacitive sensors

    NASA Astrophysics Data System (ADS)

    Wang, Guijie; Meijer, Gerard C. M.

    1998-07-01

    A low-cost smart measurement system for resistive (bridge) and capacitive sensors is presented and demonstrated. The measurement system consists of three main parts: the sensor element, a universal transducer interface (UTI) and a microcontroller. The UTI is a sensor-signal-to-time converter, based on a period-modulated oscillator, which is equipped with front-ends for many types of resistive (bridge) and capacitive sensors, and which generates a microcontroller-compatible output signal. The microcontroller performs data acquisition of the output signals from the interface UTI, controls the working status of the UTI for a specified application and communicates with a personal computer. Continuous auto-calibration of the offset and the gain of the complete system is applied to eliminate many nonidealities. Experimental results show that the accuracy and resolution are 14 bits and 16 bits, respectively, for a measurement time of about 100 ms.

  18. Microcontroller-based underwater acoustic ECG telemetry system.

    PubMed

    Istepanian, R S; Woodward, B

    1997-06-01

    This paper presents a microcontroller-based underwater acoustic telemetry system for digital transmission of the electrocardiogram (ECG). The system is designed for the real time, through-water transmission of data representing any parameter, and it was used initially for transmitting in multiplexed format the heart rate, breathing rate and depth of a diver using self-contained underwater breathing apparatus (SCUBA). Here, it is used to monitor cardiovascular reflexes during diving and swimming. The programmable capability of the system provides an effective solution to the problem of transmitting data in the presence of multipath interference. An important feature of the paper is a comparative performance analysis of two encoding methods, Pulse Code Modulation (PCM) and Pulse Position Modulation (PPM).

  19. Microcontroller-based locking in optics experiments.

    PubMed

    Huang, K; Le Jeannic, H; Ruaudel, J; Morin, O; Laurat, J

    2014-12-01

    Optics experiments critically require the stable and accurate locking of relative phases between light beams or the stabilization of Fabry-Perot cavity lengths. Here, we present a simple and inexpensive technique based on a stand-alone microcontroller unit to perform such tasks. Easily programmed in C language, this reconfigurable digital locking system also enables automatic relocking and sequential functioning. Different algorithms are detailed and applied to fringe locking and to low- and high-finesse optical cavity stabilization, without the need of external modulations or error signals. This technique can readily replace a number of analog locking systems advantageously in a variety of optical experiments.

  20. E-Learning System for Learning Virtual Circuit Making with a Microcontroller and Programming to Control a Robot

    ERIC Educational Resources Information Center

    Takemura, Atsushi

    2015-01-01

    This paper proposes a novel e-Learning system for learning electronic circuit making and programming a microcontroller to control a robot. The proposed e-Learning system comprises a virtual-circuit-making function for the construction of circuits with a versatile, Arduino microcontroller and an educational system that can simulate behaviors of…

  1. Microcontroller uses in Long-Duration Ballooning

    NASA Astrophysics Data System (ADS)

    Jones, Joseph

    This paper discusses how microcontrollers are being utilized to fulfill the demands of long duration ballooning (LDB) and the advantages of doing so. The Columbia Scientific Balloon Facility (CSBF) offers the service of launching high altitude balloons (120k ft) which provide an over the horizon telemetry system and platform for scientific research payloads to collect data. CSBF has utilized microcontrollers to address multiple tasks and functions which were previously performed by more complex systems. A microcontroller system has been recently developed and programmed in house to replace our previous backup navigation system which is used on all LDB flights. A similar microcontroller system was developed to be independently launched in Antarctica before the actual scientific payload. This system's function is to transmit its GPS position and a small housekeeping packet so that we can confirm the upper level float winds are as predicted from satellite derived models. Microcontrollers have also been used to create test equipment to functionally check out the flight hardware used in our telemetry systems. One test system which was developed can be used to quickly determine if our communication link we are providing for the science payloads is functioning properly. Another system was developed to provide us with the ability to easily determine the status of one of our over the horizon communication links through a closed loop system. This test system has given us the capability to provide more field support to science groups than we were able to in years past. The trend of utilizing microcontrollers has taken place for a number of reasons. By using microcontrollers to fill these needs, it has given us the ability to quickly design and implement systems which meet flight critical needs, as well as perform many of the everyday tasks in LDB. This route has also allowed us to reduce the amount of time required for personnel to perform a number of the tasks required during the initial fabrication and also refurbishing processes of flight hardware systems. The recent use of microcontrollers in the design of both LDB flight hardware and test equipment has shown some examples of the adaptability and usefulness they have provided for our workplace.

  2. IEEE 1451.2 based Smart sensor system using ADuc847

    NASA Astrophysics Data System (ADS)

    Sreejithlal, A.; Ajith, Jose

    IEEE 1451 standard defines a standard interface for connecting transducers to microprocessor based data acquisition systems, instrumentation systems, control and field networks. Smart transducer interface module (STIM) acts as a unit which provides signal conditioning, digitization and data packet generation functions to the transducers connected to it. This paper describes the implementation of a microcontroller based smart transducer interface module based on IEEE 1451.2 standard. The module, implemented using ADuc847 microcontroller has 2 transducer channels and is programmed using Embedded C language. The Sensor system consists of a Network Controlled Application Processor (NCAP) module which controls the Smart transducer interface module (STIM) over an IEEE1451.2-RS232 bus. The NCAP module is implemented as a software module in C# language. The hardware details, control principles involved and the software implementation for the STIM are described in detail.

  3. A new microcontroller supervised thermoelectric renal hypothermia system.

    PubMed

    Işik, Hakan

    2005-10-01

    In the present study, a thermoelectric system controlled by a microcontroller is developed to induce renal hypothermia. Temperature value was managed by 8-byte microcontroller, PIC16F877, and was programmed using microcontroller MPASM package. In order to ensure hypothermia in the kidney 1-4 modules and sensors perceiving temperature of the area can be selected. Temperature values are arranged proportionately for the selected area and the determined temperature values can be monitored from an Liquid Crystal Display (LCD) screen. The temperature range of the system is between -50 and +50 degrees C. Renal hypothermia system was tried under in vivo conditions on the kidney of a dog.

  4. Microcontroller-based locking in optics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, K.; State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062; Le Jeannic, H.

    2014-12-15

    Optics experiments critically require the stable and accurate locking of relative phases between light beams or the stabilization of Fabry-Perot cavity lengths. Here, we present a simple and inexpensive technique based on a stand-alone microcontroller unit to perform such tasks. Easily programmed in C language, this reconfigurable digital locking system also enables automatic relocking and sequential functioning. Different algorithms are detailed and applied to fringe locking and to low- and high-finesse optical cavity stabilization, without the need of external modulations or error signals. This technique can readily replace a number of analog locking systems advantageously in a variety of opticalmore » experiments.« less

  5. Design of microcontroller based system for automation of streak camera.

    PubMed

    Joshi, M J; Upadhyay, J; Deshpande, P P; Sharma, M L; Navathe, C P

    2010-08-01

    A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor. A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.

  6. Design of microcontroller based system for automation of streak camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, M. J.; Upadhyay, J.; Deshpande, P. P.

    2010-08-15

    A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor.more » A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.« less

  7. [Design of Oxygen Saturation, Heart Rate, Respiration Rate Detection System Based on Smartphone of Android Operating System].

    PubMed

    Zhu, Mingshan; Zeng, Bixin

    2015-03-01

    In this paper, we designed an oxygen saturation, heart rate, respiration rate monitoring system based on smartphone of android operating system, physiological signal acquired by MSP430 microcontroller and transmitted by Bluetooth module.

  8. DESIGN NOTE: Microcontroller-based multi-sensor apparatus for temperature control and thermal conductivity measurement

    NASA Astrophysics Data System (ADS)

    Mukaro, R.; Gasseller, M.; Kufazvinei, C.; Olumekor, L.; Taele, B. M.

    2003-08-01

    A microcontroller-based multi-sensor temperature measurement and control system that uses a steady-state one-dimensional heat-flow technique for absolute determination of thermal conductivity of a rigid poor conductor using the guarded hot-plate method is described. The objective of this project was to utilize the latest powerful, yet inexpensive, technological developments, sensors, data acquisition and control system, computer and application software, for research and teaching by example. The system uses an ST6220 microcontroller and LM335 temperature sensors for temperature measurement and control. The instrument interfaces to a computer via the serial port using a Turbo C++ programme. LM335Z silicon semiconductor temperature sensors located at different axial locations in the heat source were calibrated and used to measure temperature in the range from room temperature (about 293 K) to 373 K. A zero and span circuit was used in conjunction with an eight-to-one-line data multiplexer to scale the LM335 output signals to fit the 0 5.0 V full-scale input of the microcontroller's on-chip ADC and to sequentially measure temperature at the different locations. Temperature control is achieved by using software-generated pulse-width-modulated signals that control power to the heater. This article emphasizes the apparatus's instrumentation, the computerized data acquisition design, operation and demonstration of the system as a purposeful measurement system that could be easily adopted for use in the undergraduate laboratory. Measurements on a 10 mm thick sample of polyurethane foam at different temperature gradients gave a thermal conductivity of 0.026 +/- 0.004 W m-1 K-1.

  9. PIC microcontroller-based RF wireless ECG monitoring system.

    PubMed

    Oweis, R J; Barhoum, A

    2007-01-01

    This paper presents a radio-telemetry system that provides the possibility of ECG signal transmission from a patient detection circuit via an RF data link. A PC then receives the signal through the National Instrument data acquisition card (NIDAQ). The PC is equipped with software allowing the received ECG signals to be saved, analysed, and sent by email to another part of the world. The proposed telemetry system consists of a patient unit and a PC unit. The amplified and filtered ECG signal is sampled 360 times per second, and the A/D conversion is performed by a PIC16f877 microcontroller. The major contribution of the final proposed system is that it detects, processes and sends patients ECG data over a wireless RF link to a maximum distance of 200 m. Transmitted ECG data with different numbers of samples were received, decoded by means of another PIC microcontroller, and displayed using MATLAB program. The designed software is presented in a graphical user interface utility.

  10. Embedded real-time operating system micro kernel design

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao-hui; Li, Ming-qiang; Wang, Xin-zheng

    2005-12-01

    Embedded systems usually require a real-time character. Base on an 8051 microcontroller, an embedded real-time operating system micro kernel is proposed consisting of six parts, including a critical section process, task scheduling, interruption handle, semaphore and message mailbox communication, clock managent and memory managent. Distributed CPU and other resources are among tasks rationally according to the importance and urgency. The design proposed here provides the position, definition, function and principle of micro kernel. The kernel runs on the platform of an ATMEL AT89C51 microcontroller. Simulation results prove that the designed micro kernel is stable and reliable and has quick response while operating in an application system.

  11. A multi-purpose open-source triggering platform for magnetic resonance

    NASA Astrophysics Data System (ADS)

    Ruytenberg, T.; Webb, A. G.; Beenakker, J. W. M.

    2014-10-01

    Many MR scans need to be synchronised with external events such as the cardiac or respiratory cycles. For common physiological functions commercial trigger equipment exists, but for more experimental inputs these are not available. This paper describes the design of a multi-purpose open-source trigger platform for MR systems. The heart of the system is an open-source Arduino Due microcontroller. This microcontroller samples an analogue input and digitally processes these data to determine the trigger. The output of the microcontroller is programmed to mimic a physiological signal which is fed into the electrocardiogram (ECG) or pulse oximeter port of MR scanner. The microcontroller is connected to a Bluetooth dongle that allows wireless monitoring and control outside the scanner room. This device can be programmed to generate a trigger based on various types of input. As one example, this paper describes how it can be used as an acoustic cardiac triggering unit. For this, a plastic stethoscope is connected to a microphone which is used as an input for the system. This test setup was used to acquire retrospectively-triggered cardiac scans in ten volunteers. Analysis showed that this platform produces a reliable trigger (>99% triggers are correct) with a small average 8 ms variation between the exact trigger points.

  12. A multi-purpose open-source triggering platform for magnetic resonance.

    PubMed

    Ruytenberg, T; Webb, A G; Beenakker, J W M

    2014-10-01

    Many MR scans need to be synchronised with external events such as the cardiac or respiratory cycles. For common physiological functions commercial trigger equipment exists, but for more experimental inputs these are not available. This paper describes the design of a multi-purpose open-source trigger platform for MR systems. The heart of the system is an open-source Arduino Due microcontroller. This microcontroller samples an analogue input and digitally processes these data to determine the trigger. The output of the microcontroller is programmed to mimic a physiological signal which is fed into the electrocardiogram (ECG) or pulse oximeter port of MR scanner. The microcontroller is connected to a Bluetooth dongle that allows wireless monitoring and control outside the scanner room. This device can be programmed to generate a trigger based on various types of input. As one example, this paper describes how it can be used as an acoustic cardiac triggering unit. For this, a plastic stethoscope is connected to a microphone which is used as an input for the system. This test setup was used to acquire retrospectively-triggered cardiac scans in ten volunteers. Analysis showed that this platform produces a reliable trigger (>99% triggers are correct) with a small average 8 ms variation between the exact trigger points. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Architectural design proposal for real time clock for wireless microcontroller unit

    NASA Astrophysics Data System (ADS)

    Alias, Muhammad Nor Azwan Mohd; Nizam Mohyar, Shaiful

    2017-11-01

    In this project, we are developing an Intellectual properties (IP) which is a dedicated real-time clock (RTC) system for a wireless microcontroller. This IP is developed using Verilog Hardware Description Language (Verilog HDL) and being simulated using Quartus II and Synopsys software. This RTC will be used in microcontroller system to provide precise time and date which can be used for various applications. It plays a very important role in the real-time systems like digital clock, attendance system, digital camera and more.

  14. A Remote Monitoring System for Voltage, Current, Power and Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Barakat, E.; Sinno, N.; Keyrouz, C.

    This paper presents a study and design of a monitoring system for the continuous measurement of electrical energy parameters such as voltage, current, power and temperature. This system is designed to monitor the data remotely over internet. The electronic power meter is based on a microcontroller from Microchip Technology Inc. PIC family. The design takes into consideration the correct operation in the event of an outage or brown out by recording the electrical values and the temperatures in EEPROM internally available in the microcontroller. Also a digital display is used to show the acquired measurements. A computer will remotely monitor the data over internet.

  15. A microcontroller platform for the rapid prototyping of functional electrical stimulation-based gait neuroprostheses.

    PubMed

    Luzio de Melo, Paulo; da Silva, Miguel Tavares; Martins, Jorge; Newman, Dava

    2015-05-01

    Functional electrical stimulation (FES) has been used over the last decades as a method to rehabilitate lost motor functions of individuals with spinal cord injury, multiple sclerosis, and post-stroke hemiparesis. Within this field, researchers in need of developing FES-based control solutions for specific disabilities often have to choose between either the acquisition and integration of high-performance industry-level systems, which are rather expensive and hardly portable, or develop custom-made portable solutions, which despite their lower cost, usually require expert-level electronic skills. Here, a flexible low-cost microcontroller-based platform for rapid prototyping of FES neuroprostheses is presented, designed for reduced execution complexity, development time, and production cost. For this reason, the Arduino open-source microcontroller platform was used, together with off-the-shelf components whenever possible. The developed system enables the rapid deployment of portable FES-based gait neuroprostheses, being flexible enough to allow simple open-loop strategies but also more complex closed-loop solutions. The system is based on a modular architecture that allows the development of optimized solutions depending on the desired FES applications, even though the design and testing of the platform were focused toward drop foot correction. The flexibility of the system was demonstrated using two algorithms targeting drop foot condition within different experimental setups. Successful bench testing of the device in healthy subjects demonstrated these neuroprosthesis platform capabilities to correct drop foot. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. Automated hydroponics nutrition plants systems using arduino uno microcontroller based on android

    NASA Astrophysics Data System (ADS)

    Sihombing, P.; Karina, N. A.; Tarigan, J. T.; Syarif, M. I.

    2018-03-01

    Technological developments today make the combination of science is very common, including in Computer Science and Agriculture to make both of science need each other. This paper aims to develop a control tool for the flow of nutrients of hydroponic plants automatically using Arduino microcontroller and controlled by smartphone. We use an Arduino Uno microcontroller to automatically control the flow of nutrient solution with logic if else. The microcontroller can also send data of fluid level (solution) and temperature around the plant to smartphone android of the owner of the hydroponics plant. The height of the nutrient solution (water) is detected by the Ultrasonic sensor HC-SR04 and the temperature is detected by the temperature sensor LM35. Data from the sensor will forward into Arduino Uno and displayed in liquid crystal display (LCD) then via wireless fidelity (WIFI) ESP8266 module will transmit the height of the nutrient solution and the temperature around of the plants to Android smartphone.

  17. Humidity control of an incubator using the microcontroller-based active humidifier system employing an ultrasonic nebulizer.

    PubMed

    Güler, I; Burunkaya, M

    2002-01-01

    Relative humidity levels of an incubator were measured and controlled. An ultrasonic nebulizer system as an active humidifier was used to humidify the incubator environment. An integrated circuit-type humidity sensor was used to measure the humidity level of the incubator environment. Measurement and control processes were achieved by a PIC microcontroller. The high-performance and high-speed PIC provided the flexibility of the system. The developed system can be used effectively for the intensive care of newborns and/or premature babies. Since the humidifier generates an aerosol in ambient conditions, it is possible to provide the high relative humidity level for therapeutic and diagnostic purposes in medicine.

  18. Development of the automated bunker door by using a microcontroller-system

    NASA Astrophysics Data System (ADS)

    Ahmad, M. A.; Leo, K. W.; Mohamad, G. H. P.; Ahmad, A.; Hashim, S. A.; Chulan, R. M.; Baijan, A. H.

    2018-01-01

    The new low energy electron beam accelerator bunker was designed and built locally to allocate a 500 keV electron beam accelerator at Block 43T in Malaysian Nuclear Agency. This bunker is equipped with a locally made radiation shielding door of 10 tons. Originally, this door is moving manually by a wheel and fitted with a gear system. However, it is still heavy and need longer time to operate it manually. To overcome those issues, a new automated control system has been designed and developed. In this paper, the complete steps and design of automated control system based on the microcontroller (PIC16F84A) is described.

  19. Stand alone, low current measurements on possible sensing platforms via Arduino Uno microcontroller with modified commercially available sensors

    NASA Astrophysics Data System (ADS)

    Tanner, Meghan; Henson, Gabriel; Senevirathne, Indrajith

    Advent of cost-effective solid-state sensors has spurred an immense interest in microcontrollers, in particular Arduino microcontrollers. These include serious engineering and physical science applications due to their versatility and robustness. An Arduino microcontroller coupled with a commercially available sensor has been used to methodically measure, record, and explore low currents, low voltages, and corresponding dissipated power towards assessing secondary physical properties in a select set of engineered systems. System was assembled via breadboard, wire, and simple soldering with an Arduino Uno with ATmega328P microcontroller connected to a PC. The microcontroller was programmed with Arduino software while the bootloader was used to upload the code. High-side measurement INA169 current shunt monitor was used to measure corresponding low to ultra-low currents and voltages. A collection of measurements was obtained via the sensor and was compared with measurements from standardized devices to assess reliability and uncertainty. Some sensors were modified/hacked to improve the sensitivity of the measurements.

  20. Development of a cloud-based system for remote monitoring of a PVT panel

    NASA Astrophysics Data System (ADS)

    Saraiva, Luis; Alcaso, Adérito; Vieira, Paulo; Ramos, Carlos Figueiredo; Cardoso, Antonio Marques

    2016-10-01

    The paper presents a monitoring system developed for an energy conversion system based on the sun and known as thermophotovoltaic panel (PVT). The project was implemented using two embedded microcontrollers platforms (arduino Leonardo and arduino yún), wireless transmission systems (WI-FI and XBEE) and net computing ,commonly known as cloud (Google cloud). The main objective of the project is to provide remote access and real-time data monitoring (like: electrical current, electrical voltage, input fluid temperature, output fluid temperature, backward fluid temperature, up PV glass temperature, down PV glass temperature, ambient temperature, solar radiation, wind speed, wind direction and fluid mass flow). This project demonstrates the feasibility of using inexpensive microcontroller's platforms and free internet service in theWeb, to support the remote study of renewable energy systems, eliminating the acquisition of dedicated systems typically more expensive and limited in the kind of processing proposed.

  1. The Bionic Clicker Mark I & II

    PubMed Central

    Magee, Elliott G.; Ourselin, S.; Nikitichev, Daniil; Vercauteren, T.; Vanhoestenberghe, Anne

    2017-01-01

    In this manuscript, we present two 'Bionic Clicker' systems, the first designed to demonstrate electromyography (EMG) based control systems for educational purposes and the second for research purposes. EMG based control systems pick up electrical signals generated by muscle activation and use these as inputs for controllers. EMG controllers are widely used in prosthetics to control limbs. The Mark I (MK I) clicker allows the wearer to change the slide of a presentation by raising their index finger. It is built around a microcontroller and a bio-signals shield. It generated a lot of interest from both the public and research community. The Mark II (MK II) device presented here was designed to be a cheaper, sleeker, and more customizable system that can be easily modified and directly transmit EMG data. It is built using a wireless capable microcontroller and a muscle sensor. PMID:28829413

  2. The Bionic Clicker Mark I & II.

    PubMed

    Magee, Elliott G; Ourselin, S; Nikitichev, Daniil; Vercauteren, T; Vanhoestenberghe, Anne

    2017-08-14

    In this manuscript, we present two 'Bionic Clicker' systems, the first designed to demonstrate electromyography (EMG) based control systems for educational purposes and the second for research purposes. EMG based control systems pick up electrical signals generated by muscle activation and use these as inputs for controllers. EMG controllers are widely used in prosthetics to control limbs. The Mark I (MK I) clicker allows the wearer to change the slide of a presentation by raising their index finger. It is built around a microcontroller and a bio-signals shield. It generated a lot of interest from both the public and research community. The Mark II (MK II) device presented here was designed to be a cheaper, sleeker, and more customizable system that can be easily modified and directly transmit EMG data. It is built using a wireless capable microcontroller and a muscle sensor.

  3. An Introduction to the Industrial Applications of Microcontrollers

    NASA Astrophysics Data System (ADS)

    Carelse, Xavier F.

    A microcontroller is sometimes described as a “computer on a chip” because it contains all the features of a full computer including central processor, in-built clock circuitry, ROM, RAM, input and output ports with special features'such as serial communication, analogue-to-digital conversion and, more recently, signal processing. The smallest microcontroller has only eight pins but some having 68 pins are also being marketed. In the last five years, the prices of microcontrollers have dropped by 80% and are now one of the most cost-effective components in industry. Being software-driven, microcontrollers greatly simplify the design of sophisticated instrumentation and control circuitry. They are able to effect precise calculations sometimes needed for feedback in control systems and now form the basis of all intelligent embedded systems such as those required in television and VCR remote controls, microwave ovens, washing machines, etc. More than ten times as many microcontrollers than microprocessors are manufactured and sold in the world in spite of the high profile that the latter enjoys because of the personal computer market. In Zimbabwe, extensive research is being carried out to use microcontrollers to aid the cost recovery of domestic and commercial solar installations as part of the rural electrification programme.

  4. The magic glove: a gesture-based remote controller for intelligent mobile robots

    NASA Astrophysics Data System (ADS)

    Luo, Chaomin; Chen, Yue; Krishnan, Mohan; Paulik, Mark

    2012-01-01

    This paper describes the design of a gesture-based Human Robot Interface (HRI) for an autonomous mobile robot entered in the 2010 Intelligent Ground Vehicle Competition (IGVC). While the robot is meant to operate autonomously in the various Challenges of the competition, an HRI is useful in moving the robot to the starting position and after run termination. In this paper, a user-friendly gesture-based embedded system called the Magic Glove is developed for remote control of a robot. The system consists of a microcontroller and sensors that is worn by the operator as a glove and is capable of recognizing hand signals. These are then transmitted through wireless communication to the robot. The design of the Magic Glove included contributions on two fronts: hardware configuration and algorithm development. A triple axis accelerometer used to detect hand orientation passes the information to a microcontroller, which interprets the corresponding vehicle control command. A Bluetooth device interfaced to the microcontroller then transmits the information to the vehicle, which acts accordingly. The user-friendly Magic Glove was successfully demonstrated first in a Player/Stage simulation environment. The gesture-based functionality was then also successfully verified on an actual robot and demonstrated to judges at the 2010 IGVC.

  5. Development of an instrumentation system for measurement of degradation of lubricating oil using optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Laskar, S.; Bordoloi, S.

    2016-01-01

    This paper presents an instrumentation system to measure the degradation in lubricating oil using a bare, tapered and bent multi-mode optical fiber (BTBMOF) sensor probe and a temperature probe. The sensor system consists of (i) a bare, tapered and bent multi-mode optical fiber (BTBMOF) as optical sensor along with a laser source and a LDR (Light Dependent Resistor) as detector (ii) a temperature sensor (iii) a ATmega microcontroller based data acquisition system and (iv) a trained ANN for processing and calibration. The BTBMOF sensor and the temperature sensor are used to provide the measure of refractive index (RI) and the temperature of a lubricating oil sample. A microcontroller based instrumentation system with trained ANN algorithm has been developed to determine the degradation of the lubricating oil sample by sampling the readings of the optical fiber sensor, and the temperature sensor.

  6. Wearable knee health rehabilitation assessment using acoustical emissions

    NASA Astrophysics Data System (ADS)

    Teague, Caitlin N.; Hersek, Sinan; Conant, Jordan L.; Gilliland, Scott M.; Inan, Omer T.

    2017-02-01

    We have developed a novel, wearable sensing system based on miniature piezoelectric contact microphones for measuring the acoustical emissions from the knee during movement. The system consists of two contact microphones, positioned on the medial and lateral sides of the patella, connected to custom, analog pre-amplifier circuits and a microcontroller for digitization and data storage on a secure digital card. Tn addition to the acoustical sensing, the system includes two integrated inertial measurement sensors including accelerometer and gyroscope modalities to enable joint angle calculations; these sensors, with digital outputs, are connected directly to the same microcontroller. The system provides low noise, accurate joint acoustical emission and angle measurements in a wearable form factor and has several hours of battery life.

  7. Home-made temperature monitoring system from four-channel K-type thermocouples via internet of thing technology platform

    NASA Astrophysics Data System (ADS)

    Detmod, Thitaporn; Özmen, Yiǧiter; Songkaitiwong, Kittiphot; Saenyot, Khanuengchat; Locharoenrat, Kitsakorn; Lekchaum, Sarai

    2018-06-01

    This paper is aimed to design and construct the home-made temperature monitoring system from four-channel K-type thermocouples in order to improve the temperature measurement based on standard evaluation measurements guidance. The temperature monitoring system was capable to record the temperature on SD card and to display the realtime temperature on Internet of Thing Technology platform. The temperature monitoring system was tested in terms of the temperature measurement accuracy and delay response time. It was found that a standard deviation was acceptable as compared to the Instrument Society of America. The response time of the microcontroller to SD card was 2 sec faster than that of the microcontroller to Thingspeak.

  8. A microcontroller-based telemetry system for sympathetic nerve activity and ECG measurement.

    PubMed

    Harada, E; Yonezawa, Y; Caldwell, W M; Hahn, A W

    1999-01-01

    A telemetry system employing a low power 8-bit microcontroller has been developed for chronic unanesthetized small animal studies. The two-channel system is designed for use with animals in shielded cages. Analog signals from implantable ECG and nerve electrodes are converted to an 8-bit serial digital format. This is accomplished by individual 8 bit A/D converters included in the microcontroller, which also has serial I/O port. The converted serial binary code is applied directly to an antenna wire. Therefore, the system does not need to employ a separate transmitter, such as in FM or infrared optical telemeters. The system is used in a shielded animal cage to reduce interference from external radio signals and 60 Hz power line fields. The code is received by a high input impedance amplifier in the cage and is then demodulated. The telemeter is powered by a small 3 V lithium battery, which provides 100 hours of continuous operation. The circuit is constructed on two 25 x 25 mm. printed circuit boards and encapsulated in epoxy, yielding a total volume of 6.25 cc. The weight is 15 g.

  9. A wearable, mobile phone-based respiration monitoring system for sleep apnea syndrome detection.

    PubMed

    Ishida, Ryoichi; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Hahn, Allen W; Caldwell, W Morton

    2005-01-01

    A new wearable respiration monitoring system has been developed for non-invasive detection of sleep apnea syndrome. The system, which is attached to a shirt, consists of a piezoelectric sensor, a low-power 8-bit single chip microcontroller, EEPROM and a 2.4 GHz low-power transmitting mobile phone (PHS). The piezoelectric sensor, whose electrical polarization voltage is produced by body movements, is installed inside the shirt and closely contacts the patient's chest. The low frequency components of body movements recorded by the sensor are mainly generated by respiration. The microcontroller sequentially stores the movement signal to the EEPROM for 5 minutes and detects, by time-frequency analysis, whether the patient has breathed during that time. When the patient is apneic for 10 sseconds, the microcontroller sends the recorded respiration waveform during and one minute before and after the apnea directly to the hospital server computer via the mobile phone. The server computer then creates apnea "filings" automatically for every patient. The system can be used at home and be self-applied by patients. Moreover, the system does not require any extra equipment such as a personal computer, PDA, or Internet connection.

  10. A novel microcontroller-based digital instrument for measurement of electrical quantities under non-sinusoidal condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anaya, O.; Moreno, G.E.L.; Madrigal, M.M.

    1999-11-01

    In the last years, several definitions of power have been proposed for more accurate measurement of electrical quantities in presence of harmonics pollution on power lines. Nevertheless, only few instruments have been constructed considering these definitions. This paper describes a new microcontroller-based digital instrument, which include definitions based on Harley Transform. The algorithms are fully processed using Fast Hartley Transform (FHT) and 16 bit-microcontroller platform. The constructed prototype was compared with commercial harmonics analyzer instrument.

  11. An Interactive Simulator-Based Pedagogical (ISP) Approach for Teaching Microcontrollers in Engineering Programs

    ERIC Educational Resources Information Center

    Tang, Shensheng

    2014-01-01

    Microcontrollers is a required course in most Electrical, Computer, and Mechanic Engineering (Technology) programs at U.S. universities. Most engineering courses (e.g., microcontrollers), by nature, introduce abstract concepts, definitions, and models, and use primarily lectures and readings (words, symbols) to transmit information. This…

  12. HeartSaver: a mobile cardiac monitoring system for auto-detection of atrial fibrillation, myocardial infarction, and atrio-ventricular block.

    PubMed

    Sankari, Ziad; Adeli, Hojjat

    2011-04-01

    A mobile medical device, dubbed HeartSaver, is developed for real-time monitoring of a patient's electrocardiogram (ECG) and automatic detection of several cardiac pathologies, including atrial fibrillation, myocardial infarction and atrio-ventricular block. HeartSaver is based on adroit integration of four different modern technologies: electronics, wireless communication, computer, and information technologies in the service of medicine. The physical device consists of four modules: sensor and ECG processing unit, a microcontroller, a link between the microcontroller and the cell phone, and mobile software associated with the system. HeartSaver includes automated cardiac pathology detection algorithms. These algorithms are simple enough to be implemented on a low-cost, limited-power microcontroller but powerful enough to detect the relevant cardiac pathologies. When an abnormality is detected, the microcontroller sends a signal to a cell phone. This operation triggers an application software on the cell phone that sends a text message transmitting information about patient's physiological condition and location promptly to a physician or a guardian. HeartSaver can be used by millions of cardiac patients with the potential to transform the cardiac diagnosis, care, and treatment and save thousands of lives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Digital Device Architecture and the Safe Use of Flash Devices in Munitions

    NASA Technical Reports Server (NTRS)

    Katz, Richard B.; Flowers, David; Bergevin, Keith

    2017-01-01

    Flash technology is being utilized in fuzed munition applications and, based on the development of digital logic devices in the commercial world, usage of flash technology will increase. Digital devices of interest to designers include flash-based microcontrollers and field programmable gate arrays (FPGAs). Almost a decade ago, a study was undertaken to determine if flash-based microcontrollers could be safely used in fuzes and, if so, how should such devices be applied. The results were documented in the Technical Manual for the Use of Logic Devices in Safety Features. This paper will first review the Technical Manual and discuss the rationale behind the suggested architectures for microcontrollers and a brief review of the concern about data retention in flash cells. An architectural feature in the microcontroller under study will be discussed and its use will show how to screen for weak or failed cells during manufacture, storage, or immediately prior to use. As was done for microcontrollers a decade ago, architectures for a flash-based FPGA will be discussed, showing how it can be safely used in fuzes. Additionally, architectures for using non-volatile (including flash-based) storage will be discussed for SRAM-based FPGAs.

  14. Multiprocessor Neural Network in Healthcare.

    PubMed

    Godó, Zoltán Attila; Kiss, Gábor; Kocsis, Dénes

    2015-01-01

    A possible way of creating a multiprocessor artificial neural network is by the use of microcontrollers. The RISC processors' high performance and the large number of I/O ports mean they are greatly suitable for creating such a system. During our research, we wanted to see if it is possible to efficiently create interaction between the artifical neural network and the natural nervous system. To achieve as much analogy to the living nervous system as possible, we created a frequency-modulated analog connection between the units. Our system is connected to the living nervous system through 128 microelectrodes. Two-way communication is provided through A/D transformation, which is even capable of testing psychopharmacons. The microcontroller-based analog artificial neural network can play a great role in medical singal processing, such as ECG, EEG etc.

  15. A Lab Assembled Microcontroller-Based Sensor Module for Continuous Oxygen Measurement in Portable Hypoxia Chambers

    PubMed Central

    Mathupala, Saroj P.; Kiousis, Sam; Szerlip, Nicholas J.

    2016-01-01

    Background Hypoxia-based cell culture experiments are routine and essential components of in vitro cancer research. Most laboratories use low-cost portable modular chambers to achieve hypoxic conditions for cell cultures, where the sealed chambers are purged with a gas mixture of preset O2 concentration. Studies are conducted under the assumption that hypoxia remains unaltered throughout the 48 to 72 hour duration of such experiments. Since these chambers lack any sensor or detection system to monitor gas-phase O2, the cell-based data tend to be non-uniform due to the ad hoc nature of the experimental setup. Methodology With the availability of low-cost open-source microcontroller-based electronic project kits, it is now possible for researchers to program these with easy-to-use software, link them to sensors, and place them in basic scientific apparatus to monitor and record experimental parameters. We report here the design and construction of a small-footprint kit for continuous measurement and recording of O2 concentration in modular hypoxia chambers. The low-cost assembly (US$135) consists of an Arduino-based microcontroller, data-logging freeware, and a factory pre-calibrated miniature O2 sensor. A small, intuitive software program was written by the authors to control the data input and output. The basic nature of the kit will enable any student in biology with minimal experience in hobby-electronics to assemble the system and edit the program parameters to suit individual experimental conditions. Results/Conclusions We show the kit’s utility and stability of data output via a series of hypoxia experiments. The studies also demonstrated the critical need to monitor and adjust gas-phase O2 concentration during hypoxia-based experiments to prevent experimental errors or failure due to partial loss of hypoxia. Thus, incorporating the sensor-microcontroller module to a portable hypoxia chamber provides a researcher a capability that was previously available only to labs with access to sophisticated (and expensive) cell culture incubators. PMID:26862760

  16. A Lab Assembled Microcontroller-Based Sensor Module for Continuous Oxygen Measurement in Portable Hypoxia Chambers.

    PubMed

    Mathupala, Saroj P; Kiousis, Sam; Szerlip, Nicholas J

    2016-01-01

    Hypoxia-based cell culture experiments are routine and essential components of in vitro cancer research. Most laboratories use low-cost portable modular chambers to achieve hypoxic conditions for cell cultures, where the sealed chambers are purged with a gas mixture of preset O2 concentration. Studies are conducted under the assumption that hypoxia remains unaltered throughout the 48 to 72 hour duration of such experiments. Since these chambers lack any sensor or detection system to monitor gas-phase O2, the cell-based data tend to be non-uniform due to the ad hoc nature of the experimental setup. With the availability of low-cost open-source microcontroller-based electronic project kits, it is now possible for researchers to program these with easy-to-use software, link them to sensors, and place them in basic scientific apparatus to monitor and record experimental parameters. We report here the design and construction of a small-footprint kit for continuous measurement and recording of O2 concentration in modular hypoxia chambers. The low-cost assembly (US$135) consists of an Arduino-based microcontroller, data-logging freeware, and a factory pre-calibrated miniature O2 sensor. A small, intuitive software program was written by the authors to control the data input and output. The basic nature of the kit will enable any student in biology with minimal experience in hobby-electronics to assemble the system and edit the program parameters to suit individual experimental conditions. We show the kit's utility and stability of data output via a series of hypoxia experiments. The studies also demonstrated the critical need to monitor and adjust gas-phase O2 concentration during hypoxia-based experiments to prevent experimental errors or failure due to partial loss of hypoxia. Thus, incorporating the sensor-microcontroller module to a portable hypoxia chamber provides a researcher a capability that was previously available only to labs with access to sophisticated (and expensive) cell culture incubators.

  17. Wireless sensor network for irrigation application in cotton

    USDA-ARS?s Scientific Manuscript database

    A wireless sensor network was deployed in a cotton field to monitor soil water status for irrigation. The network included two systems, a Decagon system and a microcontroller-based system. The Decagon system consists of soil volumetric water-content sensors, wireless data loggers, and a central data...

  18. System on chip (SOC) wi-fi microcontroller for multistation measurement of water surface level using ultrasonic sensor

    NASA Astrophysics Data System (ADS)

    Suryono, Suryono; Purnomo Putro, Sapto; Widowati; Adhy, Satriyo

    2018-05-01

    Experimental results of data acquisition and transmission of water surface level from the field using System on Chip (SOC) Wi-Fi microcontroller are described here. System on Chip (SOC) Wi-Fi microcontroller is useful in dealing with limitations of in situ measurement by people. It is expected to address the problem of field instrumentation such as complexities in electronic circuit, power supply, efficiency, and automation of digital data acquisition. The system developed here employs five (5) nodes consisting of ultrasonic water surface level sensor using (SOC) Wi-Fi microcontroller. The five nodes are connected to a Wi-Fi router as the gateway to send multi-station data to a computer host. Measurement of water surface level using SOC Wi-Fi microcontroller manages conduct multi-station communication via database service programming that is capable of inputting every data sent to the database record according to the identity of data sent. The system here has a measurement error of 0.65 cm, while in terms of range, communication between data node to gateway varies in distance from 25 m to 45 m. Communication has been successfully conducted from one Wi-Fi gateway to the other that further improvement for its multi-station range is a certain possibility.

  19. [Study for portable dynamic ECG monitor and recorder].

    PubMed

    Yang, Pengcheng; Li, Yongqin; Chen, Bihua

    2012-09-01

    This Paper presents a portable dynamic ECG monitor system based on MSP430F149 microcontroller. The electrocardiogram detecting system consists of ECG detecting circuit, man-machine interaction module, MSP430F149 and upper computer software. The ECG detecting circuit including a preamplifier, second-order Butterworth low-pass filter, high-pass filter, and 50Hz trap circuit to detects electrocardiogram and depresses various kinds of interference effectively. A microcontroller is used to collect three channel analog signals which can be displayed on TFT LCD. A SD card is used to record real-time data continuously and implement the FTA16 file system. In the end, a host computer system interface is also designed to analyze the ECG signal and the analysis results can provide diagnosis references to clinical doctors.

  20. An Arduino microcontroller based digitalization of a vertical traversing mechanism used for the analysis of jet flows

    NASA Astrophysics Data System (ADS)

    Rahman, S. M. Rakibur; Roshid, S. M. Al Mamun Or; Nishan, Ishtiaque Ahmed

    2017-12-01

    This paper deals with the design of a drive system of traversing mechanism used to position the pitot tube in desired position of the jet flow field. In this system a stepper motor is driven by a `dual H bridge' motor driver and programmed Arduino microcontroller. The stepper motor is made to move in precise steps to obtain desired movement of the traversing mechanism. The jet flow is characterized in three distinct zones - initial zone, transition zone and developed zone. Each zone can be divided into required number of segments based on variation of velocity. By assigning number of segments, step range and number of steps in each segment as inputs, it is possible to collect data in all the flow zones according to our programmed schedule. The system will allow taking a large number of readings automatically.

  1. Vertical-angle control system in the LLMC

    NASA Astrophysics Data System (ADS)

    Li, Binhua; Yang, Lei; Tie, Qiongxian; Mao, Wei

    2000-10-01

    A control system of the vertical angle transmission used in the Lower Latitude Meridian Circle (LLMC) is described in this paper. The transmission system can change the zenith distance of the tube quickly and precisely. It works in three modes: fast motion, slow motion and lock mode. The fast motion mode and the slow motion mode are that the tube of the instrument is driven by a fast motion stepper motor and a slow motion one separately. The lock mode is running for lock mechanism that is driven by a lock stepper motor. These three motors are controlled together by a single chip microcontroller, which is controlled in turn by a host personal computer. The slow motion mechanism and its rotational step angle are fully discussed because the mechanism is not used before. Then the hardware structure of this control system based on a microcontroller is described. Control process of the system is introduced during a normal observation, which is divided into eleven steps. All the steps are programmed in our control software in C++ and/or in ASM. The C++ control program is set up in the host PC, while the ASM control program is in the microcontroller system. Structures and functions of these rprograms are presented. Some details and skills for programming are discussed in the paper too.

  2. Soil moisture and plant canopy temperature sensing for irrigation application in cotton

    USDA-ARS?s Scientific Manuscript database

    A wireless sensor network was deployed in a cotton field to monitor soil water status for irrigation. The network included two systems, a Decagon system and a microcontroller-based system. The Decagon system consists of soil volumetric water-content sensors, wireless data loggers, and a central data...

  3. Arduino Uno Microcontroller with Commercially Available Sensors Towards Generating Student Accessible Raw Meteorological Data

    NASA Astrophysics Data System (ADS)

    Henson, Gabrielle; Tanner, Meghan; Senevirathne, Indrajith

    Microcontroller systems can be a boon to cost - effective techniques that can be used to enhance teaching at college level. We have used Arduino microcontroller coupled with commercially available sensors to systematically measure, record and analyze temperature, humidity and barometric pressure and to upload the real time raw data to cloud. Corresponding data will be available in classroom settings for predictions, analysis and simple weather forecasting. Setup was assembled via breadboard, wire and simple soldering with an Arduino Uno ATmega328P microcontroller connected to a PC. The microcontroller was programmed with Arduino Software while the bootloader was used to upload the code. Commercial DHT22 humidity and temperature sensor and BMP180 barometric pressure sensor were used to obtain relative humidity, temperature and the barometric pressure. System was mounted inside a weather resistant enclosure and data measurements were obtained and were uploaded onto the PC and then to cloud. Cloud data can be accessed via a shared link in a General Education class for multitude of purposes.

  4. Wireless sensing and vibration control with increased redundancy and robustness design.

    PubMed

    Li, Peng; Li, Luyu; Song, Gangbing; Yu, Yan

    2014-11-01

    Control systems with long distance sensor and actuator wiring have the problem of high system cost and increased sensor noise. Wireless sensor network (WSN)-based control systems are an alternative solution involving lower setup and maintenance costs and reduced sensor noise. However, WSN-based control systems also encounter problems such as possible data loss, irregular sampling periods (due to the uncertainty of the wireless channel), and the possibility of sensor breakdown (due to the increased complexity of the overall control system). In this paper, a wireless microcontroller-based control system is designed and implemented to wirelessly perform vibration control. The wireless microcontroller-based system is quite different from regular control systems due to its limited speed and computational power. Hardware, software, and control algorithm design are described in detail to demonstrate this prototype. Model and system state compensation is used in the wireless control system to solve the problems of data loss and sensor breakdown. A positive position feedback controller is used as the control law for the task of active vibration suppression. Both wired and wireless controllers are implemented. The results show that the WSN-based control system can be successfully used to suppress the vibration and produces resilient results in the presence of sensor failure.

  5. Design of anti-theft/cable cut real time alert system for copper cable using microcontroller and GSM technology

    NASA Astrophysics Data System (ADS)

    Lim, E. K.; Norizan, M. N.; Mohamad, I. S.; Yasin, M. N. M.; Murad, S. A. Z.; Baharum, N. A.; Jamalullail, N.

    2017-09-01

    This paper presents the design of anti-theft/cable cut real time alert system using microcontroller and GSM technology. The detection part is using the electrical circuit wire connection in detecting the voltage drop of the cable inside the microcontroller digital input port. The GSM wireless modem is used to send the location of cable cut directly to the authority mobile phone. Microcontroller SK40C with Microchip PIC16F887 is used as a controller to control the wireless modem and also the detection device. The device is able to detect and display the location of the cable cut on the LCD display besides of and sending out the location of the cable break to the authority mobile phone wirelessly via SMS.

  6. Centrifugal LabTube platform for fully automated DNA purification and LAMP amplification based on an integrated, low-cost heating system.

    PubMed

    Hoehl, Melanie M; Weißert, Michael; Dannenberg, Arne; Nesch, Thomas; Paust, Nils; von Stetten, Felix; Zengerle, Roland; Slocum, Alexander H; Steigert, Juergen

    2014-06-01

    This paper introduces a disposable battery-driven heating system for loop-mediated isothermal DNA amplification (LAMP) inside a centrifugally-driven DNA purification platform (LabTube). We demonstrate LabTube-based fully automated DNA purification of as low as 100 cell-equivalents of verotoxin-producing Escherichia coli (VTEC) in water, milk and apple juice in a laboratory centrifuge, followed by integrated and automated LAMP amplification with a reduction of hands-on time from 45 to 1 min. The heating system consists of two parallel SMD thick film resistors and a NTC as heating and temperature sensing elements. They are driven by a 3 V battery and controlled by a microcontroller. The LAMP reagents are stored in the elution chamber and the amplification starts immediately after the eluate is purged into the chamber. The LabTube, including a microcontroller-based heating system, demonstrates contamination-free and automated sample-to-answer nucleic acid testing within a laboratory centrifuge. The heating system can be easily parallelized within one LabTube and it is deployable for a variety of heating and electrical applications.

  7. [Research and application of microcontroller system for target controlled infusion].

    PubMed

    Cheng, Yuke; Dou, Jianhong; Zhang, Xingan; Wang, Ruosong

    2005-08-01

    This paper presents a microcontroller system for target controlled infusion according to pharmacodynamic parameters of intravenous anesthetics. It can control the depth of anesthesia by adjusting the level of plasma concentrations. The system has the advantages of high precision, extending power and easy manipulation. It has been used in the clinical anesthesia.

  8. A novel rotometer based on a RISC microcontroller.

    PubMed

    Heredia-López, F J; Bata-García, J L; Alvarez-Cervera, F J; Góngora-Alfaro, J L

    2002-08-01

    A new, low-cost rotometer, based on a reduced instruction set computer (RISC) microcontroller, is presented. Like earlier devices, it counts the number and direction of full turns for predetermined time periods during the evaluation of turning behavior induced by drug administration in rats. The present stand-alone system includes a nonvolatile memory for long-term data storage and a serial port for data transmission. It also contains a display for monitoring the experiments and has battery backup to avoid interruptions owing to power failures. A high correlation was found (r > .988, p < 2 x 10(-14)) between the counts of the rotometer and those of two trained observers. The system reflects quantitative differences in turning behavior owing to pharmacological manipulations. It provides the most common counting parameters and is inexpensive, flexible, highly reliable, and completely portable (weight including batteries, 159 g).

  9. Communications interface for wireless communications headset

    NASA Technical Reports Server (NTRS)

    Culotta, Jr., Anthony Joseph (Inventor); Seibert, Marc A. (Inventor)

    2004-01-01

    A universal interface adapter circuit interfaces, for example, a wireless communications headset with any type of communications system, including those that require push-to-talk (PTT) signaling. The interface adapter is comprised of several main components, including an RF signaling receiver, a microcontroller and associated circuitry for decoding and processing the received signals, and programmable impedance matching and line interfacing circuitry for interfacing a wireless communications headset system base to a communications system. A signaling transmitter, which is preferably portable (e.g., handheld), is employed by the wireless headset user to send signals to the signaling receiver. In an embodiment of the invention directed specifically to push-to-talk (PTT) signaling, the wireless headset user presses a button on the signaling transmitter when they wish to speak. This sends a signal to the microcontroller which decodes the signal and recognizes the signal as being a PTT request. In response, the microcontroller generates a control signal that closes a switch to complete a voice connection between the headset system base and the communications system so that the user can communicate with the communications system. With this arrangement, the wireless headset can be interfaced to any communications system that requires PTT signaling, without modification of the headset device. In addition, the interface adapter can also be configured to respond to or deliver any other types of signals, such as dual-tone-multiple-frequency (DTMF) tones, and on/off hook signals. The present invention is also scalable, and permits multiple wireless users to operate independently in the same environment through use of a plurality of the interface adapters.

  10. Microcontroller interface for diode array spectrometry

    NASA Astrophysics Data System (ADS)

    Aguo, L.; Williams, R. R.

    An alternative to bus-based computer interfacing is presented using diode array spectrometry as a typical application. The new interface consists of an embedded single-chip microcomputer, known as a microcontroller, which provides all necessary digital I/O and analog-to-digital conversion (ADC) along with an unprecedented amount of intelligence. Communication with a host computer system is accomplished by a standard serial interface so this type of interfacing is applicable to a wide range of personal and minicomputers and can be easily networked. Data are acquired asynchronousty and sent to the host on command. New operating modes which have no traditional counterparts are presented.

  11. Development of an extensible dual-core wireless sensing node for cyber-physical systems

    NASA Astrophysics Data System (ADS)

    Kane, Michael; Zhu, Dapeng; Hirose, Mitsuhito; Dong, Xinjun; Winter, Benjamin; Häckell, Mortiz; Lynch, Jerome P.; Wang, Yang; Swartz, A.

    2014-04-01

    The introduction of wireless telemetry into the design of monitoring and control systems has been shown to reduce system costs while simplifying installations. To date, wireless nodes proposed for sensing and actuation in cyberphysical systems have been designed using microcontrollers with one computational pipeline (i.e., single-core microcontrollers). While concurrent code execution can be implemented on single-core microcontrollers, concurrency is emulated by splitting the pipeline's resources to support multiple threads of code execution. For many applications, this approach to multi-threading is acceptable in terms of speed and function. However, some applications such as feedback controls demand deterministic timing of code execution and maximum computational throughput. For these applications, the adoption of multi-core processor architectures represents one effective solution. Multi-core microcontrollers have multiple computational pipelines that can execute embedded code in parallel and can be interrupted independent of one another. In this study, a new wireless platform named Martlet is introduced with a dual-core microcontroller adopted in its design. The dual-core microcontroller design allows Martlet to dedicate one core to standard wireless sensor operations while the other core is reserved for embedded data processing and real-time feedback control law execution. Another distinct feature of Martlet is a standardized hardware interface that allows specialized daughter boards (termed wing boards) to be interfaced to the Martlet baseboard. This extensibility opens opportunity to encapsulate specialized sensing and actuation functions in a wing board without altering the design of Martlet. In addition to describing the design of Martlet, a few example wings are detailed, along with experiments showing the Martlet's ability to monitor and control physical systems such as wind turbines and buildings.

  12. Design of single phase inverter using microcontroller assisted by data processing applications software

    NASA Astrophysics Data System (ADS)

    Ismail, K.; Muharam, A.; Amin; Widodo Budi, S.

    2015-12-01

    Inverter is widely used for industrial, office, and residential purposes. Inverter supports the development of alternative energy such as solar cells, wind turbines and fuel cells by converting dc voltage to ac voltage. Inverter has been made with a variety of hardware and software combinations, such as the use of pure analog circuit and various types of microcontroller as controller. When using pure analog circuit, modification would be difficult because it will change the entire hardware components. In inverter with microcontroller based design (with software), calculations to generate AC modulation is done in the microcontroller. This increases programming complexity and amount of coding downloaded to the microcontroller chip (capacity flash memory in the microcontroller is limited). This paper discusses the design of a single phase inverter using unipolar modulation of sine wave and triangular wave, which is done outside the microcontroller using data processing software application (Microsoft Excel), result shows that complexity programming was reduce and resolution sampling data is very influence to THD. Resolution sampling must taking ½ A degree to get best THD (15.8%).

  13. Design and Development of Microcontroller-Based Clinical Chemistry Analyser for Measurement of Various Blood Biochemistry Parameters

    PubMed Central

    Taneja, S. R.; Kumar, Jagdish; Thariyan, K. K.; Verma, Sanjeev

    2005-01-01

    Clinical chemistry analyser is a high-performance microcontroller-based photometric biochemical analyser to measure various blood biochemical parameters such as blood glucose, urea, protein, bilirubin, and so forth, and also to measure and observe enzyme growth occurred while performing the other biochemical tests such as ALT (alkaline amino transferase), amylase, AST (aspartate amino transferase), and so forth. These tests are of great significance in biochemistry and used for diagnostic purposes and classifying various disorders and diseases such as diabetes, liver malfunctioning, renal diseases, and so forth. An inexpensive clinical chemistry analyser developed by the authors is described in this paper. This is an open system in which any reagent kit available in the market can be used. The system is based on the principle of absorbance transmittance photometry. System design is based around 80C31 microcontroller with RAM, EPROM, and peripheral interface devices. The developed system incorporates light source, an optical module, interference filters of various wave lengths, peltier device for maintaining required temperature of the mixture in flow cell, peristaltic pump for sample aspiration, graphic LCD display for displaying blood parameters, patients test results and kinetic test graph, 40 columns mini thermal printer, and also 32-key keyboard for executing various functions. The lab tests conducted on the instrument include versatility of the analyzer, flexibility of the software, and treatment of sample. The prototype was tested and evaluated over 1000 blood samples successfully for seventeen blood parameters. Evaluation was carried out at Government Medical College and Hospital, the Department of Biochemistry. The test results were found to be comparable with other standard instruments. PMID:18924737

  14. Design and development of microcontroller-based clinical chemistry analyser for measurement of various blood biochemistry parameters.

    PubMed

    Taneja, S R; Gupta, R C; Kumar, Jagdish; Thariyan, K K; Verma, Sanjeev

    2005-01-01

    Clinical chemistry analyser is a high-performance microcontroller-based photometric biochemical analyser to measure various blood biochemical parameters such as blood glucose, urea, protein, bilirubin, and so forth, and also to measure and observe enzyme growth occurred while performing the other biochemical tests such as ALT (alkaline amino transferase), amylase, AST (aspartate amino transferase), and so forth. These tests are of great significance in biochemistry and used for diagnostic purposes and classifying various disorders and diseases such as diabetes, liver malfunctioning, renal diseases, and so forth. An inexpensive clinical chemistry analyser developed by the authors is described in this paper. This is an open system in which any reagent kit available in the market can be used. The system is based on the principle of absorbance transmittance photometry. System design is based around 80C31 microcontroller with RAM, EPROM, and peripheral interface devices. The developed system incorporates light source, an optical module, interference filters of various wave lengths, peltier device for maintaining required temperature of the mixture in flow cell, peristaltic pump for sample aspiration, graphic LCD display for displaying blood parameters, patients test results and kinetic test graph, 40 columns mini thermal printer, and also 32-key keyboard for executing various functions. The lab tests conducted on the instrument include versatility of the analyzer, flexibility of the software, and treatment of sample. The prototype was tested and evaluated over 1000 blood samples successfully for seventeen blood parameters. Evaluation was carried out at Government Medical College and Hospital, the Department of Biochemistry. The test results were found to be comparable with other standard instruments.

  15. Pneumatically Modulated Liquid Delivery System for Nebulizers

    DTIC Science & Technology

    2011-12-02

    VII. Acknowledgements 18 APPENDIX A: Complete Parts List 19 APPENDIX B: Source code for the Arduino Uno microcontroller (CD) 23 1 I...implemented. The Arduino Uno is a well-established hobbyist microcontroller, focused on ease-of-use and teaching non-computer programmers about embedded...circuits. The Arduino Uno uses an Atmega328 microcontroller with thirteen digital TTL control lines, six 10-bit resolution 0-5 V analog inputs, TTL

  16. A flexible microcontroller-based data acquisition device.

    PubMed

    Hercog, Darko; Gergič, Bojan

    2014-06-02

    This paper presents a low-cost microcontroller-based data acquisition device. The key component of the presented solution is a configurable microcontroller-based device with an integrated USB transceiver and a 12-bit analogue-to-digital converter (ADC). The presented embedded DAQ device contains a preloaded program (firmware) that enables easy acquisition and generation of analogue and digital signals and data transfer between the device and the application running on a PC via USB bus. This device has been developed as a USB human interface device (HID). This USB class is natively supported by most of the operating systems and therefore any installation of additional USB drivers is unnecessary. The input/output peripheral of the presented device is not static but rather flexible, and could be easily configured to customised needs without changing the firmware. When using the developed configuration utility, a majority of chip pins can be configured as analogue input, digital input/output, PWM output or one of the SPI lines. In addition, LabVIEW drivers have been developed for this device. When using the developed drivers, data acquisition and signal processing algorithms as well as graphical user interface (GUI), can easily be developed using a well-known, industry proven, block oriented LabVIEW programming environment.

  17. [The research on a pocket microcontroller system for target controlled infusion].

    PubMed

    Cheng, Yu-Ke; Zhang, Xin-An; Zhang, Yan-Wu; Wu, Qun-Ling; Dou, Jian-Hong; Wang, Rou-Shong

    2005-05-01

    This paper present a microcontroller system for target controlled infusion according to pharmacodynamic parameters of intravenous anesthetics. It can control the depth of anesthesia by adjusting the level of plasma concentrations. The system has the advantages of high precision, extended function and easy operation. It has been now used in the clinical anesthesia.

  18. Automated Mobile System for Accurate Outdoor Tree Crop Enumeration Using an Uncalibrated Camera.

    PubMed

    Nguyen, Thuy Tuong; Slaughter, David C; Hanson, Bradley D; Barber, Andrew; Freitas, Amy; Robles, Daniel; Whelan, Erin

    2015-07-28

    This paper demonstrates an automated computer vision system for outdoor tree crop enumeration in a seedling nursery. The complete system incorporates both hardware components (including an embedded microcontroller, an odometry encoder, and an uncalibrated digital color camera) and software algorithms (including microcontroller algorithms and the proposed algorithm for tree crop enumeration) required to obtain robust performance in a natural outdoor environment. The enumeration system uses a three-step image analysis process based upon: (1) an orthographic plant projection method integrating a perspective transform with automatic parameter estimation; (2) a plant counting method based on projection histograms; and (3) a double-counting avoidance method based on a homography transform. Experimental results demonstrate the ability to count large numbers of plants automatically with no human effort. Results show that, for tree seedlings having a height up to 40 cm and a within-row tree spacing of approximately 10 cm, the algorithms successfully estimated the number of plants with an average accuracy of 95.2% for trees within a single image and 98% for counting of the whole plant population in a large sequence of images.

  19. Automated Mobile System for Accurate Outdoor Tree Crop Enumeration Using an Uncalibrated Camera

    PubMed Central

    Nguyen, Thuy Tuong; Slaughter, David C.; Hanson, Bradley D.; Barber, Andrew; Freitas, Amy; Robles, Daniel; Whelan, Erin

    2015-01-01

    This paper demonstrates an automated computer vision system for outdoor tree crop enumeration in a seedling nursery. The complete system incorporates both hardware components (including an embedded microcontroller, an odometry encoder, and an uncalibrated digital color camera) and software algorithms (including microcontroller algorithms and the proposed algorithm for tree crop enumeration) required to obtain robust performance in a natural outdoor environment. The enumeration system uses a three-step image analysis process based upon: (1) an orthographic plant projection method integrating a perspective transform with automatic parameter estimation; (2) a plant counting method based on projection histograms; and (3) a double-counting avoidance method based on a homography transform. Experimental results demonstrate the ability to count large numbers of plants automatically with no human effort. Results show that, for tree seedlings having a height up to 40 cm and a within-row tree spacing of approximately 10 cm, the algorithms successfully estimated the number of plants with an average accuracy of 95.2% for trees within a single image and 98% for counting of the whole plant population in a large sequence of images. PMID:26225982

  20. Enhanced low current, voltage, and power dissipation measurements via Arduino Uno microcontroller with modified commercially available sensors

    NASA Astrophysics Data System (ADS)

    Tanner, Meghan; Eckel, Ryan; Senevirathne, Indrajith

    The versatility, simplicity, and robustness of Arduino microcontroller architecture have won a huge following with increasingly serious engineering and physical science applications. Arduino microcontroller environment coupled with commercially available sensors have been used to systematically measure, record, and analyze low currents, low voltages and corresponding dissipated power for assessing secondary physical properties in a diverse array of engineering systems. Setup was assembled via breadboard, wire, and simple soldering with an Arduino Uno with ATmega328P microcontroller connected to a PC. The microcontroller was programmed with Arduino Software while the bootloader was used to upload the code. Commercial Hall effect current sensor modules ACS712 and INA169 current shunt monitor was used to measure corresponding low to ultra-low currents and voltages. Stable measurement data was obtained via sensors and compared with corresponding oscilloscope measurements to assess reliability and uncertainty. Sensor breakout boards were modified to enhance the sensitivity of the measurements and to expand the applicability. Discussion of these measurements will focus on capabilities, capacities and limitations of the systems with examples of possible applications. Lock Haven Nanotechnology Program.

  1. A High Performance LIA-Based Interface for Battery Powered Sensing Devices

    PubMed Central

    García-Romeo, Daniel; Valero, María R.; Medrano, Nicolás; Calvo, Belén; Celma, Santiago

    2015-01-01

    This paper proposes a battery-compatible electronic interface based on a general purpose lock-in amplifier (LIA) capable of recovering input signals up to the MHz range. The core is a novel ASIC fabricated in 1.8 V 0.18 µm CMOS technology, which contains a dual-phase analog lock-in amplifier consisting of carefully designed building blocks to allow configurability over a wide frequency range while maintaining low power consumption. It operates using square input signals. Hence, for battery-operated microcontrolled systems, where square reference and exciting signals can be generated by the embedded microcontroller, the system benefits from intrinsic advantages such as simplicity, versatility and reduction in power and size. Experimental results confirm the signal recovery capability with signal-to-noise power ratios down to −39 dB with relative errors below 0.07% up to 1 MHz. Furthermore, the system has been successfully tested measuring the response of a microcantilever-based resonant sensor, achieving similar results with better power-bandwidth trade-off compared to other LIAs based on commercial off-the-shelf (COTS) components and commercial LIA equipment. PMID:26437408

  2. A High Performance LIA-Based Interface for Battery Powered Sensing Devices.

    PubMed

    García-Romeo, Daniel; Valero, María R; Medrano, Nicolás; Calvo, Belén; Celma, Santiago

    2015-09-30

    This paper proposes a battery-compatible electronic interface based on a general purpose lock-in amplifier (LIA) capable of recovering input signals up to the MHz range. The core is a novel ASIC fabricated in 1.8 V 0.18 µm CMOS technology, which contains a dual-phase analog lock-in amplifier consisting of carefully designed building blocks to allow configurability over a wide frequency range while maintaining low power consumption. It operates using square input signals. Hence, for battery-operated microcontrolled systems, where square reference and exciting signals can be generated by the embedded microcontroller, the system benefits from intrinsic advantages such as simplicity, versatility and reduction in power and size. Experimental results confirm the signal recovery capability with signal-to-noise power ratios down to -39 dB with relative errors below 0.07% up to 1 MHz. Furthermore, the system has been successfully tested measuring the response of a microcantilever-based resonant sensor, achieving similar results with better power-bandwidth trade-off compared to other LIAs based on commercial off-the-shelf (COTS) components and commercial LIA equipment.

  3. Geometry-Of-Fire Tracking Algorithm for Direct-Fire Weapon Systems

    DTIC Science & Technology

    2015-09-01

    this specific application. A scaled-down version for a fire team was created with XBee Pro radios, Arduino Uno microcontrollers, Raspberry Pi computers...constructed with XBee Pro radios, Arduino Uno microcontrollers, Raspberry Pi computers and ROS [5]. The XBee Pro radios and Arduino Uno microcontrollers...communicated the positional data of each node as shown in Figure 4, and the Raspberry Pi computers and ROS executed the tracking algorithm and allowed

  4. Obstacle avoidance system with sonar sensing and fuzzy logic

    NASA Astrophysics Data System (ADS)

    Chiang, Wen-chuan; Kelkar, Nikhal; Hall, Ernest L.

    1997-09-01

    Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of an obstacle avoidance system using sonar sensors for a modular autonomous mobile robot controller. The advantages of a modular system are related to portability and the fact that any vehicle can become autonomous with minimal modifications. A mobile robot test-bed has been constructed using a golf cart base. The obstacle avoidance system is based on a micro-controller interfaced with multiple ultrasonic transducers. This micro-controller independently handles all timing and distance calculations and sends a distance measurement back to the computer via the serial line. This design yields a portable independent system. Testing of these systems has been done in the lab as well as on an outside test track with positive results that show that at five mph the vehicle can follow a line and at the same time avoid obstacles. This design, in its modularity, creates a portable autonomous obstacle avoidance controller applicable for any mobile vehicle with only minor adaptations.

  5. Design of embedded system to determine liquid refractive index based on ultrasonic sensor using an ATMega328

    NASA Astrophysics Data System (ADS)

    Radiyonoa, Y.; Surantoro, S.; Pujayanto, P.; Budiharti, R.; Respati, Y. S.; Saputro, D. E.

    2018-05-01

    The occurrence of the broken pencil shadow into a glass of water becomes an interesting matter to be learned. The students of senior high school still find difficulty in determining liquid refractive index. To overcome this problem, it needs to develop an experimental tool to determine liquid refractive index by utilizing the newest technology. It is expected to be useful for students. This study is aimed to (1) make the design of physics learning experimental tool determinant of a liquid refractive index assisted by microcontroller based on ultrasonic sensors ATMega328 (2) explain the working principle and experimental result of liquid refractive indexing instrument assisted with ATMega328 microcontroller based ultrasonic sensor. This research used the experimental method. The result of the research shows design of physics learning experimental tool determinant of a liquid refractive index assisted by microcontroller based on ultrasonic sensors ATMega328 that has relative counting mistake of 0.36% on the measurement of aquades liquid refractive index, relative mistake of 0.18% on the 5% NaCl measurement, 0.24% on 5% glucose, and relative mistake of 0.50% on the measurement of 5 % fructose liquid refractive index. It has been created a proper device to be used in determining liquid refractive index.

  6. Microcontroller-driven fluid-injection system for atomic force microscopy.

    PubMed

    Kasas, S; Alonso, L; Jacquet, P; Adamcik, J; Haeberli, C; Dietler, G

    2010-01-01

    We present a programmable microcontroller-driven injection system for the exchange of imaging medium during atomic force microscopy. Using this low-noise system, high-resolution imaging can be performed during this process of injection without disturbance. This latter circumstance was exemplified by the online imaging of conformational changes in DNA molecules during the injection of anticancer drug into the fluid chamber.

  7. Microcontroller-based system for estimate of calcium in serum samples.

    PubMed

    Neelamegam, Periyaswmy; Jamaludeen, Abdul Sheriff; Ragendran, Annamalai; Murugrananthan, Krishanamoorthy

    2010-01-01

    In this study, a microcontroller-based control unit was designed and constructed for the estimation of serum calcium in blood samples. The proposed optoelectronic instrument used a red light emitting diode (LED) as a light source and photodiode as a sensor. The performance of the system was compared with that of a commercial instrument in measuring calcium ion. The quantitative analysis of calcium in a catalyst using arsenazo III as colorimetric reagent was used to test the device. The calibration curve for calcium binding with arsenazo III was drawn to check the range of linearity, which was between 0.1 to 4.5 mM L⁻¹. The limit of detection (LOD) is 0.05 mM L⁻¹. Absorbance changes over the pH range of 2-12 were determined to optimize the assay, with maximum absorption at pH 9.0. Interferences in absorbance from monovalent (K+ and Na+) and divalent (Mg²+) cations were also studied. The results show that the system works successfully.

  8. Design and development of electrical impedance tomography system with 32 electrodes and microcontroller

    NASA Astrophysics Data System (ADS)

    Ansory, Achmad; Prajitno, Prawito; Wijaya, Sastra Kusuma

    2018-02-01

    Electrical Impedance Tomography (EIT) is an imaging method that is able to estimate electrical impedance distribution inside an object. This EIT system is developed by using 32 electrodes and microcontroller based module. From a pair of electrodes, sinusoidal current of 3 mA is injected and the voltage differences between other pairs of electrodes are measured. Voltage measurement data are then sent to MATLAB and EIDORS software; the data are used to reconstruct two dimensions image. The system can detect and determine the position of a phantom in the tank. The object's position is accurately reconstructed and determined with the average shifting of 0.69 cm but object's area cannot be accurately reconstructed. The object's image is more accurately reconstructed when the object is located near to electrodes, has a larger size, and when the current injected to the system has a frequency of 100 kHz or 200kHz.

  9. A Proposal for the Education based on the Information Technology in Technical High Schools, Linking Together Web Programming and Microcontroller

    NASA Astrophysics Data System (ADS)

    Shinozaki, Kenichi; Yanaru, Torao

    Recently, IT (Information Technology) have rapidly revolved and penetrated into the usual human life, with such as the household appliances and the mobile devices. Considering this strong change of social environment, what technology is introduced to satisfy the present educational needs and how to develop the teaching system is very important. Then in this paper, we describe the developed web-teaching material that links Xport, an embedded device server, with the control system using microcontroller technology. In the classes, we have implemented the lessons that utilize this system in the following subjects : programming technology, hardware technology, electronic circuit and practical training. Furthermore, because of high availability of the developed system through internet, it is also useful for the education on science and technical arts in general high schools or in junior high schools as well as in technical high schools.

  10. A microcontroller-based implantable nerve stimulator used for rats.

    PubMed

    Sha, Hong; Zheng, Zheng; Wang, Yan; Ren, Chaoshi

    2005-01-01

    A microcontroller-based stimulator that can be flexible programmed after it has been implanted into a rat was studied. Programmability enables implanted stimulators to generate customized, complex protocols for experiments. After implantation, a coded light pulse train that contains information of specific identification will unlock a certain stimulator. If a command that changing the parameters is received, the microcontroller will update its flash memory after it affirms the commands. The whole size of it is only 1.6 cubic centimeters, and it can work for a month. The devices have been successfully used in animal behavior experiments, especially on rats.

  11. Physical Test Prototypes Based on Microcontroller

    NASA Astrophysics Data System (ADS)

    Paramitha, S. T.

    2017-03-01

    The purpose of this study was to produce a prototype of a physical test-based microcontroller. The research method uses the research and development of the Borg and gall. The procedure starts from the study; research and information collecting, planning, develop preliminary form of product, preliminary field testing, main product revision, playing field testing, operational product revision, field operational testing, final product revision, dissemination and implementation. Validation of the product, obtained through expert evaluation; test products of small scale and large scale; effectiveness test; evaluation of respondents. The results showed that the eligibility assessment of prototype products based physical tests microcontroller. Based on the ratings of seven experts showed that 87% included in the category of “very good” and 13% included in the category of “good”. While the effectiveness of the test results showed that 1). The results of the experimental group to test sit-ups increase by 40% and the control group by 15%. 2). The results of the experimental group to test push-ups increased by 30% and the control group by 10%. 3). The results of the experimental group to test the Back-ups increased by 25% and the control group by 10%. With a significant value of 0.002 less than 0.05, product means a physical test prototype microcontroller based, proven effective in improving the results of physical tests. Conclusions and recommendations; Product physical microcontroller-based assays, can be used to measure the physical tests of pushups, sit ups, and back-ups.

  12. Liquid volume monitoring based on ultrasonic sensor and Arduino microcontroller

    NASA Astrophysics Data System (ADS)

    Husni, M.; Siahaan, D. O.; Ciptaningtyas, H. T.; Studiawan, H.; Aliarham, Y. P.

    2016-04-01

    Incident of oil leakage and theft in oil tank often happens. To prevent it, the liquid volume insides the tank needs to be monitored continuously. Aim of the study is to calculate the liquid volume inside oil tank on any road condition and send the volume data and location data to the user. This research use some ultrasonic sensors (to monitor the fluid height), Bluetooth modules (to sent data from the sensors to the Arduino microcontroller), Arduino Microcontroller (to calculate the liquid volume), and also GPS/GPRS/GSM Shield module (to get location of vehicle and sent the data to the Server). The experimental results show that the accuracy rate of monitoring liquid volume inside tanker while the vehicle is in the flat road is 99.33% and the one while the vehicle is in the road with elevation angle is 84%. Thus, this system can be used to monitor the tanker position and the liquid volume in any road position continuously via web application to prevent illegal theft.

  13. Two-dimensional heat flow apparatus

    NASA Astrophysics Data System (ADS)

    McDougall, Patrick; Ayars, Eric

    2014-06-01

    We have created an apparatus to quantitatively measure two-dimensional heat flow in a metal plate using a grid of temperature sensors read by a microcontroller. Real-time temperature data are collected from the microcontroller by a computer for comparison with a computational model of the heat equation. The microcontroller-based sensor array allows previously unavailable levels of precision at very low cost, and the combination of measurement and modeling makes for an excellent apparatus for the advanced undergraduate laboratory course.

  14. A Flexible Microcontroller-Based Data Acquisition Device

    PubMed Central

    Hercog, Darko; Gergič, Bojan

    2014-01-01

    This paper presents a low-cost microcontroller-based data acquisition device. The key component of the presented solution is a configurable microcontroller-based device with an integrated USB transceiver and a 12-bit analogue-to-digital converter (ADC). The presented embedded DAQ device contains a preloaded program (firmware) that enables easy acquisition and generation of analogue and digital signals and data transfer between the device and the application running on a PC via USB bus. This device has been developed as a USB human interface device (HID). This USB class is natively supported by most of the operating systems and therefore any installation of additional USB drivers is unnecessary. The input/output peripheral of the presented device is not static but rather flexible, and could be easily configured to customised needs without changing the firmware. When using the developed configuration utility, a majority of chip pins can be configured as analogue input, digital input/output, PWM output or one of the SPI lines. In addition, LabVIEW drivers have been developed for this device. When using the developed drivers, data acquisition and signal processing algorithms as well as graphical user interface (GUI), can easily be developed using a well-known, industry proven, block oriented LabVIEW programming environment. PMID:24892494

  15. A novel automated rat catalepsy bar test system based on a RISC microcontroller.

    PubMed

    Alvarez-Cervera, Fernando J; Villanueva-Toledo, Jairo; Moo-Puc, Rosa E; Heredia-López, Francisco J; Alvarez-Cervera, Margarita; Pineda, Juan C; Góngora-Alfaro, José L

    2005-07-15

    Catalepsy tests performed in rodents treated with drugs that interfere with dopaminergic transmission have been widely used for the screening of drugs with therapeutic potential in the treatment of Parkinson's disease. The basic method for measuring catalepsy intensity is the "standard" bar test. We present here an easy to use microcontroller-based automatic system for recording bar test experiments. The design is simple, compact, and has a low cost. Recording intervals and total experimental time can be programmed within a wide range of values. The resulting catalepsy times are stored, and up to five simultaneous experiments can be recorded. A standard personal computer interface is included. The automated system also permits the elimination of human error associated with factors such as fatigue, distraction, and data transcription, occurring during manual recording. Furthermore, a uniform criterion for timing the cataleptic condition can be achieved. Correlation values between the results obtained with the automated system and those reported by two independent observers ranged between 0.88 and 0.99 (P<0.0001; three treatments, nine animals, 144 catalepsy time measurements).

  16. Greenhouse intelligent control system based on microcontroller

    NASA Astrophysics Data System (ADS)

    Zhang, Congwei

    2018-04-01

    As one of the hallmarks of agricultural modernization, intelligent greenhouse has the advantages of high yield, excellent quality, no pollution and continuous planting. Taking AT89S52 microcontroller as the main controller, the greenhouse intelligent control system uses soil moisture sensor, temperature and humidity sensors, light intensity sensor and CO2 concentration sensor to collect measurements and display them on the 12864 LCD screen real-time. Meantime, climate parameter values can be manually set online. The collected measured values are compared with the set standard values, and then the lighting, ventilation fans, warming lamps, water pumps and other facilities automatically start to adjust the climate such as light intensity, CO2 concentration, temperature, air humidity and soil moisture of the greenhouse parameter. So, the state of the environment in the greenhouse Stabilizes and the crop grows in a suitable environment.

  17. A system for the delivery of programmable, adaptive stimulation intensity envelopes for drop foot correction applications.

    PubMed

    Breen, P P; O'Keeffe, D T; Conway, R; Lyons, G M

    2006-03-01

    We describe the design of an intelligent drop foot stimulator unit for use in conjunction with a commercial neuromuscular electrical nerve stimulation (NMES) unit, the NT2000. The developed micro-controller unit interfaces to a personal computer (PC) and a graphical user interface (GUI) allows the clinician to graphically specify the shape of the stimulation intensity envelope required for a subject undergoing drop foot correction. The developed unit is based on the ADuC812S micro-controller evaluation board from Analog Devices and uses two force sensitive resistor (FSR) based foot-switches to control application of stimulus. The unit has the ability to display to the clinician how the stimulus intensity envelope is being delivered during walking using a data capture capability. The developed system has a built-in algorithm to dynamically adjust the delivery of stimulus to reflect changes both within the gait cycle and from cycle to cycle. Thus, adaptive control of stimulus intensity is achieved.

  18. Measurement and control systems for an imaging electromagnetic flow metre.

    PubMed

    Zhao, Y Y; Lucas, G; Leeungculsatien, T

    2014-03-01

    Electromagnetic flow metres based on the principles of Faraday's laws of induction have been used successfully in many industries. The conventional electromagnetic flow metre can measure the mean liquid velocity in axisymmetric single phase flows. However, in order to achieve velocity profile measurements in single phase flows with non-uniform velocity profiles, a novel imaging electromagnetic flow metre (IEF) has been developed which is described in this paper. The novel electromagnetic flow metre which is based on the 'weight value' theory to reconstruct velocity profiles is interfaced with a 'Microrobotics VM1' microcontroller as a stand-alone unit. The work undertaken in the paper demonstrates that an imaging electromagnetic flow metre for liquid velocity profile measurement is an instrument that is highly suited for control via a microcontroller. © 2013 ISA Published by ISA All rights reserved.

  19. Teaching Smartphone and Microcontroller Systems Using "Android Java"

    ERIC Educational Resources Information Center

    Tigrek, Seyitriza

    2012-01-01

    Mobile devices are becoming indispensable tools for many students and educators. Mobile technology is starting a new era in the computing methodologies in many engineering disciplines and laboratories. Microcontroller extension that communicates with mobile devices will take the data acquisition and control process into a new level in the sensing…

  20. [Research of controlling of smart home system based on P300 brain-computer interface].

    PubMed

    Wang, Jinjia; Yang, Chengjie

    2014-08-01

    Using electroencephalogram (EEG) signal to control external devices has always been the research focus in the field of brain-computer interface (BCI). This is especially significant for those disabilities who have lost capacity of movements. In this paper, the P300-based BCI and the microcontroller-based wireless radio frequency (RF) technology are utilized to design a smart home control system, which can be used to control household appliances, lighting system, and security devices directly. Experiment results showed that the system was simple, reliable and easy to be populirised.

  1. Microdot - A Four-Bit Microcontroller Designed for Distributed Low-End Computing in Satellites

    NASA Astrophysics Data System (ADS)

    2002-03-01

    Many satellites are an integrated collection of sensors and actuators that require dedicated real-time control. For single processor systems, additional sensors require an increase in computing power and speed to provide the multi-tasking capability needed to service each sensor. Faster processors cost more and consume more power, which taxes a satellite's power resources and may lead to shorter satellite lifetimes. An alternative design approach is a distributed network of small and low power microcontrollers designed for space that handle the computing requirements of each individual sensor and actuator. The design of microdot, a four-bit microcontroller for distributed low-end computing, is presented. The design is based on previous research completed at the Space Electronics Branch, Air Force Research Laboratory (AFRL/VSSE) at Kirtland AFB, NM, and the Air Force Institute of Technology at Wright-Patterson AFB, OH. The Microdot has 29 instructions and a 1K x 4 instruction memory. The distributed computing architecture is based on the Philips Semiconductor I2C Serial Bus Protocol. A prototype was implemented and tested using an Altera Field Programmable Gate Array (FPGA). The prototype was operable to 9.1 MHz. The design was targeted for fabrication in a radiation-hardened-by-design gate-array cell library for the TSMC 0.35 micrometer CMOS process.

  2. Prediction of Trace Element based Energizing Sensor Control System using PWM

    NASA Astrophysics Data System (ADS)

    Zukri, Mohammad Nizar Bin Mohamed; Abu Bakar, Elmi Bin; Uchiyama, Naoki; Abdullah, Mohamad Nazir Bin

    2018-05-01

    A real-time system for field-work monitoring wastewater laden with heavy metal in industrial discharge through wireless communication network was developed. The monitoring system poses an interesting challenge in order to determine existing metal ion in the solution whereas the previous result only consider total dissolve ion. This paper aims to distinguish the metal ion based on reaction determination in solution. The control algorithm was implemented as generating voltage input for energize conductivity sensor since the voltage corresponding to oxidation and reaction based on standard reduction potential. Implementation of ATmega2560 microcontroller for control voltage fed on sensor equivalent to controlling the PWM duty cycle. PID controller was designed uses a microcontroller (Arduino) platform with manual tuning for identify reaction process and sufficient voltage input. From the experimental result, is found that the proposed PI controller has excellent tracking and measurement performance. Low-pass filter was applied in programming to make the system understand that signal has achieved stable. The development of hardware and software of the closed loop system has an enhancement of measurement performance and high feasibility for SME’s company in economic point of view. The desired objective is to achieve a system with the stable measurement and sufficient voltage supply. This system will provide an accurate and precise control efficiently without using costly component and complicated circuit.

  3. Ethernet based data logger for gaseous detectors

    NASA Astrophysics Data System (ADS)

    Swain, S.; Sahu, P. K.; Sahu, S. K.

    2018-05-01

    A data logger is designed to monitor and record ambient parameters such as temperature, pressure and relative humidity along with gas flow rate as a function of time. These parameters are required for understanding the characteristics of gas-filled detectors such as Gas Electron Multiplier (GEM) and Multi-Wire Proportional Counter (MWPC). The data logger has different microcontrollers and has been interfaced to an ethernet port with a local LCD unit for displaying all measured parameters. In this article, the explanation of the data logger design, hardware, and software description of the master microcontroller and the DAQ system along with LabVIEW interface client program have been presented. We have implemented this device with GEM detector and displayed few preliminary results as a function of above parameters.

  4. Laser frequency stabilization using a transfer interferometer

    NASA Astrophysics Data System (ADS)

    Jackson, Shira; Sawaoka, Hiromitsu; Bhatt, Nishant; Potnis, Shreyas; Vutha, Amar C.

    2018-03-01

    We present a laser frequency stabilization system that uses a transfer interferometer to stabilize slave lasers to a reference laser. Our implementation uses off-the-shelf optical components along with microcontroller-based digital feedback, and offers a simple, flexible, and robust way to stabilize multiple laser frequencies to better than 1 MHz.

  5. Remote hardware-reconfigurable robotic camera

    NASA Astrophysics Data System (ADS)

    Arias-Estrada, Miguel; Torres-Huitzil, Cesar; Maya-Rueda, Selene E.

    2001-10-01

    In this work, a camera with integrated image processing capabilities is discussed. The camera is based on an imager coupled to an FPGA device (Field Programmable Gate Array) which contains an architecture for real-time computer vision low-level processing. The architecture can be reprogrammed remotely for application specific purposes. The system is intended for rapid modification and adaptation for inspection and recognition applications, with the flexibility of hardware and software reprogrammability. FPGA reconfiguration allows the same ease of upgrade in hardware as a software upgrade process. The camera is composed of a digital imager coupled to an FPGA device, two memory banks, and a microcontroller. The microcontroller is used for communication tasks and FPGA programming. The system implements a software architecture to handle multiple FPGA architectures in the device, and the possibility to download a software/hardware object from the host computer into its internal context memory. System advantages are: small size, low power consumption, and a library of hardware/software functionalities that can be exchanged during run time. The system has been validated with an edge detection and a motion processing architecture, which will be presented in the paper. Applications targeted are in robotics, mobile robotics, and vision based quality control.

  6. Sensory System for Implementing a Human—Computer Interface Based on Electrooculography

    PubMed Central

    Barea, Rafael; Boquete, Luciano; Rodriguez-Ascariz, Jose Manuel; Ortega, Sergio; López, Elena

    2011-01-01

    This paper describes a sensory system for implementing a human–computer interface based on electrooculography. An acquisition system captures electrooculograms and transmits them via the ZigBee protocol. The data acquired are analysed in real time using a microcontroller-based platform running the Linux operating system. The continuous wavelet transform and neural network are used to process and analyse the signals to obtain highly reliable results in real time. To enhance system usability, the graphical interface is projected onto special eyewear, which is also used to position the signal-capturing electrodes. PMID:22346579

  7. ROBucket: A low cost operant chamber based on the Arduino microcontroller.

    PubMed

    Devarakonda, Kavya; Nguyen, Katrina P; Kravitz, Alexxai V

    2016-06-01

    The operant conditioning chamber is a cornerstone of animal behavioral research. Operant boxes are used to assess learning and motivational behavior in animals, particularly for food and drug reinforcers. However, commercial operant chambers cost several thousands of dollars. We have constructed the Rodent Operant Bucket (ROBucket), an inexpensive and easily assembled open-source operant chamber based on the Arduino microcontroller platform, which can be used to train mice to respond for sucrose solution or other liquid reinforcers. The apparatus contains two nose pokes, a drinking well, and a solenoid-controlled liquid delivery system. ROBucket can run fixed ratio and progressive ratio training schedules, and can be programmed to run more complicated behavioral paradigms. Additional features such as motion sensing and video tracking can be added to the operant chamber through the array of widely available Arduino-compatible sensors. The design files and programming code are open source and available online for others to use.

  8. A novel anti-theft security system for photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Khan, Wasif Ali; Lim, Boon-Han; Lai, An-Chow; Chong, Kok-Keong

    2017-04-01

    Solar farms are considered as easy target for thieves because of insufficient protection measures. Existing anti-theft approaches are based on system level and are not very preventive and efficient because these can be bypassed with some technical knowledge. Additionally, it is difficult for security guards to tackle them as robbers come in a form of a gang equipped with heavy weapons. In this paper, a low power auto shut-off and non-destructive system is proposed for photovoltaic (PV) modules to achieve better level of security at module level. In proposed method, the power generation function of the PV module will be shut-off internally and cannot be re-activated by unauthorized personnel, in the case of theft. Hence, the PV module will not be functional even sold to new customers. The system comprises of a microcontroller, a low power position sensor, a controllable semiconductor switch and a wireless reactive-able system. The anti-theft system is developed to be laminated inside PV module and will be interconnected with solar cells so it becomes difficult for thieves to temper. The position of PV module is retrieved by position sensor and stored in a microcontroller as an initial reference value. Microcontroller uses this stored reference value to control power supply of PV module via power switch. The stored reference value can be altered using wireless circuitry by following authentication protocol. It makes the system non-destructive as anti-theft function can be reset again by authorized personnel, if it is recovered after theft or moved for maintenance purposes. The research component includes the design of a position sensing circuit, an auto shut-off circuit, a reactive-able wireless security protection algorithm and finally the integration of the multiple circuits.

  9. Visualizing the Logistic Map with a Microcontroller

    ERIC Educational Resources Information Center

    Serna, Juan D.; Joshi, Amitabh

    2012-01-01

    The logistic map is one of the simplest nonlinear dynamical systems that clearly exhibits the route to chaos. In this paper, we explore the evolution of the logistic map using an open-source microcontroller connected to an array of light-emitting diodes (LEDs). We divide the one-dimensional domain interval [0,1] into ten equal parts, an associate…

  10. Universal design of a microcontroller and IoT system to detect the heart rate

    NASA Astrophysics Data System (ADS)

    Uwamahoro, Raphael; Mushikiwabeza, Alexie; Minani, Gerard; Mohan Murari, Bhaskar

    2017-11-01

    Heart rate analysis provides vital information of the present condition of the human body. It helps medical professionals in diagnosis of various malfunctions of the body. The limitation of vision impaired and blind people to access medical devices cause a considerable loss of life. In this paper, we intended to develop a heart rate detection system that is usable for people with normal and abnormal vision. The system is based on a non-invasive method of measuring the variation of the tissue blood flow rate by means of a photo transmitter and detector through fingertip known as photoplethysmography (PPG). The signal detected is firstly passed through active low pass filter and then amplified by a two stages high gain amplifier. The amplified signal is feed into the microcontroller to calculate the heart rate and displays the heart beat via sound systems and Liquid Crystal Display (LCD). To distinguish arrhythmia, normal heart rate and abnormal working conditions of the system, recognition is provided in different sounds, LCD readings and Light Emitting Diodes (LED).

  11. Time response for sensor sensed to actuator response for mobile robotic system

    NASA Astrophysics Data System (ADS)

    Amir, N. S.; Shafie, A. A.

    2017-11-01

    Time and performance of a mobile robot are very important in completing the tasks given to achieve its ultimate goal. Tasks may need to be done within a time constraint to ensure smooth operation of a mobile robot and can result in better performance. The main purpose of this research was to improve the performance of a mobile robot so that it can complete the tasks given within time constraint. The problem that is needed to be solved is to minimize the time interval between sensor detection and actuator response. The research objective is to analyse the real time operating system performance of sensors and actuators on one microcontroller and on two microcontroller for a mobile robot. The task for a mobile robot for this research is line following with an obstacle avoidance. Three runs will be carried out for the task and the time between the sensors senses to the actuator responses were recorded. Overall, the results show that two microcontroller system have better response time compared to the one microcontroller system. For this research, the average difference of response time is very important to improve the internal performance between the occurrence of a task, sensors detection, decision making and actuator response of a mobile robot. This research helped to develop a mobile robot with a better performance and can complete task within the time constraint.

  12. Characterizing Graphene-modified Electrodes for Interfacing with Arduino®-based Devices.

    PubMed

    Arris, Farrah Aida; Ithnin, Mohamad Hafiz; Salim, Wan Wardatul Amani Wan

    2016-08-01

    Portable low-cost platform and sensing systems for identification and quantitative measurement are in high demand for various environmental monitoring applications, especially in field work. Quantifying parameters in the field requires both minimal sample handling and a device capable of performing measurements with high sensitivity and stability. Furthermore, the one-device-fits-all concept is useful for continuous monitoring of multiple parameters. Miniaturization of devices can be achieved by introducing graphene as part of the transducer in an electrochemical sensor. In this project, we characterize graphene deposition methods on glassy-carbon electrodes (GCEs) with the goal of interfacing with an Arduino-based user-friendly microcontroller. We found that a galvanostatic electrochemical method yields the highest peak current of 10 mA, promising a highly sensitive electrochemical sensor. An Atlas Scientific™ printed circuit board (PCB) was connected to an Arduino® microcontroller using a multi-circuit connection that can be interfaced with graphene-based electrochemical sensors for environmental monitoring.

  13. An educational distributed Cosmic Ray detector network based on ArduSiPM

    NASA Astrophysics Data System (ADS)

    Bocci, V.; Chiodi, G.; Fresch, P.; Iacoangeli, F.; Recchia, L.

    2017-10-01

    The advent of high performance microcontrollers equipped with analog and digital peripherals, makes the design of a complete particle detector and a relative acquisition system on a single microcontroller chip possible. The existence of a world wide data infrastructure such as the internet, allows for the conception of a distributed network of cheap detectors able to elaborate and send data as well as to respond to setting commands. The internet infrastructure enables the distribution of the absolute time, with precision of a few milliseconds, to all devices independently of their physical location, when the sky view is accessible it possible to use a GPS module to reach synchronization of tens of nanoseconds. These devices can be far apart from each other and their relative distance can range from a few meters to thousands of kilometers. This allows for the design of a crowdsourcing experiment of citizen science, based on the use of many small scintillation-based particle detectors to monitor the high energetic cosmic ray and the radiation environment.

  14. The design and implementation of a windowing interface pinch force measurement system

    NASA Astrophysics Data System (ADS)

    Ho, Tze-Yee; Chen, Yuanu-Joan; Chung, Chin-Teng; Hsiao, Ming-Heng

    2010-02-01

    This paper presents a novel windowing interface pinch force measurement system that is basically based on an USB (Universal Series Bus) microcontroller which mainly processes the sensing data from the force sensing resistance sensors mounted on five digits. It possesses several friendly functions, such as the value and curve trace of the applied force by a hand injured patient displayed in real time on a monitoring screen, consequently, not only the physician can easily evaluate the effect of hand injury rehabilitation, but also the patients get more progressive during the hand physical therapy by interacting with the screen of pinch force measurement. In order to facilitate the pinch force measurement system and make it friendly, the detail hardware design and software programming flowchart are described in this paper. Through a series of carefully and detailed experimental tests, first of all, the relationship between the applying force and the FSR sensors are measured and verified. Later, the different type of pinch force measurements are verified by the oscilloscope and compared with the corresponding values and waveform traces in the window interface display panel to obtain the consistency. Finally, a windowing interface pinch force measurement system based on the USB microcontroller is implemented and demonstrated. The experimental results show the verification and feasibility of the designed system.

  15. Evaluation of corn genotypes for drought and heat stress tolerance using physiological measurements and a microcontroller-based monitoring system

    USDA-ARS?s Scientific Manuscript database

    Moisture deficit accompanied by high temperature are major abiotic stress factors that affect corn production in the southern United States, particularly during the reproductive stage of the plant. In evaluating plants for environmental stress tolerance, it is important to monitor changes in their ...

  16. Determination of moisture deficit and heat stress tolerance in corn using physiological measurements and a low-cost microcontroller-based monitoring system

    USDA-ARS?s Scientific Manuscript database

    In the southern United States, corn production encounters moisture deficit coupled with high temperature stress, particularly during the reproductive stage of the plant. In evaluating plants for environmental stress tolerance, it is important to monitor changes in their physical environment under na...

  17. An Embedded Systems Course for Engineering Students Using Open-Source Platforms in Wireless Scenarios

    ERIC Educational Resources Information Center

    Rodriguez-Sanchez, M. C.; Torrado-Carvajal, Angel; Vaquero, Joaquin; Borromeo, Susana; Hernandez-Tamames, Juan A.

    2016-01-01

    This paper presents a case study analyzing the advantages and disadvantages of using project-based learning (PBL) combined with collaborative learning (CL) and industry best practices, integrated with information communication technologies, open-source software, and open-source hardware tools, in a specialized microcontroller and embedded systems…

  18. Automatic Lamp and Fan Control Based on Microcontroller

    NASA Astrophysics Data System (ADS)

    Widyaningrum, V. T.; Pramudita, Y. D.

    2018-01-01

    In general, automation can be described as a process following pre-determined sequential steps with a little or without any human exertion. Automation is provided with the use of various sensors suitable to observe the production processes, actuators and different techniques and devices. In this research, the automation system developed is an automatic lamp and an automatic fan on the smart home. Both of these systems will be processed using an Arduino Mega 2560 microcontroller. A microcontroller is used to obtain values of physical conditions through sensors connected to it. In the automatic lamp system required sensors to detect the light of the LDR (Light Dependent Resistor) sensor. While the automatic fan system required sensors to detect the temperature of the DHT11 sensor. In tests that have been done lamps and fans can work properly. The lamp can turn on automatically when the light begins to darken, and the lamp can also turn off automatically when the light begins to bright again. In addition, it can concluded also that the readings of LDR sensors are placed outside the room is different from the readings of LDR sensors placed in the room. This is because the light intensity received by the existing LDR sensor in the room is blocked by the wall of the house or by other objects. Then for the fan, it can also turn on automatically when the temperature is greater than 25°C, and the fan speed can also be adjusted. The fan may also turn off automatically when the temperature is less than equal to 25°C.

  19. Microcontroller-based servo for two-crystal X-ray monochromators.

    PubMed

    Siddons, D P

    1998-05-01

    Microcontrollers have become increasingly easy to incorporate into instruments as the architectures and support tools have developed. The PIC series is particularly easy to use, and this paper describes a controller used to stabilize the output of a two-crystal X-ray monochromator at a given offset from its peak intensity position, as such monochromators are generally used.

  20. Development of wireless vehicle remote control for fuel lid operation

    NASA Astrophysics Data System (ADS)

    Sulaiman, N.; Jadin, M. S.; Najib, M. S.; Mustafa, M.; Azmi, S. N. F.

    2018-04-01

    Nowadays, the evolution of the vehicle technology had made the vehicle especially car to be equipped with a remote control to control the operation of the locking and unlocking system of the car’s door and rear’s bonnet. However, for the fuel or petrol lid, it merely can be opened from inside the car’s cabin by handling the fuel level inside the car’s cabin to open the fuel lid. The petrol lid can be closed by pushing the lid by hand. Due to the high usage of using fuel lever to open the fuel lid when refilling the fuel, the car driver might encounter the malfunction of fuel lid (fail to open) when pushing or pulling the fuel lever. Thus, the main aim of the research is to enhance the operation of an existing car remote control where the car fuel lid can be controlled using two techniques; remote control-based and smartphone-based. The remote control is constructed using Arduino microcontroller, wireless sensors and XCTU software to set the transmitting and receiving parameters. Meanwhile, the smartphone can control the operation of the fuel lid by communicating with Arduino microcontroller which is attached to the fuel lid using Bluetooth sensor to open the petrol lid. In order to avoid the conflict of instruction between wireless systems with the existing mechanical-based system, the servo motor will be employed to release the fuel lid merely after receiving the instruction from Arduino microcontroller and smartphone. As a conclusion, the prototype of the multipurpose vehicle remote control is successfully invented, constructed and tested. The car fuel lid can be opened either using remote control or smartphone in a sequential manner. Therefore, the outcome of the project can be used to serve as an alternative solution to solve the car fuel lid problem even though the problem rarely occurred.

  1. Microcontrollers for data logging in Environmental Physics

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles; Westbrook, Christopher. D.

    2016-04-01

    Methods for obtaining reliable environmental measurements are central in developing a quantitative understanding of the natural world [1]. In the environmental sciences, data is usually obtained through planned experimental work, by collaborators in large field experiments or merely from others downloaded through the internet. Careful appreciation of the provenance and reliability of measurements has traditionally been a central aspect of physics education, and a similar physics-centred approach to measurements has been embedded in the new Environmental Physics BSc programme at the University of Reading [2]. Through the use of practical classes, students are educated in using small programmable microcontroller devices to obtain environmental data. The classes are based around exploring the open source Arduino, to which a range of analogue and digital sensors are connected and evaluated. A simplified prototyping system has been developed to help emphasise the measurement aspects over the electronics considerations. The practical classes work towards deployment of a miniature data logger based on the Arduino's microcontroller but optimised for low power, from which the environmental measurements are compared with co-located standard data obtained at the Reading University Atmospheric Observatory. [1] R.G. Harrison, Meteorological Measurements and Instrumentation, Wiley, 2014. (http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118745809.html) [2] Environmental Physics BSc (https://www.reading.ac.uk/ready-to-study/study/subject-area/environment-ug/bsc-environmental-physics.aspx)

  2. Wireless ZigBee home automation system

    NASA Astrophysics Data System (ADS)

    Craciunescu, Razvan; Halunga, Simona; Fratu, Octavian

    2015-02-01

    The home automation system concept existed for many years but in the last decade, due to the rapid development of sensors and wireless technologies, a large number of various such "intelligent homes" have been developed. The purpose of the present paper is to demonstrate the flexibility, reliability and affordability of home automation projects, based on a simple and affordable implementation. A wireless sensing and control system have been developed and tested, having a number of basic functionalities such as switching on/off the light according to ambient lighting and turning on/off the central heating. The system has been built around low power microcontrollers and ZigBee modems for wireless communication, using a set of Vishay 640 thermistor sensors for temperature measurements and Vishay LDR07 photo-resistor for humidity measurements. A trigger is activated when the temperature or light measurements are above/below a given threshold and a command is transmitted to the central unit through the ZigBee radio module. All the data processing is performed by a low power microcontroller both at the sensing device and at the control unit.

  3. A microcontroller-based lock-in amplifier for sub-milliohm resistance measurements.

    PubMed

    Bengtsson, Lars E

    2012-07-01

    This paper presents a novel approach to the design of a digital ohmmeter with a resolution of <60 μΩ based on a general-purpose microcontroller and a high-impedance instrumentation amplifier only. The design uses two digital I/O-pins to alternate the current through the sample resistor and combined with a proper firmware routine, the design is a lock-in detector that discriminates any signal that is out of phase/frequency with the reference signal. This makes it possible to selectively detect the μV drop across sample resistors down to 55.6 μΩ using only the current that can be supplied by the digital output pins of a microcontroller. This is achieved without the need for an external reference signal generator and does not rely on the computing processing power of a digital signal processor.

  4. Method, accuracy and limitation of computer interaction in the operating room by a navigated surgical instrument.

    PubMed

    Hurka, Florian; Wenger, Thomas; Heininger, Sebastian; Lueth, Tim C

    2011-01-01

    This article describes a new interaction device for surgical navigation systems--the so-called navigation mouse system. The idea is to use a tracked instrument of a surgical navigation system like a pointer to control the software. The new interaction system extends existing navigation systems with a microcontroller-unit. The microcontroller-unit uses the existing communication line to extract the needed 3D-information of an instrument to calculate positions analogous to the PC mouse cursor and click events. These positions and events are used to manipulate the navigation system. In an experimental setup the reachable accuracy with the new mouse system is shown.

  5. Reprogramming the articulated robotic arm for glass handling by using Arduino microcontroller

    NASA Astrophysics Data System (ADS)

    Razali, Zol Bahri; Kader, Mohamed Mydin M. Abdul; Kadir, Mohd Asmadi Akmal; Daud, Mohd Hisam

    2017-09-01

    The application of articulated robotic arm in industries is raised due to the expansion of using robot to replace human task, especially for the harmful tasks. However a few problems happen with the program use to schedule the arm, Thus the purpose of this project is to design, fabricate and integrate an articulated robotic arm by using Arduino microcontroller for handling glass sorting system. This project was designed to segregate glass and non-glass waste which would be pioneer step for recycling. This robotic arm has four servo motors to operate as a whole; three for the body and one for holding mechanism. This intelligent system is controlled by Arduino microcontroller and build with optical sensor to provide the distinguish objects that will be handled. Solidworks model was used to produce the detail design of the robotic arm and make the mechanical properties analysis by using a CAD software.

  6. Early Leakage Protection System of LPG (Liquefied Petroleum Gas) Based on ATMega 16 Microcontroller

    NASA Astrophysics Data System (ADS)

    Sriwati; Ikhsan Ilahi, Nur; Musrawati; Baco, Syarifuddin; Suyuti'Andani Achmad, Ansar; Umrianah, Ejah

    2018-04-01

    LPG (Liquefied Petroleum Gas). LPG is a hydrocarbon gas production from refineries and gas refinery with the major components of propane gas (C3H8) and butane (C4H10). Limit flame (Flammable Range) or also called gas with air. Value Lower Explosive Limit (LEL) is the minimum limit of the concentration of fuel vapor in the air which if there is no source of fire, the gas will be burned. While the value of the Upper Explosive Limit (UEL), which limits the maximum concentration of fuel vapor in the air, which if no source of fire, the gas will be burned. Protection system is a defend mechanism of human, equipment, and buildings around the protected area. Goals to be achieved in this research are to design a protection system against the consequences caused by the leakage of LPG gas based on ATmega16 microcontroller. The method used in this research is to reduce the levels of leaked LPG and turned off the power source when the leakage of LPG is on the verge of explosive limit. The design of this protection system works accurately between 200 ppm up to 10000 ppm, which is still below the threshold of explosive. Thus protecting the early result of that will result in the leakage of LPG gas.

  7. Compact Modbus TCP/IP protocol for data acquisition systems based on limited hardware resources

    NASA Astrophysics Data System (ADS)

    Bai, Q.; Jin, B.; Wang, D.; Wang, Y.; Liu, X.

    2018-04-01

    The Modbus TCP/IP has been a standard industry communication protocol and widely utilized for establishing sensor-cloud platforms on the Internet. However, numerous existing data acquisition systems built on traditional single-chip microcontrollers without sufficient resources cannot support it, because the complete Modbus TCP/IP protocol always works dependent on a full operating system which occupies abundant hardware resources. Hence, a compact Modbus TCP/IP protocol is proposed in this work to make it run efficiently and stably even on a resource-limited hardware platform. Firstly, the Modbus TCP/IP protocol stack is analyzed and the refined protocol suite is rebuilt by streamlining the typical TCP/IP suite. Then, specific implementation of every hierarchical layer is respectively presented in detail according to the protocol structure. Besides, the compact protocol is implemented in a traditional microprocessor to validate the feasibility of the scheme. Finally, the performance of the proposed scenario is assessed. The experimental results demonstrate that message packets match the frame format of Modbus TCP/IP protocol and the average bandwidth reaches to 1.15 Mbps. The compact protocol operates stably even based on a traditional microcontroller with only 4-kB RAM and 12-MHz system clock, and no communication congestion or frequent packet loss occurs.

  8. A Software Development Platform for Wearable Medical Applications.

    PubMed

    Zhang, Ruikai; Lin, Wei

    2015-10-01

    Wearable medical devices have become a leading trend in healthcare industry. Microcontrollers are computers on a chip with sufficient processing power and preferred embedded computing units in those devices. We have developed a software platform specifically for the design of the wearable medical applications with a small code footprint on the microcontrollers. It is supported by the open source real time operating system FreeRTOS and supplemented with a set of standard APIs for the architectural specific hardware interfaces on the microcontrollers for data acquisition and wireless communication. We modified the tick counter routine in FreeRTOS to include a real time soft clock. When combined with the multitasking features in the FreeRTOS, the platform offers the quick development of wearable applications and easy porting of the application code to different microprocessors. Test results have demonstrated that the application software developed using this platform are highly efficient in CPU usage while maintaining a small code foot print to accommodate the limited memory space in microcontrollers.

  9. Low cost, microcontroller based heating device for multi-wavelength differential scanning fluorimetry.

    PubMed

    Hoeser, Jo; Gnandt, Emmanuel; Friedrich, Thorsten

    2018-01-23

    Differential scanning fluorimetry is a popular method to estimate the stability of a protein in distinct buffer conditions by determining its 'melting point'. The method requires a temperature controlled fluorescence spectrometer or a RT-PCR machine. Here, we introduce a low-budget version of a microcontroller based heating device implemented into a 96-well plate reader that is connected to a standard fluorescence spectrometer. We demonstrate its potential to determine the 'melting point' of soluble and membranous proteins at various buffer conditions.

  10. A low cost instrumentation system to analyze different types of milk adulteration.

    PubMed

    Das, Siuli; Sivaramakrishna, Mulinti; Biswas, Karabi; Goswami, Bhaswati

    2015-05-01

    In this paper, the design of a complete instrumentation system to detect different types of milk adulteration has been reported. A simple to use indicator type readout device is reported which can be used by milk community people. A low cost microcontroller based automatic sensing system is also reported to detect 'synthetic milk', which has been reconstructed after adulterating the milk with 'liquid-whey'. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Interdisciplinary education in optics and photonics based on microcontrollers

    NASA Astrophysics Data System (ADS)

    Dreßler, Paul; Wielage, Heinz-Hermann; Haiss, Ulrich; Vauderwange, Oliver; Curticapean, Dan

    2014-07-01

    Not only is the number of new devices constantly increasing, but so is their application complexity and power. Most of their applications are in optics, photonics, acoustic and mobile devices. Working speed and functionality is achieved in most of media devices by strategic use of digital signal processors and microcontrollers of the new generation. Considering all these premises of media development dynamics, the authors present how to integrate microcontrollers and digital signal processors in the curricula of media technology lectures by using adequate content. This also includes interdisciplinary content that consists of using the acquired knowledge in media software. These entries offer a deeper understanding of photonics, acoustics and media engineering.

  12. Engineering Novel Lab Devices Using 3D Printing and Microcontrollers.

    PubMed

    Courtemanche, Jean; King, Samson; Bouck, David

    2018-03-01

    The application of 3D printing and microcontrollers allows users to rapidly engineer novel hardware solutions useful in a laboratory environment. 3D printing is transformative as it enables the rapid fabrication of adapters, housings, jigs, and small structural elements. Microcontrollers allow for the creation of simple, inexpensive machines that receive input from one or more sensors to trigger a mechanical or electrical output. Bringing these technologies together, we have developed custom solutions that improve capabilities and reduce costs, errors, and human intervention. In this article, we describe three devices: JetLid, TipWaster, and Remote Monitoring Device (REMIND). JetLid employs a microcontroller and presence sensor to trigger a high-speed fan that reliably de-lids microtiter plates on a high-throughput screening system. TipWaster uses a presence sensor to activate an active tip waste chute when tips are ejected from a pipetting head. REMIND is a wireless, networked lab monitoring device. In its current implementation, it monitors the liquid level of waste collection vessels or bulk liquid reagent containers. The modularity of this device makes adaptation to other sensors (temperature, humidity, light/darkness, movement, etc.) relatively simple. These three devices illustrate how 3D printing and microcontrollers have enabled the process of rapidly turning ideas into useful devices.

  13. Design and analysis of microcontroller system using AMBA-Lite bus

    NASA Astrophysics Data System (ADS)

    Suan, Wang Hang; Bahari Jambek, Asral

    2017-11-01

    Advanced Microcontroller Bus Architecture (AMBA) is one of the well-designed on chip communication system. It is designed for right first-time development with many processor and peripherals. In this paper, the different family of AMBA architecture such as AXI, APB, AHB are reviewed. In this work, the AMBA-Lite is used and implemented with a few peripherals and an ARM processor. The work is simulated using Synopsys and demonstrated on the Digilent Nexys4 DDR board and the software use to synthesis the design is Vivado 2016.2.

  14. Microcontroller based resonance tracking unit for time resolved continuous wave cavity-ringdown spectroscopy measurements.

    PubMed

    Votava, Ondrej; Mašát, Milan; Parker, Alexander E; Jain, Chaithania; Fittschen, Christa

    2012-04-01

    We present in this work a new tracking servoloop electronics for continuous wave cavity-ringdown absorption spectroscopy (cw-CRDS) and its application to time resolved cw-CRDS measurements by coupling the system with a pulsed laser photolysis set-up. The tracking unit significantly increases the repetition rate of the CRDS events and thus improves effective time resolution (and/or the signal-to-noise ratio) in kinetics studies with cw-CRDS in given data acquisition time. The tracking servoloop uses novel strategy to track the cavity resonances that result in a fast relocking (few ms) after the loss of tracking due to an external disturbance. The microcontroller based design is highly flexible and thus advanced tracking strategies are easy to implement by the firmware modification without the need to modify the hardware. We believe that the performance of many existing cw-CRDS experiments, not only time-resolved, can be improved with such tracking unit without any additional modification to the experiment. © 2012 American Institute of Physics

  15. AVR Microcontroller-based automated technique for analysis of DC motors

    NASA Astrophysics Data System (ADS)

    Kaur, P.; Chatterji, S.

    2014-01-01

    This paper provides essential information on the development of a 'dc motor test and analysis control card' using AVR series ATMega32 microcontroller. This card can be interfaced to PC and calculates parameters like motor losses, efficiency and plot characteristics for dc motors. Presently, there are different tests and methods available to evaluate motor parameters, but a single and universal user-friendly automated set-up has been discussed in this paper. It has been accomplished by designing a data acquisition and SCR bridge firing hardware based on AVR ATMega32 microcontroller. This hardware has the capability to drive the phase-controlled rectifiers and acquire real-time values of current, voltage, temperature and speed of motor. Various analyses feasible with the designed hardware are of immense importance for dc motor manufacturers and quality-sensitive users. Authors, through this paper aim to provide details of this AVR-based hardware which can be used for dc motor parameter analysis and also for motor control applications.

  16. Radiation Test Results for Common CubeSat Microcontrollers and Microprocessors

    NASA Technical Reports Server (NTRS)

    Guertin, Steven M.; Amrbar, Mehran; Vartanian, Sergeh

    2015-01-01

    SEL, SEU, and TID results are presented for microcontrollers and microprocessors of interest for small satellite systems such as the TI MSP430F1611, MSP430F1612 and MSP430FR5739, Microchip PIC24F256GA110 and dsPIC33FJ256GP710, Atmel AT91SAM9G20, and Intel Atom E620T, and the Qualcomm Snapdragon APQ8064.

  17. Development open source microcontroller based temperature data logger

    NASA Astrophysics Data System (ADS)

    Abdullah, M. H.; Che Ghani, S. A.; Zaulkafilai, Z.; Tajuddin, S. N.

    2017-10-01

    This article discusses the development stages in designing, prototyping, testing and deploying a portable open source microcontroller based temperature data logger for use in rough industrial environment. The 5V powered prototype of data logger is equipped with open source Arduino microcontroller for integrating multiple thermocouple sensors with their module, secure digital (SD) card storage, liquid crystal display (LCD), real time clock and electronic enclosure made of acrylic. The program for the function of the datalogger is programmed so that 8 readings from the thermocouples can be acquired within 3 s interval and displayed on the LCD simultaneously. The recorded temperature readings at four different points on both hydrodistillation show similar profile pattern and highest yield of extracted oil was achieved on hydrodistillation 2 at 0.004%. From the obtained results, this study achieved the objective of developing an inexpensive, portable and robust eight channels temperature measuring module with capabilities to monitor and store real time data.

  18. Performance of Control System Using Microcontroller for Sea Water Circulation

    NASA Astrophysics Data System (ADS)

    Indriani, A.; Witanto, Y.; Pratama, A. S.; Supriyadi; Hendra; Tanjung, A.

    2018-02-01

    Now a day control system is very important rule for any process. Control system have been used in the automatic system. Automatic system can be seen in the industrial filed, mechanical field, electrical field and etc. In industrial and mechanical field, control system are used for control of motion component such as motor, conveyor, machine, control of process made of product, control of system and soon. In electrical field, control system can met for control of electrical system as equipment or part electrical like fan, rice cooker, refrigerator, air conditioner and etc. Control system are used for control of temperature and circulation gas, air and water. Control system of temperature and circulation of water also can be used for fisher community. Control system can be create by using microcontroller, PLC and other automatic program [1][2]. In this paper we will focus on the close loop system by using microcontroller Arduino Mega to control of temperature and circulation of sea water for fisher community. Performance control system is influenced by control equipment, sensor sensitivity, test condition, environment and others. The temperature sensor is measured using the DS18S20 and the sea water clarity sensor for circulation indicator with turbidity sensor. From the test results indicated that this control system can circulate sea water and maintain the temperature and clarity of seawater in a short time.

  19. Developing Control System of Electrical Devices with Operational Expense Prediction

    NASA Astrophysics Data System (ADS)

    Sendari, Siti; Wahyu Herwanto, Heru; Rahmawati, Yuni; Mukti Putranto, Dendi; Fitri, Shofiana

    2017-04-01

    The purpose of this research is to develop a system that can monitor and record home electrical device’s electricity usage. This system has an ability to control electrical devices in distance and predict the operational expense. The system was developed using micro-controllers and WiFi modules connected to PC server. The communication between modules is arranged by server via WiFi. Beside of reading home electrical devices electricity usage, the unique point of the proposed-system is the ability of micro-controllers to send electricity data to server for recording the usage of electrical devices. The testing of this research was done by Black-box method to test the functionality of system. Testing system run well with 0% error.

  20. An inexpensive Arduino-based LED stimulator system for vision research.

    PubMed

    Teikari, Petteri; Najjar, Raymond P; Malkki, Hemi; Knoblauch, Kenneth; Dumortier, Dominique; Gronfier, Claude; Cooper, Howard M

    2012-11-15

    Light emitting diodes (LEDs) are being used increasingly as light sources in life sciences applications such as in vision research, fluorescence microscopy and in brain-computer interfacing. Here we present an inexpensive but effective visual stimulator based on light emitting diodes (LEDs) and open-source Arduino microcontroller prototyping platform. The main design goal of our system was to use off-the-shelf and open-source components as much as possible, and to reduce design complexity allowing use of the system to end-users without advanced electronics skills. The main core of the system is a USB-connected Arduino microcontroller platform designed initially with a specific emphasis on the ease-of-use creating interactive physical computing environments. The pulse-width modulation (PWM) signal of Arduino was used to drive LEDs allowing linear light intensity control. The visual stimulator was demonstrated in applications such as murine pupillometry, rodent models for cognitive research, and heterochromatic flicker photometry in human psychophysics. These examples illustrate some of the possible applications that can be easily implemented and that are advantageous for students, educational purposes and universities with limited resources. The LED stimulator system was developed as an open-source project. Software interface was developed using Python with simplified examples provided for Matlab and LabVIEW. Source code and hardware information are distributed under the GNU General Public Licence (GPL, version 3). Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Self-activating intelligent home using bluetooth

    NASA Astrophysics Data System (ADS)

    Karthikeyan, P.; Sumanth, N.; Jude, S.

    2017-11-01

    Homes today need to exploit the various technologies available to make them intelligent. In this paper, a wireless system is proposed to automate home appliances using Bluetooth. This system can be used from a Bluetooth module that is closer than 10 meters to the system. Once in range, various appliances can be self-activated by the software that is built into a microcontroller. It is envisioned to offer automation of doors, lights and various electrical appliances. It also offers a complete user based automation for an improved personal experience.

  2. Bluetooth based function control in a car

    NASA Astrophysics Data System (ADS)

    Karthikeyan, P.; Sumanth, N.; Jude, S.

    2017-11-01

    This paper aims to show the various functions that can be controlled in a Car using the Wireless Bluetooth Technology. Due to the portable and wireless nature of this technology, it is easier for the end user to operate the functions in a car. The functions that are built into the system can be used from a distance of 10 meters. The Passive Keyless System and the Remote Keyless System methodologies are adopted. These are operated by the ATMEGA328P microcontroller.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, Abraham Anthony

    EPOXY is a LLVM base compiler that applies security protections to bare-metal programs on ARM Cortex-M series micro-controllers. This includes privilege overlaying, wherein operations requiring privileged execution are identified and only these operations execute in privileged mode. It also applies code integrity, control-flow hijacking defenses, stack protections, and fine-grained randomization schemes. All of its protections work within the constraints of bare-metal systems.

  4. Design of a memory-access controller with 3.71-times-enhanced energy efficiency for Internet-of-Things-oriented nonvolatile microcontroller unit

    NASA Astrophysics Data System (ADS)

    Natsui, Masanori; Hanyu, Takahiro

    2018-04-01

    In realizing a nonvolatile microcontroller unit (MCU) for sensor nodes in Internet-of-Things (IoT) applications, it is important to solve the data-transfer bottleneck between the central processing unit (CPU) and the nonvolatile memory constituting the MCU. As one circuit-oriented approach to solving this problem, we propose a memory access minimization technique for magnetoresistive-random-access-memory (MRAM)-embedded nonvolatile MCUs. In addition to multiplexing and prefetching of memory access, the proposed technique realizes efficient instruction fetch by eliminating redundant memory access while considering the code length of the instruction to be fetched and the transition of the memory address to be accessed. As a result, the performance of the MCU can be improved while relaxing the performance requirement for the embedded MRAM, and compact and low-power implementation can be performed as compared with the conventional cache-based one. Through the evaluation using a system consisting of a general purpose 32-bit CPU and embedded MRAM, it is demonstrated that the proposed technique increases the peak efficiency of the system up to 3.71 times, while a 2.29-fold area reduction is achieved compared with the cache-based one.

  5. Design of a telescope control system using an ARM microcontroller with embedded RTOS

    NASA Astrophysics Data System (ADS)

    Peñuela Pico, Cristian R.; Atara Montañez, Fabian A.; Cuervo, Juan C.; Gonzalez-Llorente, Jesus

    2014-08-01

    This work presents the design of a wireless control system that allows driving all the necessary instruments to control the orientation of an equatorial mounting telescope through a real time operative system (RTOS) that runs over ARM microcontroller. The control system is commanded through a user-interface which works under Android platform giving the user the option to control the tracking mode, right ascension, and declination. The system was successfully deployed and tested during a one-hour observation of the Moon. The frequency measured by the oscilloscope is 66.67 Hz which equals the sidereal speed. The telescope control systems allows the user to have a better precision when locating a star but also to cover long-duration tracking processes

  6. Deepthi Vaidhynathan | NREL

    Science.gov Websites

    Complex Systems Simulation and Optimization Group on performance analysis and benchmarking latest . Research Interests High Performance Computing|Embedded System |Microprocessors & Microcontrollers

  7. A Smart Voltage and Current Monitoring System for Three Phase Inverters Using an Android Smartphone Application

    PubMed Central

    Mnati, Mohannad Jabbar; Van den Bossche, Alex; Chisab, Raad Farhood

    2017-01-01

    In this paper, a new smart voltage and current monitoring system (SVCMS) technique is proposed. It monitors a three phase electrical system using an Arduino platform as a microcontroller to read the voltage and current from sensors and then wirelessly send the measured data to monitor the results using a new Android application. The integrated SVCMS design uses an Arduino Nano V3.0 as the microcontroller to measure the results from three voltage and three current sensors and then send this data, after calculation, to the Android smartphone device of an end user using Bluetooth HC-05. The Arduino Nano V3.0 controller and Bluetooth HC-05 are a cheap microcontroller and wireless device, respectively. The new Android smartphone application that monitors the voltage and current measurements uses the open source MIT App Inventor 2 software. It allows for monitoring some elementary fundamental voltage power quality properties. An effort has been made to investigate what is possible using available off-the-shelf components and open source software. PMID:28420132

  8. A Smart Voltage and Current Monitoring System for Three Phase Inverters Using an Android Smartphone Application.

    PubMed

    Mnati, Mohannad Jabbar; Van den Bossche, Alex; Chisab, Raad Farhood

    2017-04-15

    In this paper, a new smart voltage and current monitoring system (SVCMS) technique is proposed. It monitors a three phase electrical system using an Arduino platform as a microcontroller to read the voltage and current from sensors and then wirelessly send the measured data to monitor the results using a new Android application. The integrated SVCMS design uses an Arduino Nano V3.0 as the microcontroller to measure the results from three voltage and three current sensors and then send this data, after calculation, to the Android smartphone device of an end user using Bluetooth HC-05. The Arduino Nano V3.0 controller and Bluetooth HC-05 are a cheap microcontroller and wireless device, respectively. The new Android smartphone application that monitors the voltage and current measurements uses the open source MIT App Inventor 2 software. It allows for monitoring some elementary fundamental voltage power quality properties. An effort has been made to investigate what is possible using available off-the-shelf components and open source software.

  9. Design of microcontroller-based EMG and the analysis of EMG signals.

    PubMed

    Güler, Nihal Fatma; Hardalaç, Firat

    2002-04-01

    In this work, a microcontroller-based EMG designed and tested on 40 patients. When the patients are in rest, the fast Fourier transform (FFT) analysis was applied to EMG signals recorded from right leg peroneal region. The histograms are constructed from the results of the FFT analysis. The analysis results shows that the amplitude of fibrillation potential of the muscle fiber of 30 patients measured from peroneal region is low and the duration is short. This is the reason why the motor nerves degenerated and 10 patients were found to be healthy.

  10. Development of CMOS Imager Block for Capsule Endoscope

    NASA Astrophysics Data System (ADS)

    Shafie, S.; Fodzi, F. A. M.; Tung, L. Q.; Lioe, D. X.; Halin, I. A.; Hasan, W. Z. W.; Jaafar, H.

    2014-04-01

    This paper presents the development of imager block to be associated in a capsule endoscopy system. Since the capsule endoscope is used to diagnose gastrointestinal diseases, the imager block must be in small size which is comfortable for the patients to swallow. In this project, a small size 1.5V button battery is used as the power supply while the voltage supply requirements for other components such as microcontroller and CMOS image sensor are higher. Therefore, a voltage booster circuit is proposed to boost up the voltage supply from 1.5V to 3.3V. A low power microcontroller is used to generate control pulses for the CMOS image sensor and to convert the 8-bits parallel data output to serial data to be transmitted to the display panel. The results show that the voltage booster circuit was able to boost the voltage supply from 1.5V to 3.3V. The microcontroller precisely controls the CMOS image sensor to produce parallel data which is then serialized again by the microcontroller. The serial data is then successfully translated to 2fps image and displayed on computer.

  11. In-situ FPGA debug driven by on-board microcontroller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Zachary Kent

    2009-01-01

    Often we are faced with the situation that the behavior of a circuit changes in an unpredictable way when chassis cover is attached or the system is not easily accessible. For instance, in a deployed environment, such as space, hardware can malfunction in unpredictable ways. What can a designer do to ascertain the cause of the problem? Register interrogations only go so far, and sometimes the problem being debugged is register transactions themselves, or the problem lies in FPGA programming. This work provides a solution to this; namely, the ability to drive a JTAG chain via an on-board microcontroller andmore » use a simple clone of the Xilinx Chipscope core without a Xilinx JTAG cable or any external interfaces required. We have demonstrated the functionality of the prototype system using a Xilinx Spartan 3E FPGA and a Microchip PIC18j2550 microcontroller. This paper will discuss the implementation details as well as present case studies describing how the tools have aided satellite hardware development.« less

  12. A low-cost spectrometer for NMR measurements in the Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Michal, Carl A.

    2010-10-01

    We describe and demonstrate an inexpensive, easy-to-build, portable spectrometer for nuclear magnetic resonance measurements in the Earth's magnetic field. The spectrometer is based upon a widely available inexpensive microcontroller, which acts as a pulse programmer, audio-frequency synthesizer and digitizer, replacing what are typically the most expensive specialized components of the system. The microcontroller provides the capability to execute arbitrarily long and complicated sequences of phase-coherent, phase-modulated excitation pulses and acquire data sets of unlimited duration. Suitably packaged, the spectrometer is amenable to measurements in the research lab, in the field or in the teaching lab. The choice of components was heavily weighted by cost and availability, but required no significant sacrifice in performance. Using an existing personal computer, the resulting design can be assembled for as little as US200. The spectrometer performance is demonstrated with spin-echo and Carr-Purcell-Meiboom-Gill pulse sequences on a water sample.

  13. Data acquisition system of 16-channel EEG based on ATSAM3X8E ARM Cortex-M3 32-bit microcontroller and ADS1299

    NASA Astrophysics Data System (ADS)

    Toresano, L. O. H. Z.; Wijaya, S. K.; Prawito, Sudarmaji, A.; Badri, C.

    2017-07-01

    The prototype of the EEG (electroencephalogram) instrumentation systems has been developed based on 32-bit microcontrollers of Cortex-M3 ATSAM3X8E and Analog Front-End (AFE) ADS1299 (Texas Instruments, USA), and also consists of 16-channel dry-electrodes in the form of EEG head-caps. The ADS1299-AFE has been designed in a double-layer format PCB (Print Circuit Board) with daisy-chain configuration. The communication protocol of the prototype was based on SPI (Serial Peripheral Interface) and tested using USB SPI-Logic Analyzer Hantek4032L (Qingdao Hantek Electronic, China). The acquired data of the 16-channel from this prototype has been successfully transferred to a PC (Personal Computer) with accuracy greater than 91 %. The data acquisition system has been visualized with time-domain format in the multi-graph plotter, the frequency-domain based on FFT (Fast Fourier Transform) calculation, and also brain-mapping display of 16-channel. The GUI (Graphical User Interface) has been developed based on OpenBCI (Brain Computer Interface) using Java Processing and also can be stored of data in the *.txt format. Instrumentation systems have been tested in the frequency range of 1-50 Hz using MiniSim 330 EEG Simulator (NETECH, USA). The validation process has been done with different frequency of 0.1 Hz, 2 Hz, 5 Hz, and 50 Hz, and difference voltage amplitudes of 10 µV, 30 µV, 50 µV, 100 µV, 500 µV, 1 mV, 2 mV and 2.5 mV. However, the acquisition system was not optimal at a frequency of 0.1 Hz and for amplitude potentials of over 1 mV had differences of the order 10 µV.

  14. [Communication subsystem design of tele-screening system for diabetic retinopathy].

    PubMed

    Chen, Jian; Pan, Lin; Zheng, Shaohua; Yu, Lun

    2013-12-01

    A design scheme of a tele-screening system for diabetic retinopathy (DR) has been proposed, especially the communication subsystem. The scheme uses serial communication module consisting of ARM 7 microcontroller and relays to connect remote computer and fundus camera, and also uses C++ programming language based on MFC to design the communication software consisting of therapy and diagnostic information module, video/audio surveillance module and fundus camera control module. The scheme possesses universal property in some remote medical treatment systems which are similar to the system.

  15. A microcontroller-based three degree-of-freedom manipulator testbed. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Brown, Robert Michael, Jr.

    1995-01-01

    A wheeled exploratory vehicle is under construction at the Mars Mission Research Center at North Carolina State University. In order to serve as more than an inspection tool, this vehicle requires the ability to interact with its surroundings. A crane-type manipulator, as well as the necessary control hardware and software, has been developed for use as a sample gathering tool on this vehicle. The system is controlled by a network of four Motorola M68HC11 microcontrollers. Control hardware and software were developed in a modular fashion so that the system can be used to test future control algorithms and hardware. Actuators include three stepper motors and one solenoid. Sensors include three optical encoders and one cable tensiometer. The vehicle supervisor computer provides the manipulator system with the approximate coordinates of the target object. This system maps the workspace surrounding the given location by lowering the claw, along a set of evenly spaced vertical lines, until contact occurs. Based on this measured height information and prior knowledge of the target object size, the system determines if the object exists in the searched area. The system can find and retrieve a 1.25 in. diameter by 1.25 in. tall cylinder placed within the 47.5 sq in search area in less than 12 minutes. This manipulator hardware may be used for future control algorithm verification and serves as a prototype for other manipulator hardware.

  16. Development of a mobile robot for the 1995 AUVS competition

    NASA Astrophysics Data System (ADS)

    Matthews, Bradley O.; Ruthemeyer, Michael A.; Perdue, David; Hall, Ernest L.

    1995-12-01

    Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of a modular autonomous mobile robot controller. The advantages of a modular system are related to portability and the fact that any vehicle can become autonomous with minimal modifications. A mobile robot test-bed has been constructed using a golf cart base. This cart has full speed control with guidance provided by a vision system and obstacle avoidance using ultrasonic sensors systems. The speed and steering control are supervised by a 486 computer through a 3-axis motion controller. The obstacle avoidance system is based on a micro-controller interfaced with six ultrasonic transducers. The is micro-controller independently handles all timing and distance calculations and sends a steering angle correction back to the computer via the serial line. This design yields a portable independent system, where even computer communication is not necessary. Vision guidance is accomplished with a CCD camera with a zoom lens. The data is collected through a commercial tracking device, communicating with the computer the X,Y coordinates of the lane marker. Testing of these systems yielded positive results by showing that at five mph the vehicle can follow a line and at the same time avoid obstacles. This design, in its modularity, creates a portable autonomous controller applicable for any mobile vehicle with only minor adaptations.

  17. Minimalist fault-tolerance techniques for mitigating single-event effects in non-radiation-hardened microcontrollers

    NASA Astrophysics Data System (ADS)

    Caldwell, Douglas Wyche

    Commercial microcontrollers--monolithic integrated circuits containing microprocessor, memory and various peripheral functions--such as are used in industrial, automotive and military applications, present spacecraft avionics system designers an appealing mix of higher performance and lower power together with faster system-development time and lower unit costs. However, these parts are not radiation-hardened for application in the space environment and Single-Event Effects (SEE) caused by high-energy, ionizing radiation present a significant challenge. Mitigating these effects with techniques which require minimal additional support logic, and thereby preserve the high functional density of these devices, can allow their benefits to be realized. This dissertation uses fault-tolerance to mitigate the transient errors and occasional latchups that non-hardened microcontrollers can experience in the space radiation environment. Space systems requirements and the historical use of fault-tolerant computers in spacecraft provide context. Space radiation and its effects in semiconductors define the fault environment. A reference architecture is presented which uses two or three microcontrollers with a combination of hardware and software voting techniques to mitigate SEE. A prototypical spacecraft function (an inertial measurement unit) is used to illustrate the techniques and to explore how real application requirements impact the fault-tolerance approach. Low-cost approaches which leverage features of existing commercial microcontrollers are analyzed. A high-speed serial bus is used for voting among redundant devices and a novel wire-OR output voting scheme exploits the bidirectional controls of I/O pins. A hardware testbed and prototype software were constructed to evaluate two- and three-processor configurations. Simulated Single-Event Upsets (SEUs) were injected at high rates and the response of the system monitored. The resulting statistics were used to evaluate technical effectiveness. Fault-recovery probabilities (coverages) higher than 99.99% were experimentally demonstrated. The greater than thousand-fold reduction in observed effects provides performance comparable with SEE tolerance of tested, rad-hard devices. Technical results were combined with cost data to assess the cost-effectiveness of the techniques. It was found that a three-processor system was only marginally more effective than a two-device system at detecting and recovering from faults, but consumed substantially more resources, suggesting that simpler configurations are generally more cost-effective.

  18. Space qualification of an automotive microcontroller for the DREAMS-P/H pressure and humidity instrument on board the ExoMars 2016 Schiaparelli lander

    NASA Astrophysics Data System (ADS)

    Nikkanen, T.; Schmidt, W.; Harri, A.-M.; Genzer, M.; Hieta, M.; Haukka, H.; Kemppinen, O.

    2015-10-01

    Finnish Meteorological Institute (FMI) has developed a novel kind of pressure and humidity instrument for the Schiaparelli Mars lander, which is a part of the ExoMars 2016 mission of the European Space Agency (ESA) [1]. The DREAMS-P pressure instrument and DREAMS-H humidity instrument are part of the DREAMS science package on board the lander. DREAMS-P (seen in Fig. 1 and DREAMS-H were evolved from earlier planetary pressure and humidity instrument designs by FMI with a completely redesigned control and data unit. Instead of using the conventional approach of utilizing a space grade processor component, a commercial off the shelf microcontroller was selected for handling the pressure and humidity measurements. The new controller is based on the Freescale MC9S12XEP100 16-bit automotive microcontroller. Coordinated by FMI, a batch of these microcontroller units (MCUs) went through a custom qualification process in order to accept the component for spaceflight on board a Mars lander.

  19. Design of aquaponics water monitoring system using Arduino microcontroller

    NASA Astrophysics Data System (ADS)

    Murad, S. A. Z.; Harun, A.; Mohyar, S. N.; Sapawi, R.; Ten, S. Y.

    2017-09-01

    This paper describes the design of aquaponics water monitoring system using Arduino microcontroller. Arduino Development Environment (IDE) software is used to develop a program for the microcontroller to communicate with multiple sensors and other hardware. The circuit of pH sensor, temperature sensor, water sensor, servo, liquid crystal displays (LCD), peristaltic pump, solar and Global System for Mobile communication (GSM) are constructed and connected to the system. The system powered by a rechargeable battery using solar energy. When the results of pH, temperature and water sensor are out of range, a notification message will be sent to a mobile phone through GSM. If the pH of water is out of range, peristaltic pump is automatic on to maintain back the pH value of water. The water sensor is fixed in the siphon outlet water flow to detect water flow from grow bed to the fish tank. In addition, servo is used to auto feeding the fish for every 12 hours. Meanwhile, the LCD is indicated the pH, temperature, siphon outlet water flow and remaining time for the next feeding cycle. The pH and temperature of water are set in the ranges of 6 to 7 and 25 °C to 30 °C, respectively.

  20. In-camera video-stream processing for bandwidth reduction in web inspection

    NASA Astrophysics Data System (ADS)

    Jullien, Graham A.; Li, QiuPing; Hajimowlana, S. Hossain; Morvay, J.; Conflitti, D.; Roberts, James W.; Doody, Brian C.

    1996-02-01

    Automated machine vision systems are now widely used for industrial inspection tasks where video-stream data information is taken in by the camera and then sent out to the inspection system for future processing. In this paper we describe a prototype system for on-line programming of arbitrary real-time video data stream bandwidth reduction algorithms; the output of the camera only contains information that has to be further processed by a host computer. The processing system is built into a DALSA CCD camera and uses a microcontroller interface to download bit-stream data to a XILINXTM FPGA. The FPGA is directly connected to the video data-stream and outputs data to a low bandwidth output bus. The camera communicates to a host computer via an RS-232 link to the microcontroller. Static memory is used to both generate a FIFO interface for buffering defect burst data, and for off-line examination of defect detection data. In addition to providing arbitrary FPGA architectures, the internal program of the microcontroller can also be changed via the host computer and a ROM monitor. This paper describes a prototype system board, mounted inside a DALSA camera, and discusses some of the algorithms currently being implemented for web inspection applications.

  1. [Bioimpedance means of skin condition monitoring during therapeutic and cosmetic procedures].

    PubMed

    Alekseenko, V A; Kus'min, A A; Filist, S A

    2008-01-01

    Engineering and technological problems of bioimpedance skin surface mapping are considered. A typical design of a device based on a PIC 16F microcontroller is suggested. It includes a keyboard, LCD indicator, probing current generator with programmed frequency tuning, and units for probing current monitoring and bioimpedance measurement. The electrode matrix of the device is constructed using nanotechnology. A microcontroller-controlled multiplexor provides scanning of interelectrode impedance, which makes it possible to obtain the impedance image of the skin surface under the electrode matrix. The microcontroller controls the probing signal generator frequency and allows layer-by-layer images of skin under the electrode matrix to be obtained. This makes it possible to use reconstruction tomography methods for analysis and monitoring of the skin condition during therapeutic and cosmetic procedures.

  2. Multichannel micromanipulator and chamber system for recording multineuronal activity in alert, non-human primates.

    PubMed

    Gray, Charles M; Goodell, Baldwin; Lear, Alex

    2007-07-01

    We describe the design and performance of an electromechanical system for conducting multineuron recording experiments in alert non-human primates. The system is based on a simple design, consisting of a microdrive, control electronics, software, and a unique type of recording chamber. The microdrive consists of an aluminum frame, a set of eight linear actuators driven by computer-controlled miniature stepping motors, and two printed circuit boards (PCBs) that provide connectivity to the electrodes and the control electronics. The control circuitry is structured around an Atmel RISC-based microcontroller, which sends commands to as many as eight motor control cards, each capable of controlling eight motors. The microcontroller is programmed in C and uses serial communication to interface with a host computer. The graphical user interface for sending commands is written in C and runs on a conventional personal computer. The recording chamber is low in profile, mounts within a circular craniotomy, and incorporates a removable internal sleeve. A replaceable Sylastic membrane can be stretched across the bottom opening of the sleeve to provide a watertight seal between the cranial cavity and the external environment. This greatly reduces the susceptibility to infection, nearly eliminates the need for routine cleaning, and permits repeated introduction of electrodes into the brain at the same sites while maintaining the watertight seal. The system is reliable, easy to use, and has several advantages over other commercially available systems with similar capabilities.

  3. Design and Evolution of the Asporto Heart Preservation Device.

    PubMed

    Rivard, Andrew L

    2015-06-01

    The Asporto Heart Preservation Device is a system providing perfusion of cardioplegia to the donor heart using a computer-controlled peristaltic pump in a thermoelectrically cooled and insulated container. In 1998, a user interface was developed at the University of Minnesota consisting of a touch screen and battery-backed microcontroller. Power was supplied by a 120 VAC to 12 VDC converter. An upgrade to the insulated cooler and microcontroller occurred in 2002, which was followed by proof of concept experimental pre-clinical transplants and tests demonstrating the efficacy of the device with isolated donor hearts. During the period between 2002 and 2006, a variety of donor organ containers were developed, modified, and tested to provide an optimal sterile environment and fluid path. Parallel development paths encompass formalized design specifications for final prototypes of the touch screen/microcontroller, organ container, and thermoelectric cooler.

  4. Development of a system to measure local measurement conditions around textile electrodes.

    PubMed

    Kim, Saim; Oliveira, Joana; Roethlingshoefer, Lisa; Leonhard, Steffen

    2010-01-01

    The three main influence factors on the interface between textile electrode an skin are: temperature, contact pressure and relative humidity. This paper presents first results of a prototype, which measures these local measurement conditions around textile electrodes. The wearable prototype is a data acquisition system based on a microcontroller with a flexible sensor sleeve. Validation measurements included variation of ambient temperature, contact pressures and sleeve material. Results show a good correlation with data found in literature.

  5. Real-Time Acquisition and Display of Data and Video

    NASA Technical Reports Server (NTRS)

    Bachnak, Rafic; Chakinarapu, Ramya; Garcia, Mario; Kar, Dulal; Nguyen, Tien

    2007-01-01

    This paper describes the development of a prototype that takes in an analog National Television System Committee (NTSC) video signal generated by a video camera and data acquired by a microcontroller and display them in real-time on a digital panel. An 8051 microcontroller is used to acquire power dissipation by the display panel, room temperature, and camera zoom level. The paper describes the major hardware components and shows how they are interfaced into a functional prototype. Test data results are presented and discussed.

  6. Propulsion System with Pneumatic Artificial Muscles for Powering Ankle-Foot Orthosis

    NASA Astrophysics Data System (ADS)

    Veneva, Ivanka; Vanderborght, Bram; Lefeber, Dirk; Cherelle, Pierre

    2013-12-01

    The aim of this paper is to present the design of device for control of new propulsion system with pneumatic artificial muscles. The propulsion system can be used for ankle joint articulation, for assisting and rehabilitation in cases of injured ankle-foot complex, stroke patients or elderly with functional weakness. Proposed device for control is composed by microcontroller, generator for muscles contractions and sensor system. The microcontroller receives the control signals from sensors and modulates ankle joint flex- ion and extension during human motion. The local joint control with a PID (Proportional-Integral Derivative) position feedback directly calculates desired pressure levels and dictates the necessary contractions. The main goal is to achieve an adaptation of the system and provide the necessary joint torque using position control with feedback.

  7. [An automatic system controlled by microcontroller for carotid sinus perfusion].

    PubMed

    Yi, X L; Wang, M Y; Fan, Z Z; He, R R

    2001-08-01

    To establish a new method for controlling automatically the carotid perfusion pressure. A cheap practical automatic perfusion unit based on AT89C2051 micro controller was designed. The unit, LDB-M perfusion pump and the carotid sinus of an animal constituted an automatic perfusion system. This system was able to provide ramp and stepwise updown perfusion pattern and has been used in the research of baroreflex. It can insure the precision and reproducibility of perfusion pressure curve, and improve the technical level in corresponding medical field.

  8. Mongoose ASIC microcontroller programming guide

    NASA Astrophysics Data System (ADS)

    Smith, Brian S.

    1993-09-01

    The 'Mongoose' ASIC microcontroller is a radiation-hard implementation of the R3000 microprocessor. This document describes the internals of the microcontroller in a level of detail necessary for someone implementing a software design.

  9. Microcontrollers in the Laboratory.

    ERIC Educational Resources Information Center

    Williams, Ron

    1989-01-01

    Described is the use of automated control using microcomputers. Covers the development of the microcontroller and describes advantages and characteristics of several brands of chips. Provides several recent applications of microcontrollers in laboratory automation. (MVL)

  10. Mongoose ASIC microcontroller programming guide

    NASA Technical Reports Server (NTRS)

    Smith, Brian S.

    1993-01-01

    The 'Mongoose' ASIC microcontroller is a radiation-hard implementation of the R3000 microprocessor. This document describes the internals of the microcontroller in a level of detail necessary for someone implementing a software design.

  11. A 0.7-V 17.4- μ W 3-lead wireless ECG SoC.

    PubMed

    Khayatzadeh, Mahmood; Zhang, Xiaoyang; Tan, Jun; Liew, Wen-Sin; Lian, Yong

    2013-10-01

    This paper presents a fully integrated sub-1 V 3-lead wireless ECG System-on-Chip (SoC) for wireless body sensor network applications. The SoC includes a two-channel ECG front-end with a driven-right-leg circuit, an 8-bit SAR ADC, a custom-designed 16-bit microcontroller, two banks of 16 kb SRAM, and a MICS band transceiver. The microcontroller and SRAM blocks are able to operate at sub-/near-threshold regime for the best energy consumption. The proposed SoC has been implemented in a standard 0.13- μ m CMOS process. Measurement results show the microcontroller consumes only 2.62 pJ per instruction at 0.35 V . Both microcontroller and memory blocks are functional down to 0.25 V. The entire SoC is capable of working at single 0.7-V supply. At the best case, it consumes 17.4 μ W in heart rate detection mode and 74.8 μW in raw data acquisition mode under sampling rate of 500 Hz. This makes it one of the best ECG SoCs among state-of-the-art biomedical chips.

  12. A simple low-cost microcontroller-based photometric instrument for monitoring chloroplast movement.

    PubMed

    Berg, Robert; Königer, Martina; Schjeide, Brit-Maren; Dikmak, George; Kohler, Susan; Harris, Gary C

    2006-03-01

    A new microcontroller-based photometric instrument for monitoring blue light dependent changes in leaf transmission (chloroplast movement) was developed based on a modification of the double-beam technique developed by Walzcak and Gabrys [(1980) Photosynthetica 14: 65-72]. A blue and red bicolor light emitting diode (LED) provided both a variable intensity blue actinic light and a low intensity red measuring beam. A phototransistor detected the intensity of the transmitted measuring light. An inexpensive microcontroller independently and precisely controlled the light emission of the bicolor LED. A typical measurement event involved turning off the blue actinic light for 100 mus to create a narrow temporal window for turning on and measuring the transmittance of the red light. The microcontroller was programmed using LogoChip Logo (http://www.wellesley.edu/Physics/Rberg/logochip/) to record fluence rate response curves. Laser scanning confocal microscopy was utilized to correlate the changes in leaf transmission with intercellular chloroplast position. In the dark, the chloroplasts in the spongy mesophyll exhibited no evident asymmetries in their distribution, however, in the palisade layer the cell surface in contact with the overlying epidermis was devoid of chloroplasts. The low light dependent decrease in leaf transmittance in dark acclimated leaves was correlated with the movement of chloroplasts within the palisade layer into the regions previously devoid of chloroplasts. Changes in leaf transmittance were evident within one minute following the onset of illumination. Minimal leaf transmittance was correlated with chloroplasts having retreated from cell surfaces perpendicular to the incident light (avoidance reaction) in both spongy and palisade layers.

  13. Design and realization of an autonomous solar system

    NASA Astrophysics Data System (ADS)

    Gaga, A.; Diouri, O.; Es-sbai, N.; Errahimi, F.

    2017-03-01

    The aim of this work is the design and realization of an autonomous solar system, with MPPT control, a regulator charge/discharge of batteries, an H-bridge multi-level inverter with acquisition system and supervising based on a microcontroller. The proposed approach is based on developing a software platform in the LabVIEW environment which gives the system a flexible structure for controlling, monitoring and supervising the whole system in real time while providing power maximization and best quality of energy conversion from DC to AC power. The reliability of the proposed solar system is validated by the simulation results on PowerSim and experimental results achieved with a solar panel, a Lead acid battery, solar regulator and an H-bridge cascaded topology of single-phase inverter.

  14. Continuous operation of an ultra-low-power microcontroller using glucose as the sole energy source.

    PubMed

    Lee, Inyoung; Sode, Takashi; Loew, Noya; Tsugawa, Wakako; Lowe, Christopher Robin; Sode, Koji

    2017-07-15

    An ultimate goal for those engaged in research to develop implantable medical devices is to develop mechatronic implantable artificial organs such as artificial pancreas. Such devices would comprise at least a sensor module, an actuator module, and a controller module. For the development of optimal mechatronic implantable artificial organs, these modules should be self-powered and autonomously operated. In this study, we aimed to develop a microcontroller using the BioCapacitor principle. A direct electron transfer type glucose dehydrogenase was immobilized onto mesoporous carbon, and then deposited on the surface of a miniaturized Au electrode (7mm 2 ) to prepare a miniaturized enzyme anode. The enzyme fuel cell was connected with a 100 μF capacitor and a power boost converter as a charge pump. The voltage of the enzyme fuel cell was increased in a stepwise manner by the charge pump from 330mV to 3.1V, and the generated electricity was charged into a 100μF capacitor. The charge pump circuit was connected to an ultra-low-power microcontroller. Thus prepared BioCapacitor based circuit was able to operate an ultra-low-power microcontroller continuously, by running a program for 17h that turned on an LED every 60s. Our success in operating a microcontroller using glucose as the sole energy source indicated the probability of realizing implantable self-powered autonomously operated artificial organs, such as artificial pancreas. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Prehensile control of a hand prosthesis by a microcontroller.

    PubMed

    Chappell, P H; Kyberd, P J

    1991-09-01

    The functional replacement of a natural hand and wrist is usually achieved by a split hook or an electrically powered and myoelectrically controlled artificial hand with one degree of freedom. In contrast to the commercial devices, this paper describes an experimental hand with four electric motors, nineteen sensors, and control algorithms which are written for a microcontroller. The hand significantly improves the prehension capabilities of an artificial device and leads to a design which is easily controlled by a user as it mimics the control system of the natural hand.

  16. Development of microcontroller-based acquisition and processing unit for fiber optic vibration sensor

    NASA Astrophysics Data System (ADS)

    Suryadi; Puranto, P.; Adinanta, H.; Waluyo, T. B.; Priambodo, P. S.

    2017-04-01

    Microcontroller based acquisition and processing unit (MAPU) has been developed to measure vibration signal from fiber optic vibration sensor. The MAPU utilizes a 32-bit ARM microcontroller to perform acquisition and processing of the input signal. The input signal is acquired with 12 bit ADC and processed using FFT method to extract frequency information. Stability of MAPU is characterized by supplying a constant input signal at 500 Hz for 29 hours and shows a stable operation. To characterize the frequency response, input signal is swapped from 20 to 1000 Hz with 20 Hz interval. The characterization result shows that MAPU can detect input signal from 20 to 1000 Hz with minimum signal of 4 mV RMS. The experiment has been set that utilizes the MAPU with singlemode-multimode-singlemode (SMS) fiber optic sensor to detect vibration which is induced by a transducer in a wooden platform. The experimental result indicates that vibration signal from 20 to 600 Hz has been successfully detected. Due to the limitation of the vibration source used in the experiment, vibration signal above 600 Hz is undetected.

  17. Wearable System for Acquisition and Monitoring of Biological Signals

    NASA Astrophysics Data System (ADS)

    Piccinini, D. J.; Andino, N. B.; Ponce, S. D.; Roberti, MA; López, y. N.

    2016-04-01

    This paper presents a modular, wearable system for acquisition and wireless transmission of biological signals. Configurable slaves for different signals (such as ECG, EMG, inertial sensors, and temperature) based in the ADS1294 Medical Analog Front End are connected to a Master, based in the CC3200 microcontroller, both from Texas Instruments. The slaves are configurable according to the specific application, providing versatility to the wearable system. The battery consumption is reduced, through a couple of Li-ion batteries and the circuit has also a battery charger. A custom made box was designed and fabricated in a 3D printer, preserving the requirements of low cost, low weight and safety recommendations.

  18. A Universal Portable Appliance for Stellarator W7-X Power Supply Controlling

    NASA Astrophysics Data System (ADS)

    Xu, Wei-hua; Wolfgang, Foerster; Guenter, Mueller

    2001-06-01

    In the project Wendelstein 7-X (W7-X), the popular fieldbus Profibus has been determined as a uniform connection between the central control system and all the subordinate systems. A universal embedded control system has been developed for W7-X power supply controlling. Siemens 80C167CR microcontroller is used as the central control unit of the system. With a user-defined printed circuit board (PCB) several control buses, i.e., Profibus, CAN, IEEE 488, RS485 and RS 232 have been connected to the microcontroller. The corresponding hardware interfaces for the control buses have been designed. A graphic liquid crystal display(LCD) and a user-defined keyboard are used as user interface. The control software will be developed with a C-like language, i.e., C166 for the controller.

  19. a Continuous Health Monitoring Guided Wave Fmd System for Retrofit to Existing Offshore Oilrigs

    NASA Astrophysics Data System (ADS)

    Mijarez, R.; Solis, L.; Martinez, F.

    2010-02-01

    An automatic health monitoring guided wave flood member detection (FMD) system, for retrofit to existing offshore oilrigs is presented. The system employs a microcontroller piezoelectric (PZT) based transmitter and a receiver instrumentation package composed of a PZT 40 kHz ultrasound transducer and a digital signal processor (DSP) module connected to a PC via USB for monitoring purposes. The transmitter and receiver were attached, non-intrusively, to the external wall of a steel tube; 1 m×27 cm×2 mm. Experiments performed in the laboratory have successfully identified automatically flooded tubes.

  20. Development of a time-variable nuclear pulser for half life measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahn, Guilherme S.; Domienikan, Claudio; Carvalhaes, Roberto P. M.

    2013-05-06

    In this work a time-variable pulser system with an exponentially-decaying pulse frequency is presented, which was developed using the low-cost, open-source Arduino microcontroler plataform. In this system, the microcontroller produces a TTL signal in the selected rate and a pulse shaper board adjusts it to be entered in an amplifier as a conventional pulser signal; both the decay constant and the initial pulse rate can be adjusted using a user-friendly control software, and the pulse amplitude can be adjusted using a potentiometer in the pulse shaper board. The pulser was tested using several combinations of initial pulse rate and decaymore » constant, and the results show that the system is stable and reliable, and is suitable to be used in half-life measurements.« less

  1. Prototype of smart office system using based security system

    NASA Astrophysics Data System (ADS)

    Prasetyo, T. F.; Zaliluddin, D.; Iqbal, M.

    2018-05-01

    Creating a new technology in the modern era gives a positive impact on business and industry. Internet of Things (IoT) as a new communication technology is very useful in realizing smart systems such as: smart home, smart office, smart parking and smart city. This study presents a prototype of the smart office system which was designed as a security system based on IoT. Smart office system development method used waterfall model. IoT-based smart office system used platform (project builder) cayenne so that. The data can be accessed and controlled through internet network from long distance. Smart office system used arduino mega 2560 microcontroller as a controller component. In this study, Smart office system is able to detect threats of dangerous objects made from metals, earthquakes, fires, intruders or theft and perform security monitoring outside the building by using raspberry pi cameras on autonomous robots in real time to the security guard.

  2. Teaching Electronics and Laboratory Automation Using Microcontroller Boards

    ERIC Educational Resources Information Center

    Mabbott, Gary A.

    2014-01-01

    Modern microcontroller boards offer the analytical chemist a powerful and inexpensive means of interfacing computers and laboratory equipment. The availability of a host of educational materials, compatible sensors, and electromechanical devices make learning to implement microcontrollers fun and empowering. This article describes the advantages…

  3. Position control of an electro-pneumatic system based on PWM technique and FLC.

    PubMed

    Najjari, Behrouz; Barakati, S Masoud; Mohammadi, Ali; Futohi, Muhammad J; Bostanian, Muhammad

    2014-03-01

    In this paper, modeling and PWM based control of an electro-pneumatic system, including the four 2-2 valves and a double acting cylinder are studied. Dynamic nonlinear behavior of the system, containing fast switching solenoid valves and a pneumatic cylinder, as well as electrical, magnetic, mechanical, and fluid subsystems are modeled. A DC-DC power converter is employed to improve solenoid valve performance and suppress system delay. Among different position control methods, a proportional integrator derivative (PID) controller and fuzzy logic controller (FLC) are evaluated. An experimental setup, using an AVR microcontroller is implemented. Simulation and experimental results verify the effectiveness of the proposed control strategies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  4. A low-cost, portable, micro-controlled device for multi-channel LED visual stimulation.

    PubMed

    Pinto, Marcos Antonio da Silva; de Souza, John Kennedy Schettino; Baron, Jerome; Tierra-Criollo, Carlos Julio

    2011-04-15

    Light emitting diodes (LEDs) are extensively used as light sources to investigate visual and visually related function and dysfunction. Here, we describe the design of a compact, low-cost, stand-alone LED-based system that enables the configuration, storage and presentation of elaborate visual stimulation paradigms. The core functionality of this system is provided by a microcontroller whose ultra-low power consumption makes it well suited for long lasting battery applications. The effective use of hardware resources is managed by multi-layered architecture software that provides an intuitive and user-friendly interface. In the configuration mode, different stimulation sequences can be created and memorized for ten channels, independently. LED-driving current output can be set either as continuous or pulse modulated, up to 500 Hz, by duty cycle adjustments. In run mode, multiple-channel stimulus sequences are automatically applied according to the pre-programmed protocol. Steady state visual evoked potentials were successfully recorded in five subjects with no visible electromagnetic interferences from the stimulator, demonstrating the efficacy of combining our prototyped equipment with electrophysiological techniques. Finally, we discuss a number of possible improvements for future development of our project. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. A real-time detector system for precise timing of audiovisual stimuli.

    PubMed

    Henelius, Andreas; Jagadeesan, Sharman; Huotilainen, Minna

    2012-01-01

    The successful recording of neurophysiologic signals, such as event-related potentials (ERPs) or event-related magnetic fields (ERFs), relies on precise information of stimulus presentation times. We have developed an accurate and flexible audiovisual sensor solution operating in real-time for on-line use in both auditory and visual ERP and ERF paradigms. The sensor functions independently of the used audio or video stimulus presentation tools or signal acquisition system. The sensor solution consists of two independent sensors; one for sound and one for light. The microcontroller-based audio sensor incorporates a novel approach to the detection of natural sounds such as multipart audio stimuli, using an adjustable dead time. This aids in producing exact markers for complex auditory stimuli and reduces the number of false detections. The analog photosensor circuit detects changes in light intensity on the screen and produces a marker for changes exceeding a threshold. The microcontroller software for the audio sensor is free and open source, allowing other researchers to customise the sensor for use in specific auditory ERP/ERF paradigms. The hardware schematics and software for the audiovisual sensor are freely available from the webpage of the authors' lab.

  6. Using SRAM Based FPGAs for Power-Aware High Performance Wireless Sensor Networks

    PubMed Central

    Valverde, Juan; Otero, Andres; Lopez, Miguel; Portilla, Jorge; de la Torre, Eduardo; Riesgo, Teresa

    2012-01-01

    While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today’s applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements. PMID:22736971

  7. Using SRAM based FPGAs for power-aware high performance wireless sensor networks.

    PubMed

    Valverde, Juan; Otero, Andres; Lopez, Miguel; Portilla, Jorge; de la Torre, Eduardo; Riesgo, Teresa

    2012-01-01

    While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today's applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements.

  8. [Development of a massage device based on microcontroller in the field of alimentary tract].

    PubMed

    Huang, Rong; Peng, Chenglin; He, Hongmei; Zhu, Jing

    2007-12-01

    In this artical is first reported a survey of the progress in research of MEMS technology. Then, the basic structure, features and the principles of a massage device based on microcontroller in the field of alimentary tract are introduced. Special emphasis is laid on the utilization of MSP430F123 microprocessor for producing a kind of period pulse to control the power of massage capsule. In general, the research and development of the massage device in the field of alimentary tract have active support and deep significance to therapy in the clinical and business settings as well as in the development of biomedical engineering and MEMS.

  9. An Open-Source Arduino-based Controller for Mechanical Rain Simulators

    NASA Astrophysics Data System (ADS)

    Cantilina, K. K.

    2017-12-01

    Many commercial rain simulators currently used in hydrology rely on inflexible and outdated controller designs. These analog controllers typically only allow a handful of discrete parameter options, and do not support internal timing functions or continuously-changing parameters. A desire for finer control of rain simulation events necessitated the design and construction of a microcontroller-based controller, using widely available off-the-shelf components. A menu driven interface allows users to fine-tune simulation parameters without the need for training or experience with microcontrollers, and the accessibility of the Arduino IDE allows users with a minimum of programming and hardware experience to modify the controller program to suit the needs of individual experiments.

  10. A Simple Accelerometer Calibrator

    NASA Astrophysics Data System (ADS)

    Salam, R. A.; Islamy, M. R. F.; Munir, M. M.; Latief, H.; Irsyam, M.; Khairurrijal

    2016-08-01

    High possibility of earthquake could lead to the high number of victims caused by it. It also can cause other hazards such as tsunami, landslide, etc. In that case it requires a system that can examine the earthquake occurrence. Some possible system to detect earthquake is by creating a vibration sensor system using accelerometer. However, the output of the system is usually put in the form of acceleration data. Therefore, a calibrator system for accelerometer to sense the vibration is needed. In this study, a simple accelerometer calibrator has been developed using 12 V DC motor, optocoupler, Liquid Crystal Display (LCD) and AVR 328 microcontroller as controller system. The system uses the Pulse Wave Modulation (PWM) form microcontroller to control the motor rotational speed as response to vibration frequency. The frequency of vibration was read by optocoupler and then those data was used as feedback to the system. The results show that the systems could control the rotational speed and the vibration frequencies in accordance with the defined PWM.

  11. Teaching smartphone and microcontroller systems using "Android Java"

    NASA Astrophysics Data System (ADS)

    Tigrek, Seyitriza

    Mobile devices are becoming indispensable tools for many students and educators. Mobile technology is starting a new era in the computing methodologies in many engineering disciplines and laboratories. Microcontroller extension that communicates with mobile devices will take the data acquisition and control process into a new level in the sensing technology and communication. The purpose of this thesis is to develop a framework to incorporate the new mobile platform with robust embedded systems into the engineering curriculum. For this purpose a course material is developed "Introduction to Programming Java on a Mobile Platform" to teach novice programmers how to create applications, specifically on Android. Combining an introductory level programming class with the Android platform can appeal to non-programming individuals in multiple disciplines. The proposed course curriculum reduces the learning time, and allows senior engineering students to use the new framework for their specific needs in the labs such as mobile data acquisition and control projects. This work provides techniques for instructors with modest programming background to teach cutting edge technology, which is smartphone programming. Techniques developed in this work minimize unnecessary information carried into current teaching approaches with hands-on practice. It also helps the students with minimal background requirements overcome the barriers that have evolved around computer programming. The motivation of this thesis is to create a tailored programming introductory course to teach Java programming on Android by incorporating selected efficient methods from extant literature. The mechanism proposed in this thesis is to keep students motivated by an active approach based on student-centered learning with collaborative work. Teamwork through pair programming is adapted in this teaching process. Bloom's taxonomy, along with a knowledge survey, is used as a guide to classify the information and exercise problems. A prototype curriculum is a deliverable of this research that is suitable for novice programmers-such as engineering freshmen students. It also contains advanced material that allows senior students to use mobile phone and a microcontroller system to enhance engineering laboratories.

  12. Droplet sorting based on the number of encapsulated particles using a solenoid valve.

    PubMed

    Cao, Zhenning; Chen, Fangyuan; Bao, Ning; He, Huacheng; Xu, Peisheng; Jana, Saikat; Jung, Sunghwan; Lian, Hongzhen; Lu, Chang

    2013-01-07

    Droplet microfluidics provides a high-throughput platform for screening subjects and conditions involved in biology. Droplets with encapsulated beads and cells have been increasingly used for studying molecular and cellular biology. Droplet sorting is needed to isolate and analyze the subject of interest during such screening. The vast majority of current sorting techniques use fluorescence intensity emitted by each droplet as the only criterion. However, due to the randomness and imperfections in the encapsulation process, typically a mixed population of droplets with an uneven number of encapsulated particles results and is used for screening. Thus droplet sorting based on the number of encapsulated particles becomes necessary for isolating or enriching droplets with a specific occupancy. In this work, we developed a fluorescence-activated microfluidic droplet sorter that integrated a simple deflection mechanism based on the use of a solenoid valve and a sophisticated signal processing system with a microcontroller as the core. By passing droplets through a narrow interrogation channel, the encapsulated particles were detected individually. The microcontroller conducted the computation to determine the number of encapsulated particles in each droplet and made the sorting decision accordingly that led to actuation of the solenoid valve. We tested both fluorescent beads and stained cells and our results showed high efficiency and accuracy for sorting and enrichment.

  13. Data collection system for a wide range of gas-discharge proportional neutron counters

    NASA Astrophysics Data System (ADS)

    Oskomov, V.; Sedov, A.; Saduyev, N.; Kalikulov, O.; Kenzhina, I.; Tautaev, E.; Mukhamejanov, Y.; Dyachkov, V.; Utey, Sh

    2017-12-01

    This article describes the development and creation of a universal system of data collection to measure the intensity of pulsed signals. As a result of careful analysis of time conditions and operating conditions of software and hardware complex circuit solutions were selected that meet the required specifications: frequency response is optimized in order to obtain the maximum ratio signal/noise; methods and modes of operation of the microcontroller were worked out to implement the objectives of continuous measurement of signal amplitude at the output of amplifier and send the data to a computer; function of control of high voltage source was implemented. The preliminary program has been developed for microcontroller in its simplest form, which works on a particular algorithm.

  14. A Digital Motion Control System for Large Telescopes

    NASA Astrophysics Data System (ADS)

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.

    2001-05-01

    We have designed and programmed a digital motion control system for large telescopes, in particular, the 6-meter antennas of the Submillimeter Array on Mauna Kea. The system consists of a single robust, high-reliability microcontroller board which implements a two-axis velocity servo while monitoring and responding to critical safety parameters. Excellent tracking performance has been achieved with this system (0.3 arcsecond RMS at sidereal rate). The 24x24 centimeter four-layer printed circuit board contains a multitude of hardware devices: 40 digital inputs (for limit switches and fault indicators), 32 digital outputs (to enable/disable motor amplifiers and brakes), a quad 22-bit ADC (to read the motor tachometers), four 16-bit DACs (that provide torque signals to the motor amplifiers), a 32-LED status panel, a serial port to the LynxOS PowerPC antenna computer (RS422/460kbps), a serial port to the Palm Vx handpaddle (RS232/115kbps), and serial links to the low-resolution absolute encoders on the azimuth and elevation axes. Each section of the board employs independent ground planes and power supplies, with optical isolation on all I/O channels. The processor is an Intel 80C196KC 16-bit microcontroller running at 20MHz on an 8-bit bus. This processor executes an interrupt-driven, scheduler-based software system written in C and assembled into an EPROM with user-accessible variables stored in NVSRAM. Under normal operation, velocity update requests arrive at 100Hz from the position-loop servo process running independently on the antenna computer. A variety of telescope safety checks are performed at 279Hz including routine servicing of a 6 millisecond watchdog timer. Additional ADCs onboard the microcontroller monitor the winding temperature and current in the brushless three-phase drive motors. The PID servo gains can be dynamically changed in software. Calibration factors and software filters can be applied to the tachometer readings prior to the application of the servo gains in the torque computations. The Palm pilot handpaddle displays the complete status of the telescope and allows full local control of the drives in an intuitive, touchscreen user interface which is especially useful during reconfigurations of the antenna array.

  15. Instrumental Develovement of 50 Meters Free Style Swimming Speed Measurement Based on Microcontroller Arduino Uno

    NASA Astrophysics Data System (ADS)

    Badruzaman; Rusdiana, A.; Gilang, M. R.; Martini, T.

    2017-03-01

    This study is purposed to make a software and hardware instrument in controlling the velocity of 50 meters free style swimming speed measurement based on microcontroller Arduino Uno. The writer uses 6 participants of advanced 2015 college students of sport education. The materials he uses are electronical series of microcontroller Arduino Uno base, laser sensors shone on light dependent resistor, laser receiver functions as a detector of laser cutting block, cables as connector transfering the data. This device consist of 4 installable censors in every 10 meters with the result of swimming speed showed on the monitors using visual basic 6.0 software. This instrument automatically works when the buzzer is pushed and also runs the timer on the application. For the procedure, the writer asks the participants to swim in free style along 50 meters. When the athlete swims, they will cut the laser of every censors so that it gives a signal to stop the running timer on the monitoring application. The output result the writer gets from this used instrument is to know how fast a swimmer swim in maximum speed, to know the time and distance of acceleration and decelaration that happens. The result of validity instrument shows 0,605 (high), while the reliability is 0,833 (very high).

  16. A wireless breathing-training support system for kinesitherapy.

    PubMed

    Tawa, Hiroki; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Caldwell, W Morton

    2009-01-01

    We have developed a new wireless breathing-training support system for kinesitherapy. The system consists of an optical sensor, an accelerometer, a microcontroller, a Bluetooth module and a laptop computer. The optical sensor, which is attached to the patient's chest, measures chest circumference. The low frequency components of circumference are mainly generated by breathing. The optical sensor outputs the circumference as serial digital data. The accelerometer measures the dynamic acceleration force produced by exercise, such as walking. The microcontroller sequentially samples this force. The acceleration force and chest circumference are sent sequentially via Bluetooth to a physical therapist's laptop computer, which receives and stores the data. The computer simultaneously displays these data so that the physical therapist can monitor the patient's breathing and acceleration waveforms and give instructions to the patient in real time during exercise. Moreover, the system enables a quantitative training evaluation and calculation the volume of air inspired and expired by the lungs.

  17. Commercial Parts Radiation Testing

    DTIC Science & Technology

    2015-01-13

    New Mexico’s COSMIAC Center performed radiation testing on a series of operational amplifiers, microcontrollers and microprocessor. The...commercial microcontroller and microprocessor equipment. The team would develop a list of the most promising commercial parts that might be utilized to...parts will include microprocessors, microcontrollers and memory modules. In addition, Field Programmable Gate Arrays (FPGAs) will also be chosen

  18. Support for Resource Constrained Microcontroller Programming by a Broad Developer Community

    ERIC Educational Resources Information Center

    Amar, Amichi

    2010-01-01

    Resource constrained microcontrollers with as little as several hundred bytes of RAM and a few dozen megahertz of processing power are the most prevalent computing devices on earth. Microcontrollers and the many application components that interface to them, such as sensors, actuators, transceivers and displays are now cheap and readily available.…

  19. Respiratory monitoring system based on fiber optic macro bending

    NASA Astrophysics Data System (ADS)

    Purnamaningsih, Retno Wigajatri; Widyakinanti, Astari; Dhia, Arika; Gumelar, Muhammad Raditya; Widianto, Arif; Randy, Muhammad; Soedibyo, Harry

    2018-02-01

    We proposed a respiratory monitoring system for living activities in human body based on fiber optic macro-bending for laboratory scale. The respiration sensor consists of a single-mode optical fiber and operating on a wavelength at around 1550 nm. The fiber optic was integrated into an elastic fabric placed on the chest and stomach of the monitored human subject. Deformations of the flexible textile involving deformations of the fiber optic bending curvature, which was proportional to the chest and stomach expansion. The deformation of the fiber was detected using photodetector and processed using microcontroller PIC18F14K50. The results showed that this system able to display various respiration pattern and rate for sleeping, and after walking and running activities in real time.

  20. PM2.5 monitoring system based on ZigBee wireless sensor network

    NASA Astrophysics Data System (ADS)

    Lin, Lukai; Li, Xiangshun; Gu, Weiying

    2017-06-01

    In the view of the haze problem, aiming at improving the deficiency of the traditional PM2.5 monitoring methods, such as the insufficient real-time monitoring, limited transmission distance, high cost and the difficulty to maintain, the atmosphere PM2.5 monitoring system based on ZigBee technology is designed. The system combines the advantages of ZigBee’s low cost, low power consumption, high reliability and GPRS/Internet’s capability of remote transmission of data. Furthermore, it adopts TI’s Z-Stack protocol stack, and selects CC2530 chip and TI’s MSP430 microcontroller as the core, which establishes the air pollution monitoring network that is helpful for the early prediction of major air pollution disasters.

  1. A low power flash-FPGA based brain implant micro-system of PID control.

    PubMed

    Lijuan Xia; Fattah, Nabeel; Soltan, Ahmed; Jackson, Andrew; Chester, Graeme; Degenaar, Patrick

    2017-07-01

    In this paper, we demonstrate that a low power flash FPGA based micro-system can provide a low power programmable interface for closed-loop brain implant inter- faces. The proposed micro-system receives recording local field potential (LFP) signals from an implanted probe, performs closed-loop control using a first order control system, then converts the signal into an optogenetic control stimulus pattern. Stimulus can be implemented through optoelectronic probes. The long term target is for both fundamental neuroscience applications and for clinical use in treating epilepsy. Utilizing our device, closed-loop processing consumes only 14nJ of power per PID cycle compared to 1.52μJ per cycle for a micro-controller implementation. Compared to an application specific digital integrated circuit, flash FPGA's are inherently programmable.

  2. A Simple Picaxe Microcontroller Pulse Source for Juxtacellular Neuronal Labelling.

    PubMed

    Verberne, Anthony J M

    2016-10-19

    Juxtacellular neuronal labelling is a method which allows neurophysiologists to fill physiologically-identified neurons with small positively-charged marker molecules. Labelled neurons are identified by histochemical processing of brain sections along with immunohistochemical identification of neuropeptides, neurotransmitters, neurotransmitter transporters or biosynthetic enzymes. A microcontroller-based pulser circuit and associated BASIC software script is described for incorporation into the design of a commercially-available intracellular electrometer for use in juxtacellular neuronal labelling. Printed circuit board construction has been used for reliability and reproducibility. The current design obviates the need for a separate digital pulse source and simplifies the juxtacellular neuronal labelling procedure.

  3. A miniature microcontroller curve tracing circuit for space flight testing transistors.

    PubMed

    Prokop, N; Greer, L; Krasowski, M; Flatico, J; Spina, D

    2015-02-01

    This paper describes a novel miniature microcontroller based curve tracing circuit, which was designed to monitor the environmental effects on Silicon Carbide Junction Field Effect Transistor (SiC JFET) device performance, while exposed to the low earth orbit environment onboard the International Space Station (ISS) as a resident experiment on the 7th Materials on the International Space Station Experiment (MISSE7). Specifically, the microcontroller circuit was designed to operate autonomously and was flown on the external structure of the ISS for over a year. This curve tracing circuit is capable of measuring current vs. voltage (I-V) characteristics of transistors and diodes. The circuit is current limited for low current devices and is specifically designed to test high temperature, high drain-to-source resistance SiC JFETs. The results of each I-V data set are transmitted serially to an external telemetered communication interface. This paper discusses the circuit architecture, its design, and presents example results.

  4. Single-chip pulse programmer for magnetic resonance imaging using a 32-bit microcontroller.

    PubMed

    Handa, Shinya; Domalain, Thierry; Kose, Katsumi

    2007-08-01

    A magnetic resonance imaging (MRI) pulse programmer has been developed using a single-chip microcontroller (ADmicroC7026). The microcontroller includes all the components required for the MRI pulse programmer: a 32-bit RISC CPU core, 62 kbytes of flash memory, 8 kbytes of SRAM, two 32-bit timers, four 12-bit DA converters, and 40 bits of general purpose I/O. An evaluation board for the microcontroller was connected to a host personal computer (PC), an MRI transceiver, and a gradient driver using interface circuitry. Target (embedded) and host PC programs were developed to enable MRI pulse sequence generation by the microcontroller. The pulse programmer achieved a (nominal) time resolution of approximately 100 ns and a minimum time delay between successive events of approximately 9 micros. Imaging experiments using the pulse programmer demonstrated the effectiveness of our approach.

  5. Single-chip pulse programmer for magnetic resonance imaging using a 32-bit microcontroller

    NASA Astrophysics Data System (ADS)

    Handa, Shinya; Domalain, Thierry; Kose, Katsumi

    2007-08-01

    A magnetic resonance imaging (MRI) pulse programmer has been developed using a single-chip microcontroller (ADμC7026). The microcontroller includes all the components required for the MRI pulse programmer: a 32-bit RISC CPU core, 62kbytes of flash memory, 8kbytes of SRAM, two 32-bit timers, four 12-bit DA converters, and 40bits of general purpose I/O. An evaluation board for the microcontroller was connected to a host personal computer (PC), an MRI transceiver, and a gradient driver using interface circuitry. Target (embedded) and host PC programs were developed to enable MRI pulse sequence generation by the microcontroller. The pulse programmer achieved a (nominal) time resolution of approximately 100ns and a minimum time delay between successive events of approximately 9μs. Imaging experiments using the pulse programmer demonstrated the effectiveness of our approach.

  6. Development of TGS2611 methane sensor and SHT11 humidity and temperature sensor for measuring greenhouse gas on peatlands in south kalimantan, indonesia

    NASA Astrophysics Data System (ADS)

    Sugriwan, I.; Soesanto, O.

    2017-05-01

    The research was focused on development of data acquisition system to monitor the content of methane, relative humidity and temperature on peatlands in South Kalimantan, Indonesia. Methane is one of greenhouse gases that emitted from peatlands; while humidity and temperature are important parameters of microclimate on peatlands. The content of methane, humidity and temperature are three parameters were monitored digitally, real time, continuously and automatically record by data acquisition systems that interfaced to the personal computer. The hardware of data acquisition system consists of power supply unit, TGS2611 methane gas sensor, SHT11 humidity and temperature sensors, voltage follower, ATMega8535 microcontroller, 16 × 2 LCD character and personal computer. ATMega8535 module is a device to manage all part in measuring instrument. The software which is responsible to take sensor data, calculate characteristic equation and send data to 16 × 2 LCD character are Basic Compiler. To interface between measuring instrument and personal computer is maintained by Delphi 7. The result of data acquisition showed on 16 × 2 LCD characters, PC monitor and database with developed by XAMPP. Methane, humidity, and temperature which release from peatlands are trapped by Closed-Chamber Measurement with dimension 60 × 50 × 40 cm3. TGS2611 methane gas sensor and SHT11 humidity and temperature sensor are calibrated to determine transfer function used to data communication between sensors and microcontroller and integrated into ATMega8535 Microcontroller. Calculation of RS and RL of TGS2611 methane gas sensor refer to data sheet and obtained respectively 1360 ohm and 905 ohm. The characteristic equation of TGS2611 satisfies equation VRL = 0.561 ln n - 2.2641 volt, with n is a various concentrations and VRL in volt. The microcontroller maintained the voltage signal than interfaced it to liquid crystal displays and personal computer (laptop) to display result of the measurement. The result of data acquisition saved on excels and database format.

  7. Hydroponic system design with real time OS based on ARM Cortex-M microcontroller

    NASA Astrophysics Data System (ADS)

    Atmadja, Wiedjaja; Liawatimena, Suryadiputra; Lukas, Jonathan; Nata, Eka Putra Leo; Alexander, Ivan

    2017-12-01

    Hydroponic is the process of growing plants without soil, plant root flooded or moist with nutrient-rich solutions in inert material. Hydroponics has become a reality for greenhouse growers in virtually all climates. Large hydroponic installations exist throughout the world for growing flowers, vegetables and some short period fruit like tomato and cucumber. In soilless culture, we must maintain stable pH and conductivity level of nutrient solution to make plant grow well, large variation of pH of certain time will poisoned plant. This paper describes development complete automation hydroponic system, from maintaining stable nutrient composition (conductivity and pH), grow light, and monitor plant environment such as CO2, temperature and humidity. The heart of our automation is ARM Cortex-M4 from ST Microelectronic running ARM mbed OS, the official Real Time Operating System (RTOS) for ARM Cortex-M microcontroller. Using RTOS gives us flexibility to have multithreaded process. Results show that system capable to control desired concentration level with variation of less than 3%, pH sensor show good accuracy 5.83% from pH value 3.23-10. Growing light intensity measurement show result 105 μmol/m2/s therefore we need turn on the light at least 17 hours/day to fulfil plant light requirement. RTOS give good performance with latency and jitter less than 15 us, system overall show good performance and accuracy for automating hydroponic plant in vegetative phase of growth.

  8. Implementation monitoring temperature, humidity and mositure soil based on wireless sensor network for e-agriculture technology

    NASA Astrophysics Data System (ADS)

    Sumarudin, A.; Ghozali, A. L.; Hasyim, A.; Effendi, A.

    2016-04-01

    Indonesian agriculture has great potensial for development. Agriculture a lot yet based on data collection for soil or plant, data soil can use for analys soil fertility. We propose e-agriculture system for monitoring soil. This system can monitoring soil status. Monitoring system based on wireless sensor mote that sensing soil status. Sensor monitoring utilize soil moisture, humidity and temperature. System monitoring design with mote based on microcontroler and xbee connection. Data sensing send to gateway with star topology with one gateway. Gateway utilize with mini personal computer and connect to xbee cordinator mode. On gateway, gateway include apache server for store data based on My-SQL. System web base with YII framework. System done implementation and can show soil status real time. Result the system can connection other mote 40 meters and mote lifetime 7 hours and minimum voltage 7 volt. The system can help famer for monitoring soil and farmer can making decision for treatment soil based on data. It can improve the quality in agricultural production and would decrease the management and farming costs.

  9. Design of fiber optic based respiratory sensor for newborn incubator application

    NASA Astrophysics Data System (ADS)

    Dhia, Arika; Devara, Kresna; Abuzairi, Tomy; Poespawati, N. R.; Purnamaningsih, Retno W.

    2018-02-01

    This paper reports the design of respiratory sensor using fiber optic for newborn incubator application. The sensor works based on light intensity losses difference obtained due to thorax movement during respiration. The output of the sensor launched to support electronic circuits to be processed in Arduino Uno microcontroler such that the real-time respiratory rate (breath per minute) can be presented on LCD. Experiment results using thorax expansion of newborn simulator show that the system is able to measure respiratory rate from 10 up to 130 breaths per minute with 0.595% error and 0.2% hysteresis error.

  10. Design considerations for a gas microcontroller

    NASA Technical Reports Server (NTRS)

    Ritter, D. A.

    1986-01-01

    Some of the design problems that are now being addressed in consideration of a microcontroller for the upcoming GAS payload are discussed. Microcontrollers will be used to run the experiments and to collect and store the data from those experiments. Some of the requirements for a microcontroller are to be small, lightweight, have low power consumption, and high reliability. Some of the solutions that were developed to meet these design requirements are discussed. At present, the experiment is still in the design stage and the final design may change from what is presented here. The search for new integrated circuits which will do all that is needed all in one package continues.

  11. Microcontrollers and optical sensors for education in optics and photonics

    NASA Astrophysics Data System (ADS)

    Dressler, Paul; Wielage, Heinz; Haiss, Ulrich; Vauderwange, Oliver; Wozniak, P.; Curticapean, Dan

    2014-09-01

    The digital revolution is going full steam ahead, with a constantly growing number of new devices providing a steady increase in complexity and power. Most of the success is based on one important invention: the microprocessor/microcontroller. In this paper the authors present how to integrate microcontrollers and optical sensors in the curricula of media engineering by combining subjects of media technology, optics, information technology and media design. Hereby the aim is not to teach these topics separate from each other, but to bring them together in interdisciplinary lectures, projects and applications. Microcontrollers can be applied in various ways to teach content from the fields of optics and photonics. They can be used to control LEDs, displays, light detectors and infrared sensors, which makes it possible to build measuring instruments like e.g. a lux meter, a light barrier or an optical distance meter. The learning goals are to stimulate the student's interest in the multiplicity of subjects related to this course and to support a deeper understanding of the close connections between them. The teaching method that the authors describe in their paper turned out to be very successful, as the participants are motivated to bring in their own ideas for projects, they spend more time than requested and as many students return to the courses as tutors. It is an example for effectual knowledge transfer and exchange of ideas among students.

  12. Multifunctional microcontrollable interface module

    NASA Astrophysics Data System (ADS)

    Spitzer, Mark B.; Zavracky, Paul M.; Rensing, Noa M.; Crawford, J.; Hockman, Angela H.; Aquilino, P. D.; Girolamo, Henry J.

    2001-08-01

    This paper reports the development of a complete eyeglass- mounted computer interface system including display, camera and audio subsystems. The display system provides an SVGA image with a 20 degree horizontal field of view. The camera system has been optimized for face recognition and provides a 19 degree horizontal field of view. A microphone and built-in pre-amp optimized for voice recognition and a speaker on an articulated arm are included for audio. An important feature of the system is a high degree of adjustability and reconfigurability. The system has been developed for testing by the Military Police, in a complete system comprising the eyeglass-mounted interface, a wearable computer, and an RF link. Details of the design, construction, and performance of the eyeglass-based system are discussed.

  13. Programmable Ultrasonic Sensing System for Targeted Spraying in Orchards

    PubMed Central

    Stajnko, Denis; Berk, Peter; Lešnik, Mario; Jejčič, Viktor; Lakota, Miran; Štrancar, Andrej; Hočevar, Marko; Rakun, Jurij

    2012-01-01

    This research demonstrates the basic elements of a prototype automated orchard sprayer which delivers pesticide spray selectively with respect to the characteristics of the targets. The density of an apple tree canopy was detected by PROWAVE 400EP250 ultrasound sensors controlled by a Cypress PSOC CY8C29466 microcontroller. The ultrasound signal was processed with an embedded computer built around a LPC1343 microcontroller and fed in real time to electro-magnetic valves which open/close spraying nozzles in relation to the canopy structure. The analysis focuses on the detection of appropriate thresholds on 15 cm ultrasound bands, which correspond to maximal response to tree density, and this was selected for accurate spraying guidance. Evaluation of the system was performed in an apple orchard by detecting deposits of tartrazine dye (TD) on apple leaves. The employment of programmable microcontrollers and electro-magnetic valves decreased the amount of spray delivered by up to 48.15%. In contrast, the reduction of TD was only up to 37.7% at some positions within the tree crown and 65.1% in the gaps between trees. For all these reasons, this concept of precise orchard spraying can contribute to a reduction of costs and environmental pollution, while obtaining similar or even better leaf deposits. PMID:23202220

  14. Development of an interface for an ultrareliable fault-tolerant control system and an electronic servo-control unit

    NASA Technical Reports Server (NTRS)

    Shaver, Charles; Williamson, Michael

    1986-01-01

    The NASA Ames Research Center sponsors a research program for the investigation of Intelligent Flight Control Actuation systems. The use of artificial intelligence techniques in conjunction with algorithmic techniques for autonomous, decentralized fault management of flight-control actuation systems is explored under this program. The design, development, and operation of the interface for laboratory investigation of this program is documented. The interface, architecturally based on the Intel 8751 microcontroller, is an interrupt-driven system designed to receive a digital message from an ultrareliable fault-tolerant control system (UFTCS). The interface links the UFTCS to an electronic servo-control unit, which controls a set of hydraulic actuators. It was necessary to build a UFTCS emulator (also based on the Intel 8751) to provide signal sources for testing the equipment.

  15. [3D-TV health assessment system by the multi-modal physiological signals].

    PubMed

    Li, Zhongqiang; Xing, Lidong; Qian, Zhiyu; Wang, Xiao; Yu, Defei; Liu, Baoyu; Jin, Shuai

    2014-03-01

    In order to meet the requirements of the multi-physiological signal measurement of the 3D-TV health assessment, try to find the suitable biological acquisition chips and design the hardware system which can detect different physiological signals in real time. The systems mainly uses ARM11/S3C6410 microcontroller to control the EEG/EOG acquisition chip RHA2116 and the ECG acquisition chip ADS1298, and then the microcontroller transfer the data collected by the chips to the PC software by the USB port which can display and save the experimental data in real time, then use the Matlab software for further processing of the data, finally make a final health assessment. In the meantime, for the different varieties in the different brain regions of watching 3D-TV, developed the special brain electrode placement and the experimental data processing methods, then effectively disposed the multi-signal data in the multilevel.

  16. Realization of guitar audio effects using methods of digital signal processing

    NASA Astrophysics Data System (ADS)

    Buś, Szymon; Jedrzejewski, Konrad

    2015-09-01

    The paper is devoted to studies on possibilities of realization of guitar audio effects by means of methods of digital signal processing. As a result of research, some selected audio effects corresponding to the specifics of guitar sound were realized as the real-time system called Digital Guitar Multi-effect. Before implementation in the system, the selected effects were investigated using the dedicated application with a graphical user interface created in Matlab environment. In the second stage, the real-time system based on a microcontroller and an audio codec was designed and realized. The system is designed to perform audio effects on the output signal of an electric guitar.

  17. A digital intensity stabilization system for HeNe laser

    NASA Astrophysics Data System (ADS)

    Wei, Zhimeng; Lu, Guangfeng; Yang, Kaiyong; Long, Xingwu; Huang, Yun

    2012-02-01

    A digital intensity stabilization system for HeNe laser is developed. Based on a switching power IC to design laser power supply and a general purpose microcontroller to realize digital PID control, the system constructs a closed loop to stabilize the laser intensity by regulating its discharge current. The laser tube is made of glass ceramics and its integrated structure is steady enough to eliminate intensity fluctuations at high frequency and attenuates all intensity fluctuations, and this makes it easy to tune the control loop. The control loop between discharge current and photodiode voltage eliminates the long-term drifts. The intensity stability of the HeNe laser with this system is 0.014% over 12 h.

  18. Designing of smart home automation system based on Raspberry Pi

    NASA Astrophysics Data System (ADS)

    Saini, Ravi Prakash; Singh, Bhanu Pratap; Sharma, Mahesh Kumar; Wattanawisuth, Nattapol; Leeprechanon, Nopbhorn

    2016-03-01

    Locally networked or remotely controlled home automation system becomes a popular paradigm because of the numerous advantages and is suitable for academic research. This paper proposes a method for an implementation of Raspberry Pi based home automation system presented with an android phone access interface. The power consumption profile across the connected load is measured accurately through programming. Users can access the graph of total power consumption with respect to time worldwide using their Dropbox account. An android application has been developed to channelize the monitoring and controlling operation of home appliances remotely. This application facilitates controlling of operating pins of Raspberry Pi by pressing the corresponding key for turning "on" and "off" of any desired appliance. Systems can range from the simple room lighting control to smart microcontroller based hybrid systems incorporating several other additional features. Smart home automation systems are being adopted to achieve flexibility, scalability, security in the sense of data protection through the cloud-based data storage protocol, reliability, energy efficiency, etc.

  19. Designing of smart home automation system based on Raspberry Pi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saini, Ravi Prakash; Singh, Bhanu Pratap; Sharma, Mahesh Kumar

    Locally networked or remotely controlled home automation system becomes a popular paradigm because of the numerous advantages and is suitable for academic research. This paper proposes a method for an implementation of Raspberry Pi based home automation system presented with an android phone access interface. The power consumption profile across the connected load is measured accurately through programming. Users can access the graph of total power consumption with respect to time worldwide using their Dropbox account. An android application has been developed to channelize the monitoring and controlling operation of home appliances remotely. This application facilitates controlling of operating pinsmore » of Raspberry Pi by pressing the corresponding key for turning “on” and “off” of any desired appliance. Systems can range from the simple room lighting control to smart microcontroller based hybrid systems incorporating several other additional features. Smart home automation systems are being adopted to achieve flexibility, scalability, security in the sense of data protection through the cloud-based data storage protocol, reliability, energy efficiency, etc.« less

  20. Embedded system based on PWM control of hydrogen generator with SEPIC converter

    NASA Astrophysics Data System (ADS)

    Fall, Cheikh; Setiawan, Eko; Habibi, Muhammad Afnan; Hodaka, Ichijo

    2017-09-01

    The objective of this paper is to design and to produce a micro electrical plant system based on fuel cell for teaching material-embedded systems in technical vocational training center. Based on this, the student can experience generating hydrogen by fuel cells, controlling the rate of hydrogen generation by the duty ration of single-ended primary-inductor converter(SEPIC), drawing the curve rate of hydrogen to duty ratio, generating electrical power by using hydrogen, and calculating the fuel cell efficiency when it is used as electrical energy generator. This project is of great importance insofar as students will need to acquire several skills to be able to realize it such as continuous DC DC conversion and the scientific concept behind the converter, the regulation of systems with integral proportional controllers, the installation of photovoltaic cells, the use of high-tech sensors, microcontroller programming, object-oriented programming, mastery of the fuel cell syste

  1. The Temperature Fuzzy Control System of Barleythe Malt Drying Based on Microcontroller

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoyang; Bi, Yang; Zhang, Lili; Chen, Jingjing; Yun, Jianmin

    The control strategy of temperature and humidity in the beer barley malt drying chamber based on fuzzy logic control was implemented.Expounded in this paper was the selection of parameters for the structure of the regulatory device, as well as the essential design from control rules based on the existing experience. A temperature fuzzy controller was thus constructed using relevantfuzzy logic, and humidity control was achieved by relay, ensured the situation of the humidity to control the temperature. The temperature's fuzzy control and the humidity real-time control were all processed by single chip microcomputer with assembly program. The experimental results showed that the temperature control performance of this fuzzy regulatory system,especially in the ways of working stability and responding speed and so on,was better than normal used PID control. The cost of real-time system was inquite competitive position. It was demonstrated that the system have a promising prospect of extensive application.

  2. [Design of a Front-end Device of Heart Rate Variability Analysis System Based on Photoplethysmography].

    PubMed

    Shi, Lei; Sun, Peng; Pang, Yu; Luo, Zhiyong; Wang, Wei; Wang, Yanxiang

    2016-02-01

    Heart rate variability (HRV) is the difference between the successive changes in the heartbeat cycle, and it is produced in the autonomic nervous system modulation of the sinus node of the heart. The HRV is a valuable indicator in predicting the sudden cardiac death and arrhythmic events. Traditional analysis of HRV is based on a multielectrocardiogram (ECG), but the ECG signal acquisition is complex, so we have designed an HRV analysis system based on photoplethysmography (PPG). PPG signal is collected by a microcontroller from human's finger, and it is sent to the terminal via USB-Serial module. The terminal software not only collects the data and plot waveforms, but also stores the data for future HRV analysis. The system is small in size, low in power consumption, and easy for operation. It is suitable for daily care no matter whether it is used at home or in a hospital.

  3. Platform Architecture for Decentralized Positioning Systems.

    PubMed

    Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg

    2017-04-26

    A platform architecture for positioning systems is essential for the realization of a flexible localization system, which interacts with other systems and supports various positioning technologies and algorithms. The decentralized processing of a position enables pushing the application-level knowledge into a mobile station and avoids the communication with a central unit such as a server or a base station. In addition, the calculation of the position on low-cost and resource-constrained devices presents a challenge due to the limited computing, storage capacity, as well as power supply. Therefore, we propose a platform architecture that enables the design of a system with the reusability of the components, extensibility (e.g., with other positioning technologies) and interoperability. Furthermore, the position is computed on a low-cost device such as a microcontroller, which simultaneously performs additional tasks such as data collecting or preprocessing based on an operating system. The platform architecture is designed, implemented and evaluated on the basis of two positioning systems: a field strength system and a time of arrival-based positioning system.

  4. Platform Architecture for Decentralized Positioning Systems

    PubMed Central

    Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg

    2017-01-01

    A platform architecture for positioning systems is essential for the realization of a flexible localization system, which interacts with other systems and supports various positioning technologies and algorithms. The decentralized processing of a position enables pushing the application-level knowledge into a mobile station and avoids the communication with a central unit such as a server or a base station. In addition, the calculation of the position on low-cost and resource-constrained devices presents a challenge due to the limited computing, storage capacity, as well as power supply. Therefore, we propose a platform architecture that enables the design of a system with the reusability of the components, extensibility (e.g., with other positioning technologies) and interoperability. Furthermore, the position is computed on a low-cost device such as a microcontroller, which simultaneously performs additional tasks such as data collecting or preprocessing based on an operating system. The platform architecture is designed, implemented and evaluated on the basis of two positioning systems: a field strength system and a time of arrival-based positioning system. PMID:28445414

  5. MICROFABRICATED ELECTROCHEMICAL ANALYSIS SYSTEM FOR HEAVY METAL DETECTION. (R825511C047)

    EPA Science Inventory

    A low power, hand-held system has been developed for the measurement of heavy metal ions in aqueous solutions. The system consists of an electrode array sensor, a high performance single chip potentiostat and a microcontroller circuit. The sensor is a microfabricated array of ...

  6. Development of hardware system using temperature and vibration maintenance models integration concepts for conventional machines monitoring: a case study

    NASA Astrophysics Data System (ADS)

    Adeyeri, Michael Kanisuru; Mpofu, Khumbulani; Kareem, Buliaminu

    2016-03-01

    This article describes the integration of temperature and vibration models for maintenance monitoring of conventional machinery parts in which their optimal and best functionalities are affected by abnormal changes in temperature and vibration values thereby resulting in machine failures, machines breakdown, poor quality of products, inability to meeting customers' demand, poor inventory control and just to mention a few. The work entails the use of temperature and vibration sensors as monitoring probes programmed in microcontroller using C language. The developed hardware consists of vibration sensor of ADXL345, temperature sensor of AD594/595 of type K thermocouple, microcontroller, graphic liquid crystal display, real time clock, etc. The hardware is divided into two: one is based at the workstation (majorly meant to monitor machines behaviour) and the other at the base station (meant to receive transmission of machines information sent from the workstation), working cooperatively for effective functionalities. The resulting hardware built was calibrated, tested using model verification and validated through principles pivoted on least square and regression analysis approach using data read from the gear boxes of extruding and cutting machines used for polyethylene bag production. The results got therein confirmed related correlation existing between time, vibration and temperature, which are reflections of effective formulation of the developed concept.

  7. Design of pneumatic proportional flow valve type 5/3

    NASA Astrophysics Data System (ADS)

    Laski, P. A.; Pietrala, D. S.; Zwierzchowski, J.; Czarnogorski, K.

    2017-08-01

    In this paper the 5/3-way pneumatic, proportional flow valve was designed and made. Stepper linear actuator was used to move the spool. The valve is controlled by the controlled based on a AVR microcontroller. Virtual model of the valve was created in CAD. The real element was made based on a standard 5/3-way manually actuated valve with hand lever, which was dismounted and replaced by linear stepper motor. All the elements was mounted in a specially made housing. The controller consists of microcontroller Atmega16, integrated circuit L293D, display, two potentiometers, three LEDs and six buttons. Series of research was also conducted. Simulation research were performed using CFD by the Flow Simulation addition to SolidWorks. During the experiments the valve characteristics of flow and pressure was determined.

  8. A Simple Picaxe Microcontroller Pulse Source for Juxtacellular Neuronal Labelling †

    PubMed Central

    Verberne, Anthony J. M.

    2016-01-01

    Juxtacellular neuronal labelling is a method which allows neurophysiologists to fill physiologically-identified neurons with small positively-charged marker molecules. Labelled neurons are identified by histochemical processing of brain sections along with immunohistochemical identification of neuropeptides, neurotransmitters, neurotransmitter transporters or biosynthetic enzymes. A microcontroller-based pulser circuit and associated BASIC software script is described for incorporation into the design of a commercially-available intracellular electrometer for use in juxtacellular neuronal labelling. Printed circuit board construction has been used for reliability and reproducibility. The current design obviates the need for a separate digital pulse source and simplifies the juxtacellular neuronal labelling procedure. PMID:28952589

  9. Microcontroller-based binary integrator for millimeter-wave radar experiments.

    PubMed

    Eskelinen, Pekka; Ruoskanen, Jukka; Peltonen, Jouni

    2010-05-01

    An easily on-site reconfigurable multiple binary integrator for millimeter radar experiments has been constructed of static random access memories, an eight bit microcontroller, and high speed video operational amplifiers. The design uses a raw comparator path and two adjustable m-out-of-n chains in a wired-OR configuration. Standard high speed memories allow the use of pulse widths below 100 ns. For eight pulse repetition intervals it gives a maximum improvement of 6.6 dB for stationary low-level target echoes. The doubled configuration enhances the capability against fluctuating targets. Because of the raw comparator path, also single return pulses of relatively high amplitude are processed.

  10. Pure-tone Audiometer

    NASA Astrophysics Data System (ADS)

    Kapul, A. A.; Zubova, E. I.; Torgaev, S. N.; Drobchik, V. V.

    2017-08-01

    The research focuses on a pure-tone audiometer designing. The relevance of the study is proved by high incidence of an auditory analyser in older people and children. At first, the article provides information about subjective and objective audiometry methods. Secondly, we offer block-diagram and basic-circuit arrangement of device. We decided to base on STM32F407VG microcontroller and use digital pot in the function of attenuator. Third, we implemented microcontroller and PC connection. C programming language is used for microcontroller’s program and PC’s interface. Fourthly, we created the pure-tone audiometer prototype. In the future, we will implement the objective method ASSR in addition to pure-tone audiometry.

  11. 24-channel dual microcontroller-based voltage controller for ion optics remote control

    NASA Astrophysics Data System (ADS)

    Bengtsson, L.

    2018-05-01

    The design of a 24-channel voltage control instrument for Wenzel Elektronik N1130 NIM modules is described. This instrument is remote controlled from a LabVIEW GUI on a host Windows computer and is intended for ion optics control in electron affinity measurements on negative ions at the CERN-ISOLDE facility. Each channel has a resolution of 12 bits and has a normally distributed noise with a standard deviation of <1 mV. The instrument is designed as a standard 2-unit NIM module where the electronic hardware consists of a printed circuit board with two asynchronously operating microcontrollers.

  12. A low cost PSD-based monocular motion capture system

    NASA Astrophysics Data System (ADS)

    Ryu, Young Kee; Oh, Choonsuk

    2007-10-01

    This paper describes a monocular PSD-based motion capture sensor to employ with commercial video game systems such as Microsoft's XBOX and Sony's Playstation II. The system is compact, low-cost, and only requires a one-time calibration at the factory. The system includes a PSD(Position Sensitive Detector) and active infrared (IR) LED markers that are placed on the object to be tracked. The PSD sensor is placed in the focal plane of a wide-angle lens. The micro-controller calculates the 3D position of the markers using only the measured intensity and the 2D position on the PSD. A series of experiments were performed to evaluate the performance of our prototype system. From the experimental results we see that the proposed system has the advantages of the compact size, the low cost, the easy installation, and the high frame rates to be suitable for high speed motion tracking in games.

  13. Microcontroller based driver alertness detection systems to detect drowsiness

    NASA Astrophysics Data System (ADS)

    Adenin, Hasibah; Zahari, Rahimi; Lim, Tiong Hoo

    2018-04-01

    The advancement of embedded system for detecting and preventing drowsiness in a vehicle is a major challenge for road traffic accident systems. To prevent drowsiness while driving, it is necessary to have an alert system that can detect a decline in driver concentration and send a signal to the driver. Studies have shown that traffc accidents usually occur when the driver is distracted while driving. In this paper, we have reviewed a number of detection systems to monitor the concentration of a car driver and propose a portable Driver Alertness Detection System (DADS) to determine the level of concentration of the driver based on pixelated coloration detection technique using facial recognition. A portable camera will be placed at the front visor to capture facial expression and the eye activities. We evaluate DADS using 26 participants and have achieved 100% detection rate with good lighting condition and a low detection rate at night.

  14. Measurement system for nitrous oxide based on amperometric gas sensor

    NASA Astrophysics Data System (ADS)

    Siswoyo, S.; Persaud, K. C.; Phillips, V. R.; Sneath, R.

    2017-03-01

    It has been well known that nitrous oxide is an important greenhouse gas, so monitoring and control of its concentration and emission is very important. In this work a nitrous oxide measurement system has been developed consisting of an amperometric sensor and an appropriate lab-made potentiostat that capable measuring picoampere current ranges. The sensor was constructed using a gold microelectrode as working electrode surrounded by a silver wire as quasi reference electrode, with tetraethyl ammonium perchlorate and dimethylsulphoxide as supporting electrolyte and solvent respectively. The lab-made potentiostat was built incorporating a transimpedance amplifier capable of picoampere measurements. This also incorporated a microcontroller based data acquisition system, controlled by a host personal computer using a dedicated computer program. The system was capable of detecting N2O concentrations down to 0.07 % v/v.

  15. Measurement of greenhouse gases in UAE by using Unmanned Aerial Vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    Abou-Elnour, Ali; Odeh, Mohamed; Abdelrhman, Mohammed; Balkis, Ahmed; Amira, Abdelraouf

    2017-04-01

    In the present work, a reliable and low cost system has been designed and implemented to measure greenhouse gases (GHG) in United Arab Emirates (UAE) by using unmanned aerial vehicle (UAV). A set of accurate gas, temperature, pressure, humidity sensors are integrated together with a wireless communication system on a microcontroller based platform to continuously measure the required data. The system instantaneously sends the measured data to a center monitoring unit via the wireless communication system. In addition, the proposed system has the features that all measurements are recorded directly in a storage device to allow effective monitoring in regions with weak or no wireless coverage. The obtained data will be used in all further sophisticated calculations for environmental research and monitoring purposes.

  16. A new kind of universal smart home security safety monitoring system

    NASA Astrophysics Data System (ADS)

    Li, Biqing; Li, Zhao

    2018-04-01

    With the current level of social development, improved quality of life, existence and security issues of law and order has become an important issue. This graduation project adopts the form of wireless transmission, to STC89C52 microcontroller as the host control human infrared induction anti-theft monitoring system. The system mainly consists of main control circuit, power supply circuit, activities of the human body detection module, sound and light alarm circuit, record and display circuit. The main function is to achieve exploration activities on the human body, then the information is transmitted to the control panel, according to the system microcontroller program control sound and light alarm circuit, while recording the alarm location and time, and always check the record as required, and ultimately achieve the purpose of monitoring. The advantage of using pyroelectric infrared sensor can be installed in a hidden place, not easy to find, and low cost, good detection results, and has broad prospects for development.

  17. Thermostatic system of sensor in NIR spectrometer based on PID control

    NASA Astrophysics Data System (ADS)

    Wang, Zhihong; Qiao, Liwei; Ji, Xufei

    2016-11-01

    Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.

  18. Design and implementation of a prototype micropositioning and fusion of optical fibers

    NASA Astrophysics Data System (ADS)

    Vega, Fabio; Torres, Cesar; Mattos, Lorenzo

    2011-09-01

    We developed an automated system in micro and optical fiber fusion, using stepper motors of 3.6 ° (1.8 ° Medium step) with a threaded system for displacements in the order of microns, a LM016 LCD for User message management, a PIC16F877A microcontroller to control the prototype. We also used internal modules: TMR0, EEPROM, PWM (pulse width modulation) control using a pulse opto-cupped the discharge circuit high voltage (20 to 35 kilovolt transformer for FLYBACK fusion) The USART (Universal Synchronous Asynchronous Receiver Transmitter) for serial interface with the PC. The software platform developed under Visual Basic 6.0, which lets you manipulate the prototype from the PC. The entire program is optimized for microcontroller interrupt, macro-functions and is written in MPLAB 7.31. The prototype is now finished.

  19. High performance protection circuit for power electronics applications

    NASA Astrophysics Data System (ADS)

    Tudoran, Cristian D.; Dǎdârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan

    2015-12-01

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a "sensor" or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  20. A new type of temperature and humidity detection-control system

    NASA Astrophysics Data System (ADS)

    Jiao, Lian-Bo; Lou, Shu-Hui

    This paper introduces a new type of intelligent multichannel system for the detection and control of temperature and humidity. In this paper, the integration of the hardware with the software is discussed. Additionally, the function of the single-chip microcomputer (microcontroller) is described fully.

  1. Portable water quality monitoring system

    NASA Astrophysics Data System (ADS)

    Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.

  2. A Compact Energy Harvesting System for Outdoor Wireless Sensor Nodes Based on a Low-Cost In Situ Photovoltaic Panel Characterization-Modelling Unit

    PubMed Central

    Antolín, Diego; Calvo, Belén; Martínez, Pedro A.

    2017-01-01

    This paper presents a low-cost high-efficiency solar energy harvesting system to power outdoor wireless sensor nodes. It is based on a Voltage Open Circuit (VOC) algorithm that estimates the open-circuit voltage by means of a multilayer perceptron neural network model trained using local experimental characterization data, which are acquired through a novel low cost characterization system incorporated into the deployed node. Both units—characterization and modelling—are controlled by the same low-cost microcontroller, providing a complete solution which can be understood as a virtual pilot cell, with identical characteristics to those of the specific small solar cell installed on the sensor node, that besides allows an easy adaptation to changes in the actual environmental conditions, panel aging, etc. Experimental comparison to a classical pilot panel based VOC algorithm show better efficiency under the same tested conditions. PMID:28777330

  3. A Compact Energy Harvesting System for Outdoor Wireless Sensor Nodes Based on a Low-Cost In Situ Photovoltaic Panel Characterization-Modelling Unit.

    PubMed

    Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Martínez, Pedro A

    2017-08-04

    This paper presents a low-cost high-efficiency solar energy harvesting system to power outdoor wireless sensor nodes. It is based on a Voltage Open Circuit (VOC) algorithm that estimates the open-circuit voltage by means of a multilayer perceptron neural network model trained using local experimental characterization data, which are acquired through a novel low cost characterization system incorporated into the deployed node. Both units-characterization and modelling-are controlled by the same low-cost microcontroller, providing a complete solution which can be understood as a virtual pilot cell, with identical characteristics to those of the specific small solar cell installed on the sensor node, that besides allows an easy adaptation to changes in the actual environmental conditions, panel aging, etc. Experimental comparison to a classical pilot panel based VOC algorithm show better efficiency under the same tested conditions.

  4. Urban search mobile platform modeling in hindered access conditions

    NASA Astrophysics Data System (ADS)

    Barankova, I. I.; Mikhailova, U. V.; Kalugina, O. B.; Barankov, V. V.

    2018-05-01

    The article explores the control system simulation and the design of the experimental model of the rescue robot mobile platform. The functional interface, a structural functional diagram of the mobile platform control unit, and a functional control scheme for the mobile platform of secure robot were modeled. The task of design a mobile platform for urban searching in hindered access conditions is realized through the use of a mechanical basis with a chassis and crawler drive, a warning device, human heat sensors and a microcontroller based on Arduino platforms.

  5. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices.

    PubMed

    Pejović, Milić M; Denić, Dragan B; Pejović, Momčilo M; Nešić, Nikola T; Vasović, Nikola

    2010-10-01

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven by TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.

  6. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pejovic, Milic M.; Denic, Dragan B.; Pejovic, Momcilo M.

    2010-10-15

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven bymore » TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.« less

  7. A Model for Microcontroller Functionality Upset Induced by External Pulsed Electromagnetic Irradiation

    DTIC Science & Technology

    2016-11-21

    AFRL-RD-PS- AFRL-RD-PS- TN-2016-0003 TN-2016-0003 A Model for Microcontroller Functionality Upset Induced by External Pulsed Electromagnetic ...External Pulsed Electromagnetic Irradiation 5a. CONTRACT NUMBER FA9451-15-C-0004 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6 . AUTHOR(S) David...microcontroller (µC) subjected to external irradiation by a narrowband electromagnetic (EM) pulse. In our model, the state of a µC is completely specified by

  8. Arduino based radioactive tracking system

    NASA Astrophysics Data System (ADS)

    Rahman, Nur Aira Abd; Rashid, Mohd Fazlie Bin Abdul; Rahman, Anwar Bin Abdul; Ramlan, Atikah

    2017-01-01

    There is a clear need to strengthen security measures to prevent any malevolent use or accidental misuse of radioactive sources. Some of these radioactive sources are regularly transported outside of office or laboratory premises for work and consultation purposes. This paper present the initial development of radioactive source tracking system, which combined Arduino microcontroller, Global Positioning System (GPS) and Global System for Mobile communication (GSM) technologies. The tracking system will help the owner to monitor the movement of the radioactive sources. Currently, the system is capable of tracking the movement of radioactive source through the GPS satellite signals. The GPS co-ordinate could either be transmitted to headquarters at fixed interval via Short Messaging Service (SMS) to enable real time monitoring, or stored in a memory card for offline monitoring and data logging.

  9. Full autonomous microline trace robot

    NASA Astrophysics Data System (ADS)

    Yi, Deer; Lu, Si; Yan, Yingbai; Jin, Guofan

    2000-10-01

    Optoelectric inspection may find applications in robotic system. In micro robotic system, smaller optoelectric inspection system is preferred. However, as miniaturizing the size of the robot, the number of the optoelectric detector becomes lack. And lack of the information makes the micro robot difficult to acquire its status. In our lab, a micro line trace robot has been designed, which autonomous acts based on its optoelectric detection. It has been programmed to follow a black line printed on the white colored ground. Besides the optoelectric inspection, logical algorithm in the microprocessor is also important. In this paper, we propose a simply logical algorithm to realize robot's intelligence. The robot's intelligence is based on a AT89C2051 microcontroller which controls its movement. The technical details of the micro robot are as follow: dimension: 30mm*25mm*35*mm; velocity: 60mm/s.

  10. Low-Cost Control System Built Upon Consumer-Based Electronics For Supervisory Control Of A Gas-Operated Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetherington Jr, G Randall; Vineyard, Edward Allan; Mahderekal, Isaac

    A preliminary evaluation of the performance of a consumer-based control system was conducted by the Oak Ridge National Laboratory (ORNL) and Southwest Gas as part of a cooperative research and development agreement (CRADA) authorized by the Department of Energy (DOE) (Mahderekal et al. (2013). The goal of the research was to evaluate the low-cost approach as a solution for implementing a supervisory control system for a residential gas-operated heat pump. The design incorporated two consumer-based micro-controllers; the Arduino Mega-2650 and the BeagleBone (white). Ten five-ton heat pump systems were designed, fabricated, and operationally tested in the Las Vega NV region.more » A robust data set was produced that allowed detailed assessment of the reliability and the operational perfromance of the newly developed control system. Experiences gained from the test provided important points of improvement for subsequent evolution of the heat pump technology.« less

  11. Implementation of the RS232 communication trainer using computers and the ATMEGA microcontroller for interface engineering Courses

    NASA Astrophysics Data System (ADS)

    Amelia, Afritha; Julham; Viyata Sundawa, Bakti; Pardede, Morlan; Sutrisno, Wiwinta; Rusdi, Muhammad

    2017-09-01

    RS232 of serial communication is the communication system in the computer and microcontroller. This communication was studied in Department of Electrical Engineering and Department of Computer Engineering and Informatics Department at Politeknik Negeri Medan. Recently, an application of simulation was installed on the computer which used for teaching and learning process. The drawback of this system is not useful for communication method between learner and trainer. Therefore, this study was created method of 10 stage to which divided into 7 stages and 3 major phases. It can be namely the analysis of potential problems and data collection, trainer design, and empirical testing and revision. After that, the trainer and module were tested in order to get feedback from the learner. The result showed that 70.10% of feedback which wide reasonable from the learner of questionnaire.

  12. Human grasp assist device and method of use

    NASA Technical Reports Server (NTRS)

    Linn, Douglas Martin (Inventor); Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor)

    2012-01-01

    A grasp assist device includes a glove portion having phalange rings, contact sensors for measuring a grasping force applied by an operator wearing the glove portion, and a tendon drive system (TDS). The device has flexible tendons connected to the phalange rings for moving the rings in response to feedback signals from the sensors. The TDS is connected to each of the tendons, and applies an augmenting tensile force thereto via a microcontroller adapted for determining the augmenting tensile force as a function of the grasping force. A method of augmenting a grasping force of an operator includes measuring the grasping force using the sensors, encoding the grasping force as the feedback signals, and calculating the augmenting tensile force as a function of the feedback signals using the microcontroller. The method includes energizing at least one actuator of a tendon drive system (TDS) to thereby apply the augmenting tensile force.

  13. GSM module for wireless radiation monitoring system via SMS

    NASA Astrophysics Data System (ADS)

    Rahman, Nur Aira Abd; Hisyam Ibrahim, Noor; Lombigit, Lojius; Azman, Azraf; Jaafar, Zainudin; Arymaswati Abdullah, Nor; Hadzir Patai Mohamad, Glam

    2018-01-01

    A customised Global System for Mobile communication (GSM) module is designed for wireless radiation monitoring through Short Messaging Service (SMS). This module is able to receive serial data from radiation monitoring devices such as survey meter or area monitor and transmit the data as text SMS to a host server. It provides two-way communication for data transmission, status query, and configuration setup. The module hardware consists of GSM module, voltage level shifter, SIM circuit and Atmega328P microcontroller. Microcontroller provides control for sending, receiving and AT command processing to GSM module. The firmware is responsible to handle task related to communication between device and host server. It process all incoming SMS, extract, and store new configuration from Host, transmits alert/notification SMS when the radiation data reach/exceed threshold value, and transmits SMS data at every fixed interval according to configuration. Integration of this module with radiation survey/monitoring device will create mobile and wireless radiation monitoring system with prompt emergency alert at high-level radiation.

  14. A customized metal oxide semiconductor-based gas sensor array for onion quality evaluation: system development and characterization.

    PubMed

    Konduru, Tharun; Rains, Glen C; Li, Changying

    2015-01-12

    A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS) sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone), acetonitrile (nitrile), ethyl acetate (ester), and ethanol (alcohol). The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm) of methlypropyl sulfide and two concentrations (145 and 1452 ppm) of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage.

  15. A Customized Metal Oxide Semiconductor-Based Gas Sensor Array for Onion Quality Evaluation: System Development and Characterization

    PubMed Central

    Konduru, Tharun; Rains, Glen C.; Li, Changying

    2015-01-01

    A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS) sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone), acetonitrile (nitrile), ethyl acetate (ester), and ethanol (alcohol). The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm) of methlypropyl sulfide and two concentrations (145 and 1452 ppm) of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage. PMID:25587975

  16. Dosimeter Design Program

    DTIC Science & Technology

    2015-01-05

    monitor the radiation environment in a geosynchronous satellite. 15. SUBJECT TERMS Radiation testing, Cobalt, Microcontroller 16. SECURITY...electronics including: an Aeroflex 8051 microcontroller , a Maxwell Electrically Erasable Programmable Read-Only Memory (EEPROM), Texas Instrument analog

  17. Portable microcontroller-based instrument for near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Giardini, Mario E.; Corti, Mario; Lago, Paolo; Gelmetti, Andrea

    2000-05-01

    Near IR Spectroscopy (NIRS) can be employed to noninvasively and continuously measure in-vivo local changes in haemodynamics and oxygenation of human tissues. In particular, the technique can be particularly useful for muscular functional monitoring. We present a portable NIRS research-grade acquisition system prototype, strictly dedicate to low-noise measurements during muscular exercise. The prototype is able to control four LED sources and a detector. Such a number of sources allows for multipoint measurements or for multi-wavelength spectroscopy of tissue constituents other than oxygen, such as cytochrome aa3 oxidation. The LEDs and the detector are mounted on separate probes, which carry also the relevant drivers and preamplifiers. By employing surface-mount technologies, probe size and weight are kept to a minimum. A single-chip mixed-signal RISC microcontroller performs source-to- detector multiplexing with a digital correlation technique. The acquired data are stored on an on-board 64 K EEPROM bank, and can be subsequently uploaded to a personal computer via serial port for further analysis. The resulting instrument is compact and lightweight. Preliminary test of the prototype on oxygen consumption during tourniquet- induced forearm ischaemia show adequate detectivity and time response.

  18. A programmable closed-loop recording and stimulating wireless system for behaving small laboratory animals

    PubMed Central

    Angotzi, Gian Nicola; Boi, Fabio; Zordan, Stefano; Bonfanti, Andrea; Vato, Alessandro

    2014-01-01

    A portable 16-channels microcontroller-based wireless system for a bi-directional interaction with the central nervous system is presented in this work. The device is designed to be used with freely behaving small laboratory animals and allows recording of spontaneous and evoked neural activity wirelessly transmitted and stored on a personal computer. Biphasic current stimuli with programmable duration, frequency and amplitude may be triggered in real-time on the basis of the recorded neural activity as well as by the animal behavior within a specifically designed experimental setup. An intuitive graphical user interface was developed to configure and to monitor the whole system. The system was successfully tested through bench tests and in vivo measurements on behaving rats chronically implanted with multi-channels microwire arrays. PMID:25096831

  19. Low-cost microcontroller platform for studying lymphatic biomechanics in vitro

    PubMed Central

    Kornuta, Jeffrey A.; Nipper, Matthew E.; Dixon, J. Brandon

    2012-01-01

    The pumping innate to collecting lymphatic vessels routinely exposes the endothelium to oscillatory wall shear stress and other dynamic forces. However, studying the mechanical sensitivity of the lymphatic endothelium remains a difficult task due to limitations of commercial or custom systems to apply a variety of time-varying stresses in vitro. Current biomechanical in vitro testing devices are very expensive, limited in capability, or highly complex; rendering them largely inaccessible to the endothelial cell biology community. To address these short-comings, the authors propose a reliable, low-cost platform for augmenting the capabilities of commercially available pumps to produce a wide variety of flow rate waveforms. In particular, the Arduino Uno, a microcontroller development board, is used to provide open-loop control of a digital peristaltic pump using precisely-timed serial commands. In addition, the flexibility of this platform is further demonstrated through its support of a custom-built cell-straining device capable of producing oscillatory strains with varying amplitudes and frequencies. Hence, this microcontroller development board is shown to be an inexpensive, precise, and easy-to-use tool for supplementing in vitro assays to quantify the effects of biomechanical forces on lymphatic endothelial cells. PMID:23178036

  20. Low-cost microcontroller platform for studying lymphatic biomechanics in vitro.

    PubMed

    Kornuta, Jeffrey A; Nipper, Matthew E; Dixon, J Brandon

    2013-01-04

    The pumping innate to collecting lymphatic vessels routinely exposes the endothelium to oscillatory wall shear stress and other dynamic forces. However, studying the mechanical sensitivity of the lymphatic endothelium remains a difficult task due to limitations of commercial or custom systems to apply a variety of time-varying stresses in vitro. Current biomechanical in vitro testing devices are very expensive, limited in capability, or highly complex; rendering them largely inaccessible to the endothelial cell biology community. To address these shortcomings, the authors propose a reliable, low-cost platform for augmenting the capabilities of commercially available pumps to produce a wide variety of flow rate waveforms. In particular, the Arduino Uno, a microcontroller development board, is used to provide open-loop control of a digital peristaltic pump using precisely timed serial commands. In addition, the flexibility of this platform is further demonstrated through its support of a custom-built cell-straining device capable of producing oscillatory strains with varying amplitudes and frequencies. Hence, this microcontroller development board is shown to be an inexpensive, precise, and easy-to-use tool for supplementing in vitro assays to quantify the effects of biomechanical forces on lymphatic endothelial cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. IMAPS Device Packaging Conference 2017 - Engineered Micro Systems & Devices Track

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta

    2017-01-01

    NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.

  2. Design of intelligent vehicle control system based on single chip microcomputer

    NASA Astrophysics Data System (ADS)

    Zhang, Congwei

    2018-06-01

    The smart car microprocessor uses the KL25ZV128VLK4 in the Freescale series of single-chip microcomputers. The image sampling sensor uses the CMOS digital camera OV7725. The obtained track data is processed by the corresponding algorithm to obtain track sideline information. At the same time, the pulse width modulation control (PWM) is used to control the motor and servo movements, and based on the digital incremental PID algorithm, the motor speed control and servo steering control are realized. In the project design, IAR Embedded Workbench IDE is used as the software development platform to program and debug the micro-control module, camera image processing module, hardware power distribution module, motor drive and servo control module, and then complete the design of the intelligent car control system.

  3. Microcontroller based fibre-optic visual presentation system for multisensory neuroimaging.

    PubMed

    Kurniawan, Veldri; Klemen, Jane; Chambers, Christopher D

    2011-10-30

    Presenting visual stimuli in physical 3D space during fMRI experiments carries significant technical challenges. Certain types of multisensory visuotactile experiments and visuomotor tasks require presentation of visual stimuli in peripersonal space, which cannot be accommodated by ordinary projection screens or binocular goggles. However, light points produced by a group of LEDs can be transmitted through fibre-optic cables and positioned anywhere inside the MRI scanner. Here we describe the design and implementation of a microcontroller-based programmable digital device for controlling fibre-optically transmitted LED lights from a PC. The main feature of this device is the ability to independently control the colour, brightness, and timing of each LED. Moreover, the device was designed in a modular and extensible way, which enables easy adaptation for various experimental paradigms. The device was tested and validated in three fMRI experiments involving basic visual perception, a simple colour discrimination task, and a blocked multisensory visuo-tactile task. The results revealed significant lateralized activation in occipital cortex of all participants, a reliable response in ventral occipital areas to colour stimuli elicited by the device, and strong activations in multisensory brain regions in the multisensory task. Overall, these findings confirm the suitability of this device for presenting complex fibre-optic visual and cross-modal stimuli inside the scanner. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Embedded image processing engine using ARM cortex-M4 based STM32F407 microcontroller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samaiya, Devesh, E-mail: samaiya.devesh@gmail.com

    2014-10-06

    Due to advancement in low cost, easily available, yet powerful hardware and revolution in open source software, urge to make newer, more interactive machines and electronic systems have increased manifold among engineers. To make system more interactive, designers need easy to use sensor systems. Giving the boon of vision to machines was never easy, though it is not impossible these days; it is still not easy and expensive. This work presents a low cost, moderate performance and programmable Image processing engine. This Image processing engine is able to capture real time images, can store the images in the permanent storagemore » and can perform preprogrammed image processing operations on the captured images.« less

  5. Microcontroller - Based System for Electrogastrography Monitoring Through Wireless Transmission

    NASA Astrophysics Data System (ADS)

    Haddab, S.; Laghrouche, M.

    2009-01-01

    Electrogastrography (EGG) is a non-invasive method for recording the electrical activity of the stomach. This paper presents a system designed for monitoring the EGG physiological variables of a patient outside the hospital environment. The signal acquisition is achieved by means of an ambulatory system carried by the patient and connected to him through skin electrodes. The acquired signal is transmitted via the Bluetooth to a mobile phone where the data are stored into the memory and then transferred via the GSM network to the processing and diagnostic unit in the hospital. EGG is usually contaminated by artefacts and other signals, which are sometimes difficult to remove. We have used a neural network method for motion artefacts removal and biological signal separation.

  6. Micro-controller based fall detector to assist recovering patients or senior citizens

    NASA Astrophysics Data System (ADS)

    Páez, Francisco; Asplund, Lars

    2010-09-01

    Senior citizens and patients recovering from surgery or using strong medications with severe side effects tend to fall unexpectedly. The consequences of such an uncontrolled fall could be worse than the original malady, especially when there is no communication with the care-takers. We describe a fall-detector device capable of distinguishing falls from normal daily activities. Based on three-axis accelerometer and advanced data processing, the microcontroller emits an alarm requesting help in the case of a physical fall. We design and construct the fall-detector prototype for either inside or outside use. In order to determine the device performance, fifty instances of each fall event have been evaluated; all of them detected as fall event. In the case of daily activities, the only movement that produces an alarm is the transition from standing up to lying in 5% of the occurrences.

  7. Development of microcontroller based water flow measurement

    NASA Astrophysics Data System (ADS)

    Munir, Muhammad Miftahul; Surachman, Arif; Fathonah, Indra Wahyudin; Billah, Muhammad Aziz; Khairurrijal, Mahfudz, Hernawan; Rimawan, Ririn; Lestari, Slamet

    2015-04-01

    A digital instrument for measuring water flow was developed using an AT89S52 microcontroller, DS1302 real time clock (RTC), and EEPROM for an external memory. The sensor used for probing the current was a propeller that will rotate if immersed in a water flow. After rotating one rotation, the sensor sends one pulse and the number of pulses are counted for a certain time of counting. The measurement data, i.e. the number of pulses per unit time, are converted into water flow velocity (m/s) through a mathematical formula. The microcontroller counts the pulse sent by the sensor and the number of counted pulses are stored into the EEPROM memory. The time interval for counting is provided by the RTC and can be set by the operator. The instrument was tested under various time intervals ranging from 10 to 40 seconds and several standard propellers owned by Experimental Station for Hydraulic Structure and Geotechnics (BHGK), Research Institute for Water Resources (Pusair). Using the same propellers and water flows, it was shown that water flow velocities obtained from the developed digital instrument and those found by the provided analog one are almost similar.

  8. Design of coin sorter counter based on MCU

    NASA Astrophysics Data System (ADS)

    Yang, Yahan; Si, Xu

    2018-04-01

    With unmanned tickets, vending machines promotion, greatly increased the circulation of coins, especially bus companies, the financial sector need to classify a large number of coins every day, inventory, a huge workload. The design of the microcontroller as the control center, combined with the sensor technology and the corresponding mechanical structure to complete the separation of coins and finishing the packaging work and real-time monitoring and display of the type and number of coins function, this article details the system hardware and software design, and The test adjustment shows that the system can achieve the function of separating and sorting coins and monitoring the type and quantity of coins displayed on the coin.

  9. High performance protection circuit for power electronics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tudoran, Cristian D., E-mail: cristian.tudoran@itim-cj.ro; Dădârlat, Dorin N.; Toşa, Nicoleta

    2015-12-23

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as anmore » external, independent protection circuit.« less

  10. Oxygen sensor signal validation for the safety of the rebreather diver.

    PubMed

    Sieber, Arne; L'abbate, Antonio; Bedini, Remo

    2009-03-01

    In electronically controlled, closed-circuit rebreather diving systems, the partial pressure of oxygen inside the breathing loop is controlled with three oxygen sensors, a microcontroller and a solenoid valve - critical components that may fail. State-of-the-art detection of sensor failure, based on a voting algorithm, may fail under circumstances where two or more sensors show the same but incorrect values. The present paper details a novel rebreather controller that offers true sensor-signal validation, thus allowing efficient and reliable detection of sensor failure. The core components of this validation system are two additional solenoids, which allow an injection of oxygen or diluent gas directly across the sensor membrane.

  11. Development of a microcontroller-based automatic control system for the electrohydraulic total artificial heart.

    PubMed

    Kim, H C; Khanwilkar, P S; Bearnson, G B; Olsen, D B

    1997-01-01

    An automatic physiological control system for the actively filled, alternately pumped ventricles of the volumetrically coupled, electrohydraulic total artificial heart (EHTAH) was developed for long-term use. The automatic control system must ensure that the device: 1) maintains a physiological response of cardiac output, 2) compensates for an nonphysiological condition, and 3) is stable, reliable, and operates at a high power efficiency. The developed automatic control system met these requirements both in vitro, in week-long continuous mock circulation tests, and in vivo, in acute open-chested animals (calves). Satisfactory results were also obtained in a series of chronic animal experiments, including 21 days of continuous operation of the fully automatic control mode, and 138 days of operation in a manual mode, in a 159-day calf implant.

  12. Specifics of Pulsed Arc Welding Power Supply Performance Based On A Transistor Switch

    NASA Astrophysics Data System (ADS)

    Krampit, N. Yu; Kust, T. S.; Krampit, M. A.

    2016-08-01

    Specifics of designing a pulsed arc welding power supply device are presented in the paper. Electronic components for managing large current was analyzed. Strengths and shortcomings of power supply circuits based on thyristor, bipolar transistor and MOSFET are outlined. As a base unit for pulsed arc welding was chosen MOSFET transistor, which is easy to manage. Measures to protect a transistor are given. As for the transistor control device is a microcontroller Arduino which has a low cost and adequate performance of the work. Bead transfer principle is to change the voltage on the arc in the formation of beads on the wire end. Microcontroller controls transistor when the arc voltage reaches the threshold voltage. Thus there is a separation and transfer of beads without splashing. Control strategies tested on a real device and presented. The error in the operation of the device is less than 25 us, it can be used controlling drop transfer at high frequencies (up to 1300 Hz).

  13. A low-cost, portable optical sensing system with wireless communication compatible of real-time and remote detection of dissolved ammonia

    NASA Astrophysics Data System (ADS)

    Deng, Shijie; Doherty, William; McAuliffe, Michael AP; Salaj-Kosla, Urszula; Lewis, Liam; Huyet, Guillaume

    2016-06-01

    A low-cost and portable optical chemical sensor based ammonia sensing system that is capable of detecting dissolved ammonia up to 5 ppm is presented. In the system, an optical chemical sensor is designed and fabricated for sensing dissolved ammonia concentrations. The sensor uses eosin as the fluorescence dye which is immobilized on the glass substrate by a gas-permeable protection layer. A compact module is developed to hold the optical components, and a battery powered micro-controller system is designed to read out and process the data measured. The system operates without the requirement of laboratory instruments that makes it cost effective and highly portable. Moreover, the calculated results in the system can be transmitted to a PC wirelessly, which allows the remote and real-time monitoring of dissolved ammonia.

  14. A Distributed Synchronization and Timing System on the EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Luo, Jiarong; Wu, Yichun; Shu, Yantai

    2008-08-01

    A key requirement for the EAST distributed control system (EASTDCS) is time synchronization to an accuracy of <1 mus. In 2006 a Distributed Synchronization and Timing System (DSTS) was set up, which is based on the ATmega128 AVR microcontroller and the Nut/OS embedded Real Time Operating System (RTOS). The DSTS provides the control and the data acquisition systems with reference clocks (0.01 Hz 10 MHz) and delayed trigger times ( 1 mus 4294 s). These are produced by a Core Module Unit (CMU) connected by optical fibres to many Local Synchronized Node Units (LSNU). The fibres provide immunity from electrical noise and are of equal length to match clock and trigger delays between systems. This paper describes the architecture of the DSTS on the EAST tokamak and provides an overview of the characteristics of the main and local units.

  15. Equipping an automated wheelchair with an infrared encoder wheel odometer - biomed 2011.

    PubMed

    Schultz, D; Allen, M; Barrett, S F

    2011-01-01

    Assistive technology is a rapidly growing field that provides a degree of freedom and self-sufficiency to people of limited mobility. Smart wheelchairs are a subset of assistive technology, and are designed to be operated by people who are unable to use a traditional control system. Instead, smart wheelchairs are equipped with a combination of automated functionality and steering mechanisms specialized to meet a person’s individual needs. One feature common to the automated capabilities of smart wheelchairs is the tracking system. The wheelchair’s microcontroller needs to know how far the chair has travelled, its speed, and the rotational direction of its wheels in order to successfully navigate through an environment. The purpose of this research was to develop an odometer to track the motion of a motorized wheelchair. Due to federal regulations that prohibit changing the structure or internal mechanics of a medical device, the odometer had to be designed as a separate, removable part. The final design for the odometer consisted of two infrared sensors that measure edge transitions of a segmented black and white encoder wheel. The sensor output was then run through two comparator op amps and a high pass filter to produce a clean, crisp square wave signal output. The signal was then fed to an Atmel ATmega164P microcontroller. The microcontroller was programmed to compare the sensor signal with its internal clock, sense edge transitions, and thereby extrapolate the speed, travelled distance, and rotational direction of the wheelchair.

  16. Double-differential recording and AGC using microcontrolled variable gain ASIC.

    PubMed

    Rieger, Robert; Deng, Shin-Liang

    2013-01-01

    Low-power wearable recording of biopotentials requires acquisition front-ends with high common-mode rejection for interference suppression and adjustable gain to provide an optimum signal range to a cascading analogue-to-digital stage. A microcontroller operated double-differential (DD) recording setup and automatic gain control circuit (AGC) are discussed which reject common-mode interference and provide tunable gain, thus compensating for imbalance and variation in electrode interface impedance. Custom-designed variable gain amplifiers (ASIC) are used as part of the recording setup. The circuit gain and balance is set by the timing of microcontroller generated clock signals. Measured results are presented which confirm that improved common-mode rejection is achieved compared to a single differential amplifier in the presence of input network imbalance. Practical measured examples further validate gain control suitable for biopotential recording and power-line rejection for wearable ECG and EMG recording. The prototype front-end consumes 318 μW including amplifiers and microcontroller.

  17. Arduino based radiation survey meter

    NASA Astrophysics Data System (ADS)

    Rahman, Nur Aira Abd; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Muzakkir, Amir; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee

    2016-01-01

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr-1). Conversion factor (CF) value for conversion of CPM to μSvhr-1 determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr.

  18. Long-range wireless mesh network for weather monitoring in unfriendly geographic conditions.

    PubMed

    Toledano-Ayala, Manuel; Herrera-Ruiz, Gilberto; Soto-Zarazúa, Genaro M; Rivas-Araiza, Edgar A; Bazán Trujillo, Rey D; Porrás-Trejo, Rafael E

    2011-01-01

    In this paper a long-range wireless mesh network system is presented. It consists of three main parts: Remote Terminal Units (RTUs), Base Terminal Units (BTUs) and a Central Server (CS). The RTUs share a wireless network transmitting in the industrial, scientific and medical applications ISM band, which reaches up to 64 Km in a single point-to-point communication. A BTU controls the traffic within the network and has as its main task interconnecting it to a Ku-band satellite link using an embedded microcontroller-based gateway. Collected data is stored in a CS and presented to the final user in a numerical and a graphical form in a web portal.

  19. Characterization of the supersonic flowing microwave discharge using two dimensional plasma tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolic, M.; Samolov, A.; Popovic, S.

    2013-03-14

    A tomographic numerical method based on the two-dimensional Radon formula for a cylindrical cavity has been employed for obtaining spatial distributions of the argon excited levels. The spectroscopy measurements were taken at different positions and directions to observe populations of excited species in the plasmoid region and the corresponding excitation temperatures. Excited argon states are concentrated near the tube walls, thus, confirming the assumption that the post discharge plasma is dominantly sustained by travelling surface wave. An automated optical measurement system has been developed for reconstruction of local plasma parameters of the plasmoid structure formed in an argon supersonic flowingmore » microwave discharge. The system carries out angle and distance measurements using a rotating, flat mirror, as well as two high precision stepper motors operated by a microcontroller-based system and several sensors for precise feedback control.« less

  20. An embedded measurement system for the electrical characterization of EGFET as a pH sensor

    NASA Astrophysics Data System (ADS)

    Diniz Batista, Pablo

    2014-02-01

    This work presents the development of an electronic system for the electrical characterization of pH sensors based on the extended gate field effect transistor (EGFET). We designed an electronic circuit with a microcontroller (PIC15F14K50) as the main component in order to provide two programmable output voltages as well as circuits to measure electric current and voltages. The instrument performance analysis was carried out using a glass electrode as a sensitive membrane for investigating the EGFET operation as a pH sensor. The results show that the system is an alternative to the commercial equipment for the electrical characterization of sensors based on field effect devices. In addition, some of the key features expected of this electronic module are: low cost, flexibility, portability and communication with a personal computer using a USB port.

  1. ATAMM enhancement and multiprocessing performance evaluation

    NASA Technical Reports Server (NTRS)

    Stoughton, John W.

    1994-01-01

    The algorithm to architecture mapping model (ATAAM) is a Petri net based model which provides a strategy for periodic execution of a class of real-time algorithms on multicomputer dataflow architecture. The execution of large-grained, decision-free algorithms on homogeneous processing elements is studied. The ATAAM provides an analytical basis for calculating performance bounds on throughput characteristics. Extension of the ATAMM as a strategy for cyclo-static scheduling provides for a truly distributed ATAMM multicomputer operating system. An ATAAM testbed consisting of a centralized graph manager and three processors is described using embedded firmware on 68HC11 microcontrollers.

  2. A Reward-Based Behavioral Platform to Measure Neural Activity during Head-Fixed Behavior.

    PubMed

    Micallef, Andrew H; Takahashi, Naoya; Larkum, Matthew E; Palmer, Lucy M

    2017-01-01

    Understanding the neural computations that contribute to behavior requires recording from neurons while an animal is behaving. This is not an easy task as most subcellular recording techniques require absolute head stability. The Go/No-Go sensory task is a powerful decision-driven task that enables an animal to report a binary decision during head-fixation. Here we discuss how to set up an Ardunio and Python based platform system to control a Go/No-Go sensory behavior paradigm. Using an Arduino micro-controller and Python-based custom written program, a reward can be delivered to the animal depending on the decision reported. We discuss the various components required to build the behavioral apparatus that can control and report such a sensory stimulus paradigm. This system enables the end user to control the behavioral testing in real-time and therefore it provides a strong custom-made platform for probing the neural basis of behavior.

  3. Walking robot: A design project for undergraduate students

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objective of the University of Maryland walking robot project was to design, analyze, assemble, and test an intelligent, mobile, and terrain-adaptive system. The robot incorporates existing technologies in novel ways. The legs emulate the walking path of a human by an innovative modification of a crank-and-rocker mechanism. The body consists of two tripod frames connected by a turning mechanism. The two sets of three legs are mounted so as to allow the robot to walk with stability in its own footsteps. The computer uses a modular hardware design and distributed processing. Dual-port RAM is used to allow communication between a supervisory personal computer and seven microcontrollers. The microcontrollers provide low-level control for the motors and relieve the processing burden on the PC.

  4. InstrumentationPod (IPOD) User Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Robert F.

    2014-06-12

    This document describes the Instrumentation Pod (IPOD) and its operation and use. The IPOD is a low-power detector system comprising a 3He tube with preamp for neutron detection, a microcontroller-based data acquisition system, a GPS receiver for locationdetermination and time-synchronization, and power filtering and protection. The IPOD is intended to be bolted to the top of Dual-Use Casks stored at Baikal-1 in Kazakhstan in order to maintain continuity of knowledge of the materials stored within the cask. The data acquisition system receives pulses from the neutron-detection preamp, combines this information with other sensor data, and stores the result on twomore » SD cards that are part of the data acquisition system. Firmware in the data acquisition system controls collection and storing of the data and enables configuration of the acquisition parameters.« less

  5. DTMF-based pH-COP system

    NASA Astrophysics Data System (ADS)

    Shakila, Mohammed Fabin; Miriyala Premnath, Pravesh

    2011-12-01

    Short span notifications or acknowledgment of events plays a major criterion in our world. Henceforth this module can be rigged up with any system in order to control the activity and acknowledge the user at any preconfigured parameter. Approximated that toxic chemicals are mixed every 14.7 seconds Over 2 million Aquatic Creatures are affected every year. About 65% of reported water pollution resulted from Tanneries and Chemical factories. The pH-COP bestows the solution for these catastrophic events. This module being robust can be attached to any system viz. Voltage monitor, Security system, Fluid level/ pressure controller, pH sensor cum controller, etc. The pH-COP primarily comprises of a microcontroller and a DTMF transceiver. This control systems which is efficient enough to be interfaced with the TELE-ALERT MODULE or the pH-COP.

  6. Microcontroller for automation application

    NASA Technical Reports Server (NTRS)

    Cooper, H. W.

    1975-01-01

    The description of a microcontroller currently being developed for automation application was given. It is basically an 8-bit microcomputer with a 40K byte random access memory/read only memory, and can control a maximum of 12 devices through standard 15-line interface ports.

  7. Development of a low-frequency physiotherapeutic device for diabetes manipulated by microcontroller.

    PubMed

    Guo, Jin-Song; Gong, Jian

    2001-01-01

    OBJECTIVE: To develop a physiotherapeutic device for diabetes that generates special low-frequency waveform manipulated by a microcontroller. METHODS: A microcontoller and a digital-to-analog converter were utilized along with a keyboard and LED display circuit, to generate desired low-frequecy waveform with the assistance of a software. RESULTS: The complex waveform generated by this device met the demands for diabetes physiotherapy, and the frequency and amplitude could be freely adjusted. CONCLUSIONS: The utilization of a digital-to-analog converter controlled by a microcontroller can very well serve the purpose of a low-frequency physiotherapy for diabetes.

  8. High speed, high performance, portable, dual-channel, optical fiber Bragg grating (FBG) demodulator

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Wei, Zhanxiong; Fan, Lingling; Wang, Pengfei; Zhao, Xilin; Wang, Zhenhua; Yang, Shangming; Cui, Hong-Liang

    2009-10-01

    A high speed, high performance, portable, dual-channel, optical Fiber Bragg Grating demodulator based on fiber Fabry- Pérot tunable filter (FFP-FT) is reported in this paper. The high speed demodulation can be achieved to detect the dynamical loads of vehicles with speed of 15 mph. However, the drifts of piezoelectric transducer (PZT) in the cavity of FFP-FT dramatically degrade the stability of system. Two schemes are implemented to improve the stability of system. Firstly, a temperature control system is installed to effectively remove the thermal drifts of PZT. Secondly, a scheme of changing the bias voltage of FFP-FT to restrain non-thermal drifts has been realized at lab and will be further developed to an automatic control system based on microcontroller. Although this demodulator is originally used in Weight-In- Motion (WIM) sensing system, it can be extended into other aspects and the schemes presented in this paper will be useful in many applications.

  9. Develop Direct Geo-referencing System Based on Open Source Software and Hardware Platform

    NASA Astrophysics Data System (ADS)

    Liu, H. S.; Liao, H. M.

    2015-08-01

    Direct geo-referencing system uses the technology of remote sensing to quickly grasp images, GPS tracks, and camera position. These data allows the construction of large volumes of images with geographic coordinates. So that users can be measured directly on the images. In order to properly calculate positioning, all the sensor signals must be synchronized. Traditional aerial photography use Position and Orientation System (POS) to integrate image, coordinates and camera position. However, it is very expensive. And users could not use the result immediately because the position information does not embed into image. To considerations of economy and efficiency, this study aims to develop a direct geo-referencing system based on open source software and hardware platform. After using Arduino microcontroller board to integrate the signals, we then can calculate positioning with open source software OpenCV. In the end, we use open source panorama browser, panini, and integrate all these to open source GIS software, Quantum GIS. A wholesome collection of data - a data processing system could be constructed.

  10. Autonomous caregiver following robotic wheelchair

    NASA Astrophysics Data System (ADS)

    Ratnam, E. Venkata; Sivaramalingam, Sethurajan; Vignesh, A. Sri; Vasanth, Elanthendral; Joans, S. Mary

    2011-12-01

    In the last decade, a variety of robotic/intelligent wheelchairs have been proposed to meet the need in aging society. Their main research topics are autonomous functions such as moving toward some goals while avoiding obstacles, or user-friendly interfaces. Although it is desirable for wheelchair users to go out alone, caregivers often accompany them. Therefore we have to consider not only autonomous functions and user interfaces but also how to reduce caregivers' load and support their activities in a communication aspect. From this point of view, we have proposed a robotic wheelchair moving with a caregiver side by side based on the MATLAB process. In this project we discussing about robotic wheel chair to follow a caregiver by using a microcontroller, Ultrasonic sensor, keypad, Motor drivers to operate robot. Using camera interfaced with the DM6437 (Davinci Code Processor) image is captured. The captured image are then processed by using image processing technique, the processed image are then converted into voltage levels through MAX 232 level converter and given it to the microcontroller unit serially and ultrasonic sensor to detect the obstacle in front of robot. In this robot we have mode selection switch Automatic and Manual control of robot, we use ultrasonic sensor in automatic mode to find obstacle, in Manual mode to use the keypad to operate wheel chair. In the microcontroller unit, c language coding is predefined, according to this coding the robot which connected to it was controlled. Robot which has several motors is activated by using the motor drivers. Motor drivers are nothing but a switch which ON/OFF the motor according to the control given by the microcontroller unit.

  11. Instrumentino: An Open-Source Software for Scientific Instruments.

    PubMed

    Koenka, Israel Joel; Sáiz, Jorge; Hauser, Peter C

    2015-01-01

    Scientists often need to build dedicated computer-controlled experimental systems. For this purpose, it is becoming common to employ open-source microcontroller platforms, such as the Arduino. These boards and associated integrated software development environments provide affordable yet powerful solutions for the implementation of hardware control of transducers and acquisition of signals from detectors and sensors. It is, however, a challenge to write programs that allow interactive use of such arrangements from a personal computer. This task is particularly complex if some of the included hardware components are connected directly to the computer and not via the microcontroller. A graphical user interface framework, Instrumentino, was therefore developed to allow the creation of control programs for complex systems with minimal programming effort. By writing a single code file, a powerful custom user interface is generated, which enables the automatic running of elaborate operation sequences and observation of acquired experimental data in real time. The framework, which is written in Python, allows extension by users, and is made available as an open source project.

  12. Utilization of sonar technology and microcontroller towards reducing aviation hazards during ground handling of aircraft

    NASA Astrophysics Data System (ADS)

    Khanam, Mosammat Samia; Biswas, Debasish; Rashid, Mohsina; Salam, Md Abdus

    2017-12-01

    Safety is one of the most important factors in the field of aviation. Though, modern aircraft are equipped with many instruments/devices to enhance the flight safety but it is seen that accidents/incidents are never reduced to zero. Analysis of the statistical summary of Commercial Jet Airplane accidents highlights that fatal accidents that occurred worldwide from 2006 through 2015 is 11% during taxing, loading/unloading, parking and towing. Human, handling the aircrafts is one of the most important links in aircraft maintenance and hence play a significant role in aviation safety. Effort has been made in this paper to obviate human error in aviation and outline an affordable system that monitors the uneven surface &obstacles for safe "towing in" and "towing out" of an aircraft by the ground crew. The system revolves around implementation of sonar technology by microcontroller. Ultrasonic sensors can be installed on aircraft wings and tail section to identify the uneven surface &obstacles ahead and provide early warning to the maintenance ground crews.

  13. Bioinspired decision architectures containing host and microbiome processing units.

    PubMed

    Heyde, K C; Gallagher, P W; Ruder, W C

    2016-09-27

    Biomimetic robots have been used to explore and explain natural phenomena ranging from the coordination of ants to the locomotion of lizards. Here, we developed a series of decision architectures inspired by the information exchange between a host organism and its microbiome. We first modeled the biochemical exchanges of a population of synthetically engineered E. coli. We then built a physical, differential drive robot that contained an integrated, onboard computer vision system. A relay was established between the simulated population of cells and the robot's microcontroller. By placing the robot within a target-containing a two-dimensional arena, we explored how different aspects of the simulated cells and the robot's microcontroller could be integrated to form hybrid decision architectures. We found that distinct decision architectures allow for us to develop models of computation with specific strengths such as runtime efficiency or minimal memory allocation. Taken together, our hybrid decision architectures provide a new strategy for developing bioinspired control systems that integrate both living and nonliving components.

  14. A High-Throughput Processor for Flight Control Research Using Small UAVs

    NASA Technical Reports Server (NTRS)

    Klenke, Robert H.; Sleeman, W. C., IV; Motter, Mark A.

    2006-01-01

    There are numerous autopilot systems that are commercially available for small (<100 lbs) UAVs. However, they all share several key disadvantages for conducting aerodynamic research, chief amongst which is the fact that most utilize older, slower, 8- or 16-bit microcontroller technologies. This paper describes the development and testing of a flight control system (FCS) for small UAV s based on a modern, high throughput, embedded processor. In addition, this FCS platform contains user-configurable hardware resources in the form of a Field Programmable Gate Array (FPGA) that can be used to implement custom, application-specific hardware. This hardware can be used to off-load routine tasks such as sensor data collection, from the FCS processor thereby further increasing the computational throughput of the system.

  15. Adjustment method for embedded metrology engine in an EM773 series microcontroller.

    PubMed

    Blazinšek, Iztok; Kotnik, Bojan; Chowdhury, Amor; Kačič, Zdravko

    2015-09-01

    This paper presents the problems of implementation and adjustment (calibration) of a metrology engine embedded in NXP's EM773 series microcontroller. The metrology engine is used in a smart metering application to collect data about energy utilization and is controlled with the use of metrology engine adjustment (calibration) parameters. The aim of this research is to develop a method which would enable the operators to find and verify the optimum parameters which would ensure the best possible accuracy. Properly adjusted (calibrated) metrology engines can then be used as a base for variety of products used in smart and intelligent environments. This paper focuses on the problems encountered in the development, partial automatisation, implementation and verification of this method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. An Arduino-Controlled Photogate

    NASA Astrophysics Data System (ADS)

    Galeriu, Calin

    2013-03-01

    It is hard to imagine teaching physics without doing experimental measurements of position as a function of time. These measurements, needed for the determination of velocity and acceleration, are most easily performed with the help of photogates.1,2 Unfortunately, commercial photogates are rather expensive. Many require the purchase of an additional matching timer or other electronic device. Sometimes special software is also needed. The total bill can easily become prohibitive. For this reason physics teachers have shown considerable interest for cheaper, in-house designed and manufactured photogates.3-6 The photogate systems described in the literature have their limitations. Some rely on a digital stopwatch and therefore cannot measure time with a precision higher than 0.01 seconds. Some use photoresistors that have a slower response than phototransistors. Some are based on the computer microphone port and therefore cannot handle more than two photogates (two audio channels) at the same time. Extracting the time information from an audio file can also be a challenge for some students. We describe here a photogate system that matches the performance of a commercial one but at a fraction of the cost. The key to this success is the use of an Arduino microcontroller for data collection. The Arduino platform, initially developed for electronics and robotics educational projects, has recently been incorporated in physics labs.7 The Arduino microcontroller, because of its low cost and because it provides a broad exposure to electronics and computer programming, is an ideal tool for integrated STEM projects.

  17. Illumination-compensated non-contact imaging photoplethysmography via dual-mode temporally coded illumination

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Scharfenberger, Christian; Wong, Alexander; Clausi, David A.

    2015-03-01

    Non-contact camera-based imaging photoplethysmography (iPPG) is useful for measuring heart rate in conditions where contact devices are problematic due to issues such as mobility, comfort, and sanitation. Existing iPPG methods analyse the light-tissue interaction of either active or passive (ambient) illumination. Many active iPPG methods assume the incident ambient light is negligible to the active illumination, resulting in high power requirements, while many passive iPPG methods assume near-constant ambient conditions. These assumptions can only be achieved in environments with controlled illumination and thus constrain the use of such devices. To increase the number of possible applications of iPPG devices, we propose a dual-mode active iPPG system that is robust to changes in ambient illumination variations. Our system uses a temporally-coded illumination sequence that is synchronized with the camera to measure both active and ambient illumination interaction for determining heart rate. By subtracting the ambient contribution, the remaining illumination data can be attributed to the controlled illuminant. Our device comprises a camera and an LED illuminant controlled by a microcontroller. The microcontroller drives the temporal code via synchronizing the frame captures and illumination time at the hardware level. By simulating changes in ambient light conditions, experimental results show our device is able to assess heart rate accurately in challenging lighting conditions. By varying the temporal code, we demonstrate the trade-off between camera frame rate and ambient light compensation for optimal blood pulse detection.

  18. A device for emulating cuff recordings of action potentials propagating along peripheral nerves.

    PubMed

    Rieger, Robert; Schuettler, Martin; Chuang, Sheng-Chih

    2014-09-01

    This paper describes a device that emulates propagation of action potentials along a peripheral nerve, suitable for reproducible testing of bio-potential recording systems using nerve cuff electrodes. The system is a microcontroller-based stand-alone instrument which uses established nerve and electrode models to represent neural activity of real nerves recorded with a nerve cuff interface, taking into consideration electrode impedance, voltages picked up by the electrodes, and action potential propagation characteristics. The system emulates different scenarios including compound action potentials with selectable propagation velocities and naturally occurring nerve traffic from different velocity fiber populations. Measured results from a prototype implementation are reported and compared with in vitro recordings from Xenopus Laevis frog sciatic nerve, demonstrating that the electrophysiological setting is represented to a satisfactory degree, useful for the development, optimization and characterization of future recording systems.

  19. An optically coupled system for quantitative monitoring of MRI gradient currents induced into endocardial leads.

    PubMed

    Mattei, E; Calcagnini, G; Triventi, M; Delogu, A; Del Guercio, M; Angeloni, A; Bartolini, P

    2013-01-01

    The time-varying gradient fields generated during Magnetic Resonance Imaging (MRI) procedures have the potential to induce electrical current on implanted endocardial leads. Whether this current can result in undesired cardiac stimulation is unknown. This paper presents an optically coupled system with the potential to quantitatively measure the currents induced by the gradient fields into endocardial leads during MRI procedures. Our system is based on a microcontroller that works as analog-to-digital (A/D) converter and sends the current signal acquired from the lead to an optical high-speed light-emitting-diode transmitter. Plastic fiber guides the light outside the MRI chamber, to a photodiode receiver and then to an acquisition board connected to a PC. The preliminary characterization of the performances of the system is also presented.

  20. Arduino Based Infant Monitoring System

    NASA Astrophysics Data System (ADS)

    Farhanah Mohamad Ishak, Daing Noor; Jamil, Muhammad Mahadi Abdul; Ambar, Radzi

    2017-08-01

    This paper proposes a system for monitoring infant in an incubator and records the relevant data into a computer. The data recorded by the system can be further referred by the neonatal intensive care unit (NICU) personnel for diagnostic or research purposes. The study focuses on designing the monitoring system that consists of an incubator equipped with humidity sensor to measure the humidity level, and a pulse sensor that can be attached on an infant placed inside the incubator to monitor infant’s heart pulse. The measurement results which are the pulse rate and humidity level are sent to the PC via Arduino microcontroller. The advantage of this system will be that in the future, it may also enable doctors to closely monitor the infant condition through local area network and internet. This work is aimed as an example of an application that contributes towards remote tele-health monitoring system.

  1. A Real Time Controller For Applications In Smart Structures

    NASA Astrophysics Data System (ADS)

    Ahrens, Christian P.; Claus, Richard O.

    1990-02-01

    Research in smart structures, especially the area of vibration suppression, has warranted the investigation of advanced computing environments. Real time PC computing power has limited development of high order control algorithms. This paper presents a simple Real Time Embedded Control System (RTECS) in an application of Intelligent Structure Monitoring by way of modal domain sensing for vibration control. It is compared to a PC AT based system for overall functionality and speed. The system employs a novel Reduced Instruction Set Computer (RISC) microcontroller capable of 15 million instructions per second (MIPS) continuous performance and burst rates of 40 MIPS. Advanced Complimentary Metal Oxide Semiconductor (CMOS) circuits are integrated on a single 100 mm by 160 mm printed circuit board requiring only 1 Watt of power. An operating system written in Forth provides high speed operation and short development cycles. The system allows for implementation of Input/Output (I/O) intensive algorithms and provides capability for advanced system development.

  2. Autonomous Mobile Platform for Research in Cooperative Robotics

    NASA Technical Reports Server (NTRS)

    Daemi, Ali; Pena, Edward; Ferguson, Paul

    1998-01-01

    This paper describes the design and development of a platform for research in cooperative mobile robotics. The structure and mechanics of the vehicles are based on R/C cars. The vehicle is rendered mobile by a DC motor and servo motor. The perception of the robot's environment is achieved using IR sensors and a central vision system. A laptop computer processes images from a CCD camera located above the testing area to determine the position of objects in sight. This information is sent to each robot via RF modem. Each robot is operated by a Motorola 68HC11E micro-controller, and all actions of the robots are realized through the connections of IR sensors, modem, and motors. The intelligent behavior of each robot is based on a hierarchical fuzzy-rule based approach.

  3. Self-Powered WSN for Distributed Data Center Monitoring

    PubMed Central

    Brunelli, Davide; Passerone, Roberto; Rizzon, Luca; Rossi, Maurizio; Sartori, Davide

    2016-01-01

    Monitoring environmental parameters in data centers is gathering nowadays increasing attention from industry, due to the need of high energy efficiency of cloud services. We present the design and the characterization of an energy neutral embedded wireless system, prototyped to monitor perpetually environmental parameters in servers and racks. It is powered by an energy harvesting module based on Thermoelectric Generators, which converts the heat dissipation from the servers. Starting from the empirical characterization of the energy harvester, we present a power conditioning circuit optimized for the specific application. The whole system has been enhanced with several sensors. An ultra-low-power micro-controller stacked over the energy harvesting provides an efficient power management. Performance have been assessed and compared with the analytical model for validation. PMID:26729135

  4. Self-Powered WSN for Distributed Data Center Monitoring.

    PubMed

    Brunelli, Davide; Passerone, Roberto; Rizzon, Luca; Rossi, Maurizio; Sartori, Davide

    2016-01-02

    Monitoring environmental parameters in data centers is gathering nowadays increasing attention from industry, due to the need of high energy efficiency of cloud services. We present the design and the characterization of an energy neutral embedded wireless system, prototyped to monitor perpetually environmental parameters in servers and racks. It is powered by an energy harvesting module based on Thermoelectric Generators, which converts the heat dissipation from the servers. Starting from the empirical characterization of the energy harvester, we present a power conditioning circuit optimized for the specific application. The whole system has been enhanced with several sensors. An ultra-low-power micro-controller stacked over the energy harvesting provides an efficient power management. Performance have been assessed and compared with the analytical model for validation.

  5. Research of pulse signal processing based on sleep-monitoring alarm system

    NASA Astrophysics Data System (ADS)

    Zhang, Kaisheng; Zeng, Yuan

    2009-07-01

    From pulse diagnosis of Chinese herbalist doctor to the research of cardiovascular system by modem iatrology,they all have showed and proved that human pulse has a good affinity with diseases,especially cardiovascular diseases. Human pulse contains much physical information, and it will be propitious to know the human healthy state early so as to get therapy and recovery early when pulse signal is often detected and analyzed. study how to use the embedded microcontroller to transmit physiological signal from human to personal computer by infrared communication, and the normal sphygmic parameter in one's sleeping is compared with the one measured in order to judge whether one's sleeping condition is normal, finally ascertain the best control plan.

  6. Embedded programmable blood pressure monitoring system

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Mahmud-Ul; Islam, Md. Kafiul; Shawon, Mehedi Azad; Nowrin, Tasnuva Faruk

    2010-02-01

    A more efficient newer algorithm of detecting systolic and diastolic pressure of human body along with a complete package of an effective user-friendly embedded programmable blood pressure monitoring system has been proposed in this paper to reduce the overall workload of medical personals as well as to monitor patient's condition more conveniently and accurately. Available devices for measuring blood pressure have some problems and limitations in case of both analog and digital devices. The sphygmomanometer, being analog device, is still being used widely because of its reliability and accuracy over digital ones. But it requires a skilled person to measure the blood pressure and obviously not being automated as well as time consuming. Our proposed system being a microcontroller based embedded system has the advantages of the available digital blood pressure machines along with a much improved form and has higher accuracy at the same time. This system can also be interfaced with computer through serial port/USB to publish the measured blood pressure data on the LAN or internet. The device can be programmed to determine the patient's blood pressure after each certain interval of time in a graphical form. To sense the pressure of human body, a pressure to voltage transducer is used along with a cuff in our system. During the blood pressure measurement cycle, the output voltage of the transducer is taken by the built-in ADC of microcontroller after an amplifier stage. The recorded data are then processed and analyzed using the effective software routine to determine the blood pressure of the person under test. Our proposed system is thus expected to certainly enhance the existing blood pressure monitoring system by providing accuracy, time efficiency, user-friendliness and at last but not the least the 'better way of monitoring patient's blood pressure under critical care' all together at the same time.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dmitriev, Alexander S.; Yemelyanov, Ruslan Yu.; Moscow Institute of Physics and Technology

    The paper deals with a new multi-element processor platform assigned for modelling the behaviour of interacting dynamical systems, i.e., active wireless network. Experimentally, this ensemble is implemented in an active network, the active nodes of which include direct chaotic transceivers and special actuator boards containing microcontrollers for modelling the dynamical systems and an information display unit (colored LEDs). The modelling technique and experimental results are described and analyzed.

  8. Implementation of high-resolution time-to-digital converter in 8-bit microcontrollers.

    PubMed

    Bengtsson, Lars E

    2012-04-01

    This paper will demonstrate how a time-to-digital converter (TDC) with sub-nanosecond resolution can be implemented into an 8-bit microcontroller using so called "direct" methods. This means that a TDC is created using only five bidirectional digital input-output-pins of a microcontroller and a few passive components (two resistors, a capacitor, and a diode). We will demonstrate how a TDC for the range 1-10 μs is implemented with 0.17 ns resolution. This work will also show how to linearize the output by combining look-up tables and interpolation. © 2012 American Institute of Physics

  9. Design of remote car anti-theft system based on ZigBee

    NASA Astrophysics Data System (ADS)

    Fang, Hong; Yan, GangFeng; Li, Hong Lian

    2015-12-01

    A set of remote car anti-theft system based on ZigBee and GPRS with ARM11 built-in chip S3C6410 as the controller is designed. This system can detect the alarm information of the car with vibration sensor, pyroelectric sensor and infrared sensor. When the sensor detects any alarm signal, the ZigBee node in sleep will be awakened and then directly send the alarm signal to the microcontroller chip S3C6410 in the control room of the parking lot through ZigBee wireless transceiver module. After S3C6410 processes and analyzes the alarm signal, when any two sensors of the three collect the alarm signal, the LCD will display and generate an alarm and meanwhile it will send the alarm signal to the phone of the user in a wireless manner through the form of short message through GPRS module. Thus, the wireless remote monitoring of the system is realized.

  10. A new acquisition and imaging system for environmental measurements: an experience on the Italian cultural heritage.

    PubMed

    Leccese, Fabio; Cagnetti, Marco; Calogero, Andrea; Trinca, Daniele; di Pasquale, Stefano; Giarnetti, Sabino; Cozzella, Lorenzo

    2014-05-23

    A new acquisition system for remote control of wall paintings has been realized and tested in the field. The system measures temperature and atmospheric pressure in an archeological site where a fresco has been put under control. The measuring chain has been designed to be used in unfavorable environments where neither electric power nor telecommunication infrastructures are available. The environmental parameters obtained from the local monitoring are then transferred remotely allowing an easier management by experts in the field of conservation of cultural heritage. The local acquisition system uses an electronic card based on microcontrollers and sends the data to a central unit realized with a Raspberry-Pi. The latter manages a high quality camera to pick up pictures of the fresco. Finally, to realize the remote control at a site not reached by internet signals, a WiMAX connection based on different communication technologies such as WiMAX, Ethernet, GPRS and Satellite, has been set up.

  11. A New Acquisition and Imaging System for Environmental Measurements: An Experience on the Italian Cultural Heritage

    PubMed Central

    Leccese, Fabio; Cagnetti, Marco; Calogero, Andrea; Trinca, Daniele; di Pasquale, Stefano; Giarnetti, Sabino; Cozzella, Lorenzo

    2014-01-01

    A new acquisition system for remote control of wall paintings has been realized and tested in the field. The system measures temperature and atmospheric pressure in an archeological site where a fresco has been put under control. The measuring chain has been designed to be used in unfavorable environments where neither electric power nor telecommunication infrastructures are available. The environmental parameters obtained from the local monitoring are then transferred remotely allowing an easier management by experts in the field of conservation of cultural heritage. The local acquisition system uses an electronic card based on microcontrollers and sends the data to a central unit realized with a Raspberry-Pi. The latter manages a high quality camera to pick up pictures of the fresco. Finally, to realize the remote control at a site not reached by internet signals, a WiMAX connection based on different communication technologies such as WiMAX, Ethernet, GPRS and Satellite, has been set up. PMID:24859030

  12. The Microcontroller: A Paradigm for a Robot Building Block

    ERIC Educational Resources Information Center

    Hammons, John; Deal, Walter F., III

    2013-01-01

    Microcontrollers are used extensively in transportation and communications technologies, in automobiles to monitor and control engine speed and performance so as to maximize fuel economy and efficiency, and by manufacturing industries to produce "smart" technology. The flexibility, imagination, and spirit that make these tiny devices so…

  13. The Tracking Resonance Frequency Method for Photoacoustic Measurements Based on the Phase Response

    NASA Astrophysics Data System (ADS)

    Suchenek, Mariusz

    2017-04-01

    One of the major issues in the use of the resonant photoacoustic cell is the resonance frequency of the cell. The frequency is not stable, and its changes depend mostly on temperature and gas mixture. This paper presents a new method for tracking resonance frequency, where both the amplitude and phase are calculated from the input samples. The stimulating frequency can be adjusted to the resonance frequency of the cell based on the phase. This method was implemented using a digital measurement system with an analog to digital converter, field programmable gate array (FPGA) and a microcontroller. The resonance frequency was changed by the injection of carbon dioxide into the cell. A theoretical description and experimental results are also presented.

  14. Versatile single-chip event sequencer for atomic physics experiments

    NASA Astrophysics Data System (ADS)

    Eyler, Edward

    2010-03-01

    A very inexpensive dsPIC microcontroller with internal 32-bit counters is used to produce a flexible timing signal generator with up to 16 TTL-compatible digital outputs, with a time resolution and accuracy of 50 ns. This time resolution is easily sufficient for event sequencing in typical experiments involving cold atoms or laser spectroscopy. This single-chip device is capable of triggered operation and can also function as a sweeping delay generator. With one additional chip it can also concurrently produce accurately timed analog ramps, and another one-chip addition allows real-time control from an external computer. Compared to an FPGA-based digital pattern generator, this design is slower but simpler and more flexible, and it can be reprogrammed using ordinary `C' code without special knowledge. I will also describe the use of the same microcontroller with additional hardware to implement a digital lock-in amplifier and PID controller for laser locking, including a simple graphics-based control unit. This work is supported in part by the NSF.

  15. Handheld colorimeter for determination of heavy metal concentrations

    NASA Astrophysics Data System (ADS)

    López Ruiz, N.; Ariza, M.; Martínez Olmos, A.; Vukovic, J.; Palma, A. J.; Capitan-Vallvey, L. F.

    2011-08-01

    A portable instrument that measures heavy metal concentration from a colorimetric sensor array is presented. The use of eight sensing membranes, placed on a plastic support, allows to obtain the hue component of the HSV colour space of each one in order to determinate the concentration of metals present in a solution. The developed microcontroller-based system captures, in an ambient light environment, an image of the sensor array using an integrated micro-camera and shows the picture in a touch micro-LCD screen which acts as user interface. After image-processing of the regions of interest selected by the user, colour and concentration information are displayed on the screen.

  16. Control device for automatic orientation of a solar panel based on a microcontroller (PIC16f628a)

    NASA Astrophysics Data System (ADS)

    Rezoug, M. R.; Krama, A.

    2016-07-01

    This work proposes a control device for autonomous solar tracker based on one axis, It consists of two main parts; the control part which is based on "the PIC16f628a"; it has the role of controlling, measuring and plotting responses. The second part is a mechanical device, which has the role of making the solar panel follows the day-night change of the sun throughout the year. Both parties are established to improve energy generation of the photovoltaic panels. In this paper, we will explain the main operating principles of our system. Also, we will provide experimental results which demonstrate the good performance and the efficiency of this system. This innovation is different from what has been proposed in previous studies. The important points of this system are maximum output energy and minimum energy consumption of solar tracker, its cost is relatively low with simplicity in implementation. The average power increase produced by using the tracking system for a particular day, is over 30 % compared with the static panel.

  17. The CAN Microcluster: Parallel Processing over the Controller Area Network

    ERIC Educational Resources Information Center

    Kuban, Paul A.; Ragade, Rammohan K.

    2005-01-01

    Most electrical engineering and computer science undergraduate programs include at least one course on microcontrollers and assembly language programming. Some departments offer legacy courses in C programming, but few include C programming from an embedded systems perspective, where it is still regularly used. Distributed computing and parallel…

  18. Nanoporous-Gold-Based Hybrid Cantilevered Actuator Dealloyed and Driven by A Modified Rotary Triboelectric Nanogenerator

    PubMed Central

    Li, Xuequan; Liu, Mengmeng; Huang, Baisheng; Liu, Hong; Hu, Weiguo; Shao, Li-Hua; Wang, Zhong Lin

    2016-01-01

    We firstly designed an electrochemical system for dealloying to synthesize nanoporous gold (NPG) and also driving the novel NPG based actuator by utilizing a modified rotary triboelectric nanogenerator (TENG). Compared to the previous reported TENG whose outputs decline due to temperature rising resulting from electrodes friction, the modified TENG with a cooling system has stable output current and voltage increased by 14% and 20%, respectively. The novel cantilevered hybrid actuator characterised by light-weight (ca. 3 mg) and small volume (ca. 30 mm × 2 mm × 10 μm) is driven by a microcontroller modulated TENG with the displacement of 2.2 mm, which is about 106 times larger than that of traditional cantilever using planar surfaces. The energy conversion efficiencies defined as the energy consumed during dealloying and actuation compared with the output of TENG are 47% and 56.7%, respectively. PMID:27063987

  19. Solutions for acceleration measurement in vehicle crash tests

    NASA Astrophysics Data System (ADS)

    Dima, D. S.; Covaciu, D.

    2017-10-01

    Crash tests are useful for validating computer simulations of road traffic accidents. One of the most important parameters measured is the acceleration. The evolution of acceleration versus time, during a crash test, form a crash pulse. The correctness of the crash pulse determination depends on the data acquisition system used. Recommendations regarding the instrumentation for impact tests are given in standards, which are focused on the use of accelerometers as impact sensors. The goal of this paper is to present the device and software developed by authors for data acquisition and processing. The system includes two accelerometers with different input ranges, a processing unit based on a 32-bit microcontroller and a data logging unit with SD card. Data collected on card, as text files, is processed with a dedicated software running on personal computers. The processing is based on diagrams and includes the digital filters recommended in standards.

  20. A 300MHz Embedded Flash Memory with Pipeline Architecture and Offset-Free Sense Amplifiers for Dual-Core Automotive Microcontrollers

    NASA Astrophysics Data System (ADS)

    Kajiyama, Shinya; Fujito, Masamichi; Kasai, Hideo; Mizuno, Makoto; Yamaguchi, Takanori; Shinagawa, Yutaka

    A novel 300MHz embedded flash memory for dual-core microcontrollers with a shared ROM architecture is proposed. One of its features is a three-stage pipeline read operation, which enables reduced access pitch and therefore reduces performance penalty due to conflict of shared ROM accesses. Another feature is a highly sensitive sense amplifier that achieves efficient pipeline operation with two-cycle latency one-cycle pitch as a result of a shortened sense time of 0.63ns. The combination of the pipeline architecture and proposed sense amplifiers significantly reduces access-conflict penalties with shared ROM and enhances performance of 32-bit RISC dual-core microcontrollers by 30%.

  1. A Compact and Low Cost Electronic Nose for Aroma Detection

    PubMed Central

    Macías, Miguel Macías; Agudo, J. Enrique; Manso, Antonio García; Orellana, Carlos Javier García; Velasco, Horacio Manuel González; Caballero, Ramón Gallardo

    2013-01-01

    This article explains the development of a prototype of a portable and a very low-cost electronic nose based on an mbed microcontroller. Mbeds are a series of ARM microcontroller development boards designed for fast, flexible and rapid prototyping. The electronic nose is comprised of an mbed, an LCD display, two small pumps, two electro-valves and a sensor chamber with four TGS Figaro gas sensors. The performance of the electronic nose has been tested by measuring the ethanol content of wine synthetic matrices and special attention has been paid to the reproducibility and repeatability of the measurements taken on different days. Results show that the electronic nose with a neural network classifier is able to discriminate wine samples with 10, 12 and 14% V/V alcohol content with a classification error of less than 1%. PMID:23698265

  2. Design and Verification of an Inexpensive Ultrasonic Water Depth Sensor Using Arduino

    NASA Astrophysics Data System (ADS)

    Mihevc, T. M.; Rajagopal, S.

    2012-12-01

    A system that combines the arduino micro-controller, a Parallax PING Ultrasonic distance sensor and a secure digital card to log the data is developed to help monitor water table depths in multiple settings. Traditional methods of monitoring water table depths involve the use of a pressure transducer and expensive data loggers that cost upward of 1000. The present system is built for less than 100, with the caveat that the accuracy of the measurements is 1cm. In this laboratory study, we first build the arduino based system to monitor water table depths in a piezometer and compare these measurements to those made by a pressure transducer. Initial results show that the depth measurements are accurate in comparison to actual tape measurements. Results from this benchmarking experiment will be presented at the meeting.

  3. A Wireless Biomedical Signal Interface System-on-Chip for Body Sensor Networks.

    PubMed

    Lei Wang; Guang-Zhong Yang; Jin Huang; Jinyong Zhang; Li Yu; Zedong Nie; Cumming, D R S

    2010-04-01

    Recent years have seen the rapid development of biosensor technology, system-on-chip design, wireless technology. and ubiquitous computing. When assembled into an autonomous body sensor network (BSN), the technologies become powerful tools in well-being monitoring, medical diagnostics, and personal connectivity. In this paper, we describe the first demonstration of a fully customized mixed-signal silicon chip that has most of the attributes required for use in a wearable or implantable BSN. Our intellectual-property blocks include low-power analog sensor interface for temperature and pH, a data multiplexing and conversion module, a digital platform based around an 8-b microcontroller, data encoding for spread-spectrum wireless transmission, and a RF section requiring very few off-chip components. The chip has been fully evaluated and tested by connection to external sensors, and it satisfied typical system requirements.

  4. Micro-Controllable, Multi-Functional Interface Module for Digital MP: A Wearable Computer Security Application

    DTIC Science & Technology

    2004-05-01

    Army Soldier System Command: http://www.natick.armv.mil Role Name Facial Recognition Program Manager, Army Technical Lead Mark Chandler...security force with a facial recognition system. Mike Holloran, technology officer with the 6 Fleet, directed LCDR Hoa Ho and CAPT(s) Todd Morgan to...USN 6th Fleet was accomplished with the admiral expressing his support for continuing the evaluation of the a facial recognition system. This went

  5. Inexpensive Miniature Programmable Magnetic Stirrer from Reconfigured Computer Parts

    ERIC Educational Resources Information Center

    Mercer, Conan; Leech, Donal

    2017-01-01

    This technology report outlines a robust and easy to assemble magnetic stirrer that is programmable. All of the parts are recycled from obsolete computer hardware except the Arduino microcontroller and motor driver, at a total cost of around $40. This multidisciplinary approach introduces microcontrollers to students and grants the opportunity to…

  6. G-cueing microcontroller (a microprocessor application in simulators)

    NASA Technical Reports Server (NTRS)

    Horattas, C. G.

    1980-01-01

    A g cueing microcontroller is described which consists of a tandem pair of microprocessors, dedicated to the task of simulating pilot sensed cues caused by gravity effects. This task includes execution of a g cueing model which drives actuators that alter the configuration of the pilot's seat. The g cueing microcontroller receives acceleration commands from the aerodynamics model in the main computer and creates the stimuli that produce physical acceleration effects of the aircraft seat on the pilots anatomy. One of the two microprocessors is a fixed instruction processor that performs all control and interface functions. The other, a specially designed bipolar bit slice microprocessor, is a microprogrammable processor dedicated to all arithmetic operations. The two processors communicate with each other by a shared memory. The g cueing microcontroller contains its own dedicated I/O conversion modules for interface with the seat actuators and controls, and a DMA controller for interfacing with the simulation computer. Any application which can be microcoded within the available memory, the available real time and the available I/O channels, could be implemented in the same controller.

  7. Design and implementation of smart sensor nodes for wireless disaster monitoring systems

    NASA Astrophysics Data System (ADS)

    Chen, Yih-Fan; Wu, Wen-Jong; Chen, Chun-Kuang; Wen, Chih-Min; Jin, Ming-Hui; Gau, Chung-Yun; Chang, Chih-Chie; Lee, Chih-Kung

    2004-07-01

    A newly developed smart sensor node that can monitor the safety of temporary structures such as scaffolds at construction sites is detailed in this paper. The design methodology and its trade-offs, as well as its influence on the optimization of sensor networks, is examined. The potential impact on civil engineering construction sites, environmental and natural disaster pre-warning issues, etc., all of which are foundations of smart sensor nodes and corresponding smart sensor networks, is also presented. To minimize the power requirements in order to achieve a true wireless system both in terms of signal and power, a sensor node was designed by adopting an 8051-based micro-controller, an ISM band RF transceiver, and an auto-balanced strain gage signal conditioner. With the built-in RF transceiver, all measurement data can be transmitted to a local control center for data integrity, security, central monitoring, and full-scale analysis. As a battery is the only well-established power source and there is a strong desire to eliminate the need to install bulky power lines, this system designed includes a battery-powered core with optimal power efficiency. To further extend the service life of the built-in power source, a power control algorithm has been embedded in the microcontroller of each sensor node. The entire system has been verified by experimental tests on full-scale scaffold monitoring. The results show that this system provides a practical method to monitor the structure safety in real time and possesses the potential of reducing maintenance costs significantly. The design of the sensor node, central control station, and the integration of several kinds of wireless communication protocol, all of which are successfully integrated to demonstrate the capabilities of this newly developed system, are detailed. Potential impact to the network topology is briefly examined as well.

  8. Designing a VMEbus FDDI adapter card

    NASA Astrophysics Data System (ADS)

    Venkataraman, Raman

    1992-03-01

    This paper presents a system architecture for a VMEbus FDDI adapter card containing a node core, FDDI block, frame buffer memory and system interface unit. Most of the functions of the PHY and MAC layers of FDDI are implemented with National's FDDI chip set and the SMT implementation is simplified with a low cost microcontroller. The factors that influence the system bus bandwidth utilization and FDDI bandwidth utilization are the data path and frame buffer memory architecture. The VRAM based frame buffer memory has two sections - - LLC frame memory and SMT frame memory. Each section with an independent serial access memory (SAM) port provides an independent access after the initial data transfer cycle on the main port and hence, the throughput is maximized on each port of the memory. The SAM port simplifies the system bus master DMA design and the VMEbus interface can be designed with low-cost off-the-shelf interface chips.

  9. Validation of a wireless modular monitoring system for structures

    NASA Astrophysics Data System (ADS)

    Lynch, Jerome P.; Law, Kincho H.; Kiremidjian, Anne S.; Carryer, John E.; Kenny, Thomas W.; Partridge, Aaron; Sundararajan, Arvind

    2002-06-01

    A wireless sensing unit for use in a Wireless Modular Monitoring System (WiMMS) has been designed and constructed. Drawing upon advanced technological developments in the areas of wireless communications, low-power microprocessors and micro-electro mechanical system (MEMS) sensing transducers, the wireless sensing unit represents a high-performance yet low-cost solution to monitoring the short-term and long-term performance of structures. A sophisticated reduced instruction set computer (RISC) microcontroller is placed at the core of the unit to accommodate on-board computations, measurement filtering and data interrogation algorithms. The functionality of the wireless sensing unit is validated through various experiments involving multiple sensing transducers interfaced to the sensing unit. In particular, MEMS-based accelerometers are used as the primary sensing transducer in this study's validation experiments. A five degree of freedom scaled test structure mounted upon a shaking table is employed for system validation.

  10. [Multi-channel data collection and visualization system for intramyocardial electrograms].

    PubMed

    Kastner, P; Wimmer, W; Hutten, H

    2000-11-01

    The aim of the project was to develop a multichannel data acquisition system for the recording and visualisation of intramyocardial electrograms (IEGM) from both the spontaneously beating and the artificially paced heart. Signal processing comprises multi-step amplification, filtering (0.05-800 Hz), and AD conversion (12 Bit max. 6.25 kHz). IEGMs can be obtained either in unipolar or bipolar mode. Stimulation of the heart is achieved by an incorporated programmable dual-chamber pacemaker that can be selectively switched to the input channels. A LabView-based graphical user interface permits the programming of all system parameters via a microcontroller, and supports data acquisition and visualisation. The system can be used in animal experiments to monitor the spread of excitation across the heart, to measure propagation velocity, or to measure the impact of drugs and pathological changes on the morphology of IEGMs.

  11. A Robust Nonlinear Observer for Real-Time Attitude Estimation Using Low-Cost MEMS Inertial Sensors

    PubMed Central

    Guerrero-Castellanos, José Fermi; Madrigal-Sastre, Heberto; Durand, Sylvain; Torres, Lizeth; Muñoz-Hernández, German Ardul

    2013-01-01

    This paper deals with the attitude estimation of a rigid body equipped with angular velocity sensors and reference vector sensors. A quaternion-based nonlinear observer is proposed in order to fuse all information sources and to obtain an accurate estimation of the attitude. It is shown that the observer error dynamics can be separated into two passive subsystems connected in “feedback”. Then, this property is used to show that the error dynamics is input-to-state stable when the measurement disturbance is seen as an input and the error as the state. These results allow one to affirm that the observer is “robustly stable”. The proposed observer is evaluated in real-time with the design and implementation of an Attitude and Heading Reference System (AHRS) based on low-cost MEMS (Micro-Electro-Mechanical Systems) Inertial Measure Unit (IMU) and magnetic sensors and a 16-bit microcontroller. The resulting estimates are compared with a high precision motion system to demonstrate its performance. PMID:24201316

  12. Qibla Finder and Sholat Times Based on Digital Compass, GPS and Microprocessor

    NASA Astrophysics Data System (ADS)

    Sanjaya, W. S. M.; Anggraeni, D.; Nurrahman, F. I.; Kresnadjaja, W. G.; Dewi, I. P.; Mira; Aliah, H.; Marlina, L.

    2018-01-01

    To performing Sholat, Muslims around the world are required to pay attention to the requirements of Sholat, such as; determining the direction of the Qibla (Kaaba) and the time of Sholat. In this research will be made a real time Qibla Finder and Sholat Times named Q-Bot Ver3 to help Muslims find a Qibla direction and Time of Sholat anywhere. This Qibla Finder and Sholat Times are developed with robotic technology based on Digital Compass, GPS and Microcontroller. To determine the Qibla direction and Sholat times, latitude and longitude data form GPS module processed used spherical triangle trigonometry method, while the compass module used to show the Qibla direction. Moreover, this system has a buzzer which can sound if the device facing to the Qibla. This system is reliable and accurate in determining the Qibla Finder and Sholat Times. Thus, the advantage of the system is can correct the Qibla of Masjid and can help blind people to facing Qibla around the world.

  13. A Micro Fluorescent Activated Cell Sorter for Astrobiology Applications

    NASA Technical Reports Server (NTRS)

    Platt, Donald W.; Hoover, Richard B.

    2009-01-01

    A micro-scale Fluorescent Activated Cell Sorter (microFACS) for astrobiology applications is under development. This device is designed to have a footprint of 7 cm x 7 cm x 4 cm and allow live-dead counts and sorting of cells that have fluorescent characteristics from staining. The FACS system takes advantage of microfluidics to create a cell sorter that can fit in the palm of the hand. A micron-scale channel allows cells to pass by a blue diode which causes emission of marker-expressed cells which are detected by a filtered photodetector. A small microcontroller then counts cells and operates high speed valves to select which chamber the cell is collected in (a collection chamber or a waste chamber). Cells with the expressed characteristic will be collected in the collection chamber. This system has been built and is currently being tested. We are also designing a system with integrated MEMS-based pumps and valves for a small and compact unit to fly on small satellite-based biology experiments.

  14. 1 kHz 2D Visual Motion Sensor Using 20 × 20 Silicon Retina Optical Sensor and DSP Microcontroller.

    PubMed

    Liu, Shih-Chii; Yang, MinHao; Steiner, Andreas; Moeckel, Rico; Delbruck, Tobi

    2015-04-01

    Optical flow sensors have been a long running theme in neuromorphic vision sensors which include circuits that implement the local background intensity adaptation mechanism seen in biological retinas. This paper reports a bio-inspired optical motion sensor aimed towards miniature robotic and aerial platforms. It combines a 20 × 20 continuous-time CMOS silicon retina vision sensor with a DSP microcontroller. The retina sensor has pixels that have local gain control and adapt to background lighting. The system allows the user to validate various motion algorithms without building dedicated custom solutions. Measurements are presented to show that the system can compute global 2D translational motion from complex natural scenes using one particular algorithm: the image interpolation algorithm (I2A). With this algorithm, the system can compute global translational motion vectors at a sample rate of 1 kHz, for speeds up to ±1000 pixels/s, using less than 5 k instruction cycles (12 instructions per pixel) per frame. At 1 kHz sample rate the DSP is 12% occupied with motion computation. The sensor is implemented as a 6 g PCB consuming 170 mW of power.

  15. Microcontroller-Based Experimental Setup and Experiments for SCADA Education

    ERIC Educational Resources Information Center

    Sahin, S.; Olmez, M.; Isler, Y.

    2010-01-01

    In the field of automation technology, research and development for industrial applications has increased rapidly in recent years. Therefore, industrial automation and control education is a very important element of the industrialization process in developing countries, such as Turkey, which needs to keep abreast for the latest developments in…

  16. A microcontroller-based portable electrocardiograph recorder.

    PubMed

    Segura-Juárez, José J; Cuesta-Frau, David; Samblas-Pena, Luis; Aboy, Mateo

    2004-09-01

    We describe a low cost portable Holter design that can be implemented with off-the-shelf components. The recorder is battery powered and includes a graphical display and keyboard. The recorder is capable of acquiring up to 48 hours of continuous electrocardiogram data at a sample rate of up to 250 Hz.

  17. Design and implementation of embedded un-interruptible power supply system (EUPSS) for web-based mobile application

    NASA Astrophysics Data System (ADS)

    Zhang, De-gan; Zhang, Xiao-dan

    2012-11-01

    With the growth of the amount of information manipulated by embedded application systems, which are embedded into devices and offer access to the devices on the internet, the requirements of saving the information systemically is necessary so as to fulfil access from the client and the local processing more efficiently. For supporting mobile applications, a design and implementation solution of embedded un-interruptible power supply (UPS) system (in brief, EUPSS) is brought forward for long-distance monitoring and controlling of UPS based on Web. The implementation of system is based on ATmega161, RTL8019AS and Arm chips with TCP/IP protocol suite for communication. In the embedded UPS system, an embedded file system is designed and implemented which saves the data and index information on a serial EEPROM chip in a structured way and communicates with a microcontroller unit through I2C bus. By embedding the file system into UPS system or other information appliances, users can access and manipulate local data on the web client side. Embedded file system on chips will play a major role in the growth of IP networking. Based on our experiment tests, the mobile users can easily monitor and control UPS in different places of long-distance. The performance of EUPSS has satisfied the requirements of all kinds of Web-based mobile applications.

  18. A Reward-Based Behavioral Platform to Measure Neural Activity during Head-Fixed Behavior

    PubMed Central

    Micallef, Andrew H.; Takahashi, Naoya; Larkum, Matthew E.; Palmer, Lucy M.

    2017-01-01

    Understanding the neural computations that contribute to behavior requires recording from neurons while an animal is behaving. This is not an easy task as most subcellular recording techniques require absolute head stability. The Go/No-Go sensory task is a powerful decision-driven task that enables an animal to report a binary decision during head-fixation. Here we discuss how to set up an Ardunio and Python based platform system to control a Go/No-Go sensory behavior paradigm. Using an Arduino micro-controller and Python-based custom written program, a reward can be delivered to the animal depending on the decision reported. We discuss the various components required to build the behavioral apparatus that can control and report such a sensory stimulus paradigm. This system enables the end user to control the behavioral testing in real-time and therefore it provides a strong custom-made platform for probing the neural basis of behavior. PMID:28620282

  19. An Experimental Realization of a Chaos-Based Secure Communication Using Arduino Microcontrollers.

    PubMed

    Zapateiro De la Hoz, Mauricio; Acho, Leonardo; Vidal, Yolanda

    2015-01-01

    Security and secrecy are some of the important concerns in the communications world. In the last years, several encryption techniques have been proposed in order to improve the secrecy of the information transmitted. Chaos-based encryption techniques are being widely studied as part of the problem because of the highly unpredictable and random-look nature of the chaotic signals. In this paper we propose a digital-based communication system that uses the logistic map which is a mathematically simple model that is chaotic under certain conditions. The input message signal is modulated using a simple Delta modulator and encrypted using a logistic map. The key signal is also encrypted using the same logistic map with different initial conditions. In the receiver side, the binary-coded message is decrypted using the encrypted key signal that is sent through one of the communication channels. The proposed scheme is experimentally tested using Arduino shields which are simple yet powerful development kits that allows for the implementation of the communication system for testing purposes.

  20. The supply voltage apparatus of the CUORE experiment

    NASA Astrophysics Data System (ADS)

    Arnaboldi, C.; Baú, A.; Carniti, P.; Cassina, L.; Giachero, A.; Gotti, C.; Maino, M.; Passerini, A.; Pessina, G.

    2016-07-01

    The Electronics system of experiments for the study of rare decays, such as the neutrino-less double beta decay, must be very stable over very long expected runs. We introduce our solution for the power supply of such an experiment, CUORE. In this case the power supply chain consists of a series of ACDCs, followed by DCDCs and then Linear Regulators. We emphasize here our approach to the DCDC regulation system that was designed with a complete rejection of the switching noise, across 100 MHz bandwidth. In the experimental layout the DCDC will be located far from the very front-end, with long connecting cables (10 m). We introduced our very simple and safe solution to prevent huge over-voltages, due to the energy stored in the inductance of the cables, generated after the release of accidental short circuits, so avoiding destructive effects. Some micro-controllers are present on every board and take care of the DCDC operation. These micro-controllers are managed from the control room, via CAN BUS protocol coupled via optical fibres. CUORE is an array of 1000 cryogenic detectors that will need 30 of our DCDCs.

  1. Measurement of urinary calcium using AT89C51RD2 microcontroller.

    PubMed

    Neelamegam, P; Jamaludeen, A; Rajendran, A; Raghunathan, R

    2009-04-01

    A simple and inexpensive absorption technique for determination of calcium ion in urine samples is developed, comprising a light emitting diode (650 nm) as the light source and photodiode as the detector with AT89C51RD2 microcontroller. The design of the system and details of interface, calibration, and procedure of operation are explained in this paper. Software is developed to monitor sample processing and to display the results in liquid crystal display screen. With 15 microl sample volume, a linear output is obtained in the range of 2.5-7.5 mM calcium with a detection limit of 0.06 mM. Interferences from other cations such as monovalent ion and divalent ion are investigated in the expected range, which are normally present in clinical samples, and absorption changes over the pH range of 3-12 are also determined. This system has been demonstrated successfully for the successive assay of calcium in urine samples, with the results comparing well to those achieved and in good agreement with values obtained with the current clinical spectrophotometric method at 95% of confidence level.

  2. Electro pneumatic trainer embedded with programmable integrated circuit (PIC) microcontroller and graphical user interface platform for aviation industries training purposes

    NASA Astrophysics Data System (ADS)

    Burhan, I.; Azman, A. A.; Othman, R.

    2016-10-01

    An electro pneumatic trainer embedded with programmable integrated circuit (PIC) microcontroller and Visual Basic (VB) platform is fabricated as a supporting tool to existing teaching and learning process, and to achieve the objectives and learning outcomes towards enhancing the student's knowledge and hands-on skill, especially in electro pneumatic devices. The existing learning process for electro pneumatic courses conducted in the classroom does not emphasize on simulation and complex practical aspects. VB is used as the platform for graphical user interface (GUI) while PIC as the interface circuit between the GUI and hardware of electro pneumatic apparatus. Fabrication of electro pneumatic trainer interfacing between PIC and VB has been designed and improved by involving multiple types of electro pneumatic apparatus such as linear drive, air motor, semi rotary motor, double acting cylinder and single acting cylinder. Newly fabricated electro pneumatic trainer microcontroller interface can be programmed and re-programmed for numerous combination of tasks. Based on the survey to 175 student participants, 97% of the respondents agreed that the newly fabricated trainer is user friendly, safe and attractive, and 96.8% of the respondents strongly agreed that there is improvement in knowledge development and also hands-on skill in their learning process. Furthermore, the Lab Practical Evaluation record has indicated that the respondents have improved their academic performance (hands-on skills) by an average of 23.5%.

  3. Automated Microscopy: Macro Language Controlling a Confocal Microscope and its External Illumination: Adaptation for Photosynthetic Organisms.

    PubMed

    Steinbach, Gábor; Kaňa, Radek

    2016-04-01

    Photosynthesis research employs several biophysical methods, including the detection of fluorescence. Even though fluorescence is a key method to detect photosynthetic efficiency, it has not been applied/adapted to single-cell confocal microscopy measurements to examine photosynthetic microorganisms. Experiments with photosynthetic cells may require automation to perform a large number of measurements with different parameters, especially concerning light conditions. However, commercial microscopes support custom protocols (through Time Controller offered by Olympus or Experiment Designer offered by Zeiss) that are often unable to provide special set-ups and connection to external devices (e.g., for irradiation). Our new system combining an Arduino microcontroller with the Cell⊕Finder software was developed for controlling Olympus FV1000 and FV1200 confocal microscopes and the attached hardware modules. Our software/hardware solution offers (1) a text file-based macro language to control the imaging functions of the microscope; (2) programmable control of several external hardware devices (light sources, thermal controllers, actuators) during imaging via the Arduino microcontroller; (3) the Cell⊕Finder software with ergonomic user environment, a fast selection method for the biologically important cells and precise positioning feature that reduces unwanted bleaching of the cells by the scanning laser. Cell⊕Finder can be downloaded from http://www.alga.cz/cellfinder. The system was applied to study changes in fluorescence intensity in Synechocystis sp. PCC6803 cells under long-term illumination. Thus, we were able to describe the kinetics of phycobilisome decoupling. Microscopy data showed that phycobilisome decoupling appears slowly after long-term (>1 h) exposure to high light.

  4. Development of building security integration system using sensors, microcontroller and GPS (Global Positioning System) based android smartphone

    NASA Astrophysics Data System (ADS)

    Sihombing, P.; Siregar, Y. M.; Tarigan, J. T.; Jaya, I.; Turnip, A.

    2018-03-01

    Security system is one of the common problems to protect an environment such as personal house or a warehouse. There are numerous methods and technologies that can be used as part of a security system. In this paper, we present a security system that offers a better efficiency. The purpose of this study is to build a system that can monitor home security at any time in particular fire and theft. Through sensors, the system will be able to provide warning information of hazard conditions via LCD monitor, sound, and alarm. This information will be sent automatically to the home owner’s smartphone as well as to the corresponding to the security agency. Thus the prevention of theft and fire hazards can be immediately anticipated by the police and firefighters. The system will also notify the position of the coordinates of the location of the building (the house) by a link to the Google map in order to make it easier to get the location quickly.

  5. Automated system for the calibration of magnetometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrucha, Vojtech; Kaspar, Petr; Ripka, Pavel

    2009-04-01

    A completely nonmagnetic calibration platform has been developed and constructed at DTU Space (Technical University of Denmark). It is intended for on-site scalar calibration of high-precise fluxgate magnetometers. An enhanced version of the same platform is being built at the Czech Technical University. There are three axes of rotation in this design (compared to two axes in the previous version). The addition of the third axis allows us to calibrate more complex devices. An electronic compass based on a vector fluxgate magnetometer and micro electro mechanical systems (MEMS) accelerometer is one example. The new platform can also be used tomore » evaluate the parameters of the compass in all possible variations in azimuth, pitch, and roll. The system is based on piezoelectric motors, which are placed on a platform made of aluminum, brass, plastic, and glass. Position sensing is accomplished through custom-made optical incremental sensors. The system is controlled by a microcontroller, which executes commands from a computer. The properties of the system as well as calibration and measurement results will be presented.« less

  6. Research on Vehicle Temperature Regulation System Based on Air Convection Principle

    NASA Astrophysics Data System (ADS)

    Zhuge, Muzi; Li, Xiang; Liang, Caifeng

    2018-03-01

    The long time parking outdoors in the summer will lead to too high temperature in the car, and the harmful gas produced by the vehicle engine will stay in the confined space for a long time during the parking process, which will do great harm to the human body. If the air conditioning system is turned on before driving, the cooling rate is slow and the battery loss is large. To solve the above problems, we designed a temperature adjusting system based on the principle of air convection. We can choose the automatic mode or manual mode to achieve control of a convection window. In the automatic mode, the system will automatically detect the environmental temperature, through the sensor to complete the detection, and the signal is transmitted to the microcontroller to control the window open or close, in manual mode, the remote control of the window can be realized by Bluetooth. Therefore, the system has important practical significance to effectively regulate temperature, prolong battery life, and improve the safety and comfort of traffic vehicles.

  7. Orientation-selective aVLSI spiking neurons.

    PubMed

    Liu, S C; Kramer, J; Indiveri, G; Delbrück, T; Burg, T; Douglas, R

    2001-01-01

    We describe a programmable multi-chip VLSI neuronal system that can be used for exploring spike-based information processing models. The system consists of a silicon retina, a PIC microcontroller, and a transceiver chip whose integrate-and-fire neurons are connected in a soft winner-take-all architecture. The circuit on this multi-neuron chip approximates a cortical microcircuit. The neurons can be configured for different computational properties by the virtual connections of a selected set of pixels on the silicon retina. The virtual wiring between the different chips is effected by an event-driven communication protocol that uses asynchronous digital pulses, similar to spikes in a neuronal system. We used the multi-chip spike-based system to synthesize orientation-tuned neurons using both a feedforward model and a feedback model. The performance of our analog hardware spiking model matched the experimental observations and digital simulations of continuous-valued neurons. The multi-chip VLSI system has advantages over computer neuronal models in that it is real-time, and the computational time does not scale with the size of the neuronal network.

  8. Instrumentation for laser physics and spectroscopy using 32-bit microcontrollers with an Android tablet interface

    NASA Astrophysics Data System (ADS)

    Eyler, E. E.

    2013-10-01

    Several high-performance lab instruments suitable for manual assembly have been developed using low-pin-count 32-bit microcontrollers that communicate with an Android tablet via a USB interface. A single Android tablet app accommodates multiple interface needs by uploading parameter lists and graphical data from the microcontrollers, which are themselves programmed with easily modified C code. The hardware design of the instruments emphasizes low chip counts and is highly modular, relying on small "daughter boards" for special functions such as USB power management, waveform generation, and phase-sensitive signal detection. In one example, a daughter board provides a complete waveform generator and direct digital synthesizer that fits on a 1.5 in. × 0.8 in. circuit card.

  9. Stabilisation problem in biaxial platform

    NASA Astrophysics Data System (ADS)

    Lindner, Tymoteusz; Rybarczyk, Dominik; Wyrwał, Daniel

    2016-12-01

    The article describes investigation of rolling ball stabilization problem on a biaxial platform. The aim of the control system proposed here is to stabilize ball moving on a plane in equilibrium point. The authors proposed a control algorithm based on cascade PID and they compared it with another control method. The article shows the results of the accuracy of ball stabilization and influence of applied filter on the signal waveform. The application used to detect the ball position measured by digital camera has been written using a cross platform .Net wrapper to the OpenCV image processing library - EmguCV. The authors used the bipolar stepper motor with dedicated electronic controller. The data between the computer and the designed controller are sent with use of the RS232 standard. The control stand is based on ATmega series microcontroller.

  10. Relative gravimeter prototype based on micro electro mechanical system

    NASA Astrophysics Data System (ADS)

    Rozy, A. S. A.; Nugroho, H. A.; Yusuf, M.

    2018-03-01

    This research to make gravity measurement system by utilizing micro electro mechanical system based sensor in Gal order. System design consists of three parts, design of hardware, software, and interface. The design of the hardware include of designing the sensor design to measure the value of a stable gravity acceleration. The ADXL345 and ADXL335 sensors are tuned to obtain stable measurements. The design of the instrumentation system the next stage by creating a design to integrate between the sensor, microcontroller, and GPS. The design of programming algorithm is done with Arduino IDE software. The interface design uses a 20x4 LCD display to display the gravity acceleration value and store data on the storage media. The system uses a box made of iron and plate leveling to minimize measurement errors. The sensor test shows the ADXL345 sensor has a more stable value. The system is examined by comparing with gravity measurement of gravimeter A-10 results in Bandung observation post. The result of system test resulted the average of system correction value equal to 0.19 Gal. The system is expected to use for mineral exploration, water supply analyze, and earthquake precursor.

  11. Microcontroller-assisted compensation of adenosine triphosphate levels: instrument and method development.

    PubMed

    Hu, Jie-Bi; Chen, Ting-Ru; Chen, Yu-Chie; Urban, Pawel L

    2015-01-30

    In order to ascertain optimum conditions for biocatalytic processes carried out in vitro, we have designed a bio-opto-electronic system which ensures real-time compensation for depletion of adenosine triphosphate (ATP) in reactions involving transfer of phosphate groups. The system covers ATP concentration range of 2-48 μM. The report demonstrates feasibility of the device operation using apyrase as the ATP-depleting enzyme.

  12. A differential spectral responsivity measurement system constructed for determining of the spectral responsivity of a single- and triple-junction photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Sametoglu, Ferhat; Celikel, Oguz; Witt, Florian

    2017-10-01

    A differential spectral responsivity (DSR) measurement system has been designed and constructed at National Metrology Institute of Turkey (TUBITAK UME) to determine the spectral responsivity (SR) of a single- or a multi-junction photovoltaic device (solar cell). The DSR setup contains a broad band light bias source composed of a constructed Solar Simulator based on a 1000 W Xe-arc lamp owning a AM-1.5 filter and 250 W quartz-tungsten-halogen lamp, a designed and constructed LED-based Bias Light Sources, a DC voltage bias circuit, and a probe beam optical power tracking and correction circuit controlled with an ADuC847 microcontroller card together with an embedded C based software, designed and constructed in TUBITAK UME under this project. By using the constructed DSR measurement system, the SR calibration of solar cells, the monolitic triple-junction solar cell GaInP/GaInAs/Ge and its corresponding component cells have been performed within the EURAMET Joint Research Project SolCell.

  13. Development of a Mechatronic Syringe Pump to Control Fluid Flow in a Microfluidic Device Based on Polyimide Film

    NASA Astrophysics Data System (ADS)

    Sek Tee, Kian; Sharil Saripan, Muhammad; Yap, Hiung Yin; Fhong Soon, Chin

    2017-08-01

    With the advancement in microfluidic technology, fluid flow control for syringe pump is always essential. In this paper, a mechatronic syringe pump will be developed and customized to control the fluid flow in a poly-dimethylsiloxane (PDMS) microfluidic device based on a polyimide laminating film. The syringe pump is designed to drive fluid with flow rates of 100 and 1000 μl/min which intended to drive continuous fluid in a polyimide based microfluidic device. The electronic system consists of an Arduino microcontroller board and a uni-polar stepper motor. In the system, the uni-polar stepper motor was coupled to a linear slider attached to the plunger of a syringe pump. As the motor rotates, the plunger pumps the liquid out of the syringe. The accuracy of the fluid flow rate was determined by adjusting the number of micro-step/revolution to drive the stepper motor to infuse fluid into the microfluidic device. With the precise control of the electronic system, the syringe pump could accurately inject fluid volume at 100 and 1000 μl/min into a microfluidic device.

  14. Advanced Wireless Sensor Nodes - MSFC

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta; Richeson, Jeff

    2017-01-01

    NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.

  15. Arctic Glass: Innovative Consumer Technology in Support of Arctic Research

    NASA Astrophysics Data System (ADS)

    Ruthkoski, T.

    2015-12-01

    The advancement of cyberinfrastructure on the North Slope of Alaska is drastically limited by location-specific conditions, including: unique geophysical features, remoteness of location, and harsh climate. The associated cost of maintaining this unique cyberinfrastructure also becomes a limiting factor. As a result, field experiments conducted in this region have historically been at a technological disadvantage. The Arctic Glass project explored a variety of scenarios where innovative consumer-grade technology was leveraged as a lightweight, rapidly deployable, sustainable, alternatives to traditional large-scale Arctic cyberinfrastructure installations. Google Glass, cloud computing services, Internet of Things (IoT) microcontrollers, miniature LIDAR, co2 sensors designed for HVAC systems, and portable network kits are several of the components field-tested at the Toolik Field Station as part of this project. Region-specific software was also developed, including a multi featured, voice controlled Google Glass application named "Arctic Glass". Additionally, real-time sensor monitoring and remote control capability was evaluated through the deployment of a small cluster of microcontroller devices. Network robustness was analyzed as the devices delivered streams of abiotic data to a web-based dashboard monitoring service in near real time. The same data was also uploaded synchronously by the devices to Amazon Web Services. A detailed overview of solutions deployed during the 2015 field season, results from experiments utilizing consumer sensors, and potential roles consumer technology could play in support of Arctic science will be discussed.

  16. Error Mitigation of Point-to-Point Communication for Fault-Tolerant Computing

    NASA Technical Reports Server (NTRS)

    Akamine, Robert L.; Hodson, Robert F.; LaMeres, Brock J.; Ray, Robert E.

    2011-01-01

    Fault tolerant systems require the ability to detect and recover from physical damage caused by the hardware s environment, faulty connectors, and system degradation over time. This ability applies to military, space, and industrial computing applications. The integrity of Point-to-Point (P2P) communication, between two microcontrollers for example, is an essential part of fault tolerant computing systems. In this paper, different methods of fault detection and recovery are presented and analyzed.

  17. Design of mechanical arm for an automatic sorting system of recyclable cans

    NASA Astrophysics Data System (ADS)

    Resti, Y.; Mohruni, A. S.; Burlian, F.; Yani, I.; Amran, A.

    2018-04-01

    The use of a mechanical arm for an automatic sorting system of used cans should be designed carefully. The right design will result in a high precision sorting rate and a short sorting time. The design includes first; design manipulator,second; determine link and joint specifications, and third; build mechanical systems and control systems. This study aims to design the mechanical arm as a hardware system for automatic cans sorting system. The material used for the manipulator is the aluminum plate. The manipulator is designed using 6 links and 6 join where the 6th link is the end effectorand the 6th join is the gripper. As a driving motor used servo motor, while as a microcontroller used Arduino Uno which is connected with Matlab programming language. Based on testing, a mechanical arm designed for this recyclable canned recycling system has a precision sorting rate at 93%, where the average total time required for sorting is 10.82 seconds.

  18. Modeling and control for a magnetic levitation system based on SIMLAB platform in real time

    NASA Astrophysics Data System (ADS)

    Yaseen, Mundher H. A.; Abd, Haider J.

    2018-03-01

    Magnetic Levitation system becomes a hot topic of study due to the minimum friction and low energy consumption which regards as very important issues. This paper proposed a new magnetic levitation system using real-time control simulink feature of (SIMLAB) microcontroller. The control system of the maglev transportation system is verified by simulations with experimental results, and its superiority is indicated in comparison with previous literature and conventional control strategies. In addition, the proposed system was implemented under effect of three controller types which are Linear-quadratic regulator (LQR), proportional-integral-derivative controller (PID) and Lead compensation. As well, the controller system performance was compared in term of three parameters Peak overshoot, Settling time and Rise time. The findings prove the agreement of simulation with experimental results obtained. Moreover, the LQR controller produced a great stability and homogeneous response than other controllers used. For experimental results, the LQR brought a 14.6%, 0.199 and 0.064 for peak overshoot, Setting time and Rise time respectively.

  19. A compact control system to achieve stable voltage and low jitter trigger for repetitive intense electron-beam accelerator based on resonant charging

    NASA Astrophysics Data System (ADS)

    Qiu, Yongfeng; Liu, Jinliang; Yang, Jianhua; Cheng, Xinbing; Yang, Xiao

    2017-08-01

    A compact control system based on Delphi and Field Programmable Gate Array(FPGA) is developed for a repetitive intense electron-beam accelerator(IEBA), whose output power is 10GW and pulse duration is 160ns. The system uses both hardware and software solutions. It comprises a host computer, a communication module and a main control unit. A device independent applications programming interface, devised using Delphi, is installed on the host computer. Stability theory of voltage in repetitive mode is analyzed and a detailed overview of the hardware and software configuration is presented. High voltage experiment showed that the control system fulfilled the requests of remote operation and data-acquisition. The control system based on a time-sequence control method is used to keep constant of the voltage of the primary capacitor in every shot, which ensured the stable and reliable operation of the electron beam accelerator in the repetitive mode during the experiment. Compared with the former control system based on Labview and PIC micro-controller developed in our laboratory, the present one is more compact, and with higher precision in the time dimension. It is particularly useful for automatic control of IEBA in the high power microwave effects research experiments where pulse-to-pulse reproducibility is required.

  20. ELOPTA: a novel microcontroller-based operant device.

    PubMed

    Hoffman, Adam M; Song, Jianjian; Tuttle, Elaina M

    2007-11-01

    Operant devices have been used for many years in animal behavior research, yet such devices a regenerally highly specialized and quite expensive. Although commercial models are somewhat adaptable and resilient, they are also extremely expensive and are controlled by difficult to learn proprietary software. As an alternative to commercial devices, we have designed and produced a fully functional, programmable operant device, using a PICmicro microcontroller (Microchip Technology, Inc.). The electronic operant testing apparatus (ELOPTA) is designed to deliver food when a study animal, in this case a bird, successfully depresses the correct sequence of illuminated keys. The device logs each keypress and can detect and log whenever a test animal i spositioned at the device. Data can be easily transferred to a computer and imported into any statistical analysis software. At about 3% the cost of a commercial device, ELOPTA will advance behavioral sciences, including behavioral ecology, animal learning and cognition, and ethology.

  1. Design of FPGA-based radiation tolerant quench detectors for LHC

    NASA Astrophysics Data System (ADS)

    Steckert, J.; Skoczen, A.

    2017-04-01

    The Large Hadron Collider (LHC) comprises many superconducting circuits. Most elements of these circuits require active protection. The functionality of the quench detectors was initially implemented as microcontroller based equipment. After the initial stage of the LHC operation with beams the introduction of a new type of quench detector began. This article presents briefly the main ideas and architectures applied to the design and the validation of FPGA-based quench detectors.

  2. Improving Learning Performance in Laboratory Instruction by Means of SMS Messaging

    ERIC Educational Resources Information Center

    Martinez-Torres, M. R.; Toral, S. L.; Barrero, F.; Gallardo, S.

    2007-01-01

    The study described in this paper outlines an attempt to explore those factors that contribute to learning performance improvement in laboratory instruction. As a case study, the educational methodology involved in a basic microcontroller course was analyzed. Traditional lab sessions based on the control of peripherals with low interactivity have…

  3. Real-Time Remote Monitoring with Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Faizal Zainal Abidin, Ahmad; Huzaimy Jusoh, Mohammad; James, Elster; Junid, Syed Abdul Mutalib Al; Mohd Yassin, Ahmad Ihsan

    2015-11-01

    The purpose of this system is to provide monitoring system for an electrical device and enable remote monitoring via web based application. This monitoring system allow the user to monitor the device condition from anywhere as the information will be synchronised to the website. The current and voltage reading of the monitored equipment, ambient temperature and humidity level are monitored and recorded. These parameters will be updated on the web page. All these sensor are connected to the microcontroller and the data will saved in micro secure digital (SD) card and send all the gathered information to a web page using the GPRS service connection synchronously. The collected data will be displayed on the website and the user enable to download the data directly from the website. The system will help user to monitor the devices condition and ambient changes with ease. The system is successfully developed, tested and has been installed at residential area in Taman Cahaya Alam, Section U12, Shah Alam, Selangor, Malaysia.

  4. An arduino based control system for a brackish water desalination plant

    NASA Astrophysics Data System (ADS)

    Caraballo, Ginna

    Water scarcity for agriculture is one of the most important challenges to improve food security worldwide. In this thesis we study the potential to develop a low-cost controller for a small scale brackish desalination plant that consists of proven water treatment technologies, reverse osmosis, cation exchange, and nanofiltration to treat groundwater into two final products: drinking water and irrigation water. The plant is powered by a combination of wind and solar power systems. The low-cost controller uses Arduino Mega, and Arduino DUE, which consist of ATmega2560 and Atmel SAM3X8E ARM Cortex-M3 CPU microcontrollers. These are widely used systems characterized for good performance and low cost. However, Arduino also requires drivers and interfaces to allow the control and monitoring of sensors and actuators. The thesis explains the process, as well as the hardware and software implemented.

  5. An ECG ambulatory system with mobile embedded architecture for ST-segment analysis.

    PubMed

    Miranda-Cid, Alejandro; Alvarado-Serrano, Carlos

    2010-01-01

    A prototype of a ECG ambulatory system for long term monitoring of ST segment of 3 leads, low power, portability and data storage in solid state memory cards has been developed. The solution presented is based in a mobile embedded architecture of a portable entertainment device used as a tool for storage and processing of bioelectric signals, and a mid-range RISC microcontroller, PIC 16F877, which performs the digitalization and transmission of ECG. The ECG amplifier stage is a low power, unipolar voltage and presents minimal distortion of the phase response of high pass filter in the ST segment. We developed an algorithm that manages access to files through an implementation for FAT32, and the ECG display on the device screen. The records are stored in TXT format for further processing. After the acquisition, the system implemented works as a standard USB mass storage device.

  6. Integrated microelectronics for smart textiles.

    PubMed

    Lauterbach, Christl; Glaser, Rupert; Savio, Domnic; Schnell, Markus; Weber, Werner

    2005-01-01

    The combination of textile fabrics with microelectronics will lead to completely new applications, thus achieving elements of ambient intelligence. The integration of sensor or actuator networks, using fabrics with conductive fibres as a textile motherboard enable the fabrication of large active areas. In this paper we describe an integration technology for the fabrication of a "smart textile" based on a wired peer-to-peer network of microcontrollers with integrated sensors or actuators. A self-organizing and fault-tolerant architecture is accomplished which detects the physical shape of the network. Routing paths are formed for data transmission, automatically circumventing defective or missing areas. The network architecture allows the smart textiles to be produced by reel-to-reel processes, cut into arbitrary shapes subsequently and implemented in systems at low installation costs. The possible applications are manifold, ranging from alarm systems to intelligent guidance systems, passenger recognition in car seats, air conditioning control in interior lining and smart wallpaper with software-defined light switches.

  7. Weight monitoring system for newborn incubator application

    NASA Astrophysics Data System (ADS)

    Widianto, Arif; Nurfitri, Intan; Mahatidana, Pradipta; Abuzairi, Tomy; Poespawati, N. R.; Purnamaningsih., Retno W.

    2018-02-01

    We proposed weight monitoring system using load cell sensor for newborn incubator application. The weight sensing system consists of a load cell, conditioning signal circuit, and microcontroller Arduino Uno R3. The performance of the sensor was investigated by using the various weight from 0 up to 3000 g. Experiment results showed that this system has a small error of 4.313% and 12.5 g of threshold and resolution value. Compared to the typical baby scale available in local market, the proposed system has a lower error value and hysteresis.

  8. Analog design of wireless control for home equipment

    NASA Astrophysics Data System (ADS)

    Zheng, Shiyong; Li, Zhao; Li, Biqing; Jiang, Suping

    2018-04-01

    This design consists of a STC89C52 microcontroller, a serial Bluetooth module and the Android system. Production of STC89C52 controlled by single-chip computer telephone systems. The system is composed of mobile phone Android system as a master in the family centre,via serial Bluetooth module pass instructions and information to implement wireless transceiver using STC89C52 MCU wireless Bluetooth transmission to control homedevices. System high reliability, low cost easy to use, stong applicability and other characerristics, can be used in single-user family, has great significance.

  9. Backside imaging of a microcontroller with common-path digital holography

    NASA Astrophysics Data System (ADS)

    Finkeldey, Markus; Göring, Lena; Schellenberg, Falk; Gerhardt, Nils C.; Hofmann, Martin

    2017-03-01

    The investigation of integrated circuits (ICs), such as microcontrollers (MCUs) and system on a chip (SoCs) devices is a topic with growing interests. The need for fast and non-destructive imaging methods is given by the increasing importance of hardware Trojans, reverse engineering and further security related analysis of integrated cryptographic devices. In the field of side-channel attacks, for instance, the precise spot for laser fault attacks is important and could be determined by using modern high resolution microscopy methods. Digital holographic microscopy (DHM) is a promising technique to achieve high resolution phase images of surface structures. These phase images provide information about the change of the refractive index in the media and the topography. For enabling a high phase stability, we use the common-path geometry to create the interference pattern. The interference pattern, or hologram, is captured with a water cooled sCMOS camera. This provides a fast readout while maintaining a low level of noise. A challenge for these types of holograms is the interference of the reflected waves from the different interfaces inside the media. To distinguish between the phase signals from the buried layer and the surface reflection we use specific numeric filters. For demonstrating the performance of our setup we show results with devices under test (DUT), using a 1064 nm laser diode as light source. The DUTs are modern microcontrollers thinned to different levels of thickness of the Si-substrate. The effect of the numeric filter compared to unfiltered images is analyzed.

  10. Design on automatic rolling system for agricultural greenhouse

    NASA Astrophysics Data System (ADS)

    Fu, Li; Fu, Xiuwei; Zhang, Yanxiao

    2018-03-01

    The automatic rolling system of agricultural greenhouse is introduced in this paper. The opening degree of greenhouse according to changes in light intensity and temperature is adjusted. When the current is too large or the motor is blocked or lost, the buzzer is alarmed and warned someone the controlling system badly. When the temperature is higher than the default value, the fan is moved by the micro-controller controls, otherwise the heating rod so that the temperature reaches the preset range.

  11. Improved fault tolerance for air bag release in automobiles

    NASA Astrophysics Data System (ADS)

    Yeshwanth Kumar, C. H.; Prudhvi Prasad, P.; Uday Shankar, M.; Shanmugasundaram, M.

    2017-11-01

    In order to increase the reliability of the airbag system in automobiles which in turn increase the safety of the automobile we require improved airbag release system, our project deals with Triple Modular Redundancy (TMR) Technique where we use either three Sensors interfaced with three Microcontrollers which given as input to the software voter which produces majority output which is feed to the air compressor for releasing airbag. This concept was being used, in this project we are increasing reliability and safety of the entire system.

  12. Communication-Driven Codesign for Multiprocessor Systems

    DTIC Science & Technology

    2004-01-01

    processors, FPGA or ASIC subsystems, mi- croprocessors, and microcontrollers. When a processor is embedded within a SLOT architecture, one or more...Broderson, Low-power CMOS digital design, IEEE Journal of Solid-State Circuits 27 (1992), no. 4, 473–484. [25] L. Chao and E. Sha , Scheduling data-flow...1997), 239– 256 . [82] P. K. Murthy, E. G. Cohen, and S. Rowland, System Canvas: A new design en- vironment for embedded DSP and telecommunications

  13. Hardware system of X-wave generator with simple driving pulses

    NASA Astrophysics Data System (ADS)

    Li, Xu; Li, Yaqin; Xiao, Feng; Ding, Mingyue; Yuchi, Ming

    2013-03-01

    The limited diffraction beams such as X-wave have the properties of larger depth of field. Thus, it has the potential to generate ultra-high frame rate ultrasound images. However, in practice, the real-time generation of X-wave ultrasonic field requires complex and high-cost system, especially the precise and specific voltage time distribution part for the excitation of each distinct array element. In order to simplify the hardware realization of X-wave, based on the previous works, X-wave excitation signals were decomposed and expressed as the superposition of a group of simple driving pulses, such as rectangular and triangular waves. The hardware system for the X-wave generator was also designed. The generator consists of a computer for communication with the circuit, universal serial bus (USB) based micro-controller unit (MCU) for data transmission, field programmable gate array (FPGA) based Direct Digital Synthesizer(DDS), 12-bit digital-to-analog (D/A) converter and a two stage amplifier.The hardware simulation results show that the designed system can generate the waveforms at different radius approximating the theoretical X-wave excitations with a maximum error of 0.49% triggered by the quantification of amplitude data.

  14. Data acquisition instrument for EEG based on embedded system

    NASA Astrophysics Data System (ADS)

    Toresano, La Ode Husein Z.; Wijaya, Sastra Kusuma; Prawito, Sudarmaji, Arief; Syakura, Abdan; Badri, Cholid

    2017-02-01

    An electroencephalogram (EEG) is a device for measuring and recording the electrical activity of brain. The EEG data of signal can be used as a source of analysis for human brain function. The purpose of this study was to design a portable multichannel EEG based on embedded system and ADS1299. The ADS1299 is an analog front-end to be used as an Analog to Digital Converter (ADC) to convert analog signal of electrical activity of brain, a filter of electrical signal to reduce the noise on low-frequency band and a data communication to the microcontroller. The system has been tested to capture brain signal within a range of 1-20 Hz using the NETECH EEG simulator 330. The developed system was relatively high accuracy of more than 82.5%. The EEG Instrument has been successfully implemented to acquire the brain signal activity using a PC (Personal Computer) connection for displaying the recorded data. The final result of data acquisition has been processed using OpenBCI GUI (Graphical User Interface) based through real-time process for 8-channel signal acquisition, brain-mapping and power spectral decomposition signal using the standard FFT (Fast Fourier Transform) algorithm.

  15. Three Realizations and Comparison of Hardware for Piezoresistive Tactile Sensors

    PubMed Central

    Vidal-Verdú, Fernando; Oballe-Peinado, Óscar; Sánchez-Durán, José A.; Castellanos-Ramos, Julián; Navas-González, Rafael

    2011-01-01

    Tactile sensors are basically arrays of force sensors that are intended to emulate the skin in applications such as assistive robotics. Local electronics are usually implemented to reduce errors and interference caused by long wires. Realizations based on standard microcontrollers, Programmable Systems on Chip (PSoCs) and Field Programmable Gate Arrays (FPGAs) have been proposed by the authors for the case of piezoresistive tactile sensors. The solution employing FPGAs is especially relevant since their performance is closer to that of Application Specific Integrated Circuits (ASICs) than that of the other devices. This paper presents an implementation of such an idea for a specific sensor. For the purpose of comparison, the circuitry based on the other devices is also made for the same sensor. This paper discusses the implementation issues, provides details regarding the design of the hardware based on the three devices and compares them. PMID:22163797

  16. Attitude determination for small satellites using GPS signal-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Peters, Daniel

    An embedded system for GPS-based attitude determination (AD) using signal-to-noise (SNR) measurements was developed for CubeSat applications. The design serves as an evaluation testbed for conducting ground based experiments using various computational methods and antenna types to determine the optimum AD accuracy. Raw GPS data is also stored to non-volatile memory for downloading and post analysis. Two low-power microcontrollers are used for processing and to display information on a graphic screen for real-time performance evaluations. A new parallel inter-processor communication protocol was developed that is faster and uses less power than existing standard protocols. A shorted annular patch (SAP) antenna was fabricated for the initial ground-based AD experiments with the testbed. Static AD estimations with RMS errors in the range of 2.5° to 4.8° were achieved over a range of off-zenith attitudes.

  17. Development of an optical instrument to determine the pesticide residues in vegetables

    NASA Astrophysics Data System (ADS)

    Qiu, Zhengjun; Fang, Hui; Li, Weimin; He, Yong

    2005-12-01

    An optical instrument was developed to determine the pesticide residues in vegetables based on the inhibition rate of organophosphates against acrtyl-cholinesterase (AChE). The instrument consists mainly of a solid light source with 410nm wavelength, a sampling container to store the liquid, an optical sensor to test the intensity of transmission light, a temperature sensor, and a MCU based data acquisition board. The light illuminates the liquid in the sampling container, and the absorptivity was determined by the amount of the pesticide residues in the liquid. This paper involves the design of optical testing system, the data acquisition and calibration of the optical sensor, the design of microcontroller-based electrical board. Tests show that the absorption rate is related to the pesticide residues and it can be concluded that the pesticide residues exceed the normal level when the inhibition rate is over 50 percent.

  18. Intelligent Home Control System Based on Single Chip Microcomputer

    NASA Astrophysics Data System (ADS)

    Yang, Libo

    2017-12-01

    Intelligent home as a way to achieve the realization of the family information has become an important part of the development of social information, Internet of Things because of its huge application prospects, will be smart home industry in the development process of a more realistic breakthrough in the smart home industry development has great significance. This article is based on easy to implement, easy to operate, close to the use of the design concept, the use of STC89C52 microcontroller as the control core for the control terminal, and including infrared remote control, buttons, Web interface, including multiple control sources to control household appliances. The second chapter of this paper describes the design of the hardware and software part of the specific implementation, the fifth chapter is based on the design of a good function to build a specific example of the environment.

  19. An Overview of Communications Technology and Development Efforts for 2015 SBIR Phase I

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report highlights innovative SBIR 2015 Phase I projects specifically addressing areas in Communications Technology and Development which is one of six core competencies at NASA Glenn Research Center. There are fifteen technologies featured with emphasis on a wide spectrum of applications such as novel solid state lasers for space-based water vapor dial; wide temperature, high voltage and energy density capacitors for aerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser for methane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites; a SIC-based microcontroller for high-temperature in-situ instruments and systems; improved yield, performance and reliability of high-actuator-count deformable mirrors; embedded multifunctional optical sensor system; switching electronics for space-based telescopes with advanced AO systems; integrated miniature DBR laser module for Lidar instruments; and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. space-based water vapor dial; wide temperature, high voltage and energy density capacitors foraerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser formethane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites.

  20. [Microcontroller temperature regulator MPT110 for drying-sterilizing cabinets].

    PubMed

    Kostin, N N; Gavrishchuk, V I; Zelepukin, S A; Shkulepa, V M; Zharov, E N

    2002-01-01

    The paper describes a MPT-110 temperature microcontroller developed by the closed joint-stock company "OPLEKS" (Orel, Russia) and the results of comparative tests performed in the @IIICC-80 drying sterilizing cabinet. The use of the MPT-110 controller is shown to improve the quality of control and to shorten the times that is taken for the cabinet to reach the preset temperature point.

  1. Heavy-Ion Testing of the Freescale Qorivva 32-bit Automotive-Grade MCU

    NASA Technical Reports Server (NTRS)

    Wilcox, Ted; Seidleck, Christina; Casey, Megan; LaBel, Ken

    2016-01-01

    We present single-event effects testing results from a commercially-available automotive microcontroller. We discuss the difficulties encountered testing with commercially-provided evaluation boards while attempting to classify the complex and varied failure modes of a modern 32-bit microcontroller. This work also describes some of the possible advantages to using off-the-shelf automotive-grade electronics for low-risk aerospace applications.

  2. Conception d'un capteur intelligent pour la détection des vapeurs de styrène dans l'industrie

    NASA Astrophysics Data System (ADS)

    Agbossou, Kodjo; Agbebavi, T. James; Koffi, Demagna; Elhiri, Mohammed

    1994-10-01

    The techniques of measurement of toxic gases are nowadays based on the semiconductor type sensors. The modelling and the electronic processing of their signals can be used to improve the accuracy and the efficiency of the measurement. In this paper, an intelligent system using a semiconductor sensor has been designed for the detection of the styrene vapors. A set of the environmental parameters sensors such as the temperature, the pressure and the humidity, is added to the basic sensor and allows a precise detection of the styrene vapors in air. A microcontroller and a communication interface, that are included in the control system and in the data processing system, provide the local intelligence. The linearization routines of the differents sensors are in the memory of the microcontroller. The system made of the sensors, of the amplification circuits, of the microcontroller and of the communication network between the smart sensor and the computer is analysed. A laboratory test of the device is presented and the accuracies and efficiencies of the differents sensors are given. Les techniques fiables de quantification des gaz polluants sont aujourd'hui basées sur l'utilisation des détecteurs à récepteurs chimiques et sur des capteurs à semiconducteurs. La modélisation et le traitement numérique des signaux résultants sont importants pour une mesure efficace et précise dans un milieu donné. Dans cet article, un capteur intelligent, utilisant un détecteur de gaz type semiconducteur a été réalisé pour la détection des vapeurs de styrène. Un ensemble de détecteurs des paramètres environnementaux, tels que la température, la pression et l'humidité, ajoutés au capteur de styrène, permettent de mesurer avec un bon contrôle les vapeurs de styrène dans l'air. Le système de contrôle et de gestion local des données est constitué d'un microcontrôleur et d'une interface de communication. Le microcontrôleur contient dans sa mémoire toutes les fonctions de linéarisation des différents capteurs. Cet ensemble de capteurs, de circuits conditionneurs, de microcontrôleur et d'interface de communication est appelé " capteur intelligent ". Le réseau de communication entre le capteur intelligent et le micro-ordinateur est analysé en terme de traitement de signal. Un exemple d'application au laboratoire est présenté, les sensibilités et les précisions des différents capteurs sont données.

  3. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics.

    PubMed

    Kim, Jayoung; Imani, Somayeh; de Araujo, William R; Warchall, Julian; Valdés-Ramírez, Gabriela; Paixão, Thiago R L C; Mercier, Patrick P; Wang, Joseph

    2015-12-15

    This article demonstrates an instrumented mouthguard capable of non-invasively monitoring salivary uric acid (SUA) levels. The enzyme (uricase)-modified screen printed electrode system has been integrated onto a mouthguard platform along with anatomically-miniaturized instrumentation electronics featuring a potentiostat, microcontroller, and a Bluetooth Low Energy (BLE) transceiver. Unlike RFID-based biosensing systems, which require large proximal power sources, the developed platform enables real-time wireless transmission of the sensed information to standard smartphones, laptops, and other consumer electronics for on-demand processing, diagnostics, or storage. The mouthguard biosensor system offers high sensitivity, selectivity, and stability towards uric acid detection in human saliva, covering the concentration ranges for both healthy people and hyperuricemia patients. The new wireless mouthguard biosensor system is able to monitor SUA level in real-time and continuous fashion, and can be readily expanded to an array of sensors for different analytes to enable an attractive wearable monitoring system for diverse health and fitness applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics

    PubMed Central

    Kim, Jayoung; Imani, Somayeh; de Araujo, William R.; Warchall, Julian; Valdés-Ramírez, Gabriela; Paixão, Thiago R.L.C.; Mercier, Patrick P.; Wang, Joseph

    2016-01-01

    This article demonstrates an instrumented mouthguard capable of non-invasively monitoring salivary uric acid (SUA) levels. The enzyme (uricase)-modified screen printed electrode system has been integrated onto a mouthguard platform along with anatomically-miniaturized instrumentation electronics featuring a potentiostat, microcontroller, and a Bluetooth Low Energy (BLE) transceiver. Unlike RFID-based biosensing systems, which require large proximal power sources, the developed platform enables real-time wireless transmission of the sensed information to standard smartphones, laptops, and other consumer electronics for on-demand processing, diagnostics, or storage. The mouthguard biosensor system offers high sensitivity, selectivity, and stability towards uric acid detection in human saliva, covering the concentration ranges for both healthy people and hyperuricemia patients. The new wireless mouthguard biosensor system is able to monitor SUA level in real-time and continuous fashion, and can be readily expanded to an array of sensors for different analytes to enable an attractive wearable monitoring system for diverse health and fitness applications. PMID:26276541

  5. Design and Implementation of an Intelligent Windowsill System Using Smart Handheld Device and Fuzzy Microcontroller

    PubMed Central

    Wang, Jing-Min; Yang, Ming-Ta; Chen, Po-Lin

    2017-01-01

    With the advance of science and technology, people have a desire for convenient and comfortable living. Creating comfortable and healthy indoor environments is a major consideration for designing smart homes. As handheld devices become increasingly powerful and ubiquitous, this paper proposes an innovative use of smart handheld devices (SHD), using MIT App Inventor and fuzzy control, to perform the real-time monitoring and smart control of the designed intelligent windowsill system (IWS) in a smart home. A compact weather station that consists of environment sensors was constructed in the IWS for measuring of indoor illuminance, temperature-humidity, carbon dioxide (CO2) concentration and outdoor rain and wind direction. According to the measured environment information, the proposed system can automatically send a command to a fuzzy microcontroller performed by Arduino UNO to fully or partly open the electric curtain and electric window for adapting to climate changes in the indoor and outdoor environment. Moreover, the IWS can automatically close windows for rain splashing on the window. The presented novel control method for the windowsill not only expands the SHD applications, but greatly enhances convenience to users. To validate the feasibility and effectiveness of the IWS, a laboratory prototype was built and confirmed experimentally. PMID:28398266

  6. Design and Implementation of an Intelligent Windowsill System Using Smart Handheld Device and Fuzzy Microcontroller.

    PubMed

    Wang, Jing-Min; Yang, Ming-Ta; Chen, Po-Lin

    2017-04-11

    With the advance of science and technology, people have a desire for convenient and comfortable living. Creating comfortable and healthy indoor environments is a major consideration for designing smart homes. As handheld devices become increasingly powerful and ubiquitous, this paper proposes an innovative use of smart handheld devices (SHD), using MIT App Inventor and fuzzy control, to perform the real-time monitoring and smart control of the designed intelligent windowsill system (IWS) in a smart home. A compact weather station that consists of environment sensors was constructed in the IWS for measuring of indoor illuminance, temperature-humidity, carbon dioxide (CO₂) concentration and outdoor rain and wind direction. According to the measured environment information, the proposed system can automatically send a command to a fuzzy microcontroller performed by Arduino UNO to fully or partly open the electric curtain and electric window for adapting to climate changes in the indoor and outdoor environment. Moreover, the IWS can automatically close windows for rain splashing on the window. The presented novel control method for the windowsill not only expands the SHD applications, but greatly enhances convenience to users. To validate the feasibility and effectiveness of the IWS, a laboratory prototype was built and confirmed experimentally.

  7. Design and construction of smart cane using infrared laser-based tracking system

    NASA Astrophysics Data System (ADS)

    Wong, Chi Fung; Phitagragsakul, Narikorn; Jornsamer, Patcharaporn; Kaewmeesri, Pimsin; Jantakot, Pimsunan; Locharoenrat, Kitsakorn

    2018-06-01

    Our work is aimed to design and construct the smart cane. The infrared laser-based sensor was used as a distance detector and Arduino board was used as a microcontroller. On the other hand, Bluetooth was used as a wireless communicator and MP3 module together with the headset were used as a voice alert player. Our smart cane is a very effective device for the users under the indoor guidance. That is, the obstacle was detectable 3,000 cm away from the blind people. The white cane was assembled with the laser distance sensor and distance alert sensor served as the compact and light-weight device. Distance detection was very fast and precise when the smart cane was tested for the different obstacles, such as human, wall and wooden table under the indoor area.

  8. Optimal Power Flow Pursuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Simonetto, Andrea

    This paper considers distribution networks featuring inverter-interfaced distributed energy resources, and develops distributed feedback controllers that continuously drive the inverter output powers to solutions of AC optimal power flow (OPF) problems. Particularly, the controllers update the power setpoints based on voltage measurements as well as given (time-varying) OPF targets, and entail elementary operations implementable onto low-cost microcontrollers that accompany power-electronics interfaces of gateways and inverters. The design of the control framework is based on suitable linear approximations of the AC power-flow equations as well as Lagrangian regularization methods. Convergence and OPF-target tracking capabilities of the controllers are analytically established. Overall,more » the proposed method allows to bypass traditional hierarchical setups where feedback control and optimization operate at distinct time scales, and to enable real-time optimization of distribution systems.« less

  9. An observatory control system for the University of Hawai'i 2.2m Telescope

    NASA Astrophysics Data System (ADS)

    McKay, Luke; Erickson, Christopher; Mukensnable, Donn; Stearman, Anthony; Straight, Brad

    2016-07-01

    The University of Hawai'i 2.2m telescope at Maunakea has operated since 1970, and has had several controls upgrades to date. The newest system will operate as a distributed hierarchy of GNU/Linux central server, networked single-board computers, microcontrollers, and a modular motion control processor for the main axes. Rather than just a telescope control system, this new effort is towards a cohesive, modular, and robust whole observatory control system, with design goals of fully robotic unattended operation, high reliability, and ease of maintenance and upgrade.

  10. A fast and accurate surface plasmon resonance system

    NASA Astrophysics Data System (ADS)

    Espinosa Sánchez, Y. M.; Luna Moreno, D.; Noé Arias, E.; Garnica Campos, G.

    2012-10-01

    In this work we propose a Surface Plasmon Resonance (SPR) system driven by Labview software which produces a fast, simple and accuracy measurements of samples. The system takes 2000 data in a range of 20 degrees in 20 seconds and 0.01 degrees of resolution. All the information is sent from the computer to the microcontroller as an array of bytes in hexadecimal format to be analyzed. Besides to using the system in SPR measurement is possible to make measurement of the critic angle, and Brewster angle using the Abeles method.

  11. A Low Cost Concept for Data Acquisition Systems Applied to Decentralized Renewable Energy Plants

    PubMed Central

    Jucá, Sandro C. S.; Carvalho, Paulo C. M.; Brito, Fábio T.

    2011-01-01

    The present paper describes experiences of the use of monitoring and data acquisition systems (DAS) and proposes a new concept of a low cost DAS applied to decentralized renewable energy (RE) plants with an USB interface. The use of such systems contributes to disseminate these plants, recognizing in real time local energy resources, monitoring energy conversion efficiency and sending information concerning failures. These aspects are important, mainly for developing countries, where decentralized power plants based on renewable sources are in some cases the best option for supplying electricity to rural areas. Nevertheless, the cost of commercial DAS is still a barrier for a greater dissemination of such systems in developing countries. The proposed USB based DAS presents a new dual clock operation philosophy, in which the acquisition system contains two clock sources for parallel information processing from different communication protocols. To ensure the low cost of the DAS and to promote the dissemination of this technology in developing countries, the proposed data acquisition firmware and the software for USB microcontrollers programming is a free and open source software, executable in the Linux and Windows® operating systems. PMID:22346600

  12. A low cost concept for data acquisition systems applied to decentralized renewable energy plants.

    PubMed

    Jucá, Sandro C S; Carvalho, Paulo C M; Brito, Fábio T

    2011-01-01

    The present paper describes experiences of the use of monitoring and data acquisition systems (DAS) and proposes a new concept of a low cost DAS applied to decentralized renewable energy (RE) plants with an USB interface. The use of such systems contributes to disseminate these plants, recognizing in real time local energy resources, monitoring energy conversion efficiency and sending information concerning failures. These aspects are important, mainly for developing countries, where decentralized power plants based on renewable sources are in some cases the best option for supplying electricity to rural areas. Nevertheless, the cost of commercial DAS is still a barrier for a greater dissemination of such systems in developing countries. The proposed USB based DAS presents a new dual clock operation philosophy, in which the acquisition system contains two clock sources for parallel information processing from different communication protocols. To ensure the low cost of the DAS and to promote the dissemination of this technology in developing countries, the proposed data acquisition firmware and the software for USB microcontrollers programming is a free and open source software, executable in the Linux and Windows® operating systems.

  13. Vertical farming monitoring system using the internet of things (IoT)

    NASA Astrophysics Data System (ADS)

    Chin, Yap Shien; Audah, Lukman

    2017-09-01

    Vertical farming had become a hot topic among peak development countries. However, vertical farming is hard to practice because minor changes on the surrounding would leave big impact to the productivity and quality of farming activity. Thus, the aim of this project is to provide a vertical farming monitoring system to help keeping track on the physical conditions of crops. In this system, varieties of sensors will be used to detect current physical conditions, and send the data to BeagleBone Black (BBB) microcontroller either in analog or digital input. Then, the data will be processed by BBB and upload to the Thingspeak Cloud. Furthermore, the system will record the position of equipment in used, which make it easier for maintenance when there is equipment broken down. The system also provide basic remote function where users could turn on/off the watering system, and the LED light via web-based application. The web-based application will also be designed to analyze and display data gathered in the form of graphs, charts or figures, for better understanding. With the improvement implemented on the vertical farming culture, it is expected that the productivity and quality of crops would increase significantly.

  14. An RF-based wearable sensor system for indoor tracking to facilitate efficient healthcare management.

    PubMed

    Yuzhe Ouyang; Shan, Kai; Bui, Francis Minhthang

    2016-08-01

    To understand the utilization of clinical resources and improve the efficiency of healthcare, it is often necessary to accurately locate patients and doctors in a healthcare facility. However, existing tracking methods, such as GPS, Wi-Fi and RFID, have technological drawbacks or impose significant costs, thus limiting their applications in many clinical environments, especially those with indoor enclosures. This paper proposes a low-cost and flexible tracking system that is well suited for operating in an indoor environment. Based on readily available RF transceivers and microcontrollers, our wearable sensor system can facilitate locating users (e.g., patients or doctors) or objects (e.g., medical devices) in a building. The strategic construction of the sensor system, along with a suitably designed tracking algorithm, together provide for reliability and dispatch in localization performance. For demonstration purposes, several simplified experiments, with different configurations of the system, are implemented in two testing rooms to assess the baseline performance. From the obtained results, our system exhibits immense promise in acquiring a user location and corresponding time-stamp, with high accuracy and rapid response. This capability is conducive to both short- and long-term data analytics, which are crucial for improving healthcare management.

  15. An exergame system based on force platforms and body key-point detection for balance training.

    PubMed

    Lavarda, Marcos D; de Borba, Pedro A; Oliveira, Matheus R; Borba, Gustavo B; de Souza, Mauren A; Gamba, Humberto R

    2016-08-01

    Postural instability affects a large number of people and can compromise even simple activities of the daily routine. Therapies for balance training can strongly benefit from auxiliary devices specially designed for this purpose. In this paper, we present a system for balance training that uses the metaphor of a game, what contributes to the motivation and engagement of the patients during a treatment. Such approach is usually named exergame, in which input devices for posturographic assessment and a visual output perform the interaction with the subject. The proposed system uses two force platforms, one positioned under the feet and the other under the hip of the subject. The force platforms employ regular load cells and a microcontroller-based signal acquisition module to capture and transmit the samples to a computer. Moreover, a computer vision module performs body key-point detection, based on real time segmentation of markers attached to the subject. For the validation of the system, we conducted experiments with 20 neurologically intact volunteers during two tests: comparison of the stabilometric parameters obtained from the system with those obtained from a commercial baropodometer and the practice of several exergames. Results show that the proposed system is completely functional and can be used as a versatile tool for balance training.

  16. Development of a hardware-based AC microgrid for AC stability assessment

    NASA Astrophysics Data System (ADS)

    Swanson, Robert R.

    As more power electronic-based devices enable the development of high-bandwidth AC microgrids, the topic of microgrid power distribution stability has become of increased interest. Recently, researchers have proposed a relatively straightforward method to assess the stability of AC systems based upon the time-constants of sources, the net bus capacitance, and the rate limits of sources. In this research, a focus has been to develop a hardware test system to evaluate AC system stability. As a first step, a time domain model of a two converter microgrid was established in which a three phase inverter acts as a power source and an active rectifier serves as an adjustable constant power AC load. The constant power load can be utilized to create rapid power flow transients to the generating system. As a second step, the inverter and active rectifier were designed using a Smart Power Module IGBT for switching and an embedded microcontroller as a processor for algorithm implementation. The inverter and active rectifier were designed to operate simultaneously using a synchronization signal to ensure each respective local controller operates in a common reference frame. Finally, the physical system was created and initial testing performed to validate the hardware functionality as a variable amplitude and variable frequency AC system.

  17. A Portable Farmland Information Collection System with Multiple Sensors.

    PubMed

    Zhang, Jianfeng; Hu, Jinyang; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian

    2016-10-22

    Precision agriculture is the trend of modern agriculture, and it is also one of the important ways to realize the sustainable development of agriculture. In order to meet the production requirements of precision agriculture-efficient use of agricultural resources, and improving the crop yields and quality-some necessary field information in crop growth environment needs to be collected and monitored. In this paper, a farmland information collection system is developed, which includes a portable farmland information collection device based on STM32 (a 32-bit comprehensive range of microcontrollers based on ARM Crotex-M3), a remote server and a mobile phone APP. The device realizes the function of portable and mobile collecting of multiple parameters farmland information, such as chlorophyll content of crop leaves, air temperature, air humidity, and light intensity. UM220-III (Unicore Communication Inc., Beijing, China) is used to realize the positioning based on BDS/GPS (BeiDou Navigation Satellite System, BDS/Global Positioning System, GPS) dual-mode navigation and positioning system, and the CDMA (Code Division Multiple Access, CDMA) wireless communication module is adopted to realize the real-time remote transmission. The portable multi-function farmland information collection system is real-time, accurate, and easy to use to collect farmland information and multiple information parameters of crops.

  18. A Portable Farmland Information Collection System with Multiple Sensors

    PubMed Central

    Zhang, Jianfeng; Hu, Jinyang; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian

    2016-01-01

    Precision agriculture is the trend of modern agriculture, and it is also one of the important ways to realize the sustainable development of agriculture. In order to meet the production requirements of precision agriculture—efficient use of agricultural resources, and improving the crop yields and quality—some necessary field information in crop growth environment needs to be collected and monitored. In this paper, a farmland information collection system is developed, which includes a portable farmland information collection device based on STM32 (a 32-bit comprehensive range of microcontrollers based on ARM Crotex-M3), a remote server and a mobile phone APP. The device realizes the function of portable and mobile collecting of multiple parameters farmland information, such as chlorophyll content of crop leaves, air temperature, air humidity, and light intensity. UM220-III (Unicore Communication Inc., Beijing, China) is used to realize the positioning based on BDS/GPS (BeiDou Navigation Satellite System, BDS/Global Positioning System, GPS) dual-mode navigation and positioning system, and the CDMA (Code Division Multiple Access, CDMA) wireless communication module is adopted to realize the real-time remote transmission. The portable multi-function farmland information collection system is real-time, accurate, and easy to use to collect farmland information and multiple information parameters of crops. PMID:27782076

  19. Design and implementation of a Bluetooth-based infant monitoring/saver (BIMS) system

    NASA Astrophysics Data System (ADS)

    Sonmez, Ahmet E.; Nalcaci, Murat T.; Pazarbasi, Mehmet A.; Toker, Onur; Fidanboylu, Kemal

    2007-04-01

    In this work, we discuss the design and implementation of a Bluetooth technology based infant monitoring system, which will enable the mother to monitor her baby's health condition remotely in real-time. The system will measure the heart rate, and temperature of the infant, and stream this data to the mother's Bluetooth based mobile unit, e.g. cell phone, PDA, etc. Existing infant monitors either require so many cables, or transmit only voice and/or video information, which is not enough for monitoring the health condition of an infant. With the proposed system, the mother will be warned against any abnormalities, which may be an indication of a disease, which in turn may result a sudden infant death. High temperature is a common symptom for several diseases, and heart rate is an essential sign of life, low or high heart rates are also essentials symptoms. Because of these reasons, the proposed system continously measures these two critical values. A 12 bits digital temperature sensor is used to measure infant's body temperature, and a piezo film sensor is used measure infant's heartbeat rate. These sensors, some simple analog circuitry, and a ToothPick unit are the main components of our embedded system. ToothPick unit is basically a Microchip 18LF6720 microcontroller, plus an RF circuitry with Bluetooth stack.

  20. Arduino-Based Data Acquisition into Excel, LabVIEW, and MATLAB

    ERIC Educational Resources Information Center

    Nichols, Daniel

    2017-01-01

    Data acquisition equipment for physics can be quite expensive. As an alternative, data can be acquired using a low-cost Arduino microcontroller. The Arduino has been used in physics labs where the data are acquired using the Arduino software. The Arduino software, however, does not contain a suite of tools for data fitting and analysis. The data…

  1. A PDA-based electrocardiogram/blood pressure telemonitor for telemedicine.

    PubMed

    Bolanos, Marcos; Nazeran, Homayoun; Gonzalez, Izzac; Parra, Ricardo; Martinez, Christopher

    2004-01-01

    An electrocardiogram (ECG) / blood pressure (BP) telemonitor consisting of comprehensive integration of various electrical engineering concepts, devices, and methods was developed. This personal digital assistant-based (PDAbased) system focused on integration of biopotential amplifiers, photoplethysmographic measurement of blood pressure, microcontroller devices, programming methods, wireless transmission, signal filtering and analysis, interfacing, and long term memory devices (24 hours) to develop a state-of-the-art ECG/BP telemonitor. These instrumentation modules were developed and tested to realize a complete and compact system that could be deployed to assist in telemedicine applications and heart rate variability studies. The specific objective of this device was to facilitate the long term monitoring and recording of ECG and blood pressure signals. This device was able to acquire ECG/BP waveforms, transmit them wirelessly to a PDA, save them onto a compact flash memory, and display them on the LCD screen of the PDA. It was also capable of calculating the heart rate (HR) in beats per minute, and providing systolic and diastolic blood pressure values.

  2. An automated Y-maze based on a reduced instruction set computer (RISC) microcontroller for the assessment of continuous spontaneous alternation in rats.

    PubMed

    Heredia-López, Francisco J; Álvarez-Cervera, Fernando J; Collí-Alfaro, José G; Bata-García, José L; Arankowsky-Sandoval, Gloria; Góngora-Alfaro, José L

    2016-12-01

    Continuous spontaneous alternation behavior (SAB) in a Y-maze is used for evaluating working memory in rodents. Here, the design of an automated Y-maze equipped with three infrared optocouplers per arm, and commanded by a reduced instruction set computer (RISC) microcontroller is described. The software was devised for recording only true entries and exits to the arms. Experimental settings are programmed via a keyboard with three buttons and a display. The sequence of arm entries and the time spent in each arm and the neutral zone (NZ) are saved as a text file in a non-volatile memory for later transfer to a USB flash memory. Data files are analyzed with a program developed under LabVIEW® environment, and the results are exported to an Excel® spreadsheet file. Variables measured are: latency to exit the starting arm, sequence and number of arm entries, number of alternations, alternation percentage, and cumulative times spent in each arm and NZ. The automated Y-maze accurately detected the SAB decrease produced in rats by the muscarinic antagonist trihexyphenidyl, and its reversal by caffeine, having 100 % concordance with the alternation percentages calculated by two trained observers who independently watched videos of the same experiments. Although the values of time spent in the arms and NZ measured by the automated system had small discrepancies with those calculated by the observers, Bland-Altman analysis showed 95 % concordance in three pairs of comparisons, while in one it was 90 %, indicating that this system is a reliable and inexpensive alternative for the study of continuous SAB in rodents.

  3. Automated Car Park Management System

    NASA Astrophysics Data System (ADS)

    Fabros, J. P.; Tabañag, D.; Espra, A.; Gerasta, O. J.

    2015-06-01

    This study aims to develop a prototype for an Automated Car Park Management System that will increase the quality of service of parking lots through the integration of a smart system that assists motorist in finding vacant parking lot. The research was based on implementing an operating system and a monitoring system for parking system without the use of manpower. This will include Parking Guidance and Information System concept which will efficiently assist motorists and ensures the safety of the vehicles and the valuables inside the vehicle. For monitoring, Optical Character Recognition was employed to monitor and put into list all the cars entering the parking area. All parking events in this system are visible via MATLAB GUI which contain time-in, time-out, time consumed information and also the lot number where the car parks. To put into reality, this system has a payment method, and it comes via a coin slot operation to control the exit gate. The Automated Car Park Management System was successfully built by utilizing microcontrollers specifically one PIC18f4550 and two PIC16F84s and one PIC16F628A.

  4. A microcontroller system for investigating the catch effect: functional electrical stimulation of the common peroneal nerve.

    PubMed

    Hart, D J; Taylor, P N; Chappell, P H; Wood, D E

    2006-06-01

    Correction of drop foot in hemiplegic gait is achieved by electrical stimulation of the common peroneal nerve with a series of pulses at a fixed frequency. However, during normal gait, the electromyographic signals from the tibialis anterior muscle indicate that muscle force is not constant but varies during the swing phase. The application of double pulses for the correction of drop foot may enhance the gait by generating greater torque at the ankle and thereby increase the efficiency of the stimulation with reduced fatigue. A flexible controller has been designed around the Odstock Drop Foot Stimulator to deliver different profiles of pulses implementing doublets and optimum series. A peripheral interface controller (PIC) microcontroller with some external circuits has been designed and tested to accommodate six profiles. Preliminary results of the measurements from a normal subject seated in a multi-moment chair (an isometric torque measurement device) indicate that profiles containing doublets and optimum spaced pulses look favourable for clinical use.

  5. The Drifter Platform for Measurements in Small Rivers

    NASA Astrophysics Data System (ADS)

    Kruger, A.; Niemeier, J. J.; Ceynar, D. L.

    2011-12-01

    Researchers at The University of Iowa have been developing a small, inexpensive floating sensor platform to enable a variety of measurements in small rivers. The platform, dubbed "drifters" consists of a PVC housing and small inflatable rubber tube, data collection electronics, and several sensors. Upon release at strategic locations and times in a river network, drifters interrogate their GPS modules for position, time, and velocity. Researchers then collect the drifters and download and analyze position and velocity data. While our primary interest is to observe river network surface water flows, drifters have the broader application of serving as instrumentation platforms for other sensors such a temperature and turbidity. The drifters are structured as follows. A temperature-compensated MEMS clock provides accurate time information. A GPS disciplines this clock and provides georeference information. A low-power microcontroller orchestrates the data collection on the drifter. The standard sensor configuration of the drifter incorporates the GPS, air- and water temperature sensors, a water turbidity sensor, and an accelerometer. The microcontroller stores the collected data on a high-capacity, non-volatile Flash memory card. Each drifter has a bar code sticker, a small RFID tag, and a unique electronic ID embedded in the electronics. These allow us to manage a fleet of drifters and the data they collect. Each drifter has contact information in case a drifter is lost, and an inexpensive short-range radio and a beeper. These allow for determining the locations of the drifters at the conclusion of an experiment as follows. The microcontroller periodically turns on the receiver and listens for the instruction to turn on the beeper. The beeper, when activated, generates a piercing sound that helps operators locate the drifter. The microcontroller also blinks a super bright LED. Two AA-size alkaline batteries typically power the system. The maximum data collection period is dependent on the number of sensors a user activates, the type of battery utilized (alkaline, lithium, NiMH, etc.), the sample rate, and ranges from 12-72 hours. We have collected several data sets in Iowa.

  6. Mobile based Appliances switching using Bluetooth

    NASA Astrophysics Data System (ADS)

    Gupta, Sureshchandra J., Dr; Desai, Kalp; Gaikawad, Deepak; Pawar, Vijay N.; Gangal, Devendranath R.

    2008-04-01

    How many times do you have to get up from your desk to switch on your Air conditioner or fan when you are completely into your table work? How many times do you feel lazy to get off your comfort to switch on/off your home appliances in different rooms? How much energy do you lose in a day for operating your appliances? The solution is either a large amount of manual work—or the idea that is presented over here: APP-CON (APP-CON stands for appliances control). Here the ordinary cell phone with bluetooth capability acts as remote designed in such a manner that it acts as a helping hand to human by reducing its manual work and therefore saving human energy. The cell phone control of APP-CON units lets you access many of your home appliances situated in different rooms by using just a single remote from distance. Electronics hobbyists would love to make such a remote control themselves. But they find it difficult due to complex circuitry rather than the high cost because of using a number of frequency counting techniques and decade counters. The APP-CON system given here overcomes the aforesaid problems by using a single microcontroller and moreover a simple program or software for bluetooth enabled cell phone and employing simple coding and decoding of remote signals. Here the mobile based remote control is used to operate a number of home appliances basically consists of Bluetooth technology. The unit consists of a transmitter and a receiver consisting of a microcontroller. The importance of bluetooth technology is that the signal to be transmitted from transmitter to the receiver is done without requiring line of sight.

  7. Project-based physics labs using low-cost open-source hardware

    NASA Astrophysics Data System (ADS)

    Bouquet, F.; Bobroff, J.; Fuchs-Gallezot, M.; Maurines, L.

    2017-03-01

    We describe a project-based physics lab, which we proposed to third-year university students. These labs are based on new open-source low-cost equipment (Arduino microcontrollers and compatible sensors). Students are given complete autonomy: they develop their own experimental setup and study the physics topic of their choice. The goal of these projects is to let students to discover the reality of experimental physics. Technical specifications of the acquisition material and case studies are presented for practical implementation in other universities.

  8. Random noise can help to improve synchronization of excimer laser pulses.

    PubMed

    Mingesz, Róbert; Barna, Angéla; Gingl, Zoltán; Mellár, János

    2016-02-01

    Recently, we have reported on a compact microcontroller-based unit developed to accurately synchronize excimer laser pulses (Mingesz et al. 2012 Fluct. Noise Lett. 11, 1240007 (doi:10.1142/S021947751240007X)). We have shown that dithering based on random jitter noise plus pseudorandom numbers can be used in the digital control system to radically reduce the long-term drift of the laser pulse from the trigger and to improve the accuracy of the synchronization. In this update paper, we present our new experimental results obtained by the use of the delay-controller unit to tune the timing of a KrF excimer laser as an addition to our previous numerical simulation results. The hardware was interfaced to the laser using optical signal paths in order to reduce sensitivity to electromagnetic interference and the control algorithm tested by simulations was applied in the experiments. We have found that the system is able to reduce the delay uncertainty very close to the theoretical limit and performs well in real applications. The simple, compact and flexible system is universal enough to also be used in various multidisciplinary applications.

  9. A luminescence lifetime assisted ratiometric fluorimeter for biological applications.

    PubMed

    Lam, Hung; Kostov, Yordan; Rao, Govind; Tolosa, Leah

    2009-12-01

    In general, the most difficult task in developing devices for fluorescence ratiometric sensing is the isolation of signals from overlapping emission wavelengths. Wavelength discrimination can be achieved by using monochromators or bandpass filters, which often lead to decreased signal intensities. The result is a device that is both complex and expensive. Here we present an alternative system--a low-cost standalone optical fluorimeter based on luminescence lifetime assisted ratiometric sensing (LARS). This paper describes the principle of this technique and the overall design of the sensor device. The most significant innovation of LARS is the ability to discriminate between two overlapping luminescence signals based on differences in their luminescence decay rates. Thus, minimal filtering is required and the two signals can be isolated despite significant overlap of luminescence spectra. The result is a device that is both simple and inexpensive. The electronic circuit employs the lock-in amplification technique for the signal processing and the system is controlled by an onboard microcontroller. In addition, the system is designed to communicate with external devices via Bluetooth.

  10. Haptics using a smart material for eyes-free interaction in personal devices

    NASA Astrophysics Data System (ADS)

    Wang, Huihui; Lane, William Brian; Pappas, Devin; Duque, Bryam; Leong, John

    2014-03-01

    In this paper we present a prototype using a dry ionic polymer metal composite (IPMC) in interactive personal devices such as bracelet, necklace, pocket key chain or mobile devices for haptic interaction when audio or visual feedback is not possible or practical. This prototype interface is an electro-mechanical system that realizes a shape-changing haptic display for information communication. A dry IPMC will change its dimensions due to the electrostatic effect when an electrical potential is provided to them. The IPMC can operate at a lower voltage (less than 2.5V) which is compatible with requirements for personal electrical devices or mobile devices. The prototype consists of the addressable arrays of the IPMCs with different dimensions which are deformable to different shapes with proper handling or customization. 3D printing technology will be used to form supporting parts. Microcontrollers (about 3cm square) from DigiKey will be imbedded into this personal device. An Android based mobile APP will be developed to talk with microcontrollers to control IPMCs. When personal devices receive information signals, the original shape of the prototype will change to another shape related to the specific sender or types of information sources. This interactive prototype can simultaneously realize multiple methods for conveying haptic information such as dimension, force, and texture due to the flexible array design. We conduct several studies of user experience to explore how users' respond to shape change information.

  11. Passive UHF RFID Tag for Multispectral Assessment

    PubMed Central

    Escobedo, Pablo; Carvajal, Miguel A.; Capitán-Vallvey, Luis F.; Fernández-Salmerón, José; Martínez-Olmos, Antonio; Palma, Alberto J.

    2016-01-01

    This work presents the design, fabrication, and characterization of a passive printed radiofrequency identification tag in the ultra-high-frequency band with multiple optical sensing capabilities. This tag includes five photodiodes to cover a wide spectral range from near-infrared to visible and ultraviolet spectral regions. The tag antenna and circuit connections have been screen-printed on a flexible polymeric substrate. An ultra-low-power microcontroller-based switch has been included to measure the five magnitudes issuing from the optical sensors, providing a spectral fingerprint of the incident electromagnetic radiation from ultraviolet to infrared, without requiring energy from a battery. The normalization procedure has been designed applying illuminants, and the entire system was tested by measuring cards from a colour chart and sensing fruit ripening. PMID:27428973

  12. Passive UHF RFID Tag for Multispectral Assessment.

    PubMed

    Escobedo, Pablo; Carvajal, Miguel A; Capitán-Vallvey, Luis F; Fernández-Salmerón, José; Martínez-Olmos, Antonio; Palma, Alberto J

    2016-07-14

    This work presents the design, fabrication, and characterization of a passive printed radiofrequency identification tag in the ultra-high-frequency band with multiple optical sensing capabilities. This tag includes five photodiodes to cover a wide spectral range from near-infrared to visible and ultraviolet spectral regions. The tag antenna and circuit connections have been screen-printed on a flexible polymeric substrate. An ultra-low-power microcontroller-based switch has been included to measure the five magnitudes issuing from the optical sensors, providing a spectral fingerprint of the incident electromagnetic radiation from ultraviolet to infrared, without requiring energy from a battery. The normalization procedure has been designed applying illuminants, and the entire system was tested by measuring cards from a colour chart and sensing fruit ripening.

  13. An Electronic System for the Contactless Reading of ECG Signals.

    PubMed

    Parente, Francesca Romana; Santonico, Marco; Zompanti, Alessandro; Benassai, Mario; Ferri, Giuseppe; D'Amico, Arnaldo; Pennazza, Giorgio

    2017-10-28

    The aim of this work is the development of a contactless capacitive sensory system for the detection of (Electrocardiographic) ECG-like signals. The acquisition approach is based on a capacitive coupling with the patient body performed by electrodes integrated in a front-end circuit. The proposed system is able to detect changes in the electric charge related to the heart activity. Due to the target signal weakness and to the presence of other undesired signals, suitable amplification stages and analogue filters are required. Simulated results allowed us to evaluate the effectiveness of the approach, whereas experimental measurements, recorded without contact to the skin, have validated the practical effectiveness of the proposed architecture. The system operates with a supply voltage of ±9 V with an overall power consumption of about 10 mW. The analogue output of the electronic interface is connected to an ATmega328 microcontroller implementing the A/D conversion and the data acquisition. The collected data can be displayed on any multimedia support for real-time tracking applications.

  14. System Security And Monitoring On Smart Home Using Android

    NASA Astrophysics Data System (ADS)

    Romadhon, A. S.

    2018-01-01

    Home security system is needed for homeowners who have a lot of activities, as a result, they often leave the house without locking the door and even leave the house in a state of lights that are not lit. In order to overcome this case, a system that can control and can monitor the state of the various devices contained in the house or smart home system is urgently required. The working principle of this smart home using android is when the homeowner sends a certain command using android, the command will be forwarded to the microcontroller and then it will be executed based on the parameters that have been determined. For example, it can turn off and on the light using android app. In this study, testing was conducted to a smart home prototype which is equipped with light bulbs, odour sensors, heat sensors, ultrasonic sensors, LDR, buzzer and camera. The test results indicate that the application has been able to control all the sensors of home appliances well.

  15. An Experimental Realization of a Chaos-Based Secure Communication Using Arduino Microcontrollers

    PubMed Central

    Zapateiro De la Hoz, Mauricio; Vidal, Yolanda

    2015-01-01

    Security and secrecy are some of the important concerns in the communications world. In the last years, several encryption techniques have been proposed in order to improve the secrecy of the information transmitted. Chaos-based encryption techniques are being widely studied as part of the problem because of the highly unpredictable and random-look nature of the chaotic signals. In this paper we propose a digital-based communication system that uses the logistic map which is a mathematically simple model that is chaotic under certain conditions. The input message signal is modulated using a simple Delta modulator and encrypted using a logistic map. The key signal is also encrypted using the same logistic map with different initial conditions. In the receiver side, the binary-coded message is decrypted using the encrypted key signal that is sent through one of the communication channels. The proposed scheme is experimentally tested using Arduino shields which are simple yet powerful development kits that allows for the implementation of the communication system for testing purposes. PMID:26413563

  16. Improvement of the phase regulation between two amplifiers feeding the inputs of the 3dB combiner in the ASDEX-Upgrade ICRH system

    NASA Astrophysics Data System (ADS)

    Grine, D.; Pompon, F.; Faugel, H.; Funfgelder, H.; Noterdaeme, J. M.; Koch, R.

    2011-12-01

    The present ICRF system at ASDEX Upgrade uses 3dB combiners to forward the combined power of a generator pair to a single line [1]. Optimal output performance is achieved when the voltages at the two input lines of a combiner are equal in amplitude and in phase quadrature. If this requirement is not met, a large amount of power is lost in the dummy loads of the combiner. To minimize losses, it is paramount to reach this phase relationship in a fast and stable way. The current phase regulation system is based on analog phase locked loops circuits. The main limitation of this system is the response time: several tens of milliseconds are needed to achieve a stable state. In order to get rid of the response time limitation of the current system, a new system is proposed based on a multi-channel direct digital synthesis device which is steered by a microcontroller and a software-based controller. The proposed system has been developed and successfully tested on a test-bench. The results show a remarkable improvement in the reduction of the response times. Other significant advantages provided by the new system include greater flexibility for frequency and phase settings, lower cost and a noticeable size reduction of the system.

  17. An inclined plane system with microcontroller to determine limb motor function of laboratory animals.

    PubMed

    Chang, Ming-Wen; Young, Ming-Shing; Lin, Mao-Tsun

    2008-02-15

    This study describes a high-accuracy inclined plane test system for quantitative measurement of the limb motor function of laboratory rats. The system is built around a microcontroller and uses a stepping motor to drive a ball screw, which changes the angle of the inclined plane. Any of the seven inclination speeds can be selected by the user. Two infrared (IR) LED/detector pairs function as interrupt sensors for objective determination of the moment that the rat loses its grip on the textured flooring of the starting area and slips down the plane. Inclination angle at the moment of IR interrupt (i.e. rat slip) is recorded. A liquid crystal display module shows the inclination speed and the inclination angle. The system can function as a stand alone device but a RS232 port allows connection to a personal computer (PC), so data can be sent directly to hard disk for storage and analysis. Experiments can be controlled by a local keypad or by the connected PC. Advantages of the presented system include easy operation, high accuracy, non-dependence on human observation for determination of slip angle, stand-alone capability, low cost and easy modification of the controlling software for different types of experiments. A fully functional prototype of the system is described. The prototype was used experimentally by a hospital group testing traumatic brain injury experiments, and some of their results are presented for system verification. It is found that the system is stable, accurate and easily used by investigators.

  18. Direct Power Injection of Microcontrollers in PCB Environments (Postprint)

    DTIC Science & Technology

    2012-09-01

    7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory 8. PERFORMING ORGANIZATION REPORT...and model development. The Atmel AT89LP2052, 8-bit microcontroller has been programmed to complete a binary count from 20 to 28. A 20 pin SOIC has...onto the custom board ( SOIC ). LabVIEW has been used to control the power level and timing of the RF source (MXG), and data acquisition using the

  19. A nanometallic nickel-coated, glass-fibre-based structural health monitoring system for polymer composites

    NASA Astrophysics Data System (ADS)

    Balaji, R.; Sasikumar, M.

    2017-09-01

    Glass-fibre-reinforced polymer matrix composites are widely used in various industries because of their unique high strength to weight ratio. Unlike metals, strain-induced and damage states of composites are complicated to predict under real-time loading due to their anisotropic nature. With that focus, a piezoresistive nanomaterial-based structural health monitoring system for laminated polymer composites is proposed to measure the strain induced in the composite under real-time loading. Nanometallic nickel-coated glass fibres are embedded into the polymer composites to monitor the strain and damage induced in them. The nanometallic nickel is coated over the glass fibre by a dip coating technique using epoxy as the binding agent. A microcontroller-based electrical resistance measurement system is used to measure the piezoresistive variation in the coated glass fibre under real-time loading. Using the piezoresistance variation of the embedded nanometallic nickel-coated glass fibre, the real-time strain and damage induced in the composite can be correlated. The piezoresistive response of the coated glass fibre is descibed in two phases, the deformation phase and the failure phase, which clearly show the various states of strain and damage induced in the composites.

  20. Phase locking of a seven-channel continuous wave fibre laser system by a stochastic parallel gradient algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, M V; Garanin, S G; Dolgopolov, Yu V

    2014-11-30

    A seven-channel fibre laser system operated by the master oscillator – multichannel power amplifier scheme is the phase locked using a stochastic parallel gradient algorithm. The phase modulators on lithium niobate crystals are controlled by a multichannel electronic unit with the microcontroller processing signals in real time. The dynamic phase locking of the laser system with the bandwidth of 14 kHz is demonstrated, the time of phasing is 3 – 4 ms. (fibre and integrated-optical structures)

  1. Microcontroller based automatic temperature control for oyster mushroom plants

    NASA Astrophysics Data System (ADS)

    Sihombing, P.; Astuti, T. P.; Herriyance; Sitompul, D.

    2018-03-01

    In the cultivation of Oyster Mushrooms need special treatment because oyster mushrooms are susceptible to disease. Mushroom growth will be inhibited if the temperature and humidity are not well controlled because temperature and inertia can affect mold growth. Oyster mushroom growth usually will be optimal at temperatures around 22-28°C and humidity around 70-90%. This problem is often encountered in the cultivation of oyster mushrooms. Therefore it is very important to control the temperature and humidity of the room of oyster mushroom cultivation. In this paper, we developed an automatic temperature monitoring tool in the cultivation of oyster mushroom-based Arduino Uno microcontroller. We have designed a tool that will control the temperature and humidity automatically by Android Smartphone. If the temperature increased more than 28°C in the room of mushroom plants, then this tool will turn on the pump automatically to run water in order to lower the room temperature. And if the room temperature of mushroom plants below of 22°C, then the light will be turned on in order to heat the room. Thus the temperature in the room oyster mushrooms will remain stable so that the growth of oyster mushrooms can grow with good quality.

  2. An Intelligent Sensor System for Monitoring Fatigue Damage in Welded Steel Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes, B.; Gaydecki, P.; Burdekin, F. Michael

    A system for monitoring fatigue damage in steel components is described. The sensor, a thin steel sheet with a pre-crack in it, is attached to the component. Its crack length increases by fatigue in service and is recorded using a microcontroller. Measurement is accomplished using conductive tracks in a circuit whose output voltage changes when the crack propagates past a track. Data stored in memory can be remotely downloaded using Bluetooth{sup TM} technology to a PC.

  3. An Intelligent Sensor System for Monitoring Fatigue Damage in Welded Steel Components

    NASA Astrophysics Data System (ADS)

    Fernandes, B.; Gaydecki, P.; Burdekin, F. Michael

    2005-04-01

    A system for monitoring fatigue damage in steel components is described. The sensor, a thin steel sheet with a pre-crack in it, is attached to the component. Its crack length increases by fatigue in service and is recorded using a microcontroller. Measurement is accomplished using conductive tracks in a circuit whose output voltage changes when the crack propagates past a track. Data stored in memory can be remotely downloaded using Bluetooth™ technology to a PC.

  4. SoundProof: A Smartphone Platform for Wireless Monitoring of Wildlife and Environment

    NASA Astrophysics Data System (ADS)

    Lukac, M.; Monibi, M.; Lane, M. L.; Howell, L.; Ramanathan, N.; Borker, A.; McKown, M.; Croll, D.; Terschy, B.

    2011-12-01

    We are developing an open-source, low-cost wildlife and environmental monitoring solution based on Android smartphones. Using a smartphone instead of a traditional microcontroller or single board computer has several advantages: smartphones are single integrated devices with multiple radios and a battery; they have a robust software interface which enables customization; and are field-tested by millions of users daily. Consequently, smartphones can improve the cost, configurability, and real-time access to data for environmental monitoring, ultimately replacing existing monitoring solutions which are proprietary, difficult to customize, expensive, and require labor-intensive maintenance. While smartphones can radically change environmental and wildlife monitoring, there are a number of technical challenges to address. We present our smartphone-based platform, SoundProof, discuss the challenges of building an autonomous system based on Android phones, and our ongoing efforts to enable environmental monitoring. Our system is built using robust off-the-shelf hardware and mature open-source software where available, to increase scalability and ease of installation. Key features include: * High-quality acoustic signal collection from external microphones to monitor wildlife populations. * Real-time data access, remote programming, and configuration of the field sensor via wireless cellular or WiFi channels, accessible from a website. * Waterproof packaging and solar charger setup for long-term field deployments. * Rich instrumentation of the end-to-end system to quickly identify and debug problems. * Supplementary mesh networking system with long-range wireless antennae to provide coverage when no cell network is available. We have deployed this system to monitor Rufous Crowned Sparrows on Anacapa Island, Chinese Crested Turns on the Matsu Islands in Taiwan, and Ashy Storm Petrels on South East Farallon Island. We have testbeds at two UC Natural Reserves to field-test new or exploratory features before deployment. Side-by-side validation data collected in the field using SoundProof and state-of-the-art wildlife monitoring solutions, including the Cornell ARU and Wildlife Acoustic's Songmeter, demonstrate that acoustic signals collected with cellphones provide sufficient data integrity for measuring the success of bird conservation efforts, measuring bird relative abundance and detecting elusive species. We are extending this platform to numerous other areas of environmental monitoring. Recent developments such as the Android Open Accessory, the IOIO Board, MicroBridge, Amarino, and Cellbots enable microcontrollers to talk with Android applications, making it affordable and feasible to extend our platform to operate with the most common sensors.

  5. Prosthetics socket that incorporates an air splint system focusing on dynamic interface pressure.

    PubMed

    Razak, Nasrul Anuar Abd; Osman, Noor Azuan Abu; Gholizadeh, Hossein; Ali, Sadeeq

    2014-08-01

    The interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee's satisfaction and comfort. This paper presents the design and performance of a new prosthetic socket that uses an air splint system. The air splint prosthetic socket system was implemented by combining the air splint with a pressure sensor that the transhumeral user controls through the use of a microcontroller. The modular construction of the system developed allows the FSR pressure sensors that are placed inside the air splint socket to determine the required size and fitting for the socket used. Fifteen transhumeral amputees participated in the study. The subject's dynamic pressure on the socket that's applied while wearing the air splint systems was recorded using F-socket transducers and microcontroller analysis. The values collected by the F-socket sensor for the air splint prosthetic socket system were determined accordingly by comparing the dynamic pressure applied using statically socket. The pressure volume of the air splint fluctuated and was recorded at an average of 38 kPa (2.5) to 41 kPa (1.3) over three hours. The air splint socket might reduce the pressure within the interface of residual limb. This is particularly important during the daily life activities and may reduce the pain and discomfort at the residual limb in comparison to the static socket. The potential development of an auto-adjusted socket that uses an air splint system as the prosthetic socket will be of interest to researchers involved in rehabilitation engineering, prosthetics and orthotics.

  6. Prosthetics socket that incorporates an air splint system focusing on dynamic interface pressure

    PubMed Central

    2014-01-01

    Background The interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee’s satisfaction and comfort. This paper presents the design and performance of a new prosthetic socket that uses an air splint system. Methods The air splint prosthetic socket system was implemented by combining the air splint with a pressure sensor that the transhumeral user controls through the use of a microcontroller. The modular construction of the system developed allows the FSR pressure sensors that are placed inside the air splint socket to determine the required size and fitting for the socket used. Fifteen transhumeral amputees participated in the study. Results The subject’s dynamic pressure on the socket that’s applied while wearing the air splint systems was recorded using F-socket transducers and microcontroller analysis. The values collected by the F-socket sensor for the air splint prosthetic socket system were determined accordingly by comparing the dynamic pressure applied using statically socket. The pressure volume of the air splint fluctuated and was recorded at an average of 38 kPa (2.5) to 41 kPa (1.3) over three hours. Conclusion The air splint socket might reduce the pressure within the interface of residual limb. This is particularly important during the daily life activities and may reduce the pain and discomfort at the residual limb in comparison to the static socket. The potential development of an auto-adjusted socket that uses an air splint system as the prosthetic socket will be of interest to researchers involved in rehabilitation engineering, prosthetics and orthotics. PMID:25085005

  7. Least Squares Neural Network-Based Wireless E-Nose System Using an SnO₂ Sensor Array.

    PubMed

    Shahid, Areej; Choi, Jong-Hyeok; Rana, Abu Ul Hassan Sarwar; Kim, Hyun-Seok

    2018-05-06

    Over the last few decades, the development of the electronic nose (E-nose) for detection and quantification of dangerous and odorless gases, such as methane (CH₄) and carbon monoxide (CO), using an array of SnO₂ gas sensors has attracted considerable attention. This paper addresses sensor cross sensitivity by developing a classifier and estimator using an artificial neural network (ANN) and least squares regression (LSR), respectively. Initially, the ANN was implemented using a feedforward pattern recognition algorithm to learn the collective behavior of an array as the signature of a particular gas. In the second phase, the classified gas was quantified by minimizing the mean square error using LSR. The combined approach produced 98.7% recognition probability, with 95.5 and 94.4% estimated gas concentration accuracies for CH₄ and CO, respectively. The classifier and estimator parameters were deployed in a remote microcontroller for the actualization of a wireless E-nose system.

  8. Adaptive UAV Attitude Estimation Employing Unscented Kalman Filter, FOAM and Low-Cost MEMS Sensors

    PubMed Central

    de Marina, Héctor García; Espinosa, Felipe; Santos, Carlos

    2012-01-01

    Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance. PMID:23012559

  9. A low-cost biomedical signal transceiver based on a Bluetooth wireless system.

    PubMed

    Fazel-Rezai, Reza; Pauls, Mark; Slawinski, David

    2007-01-01

    Most current wireless biomedical signal transceivers use range-limiting communication. This work presents a low-cost biomedical signal transceiver that uses Bluetooth wireless technology. The design is implemented in a modular form to be adaptable to different types of biomedical signals. The signal front end obtains and processes incoming signals, which are then transmitted via a microcontroller and wireless module. Near real-time receive software in LabVIEW was developed to demonstrate the system capability. The completed transmitter prototype successfully transmits ECG signals, and is able to simultaneously send multiple signals. The sampling rate of the transmitter is fast enough to send up to thirteen ECG signals simultaneously, with an error rate below 0.1% for transmission exceeding 65 meters. A low-cost wireless biomedical transceiver has many applications, such as real-time monitoring of patients with a known condition in non-clinical settings.

  10. A model predictive speed tracking control approach for autonomous ground vehicles

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Chen, Huiyan; Xiong, Guangming

    2017-03-01

    This paper presents a novel speed tracking control approach based on a model predictive control (MPC) framework for autonomous ground vehicles. A switching algorithm without calibration is proposed to determine the drive or brake control. Combined with a simple inverse longitudinal vehicle model and adaptive regulation of MPC, this algorithm can make use of the engine brake torque for various driving conditions and avoid high frequency oscillations automatically. A simplified quadratic program (QP) solving algorithm is used to reduce the computational time, and the approach has been applied in a 16-bit microcontroller. The performance of the proposed approach is evaluated via simulations and vehicle tests, which were carried out in a range of speed-profile tracking tasks. With a well-designed system structure, high-precision speed control is achieved. The system can robustly model uncertainty and external disturbances, and yields a faster response with less overshoot than a PI controller.

  11. Analog Microcontroller Model for an Energy Harvesting Round Counter

    DTIC Science & Technology

    2012-07-01

    densities representing the duration of ≥ for all scaled piezo ................................7 1 INTRODUCTION An accurate count...limited surface area available for mounting piezos on the gun system. Figure 1. Equivalent circuit model for a piezoelectric transducer...circuit model for the linear I-V relationships is parallel combination of six stages, each of which is comprised of a series combination of a resistor , DC

  12. Implementation methodology for interoperable personal health devices with low-voltage low-power constraints.

    PubMed

    Martinez-Espronceda, Miguel; Martinez, Ignacio; Serrano, Luis; Led, Santiago; Trigo, Jesús Daniel; Marzo, Asier; Escayola, Javier; Garcia, José

    2011-05-01

    Traditionally, e-Health solutions were located at the point of care (PoC), while the new ubiquitous user-centered paradigm draws on standard-based personal health devices (PHDs). Such devices place strict constraints on computation and battery efficiency that encouraged the International Organization for Standardization/IEEE11073 (X73) standard for medical devices to evolve from X73PoC to X73PHD. In this context, low-voltage low-power (LV-LP) technologies meet the restrictions of X73PHD-compliant devices. Since X73PHD does not approach the software architecture, the accomplishment of an efficient design falls directly on the software developer. Therefore, computational and battery performance of such LV-LP-constrained devices can even be outperformed through an efficient X73PHD implementation design. In this context, this paper proposes a new methodology to implement X73PHD into microcontroller-based platforms with LV-LP constraints. Such implementation methodology has been developed through a patterns-based approach and applied to a number of X73PHD-compliant agents (including weighing scale, blood pressure monitor, and thermometer specializations) and microprocessor architectures (8, 16, and 32 bits) as a proof of concept. As a reference, the results obtained in the weighing scale guarantee all features of X73PHD running over a microcontroller architecture based on ARM7TDMI requiring only 168 B of RAM and 2546 B of flash memory.

  13. Monitoring eating habits using a piezoelectric sensor-based necklace.

    PubMed

    Kalantarian, Haik; Alshurafa, Nabil; Le, Tuan; Sarrafzadeh, Majid

    2015-03-01

    Maintaining appropriate levels of food intake and developing regularity in eating habits is crucial to weight loss and the preservation of a healthy lifestyle. Moreover, awareness of eating habits is an important step towards portion control and weight loss. In this paper, we introduce a novel food-intake monitoring system based around a wearable wireless-enabled necklace. The proposed necklace includes an embedded piezoelectric sensor, small Arduino-compatible microcontroller, Bluetooth LE transceiver, and Lithium-Polymer battery. Motion in the throat is captured and transmitted to a mobile application for processing and user guidance. Results from data collected from 30 subjects indicate that it is possible to detect solid and liquid foods, with an F-measure of 0.837 and 0.864, respectively, using a naive Bayes classifier. Furthermore, identification of extraneous motions such as head turns and walking are shown to significantly reduce the false positive rate of swallow detection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Design and Development of a Portable WiFi enabled BIA device

    NASA Astrophysics Data System (ADS)

    Križaj, D.; Baloh, M.; Brajkovič, R.; Žagar, T.

    2013-04-01

    A bioimpedance device (BIA) for evaluation of sarcopenia - age related muscle mass loss - is designed, developed and evaluated. The requirements were based on lightweight design, flexible and user enabled incorporation of measurement protocols and WiFi protocol for remote device control, full internet integration and fast development and usage of measurement protocols. The current design is based on usage of a microcontroller with integrated AD/DA converters. The prototype system was assembled and the operation and connectivity to different handheld devices and laptop computers was successfully tested. The designed BIA device can be accessed using TCP sockets and once the connection is established the data transfer runs successfully at the specified speed. The accuracy of currently developed prototype is about 5% for the impedance modulus and 5 deg. for the phase for the frequencies below 20 kHz with an unfiltered excitation signal and no additional amplifiers employed.

  15. A tele-home care system exploiting the DVB-T technology and MHP.

    PubMed

    Angius, G; Pani, D; Raffo, L; Randaccio, P; Seruis, S

    2008-01-01

    The aim of this research work is the development of a low-cost system for telemedicine based on the DVB-T technology. The diffusion of DVB-T standard and the low cost of DVB-T set-top boxes bring the vision of a capillary distribution of tele-home care monitoring systems with easy-to-use patient's interface. Exploiting the potentiality of the DVB-T set-top box, we transformed it into an "on-demand tele-home care interface". The Xlet we developed is able to govern the functionality of an external microcontroller-based unit for the acquisition of the bio-signals of interest. The uplink connection is used to send the exam results to a remote care center. The Xlet providing the patient interface on the set-top box is uploaded by a DVB-T broadcaster without any intervention in the patient's home. A prototypal low-cost base station for the acquisition of the patient's signals (1-lead ECG) has been developed. It is able to be connected to the set-top box via an infrared link. A smart-card-based system is in charge for the customization of the Xlet for every patient. The proposed system, based on a currently widespread infrastructure, is able to allow the patients monitoring from home without any installation procedure. Even untrained (or elderly) people can easily use such system due to their practice with the basic DVB-T home-entertainment equipments.

  16. A wearable, low-power, health-monitoring instrumentation based on a Programmable System-on-Chip.

    PubMed

    Massot, Bertrand; Gehin, Claudine; Nocua, Ronald; Dittmar, Andre; McAdams, Eric

    2009-01-01

    Improvement in quality and efficiency of health and medicine, at home and in hospital, has become of paramount importance. The solution of this problem would require the continuous monitoring of several key patient parameters, including the assessment of autonomic nervous system (ANS) activity using non-invasive sensors, providing information for emotional, sensorial, cognitive and physiological analysis of the patient. Recent advances in embedded systems, microelectronics, sensors and wireless networking enable the design of wearable systems capable of such advanced health monitoring. The subject of this article is an ambulatory system comprising a small wrist device connected to several sensors for the detection of the autonomic nervous system activity. It affords monitoring of skin resistance, skin temperature and heart activity. It is also capable of recording the data on a removable media or sending it to computer via a wireless communication. The wrist device is based on a Programmable System-on-Chip (PSoC) from Cypress: PSoCs are mixed-signal arrays, with dynamic, configurable digital and analogical blocks and an 8-bit Microcontroller unit (MCU) core on a single chip. In this paper we present first of all the hardware and software architecture of the device, and then results obtained from initial experiments.

  17. Gas-Purged Headspace Liquid Phase Microextraction System for Determination of Volatile and Semivolatile Analytes

    PubMed Central

    Zhang, Meihua; Bi, Jinhu; Yang, Cui; Li, Donghao; Piao, Xiangfan

    2012-01-01

    In order to achieve rapid, automatic, and efficient extraction for trace chemicals from samples, a system of gas-purged headspace liquid phase microextraction (GP-HS-LPME) has been researched and developed based on the original HS-LPME technique. In this system, semiconductor condenser and heater, whose refrigerating and heating temperatures were controlled by microcontroller, were designed to cool the extraction solvent and to heat the sample, respectively. Besides, inert gas, whose gas flow rate was adjusted by mass flow controller, was continuously introduced into and discharged from the system. Under optimized parameters, extraction experiments were performed, respectively, using GP-HS-LPME system and original HS-LPME technique for enriching volatile and semivolatile target compounds from the same kind of sample of 15 PAHs standard mixture. GC-MS analysis results for the two experiments indicated that a higher enrichment factor was obtained from GP-HS-LPME. The enrichment results demonstrate that GP-HS-LPME system is potential in determination of volatile and semivolatile analytes from various kinds of samples. PMID:22448341

  18. Real-time synchronization of wireless sensor network by 1-PPS signal

    NASA Astrophysics Data System (ADS)

    Giammarini, Marco; Pieralisi, Marco; Isidori, Daniela; Concettoni, Enrico; Cristalli, Cristina; Fioravanti, Matteo

    2015-05-01

    The use of wireless sensor networks with different nodes is desirable in a smart environment, because the network setting up and installation on preexisting structures can be done without a fixed cabled infrastructure. The flexibility of the monitoring system is fundamental where the use of a considerable quantity of cables could compromise the normal exercise, could affect the quality of acquired signal and finally increase the cost of the materials and installation. The network is composed of several intelligent "nodes", which acquires data from different kind of sensors, and then store or transmit them to a central elaboration unit. The synchronization of data acquisition is the core of the real-time wireless sensor network (WSN). In this paper, we present a comparison between different methods proposed by literature for the real-time acquisition in a WSN and finally we present our solution based on 1-Pulse-Per-Second (1-PPS) signal generated by GPS systems. The sensor node developed is a small-embedded system based on ARM microcontroller that manages the acquisition, the timing and the post-processing of the data. The communications between the sensors and the master based on IEEE 802.15.4 protocol and managed by dedicated software. Finally, we present the preliminary results obtained on a 3 floor building simulator with the wireless sensors system developed.

  19. TELICS—A Telescope Instrument Control System for Small/Medium Sized Astronomical Observatories

    NASA Astrophysics Data System (ADS)

    Srivastava, Mudit K.; Ramaprakash, A. N.; Burse, Mahesh P.; Chordia, Pravin A.; Chillal, Kalpesh S.; Mestry, Vilas B.; Das, Hillol K.; Kohok, Abhay A.

    2009-10-01

    For any modern astronomical observatory, it is essential to have an efficient interface between the telescope and its back-end instruments. However, for small and medium-sized observatories, this requirement is often limited by tight financial constraints. Therefore a simple yet versatile and low-cost control system is required for such observatories to minimize cost and effort. Here we report the development of a modern, multipurpose instrument control system TELICS (Telescope Instrument Control System) to integrate the controls of various instruments and devices mounted on the telescope. TELICS consists of an embedded hardware unit known as a common control unit (CCU) in combination with Linux-based data acquisition and user interface. The hardware of the CCU is built around the ATmega 128 microcontroller (Atmel Corp.) and is designed with a backplane, master-slave architecture. A Qt-based graphical user interface (GUI) has been developed and the back-end application software is based on C/C++. TELICS provides feedback mechanisms that give the operator good visibility and a quick-look display of the status and modes of instruments as well as data. TELICS has been used for regular science observations since 2008 March on the 2 m, f/10 IUCAA Telescope located at Girawali in Pune, India.

  20. Modular Integrated Stackable Layers (MISL) 1.1 Design Specification. Design Guideline Document

    NASA Technical Reports Server (NTRS)

    Yim, Hester J.

    2012-01-01

    This document establishes the design guideline of the Modular Instrumentation Data Acquisition (MI-DAQ) system in utilization of several designs available in EV. The MI- DAQ provides the options to the customers depending on their system requirements i.e. a 28V interface power supply, a low power battery operated system, a low power microcontroller, a higher performance microcontroller, a USB interface, a Ethernet interface, a wireless communication, various sensor interfaces, etc. Depending on customer's requirements, the each functional board can be stacked up from a bottom level of power supply to a higher level of stack to provide user interfaces. The stack up of boards are accomplished by a predefined and standardized power bus and data bus connections which are included in this document along with other physical and electrical guidelines. This guideline also provides information for a new design options. This specification is the product of a collaboration between NASA/JSC/EV and Texas A&M University. The goal of the collaboration is to open source the specification and allow outside entities to design, build, and market modules that are compatible with the specification. NASA has designed and is using numerous modules that are compatible to this specification. A limited number of these modules will also be released as open source designs to support the collaboration. The released designs are listed in the Applicable Documents.

  1. Digital Architecture for a Trace Gas Sensor Platform

    NASA Technical Reports Server (NTRS)

    Gonzales, Paula; Casias, Miguel; Vakhtin, Andrei; Pilgrim, Jeffrey

    2012-01-01

    A digital architecture has been implemented for a trace gas sensor platform, as a companion to standard analog control electronics, which accommodates optical absorption whose fractional absorbance equivalent would result in excess error if assumed to be linear. In cases where the absorption (1-transmission) is not equivalent to the fractional absorbance within a few percent error, it is necessary to accommodate the actual measured absorption while reporting the measured concentration of a target analyte with reasonable accuracy. This requires incorporation of programmable intelligence into the sensor platform so that flexible interpretation of the acquired data may be accomplished. Several different digital component architectures were tested and implemented. Commercial off-the-shelf digital electronics including data acquisition cards (DAQs), complex programmable logic devices (CPLDs), field-programmable gate arrays (FPGAs), and microcontrollers have been used to achieve the desired outcome. The most completely integrated architecture achieved during the project used the CPLD along with a microcontroller. The CPLD provides the initial digital demodulation of the raw sensor signal, and then communicates over a parallel communications interface with a microcontroller. The microcontroller analyzes the digital signal from the CPLD, and applies a non-linear correction obtained through extensive data analysis at the various relevant EVA operating pressures. The microcontroller then presents the quantitatively accurate carbon dioxide partial pressure regardless of optical density. This technique could extend the linear dynamic range of typical absorption spectrometers, particularly those whose low end noise equivalent absorbance is below one-part-in-100,000. In the EVA application, it allows introduction of a path-length-enhancing architecture whose optical interference effects are well understood and quantified without sacrificing the dynamic range that allows quantitative detection at the higher carbon dioxide partial pressures. The digital components are compact and allow reasonably complete integration with separately developed analog control electronics without sacrificing size, mass, or power draw.

  2. The effectiveness of organic PCM based on lauric acid from coconut oil and inorganic PCM based on salt hydrate CaCl2.6H2o as latent heat energy storage system in Indonesia

    NASA Astrophysics Data System (ADS)

    U, Sri Rahayu A.; Putri, Widya A.; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.

    2016-08-01

    A latent heat energy storage system utilizing phase change materials (PCM) is an alternative strategy to reduce the use of Air Conditioning (AC) system in big cities in Indonesia in order for energy conservation in the future. In this research we used two kinds of materials, namely organic PCM based on lauric acid from coconut oil (CO) and inorganic PCM based on salt hydrate CaCl2.6H2O, because they have thermophysical parameters suitable for human's thermal comfort application in the building. The CO which contained more than 50% lauric acid has the melting temperature (Tm ) of about 26 °C and heat entalphy (ΔH) around 103 kJ/kg, while CaCl2.6H2O has the melting point of 29 °C and heat entalphy of 190 kJ/kg. In this paper we report the effectiveness of those two kinds of PCM in reducing the air temperature as one of some criteria for human's thermal comfort. The experiments were performed in a close and adiabatic room and the time-temperature measurements were done automatically using Arduino microcontroller and LM35 temperature sensor connected to the PC.

  3. Knock detection system to improve petrol engine performance, using microphone sensor

    NASA Astrophysics Data System (ADS)

    Sujono, Agus; Santoso, Budi; Juwana, Wibawa Endra

    2017-01-01

    An increase of power and efficiency of spark ignition engines (petrol engines) are always faced with the problem of knock. Even the characteristics of the engine itself are always determined from the occurrence of knock. Until today, this knocking problem has not been solved completely. Knock is caused by principal factors that are influenced by the engine rotation, the load or opening the throttle and spark advance (ignition timing). In this research, the engine is mounted on the engine test bed (ETB) which is equipped with the necessary sensors. Knock detection using a new method, which is based on pattern recognition, which through the knock sound detection by using a microphone sensor, active filter, the regression of the normalized envelope function, and the calculation of the Euclidean distance is used for identifying knock. This system is implemented with a microcontroller which uses fuzzy logic controller ignition (FLIC), which aims to set proper spark advance, in accordance with operating conditions. This system can improve the engine performance for approximately 15%.

  4. An integrated movement capture and control platform applied towards autonomous movements of surgical robots.

    PubMed

    Daluja, Sachin; Golenberg, Lavie; Cao, Alex; Pandya, Abhilash K; Auner, Gregory W; Klein, Michael D

    2009-01-01

    Robotic surgery has gradually gained acceptance due to its numerous advantages such as tremor filtration, increased dexterity and motion scaling. There remains, however, a significant scope for improvement, especially in the areas of surgeon-robot interface and autonomous procedures. Previous studies have attempted to identify factors affecting a surgeon's performance in a master-slave robotic system by tracking hand movements. These studies relied on conventional optical or magnetic tracking systems, making their use impracticable in the operating room. This study concentrated on building an intrinsic movement capture platform using microcontroller based hardware wired to a surgical robot. Software was developed to enable tracking and analysis of hand movements while surgical tasks were performed. Movement capture was applied towards automated movements of the robotic instruments. By emulating control signals, recorded surgical movements were replayed by the robot's end-effectors. Though this work uses a surgical robot as the platform, the ideas and concepts put forward are applicable to telerobotic systems in general.

  5. Automated Temperature Control with Adjusting Outlet Valve of Fuel in the Process of Cooking Palm Sugar

    NASA Astrophysics Data System (ADS)

    Aripin, H.; Hiron, Nurul; Priatna, Edvin; Busaeri, Nundang; Andang, Asep; Suhartono; Sabchevski, Svilen

    2018-04-01

    In this paper, a real-time temperature control system for coconut sugar cooking is presented. It is based on a thermocouple temperature sensor. The temperature in the closed evaporator is used as a control variable of the DC servo control system for opening and closing of a valve embedded in a gas burner. The output power level, which is necessary in order to reach the target temperature is controlled by the microcontroller ATMega328P. A circuit module for control of the valve and temperature sensors as well as software for data acquisition have been implemented. The test results show that the system properly stabilizes the temperature in the closed evaporator for coconut sugar cooking in the range from room temperature to 110°C. A set point can be reached and held with an accuracy of ±0.75°C at a temperature of 110°C for 60 minutes.

  6. Development Status of the NSTAR Ion Propulsion System Power Processor

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Pinero, Luis R.; Rawlin, Vincent K.; Miller, John R.; Cartier, Kevin C.; Bowers, Glen E.

    1995-01-01

    A 0.5-2.3 kW xenon ion propulsion system is presently being developed under the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) program. This propulsion system includes a 30 cm diameter xenon ion thruster, a Digital Control Interface Unit, a xenon feed system, and a power processing unit (PPU). The PPU consists of the power supply assemblies which operate the thruster neutralizer, main discharge chamber, and ion optics. Also included are recycle logic and a digital microcontroller. The neutralizer and discharge power supplies employ a dual use configuration which combines the functions of two power supplies into one, significantly simplifying the PPU. Further simplification was realized by implementing a single thruster control loop which regulates the beam current via the discharge current. Continuous throttling is possible over a 0.5-2.3 kW output power range. All three power supplies have been fabricated and tested with resistive loads, and have been combined into a single breadboard unit with the recycle logic and microcontroller. All line and load regulation test results show the power supplies to be within the NSTAR flight PPU specified power output of 1.98 kW. The overall efficiency of the PPU, calculated as the combined efficiencies of the power supplies and controller, at 2.3 kW delivered to resistive loads was 0.90. The component was 6.16 kg. Integration testing of the neutralizer and discharge power supplies with a functional model thruster revealed no issues with discharge ignition or steady state operation.

  7. The WAIS Melt Monitor: An automated ice core melting system for meltwater sample handling and the collection of high resolution microparticle size distribution data

    NASA Astrophysics Data System (ADS)

    Breton, D. J.; Koffman, B. G.; Kreutz, K. J.; Hamilton, G. S.

    2010-12-01

    Paleoclimate data are often extracted from ice cores by careful geochemical analysis of meltwater samples. The analysis of the microparticles found in ice cores can also yield unique clues about atmospheric dust loading and transport, dust provenance and past environmental conditions. Determination of microparticle concentration, size distribution and chemical makeup as a function of depth is especially difficult because the particle size measurement either consumes or contaminates the meltwater, preventing further geochemical analysis. Here we describe a microcontroller-based ice core melting system which allows the collection of separate microparticle and chemistry samples from the same depth intervals in the ice core, while logging and accurately depth-tagging real-time electrical conductivity and particle size distribution data. This system was designed specifically to support microparticle analysis of the WAIS Divide WDC06A deep ice core, but many of the subsystems are applicable to more general ice core melting operations. Major system components include: a rotary encoder to measure ice core melt displacement with 0.1 millimeter accuracy, a meltwater tracking system to assign core depths to conductivity, particle and sample vial data, an optical debubbler level control system to protect the Abakus laser particle counter from damage due to air bubbles, a Rabbit 3700 microcontroller which communicates with a host PC, collects encoder and optical sensor data and autonomously operates Gilson peristaltic pumps and fraction collectors to provide automatic sample handling, melt monitor control software operating on a standard PC allowing the user to control and view the status of the system, data logging software operating on the same PC to collect data from the melting, electrical conductivity and microparticle measurement systems. Because microparticle samples can easily be contaminated, we use optical air bubble sensors and high resolution ice core density profiles to guide the melting process. The combination of these data allow us to analyze melt head performance, minimize outer-to-inner fraction contamination and avoid melt head flooding. The WAIS Melt Monitor system allows the collection of real-time, sub-annual microparticle and electrical conductivity data while producing and storing enough sample for traditional Coulter-Counter particle measurements as well long term acid leaching of bioactive metals (e.g., Fe, Co, Cd, Cu, Zn) prior to chemical analysis.

  8. Investigation of Bucket Wheel Excavator Lattice Structure Internal Stress in Harsh Environment through a Remote Measurement System

    NASA Astrophysics Data System (ADS)

    Risteiu, M.; Dobra, R.; Andras, I.; Roventa, M.; Lorincz, A.

    2017-06-01

    The paper shows the results of a lab model for strain gauges based measuring system for multiple measuring heads of the mechanical stress in lattice structures of the bucket wheel excavator for open pit mines-harsh environment. The system is designed around a microcontroller system. Because of specific working conditions, the measuring system sends data to a processing system (a PC with Matlab software), we have implemented a secure communication solution based on ISM standard, by using NRF24L01 module. The transceiver contains a fully integrated frequency synthesizer based on crystal oscillator, and a Enhanced ShockBurst™ protocol engine. The proposed solution has a current consumption around 9.0 mA at an output power of -6dBm and 12.3mA in RX mode. Built-in Power Down and Standby modes makes power saving easily realizable for our solution battery powered. The stress from structures is taken by specific strain gauges adapted to low frequency vibrations. We are using a precision 24-bit analog-to-digital converter (ADC) designed for weigh scales and industrial control applications to interface directly with a bridge sensor-instrumentation device, with low drift voltage, low noise, common mode rejection signal, frequency and temperature stability. As backup implementation for measurements a high speed storage implementation is used.

  9. An Arduino-based experiment designed to clarify the transition to total internal reflection

    NASA Astrophysics Data System (ADS)

    Atkin, Keith

    2018-03-01

    The topic of refraction and reflection of light at the boundary of transparent media is a fundamentally important one. The special case of total internal reflection is however commonly misrepresented in elementary textbooks. This paper addresses the problem and describes an experimental procedure for measuring and displaying reflected and transmitted light intensities using readily available components and the Arduino microcontroller.

  10. Advanced Shutter Control for a Molecular Beam Epitaxy Reactor

    DTIC Science & Technology

    An open-source hardware and software-based shutter controller solution was developed that communicates over Ethernet with our original equipment...manufacturer (OEM) molecular beam epitaxy (MBE) reactor control software. An Arduino Mega microcontroller is the used for the brain of the shutter... controller , while a custom-designed circuit board distributes 24-V power to each of the 16 shutter solenoids available on the MBE. Using Ethernet

  11. Performance monitoring algorithm for optimizing electrical power generated by using photovoltaic system

    NASA Astrophysics Data System (ADS)

    Pradeep, M. V. K.; Balbir, S. M. S.; Norani, M. M.

    2016-11-01

    Demand for electricity in Malaysia has seen a substantial hike in light of the nation's rapid economic development. The current method of generating electricity is through the combustion of fossil fuels which has led to the detrimental effects on the environment besides causing social and economic outbreaks due to its highly volatile prices. Thus the need for a sustainable energy source is paramount and one that is quickly gaining acceptance is solar energy. However, due to the various environmental and geographical factors that affect the generation of solar electricity, the capability of solar electricity generating system (SEGS) is unable to compete with the high conversion efficiencies of conventional energy sources. In order to effectively monitor SEGS, this study is proposing a performance monitoring system that is capable of detecting drops in the system's performance for parallel networks through a diagnostic mechanism. The performance monitoring system consists of microcontroller connected to relevant sensors for data acquisition. The acquired data is transferred to a microcomputer for software based monitoring and analysis. In order to enhance the interception of sunlight by the SEGS, a sensor based sun tracking system is interfaced to the same controller to allow the PV to maneuver itself autonomously to an angle of maximum sunlight exposure.

  12. Predictive Modeling of High-Power Electromagnetic Effects on Electronics (Postprint)

    DTIC Science & Technology

    2011-09-01

    electromagnetic ( HPEM ) pulses at sufficiently high field levels can cause physical damage to electronics. This effect can be explained in terms of the...is caused, an HPEM pulse can still cause data corruption resulting in the system locking up or rebooting itself, an effect we will refer to...language to exercise various functional areas and hence various physical regions of the microcontroller, with the aim of developing fundamental

  13. The Instrumented Frisbee(Registered TradeMark) as a Prototype for Planetary Entry Probes

    NASA Technical Reports Server (NTRS)

    Lorenz, Ralph D.

    2005-01-01

    A Frisbee has been equipped with sensors, batteries and micro-controllers for data acquisition to record its translational accelerations and attitude motion. The experiments explore the capabilities and limitations of sensors on a rapidly-rotating platform moving in air, and illustrate several of the complex gyrodynamic aspects of frisbee flight. The experiments constitute an instructive exercise in aerospace vehicle systems integration and in attitude reconstruction.

  14. Warning system against locomotive driving wheel flaccidity

    NASA Astrophysics Data System (ADS)

    Luo, Peng

    2014-09-01

    Causes of locomotive relaxation are discussed. Alarm system against locomotive driving wheel flaccidity is designed by means of techniques of infrared temperature measurement and Hall sensor measurement. The design scheme of the system, the principle of detecting locomotive driving wheel flaccidity with temperature and Hall sensor is introduced, threshold temperature of infrared alarm is determined. The circuit system is designed by microcontroller technology and the software is designed with the assembly language. The experiment of measuring the flaccid displacement with Hall sensor measurement is simulated. The results show that the system runs well with high reliability and low cost, which has a wide prospect of application and popularization.

  15. Detection of pulsed neutrons with solid-state electronics

    NASA Astrophysics Data System (ADS)

    Chatzakis, J.; Rigakis, I.; Hassan, S. M.; Clark, E. L.; Lee, P.

    2016-09-01

    Measurements of the spatial and time-resolved characteristics of pulsed neutron sources require large area detection materials and fast circuitry that can process the electronic pulses readout from the active region of the detector. In this paper, we present a solid-state detector based on the nuclear activation of materials by neutrons, and the detection of the secondary particle emission of the generated radionuclides’ decay. The detector utilizes a microcontroller that communicates using a modified SPI protocol. A solid-state, pulse shaping filter follows a charge amplifier, and it is designed as an inexpensive, low-noise solution for measuring pulses measured by a digital counter. An imaging detector can also be made by using an array of these detectors. The system can communicate with an interface unit and pass an image to a personal computer.

  16. Industrial Internet of Things: (IIoT) applications in underground coal mines.

    PubMed

    Zhou, C; Damiano, N; Whisner, B; Reyes, M

    2017-12-01

    The Industrial Internet of Things (IIoT), a concept that combines sensor networks and control systems, has been employed in several industries to improve productivity and safety. U.S. National Institute for Occupational Safety and Health (NIOSH) researchers are investigating IIoT applications to identify the challenges of and potential solutions for transferring IIoT from other industries to the mining industry. Specifically, NIOSH has reviewed existing sensors and communications network systems used in U.S. underground coal mines to determine whether they are capable of supporting IIoT systems. The results show that about 40 percent of the installed post-accident communication systems as of 2014 require minimal or no modification to support IIoT applications. NIOSH researchers also developed an IIoT monitoring and control prototype system using low-cost microcontroller Wi-Fi boards to detect a door opening on a refuge alternative, activate fans located inside the Pittsburgh Experimental Mine and actuate an alarm beacon on the surface. The results of this feasibility study can be used to explore IIoT applications in underground coal mines based on existing communication and tracking infrastructure.

  17. Industrial Internet of Things

    PubMed Central

    Zhou, C.; Damiano, N.; Whisner, B.; Reyes, M.

    2017-01-01

    The Industrial Internet of Things (IIoT), a concept that combines sensor networks and control systems, has been employed in several industries to improve productivity and safety. U.S. National Institute for Occupational Safety and Health (NIOSH) researchers are investigating IIoT applications to identify the challenges of and potential solutions for transferring IIoT from other industries to the mining industry. Specifically, NIOSH has reviewed existing sensors and communications network systems used in U.S. underground coal mines to determine whether they are capable of supporting IIoT systems. The results show that about 40 percent of the installed post-accident communication systems as of 2014 require minimal or no modification to support IIoT applications. NIOSH researchers also developed an IIoT monitoring and control prototype system using low-cost microcontroller Wi-Fi boards to detect a door opening on a refuge alternative, activate fans located inside the Pittsburgh Experimental Mine and actuate an alarm beacon on the surface. The results of this feasibility study can be used to explore IIoT applications in underground coal mines based on existing communication and tracking infrastructure. PMID:29348699

  18. A single-chip event sequencer and related microcontroller instrumentation for atomic physics research.

    PubMed

    Eyler, E E

    2011-01-01

    A 16-bit digital event sequencer with 50 ns resolution and 50 ns trigger jitter is implemented by using an internal 32-bit timer on a dsPIC30F4013 microcontroller, controlled by an easily modified program written in standard C. It can accommodate hundreds of output events, and adjacent events can be spaced as closely as 1.5 μs. The microcontroller has robust 5 V inputs and outputs, allowing a direct interface to common laboratory equipment and other electronics. A USB computer interface and a pair of analog ramp outputs can be added with just two additional chips. An optional display/keypad unit allows direct interaction with the sequencer without requiring an external computer. Minor additions also allow simple realizations of other complex instruments, including a precision high-voltage ramp generator for driving spectrum analyzers or piezoelectric positioners, and a low-cost proportional integral differential controller and lock-in amplifier for laser frequency stabilization with about 100 kHz bandwidth.

  19. A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model.

    PubMed

    Chen, C C; Chang, M W; Chang, C P; Chan, S C; Chang, W Y; Yang, C L; Lin, M T

    2014-10-01

    We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use.

  20. Preliminary feasibility study of a new method of hypothermia in an experimental canine model

    PubMed Central

    Sert, İbrahim Ünal; Akand, Murat; Kılıç, Özcan; Yavru, Nuri; Bulut, Ersan

    2017-01-01

    Objective To build up a new microcontroller thermoelectric system to achieve renal hypothermia. Material and methods Renal hypothermia system was tested under in vivo conditions in the kidneys of ten Mongrel dogs. Ambient temperature was evaluated using two different microcontrollers. In order to ensure hypothermia in the renal parenchyma, selection can be made among 4 modules and sensors which detect the temperature of the area. The temperature range of the system was adjusted between −50°C and +50°C. Results When single and double poles of the kidney were cooled, initial mean intraperitoneal temperature values were found 37.7°C for rectum and 36.5°C for renal cortex and medulla. After the temperature of the cooling module was set to 12°C, the module was placed on the poles of the kidney. After fifteen minutes, temperature was 15.4°C in the lower pole of the kidney, 28.1°C in the cortex of the other side and 29.2°C in the intramedullary region. The temperature was found to be 15°C in the vicinity and 26.1°C in the cortex across the module. After the system was stabilized, a very slight change was observed in the temperature. Conclusion Hypothermia system developed ensured desired cooling of the targeted part of the kidney; however, it did not cause a change in the temperature of other parts of the kidney or general body temperature. Thus, it was possible to create a long-term study area for renal parenchymal surgery. PMID:28861307

  1. Preliminary feasibility study of a new method of hypothermia in an experimental canine model.

    PubMed

    Sert, İbrahim Ünal; Akand, Murat; Kılıç, Özcan; Yavru, Nuri; Bulut, Ersan

    2017-09-01

    To build up a new microcontroller thermoelectric system to achieve renal hypothermia. Renal hypothermia system was tested under in vivo conditions in the kidneys of ten Mongrel dogs. Ambient temperature was evaluated using two different microcontrollers. In order to ensure hypothermia in the renal parenchyma, selection can be made among 4 modules and sensors which detect the temperature of the area. The temperature range of the system was adjusted between -50°C and +50°C. When single and double poles of the kidney were cooled, initial mean intraperitoneal temperature values were found 37.7°C for rectum and 36.5°C for renal cortex and medulla. After the temperature of the cooling module was set to 12°C, the module was placed on the poles of the kidney. After fifteen minutes, temperature was 15.4°C in the lower pole of the kidney, 28.1°C in the cortex of the other side and 29.2°C in the intramedullary region. The temperature was found to be 15°C in the vicinity and 26.1°C in the cortex across the module. After the system was stabilized, a very slight change was observed in the temperature. Hypothermia system developed ensured desired cooling of the targeted part of the kidney; however, it did not cause a change in the temperature of other parts of the kidney or general body temperature. Thus, it was possible to create a long-term study area for renal parenchymal surgery.

  2. A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model

    PubMed Central

    Chen, C.C.; Chang, M.W.; Chang, C.P.; Chan, S.C.; Chang, W.Y.; Yang, C.L.; Lin, M.T.

    2014-01-01

    We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use. PMID:25140816

  3. Fuzzy Logic Based Autonomous Parallel Parking System with Kalman Filtering

    NASA Astrophysics Data System (ADS)

    Panomruttanarug, Benjamas; Higuchi, Kohji

    This paper presents an emulation of fuzzy logic control schemes for an autonomous parallel parking system in a backward maneuver. There are four infrared sensors sending the distance data to a microcontroller for generating an obstacle-free parking path. Two of them mounted on the front and rear wheels on the parking side are used as the inputs to the fuzzy rules to calculate a proper steering angle while backing. The other two attached to the front and rear ends serve for avoiding collision with other cars along the parking space. At the end of parking processes, the vehicle will be in line with other parked cars and positioned in the middle of the free space. Fuzzy rules are designed based upon a wall following process. Performance of the infrared sensors is improved using Kalman filtering. The design method needs extra information from ultrasonic sensors. Starting from modeling the ultrasonic sensor in 1-D state space forms, one makes use of the infrared sensor as a measurement to update the predicted values. Experimental results demonstrate the effectiveness of sensor improvement.

  4. A water-powered Energy Harvesting system with Bluetooth Low Energy interface

    NASA Astrophysics Data System (ADS)

    Kroener, M.; Allinger, K.; Berger, M.; Grether, E.; Wieland, F.; Heller, S.; Woias, P.

    2016-11-01

    This paper reports the design, and testing of a water turbine generator system for typical flow rates in domestic applications, with an integrated power management and a Bluetooth low energy (BLE) based RF data transmission interface. It is based on a commercially available low cost hydro generator. The generator is built into a housing with optimized reduced fluidic resistance to enable operation with flow rates as low as 6 l/min. The power management combines rectification, buffering, defined start-up, and circuit protection. An MSP430FR5949 microcontroller is used for data acquisition and processing. The data are transmitted via RF, using a Bluegiga BLE112 module in advertisement mode, to a PC where the measured flow rate is stored and displayed. The transmission rate of the wireless sensor node (WSN) is set to 1 Hz if enough power is available, which is the case for flow rates above 5.5 l/min. The electronics power demand is calculated to be 340 μW in average, while the generator is capable of delivering more than 200 mW for flow rates above 15 l/min.

  5. A luminescence lifetime assisted ratiometric fluorimeter for biological applications

    PubMed Central

    Lam, Hung; Kostov, Yordan; Rao, Govind; Tolosa, Leah

    2009-01-01

    In general, the most difficult task in developing devices for fluorescence ratiometric sensing is the isolation of signals from overlapping emission wavelengths. Wavelength discrimination can be achieved by using monochromators or bandpass filters, which often lead to decreased signal intensities. The result is a device that is both complex and expensive. Here we present an alternative system—a low-cost standalone optical fluorimeter based on luminescence lifetime assisted ratiometric sensing (LARS). This paper describes the principle of this technique and the overall design of the sensor device. The most significant innovation of LARS is the ability to discriminate between two overlapping luminescence signals based on differences in their luminescence decay rates. Thus, minimal filtering is required and the two signals can be isolated despite significant overlap of luminescence spectra. The result is a device that is both simple and inexpensive. The electronic circuit employs the lock-in amplification technique for the signal processing and the system is controlled by an onboard microcontroller. In addition, the system is designed to communicate with external devices via Bluetooth. PMID:20059156

  6. A luminescence lifetime assisted ratiometric fluorimeter for biological applications

    NASA Astrophysics Data System (ADS)

    Lam, Hung; Kostov, Yordan; Rao, Govind; Tolosa, Leah

    2009-12-01

    In general, the most difficult task in developing devices for fluorescence ratiometric sensing is the isolation of signals from overlapping emission wavelengths. Wavelength discrimination can be achieved by using monochromators or bandpass filters, which often lead to decreased signal intensities. The result is a device that is both complex and expensive. Here we present an alternative system—a low-cost standalone optical fluorimeter based on luminescence lifetime assisted ratiometric sensing (LARS). This paper describes the principle of this technique and the overall design of the sensor device. The most significant innovation of LARS is the ability to discriminate between two overlapping luminescence signals based on differences in their luminescence decay rates. Thus, minimal filtering is required and the two signals can be isolated despite significant overlap of luminescence spectra. The result is a device that is both simple and inexpensive. The electronic circuit employs the lock-in amplification technique for the signal processing and the system is controlled by an onboard microcontroller. In addition, the system is designed to communicate with external devices via Bluetooth.

  7. Development of a multisensor-based bio-botanic robot and its implementation using a self-designed embedded board.

    PubMed

    Chang, Chung-Liang; Sie, Ming-Fong; Shie, Jin-Long

    2011-01-01

    This paper presents the design concept of a bio-botanic robot which demonstrates its behavior based on plant growth. Besides, it can reflect the different phases of plant growth depending on the proportional amounts of light, temperature and water. The mechanism design is made up of a processed aluminum base, spring, polydimethylsiloxane (PDMS) and actuator to constitute the plant base and plant body. The control system consists of two micro-controllers and a self-designed embedded development board where the main controller transmits the values of the environmental sensing module within the embedded board to a sub-controller. The sub-controller determines the growth stage, growth height, and time and transmits its decision value to the main controller. Finally, based on the data transmitted by the sub-controller, the main controller controls the growth phase of the bio-botanic robot using a servo motor and leaf actuator. The research result not only helps children realize the variation of plant growth but also is entertainment-educational through its demonstration of the growth process of the bio-botanic robot in a short time.

  8. Fault Tolerant Microcontroller for the Configurable Fault Tolerant Processor

    DTIC Science & Technology

    2008-09-01

    many others come to mind I also wish to thank Jan Grey for providing an excellent System-on-a-Chip that formed a core component of this thesis...developed by Jan Gray as documented in his "Building a RISC CPU and System-on-a-Chip in an FPGA" series of articles that was published in Circuit Cellar...those detailed by Jan Gray in his "Getting Started with the XSOC Project v0.93" [16]. The XSOC distribution is available at <http://www.fpgacpu.org

  9. Developing Learning Tool of Control System Engineering Using Matrix Laboratory Software Oriented on Industrial Needs

    NASA Astrophysics Data System (ADS)

    Isnur Haryudo, Subuh; Imam Agung, Achmad; Firmansyah, Rifqi

    2018-04-01

    The purpose of this research is to develop learning media of control technique using Matrix Laboratory software with industry requirement approach. Learning media serves as a tool for creating a better and effective teaching and learning situation because it can accelerate the learning process in order to enhance the quality of learning. Control Techniques using Matrix Laboratory software can enlarge the interest and attention of students, with real experience and can grow independent attitude. This research design refers to the use of research and development (R & D) methods that have been modified by multi-disciplinary team-based researchers. This research used Computer based learning method consisting of computer and Matrix Laboratory software which was integrated with props. Matrix Laboratory has the ability to visualize the theory and analysis of the Control System which is an integration of computing, visualization and programming which is easy to use. The result of this instructional media development is to use mathematical equations using Matrix Laboratory software on control system application with DC motor plant and PID (Proportional-Integral-Derivative). Considering that manufacturing in the field of Distributed Control systems (DCSs), Programmable Controllers (PLCs), and Microcontrollers (MCUs) use PID systems in production processes are widely used in industry.

  10. Note: Three wavelengths near-infrared spectroscopy system for compensating the light absorbance by water

    NASA Astrophysics Data System (ADS)

    Bhutta, M. Raheel; Hong, Keum-Shik; Kim, Beop-Min; Hong, Melissa Jiyoun; Kim, Yun-Hee; Lee, Se-Ho

    2014-02-01

    Given that approximately 80% of blood is water, we develop a wireless functional near-infrared spectroscopy system that detects not only the concentration changes of oxy- and deoxy-hemoglobin (HbO and HbR) during mental activity but also that of water (H2O). Additionally, it implements a water-absorption correction algorithm that improves the HbO and HbR signal strengths during an arithmetic task. The system comprises a microcontroller, an optical probe, tri-wavelength light emitting diodes, photodiodes, a WiFi communication module, and a battery. System functionality was tested by means of arithmetic-task experiments performed by healthy male subjects.

  11. Note: three wavelengths near-infrared spectroscopy system for compensating the light absorbance by water.

    PubMed

    Bhutta, M Raheel; Hong, Keum-Shik; Kim, Beop-Min; Hong, Melissa Jiyoun; Kim, Yun-Hee; Lee, Se-Ho

    2014-02-01

    Given that approximately 80% of blood is water, we develop a wireless functional near-infrared spectroscopy system that detects not only the concentration changes of oxy- and deoxy-hemoglobin (HbO and HbR) during mental activity but also that of water (H2O). Additionally, it implements a water-absorption correction algorithm that improves the HbO and HbR signal strengths during an arithmetic task. The system comprises a microcontroller, an optical probe, tri-wavelength light emitting diodes, photodiodes, a WiFi communication module, and a battery. System functionality was tested by means of arithmetic-task experiments performed by healthy male subjects.

  12. Using LDR as Sensing Element for an External Fuzzy Controller Applied in Photovoltaic Pumping Systems with Variable-Speed Drives.

    PubMed

    Maranhão, Geraldo Neves De A; Brito, Alaan Ubaiara; Leal, Anderson Marques; Fonseca, Jéssica Kelly Silva; Macêdo, Wilson Negrão

    2015-09-22

    In the present paper, a fuzzy controller applied to a Variable-Speed Drive (VSD) for use in Photovoltaic Pumping Systems (PVPS) is proposed. The fuzzy logic system (FLS) used is embedded in a microcontroller and corresponds to a proportional-derivative controller. A Light-Dependent Resistor (LDR) is used to measure, approximately, the irradiance incident on the PV array. Experimental tests are executed using an Arduino board. The experimental results show that the fuzzy controller is capable of operating the system continuously throughout the day and controlling the direct current (DC) voltage level in the VSD with a good performance.

  13. Energy efficient model based algorithm for control of building HVAC systems.

    PubMed

    Kirubakaran, V; Sahu, Chinmay; Radhakrishnan, T K; Sivakumaran, N

    2015-11-01

    Energy efficient designs are receiving increasing attention in various fields of engineering. Heating ventilation and air conditioning (HVAC) control system designs involve improved energy usage with an acceptable relaxation in thermal comfort. In this paper, real time data from a building HVAC system provided by BuildingLAB is considered. A resistor-capacitor (RC) framework for representing thermal dynamics of the building is estimated using particle swarm optimization (PSO) algorithm. With objective costs as thermal comfort (deviation of room temperature from required temperature) and energy measure (Ecm) explicit MPC design for this building model is executed based on its state space representation of the supply water temperature (input)/room temperature (output) dynamics. The controllers are subjected to servo tracking and external disturbance (ambient temperature) is provided from the real time data during closed loop control. The control strategies are ported on a PIC32mx series microcontroller platform. The building model is implemented in MATLAB and hardware in loop (HIL) testing of the strategies is executed over a USB port. Results indicate that compared to traditional proportional integral (PI) controllers, the explicit MPC's improve both energy efficiency and thermal comfort significantly. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Embedded neural recording with TinyOS-based wireless-enabled processor modules.

    PubMed

    Farshchi, Shahin; Pesterev, Aleksey; Nuyujukian, Paul; Guenterberg, Eric; Mody, Istvan; Judy, Jack W

    2010-04-01

    To create a wireless neural recording system that can benefit from the continuous advancements being made in embedded microcontroller and communications technologies, an embedded-system-based architecture for wireless neural recording has been designed, fabricated, and tested. The system consists of commercial-off-the-shelf wireless-enabled processor modules (motes) for communicating the neural signals, and a back-end database server and client application for archiving and browsing the neural signals. A neural-signal-acquisition application has been developed to enable the mote to either acquire neural signals at a rate of 4000 12-bit samples per second, or detect and transmit spike heights and widths sampled at a rate of 16670 12-bit samples per second on a single channel. The motes acquire neural signals via a custom low-noise neural-signal amplifier with adjustable gain and high-pass corner frequency that has been designed, and fabricated in a 1.5-microm CMOS process. In addition to browsing acquired neural data, the client application enables the user to remotely toggle modes of operation (real-time or spike-only), as well as amplifier gain and high-pass corner frequency.

  15. Creating a transducer electronic datasheet using I2C serial EEPROM memory and PIC32-based microcontroller development board

    NASA Astrophysics Data System (ADS)

    Croitoru, Bogdan; Tulbure, Adrian; Abrudean, Mihail; Secara, Mihai

    2015-02-01

    The present paper describes a software method for creating / managing one type of Transducer Electronic Datasheet (TEDS) according to IEEE 1451.4 standard in order to develop a prototype of smart multi-sensor platform (with up to ten different analog sensors simultaneously connected) with Plug and Play capabilities over ETHERNET and Wi-Fi. In the experiments were used: one analog temperature sensor, one analog light sensor, one PIC32-based microcontroller development board with analog and digital I/O ports and other computing resources, one 24LC256 I2C (Inter Integrated Circuit standard) serial Electrically Erasable Programmable Read Only Memory (EEPROM) memory with 32KB available space and 3 bytes internal buffer for page writes (1 byte for data and 2 bytes for address). It was developed a prototype algorithm for writing and reading TEDS information to / from I2C EEPROM memories using the standard C language (up to ten different TEDS blocks coexisting in the same EEPROM device at once). The algorithm is able to write and read one type of TEDS: transducer information with standard TEDS content. A second software application, written in VB.NET platform, was developed in order to access the EEPROM sensor information from a computer through a serial interface (USB).

  16. Multipurpose active pixel sensor (APS)-based microtracker

    NASA Astrophysics Data System (ADS)

    Eisenman, Allan R.; Liebe, Carl C.; Zhu, David Q.

    1998-12-01

    A new, photon-sensitive, imaging array, the active pixel sensor (APS) has emerged as a competitor to the CCD imager for use in star and target trackers. The Jet Propulsion Laboratory (JPL) has undertaken a program to develop a new generation, highly integrated, APS-based, multipurpose tracker: the Programmable Intelligent Microtracker (PIM). The supporting hardware used in the PIM has been carefully selected to enhance the inherent advantages of the APS. Adequate computation power is included to perform star identification, star tracking, attitude determination, space docking, feature tracking, descent imaging for landing control, and target tracking capabilities. Its first version uses a JPL developed 256 X 256-pixel APS and an advanced 32-bit RISC microcontroller. By taking advantage of the unique features of the APS/microcontroller combination, the microtracker will achieve about an order-of-magnitude reduction in mass and power consumption compared to present state-of-the-art star trackers. It will also add the advantage of programmability to enable it to perform a variety of star, other celestial body, and target tracking tasks. The PIM is already proving the usefulness of its design concept for space applications. It is demonstrating the effectiveness of taking such an integrated approach in building a new generation of high performance, general purpose, tracking instruments to be applied to a large variety of future space missions.

  17. Microcontroller based spectrophotometer using compact disc as diffraction grid

    NASA Astrophysics Data System (ADS)

    Bano, Saleha; Altaf, Talat; Akbar, Sunila

    2010-12-01

    This paper describes the design and implementation of a portable, inexpensive and cost effective spectrophotometer. The device combines the use of compact disc (CD) media as diffraction grid and 60 watt bulb as a light source. Moreover it employs a moving slit along with stepper motor for obtaining a monochromatic light, photocell with spectral sensitivity in visible region to determine the intensity of light and an amplifier with a very high gain as well as an advanced virtual RISC (AVR) microcontroller ATmega32 as a control unit. The device was successfully applied to determine the absorbance and transmittance of KMnO4 and the unknown concentration of KMnO4 with the help of calibration curve. For comparison purpose a commercial spectrophotometer was used. There are not significant differences between the absorbance and transmittance values estimated by the two instruments. Furthermore, good results are obtained at all visible wavelengths of light. Therefore, the designed instrument offers an economically feasible alternative for spectrophotometric sample analysis in small routine, research and teaching laboratories, because the components used in the designing of the device are cheap and of easy acquisition.

  18. Ionizing radiation test results for an automotive microcontroller on board the Schiaparelli Mars lander

    NASA Astrophysics Data System (ADS)

    Tapani Nikkanen, Timo; Hieta, Maria; Schmidt, Walter; Genzer, Maria; Haukka, Harri; Harri, Ari-Matti

    2016-04-01

    The Finnish Meteorological Institute (FMI) has delivered a pressure and a humidity instrument for the ESA ExoMars 2016 Schiaparelli lander mission. Schiaparelli is scheduled to launch towards Mars with the Trace Gas Orbiter on 14th of March 2016. The DREAMS-P (pressure) and DREAMS-H (Humidity) instruments are operated utilizing a novel FMI instrument controller design based on a commercial automotive microcontroller (MCU). A custom qualification program was implemented to qualify the MCU for the relevant launch, cruise and surface operations environment of a Mars lander. Resilience to ionizing radiation is one of the most critical requirements for a digital component operated in space or at planetary bodies. Thus, the expected Total Ionizing Dose accumulated by the MCU was determined and a sample of these components was exposed to a Co-60 gamma radiation source. Part of the samples was powered during the radiation exposure to include the effect of electrical biasing. All of the samples were verified to withstand the expected total ionizing dose with margin. The irradiated test samples were then radiated until failure to determine their ultimate TID.

  19. Radio Links for the NASA ABTS

    NASA Technical Reports Server (NTRS)

    Jeutter, Dean C.

    1996-01-01

    The closed loop prototype has operational bi-directional wireless links. The Wideband PCM-FSK receiver has been designed and characterized. Now that both links function, communication performance can be addressed. For example, noise problems with the received outlink signal that caused the PC program to lockup were just recently revealed and minimized by software "enhancements" to the Windows based PC program. A similar problem with inlink communication was uncovered several days before this report: A noise spike or dropout (expected events in the animal Habitat) caused an interrupt to the implant microcontroller which halted outlink transmission. Recovery of outlink transmission did not reliably occur. The problem has been defined and implant software is being modified to better recognize noise from data by changing the timing associated with valid data packet identification and by better utilizing the error flags generated by the microcontroller's SCI circuits. Excellent inlink performance will also require improvements in the implant's receiver. The biggest performance improvement can be provided by antenna design for the Habitat. The quarter wavelength whip antennas used with the demo prototype inlink leave much to be desired.

  20. netPICOmag: from Design to Network Implementation

    NASA Astrophysics Data System (ADS)

    Schofield, I.; Connors, M.; Russell, C.

    2009-05-01

    netPICOmag is the successful conclusion of a design effort involving networking based on Rabbit microcontrollers, PIC microcontrollers, and pulsed magnetometer sensors. GPS timing allows both timestamping of data and the precision counting of the number of pulses produced by the sensor heads in one second. Power over Ethernet, use of DHCP, and broadcast of UDP packets mean a very simple local installation, with one wire leading to a relatively small integrated sensor package which is vertically placed in the ground. Although we continue to make improvements, including through investigating new sensor types, we regard the design as mature and well tested. Here we focus on the need for yet denser magnetometer networks, technological applications which become practical using sensitive yet inexpensive magnetometers, and deployment methods for large numbers of sensors. With careful calibration, netPICOmags overlap with research grade magnetometers. Without it, they still sensitively detect magnetic variations and can be used for an education or outreach program. Due to their low cost, such an application allows many students to be directly involved in gathering data that can be very relevant to them personally when they witness auroras.

Top