Sample records for microdomains oriented normal

  1. Single-molecule tracking studies of flow-induced microdomain alignment in cylinder-forming polystyrene-poly(ethylene oxide) diblock copolymer films.

    PubMed

    Tran-Ba, Khanh-Hoa; Higgins, Daniel A; Ito, Takashi

    2014-09-25

    Flow-based approaches are promising routes to preparation of aligned block copolymer microdomains within confined spaces. An in-depth characterization of such nanoscale morphologies within macroscopically nonuniform materials under ambient conditions is, however, often challenging. In this study, single-molecule tracking (SMT) methods were employed to probe the flow-induced alignment of cylindrical microdomains (ca. 22 nm in diameter) in polystyrene-poly(ethylene oxide) diblock copolymer (PS-b-PEO) films. Films of micrometer-scale thicknesses were prepared by overlaying a benzene solution droplet on a glass coverslip with a rectangular glass plate, followed by solvent evaporation under a nitrogen atmosphere. The microdomain alignment was quantitatively assessed from SMT data exhibiting the diffusional motions of individual sulforhodamine B fluorescent probes that preferentially partitioned into cylindrical PEO microdomains. Better overall microdomain orientation along the flow direction was observed near the substrate interface in films prepared at a higher flow rate, suggesting that the microdomain alignment was primarily induced by shear flow. The SMT data also revealed the presence of micrometer-scale grains consisting of highly ordered microdomains with coherent orientation. The results of this study provide insights into shear-based preparation of aligned cylindrical microdomains in block copolymer films from solutions within confined spaces.

  2. Orientational control of block copolymer microdomains by sub-tesla magnetic fields

    NASA Astrophysics Data System (ADS)

    Gopinadhan, Manesh; Choo, Youngwoo; Feng, Xunda; Kawabata, Kohsuke; di, Xiaojun; Osuji, Chinedum

    Magnetic fields offer a versatile approach to controlling the orientation of block copolymer (BCP) microdomains during self-assembly. To date however, such control has required the imposition of large magnetic fields (>3T), necessitating the use of complex magnet systems - either superconducting or very large conventional resistive magnets. Here we demonstrate the ability to direct BCP self-assembly using considerably smaller fields (<1T) which are accessible using simple rare-earth permanent magnets. The low field alignment is enabled by the presence of small quantities of mesogenic species that are blended into, and co-assemble with the liquid crystalline (LC) mesophase of the side-chain LC BCP under study. In situ SAXS experiments reveal a pronounced dependence of the critical alignment field strength on the stoichiometry of the blend, and the ability to generate aligned microdomains with orientational distribution coefficients exceeding 0.95 at sub-1 T fields for appropriate stoichiometries. The alignment response overall can be rationalized in terms of increased mobility and grain size due to the presence of the mesogenic additive. We use a permanent magnet to fabricate films with aligned nanopores, and the utility of this approach to generate complex BCP microdomain patterns in thin films by local field screening are highlighted. NSF DMR-1410568 and DMR-0847534.

  3. Adsorbed Polymer Nanolayers on Solids: Mechanism, Structure and Applications

    NASA Astrophysics Data System (ADS)

    Sen, Mani Kuntal

    In this thesis, by combining various advanced x-ray scattering, spectroscopic and other surface sensitive characterization techniques, I report the equilibrium polymer chain conformations, structures, dynamics and properties of polymeric materials at the solid-polymer melt interfaces. Following the introduction, in chapter 2, I highlight that the backbone chains (constituted of CH and CH2 groups) of the flattened polystyrene (PS) chains preferentially orient normal to the weakly interactive substrate surface via thermal annealing regardless of the initial chain conformations, while the orientation of the phenyl rings becomes randomized, thereby increasing the number of surface-segmental contacts (i.e., enthalpic gain) which is the driving force for the flattening process of the polymer chains even onto a weakly interactive solid. In chapter 3, I elucidate the flattened structures in block copolymer (BCP) thin films where both blocks lie flat on the substrate, forming a 2D randomly phase-separated structure irrespective of their microdomain structures and interfacial energetics. In chapter 4, I reveal the presence of an irreversibly adsorbed BCP layer which showed suppressed dynamics even at temperatures far above the individual glass transition temperatures of the blocks. Furthermore, this adsorbed BCP layer plays a crucial role in controlling the microdomain orientation in the entire film. In chapter 5, I report a radically new paradigm of designing a polymeric coating layer of a few nanometers thick ("polymer nanolayer") with anti-biofouling properties.

  4. High aspect ratio sub-15 nm silicon trenches from block copolymer templates.

    PubMed

    Gu, Xiaodan; Liu, Zuwei; Gunkel, Ilja; Chourou, S T; Hong, Sung Woo; Olynick, Deirdre L; Russell, Thomas P

    2012-11-08

    High-aspect-ratio sub-15-nm silicon trenches are fabricated directly from plasma etching of a block copolymer mask. A novel method that combines a block copolymer reconstruction process and reactive ion etching is used to make the polymer mask. Silicon trenches are characterized by various methods and used as a master for subsequent imprinting of different materials. Silicon nanoholes are generated from a block copolymer with cylindrical microdomains oriented normal to the surface. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Single-Molecule Tracking Study of the Permeability and Transverse Width of Individual Cylindrical Microdomains in Solvent-Swollen Polystyrene-block-poly(ethylene oxide) Films.

    PubMed

    Sapkota, Dol Raj; Tran-Ba, Khanh-Hoa; Elwell-Cuddy, Trevor; Higgins, Daniel A; Ito, Takashi

    2016-12-01

    Understanding the properties of solvent-swollen block copolymer (BCP) microdomains is important for better solvent-based control of microdomain morphology, orientation, and permeability. In this study, single-molecule tracking (SMT) was explored to assess the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene-block-poly(ethylene oxide) (PS-b-PEO) films. PS-b-PEO films comprising shear-elongated cylindrical PEO microdomains were prepared by sandwiching its benzene or tetrahydrofuran (THF) solution between two glass substrates. SMT measurements were performed at different drying times to investigate the effects of solvent evaporation on the microdomain properties. SMT data showed one-dimensional (1D) motions of single fluorescent molecules (sulforhodamine B) based on their diffusion within the cylindrical microdomains. Microdomain permeability and transverse width were assessed from the single-molecule diffusion coefficients (D SMT ) and transverse variance of the 1D trajectories (σ δ 2 ), respectively. The D SMT and σ δ 2 values from individual 1D trajectories were widely distributed with no evidence of correlation on a single molecule basis, possibly because the individual microdomains in a film were swollen to different extents. On average, microdomain permeability (D) and effective radius (r) gradually decreased within the first 3 days of drying due to solvent evaporation, and changed negligibly thereafter. PS-b-PEO films prepared from THF solutions exhibited larger changes in D and r as compared with those from benzene solutions due to the better swelling of the PEO microdomains by THF. Importantly, changes in D were more prominent than those in r, suggesting that the permeability of the PEO microdomains is very susceptible to the presence of solvent. These results reveal the unique capability of SMT to assess the properties of individual cylindrical microdomains in a solvent-swollen BCP film.

  6. Single-molecule tracking study of the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene- block-poly(ethylene oxide) films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapkota, Dol Raj; Tran-Ba, Khanh-Hoa; Elwell-Cuddy, Trevor

    Understanding the properties of solvent-swollen block copolymer (BCP) microdomains is important for better solvent-based control of microdomain morphology, orientation, and permeability. In this study, single-molecule tracking (SMT) was explored to assess the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene- block-poly(ethylene oxide) (PS-b-PEO) films. PS-b-PEO films comprising shear-elongated cylindrical PEO microdomains were prepared by sandwiching its benzene or tetrahydrofuran (THF) solution between two glass substrates. In this paper, SMT measurements were performed at different drying times to investigate the effects of solvent evaporation on the microdomain properties. SMT data showed one-dimensional (1D) motions of single fluorescent moleculesmore » (sulforhodamine B) based on their diffusion within the cylindrical microdomains. Microdomain permeability and transverse width were assessed from the single-molecule diffusion coefficients (D SMT) and transverse variance of the 1D trajectories (σ δ 2), respectively. The D SMT and σ δ 2 values from individual 1D trajectories were widely distributed with no evidence of correlation on a single molecule basis, possibly because the individual microdomains in a film were swollen to different extents. On average, microdomain permeability (D) and effective radius (r) gradually decreased within the first 3 days of drying due to solvent evaporation, and changed negligibly thereafter. PS-b-PEO films prepared from THF solutions exhibited larger changes in D and r as compared with those from benzene solutions due to the better swelling of the PEO microdomains by THF. Importantly, changes in D were more prominent than those in r, suggesting that the permeability of the PEO microdomains is very susceptible to the presence of solvent. Finally, these results reveal the unique capability of SMT to assess the properties of individual cylindrical microdomains in a solvent-swollen BCP film.« less

  7. Single-molecule tracking study of the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene- block-poly(ethylene oxide) films

    DOE PAGES

    Sapkota, Dol Raj; Tran-Ba, Khanh-Hoa; Elwell-Cuddy, Trevor; ...

    2016-11-04

    Understanding the properties of solvent-swollen block copolymer (BCP) microdomains is important for better solvent-based control of microdomain morphology, orientation, and permeability. In this study, single-molecule tracking (SMT) was explored to assess the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene- block-poly(ethylene oxide) (PS-b-PEO) films. PS-b-PEO films comprising shear-elongated cylindrical PEO microdomains were prepared by sandwiching its benzene or tetrahydrofuran (THF) solution between two glass substrates. In this paper, SMT measurements were performed at different drying times to investigate the effects of solvent evaporation on the microdomain properties. SMT data showed one-dimensional (1D) motions of single fluorescent moleculesmore » (sulforhodamine B) based on their diffusion within the cylindrical microdomains. Microdomain permeability and transverse width were assessed from the single-molecule diffusion coefficients (D SMT) and transverse variance of the 1D trajectories (σ δ 2), respectively. The D SMT and σ δ 2 values from individual 1D trajectories were widely distributed with no evidence of correlation on a single molecule basis, possibly because the individual microdomains in a film were swollen to different extents. On average, microdomain permeability (D) and effective radius (r) gradually decreased within the first 3 days of drying due to solvent evaporation, and changed negligibly thereafter. PS-b-PEO films prepared from THF solutions exhibited larger changes in D and r as compared with those from benzene solutions due to the better swelling of the PEO microdomains by THF. Importantly, changes in D were more prominent than those in r, suggesting that the permeability of the PEO microdomains is very susceptible to the presence of solvent. Finally, these results reveal the unique capability of SMT to assess the properties of individual cylindrical microdomains in a solvent-swollen BCP film.« less

  8. In situ GISAXS study of a Si-containing block copolymer under solvent vapor annealing: Effects of molecular weight and solvent vapor composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, W.; Yager, K. G.; Ross, C. A.

    The room-temperature solvent vapor annealing of polystyrene-b-polydimethylsiloxane (PS-b-PDMS) block copolymer films was studied in situ by grazing incidence small-angle X-ray scattering. Films of cylinder-forming PS-b-PDMS with molecular weight 16 kg/mol and 12.2 kg/mol, annealed under vapors of toluene:heptane with varying composition, exhibited swelling-ratio-dependent evolution of microdomain spacing and orientation. In a vapor made from a toluene:heptane 5:1 volumetric ratio liquid mixture, or from pure toluene, cylindrical microdomains reoriented from majority out-of-plane to in-plane during annealing, while drying led to shrinkage along the film normal and a large distortion of the hexagonal lattice of in-plane cylinders. As a result, annealing undermore » vapor from a toluene:heptane 1:5 volumetric ratio liquid produced a non-bulk lamellar structure in the 16 kg/mol PS-b-PDMS.« less

  9. In situ GISAXS study of a Si-containing block copolymer under solvent vapor annealing: Effects of molecular weight and solvent vapor composition

    DOE PAGES

    Bai, W.; Yager, K. G.; Ross, C. A.

    2016-08-19

    The room-temperature solvent vapor annealing of polystyrene-b-polydimethylsiloxane (PS-b-PDMS) block copolymer films was studied in situ by grazing incidence small-angle X-ray scattering. Films of cylinder-forming PS-b-PDMS with molecular weight 16 kg/mol and 12.2 kg/mol, annealed under vapors of toluene:heptane with varying composition, exhibited swelling-ratio-dependent evolution of microdomain spacing and orientation. In a vapor made from a toluene:heptane 5:1 volumetric ratio liquid mixture, or from pure toluene, cylindrical microdomains reoriented from majority out-of-plane to in-plane during annealing, while drying led to shrinkage along the film normal and a large distortion of the hexagonal lattice of in-plane cylinders. As a result, annealing undermore » vapor from a toluene:heptane 1:5 volumetric ratio liquid produced a non-bulk lamellar structure in the 16 kg/mol PS-b-PDMS.« less

  10. Fabrication of metallized nanoporous films from the self-assembly of a block copolymer and homopolymer mixture.

    PubMed

    Li, Xue; Zhao, Shuying; Zhang, Shuxiang; Kim, Dong Ha; Knoll, Wolfgang

    2007-06-19

    Inorganic compound HAuCl4, which can form a complex with pyridine, is introduced into a poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) block copolymer/poly(methyl methacrylate) (PMMA) homopolymer mixture. The orientation of the cylindrical microdomains formed by the P2VP block, PMMA, and HAuCl4 normal to the substrate surface can be generated via cooperative self-assembly of the mixture. Selective removal of the homopolymer can lead to porous nanostructures containing metal components in P2VP domains, which have a novel photoluminescence property.

  11. Solvothermal Vapor Annealing of Lamellar Poly(styrene)-block-poly(d,l-lactide) Block Copolymer Thin Films for Directed Self-Assembly Application.

    PubMed

    Cummins, Cian; Mokarian-Tabari, Parvaneh; Andreazza, Pascal; Sinturel, Christophe; Morris, Michael A

    2016-03-01

    Solvothermal vapor annealing (STVA) was employed to induce microphase separation in a lamellar forming block copolymer (BCP) thin film containing a readily degradable block. Directed self-assembly of poly(styrene)-block-poly(d,l-lactide) (PS-b-PLA) BCP films using topographically patterned silicon nitride was demonstrated with alignment over macroscopic areas. Interestingly, we observed lamellar patterns aligned parallel as well as perpendicular (perpendicular microdomains to substrate in both cases) to the topography of the graphoepitaxial guiding patterns. PS-b-PLA BCP microphase separated with a high degree of order in an atmosphere of tetrahydrofuran (THF) at an elevated vapor pressure (at approximately 40-60 °C). Grazing incidence small-angle X-ray scattering (GISAXS) measurements of PS-b-PLA films reveal the through-film uniformity of perpendicular microdomains after STVA. Perpendicular lamellar orientation was observed on both hydrophilic and relatively hydrophobic surfaces with a domain spacing (L0) of ∼32.5 nm. The rapid removal of the PLA microdomains is demonstrated using a mild basic solution for the development of a well-defined PS mask template. GISAXS data reveal the through-film uniformity is retained following wet etching. The experimental results in this article demonstrate highly oriented PS-b-PLA microdomains after a short annealing period and facile PLA removal to form porous on-chip etch masks for nanolithography application.

  12. Disorder-to-order transitions induced by alkyne/azide click chemistry in diblock copolymer thin films.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, X.; Gu, W.; Chen, W.

    2012-01-01

    We investigated thin film morphologies of binary blends of alkyne-functionalized diblock copolymer poly(ethylene oxide)-block-poly(n-butyl methacrylate-random-propargyl methacrylate) (PEO-b-P(nBMA-r-PgMA)) and Rhodamine B azide, where the thermal alkyne/azide click reaction between the two components induced a disorder-to-order transition (DOT) of the copolymer. By controlling the composition of the neat copolymers and the mole ratio between the alkyne and azide groups, different microphase separated morphologies were achieved. At higher azide loading ratios, a perpendicular orientation of the microdomains was observed with wide accessible film thickness window. As less azide was incorporated, the microdomains have a stronger tendency to be parallel to the substrate, andmore » the film thickness window for perpendicular orientation also became narrower.« less

  13. Impact of physical confinement on nuclei geometry and cell division dynamics in 3D spheroids.

    PubMed

    Desmaison, Annaïck; Guillaume, Ludivine; Triclin, Sarah; Weiss, Pierre; Ducommun, Bernard; Lobjois, Valérie

    2018-06-08

    Multicellular tumour spheroids are used as a culture model to reproduce the 3D architecture, proliferation gradient and cell interactions of a tumour micro-domain. However, their 3D characterization at the cell scale remains challenging due to size and cell density issues. In this study, we developed a methodology based on 3D light sheet fluorescence microscopy (LSFM) image analysis and convex hull calculation that allows characterizing the 3D shape and orientation of cell nuclei relative to the spheroid surface. By using this technique and optically cleared spheroids, we found that in freely growing spheroids, nuclei display an elongated shape and are preferentially oriented parallel to the spheroid surface. This geometry is lost when spheroids are grown in conditions of physical confinement. Live 3D LSFM analysis of cell division revealed that confined growth also altered the preferential cell division axis orientation parallel to the spheroid surface and induced prometaphase delay. These results provide key information and parameters that help understanding the impact of physical confinement on cell proliferation within tumour micro-domains.

  14. Multilayer block copolymer meshes by orthogonal self-assembly

    PubMed Central

    Tavakkoli K. G., Amir; Nicaise, Samuel M.; Gadelrab, Karim R.; Alexander-Katz, Alfredo; Ross, Caroline A.; Berggren, Karl K.

    2016-01-01

    Continued scaling-down of lithographic-pattern feature sizes has brought templated self-assembly of block copolymers (BCPs) into the forefront of nanofabrication research. Technologies now exist that facilitate significant control over otherwise unorganized assembly of BCP microdomains to form both long-range and locally complex monolayer patterns. In contrast, the extension of this control into multilayers or 3D structures of BCP microdomains remains limited, despite the possible technological applications in next-generation devices. Here, we develop and analyse an orthogonal self-assembly method in which multiple layers of distinct-molecular-weight BCPs naturally produce nanomesh structures of cylindrical microdomains without requiring layer-by-layer alignment or high-resolution lithographic templating. The mechanisms for orthogonal self-assembly are investigated with both experiment and simulation, and we determine that the control over height and chemical preference of templates are critical process parameters. The method is employed to produce nanomeshes with the shapes of circles and Y-intersections, and is extended to produce three layers of orthogonally oriented cylinders. PMID:26796218

  15. Phosphorene-directed self-assembly of asymmetric PS-b-PMMA block copolymer for perpendicularly-oriented sub-10 nm PS nanopore arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Ziming; Zheng, Lu; Khurram, Muhammad; Yan, Qingfeng

    2017-10-01

    Few-layer black phosphorus, also known as phosphorene, is a new two-dimensional material which is of enormous interest for applications, mainly in electronics and optoelectronics. Herein, we for the first time employ phosphorene for directing the self-assembly of asymmetric polystyrene-block-polymethylmethacrylate (PS-b-PMMA) block copolymer (BCP) thin film to form the perpendicular orientation of sub-10 nm PS nanopore arrays in a hexagonal fashion normal to the interface. We experimentally demonstrate that none of the PS and PMMA blocks exhibit preferential affinity to the phosphorene-modified surface. Furthermore, the perpendicularly-oriented PS nanostructures almost stay unchanged with the variation of number of layers of few-layer phosphorene nanoflakes between 15-30 layers. Differing from the neutral polymer brushes which are widely used for chemical modification of the silicon substrate, phosphorene provides a novel physical way to control the interfacial interactions between the asymmetric PS-b-PMMA BCP thin film and the silicon substrate. Based on our results, it is possible to build a new scheme for producing sub-10 nm PS nanopore arrays oriented perpendicularly to the few-layer phosphorene nanoflakes. Furthermore, the nanostructural microdomains could serve as a promising nanolithography template for surface patterning of phosphorene nanoflakes.

  16. Effect of Preferential Orientation of Lamellae in the Interfacial Region between a Block Copolymer-based Pressure-Sensitive Adhesive and a Solid Substrate on the Peel Strength.

    PubMed

    Shimokita, Keisuke; Saito, Itsuki; Yamamoto, Katsuhiro; Takenaka, Mikihito; Yamada, Norifumi L; Miyazaki, Tsukasa

    2018-02-27

    We have investigated the relationship between the peel strength of a block copolymer-based pressure-sensitive adhesive comprising of poly(methyl methacrylate) (PMMA) and poly(n-butyl acrylate) (PnBA) components from the substrate and the microdomain orientations in the interfacial region between the adhesive and the substrate. For the PMMA substrate, the PMMA component in the adhesive with a strong affinity for the substrate is attached to the surface of the substrate during an aging process of the sample at 140 °C. Next, the PMMA layer adjacent to the substrate surface is overlaid with a PnBA layer, which gets covalently connected, resulting in the horizontal alignment of the lamellae in the interfacial region. The peel strength of the adhesive substantially increases during aging at 140 °C, which takes the same time as the completion of the horizontally oriented lamellar structure. However, in the case of the polystyrene (PS) substrate, both the components in the adhesive repel the substrate, leading to the formation of the vertically oriented lamellar structure. As a result, the peel strength of the adhesive with respect to its PS substrate does not entirely increase on aging. It is suggested that the peel strength of the adhesive is highly correlated with the interfacial energy between the adhesive and substrate, which can be estimated from the microdomain orientation in the interfacial region.

  17. Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage

    NASA Astrophysics Data System (ADS)

    Han, Woojin M.; Heo, Su-Jin; Driscoll, Tristan P.; Delucca, John F.; McLeod, Claire M.; Smith, Lachlan J.; Duncan, Randall L.; Mauck, Robert L.; Elliott, Dawn M.

    2016-04-01

    Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.

  18. Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage.

    PubMed

    Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M

    2016-04-01

    Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.

  19. Microstructural Heterogeneity in Native and Engineered Fibrocartilage Directs Micromechanics and Mechanobiology

    PubMed Central

    Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M

    2015-01-01

    Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop microengineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, aging, and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue engineered constructs (hetTECs) with microscale non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical, and mechanobiological benchmarks of native tissue. Our tissue engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating, and regenerating fibrous tissues. PMID:26726994

  20. p27Kip1 localizes to detergent-insoluble microdomains within lymphocyte membranes.

    PubMed Central

    Yaroslavskiy, B. B.; Stolz, D. B.; Watkins, S. C.; Alber, S. M.; Bradbury, N. A.; Steinman, R. A.

    2001-01-01

    BACKGROUND: Low levels of the cyclin-dependent kinase inhibitor p27Kip1 are associated with poor prognosis in cancer. It is unclear whether this is related strictly to p27Kip1-mediated cell cycle inhibition or to other, possibly extranuclear, roles of this protein. In this study, we examined p27Kip1 expression in quiescent and activated lymphocytes. T-cell membranes have been shown to possess sphingolipid and cholesterol-rich microdomains that are insoluble in non-ionic detergents. These "rafts" provide a scaffold for signaling proteins. Signal transduction coincides with coalescence of these microdomains into larger complexes. METHODS: Localization of p27Kip1 was studied by electron and confocal microscopy. Association of p27Kip1 with membrane microdomains in unstimulated and stimulated lymphocytes was determined using Western blots analysis of isolated membranes variably treated with detergents. RESULTS: We demonstrated that p27Kip1 was present in clusters associated with the plasma membrane in normal lymphocytes. The solubility profile of p27Kip1 in isolated membranes indicated that it was localized to raft structures. When lymphocytes were stimulated, however, p27Kip1 was excluded from aggregated raft complexes. CONCLUSIONS: This study identifies, for the first time, the localization of p27 within a membrane microdomain associated with signaling. Because some cell surface signaling complexes lose p27Kip1 upon cellular activation, p27Kip1 may play a functional role in modulating membrane signaling. PMID:11474127

  1. Arterial Smooth Muscle Mitochondria Amplify Hydrogen Peroxide Microdomains Functionally Coupled to L-Type Calcium Channels

    PubMed Central

    Chaplin, Nathan L.; Nieves-Cintrón, Madeline; Fresquez, Adriana M.; Navedo, Manuel F.; Amberg, Gregory C.

    2015-01-01

    Rationale Mitochondria are key integrators of convergent intracellular signaling pathways. Two important second messengers modulated by mitochondria are calcium and reactive oxygen species. To date, coherent mechanisms describing mitochondrial integration of calcium and oxidative signaling in arterial smooth muscle are incomplete. Objective To address and add clarity to this issue we tested the hypothesis that mitochondria regulate subplasmalemmal calcium and hydrogen peroxide microdomain signaling in cerebral arterial smooth muscle. Methods and Results Using an image-based approach we investigated the impact of mitochondrial regulation of L-type calcium channels on subcellular calcium and ROS signaling microdomains in isolated arterial smooth muscle cells. Our single cell observations were then related experimentally to intact arterial segments and to living animals. We found that subplasmalemmal mitochondrial amplification of hydrogen peroxide microdomain signaling stimulates L-type calcium channels and that this mechanism strongly impacts the functional capacity of the vasoconstrictor angiotensin II. Importantly, we also found that disrupting this mitochondrial amplification mechanism in vivo normalized arterial function and attenuated the hypertensive response to systemic endothelial dysfunction. Conclusions From these observations we conclude that mitochondrial amplification of subplasmalemmal calcium and hydrogen peroxide microdomain signaling is a fundamental mechanism regulating arterial smooth muscle function. As the principle components involved are fairly ubiquitous and positioning of mitochondria near the plasma membrane is not restricted to arterial smooth muscle, this mechanism could occur in many cell types and contribute to pathological elevations of intracellular calcium and increased oxidative stress associated with many diseases. PMID:26390880

  2. Mutation of a NCKX Eliminates Glial Microdomain Calcium Oscillations and Enhances Seizure Susceptibility

    PubMed Central

    Melom, Jan E.; Littleton, J. Troy

    2013-01-01

    Glia exhibit spontaneous and activity-dependent fluctuations in intracellular Ca2+, yet it is unclear whether glial Ca2+ oscillations are required during neuronal signaling. Somatic glial Ca2+ waves are primarily mediated by the release of intracellular Ca2+ stores, and their relative importance in normal brain physiology has been disputed. Recently, near-membrane microdomain Ca2+ transients were identified in fine astrocytic processes and found to arise via an intracellular store-independent process. Here, we describe the identification of rapid, near-membrane Ca2+ oscillations in Drosophila cortex glia of the CNS. In a screen for temperature-sensitive conditional seizure mutants, we identified a glial-specific Na+/Ca2+, K+ exchanger (zydeco) that is required for microdomain Ca2+ oscillatory activity. We found that zydeco mutant animals exhibit increased susceptibility to seizures in response to a variety of environmental stimuli, and that zydeco is required acutely in cortex glia to regulate seizure susceptibility. We also found that glial expression of calmodulin is required for stress-induced seizures in zydeco mutants, suggesting a Ca2+/calmodulin-dependent glial signaling pathway underlies glial–neuronal communication. These studies demonstrate that microdomain glial Ca2+ oscillations require NCKX-mediated plasma membrane Ca2+ flux, and that acute dysregulation of glial Ca2+ signaling triggers seizures. PMID:23325253

  3. Extracellular pH regulation in microdomains of colonic crypts: effects of short-chain fatty acids.

    PubMed Central

    Chu, S; Montrose, M H

    1995-01-01

    It has been suggested that transepithelial gradients of short-chain fatty acids (SCFAs; the major anions in the colonic lumen) generate pH gradients across the colonic epithelium. Quantitative confocal microscopy was used to study extracellular pH in mouse distal colon with intact epithelial architecture, by superfusing tissue with carboxy SNARF-1 (a pH-sensitive fluorescent dye). Results demonstrate extracellular pH regulation in two separate microdomains surrounding colonic crypts: the crypt lumen and the subepithelial tissue adjacent to crypt colonocytes. Apical superfusion with (i) a poorly metabolized SCFA (isobutyrate), (ii) an avidly metabolized SCFA (n-butyrate), or (iii) a physiologic mixture of acetate/propionate/n-butyrate produced similar results: alkalinization of the crypt lumen and acidification of subepithelial tissue. Effects were (i) dependent on the presence and orientation of a transepithelial SCFA gradient, (ii) not observed with gluconate substitution, and (iii) required activation of sustained vectorial acid/base transport by SCFAs. Results suggest that the crypt lumen functions as a pH microdomain due to slow mixing with bulk superfusates and that crypts contribute significant buffering capacity to the lumen. In conclusion, physiologic SCFA gradients cause polarized extracellular pH regulation because epithelial architecture and vectorial transport synergize to establish regulated microenvironments. Images Fig. 1 Fig. 3 PMID:7724557

  4. Tonoplast of Beta vulgaris L. contains detergent-resistant membrane microdomains.

    PubMed

    Ozolina, Natalia V; Nesterkina, Irina S; Kolesnikova, Ekaterina V; Salyaev, Ryurik K; Nurminsky, Vadim N; Rakevich, Alexander L; Martynovich, Evgueni F; Chernyshov, Michael Yu

    2013-03-01

    The experiments conducted on tonoplast of Beta vulgaris L. roots were performed to identify detergent-resistant lipid-protein microdomains (DRMs, interpreted as lipid rafts).The presence of DRMs can be found when dynamic clustering of sphingolipids, sterols, saturated fatty acids is registered, and the insolubility of these microdomains in nonionic detergents at low temperatures is proven. The elucidation of tonoplast microdomains has been based on results obtained with the aid of high-speed centrifuging in the sucrose gradient. The experiments have shown that tonoplast microdomains are rich in sphingolipids, free sterols and saturated fatty acids (such a lipid content is also typical of lipid-protein microdomains of other membranes), while only few phospholipids are present in tonoplast microdomains. The presence of microdomains has been confirmed by fluorescence and confocal microscopy using filipin and Laurdan as fluorescent probes. The experiments with Laurdan have shown that tonoplast microdomains are characterized by a high order compared to characteristics of the rest of the tonoplast. Thus, the presence of detergent-resistant lipid-protein microdomains in the tonoplast has been demonstrated.

  5. Influence of omega-3 polyunsaturated fatty acids from fish oil or meal on the structure of lipid microdomains in bovine luteal cells.

    PubMed

    Plewes, M R; Burns, P D; Graham, P E; Bruemmer, J E; Engle, T E

    2018-06-01

    Biological membranes are composed of a lipid bilayer and proteins that form lipid microdomains. This study examined the effects of fish byproducts on lipid-protein interactions within lipid microdomains of bovine luteal cells. In Exp. 1 and 2, luteal cells were prepared from corpora lutea (CL; n = 4 to 8) collected at an abattoir. Exp. 1 was conducted to optimize ultrasonication in a detergent-free protocol for isolation of lipid microdomains. A power setting of 10 to 20% was effective in isolating lipid microdomains from bulk lipid. In Exp. 2, cells were cultured in control medium or fish oil to determine influence of fish oil on distribution of lipid microdomain markers and prostaglandin F 2α (FP) receptors. Cells treated with fish oil had a smaller percentage of microdomain markers and FP receptor in microdomains (P < 0.05). In Exp. 3 and 4, cells were prepared from mid-cycle CL obtained from cows supplemented with corn gluten meal (n = 4) or fish meal (n = 4). Exp. 3 examined effects of dietary supplementation on distribution of lipid microdomain markers and FP receptor and Exp. 4 on fatty acid composition within lipid microdomains. A smaller percentage of lipid microdomain markers and FP receptor was detected in microdomains of cells collected from fish meal supplemented animals (P < 0.05). In Exp. 4, a greater percentage of omega-3 polyunsaturated fatty acids was detected in bulk lipid from fish meal supplemented cows (P < 0.05). Results show that fish byproducts influence lipid-protein interactions in lipid microdomains in bovine luteal cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Reversible Dissolution of Microdomains in Detergent-Resistant Membranes at Physiological Temperature

    PubMed Central

    Cremona, Andrea; Orsini, Francesco; Corsetto, Paola A.; Hoogenboom, Bart W.; Rizzo, Angela M.

    2015-01-01

    The formation of lipid microdomains (“rafts”) is presumed to play an important role in various cellular functions, but their nature remains controversial. Here we report on microdomain formation in isolated, detergent-resistant membranes from MDA-MB-231 human breast cancer cells, studied by atomic force microscopy (AFM). Whereas microdomains were readily observed at room temperature, they shrunk in size and mostly disappeared at higher temperatures. This shrinking in microdomain size was accompanied by a gradual reduction of the height difference between the microdomains and the surrounding membrane, consistent with the behaviour expected for lipids that are laterally segregated in liquid ordered and liquid disordered domains. Immunolabeling experiments demonstrated that the microdomains contained flotillin-1, a protein associated with lipid rafts. The microdomains reversibly dissolved and reappeared, respectively, on heating to and cooling below temperatures around 37°C, which is indicative of radical changes in local membrane order close to physiological temperature. PMID:26147107

  7. Proteomic identification of proteins translocated to membrane microdomains upon treatment of fibroblasts with the glycosphingolipid, C8-beta-D-lactosylceramide.

    PubMed

    Kim, Seong-Youl; Wang, Teng-ke; Singh, Raman Deep; Wheatley, Christine L; Marks, David L; Pagano, Richard E

    2009-09-01

    Plasma membrane (PM) microdomains, including caveolae and other cholesterol-enriched subcompartments, are involved in the regulation of many cellular processes, including endocytosis, attachment and signaling. We recently reported that brief incubation of human skin fibroblasts with the synthetic glycosphingolipid, D-erythro-octanoyl-lactosylceramide (C8-D-e-LacCer), stimulates endocytosis via caveolae and induces the appearance of micron-size microdomains on the PM. To further understand the effects of C8-D-e-LacCer treatment on PM microdomains, we used a detergent-free method to isolate microdomain-enriched membranes from fibroblasts treated +/-C8-D-e-LacCer, and performed 2-DE and mass spectrophotometry to identify proteins that were altered in their distribution in microdomains. Several proteins were identified in the microdomain-enriched fractions, including lipid transfer proteins and proteins related to the functions of small GTPases. One protein, Rho-associated protein kinase 2 (ROCK2), was verified by Western blotting to occur in microdomain fractions and to increase in these fractions after D-e-LacCer treatment. Immunofluorescence revealed that ROCK2 exhibited an increased localization at or near the PM in C8-D-e-LacCer-treated cells. In contrast, ROCK2 distribution in microdomains was decreased by treatment of cells with C8-L-threo-lactosylceramide, a glycosphingolipid with non-natural stereochemistry. This study identifies new microdomain-associated proteins and provides evidence that microdomains play a role in the regulation of the Rho/ROCK signaling pathway.

  8. Directing self-assembly of gold nanoparticles in diblock copolymer scaffold

    NASA Astrophysics Data System (ADS)

    Li, Qifang; He, Jinbo; Glogowski, Elizabeth; Emrick, Todd; Russell, Thomas

    2007-03-01

    A versatile hierarchical approach for directing self -assembly of gold nanostructures with size 2-3nm in diblock copolymer scaffolds is found. Diblock copolymer polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) is used to form a regular scaffold of highly anisotropic, stripe-like domains, and controlled differential wetting by dichloromethane and thermal annealing guides gold nanoparticles with half hydrophilic ligand to aggregate selectively along the scaffold, producing highly organized metal nanostructures. In as-cast block-copolymer and gold nanoparticles thin films, micelle structure and gold nanoparticles random distribution on scaffold are typically observed. However, samples annealed in dichloromethane exhibit well-defined short-range ordered nanostructure with gold nanoparticles located at the interface of PS and P2VP nanoscale domain. After annealing at 170 C, the gold nanoparticles at interface migrated into the middle of P2VP phase and exhibited long-range ordered hierarchical structures. Synergistic interactions between the gold nanoparticles and the PS-b-P2VP caused an orientation of the microdomains normal to the film surface.

  9. Rapid shear alignment of sub-10 nm cylinder-forming block copolymer films based on thermal expansion mismatch

    NASA Astrophysics Data System (ADS)

    Nicaise, Samuel M.; Gadelrab, Karim R.; G, Amir Tavakkoli K.; Ross, Caroline A.; Alexander-Katz, Alfredo; Berggren, Karl K.

    2018-01-01

    Directed self-assembly of block copolymers (BCPs) provided by shear-stress can produce aligned sub-10 nm structures over large areas for applications in integrated circuits, next-generation data storage, and plasmonic structures. In this work, we present a fast, versatile BCP shear-alignment process based on coefficient of thermal expansion mismatch of the BCP film, a rigid top coat and a substrate. Monolayer and bilayer cylindrical microdomains of poly(styrene-b-dimethylsiloxane) aligned preferentially in-plane and orthogonal to naturally-forming or engineered cracks in the top coat film, allowing for orientation control over 1 cm2 substrates. Annealing temperatures, up to 275 °C, provided low-defect alignment up to 2 mm away from cracks for rapid (<1 min) annealing times. Finite-element simulations of the stress as a function of annealing time, annealing temperature, and distance from cracks showed that shear stress during the cooling phase of the thermal annealing was critical for the observed microdomain alignment.

  10. Raft-Like Membrane Domains in Pathogenic Microorganisms

    PubMed Central

    Farnoud, Amir M.; Toledo, Alvaro M.; Konopka, James B.; Del Poeta, Maurizio; London, Erwin

    2016-01-01

    The lipid bilayer of the plasma membrane is thought to be compartmentalized by the presence of lipid-protein microdomains. In eukaryotic cells, microdomains composed of sterols and sphingolipids packed in a liquid-ordered state, commonly known as lipid rafts, are believed to exist. While less studied in bacterial cells, reports on the presence of sterol or protein-mediated microdomains in bacterial cell membranes are also appearing with increasing frequency. Recent efforts have been focused on addressing the biophysical and biochemical properties of lipid rafts. However, most studies have been focused on synthetic membranes, mammalian cells, and/or model, non-pathogenic microorganisms. Much less is known about microdomains in the plasma membrane of pathogenic microorganisms. This review attempts to provide an overview of the current state of knowledge of lipid rafts in pathogenic fungi and the developing field of microdomains in pathogenic bacteria. The current literature on the structure and function and of microdomains is reviewed and the potential role of microdomains in growth, pathogenesis, and drug resistance of pathogens are discussed. Better insight into the structure and function of membrane microdomains in pathogenic microorganisms might lead to a better understanding of the process of pathogenesis and development of raft-mediated approaches for new methods of therapy. PMID:26015285

  11. Caveolin, sterol carrier protein-2, membrane cholesterol-rich microdomains and intracellular cholesterol trafficking.

    PubMed

    Schroeder, Friedhelm; Huang, Huan; McIntosh, Avery L; Atshaves, Barbara P; Martin, Gregory G; Kier, Ann B

    2010-01-01

    While the existence of membrane lateral microdomains has been known for over 30 years, interest in these structures accelerated in the past decade due to the discovery that cholesterol-rich microdomains serve important biological functions. It is increasingly appreciated that cholesterol-rich microdomains in the plasma membranes of eukaryotic cells represent an organizing nexus for multiple cellular proteins involved in transmembrane nutrient uptake (cholesterol, fatty acid, glucose, etc.), cell-signaling, immune recognition, pathogen entry, and many other roles. Despite these advances, however, relatively little is known regarding the organization of cholesterol itself in these plasma membrane microdomains. Although a variety of non-sterol markers indicate the presence of microdomains in the plasma membranes of living cells, none of these studies have demonstrated that cholesterol is enriched in these microdomains in living cells. Further, the role of cholesterol-rich membrane microdomains as targets for intracellular cholesterol trafficking proteins such as sterol carrier protein-2 (SCP-2) that facilitate cholesterol uptake and transcellular transport for targeting storage (cholesterol esters) or efflux is only beginning to be understood. Herein, we summarize the background as well as recent progress in this field that has advanced our understanding of these issues.

  12. Membrane microdomain switching: a regulatory mechanism of amyloid precursor protein processing.

    PubMed

    Sakurai, Takashi; Kaneko, Kumi; Okuno, Misako; Wada, Koji; Kashiyama, Taku; Shimizu, Hideaki; Akagi, Takumi; Hashikawa, Tsutomu; Nukina, Nobuyuki

    2008-10-20

    Neuronal activity has an impact on beta cleavage of amyloid precursor protein (APP) by BACE1 to generate amyloid-beta peptide (Abeta). However, the molecular mechanisms underlying this effect remain to be elucidated. Cholesterol dependency of beta cleavage prompted us to analyze immunoisolated APP-containing detergent-resistant membranes from rodent brains. We found syntaxin 1 as a key molecule for activity-dependent regulation of APP processing in cholesterol-dependent microdomains. In living cells, APP associates with syntaxin 1-containing microdomains through X11-Munc18, which inhibits the APP-BACE1 interaction and beta cleavage via microdomain segregation. Phosphorylation of Munc18 by cdk5 causes a shift of APP to BACE1-containing microdomains. Neuronal hyperactivity, implicated in Abeta overproduction, promotes the switching of APP microdomain association as well as beta cleavage in a partially cdk5-dependent manner. We propose that microdomain switching is a mechanism of cholesterol- and activity-dependent regulation of APP processing in neurons.

  13. Membrane microdomain switching: a regulatory mechanism of amyloid precursor protein processing

    PubMed Central

    Sakurai, Takashi; Kaneko, Kumi; Okuno, Misako; Wada, Koji; Kashiyama, Taku; Shimizu, Hideaki; Akagi, Takumi; Hashikawa, Tsutomu; Nukina, Nobuyuki

    2008-01-01

    Neuronal activity has an impact on β cleavage of amyloid precursor protein (APP) by BACE1 to generate amyloid-β peptide (Aβ). However, the molecular mechanisms underlying this effect remain to be elucidated. Cholesterol dependency of β cleavage prompted us to analyze immunoisolated APP-containing detergent-resistant membranes from rodent brains. We found syntaxin 1 as a key molecule for activity-dependent regulation of APP processing in cholesterol-dependent microdomains. In living cells, APP associates with syntaxin 1–containing microdomains through X11–Munc18, which inhibits the APP–BACE1 interaction and β cleavage via microdomain segregation. Phosphorylation of Munc18 by cdk5 causes a shift of APP to BACE1-containing microdomains. Neuronal hyperactivity, implicated in Aβ overproduction, promotes the switching of APP microdomain association as well as β cleavage in a partially cdk5-dependent manner. We propose that microdomain switching is a mechanism of cholesterol- and activity-dependent regulation of APP processing in neurons. PMID:18936252

  14. ABC-transporters are localized in caveolin-1-positive and reggie-1-negative and reggie-2-negative microdomains of the canalicular membrane in rat hepatocytes.

    PubMed

    Ismair, Manfred G; Häusler, Stephanie; Stuermer, Claudia A; Guyot, Christelle; Meier, Peter J; Roth, Jürgen; Stieger, Bruno

    2009-05-01

    The canalicular plasma membrane is constantly exposed to bile acids acting as detergents. Bile acids are essential to mediate release of biliary lipids from the canalicular membrane. Membrane microdomains (previously called lipid rafts) are biochemically defined by their resistance to detergent solubilization at cold temperature. We aimed to investigate the canalicular plasma membrane for the presence of microdomains, which could protect this membrane against the detergent action of bile acids. Highly purified rat liver canalicular plasma membrane vesicles were extracted with 1% Triton X-100 or 1% Lubrol WX at 4 degrees C and subjected to flotation through sucrose step gradients. Both detergents yielded detergent-resistant membranes containing the microdomain markers alkaline phosphatase and sphingomyelin. However, cholesterol was resistant to Lubrol WX solubilization, whereas it was only marginally resistant to solubilization by Triton X-100. The microdomain marker caveolin-1 was localized to the canalicular plasma membrane domain and was resistant to Lubrol WX, but to a large extent solubilized by Triton X-100. The two additional microdomain markers, reggie-1 and reggie-2, were localized to the basolateral and canalicular plasma membrane and were partially resistant to Lubrol WX but resistant to Triton X-100. The canalicular transporters bile salt export pump, multidrug resistance protein 2, multidrug resistance-associated protein 2, and Abcg5 were largely resistant to Lubrol WX but were solubilized by Triton X-100. These results indicate the presence of two different types of microdomains in the canalicular plasma membrane: "Lubrol-microdomains" and "Triton-microdomains". "Lubrol-microdomains" contain the machinery for canalicular bile formation and may be the starting place for canalicular lipid secretion.

  15. Membrane microdomains in immunity: glycosphingolipid-enriched domain-mediated innate immune responses.

    PubMed

    Iwabuchi, Kazuhisa; Nakayama, Hitoshi; Masuda, Hiromi; Kina, Katsunari; Ogawa, Hideoki; Takamori, Kenji

    2012-01-01

    Over the last 30 years, many studies have indicated that glycosphingolipids (GSLs) expressed on the cell surface may act as binding sites for microorganisms. Based on their physicochemical characteristics, GSLs form membrane microdomains with cholesterol, sphingomyelin, glycosylphosphatidylinositol (GPI)-anchored proteins, and various signaling molecules, and GSL-enriched domains have been shown to be involved in these defense responses. Among the GSLs, lactosylceramide (LacCer, CDw17) can bind to various microorganisms. LacCer is expressed at high levels on the plasma membrane of human neutrophils, and forms membrane microdomains associated with the Src family tyrosine kinase Lyn. LacCer-enriched membrane microdomains mediate superoxide generation, chemotaxis, and non-opsonic phagocytosis. Therefore, LacCer-enriched membrane microdomains are thought to function as pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs) expressed on microorganisms. In contrast, several pathogens have developed infection mechanisms using membrane microdomains. In addition, some pathogens have the ability to avoid degradation by escaping from the vacuolar compartment or preventing phagosome maturation, utilizing membrane microdomains, such as LacCer-enriched domains, of host cells. The detailed molecular mechanisms of these membrane microdomain-associated host-pathogen interactions remain to be elucidated. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  16. Functional microdomains in bacterial membranes.

    PubMed

    López, Daniel; Kolter, Roberto

    2010-09-01

    The membranes of eukaryotic cells harbor microdomains known as lipid rafts that contain a variety of signaling and transport proteins. Here we show that bacterial membranes contain microdomains functionally similar to those of eukaryotic cells. These membrane microdomains from diverse bacteria harbor homologs of Flotillin-1, a eukaryotic protein found exclusively in lipid rafts, along with proteins involved in signaling and transport. Inhibition of lipid raft formation through the action of zaragozic acid--a known inhibitor of squalene synthases--impaired biofilm formation and protein secretion but not cell viability. The orchestration of physiological processes in microdomains may be a more widespread feature of membranes than previously appreciated.

  17. Micro-domain controlled anisotropic laser ceramics assisted by rare-earth trivalent

    NASA Astrophysics Data System (ADS)

    Sato, Yoichi; Akiyama, Jun; Taira, Takunori

    2012-01-01

    Principles that enable to synthesize anisotropic laser ceramics have been established. Anisotropic laser ceramics contain micro domains made of anisotropic crystals, and we have invented the novel alignment technology of micro domain structure in laser ceramics assisted by rare-earth trivalent. Our novel process is essentially superior to the traditional electromagnetic processing from the viewpoint of mass production. We discussed the significance of anisotropic laser ceramics, and we also show the result of evaluations to our orientation controlled RE:FAP ceramics.

  18. Human rhinovirus-induced inflammatory responses are inhibited by phosphatidylserine containing liposomes.

    PubMed

    Stokes, C A; Kaur, R; Edwards, M R; Mondhe, M; Robinson, D; Prestwich, E C; Hume, R D; Marshall, C A; Perrie, Y; O'Donnell, V B; Harwood, J L; Sabroe, I; Parker, L C

    2016-09-01

    Human rhinovirus (HRV) infections are major contributors to the healthcare burden associated with acute exacerbations of chronic airway disease, such as chronic obstructive pulmonary disease and asthma. Cellular responses to HRV are mediated through pattern recognition receptors that may in part signal from membrane microdomains. We previously found Toll-like receptor signaling is reduced, by targeting membrane microdomains with a specific liposomal phosphatidylserine species, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (SAPS). Here we explored the ability of this approach to target a clinically important pathogen. We determined the biochemical and biophysical properties and stability of SAPS liposomes and studied their ability to modulate rhinovirus-induced inflammation, measured by cytokine production, and rhinovirus replication in both immortalized and normal primary bronchial epithelial cells. SAPS liposomes rapidly partitioned throughout the plasma membrane and internal cellular membranes of epithelial cells. Uptake of liposomes did not cause cell death, but was associated with markedly reduced inflammatory responses to rhinovirus, at the expense of only modest non-significant increases in viral replication, and without impairment of interferon receptor signaling. Thus using liposomes of phosphatidylserine to target membrane microdomains is a feasible mechanism for modulating rhinovirus-induced signaling, and potentially a prototypic new therapy for viral-mediated inflammation.

  19. Raft-like membrane domains in pathogenic microorganisms.

    PubMed

    Farnoud, Amir M; Toledo, Alvaro M; Konopka, James B; Del Poeta, Maurizio; London, Erwin

    2015-01-01

    The lipid bilayer of the plasma membrane is thought to be compartmentalized by the presence of lipid-protein microdomains. In eukaryotic cells, microdomains composed of sterols and sphingolipids, commonly known as lipid rafts, are believed to exist, and reports on the presence of sterol- or protein-mediated microdomains in bacterial cell membranes are also appearing. Despite increasing attention, little is known about microdomains in the plasma membrane of pathogenic microorganisms. This review attempts to provide an overview of the current state of knowledge of lipid rafts in pathogenic fungi and bacteria. The current literature on characterization of microdomains in pathogens is reviewed, and their potential role in growth, pathogenesis, and drug resistance is discussed. Better insight into the structure and function of membrane microdomains in pathogenic microorganisms might lead to a better understanding of their pathogenesis and development of raft-mediated approaches for therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Identification of Tspan9 as a novel platelet tetraspanin and the collagen receptor GPVI as a component of tetraspanin microdomains

    PubMed Central

    Protty, Majd B.; Watkins, Nicholas A.; Colombo, Dario; Thomas, Steven G.; Heath, Victoria L.; Herbert, John M. J.; Bicknell, Roy; Senis, Yotis A.; Ashman, Leonie K.; Berditchevski, Fedor; Ouwehand, Willem H.; Watson, Steve P.; Tomlinson, Michael G.

    2008-01-01

    Platelets are essential for wound healing and inflammatory processes, but can also play a deleterious role by causing heart attack and stroke. Normal platelet activation is dependent on tetraspanins, a superfamily of glycoproteins that function as ‘organisers’ of cell membranes by recruiting other receptors and signalling proteins into tetraspanin-enriched microdomains. However, our understanding of how tetraspanin microdomains regulate platelets is hindered by the fact that only four of the 33 mammalian tetraspanins have been identified in platelets. This is because of a lack of antibodies to most tetraspanins and difficulties in measuring mRNA, due to low levels in this anucleate cell. To identify potentially platelet-expressed tetraspanins, mRNA was measured in their nucleated progenitor cell, the megakaryocyte, using serial analysis of gene expression and DNA microarrays. Amongst 19 tetraspanins identified in megakaryocytes, Tspan9, a previously uncharacterized tetraspanin, was relatively specific to these cells. Through generating the first Tspan9 antibodies, Tspan9 expression was found to be tightly regulated in platelets. The relative levels of CD9, CD151, Tspan9 and CD63 were 100, 14, 6 and 2 respectively. Since CD9 was expressed at 49000 cell surface copies per platelet, this suggested a copy number of 2800 Tspan9 molecules. Finally, Tspan9 was shown to be a component of tetraspanin microdomains that included the collagen receptor GPVI (glycoprotein VI) and integrin α6β1, but not the von Willebrand receptor GPIbα or the integrins αIIbβ3 or α2β1. These findings suggest a role for Tspan9 in regulating platelet function in concert with other platelet tetraspanins and their associated proteins. PMID:18795891

  1. ABCG1-mediated generation of extracellular cholesterol microdomains[S

    PubMed Central

    Freeman, Sebastian R.; Jin, Xueting; Anzinger, Joshua J.; Xu, Qing; Purushothaman, Sonya; Fessler, Michael B.; Addadi, Lia; Kruth, Howard S.

    2014-01-01

    Previous studies have demonstrated that the ATP-binding cassette transporters (ABC)A1 and ABCG1 function in many aspects of cholesterol efflux from macrophages. In this current study, we continued our investigation of extracellular cholesterol microdomains that form during enrichment of macrophages with cholesterol. Human monocyte-derived macrophages and mouse bone marrow-derived macrophages, differentiated with macrophage colony-stimulating factor (M-CSF) or granulocyte macrophage colony-stimulation factor (GM-CSF), were incubated with acetylated LDL (AcLDL) to allow for cholesterol enrichment and processing. We utilized an anti-cholesterol microdomain monoclonal antibody to reveal pools of unesterified cholesterol, which were found both in the extracellular matrix and associated with the cell surface, that we show function in reverse cholesterol transport. Coincubation of AcLDL with 50 μg/ml apoA-I eliminated all extracellular and cell surface-associated cholesterol microdomains, while coincubation with the same concentration of HDL only removed extracellular matrix-associated cholesterol microdomains. Only at an HDL concentration of 200 µg/ml did HDL eliminate the cholesterol microdomains that were cell-surface associated. The deposition of cholesterol microdomains was inhibited by probucol, but it was increased by the liver X receptor (LXR) agonist TO901317, which upregulates ABCA1 and ABCG1. Extracellular cholesterol microdomains did not develop when ABCG1-deficient mouse bone marrow-derived macrophages were enriched with cholesterol. Our findings show that generation of extracellular cholesterol microdomains is mediated by ABCG1 and that reverse cholesterol transport occurs not only at the cell surface but also within the extracellular space. PMID:24212237

  2. GSL-enriched membrane microdomains in innate immune responses.

    PubMed

    Nakayama, Hitoshi; Ogawa, Hideoki; Takamori, Kenji; Iwabuchi, Kazuhisa

    2013-06-01

    Many pathogens target glycosphingolipids (GSLs), which, together with cholesterol, GPI-anchored proteins, and various signaling molecules, cluster on host cell membranes to form GSL-enriched membrane microdomains (lipid rafts). These GSL-enriched membrane microdomains may therefore be involved in host-pathogen interactions. Innate immune responses are triggered by the association of pathogens with phagocytes, such as neutrophils, macrophages and dendritic cells. Phagocytes express a diverse array of pattern-recognition receptors (PRRs), which sense invading microorganisms and trigger pathogen-specific signaling. PRRs can recognize highly conserved pathogen-associated molecular patterns expressed on microorganisms. The GSL lactosylceramide (LacCer, CDw17), which binds to various microorganisms, including Candida albicans, is expressed predominantly on the plasma membranes of human mature neutrophils and forms membrane microdomains together with the Src family tyrosine kinase Lyn. These LacCer-enriched membrane microdomains can mediate superoxide generation, migration, and phagocytosis, indicating that LacCer functions as a PRR in innate immunity. Moreover, the interactions of GSL-enriched membrane microdomains with membrane proteins, such as growth factor receptors, are important in mediating the physiological properties of these proteins. Similarly, we recently found that interactions between LacCer-enriched membrane microdomains and CD11b/CD18 (Mac-1, CR3, or αMβ2-integrin) are significant for neutrophil phagocytosis of non-opsonized microorganisms. This review describes the functional role of LacCer-enriched membrane microdomains and their interactions with CD11b/CD18.

  3. Lipid bilayer thickness determines cholesterol's location in model membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquardt, Drew; Heberle, Frederick A.; Greathouse, Denise V.

    Cholesterol is an essential biomolecule of animal cell membranes, and an important precursor for the biosynthesis of certain hormones and vitamins. It is also thought to play a key role in cell signaling processes associated with functional plasma membrane microdomains (domains enriched in cholesterol), commonly referred to as rafts. In all of these diverse biological phenomena, the transverse location of cholesterol in the membrane is almost certainly an important structural feature. Using a combination of neutron scattering and solid-state 2H NMR, we have determined the location and orientation of cholesterol in phosphatidylcholine (PC) model membranes having fatty acids of differentmore » lengths and degrees of unsaturation. The data establish that cholesterol reorients rapidly about the bilayer normal in all the membranes studied, but is tilted and forced to span the bilayer midplane in the very thin bilayers. The possibility that cholesterol lies flat in the middle of bilayers, including those made from PC lipids containing polyunsaturated fatty acids (PUFAs), is ruled out. Finally, these results support the notion that hydrophobic thickness is the primary determinant of cholesterol's location in membranes.« less

  4. Lipid bilayer thickness determines cholesterol's location in model membranes

    DOE PAGES

    Marquardt, Drew; Heberle, Frederick A.; Greathouse, Denise V.; ...

    2016-10-11

    Cholesterol is an essential biomolecule of animal cell membranes, and an important precursor for the biosynthesis of certain hormones and vitamins. It is also thought to play a key role in cell signaling processes associated with functional plasma membrane microdomains (domains enriched in cholesterol), commonly referred to as rafts. In all of these diverse biological phenomena, the transverse location of cholesterol in the membrane is almost certainly an important structural feature. Using a combination of neutron scattering and solid-state 2H NMR, we have determined the location and orientation of cholesterol in phosphatidylcholine (PC) model membranes having fatty acids of differentmore » lengths and degrees of unsaturation. The data establish that cholesterol reorients rapidly about the bilayer normal in all the membranes studied, but is tilted and forced to span the bilayer midplane in the very thin bilayers. The possibility that cholesterol lies flat in the middle of bilayers, including those made from PC lipids containing polyunsaturated fatty acids (PUFAs), is ruled out. Finally, these results support the notion that hydrophobic thickness is the primary determinant of cholesterol's location in membranes.« less

  5. Bio-inspired direct patterning functional nanothin microlines: controllable liquid transfer.

    PubMed

    Wang, Qianbin; Meng, Qingan; Wang, Pengwei; Liu, Huan; Jiang, Lei

    2015-04-28

    Developing a general and low-cost strategy that enables direct patterning of microlines with nanometer thickness from versatile liquid-phase functional materials and precise positioning of them on various substrates remains a challenge. Herein, with inspiration from the oriental wisdom to control ink transfer by Chinese brushes, we developed a facile and general writing strategy to directly pattern various functional microlines with homogeneous distribution and nanometer-scale thickness. It is demonstrated that the width and thickness of the microlines could be well-controlled by tuning the writing method, providing guidance for the adaptation of this technique to various systems. It is also shown that various functional liquid-phase materials, such as quantum dots, small molecules, polymers, and suspensions of nanoparticles, could directly write on the substrates with intrinsic physicochemical properties well-preserved. Moreover, this technique enabled direct patterning of liquid-phase materials on certain microdomains, even in multiple layered style, thus a microdomain localized chemical reaction and the patterned surface chemical modification were enabled. This bio-inspired direct writing device will shed light on the template-free printing of various functional micropatterns, as well as the integrated functional microdevices.

  6. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome.

    PubMed

    Dahl, Kris Noel; Scaffidi, Paola; Islam, Mohammad F; Yodh, Arjun G; Wilson, Katherine L; Misteli, Tom

    2006-07-05

    The nuclear lamina is a network of structural filaments, the A and B type lamins, located at the nuclear envelope and throughout the nucleus. Lamin filaments provide the nucleus with mechanical stability and support many basic activities, including gene regulation. Mutations in LMNA, the gene encoding A type lamins, cause numerous human diseases, including the segmental premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). Here we show that structural and mechanical properties of the lamina are altered in HGPS cells. We demonstrate by live-cell imaging and biochemical analysis that lamins A and C become trapped at the nuclear periphery in HGPS patient cells. Using micropipette aspiration, we show that the lamina in HGPS cells has a significantly reduced ability to rearrange under mechanical stress. Based on polarization microscopy results, we suggest that the lamins are disordered in the healthy nuclei, whereas the lamins in HGPS nuclei form orientationally ordered microdomains. The reduced deformability of the HGPS nuclear lamina possibly could be due to the inability of these orientationally ordered microdomains to dissipate mechanical stress. Surprisingly, intact HGPS cells exhibited a degree of resistance to acute mechanical stress similar to that of cells from healthy individuals. Thus, in contrast to the nuclear fragility seen in lmna null cells, the lamina network in HGPS cells has unique mechanical properties that might contribute to disease phenotypes by affecting responses to mechanical force and misregulation of mechanosensitive gene expression.

  7. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi.

    PubMed

    Malinsky, Jan; Opekarová, Miroslava; Grossmann, Guido; Tanner, Widmar

    2013-01-01

    The existence of specialized microdomains in plasma membranes, postulated for almost 25 years, has been popularized by the concept of lipid or membrane rafts. The idea that detergent-resistant membranes are equivalent to lipid rafts, which was generally abandoned after a decade of vigorous data accumulation, contributed to intense discussions about the validity of the raft concept. The existence of membrane microdomains, meanwhile, has been verified by unequivocal independent evidence. This review summarizes the current state of research in plants and fungi with respect to common aspects of both kingdoms. In these organisms, principally immobile microdomains large enough for microscopic detection have been visualized. These microdomains are found in the context of cell-cell interactions (plant symbionts and pathogens), membrane transport, stress, and polarized growth, and the data corroborate at least three mechanisms of formation. As documented in this review, modern methods of visualization of lateral membrane compartments are also able to uncover the functional relevance of membrane microdomains.

  8. Directed block copolymer self-assembly implemented via surface-embedded electrets

    NASA Astrophysics Data System (ADS)

    Wu, Mei-Ling; Wang, Dong; Wan, Li-Jun

    2016-02-01

    Block copolymer (BCP) nanolithography is widely recognized as a promising complementary approach to circumvent the feature size limits of conventional photolithography. The directed self-assembly of BCP thin film to form ordered nanostructures with controlled orientation and localized pattern has been the key challenge for practical nanolithography applications. Here we show that BCP nanopatterns can be directed on localized surface electrets defined by electron-beam irradiation to realize diverse features in a simple, effective and non-destructive manner. Charged electrets can generate a built-in electric field in BCP thin film and induce the formation of perpendicularly oriented microdomain of BCP film. The electret-directed orientation control of BCP film can be either integrated with mask-based patterning technique or realized by electron-beam direct-writing method to fabricate microscale arbitrary lateral patterns down to single BCP cylinder nanopattern. The electret-directed BCP self-assembly could provide an alternative means for BCP-based nanolithography, with high resolution.

  9. The Formation and Stability of DC-SIGN Microdomains Require its Extracellular Moiety

    PubMed Central

    Liu, Ping; Wang, Xiang; Itano, Michelle S.; Neumann, Aaron K.; Jacobson, Ken; Thompson, Nancy L.

    2012-01-01

    DC-SIGN (Dendritic cell-specific ICAM-3-grabbing non-integrin) is a Ca2+-dependent transmembrane lectin that binds a large variety of pathogens and facilitates their uptake for subsequent antigen presentation. This receptor is present in cell surface microdomains, but factors involved in microdomain formation and their exceptional stability are not clear. To determine which domain/motif of DC-SIGN facilitates its presence in microdomains, we studied mutations at key locations including truncation of the cytoplasmic tail, and ectodomain mutations that resulted in removal of the N-linked glycosylation site, the tandem repeats and the carbohydrate recognition domain (CRD) as well as modification of the calcium sites in the CRD required for carbohydrate binding. Confocal imaging and FRAP measurements showed that the cytoplasmic domain and N-linked glycosylation site do not affect the ability of DC-SIGN to form stable microdomains. However, truncation of the CRD results in complete loss of visible microdomains and subsequent lateral diffusion of the mutants. Apart from cell adhesions, membrane domains are thought to be localized primarily via the cytoskeleton. By contrast, we propose that interactions between the CRD of DC-SIGN and the extracellular matrix and/or cis interactions with transmembrane scaffolding protein(s) play an essential role in organizing these microdomains. PMID:22292921

  10. Low Copy Numbers of DC-SIGN in Cell Membrane Microdomains: Implications for Structure and Function

    PubMed Central

    Liu, Ping; Wang, Xiang; Itano, Michelle S.; Neumann, Aaron K.; de Silva, Aravinda M.; Jacobson, Ken; Thompson, Nancy L.

    2014-01-01

    Presently, there are few estimates of the number of molecules occupying membrane domains. Using a total internal reflection fluorescence microscopy (TIRFM) imaging approach, based on comparing the intensities of fluorescently labeled microdomains with those of single fluorophores, we measured the occupancy of DC-SIGN, a C-type lectin, in membrane microdomains. DC-SIGN or its mutants were labeled with primary monoclonal antibodies (mAbs) in either dendritic cells (DCs) or NIH3T3 cells, or expressed as GFP fusions in NIH3T3 cells. The number of DC-SIGN molecules per microdomain ranges from only a few to over 20, while microdomain dimensions range from the diffraction limit to > 1μm. The largest fraction of microdomains, appearing at the diffraction limit, in either immature DCs or 3T3 cells contains only 4-8 molecules of DC-SIGN, consistent with our preliminary super-resolution Blink microscopy estimates. We further show that these small assemblies are sufficient to bind and efficiently internalize a small (~50nm) pathogen, dengue virus, leading to infection of host cells. PMID:24313910

  11. A “mix-and-match” approach to designing Ca2+ microdomains at membrane-contact sites

    PubMed Central

    Penny, Christopher J; Kilpatrick, Bethan S; Min Han, Jung; Sneyd, James; Patel, Sandip

    2014-01-01

    Ca2+ microdomains are critical for regulating cellular activity and often form at membrane contact sites. Such sites between lysosomes and the ER potentially provide a platform for signaling by the Ca2+ mobilizing messenger NAADP. However, at present we know little of how Ca2+ release events are coordinated at these experimentally intractable junctions. We therefore developed a computational model of lysosome-ER microdomains, which suggested that small leaks of Ca2+ from the lysosome couple to Ca2+-sensitive Ins(1,4,5)P3 receptors on the ER to generate global, microdomain-dependent Ca2+ signals. Here we discuss how the “mix-and-match” arrangement of different Ca2+ signaling proteins on the “source” and “target” membranes might generate functionally heterogeneous Ca2+ microdomains. PMID:25077010

  12. Detection of cholesterol-rich microdomains in the inner leaflet of the plasma membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Masami; Shimada, Yukiko; Inomata, Mitsushi

    2006-12-22

    The C-terminal domain (D4) of perfringolysin O binds selectively to cholesterol in cholesterol-rich microdomains. To address the issue of whether cholesterol-rich microdomains exist in the inner leaflet of the plasma membrane, we expressed D4 as a fusion protein with EGFP in MEF cells. More than half of the EGFP-D4 expressed in stable cell clones was bound to membranes in raft fractions. Depletion of membrane cholesterol with {beta}-cyclodextrin reduced the amount of EGFP-D4 localized in raft fractions, confirming EGFP-D4 binding to cholesterol-rich microdomains. Subfractionation of the raft fractions showed most of the EGFP-D4 bound to the plasma membrane rather than tomore » intracellular membranes. Taken together, these results strongly suggest the existence of cholesterol-rich microdomains in the inner leaflet of the plasma membrane.« less

  13. Membrane microdomains and the cytoskeleton constrain AtHIR1 dynamics and facilitate the formation of an AtHIR1-associated immune complex.

    PubMed

    Lv, Xueqin; Jing, Yanping; Xiao, Jianwei; Zhang, Yongdeng; Zhu, Yingfang; Julian, Russell; Lin, Jinxing

    2017-04-01

    Arabidopsis hypersensitive-induced reaction (AtHIR) proteins function in plant innate immunity. However, the underlying mechanisms by which AtHIRs participate in plant immunity remain elusive. Here, using VA-TIRFM and FLIM-FRET, we revealed that AtHIR1 is present in membrane microdomains and co-localizes with the membrane microdomain marker REM1.3. Single-particle tracking analysis revealed that membrane microdomains and the cytoskeleton, especially microtubules, restrict the lateral mobility of AtHIR1 at the plasma membrane and facilitate its oligomerization. Furthermore, protein proximity index measurements, fluorescence cross-correlation spectroscopy, and biochemical experiments demonstrated that the formation of the AtHIR1 complex upon pathogen perception requires intact microdomains and cytoskeleton. Taken together, these findings suggest that microdomains and the cytoskeleton constrain AtHIR1 dynamics, promote AtHIR1 oligomerization, and increase the efficiency of the interactions of AtHIR1 with components of the AtHIR1 complex in response to pathogens, thus providing valuable insight into the mechanisms of defense-related responses in plants. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  14. Regulation of Cellular Communication by Signaling Microdomains in the Blood Vessel Wall

    PubMed Central

    Billaud, Marie; Lohman, Alexander W.; Johnstone, Scott R.; Biwer, Lauren A.; Mutchler, Stephanie; Isakson, Brant E.

    2014-01-01

    It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function. PMID:24671377

  15. Regulation of cellular communication by signaling microdomains in the blood vessel wall.

    PubMed

    Billaud, Marie; Lohman, Alexander W; Johnstone, Scott R; Biwer, Lauren A; Mutchler, Stephanie; Isakson, Brant E

    2014-01-01

    It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.

  16. Method of forming oriented block copolymer line patterns, block copolymer line patterns formed thereby, and their use to form patterned articles

    DOEpatents

    Russell, Thomas P.; Hong, Sung Woo; Lee, Doug Hyun; Park, Soojin; Xu, Ting

    2015-10-13

    A block copolymer film having a line pattern with a high degree of long-range order is formed by a method that includes forming a block copolymer film on a substrate surface with parallel facets, and annealing the block copolymer film to form an annealed block copolymer film having linear microdomains parallel to the substrate surface and orthogonal to the parallel facets of the substrate. The line-patterned block copolymer films are useful for the fabrication of magnetic storage media, polarizing devices, and arrays of nanowires.

  17. Method of forming oriented block copolymer line patterns, block copolymer line patterns formed thereby, and their use to form patterned articles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Thomas P.; Hong, Sung Woo; Lee, Dong Hyun

    A block copolymer film having a line pattern with a high degree of long-range order is formed by a method that includes forming a block copolymer film on a substrate surface with parallel facets, and annealing the block copolymer film to form an annealed block copolymer film having linear microdomains parallel to the substrate surface and orthogonal to the parallel facets of the substrate. The line-patterned block copolymer films are useful for the fabrication of magnetic storage media, polarizing devices, and arrays of nanowires.

  18. Magnetic Alignment of Block Copolymer Microdomains by Intrinsic Chain Anisotropy.

    PubMed

    Rokhlenko, Yekaterina; Gopinadhan, Manesh; Osuji, Chinedum O; Zhang, Kai; O'Hern, Corey S; Larson, Steven R; Gopalan, Padma; Majewski, Paweł W; Yager, Kevin G

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ≈2×10^{-8}. From field-dependent scattering data, we estimate that grains of ≈1.2  μm are present during alignment. These results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

  19. Nanosecond pulsed electric field (nsPEF) enhance cytotoxicity of cisplatin to hepatocellular cells by microdomain disruption on plasma membrane.

    PubMed

    Yin, Shengyong; Chen, Xinhua; Xie, Haiyang; Zhou, Lin; Guo, Danjing; Xu, Yuning; Wu, Liming; Zheng, Shusen

    2016-08-15

    Previous studies showed nanosecond pulsed electric field (nsPEF) can ablate solid tumors including hepatocellular carcinoma (HCC) but its effect on cell membrane is not fully understood. We hypothesized nsPEF disrupt the microdomains on outer-cellular membrane with direct mechanical force and as a result the plasma membrane permeability increases to facilitate the small molecule intake. Three HCC cells were pulsed one pulse per minute, an interval longer than nanopore resealing time. The cationized ferritin was used to mark up the electronegative microdomains, propidium iodide (PI) for membrane permeabilization, energy dispersive X-ray spectroscopy (EDS) for the negative cell surface charge and cisplatin for inner-cellular cytotoxicity. We demonstrated that the ferritin marked-microdomain and negative cell surface charge were disrupted by nsPEF caused-mechanical force. The cell uptake of propidium and cytotoxicity of DNA-targeted cisplatin increased with a dose effect. Cisplatin gains its maximum inner-cellular cytotoxicity when combining with nsPEF stimulation. We conclude that nsPEF disrupt the microdomains on the outer cellular membrane directly and increase the membrane permeabilization for PI and cisplatin. The microdomain disruption and membrane infiltration changes are caused by the mechanical force from the changes of negative cell surface charge. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Function of plasma membrane microdomain-associated proteins during legume nodulation.

    PubMed

    Qiao, Zhenzhen; Libault, Marc

    2017-10-03

    Plasma membrane microdomains are plasma membrane sub-compartments enriched in sphingolipids and sterols, and composed by a specific set of proteins. They are involved in recognizing signal molecules, transducing these signals, and controlling endocytosis and exocytosis processes. In a recent study, applying biochemical and microscopic methods, we characterized the soybean GmFWL1 protein, a major regulator of soybean nodulation, as a new membrane microdomain-associated protein. Interestingly, upon rhizobia inoculation of the soybean root system, GmFWL1 and one of its interacting partners, GmFLOT2/4, both translocate to the root hair cell tip, the primary site of interaction and infection between soybean and Rhizobium. The role of GmFWL1 as a plasma membrane microdomain-associated protein is also supported by immunoprecipitation assays performed on soybean nodules, which revealed 178 GmFWL1 protein partners including a large number of microdomain-associated proteins such as GmFLOT2/4. In this addendum, we provide additional information about the identity of the soybean proteins repetitively identified as GmFWL1 protein partners. Their function is discussed especially in regard to plant-microbe interactions and microbial symbiosis. This addendum will provide new insights in the role of plasma membrane microdomains in regulating legume nodulation.

  1. Membrane Heterogeneity in Akt Activation in Prostate Cancer

    DTIC Science & Technology

    2009-03-01

    raft microdomains. The purpose of this project is to identify the mechanism of Akt1 recruitment to cholesterol-rich microdomains and to explore the...to identify the mecha- nism of Akt1 recruitment to cholesterol-rich microdomains and to explore the biological consequences for regulation of this...I was able to identify an im- portant function for serine 473 and lysine 179 in regulating the admission of Akt1 to the lipid raft signaling platform

  2. Ordered nanoscale domains by infiltration of block copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darling, Seth B.; Elam, Jeffrey; Tseng, Yu-Chih

    A method of preparing tunable inorganic patterned nanofeatures by infiltration of a block copolymer scaffold having a plurality of self-assembled periodic polymer microdomains. The method may be used sequential infiltration synthesis (SIS), related to atomic layer deposition (ALD). The method includes selecting a metal precursor that is configured to selectively react with the copolymer unit defining the microdomain but is substantially non-reactive with another polymer unit of the copolymer. A tunable inorganic features is selectively formed on the microdomain to form a hybrid organic/inorganic composite material of the metal precursor and a co-reactant. The organic component may be optionally removedmore » to obtain an inorganic features with patterned nanostructures defined by the configuration of the microdomain.« less

  3. Direct hierarchical assembly of nanoparticles

    DOEpatents

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari

    2014-07-22

    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  4. Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes.

    PubMed

    Yáñez-Mó, María; Barreiro, Olga; Gordon-Alonso, Mónica; Sala-Valdés, Mónica; Sánchez-Madrid, Francisco

    2009-09-01

    Membrane lipids and proteins are non-randomly distributed and are unable to diffuse freely in the plane of the membrane. This is because of multiple constraints imposed both by the cortical cytoskeleton and by the preference of lipids and proteins to cluster into diverse and specialized membrane domains, including tetraspanin-enriched microdomains, glycosylphosphatidyl inositol-linked proteins nanodomains and caveolae, among others. Recent biophysical characterization of tetraspanin-enriched microdomains suggests that they might be specially suited for the regulation of avidity of adhesion receptors and the compartmentalization of enzymatic activities. Moreover, modulation by tetraspanins of the function of adhesion receptors involved in inflammation, lymphocyte activation, cancer and pathogen infection suggests potential as therapeutic targets. This review explores this emerging picture of tetraspanin microdomains and discusses the implications for cell adhesion, proteolysis and pathogenesis.

  5. Shear Alignment of Diblock Copolymers for Patterning Nanowire Meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, Kyle T.

    2016-09-08

    Metallic nanowire meshes are useful as cheap, flexible alternatives to indium tin oxide – an expensive, brittle material used in transparent conductive electrodes. We have fabricated nanowire meshes over areas up to 2.5 cm 2 by: 1) mechanically aligning parallel rows of diblock copolymer (diBCP) microdomains; 2) selectively infiltrating those domains with metallic ions; 3) etching away the diBCP template; 4) sintering to reduce ions to metal nanowires; and, 5) repeating steps 1 – 4 on the same sample at a 90° offset. We aligned parallel rows of polystyrene-b-poly(2-vinylpyridine) [PS(48.5 kDa)-b-P2VP(14.5 kDa)] microdomains by heating above its glass transition temperaturemore » (T g ≈ 100°C), applying mechanical shear pressure (33 kPa) and normal force (13.7 N), and cooling below T g. DiBCP samples were submerged in aqueous solutions of metallic ions (15 – 40 mM ions; 0.1 – 0.5 M HCl) for 30 – 90 minutes, which coordinate to nitrogen in P2VP. Subsequent ozone-etching and sintering steps yielded parallel nanowires. We aimed to optimize alignment parameters (e.g. shear and normal pressures, alignment duration, and PDMS thickness) to improve the quality, reproducibility, and scalability of meshes. We also investigated metals other than Pt and Au that may be patterned using this technique (Cu, Ag).« less

  6. Magnetic alignment of block copolymer microdomains by intrinsic chain anisotropy

    DOE PAGES

    Rokhlenko, Yekaterina; Yager, Kevin G.; Gopinadhan, Manesh; ...

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δ χ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δ χ ≈ 2×10 –8. From field-dependent scattering data, we estimate that grains of ≈ 1.2 μm are present during alignment. Furthermore, these results demonstratemore » that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.« less

  7. Magnetic alignment of block copolymer microdomains by intrinsic chain anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rokhlenko, Yekaterina; Yager, Kevin G.; Gopinadhan, Manesh

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δ χ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δ χ ≈ 2×10 –8. From field-dependent scattering data, we estimate that grains of ≈ 1.2 μm are present during alignment. Furthermore, these results demonstratemore » that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.« less

  8. The role of membrane microdomains in transmembrane signaling through the epithelial glycoprotein Gp140/CDCP1

    PubMed Central

    Alvares, Stacy M.; Dunn, Clarence A.; Brown, Tod A.; Wayner, Elizabeth E.; Carter, William G.

    2008-01-01

    Cell adhesion to the extracellular matrix (ECM) via integrin adhesion receptors initiates signaling cascades leading to changes in cell behavior. While integrin clustering is necessary to initiate cell attachment to the matrix, additional membrane components are necessary to mediate the transmembrane signals and the cell adhesion response that alter downstream cell behavior. Many of these signaling components reside in glycosphingolipid-rich and cholesterol-rich membrane domains such as Tetraspanin Enriched Microdomains (TEMs)/Glycosynapse 3 and Detergent-Resistant Microdomains (DRMs), also known as lipid rafts. In the following article, we will review examples of how components in these membrane microdomains modulate integrin adhesion after initial attachment to the ECM. Additionally, we will present data on a novel adhesion-responsive transmembrane glycoprotein Gp140/CUB Domain Containing Protein 1, which clusters in epithelial cell-cell contacts. Gp140 can then be phosphorylated by Src Family Kinases at tyrosine 734 in response to outside-in signals- possibly through interactions involving the extracellular CUB domains. Data presented here suggests that outside-in signals through Gp140 in cell-cell contacts assemble membrane clusters that associate with membrane microdomains to recruit and activate SFKs. Active SFKs then mediate phosphorylation of Gp140, SFK and PKCδ with Gp140 acting as a transmembrane scaffold for these kinases. We propose that the clustering of Gp140 and signaling components in membrane microdomains in cell-cell contacts contributes to changes in cell behavior. PMID:18269919

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Shengyong; Chen, Xinhua; Xie, Haiyang

    Previous studies showed nanosecond pulsed electric field (nsPEF) can ablate solid tumors including hepatocellular carcinoma (HCC) but its effect on cell membrane is not fully understood. We hypothesized nsPEF disrupt the microdomains on outer-cellular membrane with direct mechanical force and as a result the plasma membrane permeability increases to facilitate the small molecule intake. Three HCC cells were pulsed one pulse per minute, an interval longer than nanopore resealing time. The cationized ferritin was used to mark up the electronegative microdomains, propidium iodide (PI) for membrane permeabilization, energy dispersive X-ray spectroscopy (EDS) for the negative cell surface charge and cisplatinmore » for inner-cellular cytotoxicity. We demonstrated that the ferritin marked-microdomain and negative cell surface charge were disrupted by nsPEF caused-mechanical force. The cell uptake of propidium and cytotoxicity of DNA-targeted cisplatin increased with a dose effect. Cisplatin gains its maximum inner-cellular cytotoxicity when combining with nsPEF stimulation. We conclude that nsPEF disrupt the microdomains on the outer cellular membrane directly and increase the membrane permeabilization for PI and cisplatin. The microdomain disruption and membrane infiltration changes are caused by the mechanical force from the changes of negative cell surface charge.« less

  10. Microdomains in the membrane landscape shape antigen-presenting cell function.

    PubMed

    Zuidscherwoude, Malou; de Winde, Charlotte M; Cambi, Alessandra; van Spriel, Annemiek B

    2014-02-01

    The plasma membrane of immune cells is a highly organized cell structure that is key to the initiation and regulation of innate and adaptive immune responses. It is well-established that immunoreceptors embedded in the plasma membrane have a nonrandom spatial distribution that is important for coupling to components of intracellular signaling cascades. In the last two decades, specialized membrane microdomains, including lipid rafts and TEMs, have been identified. These domains are preformed structures ("physical entities") that compartmentalize proteins, lipids, and signaling molecules into multimolecular assemblies. In APCs, different microdomains containing immunoreceptors (MHC proteins, PRRs, integrins, among others) have been reported that are imperative for efficient pathogen recognition, the formation of the immunological synapse, and subsequent T cell activation. In addition, recent work has demonstrated that tetraspanin microdomains and lipid rafts are involved in BCR signaling and B cell activation. Research into the molecular mechanisms underlying membrane domain formation is fundamental to a comprehensive understanding of membrane-proximal signaling and APC function. This review will also discuss the advances in the microscopy field for the visualization of the plasma membrane, as well as the recent progress in targeting microdomains as novel, therapeutic approach for infectious and malignant diseases.

  11. Crystallization and Microphase Separation in Chiral Block Copolymers

    NASA Astrophysics Data System (ADS)

    Ho, Rong-Ming

    2012-02-01

    Block copolymers composed of chiral entities, denoted as chiral block copolymers (BCP*s), were designed to fabricate helical architectures from self-assembly. A helical phase (denoted H*) was discovered in the self-assembly of poly(styrene)-b-poly(L-lactide) (PS-PLLA) BCPs*. To examine the phase behavior of the PS-PLLA, self-assembled superstructures resulting from the competition between crystallization and microphase separation of the PS-PLLA in solution were examined. A kinetically controlled process by changing non-solvent addition rate was utilized to control the BCP* self-assembly. Single-crystal lozenge lamellae were obtained by the slow self-assembly (i.e., slow non-solvent addition rate) of PS-PLLA whereas amorphous helical ribbon superstructures were obtained from the fast self-assembly (i.e., fast non-solvent addition rate). As a result, the formation of helical architectures from the self-assembly of the PS-PLLA reflects the impact of chirality on microphase separation, but the chiral effect might be overwhelmed by crystallization. Consequently, various crystalline PS-PLLA nanostructures in bulk were obtained by controlling the crystallization temperature of PLLA (Tc,PLLA) at which crystalline helices and crystalline cylinders occur while Tc,PLLA=x Tg,PS, respectively. Anisotropic arrangement of the PLLA crystallites grown within the microdomains was identified. The formation of this exclusive crystalline growth is attributed to the spatial confinement effect for crystallization. While Tc,PLLA=x Tg,PS, the preferential growth may modulate the curvature of microdomains by shifting the molecular chains to access the fast path for crystalline growth due to the increase in chain mobility. As a result, a spring-like behavior of the helical nanostructure can be driven by crystallization so as to dictate the transformation of helices and to result in crystalline cylinders.

  12. Dynamic Partitioning of a GPI-Anchored Protein in Glycosphingolipid-Rich Microdomains Imaged by Single-Quantum Dot Tracking

    PubMed Central

    Pinaud, Fabien; Michalet, Xavier; Iyer, Gopal; Margeat, Emmanuel; Moore, Hsiao-Ping; Weiss, Shimon

    2009-01-01

    Recent experimental developments have led to a revision of the classical fluid mosaic model proposed by Singer and Nicholson 35 years ago. In particular, it is now well established that lipids and proteins diffuse heterogeneously in cell plasma membranes. Their complex motion patterns reflect the dynamic structure and composition of the membrane itself, as well as the presence of the underlying cytoskeleton scaffold and that of the extracellular matrix. How the structural organization of plasma membranes influences the diffusion of individual proteins remains a challenging, yet central question for cell signaling and its regulation. Here we have developed a raft-associated glycosylphosphatidyl Inositol-anchored avidin test probe (Av-GPI), whose diffusion patterns indirectly reports on the structure and dynamics of putative raft microdomains in the membrane of HeLa cells. Labeling with quantum dots (qdots) allowed high-resolution and long-term tracking of individual Av-GPI and the classification of their various diffusive behaviors. Using dual-color total internal reflection fluorescence (TIRF) microscopy, we studied the correlation between the diffusion of individual Av-GPI and the location of glycosphingolipid GM1-rich microdomains and caveolae. We show that Av-GPI exhibit a fast and a slow diffusion regime in different membrane regions, and that slowing down of their diffusion is correlated with entry in GM1-rich microdomains located in close proximity to, but distinct, from caveolae. We further show that Av-GPI dynamically partition in and out of these microdomains in a cholesterol-dependent manner. Our results provide direct evidence that cholesterol/sphingolipid-rich microdomains can compartmentalize the diffusion of GPI-anchored proteins in living cells and that the dynamic partitioning raft model appropriately describes the diffusive behavior of some raft-associated proteins across the plasma membrane. PMID:19416475

  13. Proteomic Analysis of Detergent-resistant Membrane Microdomains in Trophozoite Blood Stage of the Human Malaria Parasite Plasmodium falciparum*

    PubMed Central

    Yam, Xue Yan; Birago, Cecilia; Fratini, Federica; Di Girolamo, Francesco; Raggi, Carla; Sargiacomo, Massimo; Bachi, Angela; Berry, Laurence; Fall, Gamou; Currà, Chiara; Pizzi, Elisabetta; Breton, Catherine Braun; Ponzi, Marta

    2013-01-01

    Intracellular pathogens contribute to a significant proportion of infectious diseases worldwide. The successful strategy of evading the immune system by hiding inside host cells is common to all the microorganism classes, which exploit membrane microdomains, enriched in cholesterol and sphingolipids, to invade and colonize the host cell. These assemblies, with distinct biochemical properties, can be isolated by means of flotation in sucrose density gradient centrifugation because they are insoluble in nonionic detergents at low temperature. We analyzed the protein and lipid contents of detergent-resistant membranes from erythrocytes infected by Plasmodium falciparum, the most deadly human malaria parasite. Proteins associated with membrane microdomains of trophic parasite blood stages (trophozoites) include an abundance of chaperones, molecules involved in vesicular trafficking, and enzymes implicated in host hemoglobin degradation. About 60% of the identified proteins contain a predicted localization signal suggesting a role of membrane microdomains in protein sorting/trafficking. To validate our proteomic data, we raised antibodies against six Plasmodium proteins not characterized previously. All the selected candidates were recovered in floating low-density fractions after density gradient centrifugation. The analyzed proteins localized either to internal organelles, such as the mitochondrion and the endoplasmic reticulum, or to exported membrane structures, the parasitophorous vacuole membrane and Maurer's clefts, implicated in targeting parasite proteins to the host erythrocyte cytosol or surface. The relative abundance of cholesterol and phospholipid species varies in gradient fractions containing detergent-resistant membranes, suggesting heterogeneity in the lipid composition of the isolated microdomain population. This study is the first report showing the presence of cholesterol-rich microdomains with distinct properties and subcellular localization in trophic stages of Plasmodium falciparum. PMID:24045696

  14. DHA-fluorescent probe is sensitive to membrane order and reveals molecular adaptation of DHA in ordered lipid microdomains☆

    PubMed Central

    Teague, Heather; Ross, Ron; Harris, Mitchel; Mitchell, Drake C.; Shaikh, Saame Raza

    2012-01-01

    Docosahexaenoic acid (DHA) disrupts the size and order of plasma membrane lipid microdomains in vitro and in vivo. However, it is unknown how the highly disordered structure of DHA mechanistically adapts to increase the order of tightly packed lipid microdomains. Therefore, we studied a novel DHA-Bodipy fluorescent probe to address this issue. We first determined if the DHA-Bodipy probe localized to the plasma membrane of primary B and immortal EL4 cells. Image analysis revealed that DHA-Bodipy localized into the plasma membrane of primary B cells more efficiently than EL4 cells. We then determined if the probe detected changes in plasma membrane order. Quantitative analysis of time-lapse movies established that DHA-Bodipy was sensitive to membrane molecular order. This allowed us to investigate how DHA-Bodipy physically adapted to ordered lipid microdomains. To accomplish this, we employed steady-state and time-resolved fluorescence anisotropy measurements in lipid vesicles of varying composition. Similar to cell culture studies, the probe was highly sensitive to membrane order in lipid vesicles. Moreover, these experiments revealed, relative to controls, that upon incorporation into highly ordered microdomains, DHA-Bodipy underwent an increase in its fluorescence lifetime and molecular order. In addition, the probe displayed a significant reduction in its rotational diffusion compared to controls. Altogether, DHA-Bodipy was highly sensitive to membrane order and revealed for the first time that DHA, despite its flexibility, could become ordered with less rotational motion inside ordered lipid microdomains. Mechanistically, this explains how DHA acyl chains can increase order upon formation of lipid microdomains in vivo. PMID:22841541

  15. Antiproliferative effects of γ-tocotrienol are associated with lipid raft disruption in HER2-positive human breast cancer cells.

    PubMed

    Alawin, Osama A; Ahmed, Rayan A; Ibrahim, Baher A; Briski, Karen P; Sylvester, Paul W

    2016-01-01

    A large percentage of human breast cancers are characterized by excessive or aberrant HER2 activity. Lipid rafts are specialized microdomains within the plasma membrane that are required for HER2 activation and signal transduction. Since the anticancer activity of γ-tocotrienol is associated with suppression in HER2 signaling, studies were conducted to examine the effects of γ-tocotrienol on HER2 activation within the lipid raft microdomain in HER2-positive SKBR3 and BT474 human breast cancer cells. Treatment with 0-5μM γ-tocotrienol induced a significant dose-dependent inhibition in cancer cell growth after a 5-day culture period, and these growth inhibitory effects were associated with a reduction in HER2 dimerization and phosphorylation (activation). Phosphorylated HER2 was found to be primarily located in the lipid raft microdomain of the plasma membrane in vehicle-treated control groups, whereas γ-tocotrienol treatment significantly inhibited this effect. Assay of plasma membrane subcellular fractions showed that γ-tocotrienol also accumulates exclusively within the lipid raft microdomain. Hydroxypropyl-β-cyclodextrin (HPβCD) is an agent that disrupts lipid raft integrity. Acute exposure to 3mM HPβCD alone had no effect, whereas an acute 24-h exposure to 20μM γ-tocotrienol alone significantly decreased SKBR3 and BT474 cell viability. However, combined treatment with these agents greatly reduced γ-tocotrienol accumulation in the lipid raft microdomain and cytotoxicity. In summary, these findings demonstrate that the anticancer effects of γ-tocotrienol are associated with its accumulation in the lipid raft microdomain and subsequent interference with HER2 dimerization and activation in SKBR3 and BT474 human breast cancer cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking.

    PubMed

    Pinaud, Fabien; Michalet, Xavier; Iyer, Gopal; Margeat, Emmanuel; Moore, Hsiao-Ping; Weiss, Shimon

    2009-06-01

    Recent experimental developments have led to a revision of the classical fluid mosaic model proposed by Singer and Nicholson more than 35 years ago. In particular, it is now well established that lipids and proteins diffuse heterogeneously in cell plasma membranes. Their complex motion patterns reflect the dynamic structure and composition of the membrane itself, as well as the presence of the underlying cytoskeleton scaffold and that of the extracellular matrix. How the structural organization of plasma membranes influences the diffusion of individual proteins remains a challenging, yet central, question for cell signaling and its regulation. Here we have developed a raft-associated glycosyl-phosphatidyl-inositol-anchored avidin test probe (Av-GPI), whose diffusion patterns indirectly report on the structure and dynamics of putative raft microdomains in the membrane of HeLa cells. Labeling with quantum dots (qdots) allowed high-resolution and long-term tracking of individual Av-GPI and the classification of their various diffusive behaviors. Using dual-color total internal reflection fluorescence (TIRF) microscopy, we studied the correlation between the diffusion of individual Av-GPI and the location of glycosphingolipid GM1-rich microdomains and caveolae. We show that Av-GPI exhibit a fast and a slow diffusion regime in different membrane regions, and that slowing down of their diffusion is correlated with entry in GM1-rich microdomains located in close proximity to, but distinct, from caveolae. We further show that Av-GPI dynamically partition in and out of these microdomains in a cholesterol-dependent manner. Our results provide direct evidence that cholesterol-/sphingolipid-rich microdomains can compartmentalize the diffusion of GPI-anchored proteins in living cells and that the dynamic partitioning raft model appropriately describes the diffusive behavior of some raft-associated proteins across the plasma membrane.

  17. Laser Demonstration of Diode-Pumped Nd3+-Doped Fluorapatite Anisotropic Ceramics

    NASA Astrophysics Data System (ADS)

    Akiyama, Jun; Sato, Yoichi; Taira, Takunori

    2011-02-01

    We report the first demonstration of a diode-pumped anisotropic ceramic laser that uses microdomain-controlled neodymium-doped hexagonal fluorapatite [Nd3+:Ca10(PO4)6F2, Nd:FAP] polycrystalline ceramics as the gain medium, which were fabricated by the rare-earth-assisted magnetic grain-orientation control method, as a step toward achieving giant micro photonics. The laser delivers 1063.10 and 1063.22 nm output beams when pumped with a central wavelength of 807.5 nm and a 2 nm bandwidth diode laser operating in quasi-continuous-wave (QCW) mode. We obtained a maximum QCW peak power of 255 mW with an uncoated 2 at. % Nd:FAP material.

  18. Membrane-Sculpting BAR Domains Generate Stable Lipid Microdomains

    PubMed Central

    Zhao, Hongxia; Michelot, Alphée; Koskela, Essi V.; Tkach, Vadym; Stamou, Dimitrios; Drubin, David G.; Lappalainen, Pekka

    2014-01-01

    SUMMARY Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR domains can generate extremely stable lipid microdomains by “freezing” phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved role for BAR superfamily proteins in regulating lipid dynamics within membranes. Stable microdomains induced by BAR domain scaffolds and specific lipids can generate phase boundaries and diffusion barriers, which may have profound impacts on diverse cellular processes. PMID:24055060

  19. Detection of focal adhesion kinase activation at membrane microdomains by fluorescence resonance energy transfer.

    PubMed

    Seong, Jihye; Ouyang, Mingxing; Kim, Taejin; Sun, Jie; Wen, Po-Chao; Lu, Shaoying; Zhuo, Yue; Llewellyn, Nicholas M; Schlaepfer, David D; Guan, Jun-Lin; Chien, Shu; Wang, Yingxiao

    2011-07-26

    Proper subcellular localization of focal adhesion kinase (FAK) is crucial for many cellular processes. It remains, however, unclear how FAK activity is regulated at subcellular compartments. To visualize the FAK activity at different membrane microdomains, we develop a fluorescence resonance energy transfer (FRET)-based FAK biosensor, and target it into or outside of detergent-resistant membrane (DRM) regions at the plasma membrane. Here we show that, on cell adhesion to extracellular matrix proteins or stimulation by platelet-derived growth factor (PDGF), the FRET responses of DRM-targeting FAK biosensor are stronger than that at non-DRM regions, suggesting that FAK activation can occur at DRM microdomains. Further experiments reveal that the PDGF-induced FAK activation is mediated and maintained by Src activity, whereas FAK activation on cell adhesion is independent of, and in fact essential for the Src activation. Therefore, FAK is activated at membrane microdomains with distinct activation mechanisms in response to different physiological stimuli. © 2011 Macmillan Publishers Limited. All rights reserved.

  20. Agonist-induced PIP(2) hydrolysis inhibits cortical actin dynamics: regulation at a global but not at a micrometer scale.

    PubMed

    van Rheenen, Jacco; Jalink, Kees

    2002-09-01

    Phosphatidylinositol 4, 5-bisphosphate (PIP(2)) at the inner leaflet of the plasma membrane has been proposed to locally regulate the actin cytoskeleton. Indeed, recent studies that use GFP-tagged pleckstrin homology domains (GFP-PH) as fluorescent PIP(2) sensors suggest that this lipid is enriched in membrane microdomains. Here we report that this concept needs revision. Using three distinct fluorescent GFP-tagged pleckstrin homology domains, we show that highly mobile GFP-PH patches colocalize perfectly with various lipophilic membrane dyes and, hence, represent increased lipid content rather than PIP(2)-enriched microdomains. We show that bright patches are caused by submicroscopical folds and ruffles in the membrane that can be directly visualized at approximately 15 nm axial resolution with a novel numerically enhanced imaging method. F-actin motility is inhibited significantly by agonist-induced PIP(2) breakdown, and it resumes as soon as PIP(2) levels are back to normal. Thus, our data support a role for PIP(2) in the regulation of cortical actin, but they challenge a model in which spatial differences in PIP(2) regulation of the cytoskeleton exist at a micrometer scale.

  1. N-3 fatty acids and membrane microdomains: from model membranes to lymphocyte function.

    PubMed

    Shaikh, Saame Raza; Teague, Heather

    2012-12-01

    This article summarizes the author's research on fish oil derived n-3 fatty acids, plasma membrane organization and B cell function. We first cover basic model membrane studies that investigated how docosahexaenoic acid (DHA) targeted the organization of sphingolipid-cholesterol enriched lipid microdomains. A key finding here was that DHA had a relatively poor affinity for cholesterol. This work led to a model that predicted DHA acyl chains in cells would manipulate lipid-protein microdomain organization and thereby function. We then review how the predictions of the model were tested with B cells in vitro followed by experiments using mice fed fish oil. These studies reveal a highly complex picture on how n-3 fatty acids target lipid-protein organization and B cell function. Key findings are as follows: (1) n-3 fatty acids target not just the plasma membrane but also endomembrane organization; (2) DHA, but not eicosapentaenoic acid (EPA), disrupts microdomain spatial distribution (i.e. clustering), (3) DHA alters protein lateral organization and (4) changes in membrane organization are accompanied by functional effects on both innate and adaptive B cell function. Altogether, the research over the past 10 years has led to an evolution of the original model on how DHA reorganizes membrane microdomains. The work raises the intriguing possibility of testing the model at the human level to target health and disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Transmembrane voltage: Potential to induce lateral microdomains.

    PubMed

    Malinsky, Jan; Tanner, Widmar; Opekarova, Miroslava

    2016-08-01

    Lateral segregation of plasma membrane lipids is a generally accepted phenomenon. Lateral lipid microdomains of specific composition, structure and biological functions are established as a result of simultaneous action of several competing mechanisms which contribute to membrane organization. Various lines of evidence support the conclusion that among those mechanisms, the membrane potential plays significant and to some extent unique role. Above all, clear differences in the microdomain structure as revealed by fluorescence microscopy could be recognized between polarized and depolarized membranes. In addition, recent fluorescence spectroscopy experiments reported depolarization-induced changes in a membrane lipid order. In the context of earlier findings showing that plasma membranes of depolarized cells are less susceptible to detergents and the cells less sensitive to antibiotics or antimycotics treatment we discuss a model, in which membrane potential-driven re-organization of the microdomain structure contributes to maintaining membrane integrity during response to stress, pathogen attack and other challenges involving partial depolarization of the plasma membrane. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Membrane-sculpting BAR domains generate stable lipid microdomains.

    PubMed

    Zhao, Hongxia; Michelot, Alphée; Koskela, Essi V; Tkach, Vadym; Stamou, Dimitrios; Drubin, David G; Lappalainen, Pekka

    2013-09-26

    Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR domains can generate extremely stable lipid microdomains by "freezing" phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved role for BAR superfamily proteins in regulating lipid dynamics within membranes. Stable microdomains induced by BAR domain scaffolds and specific lipids can generate phase boundaries and diffusion barriers, which may have profound impacts on diverse cellular processes. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Platelet Activating Factor-Induced Ceramide Micro-Domains Drive Endothelial NOS Activation and Contribute to Barrier Dysfunction

    PubMed Central

    Predescu, Sanda; Knezevic, Ivana; Bardita, Cristina; Neamu, Radu Florin; Brovcovych, Viktor; Predescu, Dan

    2013-01-01

    The spatial and functional relationship between platelet activating factor-receptor (PAF-R) and nitric oxide synthase (eNOS) in the lateral plane of the endothelial plasma membrane is poorly characterized. In this study, we used intact mouse pulmonary endothelial cells (ECs) as well as endothelial plasma membrane patches and subcellular fractions to define a new microdomain of plasmalemma proper where the two proteins colocalize and to demonstrate how PAF-mediated nitric oxide (NO) production fine-tunes ECs function as gatekeepers of vascular permeability. Using fluorescence microscopy and immunogold labeling electron microscopy (EM) on membrane patches we demonstrate that PAF-R is organized as clusters and colocalizes with a subcellular pool of eNOS, outside recognizable vesicular profiles. Moreover, PAF-induced acid sphingomyelinase activation generates a ceramide-based microdomain on the external leaflet of plasma membrane, inside of which a signalosome containing eNOS shapes PAF-stimulated NO production. Real-time measurements of NO after PAF-R ligation indicated a rapid (5 to 15 min) increase in NO production followed by a > 45 min period of reduction to basal levels. Moreover, at the level of this new microdomain, PAF induces a dynamic phosphorylation/dephosphorylation of Ser, Thr and Tyr residues of eNOS that correlates with NO production. Altogether, our findings establish the existence of a functional partnership PAF-R/eNOS on EC plasma membrane, at the level of PAF-induced ceramide plasma membrane microdomains, outside recognized vesicular profiles. PMID:24086643

  5. Differential insertion of GPI-anchored GFPs into lipid rafts of live cells.

    PubMed

    Legler, Daniel F; Doucey, Marie-Agnès; Schneider, Pascal; Chapatte, Laurence; Bender, Florent C; Bron, Claude

    2005-01-01

    Partitioning of proteins in cholesterol and sphingolipid enriched plasma membrane microdomains, called lipid rafts, is critical for many signal transduction and protein sorting events. Although raft partitioning of many signaling molecules remains to be determined, glycosylphosphatidyl-inositol (GPI)-anchored proteins possess high affinity for lipid rafts and are currently exploited as markers to investigate fundamental mechanisms in protein sorting and signal transduction events. In this study, we demonstrate that two recombinant GPI-anchored green fluorescent proteins (GFP-GPIs) that differ in their GPI signal sequence confer distinct localization in plasma membrane microdomains. GFP fused to the GPI signal of the decay accelerating factor GFP-GPI(DAF) partitioned exclusively in lipid rafts, whereas GFP fused to the GPI signal of TRAIL-R3, GFP-GPI(TRAIL-R3), associated only minimally with microdomains. In addition, we investigated the unique ability of purified GFP-GPIs to insert into membrane microdomains of primary lymphocytes. This cell surface painting allows rapid, stable, and functional association of the GPI-anchored proteins with the target cell plasma membrane. The distinct membrane localization of the two GFP-GPIs was observed irrespective of whether the GPI-anchored molecules were painted or transfected. Furthermore, we show that painted GFP-GPI(DAF) was totally dependent on the GPI anchor and that the membrane insertion was increased by the addition of raft-associated lipids such as cholesterol, sphingomyelin, and dipalmitoyl-phosphatidylethanolamine. Thus, this study provides evidence that different GPI signal sequences lead to distinct membrane microdomain localization and that painted GFP-GPI(DAF) serves as an excellent fluorescent marker for lipid rafts in live cells.

  6. Cholesterol Modulates CFTR Confinement in the Plasma Membrane of Primary Epithelial Cells

    PubMed Central

    Abu-Arish, Asmahan; Pandzic, Elvis; Goepp, Julie; Matthes, Elizabeth; Hanrahan, John W.; Wiseman, Paul W.

    2015-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function. PMID:26153705

  7. Association of ABCA1 with syntaxin 13 and flotillin-1 and enhanced phagocytosis in tangier cells.

    PubMed

    Bared, Salim Maa; Buechler, Christa; Boettcher, Alfred; Dayoub, Rania; Sigruener, Alexander; Grandl, Margot; Rudolph, Christian; Dada, Ashraf; Schmitz, Gerd

    2004-12-01

    The ATP-binding cassette transporter A1 (ABCA1) facilitates the cellular release of cholesterol and choline-phospholipids to apolipoprotein A-I (apoA-I) and several studies indicate that vesicular transport is associated with ABCA1 function. Syntaxins play a major role in vesicular fusion and have also been demonstrated to interact with members of the ABC-transporter family. Therefore, we focused on the identification of syntaxins that directly interact with ABCA1. The expression of syntaxins and ABCA1 in cultured human monocytes during M-CSF differentiation and cholesterol loading was investigated and syntaxins 3, 6, and 13 were found induced in foam cells together with ABCA1. Immunoprecipitation experiments revealed a direct association of syntaxin 13 and full-length ABCA1, whereas syntaxin 3 and 6 failed to interact with ABCA1. The colocalization of ABCA1 and syntaxin 13 was also shown by immunofluorescence microscopy. Silencing of syntaxin 13 by small interfering RNA (siRNA) led to reduced ABCA1 protein levels and hence to a significant decrease in apoA-I-dependent choline-phospholipid efflux. ABCA1 is localized in Lubrol WX-insoluble raft microdomains in macrophages and syntaxin 13 and flotillin-1 were also detected in these detergent resistant microdomains along with ABCA1. Syntaxin 13, flotillin-1, and ABCA1 were identified as phagosomal proteins, indicating the involvement of the phagosomal compartment in ABCA1-mediated lipid efflux. In addition, the uptake of latex phagobeads by fibroblasts with mutated ABCA1 was enhanced when compared with control cells and the recombinant expression of functional ABCA1 normalized the phagocytosis rate in Tangier fibroblasts. It is concluded that ABCA1 forms a complex with syntaxin 13 and flotillin-1, residing at the plasma membrane and in phagosomes that are partially located in raft microdomains.

  8. Association of ABCA1 with Syntaxin 13 and Flotillin-1 and Enhanced Phagocytosis in Tangier Cells

    PubMed Central

    Bared, Salim Maa; Buechler, Christa; Boettcher, Alfred; Dayoub, Rania; Sigruener, Alexander; Grandl, Margot; Rudolph, Christian; Dada, Ashraf; Schmitz, Gerd

    2004-01-01

    The ATP-binding cassette transporter A1 (ABCA1) facilitates the cellular release of cholesterol and choline-phospholipids to apolipoprotein A-I (apoA-I) and several studies indicate that vesicular transport is associated with ABCA1 function. Syntaxins play a major role in vesicular fusion and have also been demonstrated to interact with members of the ABC-transporter family. Therefore, we focused on the identification of syntaxins that directly interact with ABCA1. The expression of syntaxins and ABCA1 in cultured human monocytes during M-CSF differentiation and cholesterol loading was investigated and syntaxins 3, 6, and 13 were found induced in foam cells together with ABCA1. Immunoprecipitation experiments revealed a direct association of syntaxin 13 and full-length ABCA1, whereas syntaxin 3 and 6 failed to interact with ABCA1. The colocalization of ABCA1 and syntaxin 13 was also shown by immunofluorescence microscopy. Silencing of syntaxin 13 by small interfering RNA (siRNA) led to reduced ABCA1 protein levels and hence to a significant decrease in apoA-I–dependent choline-phospholipid efflux. ABCA1 is localized in Lubrol WX–insoluble raft microdomains in macrophages and syntaxin 13 and flotillin-1 were also detected in these detergent resistant microdomains along with ABCA1. Syntaxin 13, flotillin-1, and ABCA1 were identified as phagosomal proteins, indicating the involvement of the phagosomal compartment in ABCA1-mediated lipid efflux. In addition, the uptake of latex phagobeads by fibroblasts with mutated ABCA1 was enhanced when compared with control cells and the recombinant expression of functional ABCA1 normalized the phagocytosis rate in Tangier fibroblasts. It is concluded that ABCA1 forms a complex with syntaxin 13 and flotillin-1, residing at the plasma membrane and in phagosomes that are partially located in raft microdomains. PMID:15469992

  9. An in situ grazing incidence x-ray scattering study of block copolymer thin films during solvent vapor annealing

    NASA Astrophysics Data System (ADS)

    Gu, Xiaodan; Gunkel, Ilja; Hexemer, Alexander; Russell, Thomas

    2014-03-01

    Although solvent vapor annealing (SVA) has been widely applied to block copolymer (BCP) thin films to obtain well-ordered microdomains, the mechanism of enhancing lateral order is not well understood. Here, we used real time in situ grazing-incidence small-angle x-ray scattering (in situGISAXS) to study the self-assembly of PS-b-P2VP BCP BCPs with different molecular weights thin films in THF vapor, a near neutral solvent for both blocks. Both swelling and deswelling behavior of BCP thin films were examined. The extent of swellingand the solvent removal rate not only affect the domain spacing of BCPs but also dictate the extent of lateral ordering of the BCP microdomains. Larger grains were observed at higher values of the swelling ratio (close to disordering). To preserve the maximal lateral ordering of the microdomains in the swollen state, the fastest solvent removal rate is required to freeze in the ordered microdomain structure of the swollen BCP film. We thanks support from U.S. Department of Energy BES under contract BES-DE-FG02-96ER45612 and ALS doctoral fellowship.

  10. Unidirectionally aligned line patterns driven by entropic effects on faceted surfaces

    PubMed Central

    Hong, Sung Woo; Huh, June; Gu, Xiaodan; Lee, Dong Hyun; Jo, Won Ho; Park, Soojin; Xu, Ting; Russell, Thomas P.

    2012-01-01

    A simple, versatile approach to the directed self-assembly of block copolymers into a macroscopic array of unidirectionally aligned cylindrical microdomains on reconstructed faceted single crystal surfaces or on flexible, inexpensive polymeric replicas was discovered. High fidelity transfer of the line pattern generated from the microdomains to a master mold is also shown. A single-grained line patterns over arbitrarily large surface areas without the use of top-down techniques is demonstrated, which has an order parameter typically in excess of 0.97 and a slope error of 1.1 deg. This degree of perfection, produced in a short time period, has yet to be achieved by any other methods. The exceptional alignment arises from entropic penalties of chain packing in the facets coupled with the bending modulus of the cylindrical microdomains. This is shown, theoretically, to be the lowest energy state. The atomic crystalline ordering of the substrate is transferred, over multiple length scales, to the block copolymer microdomains, opening avenues to large-scale roll-to-roll type and nanoimprint processing of perfectly patterned surfaces and as templates and scaffolds for magnetic storage media, polarizing devices, and nanowire arrays. PMID:22307591

  11. Effects of Vanadium-Containing Compounds on Membrane Lipids and on Microdomains Used in Receptor-Mediated Signaling

    PubMed Central

    Roess, Deborah A.; Smith, Steven M. L.; Winter, Peter; Zhou, Jun; Dou, Ping; Baruah, Bharat; Trujillo, Alejandro M.; Levinger, Nancy E.; Yang, Xioda; Barisas, B. George; Crans, Debbie C.

    2011-01-01

    There is increasing evidence for the involvement of plasma membrane microdomains in insulin receptor function. Moreover, disruption of these structures, which are typically enriched in sphingomyelin and cholesterol, results in insulin resistance. Treatment strategies for insulin resistance include the use of vanadium compounds which have been shown in animal models to enhance insulin responsiveness. One possible mechanism for insulin-enhancing effects might involve direct effects of vanadium compounds on membrane lipid organization. These changes in lipid organization promote the partitioning of insulin receptors and other receptors into membrane microdomains where receptors are optimally functional. To explore this possibility, we have used several strategies involving vanadium complexes such as [VO2dipic]− (pyridin-2,6-dicarboxylatodioxovanadium(V)), decavanadate (V10O286−, V10), BMOV (bis(maltolato)oxovanadium(IV)) and [VO(saltris)]2 (2-salicylideniminato-2-(hydroxymethyl)-1,3-dihydroxypropane-oxovanadium(V)). Our strategies include an evaluation of interactions between vanadium-containing compounds and model lipid systems, an evaluation of the effects of vanadium compounds on lipid fluidity in erythrocyte membranes, and studies of the effects of vanadium-containing compounds on signaling events initiated by receptors known to use membrane microdomains as signaling platforms. PMID:18729092

  12. Milliscale Self-Integration of Megamolecule Biopolymers on a Drying Gas-Aqueous Liquid Crystalline Interface.

    PubMed

    Okeyoshi, Kosuke; Okajima, Maiko K; Kaneko, Tatsuo

    2016-06-13

    A drying environment is always a proposition faced by dynamic living organisms using water, which are driven by biopolymer-based micro- and macrostructures. Here, we introduce a drying process for aqueous liquid crystalline (LC) solutions composed of biopolymer with extremely high molecular weight components such as polysaccharides, cytoskeletal proteins, and DNA. On controlling the mobility of the LC microdomain, the solutions showed milliscale self-integration starting from the unstable gas-LC interface during drying. In particular, we first identified giant rod-like microdomains (∼1 μm diameter and more than 20 μm length) of the mega-molecular polysaccharide, sacran, which is remarkably larger than other polysaccharides. These microdomains led to the formation of a single milliscale macrodomain on the interface. In addition, the dried polymer films on a solid substrate also revealed that such integration depends on the size of the microdomain. We envision that this simple drying method will be useful not only for understanding the biopolymer hierarchization at the macroscale level but also for preparation of surfaces with direction controllability, as seen in living organisms, for use in various fields such as diffusion, mechanics, and photonics.

  13. Mechanotransduction and Metabolism in Cardiomyocyte Microdomains.

    PubMed

    Pasqualini, Francesco S; Nesmith, Alexander P; Horton, Renita E; Sheehy, Sean P; Parker, Kevin Kit

    2016-01-01

    Efficient contractions of the left ventricle are ensured by the continuous transfer of adenosine triphosphate (ATP) from energy production sites, the mitochondria, to energy utilization sites, such as ionic pumps and the force-generating sarcomeres. To minimize the impact of intracellular ATP trafficking, sarcomeres and mitochondria are closely packed together and in proximity with other ultrastructures involved in excitation-contraction coupling, such as t-tubules and sarcoplasmic reticulum junctions. This complex microdomain has been referred to as the intracellular energetic unit. Here, we review the literature in support of the notion that cardiac homeostasis and disease are emergent properties of the hierarchical organization of these units. Specifically, we will focus on pathological alterations of this microdomain that result in cardiac diseases through energy imbalance and posttranslational modifications of the cytoskeletal proteins involved in mechanosensing and transduction.

  14. Dynamic and coordinated single-molecular interactions at TM4SF5-enriched microdomains guide invasive behaviors in 2- and 3-dimensional environments.

    PubMed

    Kim, Hye-Jin; Kwon, Sojung; Nam, Seo Hee; Jung, Jae Woo; Kang, Minkyung; Ryu, Jihye; Kim, Ji Eon; Cheong, Jin-Gyu; Cho, Chang Yun; Kim, Somi; Song, Dae-Geun; Kim, Yong-Nyun; Kim, Tai Young; Jung, Min-Kyo; Lee, Kyung-Min; Pack, Chan-Gi; Lee, Jung Weon

    2017-04-01

    Membrane proteins sense extracellular cues and transduce intracellular signaling to coordinate directionality and speed during cellular migration. They are often localized to specific regions, as with lipid rafts or tetraspanin-enriched microdomains; however, the dynamic interactions of tetraspanins with diverse receptors within tetraspanin-enriched microdomains on cellular surfaces remain largely unexplored. Here, we investigated effects of tetraspan(in) TM4SF5 (transmembrane 4 L6 family member 5)-enriched microdomains (T 5 ERMs) on the directionality of cell migration. Physical association of TM4SF5 with epidermal growth factor receptor (EGFR) and integrin α5 was visualized by live fluorescence cross-correlation spectroscopy and higher-resolution microscopy at the leading edge of migratory cells, presumably forming TM4SF5-enriched microdomains. Whereas TM4SF5 and EGFR colocalized at the migrating leading region more than at the rear, TM4SF5 and integrin α5 colocalized evenly throughout cells. Cholesterol depletion and disruption in TM4SF5 post-translational modifications, including N -glycosylation and palmitoylation, altered TM4SF5 interactions and cellular localization, which led to less cellular migration speed and directionality in 2- or 3-dimensional conditions. TM4SF5 controlled directional cell migration and invasion, and importantly, these TM4SF5 functions were dependent on cholesterol, TM4SF5 post-translational modifications, and EGFR and integrin α5 activity. Altogether, we showed that TM4SF5 dynamically interacted with EGFR and integrin α5 in migratory cells to control directionality and invasion.-Kim, H.-J., Kwon, S., Nam, S. H., Jung, J. W., Kang, M., Ryu, J., Kim, J. E., Cheong, J.-G., Cho, C. Y., Kim, S., Song, D.-G., Kim, Y.-N., Kim, T. Y., Jung, M.-K., Lee, K.-M., Pack, C.-G., Lee, J. W. Dynamic and coordinated single-molecular interactions at TM4SF5-enriched microdomains guide invasive behaviors in 2- and 3-dimensional environments. © FASEB.

  15. Cholesterol modulates CFTR confinement in the plasma membrane of primary epithelial cells.

    PubMed

    Abu-Arish, Asmahan; Pandzic, Elvis; Goepp, Julie; Matthes, Elizabeth; Hanrahan, John W; Wiseman, Paul W

    2015-07-07

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Microdomain-Specific Modulation of L-Type Calcium Channels Leads to Triggered Ventricular Arrhythmia in Heart Failure

    PubMed Central

    Sanchez-Alonso, Jose L.; Bhargava, Anamika; O’Hara, Thomas; Glukhov, Alexey V.; Schobesberger, Sophie; Bhogal, Navneet; Sikkel, Markus B.; Mansfield, Catherine; Korchev, Yuri E.; Lyon, Alexander R.; Punjabi, Prakash P.; Nikolaev, Viacheslav O.; Trayanova, Natalia A.

    2016-01-01

    Rationale: Disruption in subcellular targeting of Ca2+ signaling complexes secondary to changes in cardiac myocyte structure may contribute to the pathophysiology of a variety of cardiac diseases, including heart failure (HF) and certain arrhythmias. Objective: To explore microdomain-targeted remodeling of ventricular L-type Ca2+ channels (LTCCs) in HF. Methods and Results: Super-resolution scanning patch-clamp, confocal and fluorescence microscopy were used to explore the distribution of single LTCCs in different membrane microdomains of nonfailing and failing human and rat ventricular myocytes. Disruption of membrane structure in both species led to the redistribution of functional LTCCs from their canonical location in transversal tubules (T-tubules) to the non-native crest of the sarcolemma, where their open probability was dramatically increased (0.034±0.011 versus 0.154±0.027, P<0.001). High open probability was linked to enhance calcium–calmodulin kinase II–mediated phosphorylation in non-native microdomains and resulted in an elevated ICa,L window current, which contributed to the development of early afterdepolarizations. A novel model of LTCC function in HF was developed; after its validation with experimental data, the model was used to ascertain how HF-induced T-tubule loss led to altered LTCC function and early afterdepolarizations. The HF myocyte model was then implemented in a 3-dimensional left ventricle model, demonstrating that such early afterdepolarizations can propagate and initiate reentrant arrhythmias. Conclusions: Microdomain-targeted remodeling of LTCC properties is an important event in pathways that may contribute to ventricular arrhythmogenesis in the settings of HF-associated remodeling. This extends beyond the classical concept of electric remodeling in HF and adds a new dimension to cardiovascular disease. PMID:27572487

  17. Mechanotransduction and Metabolism in Cardiomyocyte Microdomains

    PubMed Central

    Nesmith, Alexander P.; Horton, Renita E.; Sheehy, Sean P.; Parker, Kevin Kit

    2016-01-01

    Efficient contractions of the left ventricle are ensured by the continuous transfer of adenosine triphosphate (ATP) from energy production sites, the mitochondria, to energy utilization sites, such as ionic pumps and the force-generating sarcomeres. To minimize the impact of intracellular ATP trafficking, sarcomeres and mitochondria are closely packed together and in proximity with other ultrastructures involved in excitation-contraction coupling, such as t-tubules and sarcoplasmic reticulum junctions. This complex microdomain has been referred to as the intracellular energetic unit. Here, we review the literature in support of the notion that cardiac homeostasis and disease are emergent properties of the hierarchical organization of these units. Specifically, we will focus on pathological alterations of this microdomain that result in cardiac diseases through energy imbalance and posttranslational modifications of the cytoskeletal proteins involved in mechanosensing and transduction. PMID:28044126

  18. Eye lens membrane junctional microdomains: a comparison between healthy and pathological cases

    NASA Astrophysics Data System (ADS)

    Buzhynskyy, Nikolay; Sens, Pierre; Behar-Cohen, Francine; Scheuring, Simon

    2011-08-01

    The eye lens is a transparent tissue constituted of tightly packed fiber cells. To maintain homeostasis and transparency of the lens, the circulation of water, ions and metabolites is required. Junctional microdomains connect the lens cells and ensure both tight cell-to-cell adhesion and intercellular flow of fluids through a microcirculation system. Here, we overview membrane morphology and tissue functional requirements of the mammalian lens. Atomic force microscopy (AFM) has opened up the possibility of visualizing the junctional microdomains at unprecedented submolecular resolution, revealing the supramolecular assembly of lens-specific aquaporin-0 (AQP0) and connexins (Cx). We compare the membrane protein assembly in healthy lenses with senile and diabetes-II cataract cases and novel data of the lens membranes from a congenital cataract. In the healthy case, AQP0s form characteristic square arrays confined by connexons. In the cases of senile and diabetes-II cataract patients, connexons were degraded, leading to malformation of AQP0 arrays and breakdown of the microcirculation system. In the congenital cataract, connexons are present, indicating probable non-membranous grounds for lens opacification. Further, we discuss the energetic aspects of the membrane organization in junctional microdomains. The AFM hence becomes a biomedical nano-imaging tool for the analysis of single-membrane protein supramolecular association in healthy and pathological membranes.

  19. A novel biotinylated lipid raft reporter for electron microscopic imaging of plasma membrane microdomains[S

    PubMed Central

    Krager, Kimberly J.; Sarkar, Mitul; Twait, Erik C.; Lill, Nancy L.; Koland, John G.

    2012-01-01

    The submicroscopic spatial organization of cell surface receptors and plasma membrane signaling molecules is readily characterized by electron microscopy (EM) via immunogold labeling of plasma membrane sheets. Although various signaling molecules have been seen to segregate within plasma membrane microdomains, the biochemical identity of these microdomains and the factors affecting their formation are largely unknown. Lipid rafts are envisioned as submicron membrane subdomains of liquid ordered structure with differing lipid and protein constituents that define their specific varieties. To facilitate EM investigation of inner leaflet lipid rafts and the localization of membrane proteins therein, a unique genetically encoded reporter with the dually acylated raft-targeting motif of the Lck kinase was developed. This reporter, designated Lck-BAP-GFP, incorporates green fluorescent protein (GFP) and biotin acceptor peptide (BAP) modules, with the latter allowing its single-step labeling with streptavidin-gold. Lck-BAP-GFP was metabolically biotinylated in mammalian cells, distributed into low-density detergent-resistant membrane fractions, and was readily detected with avidin-based reagents. In EM images of plasma membrane sheets, the streptavidin-gold-labeled reporter was clustered in 20–50 nm microdomains, presumably representative of inner leaflet lipid rafts. The utility of the reporter was demonstrated in an investigation of the potential lipid raft localization of the epidermal growth factor receptor. PMID:22822037

  20. A Localized Complex of Two Protein Oligomers Controls the Orientation of Cell Polarity

    PubMed Central

    Lasker, Keren; Ahrens, Daniel G.; Eckart, Michael R.

    2017-01-01

    ABSTRACT Signaling hubs at bacterial cell poles establish cell polarity in the absence of membrane-bound compartments. In the asymmetrically dividing bacterium Caulobacter crescentus, cell polarity stems from the cell cycle-regulated localization and turnover of signaling protein complexes in these hubs, and yet the mechanisms that establish the identity of the two cell poles have not been established. Here, we recapitulate the tripartite assembly of a cell fate signaling complex that forms during the G1-S transition. Using in vivo and in vitro analyses of dynamic polar protein complex formation, we show that a polymeric cell polarity protein, SpmX, serves as a direct bridge between the PopZ polymeric network and the cell fate-directing DivJ histidine kinase. We demonstrate the direct binding between these three proteins and show that a polar microdomain spontaneously assembles when the three proteins are coexpressed heterologously in an Escherichia coli test system. The relative copy numbers of these proteins are essential for complex formation, as overexpression of SpmX in Caulobacter reorganizes the polarity of the cell, generating ectopic cell poles containing PopZ and DivJ. Hierarchical formation of higher-order SpmX oligomers nucleates new PopZ microdomain assemblies at the incipient lateral cell poles, driving localized outgrowth. By comparison to self-assembling protein networks and polar cell growth mechanisms in other bacterial species, we suggest that the cooligomeric PopZ-SpmX protein complex in Caulobacter illustrates a paradigm for coupling cell cycle progression to the controlled geometry of cell pole establishment. PMID:28246363

  1. Membrane Heterogeneity in Akt Activation in Prostate Cancer

    DTIC Science & Technology

    2009-11-01

    promote oncogenesis by altering the nature of Akt1 signals that flow through lipid raft microdomains. The purpose of this project was to identify the...altering the nature of Akt1 signals that flow through lipid raft microdomains. The purpose of this project was to identify the mecha- nism of Akt1...predominantly in lipid rafts. Consequently, I was able to identify an important function for serine 473 and lysine 179 in regulating the admission

  2. Isolation of plasma membrane-associated membranes from rat liver.

    PubMed

    Suski, Jan M; Lebiedzinska, Magdalena; Wojtala, Aleksandra; Duszynski, Jerzy; Giorgi, Carlotta; Pinton, Paolo; Wieckowski, Mariusz R

    2014-02-01

    Dynamic interplay between intracellular organelles requires a particular functional apposition of membrane structures. The organelles involved come into close contact, but do not fuse, thereby giving rise to notable microdomains; these microdomains allow rapid communication between the organelles. Plasma membrane-associated membranes (PAMs), which are microdomains of the plasma membrane (PM) interacting with the endoplasmic reticulum (ER) and mitochondria, are dynamic structures that mediate transport of proteins, lipids, ions and metabolites. These structures have gained much interest lately owing to their roles in many crucial cellular processes. Here we provide an optimized protocol for the isolation of PAM, PM and ER fractions from rat liver that is based on a series of differential centrifugations, followed by the fractionation of crude PM on a discontinuous sucrose gradient. The procedure requires ∼8-10 h, and it can be easily modified and adapted to other tissues and cell types.

  3. Distribution of short block copolymer chains in Binary Blends of Block Copolymers Having Hydrogen Bonding

    NASA Astrophysics Data System (ADS)

    Kwak, Jongheon; Han, Sunghyun; Kim, Jin Kon

    2014-03-01

    A binary mixture of two block copolymers whose blocks are capable of forming the hydrogen bonding allows one to obtain various microdomains that could not be expected for neat block copolymer. For instance, the binary blend of symmetric polystyrene-block-poly(2-vinylpyridine) copolymer (PS-b-P2VP) and polystyrene-block-polyhydroxystyrene copolymer (PS-b-PHS) blends where the hydrogen bonding occurred between P2VP and PHS showed hexagonally packed (HEX) cylindrical and body centered cubic (BCC) spherical microdomains. To know the exact location of short block copolymer chains at the interface, we synthesized deuterated polystyrene-block-polyhydroxystyrene copolymer (dPS-b-PHS) and prepared a binary mixture with PS-b-P2VP. We investigate, via small angle X-ray scattering (SAXS) and neutron reflectivity (NR), the exact location of shorter dPS block chain near the interface of the microdomains.

  4. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork.

    PubMed

    Lenne, Pierre-François; Wawrezinieck, Laure; Conchonaud, Fabien; Wurtz, Olivier; Boned, Annie; Guo, Xiao-Jun; Rigneault, Hervé; He, Hai-Tao; Marguet, Didier

    2006-07-26

    It is by now widely recognized that cell membranes show complex patterns of lateral organization. Two mechanisms involving either a lipid-dependent (microdomain model) or cytoskeleton-based (meshwork model) process are thought to be responsible for these plasma membrane organizations. In the present study, fluorescence correlation spectroscopy measurements on various spatial scales were performed in order to directly identify and characterize these two processes in live cells with a high temporal resolution, without any loss of spatial information. Putative raft markers were found to be dynamically compartmented within tens of milliseconds into small microdomains (Ø <120 nm) that are sensitive to the cholesterol and sphingomyelin levels, whereas actin-based cytoskeleton barriers are responsible for the confinement of the transferrin receptor protein. A free-like diffusion was observed when both the lipid-dependent and cytoskeleton-based organizations were disrupted, which suggests that these are two main compartmentalizing forces at work in the plasma membrane.

  5. Tailoring uniform gold nanoparticle arrays and nanoporous films for next-generation optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Farid, Sidra; Kuljic, Rade; Poduri, Shripriya; Dutta, Mitra; Darling, Seth B.

    2018-06-01

    High-density arrays of gold nanodots and nanoholes on indium tin oxide (ITO)-coated glass surfaces are fabricated using a nanoporous template fabricated by the self-assembly of diblock copolymers of poly (styrene-block-methyl methacrylate) (PS-b-PMMA) structures. By balancing the interfacial interactions between the polymer blocks and the substrate using random copolymer, cylindrical block copolymer microdomains oriented perpendicular to the plane of the substrate have been obtained. Nanoporous PS films are created by selectively etching PMMA cylinders, a straightforward route to form highly ordered nanoscale porous films. Deposition of gold on the template followed by lift off and sonication leaves a highly dense array of gold nanodots. These materials can serve as templates for the vapor-liquid-solid (VLS) growth of semiconductor nanorod arrays for next generation hybrid optoelectronic applications.

  6. Membrane Heterogeneity in Akt Activation in Prostate Cancer

    DTIC Science & Technology

    2009-07-01

    oncogenesis by altering the nature of Akt1 signals that flow through lipid raft microdomains. The purpose of this project is to identify the mechanism of...nature of Akt1 signals that flow through lipid raft microdomains. The purpose of this project was to identify the mecha- nism of Akt1 recruitment to...predominantly in lipid rafts (for details see Annual Summary Report March 2008). Consequently, I was able to identify an im- portant function for

  7. Lipid profiles of detergent resistant fractions of the plasma membrane in oat and rye in association with cold acclimation and freezing tolerance.

    PubMed

    Takahashi, Daisuke; Imai, Hiroyuki; Kawamura, Yukio; Uemura, Matsuo

    2016-04-01

    Cold acclimation (CA) results in alteration of the plasma membrane (PM) lipid composition in plants, which plays a crucial role in the acquisition of freezing tolerance via membrane stabilization. Recent studies have indicated that PM structure is consistent with the fluid mosaic model but is laterally non-homogenous and contains microdomains enriched in sterols, sphingolipids and specific proteins. In plant cells, the function of these microdomains in relation to CA and freezing tolerance is not yet fully understood. The present study aimed to investigate the lipid compositions of detergent resistant fractions of the PM (DRM) which are considered to represent microdomains. They were prepared from leaves of low-freezing tolerant oat and high-freezing tolerant rye. The DRMs contained higher proportions of sterols, sphingolipids and saturated phospholipids than the PM. In particular, one of the sterol lipid classes, acylated sterylglycoside, was the predominant sterol in oat DRM while rye DRM contained free sterol as the major sterol. Oat and rye showed different patterns (or changes) of sterols and 2-hydroxy fatty acids of sphingolipids of DRM lipids during CA. Taken together, these results suggest that CA-induced changes of lipid classes and molecular species in DRMs are associated with changes in the thermodynamic properties and physiological functions of microdomains during CA and hence, influence plant freezing tolerance. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Mapping of the Localization of Type 1 Angiotensin Receptor in Membrane Microdomains Using Bioluminescence Resonance Energy Transfer-based Sensors*

    PubMed Central

    Balla, András; Tóth, Dániel J.; Soltész-Katona, Eszter; Szakadáti, Gyöngyi; Erdélyi, László Sándor; Várnai, Péter; Hunyady, László

    2012-01-01

    Initiation and termination of signaling of the type I angiotensin receptor (AT1-R) can lead to dynamic changes in its localization in plasma membrane microdomains. Several markers were recently developed to investigate membrane microdomains. Here, we used several YFP-labeled fusion constructs (i.e. raft or non-raft plasma membrane markers) to analyze the agonist-induced changes in compartmentalization of AT1-R, including internalization or lateral movement between plasma membrane compartments in response to stimulation using bioluminescence resonance energy transfer measurements. Our data demonstrate that angiotensin II (AngII) stimulus changes the microdomain localization of wild type or mutated (DRY → AAY or TSTS → AAAA) AT1-Rs co-expressed with the fluorescent probes in HEK293 cells. The comparison of the trafficking of AT1-R upon AngII stimulus with those of [Sar1,Ile8]AngII or [Sar1,Ile4,Ile8]AngII stimulus revealed different types of changes, depending on the nature of the ligand. The observed changes in receptor compartmentalization of the AT1-R are strikingly different from those of 5HT-2C and EGF receptors, which demonstrate the usefulness of the bioluminescence resonance energy transfer-based measurements in the investigation of receptor trafficking in the plasma membrane in living cell experiments. PMID:22291018

  9. Compositional changes in lipid microdomains of air-blood barrier plasma membranes in pulmonary interstitial edema.

    PubMed

    Palestini, Paola; Calvi, Chiara; Conforti, Elena; Daffara, Rossella; Botto, Laura; Miserocchi, Giuseppe

    2003-10-01

    We evaluated in anesthetized rabbits the compositional changes of plasmalemmal lipid microdomains from lung tissue samples after inducing pulmonary interstitial edema (0.5 ml/kg for 3 h, leading to approximately 5% increase in extravascular water). Lipid microdomains (lipid rafts and caveolae) were present in the detergent-resistant fraction (DRF) obtained after discontinuous sucrose density gradient. DRF was enriched in caveolin-1, flotillin, aquaporin-1, GM1, cholesterol, sphingomyelin, and phosphatidylserine, and their contents significantly increased in interstitial edema. The higher DRF content in caveolin, flotillin, and aquaporin-1 and of the ganglioside GM1 suggests an increase both in caveolar domains and in lipid rafts, respectively. Compositional changes could be ascribed to endothelial and epithelial cells that provide most of plasma membrane surface area in the air-blood barrier. Alterations in lipid components in the plasma membrane may reflect rearrangement of floating lipid platforms within the membrane and/or lipid translocation from intracellular stores. Lipid traffic could be stimulated by the marked increase in hydraulic interstitial pressure after initial water accumulation, from approximately -10 to 5 cmH2O, due to the low compliance of the pulmonary tissue, in particular in the basement membranes and in the interfibrillar substance. Compositional changes in lipid microdomains represent a sign of cellular activation and suggest the potential role of mechanotransduction in response to developing interstitial edema.

  10. Analysis of Lipids and Lipid Rafts in Borrelia.

    PubMed

    Toledo, Alvaro; Huang, Zhen; Benach, Jorge L; London, Erwin

    2018-01-01

    Lipid rafts are membrane microdomains that are involved in cellular processes such as protein trafficking and signaling processes, and which play a fundamental role in membrane fluidity and budding. The lipid composition of the membrane and the biochemical characteristics of the lipids found within rafts define the ability of cells to form microdomains and compartmentalize the membrane. In this chapter, we describe the biophysical, biochemical, and molecular approaches used to define and characterize lipid rafts in the Lyme disease agent, Borrelia burgdorferi.

  11. Numerical analysis of laser ablation using the axisymmetric two-temperature model

    NASA Astrophysics Data System (ADS)

    Dziatkiewicz, Jolanta; Majchrzak, Ewa

    2018-01-01

    Laser ablation of the axisymmetric micro-domain is analyzed. To describe the thermal processes occurring in the micro-domain the two-temperature hyperbolic model supplemented by the boundary and initial conditions is used. This model takes into account the phase changes of material (solid-liquid and liquid-vapour) and the ablation process. At the stage of numerical computations the finite difference method with staggered grid is used. In the final part the results of computations are shown.

  12. Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains

    PubMed Central

    Kassan, Adam; Herms, Albert; Fernández-Vidal, Andrea; Bosch, Marta; Schieber, Nicole L.; Reddy, Babu J.N.; Fajardo, Alba; Gelabert-Baldrich, Mariona; Tebar, Francesc; Enrich, Carlos; Gross, Steven P.

    2013-01-01

    Control of lipid droplet (LD) nucleation and copy number are critical, yet poorly understood, processes. We use model peptides that shift from the endoplasmic reticulum (ER) to LDs in response to fatty acids to characterize the initial steps of LD formation occurring in lipid-starved cells. Initially, arriving lipids are rapidly packed in LDs that are resistant to starvation (pre-LDs). Pre-LDs are restricted ER microdomains with a stable core of neutral lipids. Subsequently, a first round of “emerging” LDs is nucleated, providing additional lipid storage capacity. Finally, in proportion to lipid concentration, new rounds of LDs progressively assemble. Confocal microscopy and electron tomography suggest that emerging LDs are nucleated in a limited number of ER microdomains after a synchronized stepwise process of protein gathering, lipid packaging, and recognition by Plin3 and Plin2. A comparative analysis demonstrates that the acyl-CoA synthetase 3 is recruited early to the assembly sites, where it is required for efficient LD nucleation and lipid storage. PMID:24368806

  13. Regulation of T-cell receptor signalling by membrane microdomains

    PubMed Central

    Razzaq, Tahir M; Ozegbe, Patricia; Jury, Elizabeth C; Sembi, Phupinder; Blackwell, Nathan M; Kabouridis, Panagiotis S

    2004-01-01

    There is now considerable evidence suggesting that the plasma membrane of mammalian cells is compartmentalized by functional lipid raft microdomains. These structures are assemblies of specialized lipids and proteins and have been implicated in diverse biological functions. Analysis of their protein content using proteomics and other methods revealed enrichment of signalling proteins, suggesting a role for these domains in intracellular signalling. In T lymphocytes, structure/function experiments and complementary pharmacological studies have shown that raft microdomains control the localization and function of proteins which are components of signalling pathways regulated by the T-cell antigen receptor (TCR). Based on these studies, a model for TCR phosphorylation in lipid rafts is presented. However, despite substantial progress in the field, critical questions remain. For example, it is unclear if membrane rafts represent a homogeneous population and if their structure is modified upon TCR stimulation. In the future, proteomics and the parallel development of complementary analytical methods will undoubtedly contribute in further delineating the role of lipid rafts in signal transduction mechanisms. PMID:15554919

  14. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork

    PubMed Central

    Lenne, Pierre-François; Wawrezinieck, Laure; Conchonaud, Fabien; Wurtz, Olivier; Boned, Annie; Guo, Xiao-Jun; Rigneault, Hervé; He, Hai-Tao; Marguet, Didier

    2006-01-01

    It is by now widely recognized that cell membranes show complex patterns of lateral organization. Two mechanisms involving either a lipid-dependent (microdomain model) or cytoskeleton-based (meshwork model) process are thought to be responsible for these plasma membrane organizations. In the present study, fluorescence correlation spectroscopy measurements on various spatial scales were performed in order to directly identify and characterize these two processes in live cells with a high temporal resolution, without any loss of spatial information. Putative raft markers were found to be dynamically compartmented within tens of milliseconds into small microdomains (∅<120 nm) that are sensitive to the cholesterol and sphingomyelin levels, whereas actin-based cytoskeleton barriers are responsible for the confinement of the transferrin receptor protein. A free-like diffusion was observed when both the lipid-dependent and cytoskeleton-based organizations were disrupted, which suggests that these are two main compartmentalizing forces at work in the plasma membrane. PMID:16858413

  15. Single Molecule Analysis of Serotonin Transporter Regulation Using Quantum Dots

    NASA Astrophysics Data System (ADS)

    Chang, Jerry; Tomlinson, Ian; Warnement, Michael; Ustione, Alessandro; Carneiro, Ana; Piston, David; Blakely, Randy; Rosenthal, Sandra

    2011-03-01

    For the first time, we implement a novel, single molecule approach to define the localization and mobility of the brain's major target of widely prescribed antidepressant medications, the serotonin transporter (SERT). SERT labeled with single quantum dot (Qdot) revealed unsuspected features of transporter mobility with cholesterol-enriched membrane microdomains (often referred to as ``lipid rafts'') and cytoskeleton network linked to transporter activation. We document two pools of surface SERT proteins defined by their lateral mobility, one that exhibits relatively free diffusion in the plasma membrane and a second that displays significantly restricted mobility and localizes to cholesterol-enriched microdomains. Diffusion model prediction and instantaneous velocity analysis indicated that stimuli that act through p38 MAPK-dependent signaling pathways to activate SERT trigger rapid SERT movements within membrane microdomains. Cytoskeleton disruption showed that SERT lateral mobility behaves a membrane raft-constrained, cytoskeleton-associated manner. Our results identify an unsuspected aspect of neurotransmitter transporter regulation that we propose reflects the dissociation of inhibitory, SERT-associated cytoskeletal anchors.

  16. KSHV cell attachment sites revealed by ultra sensitive tyramide signal amplification (TSA) localize to membrane microdomains that are up-regulated on mitotic cells.

    PubMed

    Garrigues, H Jacques; Rubinchikova, Yelena E; Rose, Timothy M

    2014-03-01

    Cell surface structures initiating attachment of Kaposi's sarcoma-associated herpesvirus (KSHV) were characterized using purified hapten-labeled virions visualized by confocal microscopy with a sensitive fluorescent enhancement using tyramide signal amplification (TSA). KSHV attachment sites were present in specific cellular domains, including actin-based filopodia, lamellipodia, ruffled membranes, microvilli and intercellular junctions. Isolated microdomains were identified on the dorsal surface, which were heterogeneous in size with a variable distribution that depended on cellular confluence and cell cycle stage. KSHV binding domains ranged from scarce on interphase cells to dense and continuous on mitotic cells, and quantitation of bound virus revealed a significant increase on mitotic compared to interphase cells. KSHV also bound to a supranuclear domain that was distinct from microdomains in confluent and interphase cells. These results suggest that rearrangement of the cellular membrane during mitosis induces changes in cell surface receptors implicated in the initial attachment stage of KSHV entry. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Microdomain Formation, Oxidation, and Cation Ordering in LaCa 2Fe 3O 8+y

    DOE PAGES

    Price, Patrick M.; Browning, Nigel D.; Butt, Darryl P.

    2015-03-23

    The compound LaCa 2Fe 3O 8+y, also known as the Grenier phase, is known to undergo an order-disorder transformation (ODT) at high temperatures. Oxidation has been observed when the compound is cooled in air after the ODT. In this study, we have synthesized the Grenier compound in air using traditional solid state reactions and investigated the structure and composition before and after the ODT. Thermal analysis showed that the material undergoes an order-disorder transformation in both oxygen and argon atmospheres with dynamic, temperature dependent, oxidation upon cooling. Results from scanning transmission electron microscopy (STEM) suggest that the Grenier phase hasmore » preferential segregation of Ca and La on the two crystallographic A-sites before the ODT, but a random distribution above the ODT temperature. Furthermore, STEM images suggest the possibility that oxygen excess may exist in La-rich regions within microdomains rather than at microdomain boundaries.« less

  18. Dynein Clusters into Lipid Microdomains on Phagosomes to Drive Rapid Transport toward Lysosomes.

    PubMed

    Rai, Ashim; Pathak, Divya; Thakur, Shreyasi; Singh, Shampa; Dubey, Alok Kumar; Mallik, Roop

    2016-02-11

    Diverse cellular processes are driven by motor proteins that are recruited to and generate force on lipid membranes. Surprisingly little is known about how membranes control the force from motors and how this may impact specific cellular functions. Here, we show that dynein motors physically cluster into microdomains on the membrane of a phagosome as it matures inside cells. Such geometrical reorganization allows many dyneins within a cluster to generate cooperative force on a single microtubule. This results in rapid directed transport of the phagosome toward microtubule minus ends, likely promoting phagolysosome fusion and pathogen degradation. We show that lipophosphoglycan, the major molecule implicated in immune evasion of Leishmania donovani, inhibits phagosome motion by disrupting the clustering and therefore the cooperative force generation of dynein. These findings appear relevant to several pathogens that prevent phagosome-lysosome fusion by targeting lipid microdomains on phagosomes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Insulin receptors and downstream substrates associate with membrane microdomains after treatment with insulin or chromium(III) picolinate.

    PubMed

    Al-Qatati, Abeer; Winter, Peter W; Wolf-Ringwall, Amber L; Chatterjee, Pabitra B; Van Orden, Alan K; Crans, Debbie C; Roess, Deborah A; Barisas, B George

    2012-04-01

    We have examined the association of insulin receptors (IR) and downstream signaling molecules with membrane microdomains in rat basophilic leukemia (RBL-2H3) cells following treatment with insulin or tris(2-pyridinecarbxylato)chromium(III) (Cr(pic)(3)). Single-particle tracking demonstrated that individual IR on these cells exhibited reduced lateral diffusion and increased confinement within 100 nm-scale membrane compartments after treatment with either 200 nM insulin or 10 μM Cr(pic)(3). These treatments also increased the association of native IR, phosphorylated insulin receptor substrate 1 and phosphorylated AKT with detergent-resistant membrane microdomains of characteristically high buoyancy. Confocal fluorescence microscopic imaging of Di-4-ANEPPDHQ labeled RBL-2H3 cells also showed that plasma membrane lipid order decreased following treatment with Cr(pic)(3) but was not altered by insulin treatment. Fluorescence correlation spectroscopy demonstrated that Cr(pic)(3) did not affect IR cell-surface density or compete with insulin for available binding sites. Finally, Fourier transform infrared spectroscopy indicated that Cr(pic)(3) likely associates with the lipid interface in reverse-micelle model membranes. Taken together, these results suggest that activation of IR signaling in a cellular model system by both insulin and Cr(pic)(3) involves retention of IR in specialized nanometer-scale membrane microdomains but that the insulin-like effects of Cr(pic)(3) are due to changes in membrane lipid order rather than to direct interactions with IR. © Springer Science+Business Media, LLC 2011

  20. Feeding-fasting dependent recruitment of membrane microdomain proteins to lipid droplets purified from the liver.

    PubMed

    Sadh, Kritika; Rai, Priyanka; Mallik, Roop

    2017-01-01

    Lipid droplets (LDs) are cellular stores of neutral fat that facilitate lipid and protein trafficking in response to metabolic cues. Unlike other vesicles, the phospholipid membrane on the LD is a monolayer. Interestingly, this monolayer membrane has free cholesterol, and may therefore contain lipid microdomains that serve as a platform for assembling proteins involved in signal transduction, cell polarity, pathogen entry etc. In support of this, cell culture studies have detected microdomain-associated "raftophilic" proteins on LDs. However, the physiological significance of this observation has been unclear. Here we show that two proteins (Flotillin-1 and SNAP23) that bind to membrane microdomains associate differently with LDs purified from rat liver depending on the feeding/fasting state of the animal. Flotillin-1 increases on LDs in the fed state, possibly because LDs interact with the endoplasmic reticulum (ER), facilitating supply of flotillin-1 from ER to LDs. Interestingly, this increase in flotillin-1 is correlated with an increase in free cholesterol on the LDs in fed state. In opposite behaviour to flotillin-1, SNAP23 increases on LDs in the fasted state and this appears to mediate LD-mitochondria interactions. Such LD-mitochondria interactions may provide fatty acids to mitochondria for promoting beta-oxidation in hepatocytes in response to fasting. Our work brings out physiologically relevant aspects of lipid droplet biology that are different from, and may not be entirely possible to replicate and study in cell culture.

  1. Neuroglobin overexpression plays a pivotal role in neuroprotection through mitochondrial raft-like microdomains in neuroblastoma SK-N-BE2 cells.

    PubMed

    Garofalo, Tina; Ferri, Alberto; Sorice, Maurizio; Azmoon, Pardis; Grasso, Maria; Mattei, Vincenzo; Capozzi, Antonella; Manganelli, Valeria; Misasi, Roberta

    2018-04-01

    Since stressing conditions induce a relocalization of endogenous human neuroglobin (NGB) to mitochondria, this research is aimed to evaluate the protective role of NGB overexpression against neurotoxic stimuli, through mitochondrial lipid raft-associated complexes. To this purpose, we built a neuronal model of oxidative stress by the use of human dopaminergic neuroblastoma cells, SK-N-BE2, stably overexpressing NGB by transfection and treated with 1-methyl-4-phenylpyridinium ion (MPP+). We preliminary observed the redistribution of NGB to mitochondria following MPP+ treatment. The analysis of mitochondrial raft-like microdomains revealed that, following MPP+ treatment, NGB translocated to raft fractions (Triton X-100-insoluble), where it interacts with ganglioside GD3. Interestingly, the administration of agents capable of perturbating microdomain before MPP+ treatment, significantly affected viability in SK-N-BE2-NGB cells. The overexpression of NGB was able to abrogate the mitochondrial injuries on complex IV activity or mitochondrial morphology induced by MPP+ administration. The protective action of NGB on mitochondria only takes place if the mitochondrial lipid(s) rafts-like microdomains are intact, indeed NGB fails to protect complex IV activity when purified mitochondria were treated with the lipid rafts disruptor methyl-β-cyclodextrin. Thus, our unique in vitro model of stably transfected cells overexpressing endogenous NGB allowed us to suggest that the role in neuroprotection played by NGB is reliable only through interaction with mitochondrial lipid raft-associated complexes. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Shear-induced Long Range Order in Diblock Copolymer Thin Films

    NASA Astrophysics Data System (ADS)

    Ding, Xuan; Russell, Thomas

    2007-03-01

    Shear is a well-established means of aligning block copolymer micro-domains in bulk; cylinder-forming block copolymers respond by orienting cylinder axes parallel to the flow direction, and macroscopic specimens with near-single-crystal texture can be obtained. A stepper motor is a brushless, synchronous electric motor that can divide a full rotation into a large number of steps. With the combination of a stepper motor and several gear boxes in our experiment, we can control the rotating resolution to be as small as 1 x10-4 degree/step. Also, with the help of a customized computer program we can control the motor speed in a very systematical way. By changing parameters such as the weight (or the uniform pressure) and the lateral force we can carry on experiment to examine the effect of lateral shear on different polymer systems such as PS-b-PEO (large χ) and PS-b-P2VP (small χ).

  3. Water-induced nanochannel networks in self-assembled block ionomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mineart, Kenneth P.; Al-Mohsin, Heba A.; Lee, Byeongdu

    2016-03-07

    Block ionomers cast from solution exhibit solvent-templated morphologies that can be altered by solvent-vapor annealing. When cast from a mixed solvent, a midblock-sulfonated pentablock ion- omer self-assembles into spherical ionic microdomains that are loosely connected. Upon exposure to liquid water, nanoscale channels irreversibly develop between the microdomains due to swelling and form a continuous mesoscale network. We use electron tomography and real-time X-ray scat- tering to follow this transformation and show that the resultant morphology provides a highly effec- tive diffusive pathway.

  4. Overexpression of BAX INHIBITOR-1 Links Plasma Membrane Microdomain Proteins to Stress.

    PubMed

    Ishikawa, Toshiki; Aki, Toshihiko; Yanagisawa, Shuichi; Uchimiya, Hirofumi; Kawai-Yamada, Maki

    2015-10-01

    BAX INHIBITOR-1 (BI-1) is a cell death suppressor widely conserved in plants and animals. Overexpression of BI-1 enhances tolerance to stress-induced cell death in plant cells, although the molecular mechanism behind this enhancement is unclear. We recently found that Arabidopsis (Arabidopsis thaliana) BI-1 is involved in the metabolism of sphingolipids, such as the synthesis of 2-hydroxy fatty acids, suggesting the involvement of sphingolipids in the cell death regulatory mechanism downstream of BI-1. Here, we show that BI-1 affects cell death-associated components localized in sphingolipid-enriched microdomains of the plasma membrane in rice (Oryza sativa) cells. The amount of 2-hydroxy fatty acid-containing glucosylceramide increased in the detergent-resistant membrane (DRM; a biochemical counterpart of plasma membrane microdomains) fraction obtained from BI-1-overexpressing rice cells. Comparative proteomics analysis showed quantitative changes of DRM proteins in BI-1-overexpressing cells. In particular, the protein abundance of FLOTILLIN HOMOLOG (FLOT) and HYPERSENSITIVE-INDUCED REACTION PROTEIN3 (HIR3) markedly decreased in DRM of BI-1-overexpressing cells. Loss-of-function analysis demonstrated that FLOT and HIR3 are required for cell death by oxidative stress and salicylic acid, suggesting that the decreased levels of these proteins directly contribute to the stress-tolerant phenotypes in BI-1-overexpressing rice cells. These findings provide a novel biological implication of plant membrane microdomains in stress-induced cell death, which is negatively modulated by BI-1 overexpression via decreasing the abundance of a set of key proteins involved in cell death. © 2015 American Society of Plant Biologists. All Rights Reserved.

  5. T-lymphocyte signalling in systemic lupus erythematosus: a lipid raft perspective

    PubMed Central

    Jury, EC; Kabouridis, PS

    2008-01-01

    In the last few years it has become clear that in cells of the immune system, specialized microdomains present in the plasma membrane, called lipid rafts, have been found to play a central role in regulating signalling by immune receptors. Recent studies have looked at whether lipid rafts may be connected to the abnormalities in signalling seen in T lymphocytes isolated from patients with systemic lupus erythematosus (SLE). These early findings show that in SLE T cells, the expression and protein composition of lipid rafts is different when compared with normal T cells. These results also demonstrate changes in the function and localization of critical signalling molecules such as the LCK tyrosine kinase and the CD45 tyrosine phosphatase. PMID:15303567

  6. Models of plasma membrane organization can be applied to mitochondrial membranes to target human health and disease with polyunsaturated fatty acids.

    PubMed

    Raza Shaikh, Saame; Brown, David A

    2013-01-01

    Bioactive n-3 polyunsaturated fatty acids (PUFA), abundant in fish oil, have potential for treating symptoms associated with inflammatory and metabolic disorders; therefore, it is essential to determine their fundamental molecular mechanisms. Recently, several labs have demonstrated the n-3 PUFA docosahexaenoic acid (DHA) exerts anti-inflammatory effects by targeting the molecular organization of plasma membrane microdomains. Here we briefly review the evidence that DHA reorganizes the spatial distribution of microdomains in several model systems. We then emphasize how models on DHA and plasma membrane microdomains can be applied to mitochondrial membranes. We discuss the role of DHA acyl chains in regulating mitochondrial lipid-protein clustering, and how these changes alter several aspects of mitochondrial function. In particular, we summarize effects of DHA on mitochondrial respiration, electron leak, permeability transition, and mitochondrial calcium handling. Finally, we conclude by postulating future experiments that will augment our understanding of DHA-dependent membrane organization in health and disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Src regulates sequence-dependent beta-2 adrenergic receptor recycling via cortactin phosphorylation*

    PubMed Central

    Vistein, Rachel; Puthenveedu, Manojkumar A.

    2014-01-01

    The recycling of internalized signaling receptors, which has direct functional consequences, is subject to multiple sequence and biochemical requirements. Why signaling receptors recycle via a specialized pathway, unlike many other proteins that recycle by bulk, is a fundamental unanswered question. Here we show that these specialized pathways allow selective control of signaling receptor recycling by heterologous signaling. Using assays to visualize receptor recycling in living cells, we show that the recycling of the beta-2 adrenergic receptor (B2AR), a prototypic signaling receptor, is regulated by Src family kinases. The target of Src is cortactin, an essential factor for B2AR sorting into specialized recycling microdomains on the endosome. Phosphorylation of a single cortactin residue, Y466, regulates the rate of fission of B2AR recycling vesicles from these microdomains, and, therefore, the rate of delivery of B2AR to the cell surface. Together, our results indicate that actin-stabilized microdomains that mediate signaling receptor recycling can serve as a functional point of convergence for crosstalk between signaling pathways. PMID:25077552

  8. Shotgun proteomics of plant plasma membrane and microdomain proteins using nano-LC-MS/MS.

    PubMed

    Takahashi, Daisuke; Li, Bin; Nakayama, Takato; Kawamura, Yukio; Uemura, Matsuo

    2014-01-01

    Shotgun proteomics allows the comprehensive analysis of proteins extracted from plant cells, subcellular organelles, and membranes. Previously, two-dimensional gel electrophoresis-based proteomics was used for mass spectrometric analysis of plasma membrane proteins. In order to get comprehensive proteome profiles of the plasma membrane including highly hydrophobic proteins with a number of transmembrane domains, a mass spectrometry-based shotgun proteomics method using nano-LC-MS/MS for proteins from the plasma membrane proteins and plasma membrane microdomain fraction is described. The results obtained are easily applicable to label-free protein semiquantification.

  9. The inner side of T cell lipid rafts.

    PubMed

    Gri, Giorgia; Molon, Barbara; Manes, Santos; Pozzan, Tullio; Viola, Antonella

    2004-07-15

    A key question in understanding the functional role of lipid rafts is whether lipid microdomains at the plasma membrane outer leaflet are coupled to lipid microdomains at the inner leaflet. By using a cyan-fluorescent protein (CFP) targeted to inner plasma membrane rafts of Jurkat T cells, we found that raft domains at the outer and inner leaflets are physically coupled and that this coupling requires cholesterol. Interestingly, TCR/CD3 cross-linking induces co-capping of the raft bilayer independently of cholesterol or signaling events, indicating that cholesterol-extracting drugs are unable to destroy TCR-lipid rafts interaction.

  10. ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification

    PubMed Central

    Gulati, Sonia; Balderes, Dina; Kim, Christine; Guo, Zhongmin A.; Wilcox, Lisa; Area-Gomez, Estela; Snider, Jamie; Wolinski, Heimo; Stagljar, Igor; Granato, Juliana T.; Ruggles, Kelly V.; DeGiorgis, Joseph A.; Kohlwein, Sepp D.; Schon, Eric A.; Sturley, Stephen L.

    2015-01-01

    A key component of eukaryotic lipid homeostasis is the esterification of sterols with fatty acids by sterol O-acyltransferases (SOATs). The esterification reactions are allosterically activated by their sterol substrates, the majority of which accumulate at the plasma membrane. We demonstrate that in yeast, sterol transport from the plasma membrane to the site of esterification is associated with the physical interaction of the major SOAT, acyl-coenzyme A:cholesterol acyltransferase (ACAT)-related enzyme (Are)2p, with 2 plasma membrane ATP-binding cassette (ABC) transporters: Aus1p and Pdr11p. Are2p, Aus1p, and Pdr11p, unlike the minor acyltransferase, Are1p, colocalize to sterol and sphingolipid-enriched, detergent-resistant microdomains (DRMs). Deletion of either ABC transporter results in Are2p relocalization to detergent-soluble membrane domains and a significant decrease (53–36%) in esterification of exogenous sterol. Similarly, in murine tissues, the SOAT1/Acat1 enzyme and activity localize to DRMs. This subcellular localization is diminished upon deletion of murine ABC transporters, such as Abcg1, which itself is DRM associated. We propose that the close proximity of sterol esterification and transport proteins to each other combined with their residence in lipid-enriched membrane microdomains facilitates rapid, high-capacity sterol transport and esterification, obviating any requirement for soluble intermediary proteins.—Gulati, S., Balderes, D., Kim, C., Guo, Z. A., Wilcox, L., Area-Gomez, E., Snider, J., Wolinski, H., Stagljar, I., Granato, J. T., Ruggles, K. V., DeGiorgis, J. A., Kohlwein, S. D., Schon, E. A., Sturley, S. L. ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification. PMID:26220175

  11. Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes.

    PubMed

    Richards, Mark; Lomas, Oliver; Jalink, Kees; Ford, Kerrie L; Vaughan-Jones, Richard D; Lefkimmiatis, Konstantinos; Swietach, Pawel

    2016-06-01

    3',5'-Cyclic adenosine monophosphate (cAMP) signals in the heart are often confined to concentration microdomains shaped by cAMP diffusion and enzymatic degradation. While the importance of phosphodiesterases (degradative enzymes) in sculpting cAMP microdomains is well established in cardiomyocytes, less is known about cAMP diffusivity (DcAMP) and factors affecting it. Many earlier studies have reported fast diffusivity, which argues against sharply defined microdomains. [cAMP] dynamics in the cytoplasm of adult rat ventricular myocytes were imaged using a fourth generation genetically encoded FRET-based sensor. The [cAMP]-response to the addition and removal of isoproterenol (β-adrenoceptor agonist) quantified the rates of cAMP synthesis and degradation. To obtain a read out of DcAMP, a stable [cAMP] gradient was generated using a microfluidic device which delivered agonist to one half of the myocyte only. After accounting for phosphodiesterase activity, DcAMP was calculated to be 32 µm(2)/s; an order of magnitude lower than in water. Diffusivity was independent of the amount of cAMP produced. Saturating cAMP-binding sites with the analogue 6-Bnz-cAMP did not accelerate DcAMP, arguing against a role of buffering in restricting cAMP mobility. cAMP diffused at a comparable rate to chemically unrelated but similar sized molecules, arguing for a common physical cause of restricted diffusivity. Lower mitochondrial density and order in neonatal cardiac myocytes allowed for faster diffusion, demonstrating the importance of mitochondria as physical barriers to cAMP mobility. In adult cardiac myocytes, tortuosity due to physical barriers, notably mitochondria, restricts cAMP diffusion to levels that are more compatible with microdomain signalling. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  12. Mitochondrial and Plasma Membrane Pools of Stomatin-Like Protein 2 Coalesce at the Immunological Synapse during T Cell Activation

    PubMed Central

    Christie, Darah A.; Kirchhof, Mark G.; Vardhana, Santosh; Dustin, Michael L.; Madrenas, Joaquín

    2012-01-01

    Stomatin-like protein 2 (SLP-2) is a member of the stomatin – prohibitin – flotillin – HflC/K (SPFH) superfamily. Recent evidence indicates that SLP-2 is involved in the organization of cardiolipin-enriched microdomains in mitochondrial membranes and the regulation of mitochondrial biogenesis and function. In T cells, this role translates into enhanced T cell activation. Although the major pool of SLP-2 is associated with mitochondria, we show here that there is an additional pool of SLP-2 associated with the plasma membrane of T cells. Both plasma membrane-associated and mitochondria-associated pools of SLP-2 coalesce at the immunological synapse (IS) upon T cell activation. SLP-2 is not required for formation of IS nor for the re-localization of mitochondria to the IS because SLP-2-deficient T cells showed normal re-localization of these organelles in response to T cell activation. Interestingly, upon T cell activation, we found the surface pool of SLP-2 mostly excluded from the central supramolecular activation complex, and enriched in the peripheral area of the IS where signalling TCR microclusters are located. Based on these results, we propose that SLP-2 facilitates the compartmentalization not only of mitochondrial membranes but also of the plasma membrane into functional microdomains. In this latter location, SLP-2 may facilitate the optimal assembly of TCR signalosome components. Our data also suggest that there may be a net exchange of membrane material between mitochondria and plasma membrane, explaining the presence of some mitochondrial proteins in the plasma membrane. PMID:22623988

  13. Membrane rafts: a potential gateway for bacterial entry into host cells.

    PubMed

    Hartlova, Anetta; Cerveny, Lukas; Hubalek, Martin; Krocova, Zuzana; Stulik, Jiri

    2010-04-01

    Pathogenic bacteria have developed various mechanisms to evade host immune defense systems. Invasion of pathogenic bacteria requires interaction of the pathogen with host receptors, followed by activation of signal transduction pathways and rearrangement of the cytoskeleton to facilitate bacterial entry. Numerous bacteria exploit specialized plasma membrane microdomains, commonly called membrane rafts, which are rich in cholesterol, sphingolipids and a special set of signaling molecules which allow entry to host cells and establishment of a protected niche within the host. This review focuses on the current understanding of the raft hypothesis and the means by which pathogenic bacteria subvert membrane microdomains to promote infection.

  14. Dendritic protein synthesis in the normal and diseased brain

    PubMed Central

    Swanger, Sharon A.; Bassell, Gary J.

    2015-01-01

    Synaptic activity is a spatially-limited process that requires a precise, yet dynamic, complement of proteins within the synaptic micro-domain. The maintenance and regulation of these synaptic proteins is regulated, in part, by local mRNA translation in dendrites. Protein synthesis within the postsynaptic compartment allows neurons tight spatial and temporal control of synaptic protein expression, which is critical for proper functioning of synapses and neural circuits. In this review, we discuss the identity of proteins synthesized within dendrites, the receptor-mediated mechanisms regulating their synthesis, and the possible roles for these locally synthesized proteins. We also explore how our current understanding of dendritic protein synthesis in the hippocampus can be applied to new brain regions and to understanding the pathological mechanisms underlying varied neurological diseases. PMID:23262237

  15. Pathways toward unidirectional alignment in block copolymer thin films on faceted surfaces

    NASA Astrophysics Data System (ADS)

    Gunkel, Ilja; Gu, Xiaodan; Sarje, Abhinav; Hexemer, Alexander; Russell, Thomas

    2015-03-01

    Solvent vapor annealing (SVA) has been shown recently to be an effective means to produce long-range lateral order in block copolymer (BCP) thin films in relatively short times. Furthermore, using substrates with faceted surfaces allows for generating unidirectionally aligned BCP microdomains on the size scale of an entire wafer. While in recent years SVA has been largely demystified, the detailed pathways toward obtaining unidirectional alignment still remain unclear. Grazing-incidence X-ray scattering (GISAXS) is a very powerful tool for characterizing the structure and morphology of BCPs in thin films, and is particularly useful for studying structural changes in BCP thin films during SVA. We here present in situ GISAXS experiments on cylinder-forming PS-b-P2VP BCP thin films on faceted Sapphire substrates during annealing in THF. We show that the degree of alignment of cylindrical microdomains is greatly enhanced at solvent concentrations close to the order-disorder transition of the copolymer. Furthermore, we observed that inducing disorder by further increasing the solvent concentration and subsequent quenching to the ordered (not yet glassy) state induced the highest degree of alignment with nearly unidirectional alignment of the microdomains in less than 30 min.

  16. Membrane segregation and downregulation of raft markers during sarcolemmal differentiation in skeletal muscle cells.

    PubMed

    Draeger, A; Monastyrskaya, K; Burkhard, F C; Wobus, A M; Moss, S E; Babiychuk, E B

    2003-10-15

    Muscle contraction implies flexibility in combination with force resistance and requires a high degree of sarcolemmal organization. Smooth muscle cells differentiate largely from mesenchymal precursor cells and gradually assume a highly periodic sarcolemmal organization. Skeletal muscle undergoes an even more striking differentiation programme, leading to cell fusion and alignment into myofibrils. The lipid bilayer of each cell type is further segregated into raft and non-raft microdomains of distinct lipid composition. Considering the extent of developmental rearrangement in skeletal muscle, we investigated sarcolemmal microdomain organization in skeletal and smooth muscle cells. The rafts in both muscle types are characterized by marker proteins belonging to the annexin family which localize to the inner membrane leaflet, as well as glycosyl-phosphatidyl-inositol (GPI)-anchored enzymes attached to the outer leaflet. We demonstrate that the profound structural rearrangements that occur during skeletal muscle maturation coincide with a striking decrease in membrane lipid segregation, downregulation of annexins 2 and 6, and a significant decrease in raft-associated 5'-nucleotidase activity. The relative paucity of lipid rafts in mature skeletal in contrast to smooth muscle suggests that the organization of sarcolemmal microdomains contributes to the muscle-specific differences in stimulatory responses and contractile properties.

  17. Polymer ligand–induced autonomous sorting and reversible phase separation in binary particle blends

    PubMed Central

    Schmitt, Michael; Zhang, Jianan; Lee, Jaejun; Lee, Bongjoon; Ning, Xin; Zhang, Ren; Karim, Alamgir; Davis, Robert F.; Matyjaszewski, Krzysztof; Bockstaller, Michael R.

    2016-01-01

    The tethering of ligands to nanoparticles has emerged as an important strategy to control interactions and organization in particle assembly structures. We demonstrate that ligand interactions in mixtures of polymer-tethered nanoparticles (which are modified with distinct types of polymer chains) can impart upper or lower critical solution temperature (UCST/LCST)–type phase behavior on binary particle mixtures in analogy to the phase behavior of the corresponding linear polymer blends. Therefore, cooling (or heating) of polymer-tethered particle blends with appropriate architecture to temperatures below (or above) the UCST (or LCST) results in the organization of the individual particle constituents into monotype microdomain structures. The shape (bicontinuous or island-type) and lengthscale of particle microdomains can be tuned by variation of the composition and thermal process conditions. Thermal cycling of LCST particle brush blends through the critical temperature enables the reversible growth and dissolution of monoparticle domain structures. The ability to autonomously and reversibly organize multicomponent particle mixtures into monotype microdomain structures could enable transformative advances in the high-throughput fabrication of solid films with tailored and mutable structures and properties that play an important role in a range of nanoparticle-based material technologies. PMID:28028538

  18. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization.

    PubMed

    Wawrezinieck, Laure; Rigneault, Hervé; Marguet, Didier; Lenne, Pierre-François

    2005-12-01

    To probe the complexity of the cell membrane organization and dynamics, it is important to obtain simple physical observables from experiments on live cells. Here we show that fluorescence correlation spectroscopy (FCS) measurements at different spatial scales enable distinguishing between different submicron confinement models. By plotting the diffusion time versus the transverse area of the confocal volume, we introduce the so-called FCS diffusion law, which is the key concept throughout this article. First, we report experimental FCS diffusion laws for two membrane constituents, which are respectively a putative raft marker and a cytoskeleton-hindered transmembrane protein. We find that these two constituents exhibit very distinct behaviors. To understand these results, we propose different models, which account for the diffusion of molecules either in a membrane comprising isolated microdomains or in a meshwork. By simulating FCS experiments for these two types of organization, we obtain FCS diffusion laws in agreement with our experimental observations. We also demonstrate that simple observables derived from these FCS diffusion laws are strongly related to confinement parameters such as the partition of molecules in microdomains and the average confinement time of molecules in a microdomain or a single mesh of a meshwork.

  19. Localization and proteomic characterization of cholesterol-rich membrane microdomains in the inner ear.

    PubMed

    Thomas, Paul V; Cheng, Andrew L; Colby, Candice C; Liu, Liqian; Patel, Chintan K; Josephs, Lydia; Duncan, R Keith

    2014-05-30

    Biological membranes organize and compartmentalize cell signaling into discrete microdomains, a process that often involves stable, cholesterol-rich platforms that facilitate protein-protein interactions. Polarized cells with distinct apical and basolateral cell processes rely on such compartmentalization to maintain proper function. In the cochlea, a variety of highly polarized sensory and non-sensory cells are responsible for the early stages of sound processing in the ear, yet little is known about the mechanisms that traffic and organize signaling complexes within these cells. We sought to determine the prevalence, localization, and protein composition of cholesterol-rich lipid microdomains in the cochlea. Lipid raft components, including the scaffolding protein caveolin and the ganglioside GM1, were found in sensory, neural, and glial cells. Mass spectrometry of detergent-resistant membrane (DRM) fractions revealed over 600 putative raft proteins associated with subcellular localization, trafficking, and metabolism. Among the DRM constituents were several proteins involved in human forms of deafness including those involved in ion homeostasis, such as the potassium channel KCNQ1, the co-transporter SLC12A2, and gap junction proteins GJA1 and GJB6. The presence of caveolin in the cochlea and the abundance of proteins in cholesterol-rich DRM suggest that lipid microdomains play a significant role in cochlear physiology. Although mechanisms underlying cholesterol synthesis, homeostasis, and compartmentalization in the ear are poorly understood, there are several lines of evidence indicating that cholesterol is a key modulator of cochlear function. Depletion of cholesterol in mature sensory cells alters calcium signaling, changes excitability during development, and affects the biomechanical processes in outer hair cells that are responsible for hearing acuity. More recently, we have established that the cholesterol-modulator beta-cyclodextrin is capable of inducing significant and permanent hearing loss when delivered subcutaneously at high doses. We hypothesize that proteins involved in cochlear homeostasis and otopathology are partitioned into cholesterol-rich domains. The results of a large-scale proteomic analysis point to metabolic processes, scaffolding/trafficking, and ion homeostasis as particularly associated with cholesterol microdomains. These data offer insight into the proteins and protein families that may underlie cholesterol-mediated effects in sensory cell excitability and cyclodextrin ototoxicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Orientation perception in Williams Syndrome: discrimination and integration

    PubMed Central

    Palomares, Melanie; Landau, Barbara; Egeth, Howard

    2009-01-01

    Williams Syndrome (WS) is a rare neurodevelopmental disorder, which stems from a genetic deletion on chromosome 7 that causes a profound weakness in visuospatial cognition. Our current study explores how orientation perception may contribute to the visuospatial deficits in WS. In Experiment 1, we found that WS individuals and normal 3-4 year olds had similar orientation discrimination thresholds and had similar prevalence of mirror-reversal errors for diagonal targets (±45 deg). In Experiment 2, we asked whether this immaturity in orientation discrimination would also be reflected in a task requiring integration of oriented elements. We found that sensitivities of WS individuals for detecting orientation-defined contours were higher than sensitivities of normal 3-4 year olds, and were not significantly different from sensitivities of normal adults. Together, these results suggest that orientation discrimination and orientation integration have different maturational trajectories in normal development and different susceptibilities to damage in WS, which may reflect largely separate visuospatial mechanisms. PMID:19231058

  1. Macro- to microscale strain transfer in fibrous tissues is heterogeneous and tissue-specific.

    PubMed

    Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Smith, Lachlan J; Mauck, Robert L; Elliott, Dawn M

    2013-08-06

    Mechanical deformation applied at the joint or tissue level is transmitted through the macroscale extracellular matrix to the microscale local matrix, where it is transduced to cells within these tissues and modulates tissue growth, maintenance, and repair. The objective of this study was to investigate how applied tissue strain is transferred through the local matrix to the cell and nucleus in meniscus, tendon, and the annulus fibrosus, as well as in stem cell-seeded scaffolds engineered to reproduce the organized microstructure of these native tissues. To carry out this study, we developed a custom confocal microscope-mounted tensile testing device and simultaneously monitored strain across multiple length scales. Results showed that mean strain was heterogeneous and significantly attenuated, but coordinated, at the local matrix level in native tissues (35-70% strain attenuation). Conversely, freshly seeded scaffolds exhibited very direct and uniform strain transfer from the tissue to the local matrix level (15-25% strain attenuation). In addition, strain transfer from local matrix to cells and nuclei was dependent on fiber orientation and tissue type. Histological analysis suggested that different domains exist within these fibrous tissues, with most of the tissue being fibrous, characterized by an aligned collagen structure and elongated cells, and other regions being proteoglycan (PG)-rich, characterized by a dense accumulation of PGs and rounder cells. In meniscus, the observed heterogeneity in strain transfer correlated strongly with cellular morphology, where rounder cells located in PG-rich microdomains were shielded from deformation, while elongated cells in fibrous microdomains deformed readily. Collectively, these findings suggest that different tissues utilize distinct strain-attenuating mechanisms according to their unique structure and cellular phenotype, and these differences likely alter the local biologic response of such tissues and constructs in response to mechanical perturbation. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Orientation and Order in Shear-Aligned Thin Films of Cylinder-Forming Block Copolymers

    NASA Astrophysics Data System (ADS)

    Register, Richard

    The regularity and tunability of the nanoscale structure in block copolymers makes their thin films attractive as nanolithographic templates; however, in the absence of a guiding field, self-assembly produces a polygrain structure with no particular orientation and a high density of defects. As demonstrated in the elegant studies of Ed Kramer and coworkers, graphoepitaxy can provide local control over domain orientation, with a dramatic reduction in defect density. Alternatively, cylindrical microdomains lying in the plane of the film can be aligned over macroscopic areas by applying shear stress at the film surface. In non-sheared films of polystyrene-poly(n-hexylmethacrylate) diblocks, PS-PHMA, the PS cylinder axis orientation relative to the surface switches from parallel to perpendicular as a function of film thickness; this oscillation is damped out as the fraction of the PS block increases, away from the sphere-cylinder phase boundary. In aligned films, thicknesses which possess the highest coverage of parallel cylinders prior to shear show the highest quality of alignment post-shear, as measured by the in-plane orientational order parameter. In well-aligned samples of optimal thickness, the quality of alignment is limited by isolated dislocations, whose density is highest at high PS contents, and by undulations in the cylinders' trajectories, whose impact is most severe at low PS contents; consequently, polymers whose compositions lie in the middle of the cylinder-forming region exhibit the highest quality of alignment. The dynamics of the alignment process are also investigated, and fit to a melting-recrystallization model which allows for the determination of two key alignment parameters: the critical stress needed for alignment, and an orientation rate constant. For films containing a monolayer of cylindrical domains, as PS weight fraction or overall molecular weight increases, the critical stress increases moderately, while the rate of alignment drastically decreases. As the number of layers of cylinders in the film increases, the critical stress decreases modestly, while the rate remains unchanged; substrate wetting condition has no measurable influence on alignment response. [Work of Raleigh Davis, in collaboration with Paul Chaikin.

  3. Association of a GPI-anchored protein with detergent-resistant membranes facilitates its trafficking through the early secretory pathway.

    PubMed

    Hein, Zeynep; Hooper, Nigel M; Naim, Hassan Y

    2009-01-15

    Membrane microdomains are implicated in the trafficking and sorting of several membrane proteins. In particular GPI-anchored proteins cluster into Triton X-100 resistant, cholesterol- and sphingolipid-rich membrane microdomains and are sorted to the apical membrane. A growing body of evidence has pointed to the existence of other types of microdomains that are insoluble in detergents, such as Lubrol WX and Tween-20. Here, we report on the role of detergent-resistant membranes formed at early stages in the biosynthesis of membrane dipeptidase (MDP), a GPI-anchored protein, on its trafficking and sorting. Pulse-chase experiments revealed a retarded maturation rate of the GPI-anchor deficient mutant (MDPDeltaGPI) as compared to the wild type protein (wtMDP). However, Golgi to cell surface delivery rate did not show a significant difference between the two variants. On the other hand, early biosynthetic forms of wtMDP were partially insoluble in Tween-20, while MDPDeltaGPI was completely soluble. The lack of association of MDPDeltaGPI with detergent-resistant membranes prior to maturation in the Golgi and the reduction in its trafficking rate strongly suggest the existence of an early trafficking control mechanisms for membrane proteins operating at a level between the endoplasmic reticulum and the cis-Golgi.

  4. The p14 fusion-associated small transmembrane (FAST) protein effects membrane fusion from a subset of membrane microdomains.

    PubMed

    Corcoran, Jennifer A; Salsman, Jayme; de Antueno, Roberto; Touhami, Ahmed; Jericho, Manfred H; Clancy, Eileen K; Duncan, Roy

    2006-10-20

    The reovirus fusion-associated small transmembrane (FAST) proteins are a unique family of viral membrane fusion proteins. These nonstructural viral proteins induce efficient cell-cell rather than virus-cell membrane fusion. We analyzed the lipid environment in which the reptilian reovirus p14 FAST protein resides to determine the influence of the cell membrane on the fusion activity of the FAST proteins. Topographical mapping of the surface of fusogenic p14-containing liposomes by atomic force microscopy under aqueous conditions revealed that p14 resides almost exclusively in thickened membrane microdomains. In transfected cells, p14 was found in both Lubrol WX- and Triton X-100-resistant membrane complexes. Cholesterol depletion of donor cell membranes led to preferential disruption of p14 association with Lubrol WX (but not Triton X-100)-resistant membranes and decreased cell-cell fusion activity, both of which were reversed upon subsequent cholesterol repletion. Furthermore, co-patching analysis by fluorescence microscopy indicated that p14 did not co-localize with classical lipid-anchored raft markers. These data suggest that the p14 FAST protein associates with heterogeneous membrane microdomains, a distinct subset of which is defined by cholesterol-dependent Lubrol WX resistance and which may be more relevant to the membrane fusion process.

  5. Differential detergent resistance of the apical and basolateral NPPases: relationship with polarized targeting.

    PubMed

    Delaunay, Jean-Louis; Breton, Michelyne; Goding, James W; Trugnan, Germain; Maurice, Michèle

    2007-03-15

    Targeting of glycosylphosphatidylinositol-anchored proteins to the apical surface of epithelial cells involves clustering in Triton X-100-resistant membrane microdomains or rafts. The role of these microdomains in sorting transmembrane proteins is more questionable because, unlike glycosylphosphatidylinositol-anchored proteins, apical transmembrane proteins are rather soluble in Triton X-100. They are, however, resistant to milder detergents such as Lubrol WX or Tween 20. It has been proposed that specific membrane microdomains, defined by resistance to these detergents, would carry transmembrane proteins to the apical surface. We have used MDCK cells stably transfected with the apical and basolateral pyrophosphatases/phosphodiesterases, NPP3 and NPP1, to examine the relationship between detergent resistance and apical targeting. The apically expressed wild-type NPP3 was insoluble in Lubrol WX whereas wild-type NPP1, which is expressed basolaterally, was essentially soluble. By using tail mutants and chimeric constructs that combine the cytoplasmic, transmembrane and extracellular domains of NPP1 and NPP3, we show that there is not a strict correlation between detergent resistance and apical targeting. Lubrol resistance is an intrinsic property of NPP3, which is acquired early during the biosynthetic process irrespective of its final destination, and depends on positively charged residues in its cytoplasmic tail.

  6. P-glycoprotein retains function when reconstituted into a sphingolipid- and cholesterol-rich environment.

    PubMed

    Modok, Szabolcs; Heyward, Catherine; Callaghan, Richard

    2004-10-01

    P-glycoprotein (P-gp) appears to be associated within specialized raftlike membrane microdomains. The activity of P-gp is sensitive to its lipid environment, and a functional association in raft microdomains will require that P-gp retains activity in the microenvironment. Purified hamster P-gp was reconstituted in liposomes comprising sphingomyelin and cholesterol, both highly enriched in membrane microdomains and known to impart a liquid-ordered phase to bilayers. The activity of P-gp was compared with that of proteoliposomes composed of crude egg phosphatidylcholine (unsaturated) or dipalmitoyl phosphatidylcholine (saturated) in the presence or absence of cholesterol. The maximal rate of ATP hydrolysis was not significantly altered by the nature of the lipid species. However, the potencies of nicardipine and XR9576 to modulate the ATPase activity of P-gp were increased in the sphingolipid-based proteoliposomes. The drug-P-gp interaction was investigated by measurement of the rates of [(3)H]XR9576 association and dissociation from the transporter. The lipid environment of P-gp did not affect these kinetic parameters of drug binding. In summary, P-gp retains function in liquid-ordered cholesterol and sphingolipid model membranes in which the communication between the transmembrane and the nucleotide binding domains after drug binding to the protein is more efficient.

  7. The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription

    PubMed Central

    Shimi, Takeshi; Pfleghaar, Katrin; Kojima, Shin-ichiro; Pack, Chan-Gi; Solovei, Irina; Goldman, Anne E.; Adam, Stephen A.; Shumaker, Dale K.; Kinjo, Masataka; Cremer, Thomas; Goldman, Robert D.

    2008-01-01

    The nuclear lamins function in the regulation of replication, transcription, and epigenetic modifications of chromatin. However, the mechanisms responsible for these lamin functions are poorly understood. We demonstrate that A- and B-type lamins form separate, but interacting, stable meshworks in the lamina and have different mobilities in the nucleoplasm as determined by fluorescence correlation spectroscopy (FCS). Silencing lamin B1 (LB1) expression dramatically increases the lamina meshwork size and the mobility of nucleoplasmic lamin A (LA). The changes in lamina mesh size are coupled to the formation of LA/C-rich nuclear envelope blebs deficient in LB2. Comparative genomic hybridization (CGH) analyses of microdissected blebs, fluorescence in situ hybridization (FISH), and immunofluorescence localization of modified histones demonstrate that gene-rich euchromatin associates with the LA/C blebs. Enrichment of hyperphosphorylated RNA polymerase II (Pol II) and histone marks for active transcription suggest that blebs are transcriptionally active. However, in vivo labeling of RNA indicates that transcription is decreased, suggesting that the LA/C-rich microenvironment induces promoter proximal stalling of Pol II. We propose that different lamins are organized into separate, but interacting, microdomains and that LB1 is essential for their organization. Our evidence suggests that the organization and regulation of chromatin are influenced by interconnections between these lamin microdomains. PMID:19141474

  8. Microdomains of endoplasmic reticulum within the sarcoplasmic reticulum of skeletal myofibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaakinen, Mika; Papponen, Hinni; Metsikkoe, Kalervo

    2008-01-15

    The relationship between the endoplasmic reticulum (ER) and the sarcoplasmic reticulum (SR) of skeletal muscle cells has remained obscure. In this study, we found that ER- and SR-specific membrane proteins exhibited diverse solubility properties when extracted with mild detergents. Accordingly, the major SR-specific protein Ca{sup 2+}-ATPase (SERCA) remained insoluble in Brij 58 and floated in sucrose gradients while typical ER proteins were partially or fully soluble. Sphingomyelinase treatment rendered SERCA soluble in Brij 58. Immunofluorescence staining for resident ER proteins revealed dispersed dots over I bands contrasting the continuous staining pattern of SERCA. Infection of isolated myofibers with enveloped virusesmore » indicated that interfibrillar protein synthesis occurred. Furthermore, we found that GFP-tagged Dad1, able to incorporate into the oligosaccharyltransferase complex, showed the dot-like structures but the fusion protein was also present in membranes over the Z lines. This behaviour mimics that of cargo proteins that accumulated over the Z lines when blocked in the ER. Taken together, the results suggest that resident ER proteins comprised Brij 58-soluble microdomains within the insoluble SR membrane. After synthesis and folding in the ER-microdomains, cargo proteins and non-incorporated GFP-Dad1 diffused into the Z line-flanking compartment which likely represents the ER exit sites.« less

  9. Cytoplasmic γ-actin and tropomodulin isoforms link to the sarcoplasmic reticulum in skeletal muscle fibers

    PubMed Central

    Gokhin, David S.

    2011-01-01

    The sarcoplasmic reticulum (SR) serves as the Ca2+ reservoir for muscle contraction. Tropomodulins (Tmods) cap filamentous actin (F-actin) pointed ends, bind tropomyosins (Tms), and regulate F-actin organization. In this paper, we use a genetic targeting approach to examine the effect of Tmod1 deletion on the organization of cytoplasmic γ-actin (γcyto-actin) in the SR of skeletal muscle. In wild-type muscle fibers, γcyto-actin and Tmod3 defined an SR microdomain that was distinct from another Z line–flanking SR microdomain containing Tmod1 and Tmod4. The γcyto-actin/Tmod3 microdomain contained an M line complex composed of small ankyrin 1.5 (sAnk1.5), γcyto-actin, Tmod3, Tm4, and Tm5NM1. Tmod1 deletion caused Tmod3 to leave its SR compartment, leading to mislocalization and destabilization of the Tmod3–γcyto-actin–sAnk1.5 complex. This was accompanied by SR morphological defects, impaired Ca2+ release, and an age-dependent increase in sarcomere misalignment. Thus, Tmod3 regulates SR-associated γcyto-actin architecture, mechanically stabilizes the SR via a novel cytoskeletal linkage to sAnk1.5, and maintains the alignment of adjacent myofibrils. PMID:21727195

  10. Distinct membrane properties are differentially influenced by cardiolipin content and acyl chain composition in biomimetic membranes.

    PubMed

    Pennington, Edward Ross; Fix, Amy; Sullivan, E Madison; Brown, David A; Kennedy, Anthony; Shaikh, Saame Raza

    2017-02-01

    Cardiolipin (CL) has a critical role in maintaining mitochondrial inner membrane structure. In several conditions such as heart failure and aging, there is loss of CL content and remodeling of CL acyl chains, which are hypothesized to impair mitochondrial inner membrane biophysical organization. Therefore, this study discriminated how CL content and acyl chain composition influenced select properties of simple and complex mitochondrial mimicking model membranes. We focused on monolayer excess area/molecule (a measure of lipid miscibility), bilayer phase transitions, and microdomain organization. In monolayer compression studies, loss of tetralinoleoyl [(18:2) 4 ] CL content decreased the excess area/molecule. Replacement of (18:2) 4 CL acyl chains with tetraoleoyl [(18:1) 4 ] CL or tetradocosahexaenoyl [(22:6) 4 ] CL generally had little influence on monolayer excess area/molecule; in contrast, replacement of (18:2) 4 CL acyl chains with tetramyristoyl [(14:0) 4 ] CL increased monolayer excess area/molecule. In bilayers, calorimetric studies showed that substitution of (18:2) 4 CL with (18:1) 4 CL or (22:6) 4 CL lowered the phase transition temperature of phosphatidylcholine vesicles whereas (14:0) 4 CL had no effect. Finally, quantitative imaging of giant unilamellar vesicles revealed differential effects of CL content and acyl chain composition on microdomain organization, visualized with the fluorescent probe Texas Red DHPE. Notably, microdomain areas were decreased by differing magnitudes upon lowering of (18:2) 4 CL content and substitution of (18:2) 4 CL with (14:0) 4 CL or (22:6) 4 CL. Conversely, exchanging (18:2) 4 CL with (18:1) 4 CL increased microdomain area. Altogether, these data demonstrate that CL content and fatty acyl composition differentially target membrane physical properties, which has implications for understanding how CL regulates mitochondrial activity and the design of CL-specific therapeutics. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Membrane Microdomains and Cytoskeleton Organization Shape and Regulate the IL-7 Receptor Signalosome in Human CD4 T-cells*

    PubMed Central

    Tamarit, Blanche; Bugault, Florence; Pillet, Anne-Hélène; Lavergne, Vincent; Bochet, Pascal; Garin, Nathalie; Schwarz, Ulf; Thèze, Jacques; Rose, Thierry

    2013-01-01

    Interleukin (IL)-7 is the main homeostatic regulator of CD4 T-lymphocytes (helper) at both central and peripheral levels. Upon activation by IL-7, several signaling pathways, mainly JAK/STAT, PI3K/Akt and MAPK, induce the expression of genes involved in T-cell differentiation, activation, and proliferation. We have analyzed the early events of CD4 T-cell activation by IL-7. We have shown that IL-7 in the first few min induces the formation of cholesterol-enriched membrane microdomains that compartmentalize its activated receptor and initiate its anchoring to the cytoskeleton, supporting the formation of the signaling complex, the signalosome, on the IL-7 receptor cytoplasmic domains. Here we describe by stimulated emission depletion microscopy the key roles played by membrane microdomains and cytoskeleton transient organization in the IL-7-regulated JAK/STAT signaling pathway. We image phospho-STAT5 and cytoskeleton components along IL-7 activation kinetics using appropriate inhibitors. We show that lipid raft inhibitors delay and reduce IL-7-induced JAK1 and JAK3 phosphorylation. Drug-induced disassembly of the cytoskeleton inhibits phospho-STAT5 formation, transport, and translocation into the nucleus that controls the transcription of genes involved in T-cell activation and proliferation. We fit together the results of these quantitative analyses and propose the following mechanism. Activated IL-7 receptors embedded in membrane microdomains induce actin-microfilament meshwork formation, anchoring microtubules that grow radially from rafted receptors to the nuclear membrane. STAT5 phosphorylated by signalosomes are loaded on kinesins and glide along the microtubules across the cytoplasm to reach the nucleus 2 min after IL-7 stimulation. Radial microtubules disappear 15 min later, while transversal microtubules, independent of phospho-STAT5 transport, begin to bud from the microtubule organization center. PMID:23329834

  12. Metabolic Labeling and Membrane Fractionation for Comparative Proteomic Analysis of Arabidopsis thaliana Suspension Cell Cultures

    PubMed Central

    Szymanski, Witold G.; Kierszniowska, Sylwia; Schulze, Waltraud X.

    2013-01-01

    Plasma membrane microdomains are features based on the physical properties of the lipid and sterol environment and have particular roles in signaling processes. Extracting sterol-enriched membrane microdomains from plant cells for proteomic analysis is a difficult task mainly due to multiple preparation steps and sources for contaminations from other cellular compartments. The plasma membrane constitutes only about 5-20% of all the membranes in a plant cell, and therefore isolation of highly purified plasma membrane fraction is challenging. A frequently used method involves aqueous two-phase partitioning in polyethylene glycol and dextran, which yields plasma membrane vesicles with a purity of 95% 1. Sterol-rich membrane microdomains within the plasma membrane are insoluble upon treatment with cold nonionic detergents at alkaline pH. This detergent-resistant membrane fraction can be separated from the bulk plasma membrane by ultracentrifugation in a sucrose gradient 2. Subsequently, proteins can be extracted from the low density band of the sucrose gradient by methanol/chloroform precipitation. Extracted protein will then be trypsin digested, desalted and finally analyzed by LC-MS/MS. Our extraction protocol for sterol-rich microdomains is optimized for the preparation of clean detergent-resistant membrane fractions from Arabidopsis thaliana cell cultures. We use full metabolic labeling of Arabidopsis thaliana suspension cell cultures with K15NO3 as the only nitrogen source for quantitative comparative proteomic studies following biological treatment of interest 3. By mixing equal ratios of labeled and unlabeled cell cultures for joint protein extraction the influence of preparation steps on final quantitative result is kept at a minimum. Also loss of material during extraction will affect both control and treatment samples in the same way, and therefore the ratio of light and heave peptide will remain constant. In the proposed method either labeled or unlabeled cell culture undergoes a biological treatment, while the other serves as control 4. PMID:24121251

  13. Quantitative proteomics reveals a dynamic association of proteins to detergent-resistant membranes upon elicitor signaling in tobacco.

    PubMed

    Stanislas, Thomas; Bouyssie, David; Rossignol, Michel; Vesa, Simona; Fromentin, Jérôme; Morel, Johanne; Pichereaux, Carole; Monsarrat, Bernard; Simon-Plas, Françoise

    2009-09-01

    A large body of evidence from the past decade supports the existence, in membrane from animal and yeast cells, of functional microdomains playing important roles in protein sorting, signal transduction, or infection by pathogens. In plants, as previously observed for animal microdomains, detergent-resistant fractions, enriched in sphingolipids and sterols, were isolated from plasma membrane. A characterization of their proteic content revealed their enrichment in proteins involved in signaling and response to biotic and abiotic stress and cell trafficking suggesting that these domains were likely to be involved in such physiological processes. In the present study, we used (14)N/(15)N metabolic labeling to compare, using a global quantitative proteomics approach, the content of tobacco detergent-resistant membranes extracted from cells treated or not with cryptogein, an elicitor of defense reaction. To analyze the data, we developed a software allowing an automatic quantification of the proteins identified. The results obtained indicate that, although the association to detergent-resistant membranes of most proteins remained unchanged upon cryptogein treatment, five proteins had their relative abundance modified. Four proteins related to cell trafficking (four dynamins) were less abundant in the detergent-resistant membrane fraction after cryptogein treatment, whereas one signaling protein (a 14-3-3 protein) was enriched. This analysis indicates that plant microdomains could, like their animal counterpart, play a role in the early signaling process underlying the setup of defense reaction. Furthermore proteins identified as differentially associated to tobacco detergent-resistant membranes after cryptogein challenge are involved in signaling and vesicular trafficking as already observed in similar studies performed in animal cells upon biological stimuli. This suggests that the ways by which the dynamic association of proteins to microdomains could participate in the regulation of the signaling process may be conserved between plant and animals.

  14. Quantitative Proteomics Reveals a Dynamic Association of Proteins to Detergent-resistant Membranes upon Elicitor Signaling in Tobacco*

    PubMed Central

    Stanislas, Thomas; Bouyssie, David; Rossignol, Michel; Vesa, Simona; Fromentin, Jérôme; Morel, Johanne; Pichereaux, Carole; Monsarrat, Bernard; Simon-Plas, Françoise

    2009-01-01

    A large body of evidence from the past decade supports the existence, in membrane from animal and yeast cells, of functional microdomains playing important roles in protein sorting, signal transduction, or infection by pathogens. In plants, as previously observed for animal microdomains, detergent-resistant fractions, enriched in sphingolipids and sterols, were isolated from plasma membrane. A characterization of their proteic content revealed their enrichment in proteins involved in signaling and response to biotic and abiotic stress and cell trafficking suggesting that these domains were likely to be involved in such physiological processes. In the present study, we used 14N/15N metabolic labeling to compare, using a global quantitative proteomics approach, the content of tobacco detergent-resistant membranes extracted from cells treated or not with cryptogein, an elicitor of defense reaction. To analyze the data, we developed a software allowing an automatic quantification of the proteins identified. The results obtained indicate that, although the association to detergent-resistant membranes of most proteins remained unchanged upon cryptogein treatment, five proteins had their relative abundance modified. Four proteins related to cell trafficking (four dynamins) were less abundant in the detergent-resistant membrane fraction after cryptogein treatment, whereas one signaling protein (a 14-3-3 protein) was enriched. This analysis indicates that plant microdomains could, like their animal counterpart, play a role in the early signaling process underlying the setup of defense reaction. Furthermore proteins identified as differentially associated to tobacco detergent-resistant membranes after cryptogein challenge are involved in signaling and vesicular trafficking as already observed in similar studies performed in animal cells upon biological stimuli. This suggests that the ways by which the dynamic association of proteins to microdomains could participate in the regulation of the signaling process may be conserved between plant and animals. PMID:19525550

  15. Crystallization around solid-like nanosized docks can explain the specificity, diversity, and stability of membrane microdomains.

    PubMed

    de Almeida, Rodrigo F M; Joly, Etienne

    2014-01-01

    To date, it is widely accepted that microdomains do form in the biological membranes of all eukaryotic cells, and quite possibly also in prokaryotes. Those sub-micrometric domains play crucial roles in signaling, in intracellular transport, and even in inter-cellular communications. Despite their ubiquitous distribution, and the broad and lasting interest invested in those microdomains, their actual nature and composition, and even the physical rules that regiment their assembly still remain elusive and hotly debated. One of the most often considered models is the raft hypothesis, i.e., the partition of lipids between liquid disordered and ordered phases (Ld and Lo, respectively), the latter being enriched in sphingolipids and cholesterol. Although it is experimentally possible to obtain the formation of microdomains in synthetic membranes through Ld/Lo phase separation, there is an ever increasing amount of evidence, obtained with a wide array of experimental approaches, that a partition between domains in Ld and Lo phases cannot account for many of the observations collected in real cells. In particular, it is now commonly perceived that the plasma membrane of cells is mostly in Lo phase and recent data support the existence of gel or solid ordered domains in a whole variety of live cells under physiological conditions. Here, we present a model whereby seeds comprised of oligomerised proteins and/or lipids would serve as crystal nucleation centers for the formation of diverse gel/crystalline nanodomains. This could confer the selectivity necessary for the formation of multiple types of membrane domains, as well as the stability required to match the time frames of cellular events, such as intra- or inter-cellular transport or assembly of signaling platforms. Testing of this model will, however, require the development of new methods allowing the clear-cut discrimination between Lo and solid nanoscopic phases in live cells.

  16. Dynamic complexity: plant receptor complexes at the plasma membrane.

    PubMed

    Burkart, Rebecca C; Stahl, Yvonne

    2017-12-01

    Plant receptor complexes at the cell surface perceive many different external and internal signalling molecules and relay these signals into the cell to regulate development, growth and immunity. Recent progress in the analyses of receptor complexes using different live cell imaging approaches have shown that receptor complex formation and composition are dynamic and take place at specific microdomains at the plasma membrane. In this review we focus on three prominent examples of Arabidopsis thaliana receptor complexes and how their dynamic spatio-temporal distribution at the PM has been studied recently. We will elaborate on the newly emerging concept of plasma membrane microdomains as potential hubs for specific receptor complex assembly and signalling outputs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Plasma-electric field controlled growth of oriented graphene for energy storage applications

    NASA Astrophysics Data System (ADS)

    Ghosh, Subrata; Polaki, S. R.; Kamruddin, M.; Jeong, Sang Mun; (Ken Ostrikov, Kostya

    2018-04-01

    It is well known that graphene grows as flat sheets aligned with the growth substrate. Oriented graphene structures typically normal to the substrate have recently attracted major attention. Most often, the normal orientation is achieved in a plasma-assisted growth and is believed to be due to the plasma-induced in-built electric field, which is usually oriented normal to the substrate. This work focuses on the effect of an in-built electric field on the growth direction, morphology, interconnectedness, structural properties and also the supercapacitor performance of various configurations of graphene structures and reveals the unique dependence of these features on the electric field orientation. It is shown that tilting of growth substrates from parallel to the normal direction with respect to the direction of in-built plasma electric field leads to the morphological transitions from horizontal graphene layers, to oriented individual graphene sheets and then interconnected 3D networks of oriented graphene sheets. The revealed transition of the growth orientation leads to a change in structural properties, wetting nature, types of defect in graphitic structures and also affects their charge storage capacity when used as supercapacitor electrodes. This simple and versatile approach opens new opportunities for the production of potentially large batches of differently oriented and structured graphene sheets in one production run.

  18. Orientation Control in Thin Films of a High-χ Block Copolymer with a Surface Active Embedded Neutral Layer.

    PubMed

    Zhang, Jieqian; Clark, Michael B; Wu, Chunyi; Li, Mingqi; Trefonas, Peter; Hustad, Phillip D

    2016-01-13

    Directed self-assembly (DSA) of block copolymers (BCPs) is an attractive advanced patterning technology being considered for future integrated circuit manufacturing. By controlling interfacial interactions, self-assembled microdomains in thin films of polystyrene-block-poly(methyl methacrylate), PS-b-PMMA, can be oriented perpendicular to surfaces to form line/space or hole patterns. However, its relatively weak Flory interaction parameter, χ, limits its capability to pattern sub-10 nm features. Many BCPs with higher interaction parameters are capable of forming smaller features, but these "high-χ" BCPs typically have an imbalance in surface energy between the respective blocks that make it difficult to achieve the required perpendicular orientation. To address this challenge, we devised a polymeric surface active additive mixed into the BCP solution, referred to as an embedded neutral layer (ENL), which segregates to the top of the BCP film during casting and annealing and balances the surface tensions at the top of the thin film. The additive comprises a second BCP with a "neutral block" designed to provide matched surface tensions with the respective polymers of the main BCP and a "surface anchoring block" with very low surface energy that drives the material to the air interface during spin-casting and annealing. The surface anchoring block allows the film to be annealed above the glass transition temperature of the two materials without intermixing of the two components. DSA was also demonstrated with this embedded neutral top layer formulation on a chemical patterned template using a single step coat and simple thermal annealing. This ENL technology holds promise to enable the use of high-χ BCPs in advanced patterning applications.

  19. Distinct pools of cAMP centre on different isoforms of adenylyl cyclase in pituitary-derived GH3B6 cells.

    PubMed

    Wachten, Sebastian; Masada, Nanako; Ayling, Laura-Jo; Ciruela, Antonio; Nikolaev, Viacheslav O; Lohse, Martin J; Cooper, Dermot M F

    2010-01-01

    Microdomains have been proposed to explain specificity in the myriad of possible cellular targets of cAMP. Local differences in cAMP levels can be generated by phosphodiesterases, which control the diffusion of cAMP. Here, we address the possibility that adenylyl cyclases, the source of cAMP, can be primary architects of such microdomains. Distinctly regulated adenylyl cyclases often contribute to total cAMP levels in endogenous cellular settings, making it virtually impossible to determine the contribution of a specific isoform. To investigate cAMP dynamics with high precision at the single-isoform level, we developed a targeted version of Epac2-camps, a cAMP sensor, in which the sensor was tagged to a catalytically inactive version of the Ca(2+)-stimulable adenylyl cyclase 8 (AC8). This sensor, and less stringently targeted versions of Epac2-camps, revealed opposite regulation of cAMP synthesis in response to Ca(2+) in GH(3)B(6) pituitary cells. Ca(2+) release triggered by thyrotropin-releasing hormone stimulated the minor endogenous AC8 species. cAMP levels were decreased by inhibition of AC5 and AC6, and simultaneous activation of phosphodiesterases, in different compartments of the same cell. These findings demonstrate the existence of distinct adenylyl-cyclase-centered cAMP microdomains in live cells and open the door to their molecular micro-dissection.

  20. Distribution of a Glycosylphosphatidylinositol-anchored Protein at the Apical Surface of MDCK Cells Examined at a Resolution of <100 Å Using Imaging Fluorescence Resonance Energy Transfer

    PubMed Central

    Kenworthy, A.K.; Edidin, M.

    1998-01-01

    Membrane microdomains (“lipid rafts”) enriched in glycosylphosphatidylinositol (GPI)-anchored proteins, glycosphingolipids, and cholesterol have been implicated in events ranging from membrane trafficking to signal transduction. Although there is biochemical evidence for such membrane microdomains, they have not been visualized by light or electron microscopy. To probe for microdomains enriched in GPI- anchored proteins in intact cell membranes, we used a novel form of digital microscopy, imaging fluorescence resonance energy transfer (FRET), which extends the resolution of fluorescence microscopy to the molecular level (<100 Å). We detected significant energy transfer between donor- and acceptor-labeled antibodies against the GPI-anchored protein 5′ nucleotidase (5′ NT) at the apical membrane of MDCK cells. The efficiency of energy transfer correlated strongly with the surface density of the acceptor-labeled antibody. The FRET data conformed to theoretical predictions for two-dimensional FRET between randomly distributed molecules and were inconsistent with a model in which 5′ NT is constitutively clustered. Though we cannot completely exclude the possibility that some 5′ NT is in clusters, the data imply that most 5′ NT molecules are randomly distributed across the apical surface of MDCK cells. These findings constrain current models for lipid rafts and the membrane organization of GPI-anchored proteins. PMID:9660864

  1. Membrane remodeling, an early event in benzo[alpha]pyrene-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tekpli, Xavier; Rissel, Mary; Huc, Laurence

    2010-02-15

    Benzo[alpha]pyrene (B[alpha]P) often serves as a model for mutagenic and carcinogenic polycyclic aromatic hydrocarbons (PAHs). Our previous work suggested a role of membrane fluidity in B[alpha]P-induced apoptotic process. In this study, we report that B[alpha]P modifies the composition of cholesterol-rich microdomains (lipid rafts) in rat liver F258 epithelial cells. The cellular distribution of the ganglioside-GM1 was markedly changed following B[alpha]P exposure. B[alpha]P also modified fatty acid composition and decreased the cholesterol content of cholesterol-rich microdomains. B[alpha]P-induced depletion of cholesterol in lipid rafts was linked to a reduced expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase). Aryl hydrocarbon receptor (AhR) and B[alpha]P-related H{submore » 2}O{sub 2} formation were involved in the reduced expression of HMG-CoA reductase and in the remodeling of membrane microdomains. The B[alpha]P-induced membrane remodeling resulted in an intracellular alkalinization observed during the early phase of apoptosis. In conclusion, B[alpha]P altered the composition of plasma membrane microstructures through AhR and H{sub 2}O{sub 2} dependent-regulation of lipid biosynthesis. In F258 cells, the B[alpha]P-induced membrane remodeling was identified as an early apoptotic event leading to an intracellular alkalinization.« less

  2. Streptococcus suis capsular polysaccharide inhibits phagocytosis through destabilization of lipid microdomains and prevents lactosylceramide-dependent recognition.

    PubMed

    Houde, Mathieu; Gottschalk, Marcelo; Gagnon, Fleur; Van Calsteren, Marie-Rose; Segura, Mariela

    2012-02-01

    Streptococcus suis type 2 is a major swine pathogen and a zoonotic agent, causing meningitis in both swine and humans. S. suis infects the host through the respiratory route, reaches the bloodstream, and persists until breaching into the central nervous system. The capsular polysaccharide (CPS) of S. suis type 2 is considered a key virulence factor of the bacteria. Though CPS allows S. suis to adhere to the membrane of cells of the immune system, it provides protection against phagocytosis. In fact, nonencapsulated mutants are easily internalized and killed by macrophages and dendritic cells. The objective of this work was to study the molecular mechanisms by which the CPS of S. suis prevents phagocytosis. By using latex beads covalently linked with purified CPS, it was shown that CPS itself was sufficient to inhibit entry of both latex beads and bystander fluorescent beads into macrophages. Upon contact with macrophages, encapsulated S. suis was shown to destabilize lipid microdomains at the cell surface, to block nitric oxide (NO) production during infection, and to prevent lactosylceramide accumulation at the phagocytic cup during infection. In contrast, the nonencapsulated mutant was easily internalized via lipid rafts, in a filipin-sensitive manner, leading to lactosylceramide recruitment and strong NO production. This is the first report to identify a role for CPS in lipid microdomain stability and to recognize an interaction between S. suis and lactosylceramide in phagocytes.

  3. A genetically encoded ratiometric sensor to measure extracellular pH in microdomains bounded by basolateral membranes of epithelial cells.

    PubMed

    Urra, Javier; Sandoval, Moisés; Cornejo, Isabel; Barros, L Felipe; Sepúlveda, Francisco V; Cid, L Pablo

    2008-10-01

    Extracellular pH, especially in relatively inaccessible microdomains between cells, affects transport membrane protein activity and might have an intercellular signaling role. We have developed a genetically encoded extracellular pH sensor capable of detecting pH changes in basolateral spaces of epithelial cells. It consists of a chimerical membrane protein displaying concatenated enhanced variants of cyan fluorescence protein (ECFP) and yellow fluorescence protein (EYFP) at the external aspect of the cell surface. The construct, termed pHCECSensor01, was targeted to basolateral membranes of Madin-Darby canine kidney (MDCK) cells by means of a sequence derived from the aquaporin AQP4. The fusion of pH-sensitive EYFP with pH-insensitive ECFP allows ratiometric pH measurements. The titration curve of pHCECSensor01 in vivo had a pK (a) value of 6.5 +/- 0.04. Only minor effects of extracellular chloride on pHCECSensor01 were observed around the physiological concentrations of this anion. In MDCK cells, the sensor was able to detect changes in pH secondary to H(+) efflux into the basolateral spaces elicited by an ammonium prepulse or lactate load. This genetically encoded sensor has the potential to serve as a noninvasive tool for monitoring changes in extracellular pH microdomains in epithelial and other tissues in vivo.

  4. Lipid dip-pen nanolithography on self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Gavutis, Martynas; Navikas, Vytautas; Rakickas, Tomas; Vaitekonis, Šarūnas; Valiokas, Ramūnas

    2016-02-01

    Dip-pen nanolithography (DPN) with lipids as an ink enables functional micro/nanopatterning on different substrates at high process speeds. However, only a few studies have addressed the influence of the physicochemical properties of the surface on the structure and phase behavior of DPN-printed lipid assemblies. Therefore, by combining the scanning probe and optical imaging techniques in this work we have analyzed lipid microdomain formation on the self-assembled monolayers (SAMs) on gold as well-defined model surfaces that displayed hydrophilic (protein-repellent) or hydrophobic (protein-adhesive) characteristics. We have found that on the tri(ethylene glycol)-terminated SAM the lipid ink transfer was fast (~10-1 μm3 s-1), quasi-linear and it yielded unstable, sparsely packed lipid microspots. Contrary to this, on the methyl-terminated SAM the lipid transfer was ~20 times slower, nonlinear, and the obtained stable dots of ~1 μm in diameter consisted of lipid multilayers. Our comparative analysis indicated that the measured lipid transfer was consistent with the previously reported so-called polymer transfer model (Felts et al 2012, Nanotechnology 23 215301). Further on, by employing the observed distinct contrast in the DPN ink behavior we constructed confined lipid microdomains on pre-patterned SAMs, in which the lipids assembled either into monolayer or multilamellar phases. Such microdomains can be further utilized for lipid membrane mimetics in microarray and lab-on-a-chip device formats.

  5. ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification.

    PubMed

    Gulati, Sonia; Balderes, Dina; Kim, Christine; Guo, Zhongmin A; Wilcox, Lisa; Area-Gomez, Estela; Snider, Jamie; Wolinski, Heimo; Stagljar, Igor; Granato, Juliana T; Ruggles, Kelly V; DeGiorgis, Joseph A; Kohlwein, Sepp D; Schon, Eric A; Sturley, Stephen L

    2015-11-01

    A key component of eukaryotic lipid homeostasis is the esterification of sterols with fatty acids by sterol O-acyltransferases (SOATs). The esterification reactions are allosterically activated by their sterol substrates, the majority of which accumulate at the plasma membrane. We demonstrate that in yeast, sterol transport from the plasma membrane to the site of esterification is associated with the physical interaction of the major SOAT, acyl-coenzyme A:cholesterol acyltransferase (ACAT)-related enzyme (Are)2p, with 2 plasma membrane ATP-binding cassette (ABC) transporters: Aus1p and Pdr11p. Are2p, Aus1p, and Pdr11p, unlike the minor acyltransferase, Are1p, colocalize to sterol and sphingolipid-enriched, detergent-resistant microdomains (DRMs). Deletion of either ABC transporter results in Are2p relocalization to detergent-soluble membrane domains and a significant decrease (53-36%) in esterification of exogenous sterol. Similarly, in murine tissues, the SOAT1/Acat1 enzyme and activity localize to DRMs. This subcellular localization is diminished upon deletion of murine ABC transporters, such as Abcg1, which itself is DRM associated. We propose that the close proximity of sterol esterification and transport proteins to each other combined with their residence in lipid-enriched membrane microdomains facilitates rapid, high-capacity sterol transport and esterification, obviating any requirement for soluble intermediary proteins. © FASEB.

  6. Imaging calcium sparks in cardiac myocytes.

    PubMed

    Guatimosim, Silvia; Guatimosim, Cristina; Song, Long-Sheng

    2011-01-01

    Calcium ions play fundamental roles in many cellular processes in virtually all type of cells. The use of Ca(2+) sensitive fluorescent indicators has proven to be an indispensable tool for studying the spatio-temporal dynamics of intracellular calcium ([Ca(2+)](i)). With the aid of laser scanning confocal microscopy and new generation of Ca(2+) indicators, highly localized, short-lived Ca(2+) signals, namely Ca(2+) sparks, were revealed as elementary Ca(2+) release events during excitation-contraction coupling in cardiomyocytes. Since the discovery of Ca(2+) sparks in 1993, the demonstration of dynamic Ca(2+) micro-domains in living cardiomyocytes has revolutionized our understanding of Ca(2+)-mediated signal transduction in normal and diseased hearts. In this chapter, we have described a commonly used method for recording local and global Ca(2+) signals in cardiomyocytes using the fluorescent indicator fluo-4 acetoxymethyl (AM) and laser scanning confocal microscopy.

  7. Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains

    PubMed Central

    Pollard, Benjamin

    2016-01-01

    Summary Intermolecular interactions and nanoscale phase separation govern the properties of many molecular soft-matter systems. Here, we combine infrared vibrational scattering scanning near-field optical microscopy (IR s-SNOM) with force–distance spectroscopy for simultaneous characterization of both nanoscale optical and nanomechanical molecular properties through hybrid imaging. The resulting multichannel images and correlative analysis of chemical composition, spectral IR line shape, modulus, adhesion, deformation, and dissipation acquired for a thin film of a nanophase separated block copolymer (PS-b-PMMA) reveal complex structural variations, in particular at domain interfaces, not resolved in any individual signal channel alone. These variations suggest that regions of multicomponent chemical composition, such as the interfacial mixing regions between microdomains, are correlated with high spatial heterogeneity in nanoscale material properties. PMID:27335750

  8. Mitochondria-associated ER Membranes (MAMs) and Glycosphingolipid Enriched Microdomains (GEMs): Isolation from Mouse Brain

    PubMed Central

    d'Azzo, Alessandra

    2013-01-01

    Intracellular organelles are highly dynamic structures with varying shape and composition, which are subjected to cell-specific intrinsic and extrinsic cues. Their membranes are often juxtaposed at defined contact sites, which become hubs for the exchange of signaling molecules and membrane components1,2,3,4. The inter-organellar membrane microdomains that are formed between the endoplasmic reticulum (ER) and the mitochondria at the opening of the IP3-sensitive Ca2+ channel are known as the mitochondria associated-ER membranes or MAMs4,5,6. The protein/lipid composition and biochemical properties of these membrane contact sites have been extensively studied particularly in relation to their role in regulating intracellular Ca2+ 4,5,6. The ER serves as the primary store of intracellular Ca2+, and in this capacity regulates a myriad of cellular processes downstream of Ca2+ signaling, including post-translational protein folding and protein maturation7. Mitochondria, on the other hand, maintain Ca2+ homeostasis, by buffering cytosolic Ca2+ concentration thereby preventing the initiation of apoptotic pathways downstream of Ca2+ unbalance4,8. The dynamic nature of the MAMs makes them ideal sites to dissect basic cellular mechanisms, including Ca2+ signaling and regulation of mitochondrial Ca2+ concentration, lipid biosynthesis and transport, energy metabolism and cell survival 4,9,10,11,12. Several protocols have been described for the purification of these microdomains from liver tissue and cultured cells13,14. Taking previously published methods into account, we have adapted a protocol for the isolation of mitochondria and MAMs from the adult mouse brain. To this procedure we have added an extra purification step, namely a Triton X100 extraction, which enables the isolation of the glycosphingolipid enriched microdomain (GEM) fraction of the MAMs. These GEM preparations share several protein components with caveolae and lipid rafts, derived from the plasma membrane or other intracellular membranes, and are proposed to function as gathering points for the clustering of receptor proteins and for protein–protein interactions4,15. PMID:23486347

  9. Use of quantitative optical imaging to examine the role of cholesterol-rich lipid raft microdomains in the migration of breast cancer cells

    NASA Astrophysics Data System (ADS)

    You, Minghai; Chen, Jianling; Wang, Shaobing; Dong, Shiqing; Wang, Yuhua; Xie, Shusen; Wang, Zhengchao; Yang, Hongqin

    2018-04-01

    Lipid rafts have been extensively studied and shown to be involved in many cancers, including breast cancer. However, the exact role of lipid rafts in the migration of breast cancer cells remains unclear. This study was designed to examine lipid rafts (cholesterol) in the plasma membrane of breast cancer cells (MDA-MB-231 and MCF-7) and normal breast epithelial cells (MCF-10A) through generalized polarization values, and further investigate the role of cholesterol-rich lipid rafts in the migration of breast cancer cells. The results showed that the plasma membrane in breast cancer cells was more orderly than that in normal epithelial cells; this was correlated with expression changes of matrix metallopeptidase 9 (MMP-9) and urokinase-type plasminogen activator receptor (uPAR), the markers of cancer cell migration. Moreover, the breast cancer cells were more sensitive to the reagent that induced cholesterol depletion than the normal breast epithelial cells, while the capacity of cancer cells to migrate decreased significantly according to changes in MMP-9 and uPAR expression. To our best knowledge, this is the first demonstration of the relationship between cholesterol-rich lipid rafts and the migration of breast cancer cells; it could be useful for the prevention of breast cancer and early treatment through reduction of the level of cholesterol in the plasma membrane of the cells.

  10. An Improved Targeted cAMP Sensor to Study the Regulation of Adenylyl Cyclase 8 by Ca2+ Entry through Voltage-Gated Channels

    PubMed Central

    Everett, Katy L.; Cooper, Dermot M. F.

    2013-01-01

    Here we describe an improved sensor with reduced pH sensitivity tethered to adenylyl cyclase (AC) 8. The sensor was used to study cAMP dynamics in the AC8 microdomain of MIN6 cells, a pancreatic β-cell line. In these cells, AC8 was activated by Ca2+ entry through L-type voltage-gated channels following depolarisation. This activation could be reconstituted in HEK293 cells co-expressing AC8 and either the α1C or α1D subunit of L-type voltage-gated Ca2+ channels. The development of this improved sensor opens the door to the study of cAMP microdomains in excitable cells that have previously been challenging due to the sensitivity of fluorescent proteins to pH changes. PMID:24086669

  11. Dark matter RNA: an intelligent scaffold for the dynamic regulation of the nuclear information landscape

    PubMed Central

    St. Laurent, Georges; Savva, Yiannis A.; Kapranov, Philipp

    2012-01-01

    Perhaps no other topic in contemporary genomics has inspired such diverse viewpoints as the 95+% of the genome, previously known as “junk DNA,” that does not code for proteins. Here, we present a theory in which dark matter RNA plays a role in the generation of a landscape of spatial micro-domains coupled to the information signaling matrix of the nuclear landscape. Within and between these micro-domains, dark matter RNAs additionally function to tether RNA interacting proteins and complexes of many different types, and by doing so, allow for a higher performance of the various processes requiring them at ultra-fast rates. This improves signal to noise characteristics of RNA processing, trafficking, and epigenetic signaling, where competition and differential RNA binding among proteins drives the computational decisions inherent in regulatory events. PMID:22539933

  12. Lipid Raft: A Floating Island Of Death or Survival

    PubMed Central

    George, Kimberly S.; Wu, Shiyong

    2012-01-01

    Lipid rafts are microdomains of the plasma membrane enriched in cholesterol and sphingolipids, and play an important role in the initiation of many pharmacological agent-induced signaling pathways and toxicological effects. The structure of lipid rafts is dynamic, resulting in an ever-changing content of both lipids and proteins. Cholesterol, as a major component of lipid rafts, is critical for the formation and configuration of lipid rafts microdomains, which provide signaling platforms capable of activating both pro-apoptotic and anti-apoptotic signaling pathways. A change of cholesterol level can result in lipid rafts disruption and activate or deactivate raft-associated proteins, such as death receptor proteins, protein kinases, and calcium channels. Several anti-cancer drugs are able to suppress growth and induce apoptosis of tumor cells through alteration of lipid raft contents via disrupting lipid raft integrity. PMID:22289360

  13. Preparation of Gap Junctions in Membrane Microdomains for Immunoprecipitation and Mass Spectrometry Interactome Analysis.

    PubMed

    Fowler, Stephanie; Akins, Mark; Bennett, Steffany A L

    2016-01-01

    Protein interaction networks at gap junction plaques are increasingly implicated in a variety of intracellular signaling cascades. Identifying protein interactions of integral membrane proteins is a valuable tool for determining channel function. However, several technical challenges exist. Subcellular fractionation of the bait protein matrix is usually required to identify less abundant proteins in complex homogenates. Sufficient solvation of the lipid environment without perturbation of the protein interactome must also be achieved. The present chapter describes the flotation of light and heavy liver tissue membrane microdomains to facilitate the identification and analysis of endogenous gap junction proteins and includes technical notes for translation to other integral membrane proteins, tissues, or cell culture models. These procedures are valuable tools for the enrichment of gap junction membrane compartments and for the identification of gap junction signaling interactomes.

  14. Unraveling sterol-dependent membrane phenotypes by analysis of protein abundance-ratio distributions in different membrane fractions under biochemical and endogenous sterol depletion.

    PubMed

    Zauber, Henrik; Szymanski, Witold; Schulze, Waltraud X

    2013-12-01

    During the last decade, research on plasma membrane focused increasingly on the analysis of so-called microdomains. It has been shown that function of many membrane-associated proteins involved in signaling and transport depends on their conditional segregation within sterol-enriched membrane domains. High throughput proteomic analysis of sterol-protein interactions are often based on analyzing detergent resistant membrane fraction enriched in sterols and associated proteins, which also contain proteins from these microdomain structures. Most studies so far focused exclusively on the characterization of detergent resistant membrane protein composition and abundances. This approach has received some criticism because of its unspecificity and many co-purifying proteins. In this study, by a label-free quantitation approach, we extended the characterization of membrane microdomains by particularly studying distributions of each protein between detergent resistant membrane and detergent-soluble fractions (DSF). This approach allows a more stringent definition of dynamic processes between different membrane phases and provides a means of identification of co-purifying proteins. We developed a random sampling algorithm, called Unicorn, allowing for robust statistical testing of alterations in the protein distribution ratios of the two different fractions. Unicorn was validated on proteomic data from methyl-β-cyclodextrin treated plasma membranes and the sterol biosynthesis mutant smt1. Both, chemical treatment and sterol-biosynthesis mutation affected similar protein classes in their membrane phase distribution and particularly proteins with signaling and transport functions.

  15. Unraveling Sterol-dependent Membrane Phenotypes by Analysis of Protein Abundance-ratio Distributions in Different Membrane Fractions Under Biochemical and Endogenous Sterol Depletion*

    PubMed Central

    Zauber, Henrik; Szymanski, Witold; Schulze, Waltraud X.

    2013-01-01

    During the last decade, research on plasma membrane focused increasingly on the analysis of so-called microdomains. It has been shown that function of many membrane-associated proteins involved in signaling and transport depends on their conditional segregation within sterol-enriched membrane domains. High throughput proteomic analysis of sterol-protein interactions are often based on analyzing detergent resistant membrane fraction enriched in sterols and associated proteins, which also contain proteins from these microdomain structures. Most studies so far focused exclusively on the characterization of detergent resistant membrane protein composition and abundances. This approach has received some criticism because of its unspecificity and many co-purifying proteins. In this study, by a label-free quantitation approach, we extended the characterization of membrane microdomains by particularly studying distributions of each protein between detergent resistant membrane and detergent-soluble fractions (DSF). This approach allows a more stringent definition of dynamic processes between different membrane phases and provides a means of identification of co-purifying proteins. We developed a random sampling algorithm, called Unicorn, allowing for robust statistical testing of alterations in the protein distribution ratios of the two different fractions. Unicorn was validated on proteomic data from methyl-β-cyclodextrin treated plasma membranes and the sterol biosynthesis mutant smt1. Both, chemical treatment and sterol-biosynthesis mutation affected similar protein classes in their membrane phase distribution and particularly proteins with signaling and transport functions. PMID:24030099

  16. Streptococcus suis Capsular Polysaccharide Inhibits Phagocytosis through Destabilization of Lipid Microdomains and Prevents Lactosylceramide-Dependent Recognition

    PubMed Central

    Houde, Mathieu; Gottschalk, Marcelo; Gagnon, Fleur; Van Calsteren, Marie-Rose

    2012-01-01

    Streptococcus suis type 2 is a major swine pathogen and a zoonotic agent, causing meningitis in both swine and humans. S. suis infects the host through the respiratory route, reaches the bloodstream, and persists until breaching into the central nervous system. The capsular polysaccharide (CPS) of S. suis type 2 is considered a key virulence factor of the bacteria. Though CPS allows S. suis to adhere to the membrane of cells of the immune system, it provides protection against phagocytosis. In fact, nonencapsulated mutants are easily internalized and killed by macrophages and dendritic cells. The objective of this work was to study the molecular mechanisms by which the CPS of S. suis prevents phagocytosis. By using latex beads covalently linked with purified CPS, it was shown that CPS itself was sufficient to inhibit entry of both latex beads and bystander fluorescent beads into macrophages. Upon contact with macrophages, encapsulated S. suis was shown to destabilize lipid microdomains at the cell surface, to block nitric oxide (NO) production during infection, and to prevent lactosylceramide accumulation at the phagocytic cup during infection. In contrast, the nonencapsulated mutant was easily internalized via lipid rafts, in a filipin-sensitive manner, leading to lactosylceramide recruitment and strong NO production. This is the first report to identify a role for CPS in lipid microdomain stability and to recognize an interaction between S. suis and lactosylceramide in phagocytes. PMID:22124659

  17. Apo AI/ABCA1-dependent and HDL3-mediated lipid efflux from compositionally distinct cholesterol-based microdomains.

    PubMed

    Drobnik, Wolfgang; Borsukova, Hana; Böttcher, Alfred; Pfeiffer, Alexandra; Liebisch, Gerhard; Schütz, Gerhard J; Schindler, Hansgeorg; Schmitz, Gerd

    2002-04-01

    We have investigated whether a raft heterogeneity exists in human monocyte-derived macrophages and fibroblasts and whether these microdomains are modulated by lipid efflux. Triton X-100 (Triton) or Lubrol WX (Lubrol) detergent-resistant membranes from cholesterol-loaded monocytes were associated with the following findings: (i) Lubrol-DRM contained most of the cellular cholesterol and at least 75% of Triton-detergent-resistant membranes. (ii) 'Lubrol rafts', defined by their solubility in Triton but insolubility in Lubrol, were enriched in unsaturated phosphatidylcholine and showed a lower cholesterol to choline-phospholipid ratio compared to Triton rafts. (iii) CD14 and CD55 were recovered in Triton- and Lubrol-detergent-resistant membranes, whereas CD11b was found exclusively in Triton DRM. ABCA1 implicated in apo AI-mediated lipid efflux and CDC42 were partially localized in Lubrol- but not in Triton-detergent-resistant membranes. (iv) Apo AI preferentially depleted cholesterol and choline-phospholipids from Lubrol rafts, whereas HDL3 additionally decreased the cholesterol content of Triton rafts. In fibroblasts, neither ABCA1 nor CDC42 was found in Lubrol rafts, and both apo AI and HDL3 reduced the lipid content in Lubrol- as well as in Triton-detergent-resistant membranes. In summary, we provide evidence for the existence of compositionally distinct membrane microdomains in human cells and their modulation by apo AI/ABCA1-dependent and HDL3-mediated lipid efflux.

  18. Investigation of cAMP microdomains as a path to novel cancer diagnostics.

    PubMed

    Desman, Garrett; Waintraub, Caren; Zippin, Jonathan H

    2014-12-01

    Understanding of cAMP signaling has greatly improved over the past decade. The advent of live cell imaging techniques and more specific pharmacologic modulators has led to an improved understanding of the intricacies by which cAMP is able to modulate such a wide variety of cellular pathways. It is now appreciated that cAMP is able to activate multiple effector proteins at distinct areas in the cell leading to the activation of very different downstream targets. The investigation of signaling proteins in cancer is a common route to the development of diagnostic tools, prognostic tools, and/or therapeutic targets, and in this review we highlight how investigation of cAMP signaling microdomains driven by the soluble adenylyl cyclase in different cancers has led to the development of a novel cancer biomarker. Antibodies directed against the soluble adenylyl cyclase (sAC) are highly specific markers for melanoma especially for lentigo maligna melanoma and are being described as "second generation" cancer diagnostics, which are diagnostics that determine the 'state' of a cell and not just identify the cell type. Due to the wide presence of cAMP signaling pathways in cancer, we predict that further investigation of both sAC and other cAMP microdomains will lead to additional cancer biomarkers. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Membrane-associated stress proteins: more than simply chaperones.

    PubMed

    Horváth, Ibolya; Multhoff, Gabriele; Sonnleitner, Alois; Vígh, László

    2008-01-01

    The protein- and/or lipid-mediated association of chaperone proteins to membranes is a widespread phenomenon and implicated in a number of physiological and pathological events that were earlier partially or completely overlooked. A temporary association of certain HSPs with membranes can re-establish the fluidity and bilayer stability and thereby restore the membrane functionality during stress conditions. The fluidity and microdomain organization of membranes are decisive factors in the perception and transduction of stresses into signals that trigger the activation of specific HS genes. Conversely, the membrane association of HSPs may result in the inactivation of membrane-perturbing signals, thereby switch off the heat shock response. Interactions between certain HSPs and specific lipid microdomains ("rafts") might be a previously unrecognized means for the compartmentalization of HSPs to specific signaling platforms, where key signaling proteins are known to be concentrated. Any modulations of the membranes, especially the raft-lipid composition of the cells can alter the extracellular release and thus the immuno-stimulatory activity of certain HSPs. Reliable techniques, allowing mapping of the composition and dynamics of lipid microdomains and simultaneously the spatio-temporal localization of HSPs in and near the plasma membrane can provide suitable means with which to address fundamental questions, such as how HSPs are transported to and translocated through the plasma membrane. The possession of such information is critical if we are to target the membrane association principles of HSPs for successful drug development in most various diseases.

  20. Membrane Microdomain Structures of Liposomes and Their Contribution to the Cellular Uptake Efficiency into HeLa Cells.

    PubMed

    Onuki, Yoshinori; Obata, Yasuko; Kawano, Kumi; Sano, Hiromu; Matsumoto, Reina; Hayashi, Yoshihiro; Takayama, Kozo

    2016-02-01

    The purpose of this study is to obtain a comprehensive relationship between membrane microdomain structures of liposomes and their cellular uptake efficiency. Model liposomes consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/cholesterol (Ch) were prepared with various lipid compositions. To detect distinct membrane microdomains in the liposomes, fluorescence-quenching assays were performed at temperatures ranging from 25 to 60 °C using 1,6-diphenyl-1,3,5-hexatriene-labeled liposomes and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl. From the data analysis using the response surface method, we gained a better understanding of the conditions for forming distinct domains (Lo, Ld, and gel phase membranes) as a function of lipid composition. We further performed self-organizing maps (SOM) clustering to simplify the complicated behavior of the domain formation to obtain its essence. As a result, DPPC/DOPC/Ch liposomes in any lipid composition were integrated into five distinct clusters in terms of similarity of the domain structure. In addition, the findings from synchrotron small-angle X-ray scattering analysis offered further insight into the domain structures. As a last phase of this study, an in vitro cellular uptake study using HeLa cells was conducted using SOM clusters' liposomes with/without PEGylation. As a consequence of this study, higher cellular uptake was observed from liposomes having Ch-rich ordered domains.

  1. Normal male childhood and adolescent sexual interactions: implications for sexual orientation of the individual with intersex.

    PubMed

    Lee, Peter A; Houk, Christopher P

    2005-03-01

    Data provided by 24 adult men, 20 heterosexual and four homosexual, concerning parental, religious, geographic and explicit sexual innuendos, comments and childhood experiences are presented and discussed in an attempt to consider some of the multiple factors impacting the development of sexual orientation. All of the study subjects were normally developed males and were presumed to have been exposed to normal male levels of androgens prenatally. Since the experiences and perceptions reported are conditioned by a unique social environment that has been superimposed on a normal male typical prenatal CNS differentiation, the experiences of these men suggest that affirmation of masculinity, and openness in the realm of social and sexual interaction, may enhance the formation of a heterosexual orientation. Conversely, sexually explicit feedback with critical implications occurred commonly among the homosexual men, which they interpreted as implying an insufficient masculinity. Both innate factors and social influences impact sexual orientation; in some instances males appear to have been homosexual from early childhood onward, while in other cases there appears to have been some degree of conditioning and choice in sexual orientation. Regarding the intersexed male, this suggests that social interactions, particularly those provided by parents, have a major influence on the development of sexual orientation in the child, while all persons involved in these children's lives and particularly those who nurture must be prepared for any sexual orientation that develops.

  2. Morphology, directed self-assembly and pattern transfer from a high molecular weight polystyrene-block-poly(dimethylsiloxane) block copolymer film

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Chen; Bai, Wubin; Fernandez Martin, Eduardo; Tu, Kun-Hua; Ntetsikas, Konstantinos; Liontos, George; Avgeropoulos, Apostolos; Ross, C. A.

    2017-04-01

    The self-assembly of block copolymers with large feature sizes is inherently challenging as the large kinetic barrier arising from chain entanglement of high molecular weight (MW) polymers limits the extent over which long-range ordered microdomains can be achieved. Here, we illustrate the evolution of thin film morphology from a diblock copolymer of polystyrene-block-poly(dimethylsiloxane) exhibiting total number average MW of 123 kg mol-1, and demonstrate the formation of layers of well-ordered cylindrical microdomains under appropriate conditions of binary solvent mix ratio, commensurate film thickness, and solvent vapor annealing time. Directed self-assembly of the block copolymer within lithographically patterned trenches occurs with alignment of cylinders parallel to the sidewalls. Fabrication of ordered cobalt nanowire arrays by pattern transfer was also implemented, and their magnetic properties and domain wall behavior were characterized.

  3. Alterations in Ca2+ Signalling via ER-Mitochondria Contact Site Remodelling in Cancer.

    PubMed

    Kerkhofs, Martijn; Giorgi, Carlotta; Marchi, Saverio; Seitaj, Bruno; Parys, Jan B; Pinton, Paolo; Bultynck, Geert; Bittremieux, Mart

    2017-01-01

    Inter-organellar contact sites establish microdomains for localised Ca 2+ -signalling events. One of these microdomains is established between the ER and the mitochondria. Importantly, the so-called mitochondria-associated ER membranes (MAMs) contain, besides structural proteins and proteins involved in lipid exchange, several Ca 2+ -transport systems, mediating efficient Ca 2+ transfer from the ER to the mitochondria. These Ca 2+ signals critically control several mitochondrial functions, thereby impacting cell metabolism, cell death and survival, proliferation and migration. Hence, the MAMs have emerged as critical signalling hubs in physiology, while their dysregulation is an important factor that drives or at least contributes to oncogenesis and tumour progression. In this book chapter, we will provide an overview of the role of the MAMs in cell function and how alterations in the MAM composition contribute to oncogenic features and behaviours.

  4. Fatty acid synthase - Modern tumor cell biology insights into a classical oncology target.

    PubMed

    Buckley, Douglas; Duke, Gregory; Heuer, Timothy S; O'Farrell, Marie; Wagman, Allan S; McCulloch, William; Kemble, George

    2017-09-01

    Decades of preclinical and natural history studies have highlighted the potential of fatty acid synthase (FASN) as a bona fide drug target for oncology. This review will highlight the foundational concepts upon which this perspective is built. Published studies have shown that high levels of FASN in patient tumor tissues are present at later stages of disease and this overexpression predicts poor prognosis. Preclinical studies have shown that experimental overexpression of FASN in previously normal cells leads to changes that are critical for establishing a tumor phenotype. Once the tumor phenotype is established, FASN elicits several changes to the tumor cell and becomes intertwined with its survival. The product of FASN, palmitate, changes the biophysical nature of the tumor cell membrane; membrane microdomains enable the efficient assembly of signaling complexes required for continued tumor cell proliferation and survival. Membranes densely packed with phospholipids containing saturated fatty acids become resistant to the action of other chemotherapeutic agents. Inhibiting FASN leads to tumor cell death while sparing normal cells, which do not have the dependence of this enzyme for normal functions, and restores membrane architecture to more normal properties thereby resensitizing tumors to killing by chemotherapies. One compound has recently reached clinical studies in solid tumor patients and highlights the need for continued evaluation of the role of FASN in tumor cell biology. Significant advances have been made and much remains to be done to optimally apply this class of pharmacological agents for the treatment of specific cancers. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Detergent-Resistant Microdomains Determine the Localization of σ-1 Receptors to the Endoplasmic Reticulum-Mitochondria JunctionS⃞

    PubMed Central

    Fujimoto, Michiko

    2010-01-01

    σ-1 receptors (Sig-1Rs) that bind diverse synthetic and endogenous compounds have been implicated in the pathophysiology of several human diseases such as drug addiction, depression, neurodegenerative disorders, pain-related disorders, and cancer. Sig-1Rs were identified recently as novel ligand-operated molecular chaperones. Although Sig-1Rs are predominantly expressed at endoplasmic reticulum (ER) subdomains apposing mitochondria [i.e., the mitochondria-associated ER membrane (MAM)], they dynamically change the cellular distribution, thus regulating both MAM-specific and plasma membrane proteins. However, what determines the location of Sig-1R at the MAM and how the receptor translocation is initiated is unknown. Here we report that the detergent-resistant membranes (DRMs) play an important role in anchoring Sig-1Rs to the MAM. The MAM, which is highly capable of accumulating ceramides, is enriched with both cholesterol and simple sphingolipids, thus forming Triton X-114-resistant DRMs. Sig-1Rs associate with MAM-derived DRMs but not with those from microsomes. A lipid overlay assay found that solubilized Sig-1Rs preferentially associate with simple sphingolipids such as ceramides. Disrupting DRMs by lowering cholesterol or inhibiting de novo synthesis of ceramides at the ER largely decreases Sig-1R at DRMs and causes translocation of Sig-1R from the MAM to ER cisternae. These findings suggest that the MAM, bearing cholesterol and ceramide-enriched microdomains at the ER, may use the microdomains to anchor Sig-1Rs to the location; thus, it serves to stage Sig-1R at ER-mitochondria junctions. PMID:20053954

  6. Syntenin-1 Is a New Component of Tetraspanin-Enriched Microdomains: Mechanisms and Consequences of the Interaction of Syntenin-1 with CD63▿

    PubMed Central

    Latysheva, Nadya; Muratov, Gairat; Rajesh, Sundaresan; Padgett, Matthew; Hotchin, Neil A.; Overduin, Michael; Berditchevski, Fedor

    2006-01-01

    Tetraspanins are clustered in specific microdomains (named tetraspanin-enriched microdomains, or TERM) in the plasma membrane and regulate the functions of associated transmembrane receptors, including integrins and receptor tyrosine kinases. We have identified syntenin-1, a PDZ domain-containing protein, as a new component of TERM and show that syntenin-1 specifically interacts with the tetraspanin CD63. Detailed biochemical and heteronuclear magnetic resonance spectroscopy (NMR) studies have demonstrated that the interaction is mediated by the C-terminal cytoplasmic region of the tetraspanin and the PDZ domains of syntenin-1. Upon interaction, NMR chemical shift perturbations were predominantly localized to residues around the binding pocket of PDZ1, indicating a specific mode of recognition of the cytoplasmic tail of CD63. In addition, the C terminus of syntenin-1 has a stabilizing role in the CD63-syntenin-1 association, as deletion of the last 17 amino acids abolished the interaction. The CD63-syntenin-1 complex is abundant on the plasma membrane, and the elevated expression of the wild-type syntenin-1 slows down constitutive internalization of the tetraspanin. Furthermore, internalization of CD63 was completely blocked in cells expressing a syntenin-1 mutant lacking the first 100 amino acids. Previous results have shown that CD63 is internalized via AP-2-dependent mechanisms. Hence, our data indicate that syntenin-1 can counteract the AP-2-dependent internalization and identify this tandem PDZ protein as a new regulator of endocytosis. PMID:16908530

  7. Remodeling of the postsynaptic plasma membrane during neural development.

    PubMed

    Tulodziecka, Karolina; Diaz-Rohrer, Barbara B; Farley, Madeline M; Chan, Robin B; Di Paolo, Gilbert; Levental, Kandice R; Waxham, M Neal; Levental, Ilya

    2016-11-07

    Neuronal synapses are the fundamental units of neural signal transduction and must maintain exquisite signal fidelity while also accommodating the plasticity that underlies learning and development. To achieve these goals, the molecular composition and spatial organization of synaptic terminals must be tightly regulated; however, little is known about the regulation of lipid composition and organization in synaptic membranes. Here we quantify the comprehensive lipidome of rat synaptic membranes during postnatal development and observe dramatic developmental lipidomic remodeling during the first 60 postnatal days, including progressive accumulation of cholesterol, plasmalogens, and sphingolipids. Further analysis of membranes associated with isolated postsynaptic densities (PSDs) suggests the PSD-associated postsynaptic plasma membrane (PSD-PM) as one specific location of synaptic remodeling. We analyze the biophysical consequences of developmental remodeling in reconstituted synaptic membranes and observe remarkably stable microdomains, with the stability of domains increasing with developmental age. We rationalize the developmental accumulation of microdomain-forming lipids in synapses by proposing a mechanism by which palmitoylation of the immobilized scaffold protein PSD-95 nucleates domains at the postsynaptic plasma membrane. These results reveal developmental changes in lipid composition and palmitoylation that facilitate the formation of postsynaptic membrane microdomains, which may serve key roles in the function of the neuronal synapse. © 2016 Tulodziecka et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. PKA catalytic subunit compartmentation regulates contractile and hypertrophic responses to β-adrenergic signaling

    PubMed Central

    Yang, Jason H.; Polanowska-Grabowska, Renata K.; Smith, Jeffrey S.; Shields, Charles W.; Saucerman, Jeffrey J.

    2014-01-01

    β-adrenergic signaling is spatiotemporally heterogeneous in the cardiac myocyte, conferring exquisite control to sympathetic stimulation. Such heterogeneity drives the formation of protein kinase A (PKA) signaling microdomains, which regulate Ca2+ handling and contractility. Here, we test the hypothesis that the nucleus independently comprises a PKA signaling microdomain regulating myocyte hypertrophy. Spatially-targeted FRET reporters for PKA activity identified slower PKA activation and lower isoproterenol sensitivity in the nucleus (t50 = 10.60±0.68 min; EC50 = 89.00 nmol/L) than in the cytosol (t50 = 3.71±0.25 min; EC50 = 1.22 nmol/L). These differences were not explained by cAMP or AKAP-based compartmentation. A computational model of cytosolic and nuclear PKA activity was developed and predicted that differences in nuclear PKA dynamics and magnitude are regulated by slow PKA catalytic subunit diffusion, while differences in isoproterenol sensitivity are regulated by nuclear expression of protein kinase inhibitor (PKI). These were validated by FRET and immunofluorescence. The model also predicted differential phosphorylation of PKA substrates regulating cell contractility and hypertrophy. Ca2+ and cell hypertrophy measurements validated these predictions and identified higher isoproterenol sensitivity for contractile enhancements (EC50 = 1.84 nmol/L) over cell hypertrophy (EC50 = 85.88 nmol/L). Over-expression of spatially targeted PKA catalytic subunit to the cytosol or nucleus enhanced contractile and hypertrophic responses, respectively. We conclude that restricted PKA catalytic subunit diffusion is an important PKA compartmentation mechanism and the nucleus comprises a novel PKA signaling microdomain, insulating hypertrophic from contractile β-adrenergic signaling responses. PMID:24225179

  9. Changes in turbulence with rotation of the omnicarbon prosthesis.

    PubMed

    Travis, Brandon R; Nyboe, Camilla; Christensen, Thomas D; Smerup, Morten; Johansen, Peter; Nygaard, Hans; Hasenkam, J Michael

    2007-01-01

    This study was performed to determine whether annular plane orientation of the Omnicarbon aortic valve influences forward flow turbulence. The Omnicarbon prostheses was modified to allow in situ manual rotation of the valve when implanted in the aortic position of eight 90 kg pigs. Pulsed Doppler ultrasound was used to acquire velocity measurements at 17 locations within the cross-sectional area of the ascending aorta. In each animal, 12 valve rotations were tested in this manner. Reynolds normal stresses were estimated from the velocity measurements. High Reynolds normal stresses were concentrated between left and posterior-right sides of the aortic wall for all orientations studied. No trends in mean or maximum Reynolds normal stresses with respect to valve rotation were consistent in the experiments. Unlike previous experiments with the Medtronic-Hall tilting disc valve, these experiments showed no notable changes in Reynolds normal stress with respect to orientation of the Omnicarbon valve. This suggests that the tendency of turbulent stresses to change with tilting disc valve orientation may be dependent on valve design.

  10. Microdomain Yield Behaviour in an Ultra-High Strength Low Alloy Steel for Marine Use with Low Sensitivity of SCC

    NASA Astrophysics Data System (ADS)

    Yin, Jiang; Tao, Anxiang; Xu, Pingguang; Ping, Dehai

    The present paper involves a fundamental research on microdomain yield behavior of an ultrahigh strength low alloy steel with high temperature tempered bainite. The smooth cylinder specimen was took from deep water mooring chain links from the steel with the chemical composition of 0.23C-0.25Si -0.70Mn-3.55 (Cr+Ni+Mo) -0.13 (V+Nb+Ti) (mass %) ,which was quenched from 1253K and then tempered at 873K Its macroscopic yield strength is 1120MPa and the tensile strength is 1250MPa In-situ neutron diffraction measurements of loading tension have suggested that a good linear elastic deformation can be kept up to 500MPa stress, and then (200) priority non-linear elastic strain, that is the yield of crystal lattice occur at 700MPa and the (110) non-linear elastic strain was found at 800MPa. The (200) and (110) nonlinear elastic strain increases gradually when the stress was further increased, however, the (211) kept its linear elastic deformation stage as before. The sub-microstructural analysis carried out using TEM and additional determine the nature and quantitative analysis has revealed that there are three kinds of alloy carbides: (1) θ-M3C cementites with an average particle size of less than 50 nm which inside laths and lath boundaries; (2) ɛ-M2C formed uniformly within the ferrites with a length of less than 200 nm and width of less than 20 nm; (3) ultra-fine high density MC cohered with matrix α-Fe and its particle size is about 2 nm. The whole microdomain yield behaviour of the material was possibly influenced by the fcc-MC with high density. The results of CLT (constant load), SSRT (slow strain rate) and KIscc test of the present chain in seawater solution indicate, that threshold value of SCC (stress corrosion cracking) stress exceed 0.8 tensile strength and the chain's KIscc value is double of KIscc value of 4340 steel type parts. MC not only form strong hydrogen trap, but also slow down microdomain yield likely by means of increasing yield strength of crystal lattice, thus reduce SCC sensibility of the steel.

  11. Cross-orientation suppression in human visual cortex

    PubMed Central

    Heeger, David J.

    2011-01-01

    Cross-orientation suppression was measured in human primary visual cortex (V1) to test the normalization model. Subjects viewed vertical target gratings (of varying contrasts) with or without a superimposed horizontal mask grating (fixed contrast). We used functional magnetic resonance imaging (fMRI) to measure the activity in each of several hypothetical channels (corresponding to subpopulations of neurons) with different orientation tunings and fit these orientation-selective responses with the normalization model. For the V1 channel maximally tuned to the target orientation, responses increased with target contrast but were suppressed when the horizontal mask was added, evident as a shift in the contrast gain of this channel's responses. For the channel maximally tuned to the mask orientation, a constant baseline response was evoked for all target contrasts when the mask was absent; responses decreased with increasing target contrast when the mask was present. The normalization model provided a good fit to the contrast-response functions with and without the mask. In a control experiment, the target and mask presentations were temporally interleaved, and we found no shift in contrast gain, i.e., no evidence for suppression. We conclude that the normalization model can explain cross-orientation suppression in human visual cortex. The approach adopted here can be applied broadly to infer, simultaneously, the responses of several subpopulations of neurons in the human brain that span particular stimulus or feature spaces, and characterize their interactions. In addition, it allows us to investigate how stimuli are represented by the inferred activity of entire neural populations. PMID:21775720

  12. Direct detection and measurement of wall shear stress using a filamentous bio-nanoparticle

    PubMed Central

    Lobo, Daniela P.; Wemyss, Alan M.; Smith, David J.; Straube, Anne; Betteridge, Kai B.; Salmon, Andrew H. J.; Foster, Rebecca R.; Elhegni, Hesham E.; Satchell, Simon C.; Little, Haydn A.; Pacheco-Gómez, Raúl; Simmons, Mark J.; Hicks, Matthew R.; Bates, David O.; Dafforn, Timothy R.; Arkill, Kenton P.

    2016-01-01

    The wall shear stress (WSS) that a moving fluid exerts on a surface affects many processes including those relating to vascular function. WSS plays an important role in normal physiology (e.g. angiogenesis) and affects the microvasculature’s primary function of molecular transport. Points of fluctuating WSS show abnormalities in a number of diseases; however, there is no established technique for measuring WSS directly in physiological systems. All current methods rely on estimates obtained from measured velocity gradients in bulk flow data. In this work, we report a nanosensor that can directly measure WSS in microfluidic chambers with sub-micron spatial resolution by using a specific type of virus, the bacteriophage M13, which has been fluorescently labeled and anchored to a surface. It is demonstrated that the nanosensor can be calibrated and adapted for biological tissue, revealing WSS in micro-domains of cells that cannot be calculated accurately from bulk flow measurements. This method lends itself to a platform applicable to many applications in biology and microfluidics. PMID:27570611

  13. Microstructures of GaN1-xPx layers grown on (0001) GaN substrates by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Seong, Tae-Yeon; Bae, In-Tae; Choi, Chel-Jong; Noh, D. Y.; Zhao, Y.; Tu, C. W.

    1999-03-01

    Transmission electron microscope (TEM), transmission electron diffraction (TED), and synchrotron x-ray diffraction (XRD) studies have been performed to investigate microstructural behavior of gas source molecular beam epitaxial GaN1-xPx layers grown on (0001) GaN/sapphire at temperatures (Tg) in the range 500-760 °C. TEM, TED, and XRD results indicate that the samples grown at Tg⩽600 °C undergo phase separation resulting in a mixture of GaN-rich and GaP-rich GaNP with zinc-blende structure. However, the samples grown at Tg⩾730 °C are found to be binary zinc-blende GaN(P) single crystalline materials. As for the 500 °C layer, the two phases are randomly oriented and distributed, whereas the 600 °C layer consists of phases that are elongated and inclined by 60°-70° clockwise from the [0001]α-GaN direction. The samples grown at Tg⩾730 °C are found to consist of two types of microdomains, namely, GaN(P)I and GaN(P)II; the former having twin relation to the latter.

  14. Changes in running pattern due to fatigue and cognitive load in orienteering.

    PubMed

    Millet, Guillaume Y; Divert, Caroline; Banizette, Marion; Morin, Jean-Benoit

    2010-01-01

    The aim of this study was to examine the influence of fatigue on running biomechanics in normal running, in normal running with a cognitive task, and in running while map reading. Nineteen international and less experienced orienteers performed a fatiguing running exercise of duration and intensity similar to a classic distance orienteering race on an instrumented treadmill while performing mental arithmetic, an orienteering simulation, and control running at regular intervals. Two-way repeated-measures analysis of variance did not reveal any significant difference between mental arithmetic and control running for any of the kinematic and kinetic parameters analysed eight times over the fatiguing protocol. However, these parameters were systematically different between the orienteering simulation and the other two conditions (mental arithmetic and control running). The adaptations in orienteering simulation running were significantly more pronounced in the elite group when step frequency, peak vertical ground reaction force, vertical stiffness, and maximal downward displacement of the centre of mass during contact were considered. The effects of fatigue on running biomechanics depended on whether the orienteers read their map or ran normally. It is concluded that adding a cognitive load does not modify running patterns. Therefore, all changes in running pattern observed during the orienteering simulation, particularly in elite orienteers, are the result of adaptations to enable efficient map reading and/or potentially prevent injuries. Finally, running patterns are not affected to the same extent by fatigue when a map reading task is added.

  15. Goal Orientations and Metacognitive Skills of Normal Technical and Normal Academic Students on Project Work

    ERIC Educational Resources Information Center

    Ee, J.; Wang, C.; Koh, C.; Tan, O.; Liu, W.

    2009-01-01

    In 2000, the Singapore Ministry of Education launched Project Work (PW) to encourage the application of knowledge across disciplines, and to develop thinking, communication, collaboration and metacognitive skills. This preliminary findings of a large scale study examines the role of goal orientations (achievement goals and social goals) in…

  16. Normal Aging and Decision Making: The Role of Motivation

    ERIC Educational Resources Information Center

    Depping, Miriam K.; Freund, Alexandra M.

    2011-01-01

    The main argument of this review is that motivational development associated with normal aging affects decision making. With increasing age, the ratio of gains to losses becomes more and more unfavorable. Reflecting the increasing losses in resources, goal orientation changes from a predominant orientation towards gains in young adulthood to an…

  17. Pattern Adaptation and Normalization Reweighting.

    PubMed

    Westrick, Zachary M; Heeger, David J; Landy, Michael S

    2016-09-21

    Adaptation to an oriented stimulus changes both the gain and preferred orientation of neural responses in V1. Neurons tuned near the adapted orientation are suppressed, and their preferred orientations shift away from the adapter. We propose a model in which weights of divisive normalization are dynamically adjusted to homeostatically maintain response products between pairs of neurons. We demonstrate that this adjustment can be performed by a very simple learning rule. Simulations of this model closely match existing data from visual adaptation experiments. We consider several alternative models, including variants based on homeostatic maintenance of response correlations or covariance, as well as feedforward gain-control models with multiple layers, and we demonstrate that homeostatic maintenance of response products provides the best account of the physiological data. Adaptation is a phenomenon throughout the nervous system in which neural tuning properties change in response to changes in environmental statistics. We developed a model of adaptation that combines normalization (in which a neuron's gain is reduced by the summed responses of its neighbors) and Hebbian learning (in which synaptic strength, in this case divisive normalization, is increased by correlated firing). The model is shown to account for several properties of adaptation in primary visual cortex in response to changes in the statistics of contour orientation. Copyright © 2016 the authors 0270-6474/16/369805-12$15.00/0.

  18. Derivation of three closed loop kinematic velocity models using normalized quaternion feedback for an autonomous redundant manipulator with application to inverse kinematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unseren, M.A.

    1993-04-01

    The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associatedmore » with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.« less

  19. Biochemical Fractionation and Stable Isotope Dilution Liquid Chromatography-mass Spectrometry for Targeted and Microdomain-specific Protein Quantification in Human Postmortem Brain Tissue*

    PubMed Central

    MacDonald, Matthew L.; Ciccimaro, Eugene; Prakash, Amol; Banerjee, Anamika; Seeholzer, Steven H.; Blair, Ian A.; Hahn, Chang-Gyu

    2012-01-01

    Synaptic architecture and its adaptive changes require numerous molecular events that are both highly ordered and complex. A majority of neuropsychiatric illnesses are complex trait disorders, in which multiple etiologic factors converge at the synapse via many signaling pathways. Investigating the protein composition of synaptic microdomains from human patient brain tissues will yield valuable insights into the interactions of risk genes in many disorders. These types of studies in postmortem tissues have been limited by the lack of proper study paradigms. Thus, it is necessary not only to develop strategies to quantify protein and post-translational modifications at the synapse, but also to rigorously validate them for use in postmortem human brain tissues. In this study we describe the development of a liquid chromatography-selected reaction monitoring method, using a stable isotope-labeled neuronal proteome standard prepared from the brain tissue of a stable isotope-labeled mouse, for the multiplexed quantification of target synaptic proteins in mammalian samples. Additionally, we report the use of this method to validate a biochemical approach for the preparation of synaptic microdomain enrichments from human postmortem prefrontal cortex. Our data demonstrate that a targeted mass spectrometry approach with a true neuronal proteome standard facilitates accurate and precise quantification of over 100 synaptic proteins in mammalian samples, with the potential to quantify over 1000 proteins. Using this method, we found that protein enrichments in subcellular fractions prepared from human postmortem brain tissue were strikingly similar to those prepared from fresh mouse brain tissue. These findings demonstrate that biochemical fractionation methods paired with targeted proteomic strategies can be used in human brain tissues, with important implications for the study of neuropsychiatric disease. PMID:22942359

  20. Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes.

    PubMed

    Vetrivel, Kulandaivelu S; Cheng, Haipeng; Lin, William; Sakurai, Takashi; Li, Tong; Nukina, Nobuyuki; Wong, Philip C; Xu, Huaxi; Thinakaran, Gopal

    2004-10-22

    Alzheimer's disease-associated beta-amyloid peptides (Abeta) are generated by the sequential proteolytic processing of amyloid precursor protein (APP) by beta- and gamma-secretases. There is growing evidence that cholesterol- and sphingolipid-rich membrane microdomains are involved in regulating trafficking and processing of APP. BACE1, the major beta-secretase in neurons is a palmitoylated transmembrane protein that resides in lipid rafts. A subset of APP is subject to amyloidogenic processing by BACE1 in lipid rafts, and this process depends on the integrity of lipid rafts. Here we describe the association of all four components of the gamma-secretase complex, namely presenilin 1 (PS1)-derived fragments, mature nicastrin, APH-1, and PEN-2, with cholesterol-rich detergent insoluble membrane (DIM) domains of non-neuronal cells and neurons that fulfill the criteria of lipid rafts. In PS1(-/-)/PS2(-/-) and NCT(-/-) fibroblasts, gamma-secretase components that still remain fail to become detergent-resistant, suggesting that raft association requires gamma-secretase complex assembly. Biochemical evidence shows that subunits of the gamma-secretase complex and three TGN/endosome-resident SNAREs cofractionate in sucrose density gradients, and show similar solubility or insolubility characteristics in distinct non-ionic and zwitterionic detergents, indicative of their co-residence in membrane microdomains with similar protein-lipid composition. This notion is confirmed using magnetic immunoisolation of PS1- or syntaxin 6-positive membrane patches from a mixture of membranes with similar buoyant densities following Lubrol WX extraction or sonication, and gradient centrifugation. These findings are consistent with the localization of gamma-secretase in lipid raft microdomains of post-Golgi and endosomes, organelles previously implicated in amyloidogenic processing of APP.

  1. Association of γ-Secretase with Lipid Rafts in Post-Golgi and Endosome Membranes*

    PubMed Central

    Vetrivel, Kulandaivelu S.; Cheng, Haipeng; Lin, William; Sakurai, Takashi; Li, Tong; Nukina, Nobuyuki; Wong, Philip C.; Xu, Huaxi; Thinakaran, Gopal

    2005-01-01

    Alzheimer’s disease-associated β-amyloid peptides (Aβ) are generated by the sequential proteolytic processing of amyloid precursor protein (APP) by β- and γ-secretases. There is growing evidence that cholesterol- and sphingolipid-rich membrane microdomains are involved in regulating trafficking and processing of APP. BACE1, the major γ-secretase in neurons is a palmi-toylated transmembrane protein that resides in lipid rafts. A subset of APP is subject to amyloidogenic processing by BACE1 in lipid rafts, and this process depends on the integrity of lipid rafts. Here we describe the association of all four components of the γ-secretase complex, namely presenilin 1 (PS1)-derived fragments, mature nicastrin, APH-1, and PEN-2, with cholesterol-rich detergent insoluble membrane (DIM) domains of non-neuronal cells and neurons that fulfill the criteria of lipid rafts. In PS1−/−/PS2−/− and NCT−/− fibroblasts, γ-secretase components that still remain fail to become detergent-resistant, suggesting that raft association requires γ-secretase complex assembly. Biochemical evidence shows that subunits of the γ-secretase complex and three TGN/endosome-resident SNAREs cofractionate in sucrose density gradients, and show similar solubility or insolubility characteristics in distinct non-ionic and zwitterionic detergents, indicative of their co-residence in membrane microdomains with similar protein-lipid composition. This notion is confirmed using magnetic immunoisolation of PS1- or syntaxin 6-positive membrane patches from a mixture of membranes with similar buoyant densities following Lubrol WX extraction or sonication, and gradient centrifugation. These findings are consistent with the localization of γ-secretase in lipid raft microdomains of post-Golgi and endosomes, organelles previously implicated in amyloidogenic processing of APP. PMID:15322084

  2. The membrane-associated form of α(s1)-casein interacts with cholesterol-rich detergent-resistant microdomains.

    PubMed

    Le Parc, Annabelle; Honvo Houéto, Edith; Pigat, Natascha; Chat, Sophie; Leonil, Joëlle; Chanat, Eric

    2014-01-01

    Caseins, the main milk proteins, interact with colloidal calcium phosphate to form the casein micelle. The mesostructure of this supramolecular assembly markedly influences its nutritional and technological functionalities. However, its detailed molecular organization and the cellular mechanisms involved in its biogenesis have been only partially established. There is a growing body of evidence to support the concept that α(s1)-casein takes center stage in casein micelle building and transport in the secretory pathway of mammary epithelial cells. Here we have investigated the membrane-associated form of α(s1)-casein in rat mammary epithelial cells. Using metabolic labelling we show that α(s1)-casein becomes associated with membranes at the level of the endoplasmic reticulum, with no subsequent increase at the level of the Golgi apparatus. From morphological and biochemical data, it appears that caseins are in a tight relationship with membranes throughout the secretory pathway. On the other hand, we have observed that the membrane-associated form of α(s1)-casein co-purified with detergent-resistant membranes. It was poorly solubilised by Tween 20, partially insoluble in Lubrol WX, and substantially insoluble in Triton X-100. Finally, we found that cholesterol depletion results in the release of the membrane-associated form of α(s1)-casein. These experiments reveal that the insolubility of α(s1)-casein reflects its partial association with a cholesterol-rich detergent-resistant microdomain. We propose that the membrane-associated form of α(s1)-casein interacts with the lipid microdomain, or lipid raft, that forms within the membranes of the endoplasmic reticulum, for efficient forward transport and sorting in the secretory pathway of mammary epithelial cells.

  3. Heterogeneous distribution of exocytotic microdomains in adrenal chromaffin cells resolved by high-density diamond ultra-microelectrode arrays.

    PubMed

    Gosso, Sara; Turturici, Marco; Franchino, Claudio; Colombo, Elisabetta; Pasquarelli, Alberto; Carbone, Emilio; Carabelli, Valentina

    2014-08-01

    Here we describe the ability of a high-density diamond microelectrode array targeted to resolve multi-site detection of fast exocytotic events from single cells. The array consists of nine boron-doped nanocrystalline diamond ultra-microelectrodes (9-Ch NCD-UMEA) radially distributed within a circular area of the dimensions of a single cell. The device can be operated in voltammetric or chronoamperometric configuration. Sensitivity to catecholamines, tested by dose-response calibrations, set the lowest detectable concentration of adrenaline to ∼5 μm. Catecholamine release from bovine or mouse chromaffin cells could be triggered by electrical stimulation or external KCl-enriched solutions. Spikes detected from the cell apex using carbon fibre microelectrodes showed an excellent correspondence with events measured at the bottom of the cell by the 9-Ch NCD-UMEA, confirming the ability of the array to resolve single quantal secretory events. Subcellular localization of exocytosis was provided by assigning each quantal event to one of the nine channels based on its location. The resulting mapping highlights the heterogeneous distribution of secretory activity in cell microdomains of 12-27 μm2. In bovine chromaffin cells, secretion was highly heterogeneous with zones of high and medium activity in 54% of the cell surface and zones of low or no activity in the remainder. The 'non-active' ('silent') zones covered 24% of the total and persisted for 6-8 min, indicating stable location. The 9-Ch NCD-UMEA therefore appears suitable for investigating the microdomain organization of neurosecretion with high spatial resolution. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  4. Mechanisms of canalicular transporter endocytosis in the cholestatic rat liver.

    PubMed

    Miszczuk, Gisel S; Barosso, Ismael R; Larocca, María Cecilia; Marrone, Julieta; Marinelli, Raúl A; Boaglio, Andrea C; Sánchez Pozzi, Enrique J; Roma, Marcelo G; Crocenzi, Fernando A

    2018-04-01

    Impaired canalicular secretion due to increased endocytosis and intracellular retention of canalicular transporters such as BSEP and MRP2 is a main, common pathomechanism of cholestasis. Nevertheless, the mechanisms governing this process are unknown. We characterized this process in estradiol 17 β-d-glucuronide (E17G)-induced cholestasis, an experimental model which partially mimics pregnancy-induced cholestasis. Inhibitors of clathrin-mediated endocytosis (CME) such as monodansylcadaverine (MDC) or K + depletion, but not the caveolin-mediated endocytosis inhibitors filipin and genistein, prevented E17G-induced endocytosis of BSEP and MRP2, and the associated impairment of activity of these transporters in isolated rat hepatocyte couplets (IRHC). Immunofluorescence and confocal microscopy studies showed that, in E17G-treated IRHC, there was a significant increase in the colocalization of MRP2 with clathrin, AP2, and Rab5, three essential members of the CME machinery. Knockdown of AP2 by siRNA in sandwich-cultured rat hepatocytes completely prevented E17G-induced endocytosis of BSEP and MRP2. MDC significantly prevented this endocytosis, and the impairment of bile flow and biliary secretion of BSEP and MRP2 substrates, in isolated and perfused livers. BSEP and MRP2, which were mostly present in raft (caveolin-enriched) microdomains in control rats, were largely found in non-raft (clathrin-enriched) microdomains in livers from E17G-treated animals, from where they can be readily recruited for CME. In conclusion, our findings show that CME is the mechanism responsible for the internalization of the canalicular transporters BSEP and MRP2 in E17G-induced cholestasis. The shift of these transporters from raft to non-raft microdomains could be a prerequisite for the transporters to be endocytosed under cholestatic conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Relationship between CYP1A2 Localization and Lipid Microdomain Formation as a Function of Lipid Composition

    PubMed Central

    Brignac-Huber, Lauren M.; Reed, James R.; Eyer, Marilyn K.

    2013-01-01

    Cytochrome P450 (P450) function requires the interaction of P450 and NADPH-cytochrome P450 reductase (CPR) in membranes, and is frequently studied using reconstituted systems composed solely of phosphatidylcholine. There is increasing evidence that other endoplasmic reticulum (ER) lipids can affect P450 structure, activity, and interactions with CPR. Some of these lipid effects have been attributed to the formation of organized liquid-ordered (lo) domains. The goal of this study was to determine if lo domains were formed in P450 reconstituted systems mimicking the ER membrane. CYP1A2, when incorporated in “ER-like” lipid vesicles, displayed detergent insolubility after treatment with Brij 98 and centrifugation in a sucrose gradient. Lipid probes were employed to identify domain formation in both ER-like vesicles and model membranes known to form lo domains. Changes in fluorescence resonance energy transfer (FRET) using an established donor/acceptor FRET pair in both ER-like and model lo-forming systems demonstrated the coexistence of lo- and liquid-disordered domains as a function of cholesterol and sphingomyelin content. Similarly, 6-dodecanoyl-2-dimethylaminonaphthalene (laurdan), a probe that reports on membrane organization, showed that cholesterol and sphingomyelin increased membrane order. Finally, brominated-phosphatidylcholine allowed for monitoring of the location of both CPR and CYP1A2 within the lo regions of ER-like systems. Taken together, the results demonstrate that ER-like vesicles generate microdomains, and both CYP1A2 and CPR predominantly localize into lo membrane regions. Probe fluorescent responses suggest that lipid microdomains form in these vesicles whether or not enzymes are included in the reconstituted systems. Thus, it does not appear that the proteins are critical for stabilizing lo domains. PMID:23963955

  6. The Membrane-Associated Form of αs1-Casein Interacts with Cholesterol-Rich Detergent-Resistant Microdomains

    PubMed Central

    Le Parc, Annabelle; Honvo Houéto, Edith; Pigat, Natascha; Chat, Sophie; Leonil, Joëlle; Chanat, Eric

    2014-01-01

    Caseins, the main milk proteins, interact with colloidal calcium phosphate to form the casein micelle. The mesostructure of this supramolecular assembly markedly influences its nutritional and technological functionalities. However, its detailed molecular organization and the cellular mechanisms involved in its biogenesis have been only partially established. There is a growing body of evidence to support the concept that αs1-casein takes center stage in casein micelle building and transport in the secretory pathway of mammary epithelial cells. Here we have investigated the membrane-associated form of αs1-casein in rat mammary epithelial cells. Using metabolic labelling we show that αs1-casein becomes associated with membranes at the level of the endoplasmic reticulum, with no subsequent increase at the level of the Golgi apparatus. From morphological and biochemical data, it appears that caseins are in a tight relationship with membranes throughout the secretory pathway. On the other hand, we have observed that the membrane-associated form of αs1-casein co-purified with detergent-resistant membranes. It was poorly solubilised by Tween 20, partially insoluble in Lubrol WX, and substantially insoluble in Triton X-100. Finally, we found that cholesterol depletion results in the release of the membrane-associated form of αs1-casein. These experiments reveal that the insolubility of αs1-casein reflects its partial association with a cholesterol-rich detergent-resistant microdomain. We propose that the membrane-associated form of αs1-casein interacts with the lipid microdomain, or lipid raft, that forms within the membranes of the endoplasmic reticulum, for efficient forward transport and sorting in the secretory pathway of mammary epithelial cells. PMID:25549363

  7. Anomalous Extracellular Diffusion in Rat Cerebellum

    PubMed Central

    Xiao, Fanrong; Hrabe, Jan; Hrabetova, Sabina

    2015-01-01

    Extracellular space (ECS) is a major channel transporting biologically active molecules and drugs in the brain. Diffusion-mediated transport of these substances is hindered by the ECS structure but the microscopic basis of this hindrance is not fully understood. One hypothesis proposes that the hindrance originates in large part from the presence of dead-space (DS) microdomains that can transiently retain diffusing molecules. Because previous theoretical and modeling work reported an initial period of anomalous diffusion in similar environments, we expected that brain regions densely populated by DS microdomains would exhibit anomalous extracellular diffusion. Specifically, we targeted granular layers (GL) of rat and turtle cerebella that are populated with large and geometrically complex glomeruli. The integrative optical imaging (IOI) method was employed to evaluate diffusion of fluorophore-labeled dextran (MW 3000) in GL, and the IOI data analysis was adapted to quantify the anomalous diffusion exponent dw from the IOI records. Diffusion was significantly anomalous in rat GL, where dw reached 4.8. In the geometrically simpler turtle GL, dw was elevated but not robustly anomalous (dw = 2.6). The experimental work was complemented by numerical Monte Carlo simulations of anomalous ECS diffusion in several three-dimensional tissue models containing glomeruli-like structures. It demonstrated that both the duration of transiently anomalous diffusion and the anomalous exponent depend on the size of model glomeruli and the degree of their wrapping. In conclusion, we have found anomalous extracellular diffusion in the GL of rat cerebellum. This finding lends support to the DS microdomain hypothesis. Transiently anomalous diffusion also has a profound effect on the spatiotemporal distribution of molecules released into the ECS, especially at diffusion distances on the order of a few cell diameters, speeding up short-range diffusion-mediated signals in less permeable structures. PMID:25954895

  8. The assembly of GM1 glycolipid- and cholesterol-enriched raft-like membrane microdomains is important for giardial encystation.

    PubMed

    De Chatterjee, Atasi; Mendez, Tavis L; Roychowdhury, Sukla; Das, Siddhartha

    2015-05-01

    Although encystation (or cyst formation) is an important step of the life cycle of Giardia, the cellular events that trigger encystation are poorly understood. Because membrane microdomains are involved in inducing growth and differentiation in many eukaryotes, we wondered if these raft-like domains are assembled by this parasite and participate in the encystation process. Since the GM1 ganglioside is a major constituent of mammalian lipid rafts (LRs) and known to react with cholera toxin B (CTXB), we used Alexa Fluor-conjugated CTXB and GM1 antibodies to detect giardial LRs. Raft-like structures in trophozoites are located in the plasma membranes and on the periphery of ventral discs. In cysts, however, they are localized in the membranes beneath the cyst wall. Nystatin and filipin III, two cholesterol-binding agents, and oseltamivir (Tamiflu), a viral neuraminidase inhibitor, disassembled the microdomains, as evidenced by reduced staining of trophozoites with CTXB and GM1 antibodies. GM1- and cholesterol-enriched LRs were isolated from Giardia by density gradient centrifugation and found to be sensitive to nystatin and oseltamivir. The involvement of LRs in encystation could be supported by the observation that raft inhibitors interrupted the biogenesis of encystation-specific vesicles and cyst production. Furthermore, culturing of trophozoites in dialyzed medium containing fetal bovine serum (which is low in cholesterol) reduced raft assembly and encystation, which could be rescued by adding cholesterol from the outside. Our results suggest that Giardia is able to form GM1- and cholesterol-enriched lipid rafts and these raft domains are important for encystation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Single Molecule Analysis of Serotonin Transporter Regulation Using Antagonist-Conjugated Quantum Dots Reveals Restricted, p38 MAPK-Dependent Mobilization Underlying Uptake Activation

    PubMed Central

    Chang, Jerry C.; Tomlinson, Ian D.; Warnement, Michael R.; Ustione, Alessandro; Carneiro, Ana M. D.; Piston, David W.; Blakely, Randy D.; Rosenthal, Sandra J.

    2012-01-01

    The presynaptic serotonin (5-HT) transporter (SERT) is targeted by widely prescribed antidepressant medications. Altered SERT expression or regulation has been implicated in multiple neuropsychiatric disorders, including anxiety, depression and autism. Here, we implement a generalizable strategy that exploits antagonist-conjugated quantum dots (Qdots) to monitor, for the first time, single SERT proteins on the surface of serotonergic cells. We document two pools of SERT proteins defined by lateral mobility, one that exhibits relatively free diffusion, and a second, localized to cholesterol and GM1 ganglioside-enriched microdomains, that displays restricted mobility. Receptor-linked signalling pathways that enhance SERT activity mobilize transporters that, nonetheless, remain confined to membrane microdomains. Mobilization of transporters arise from a p38 MAPK-dependent untethering of the SERT C-terminus from the juxtamembrane actin cytoskeleton. Our studies establish the utility of ligand-conjugated Qdots for analysis of the behaviour of single membrane proteins and reveal a physical basis for signaling-mediated SERT regulation. PMID:22745492

  10. Plasma membrane microorganization of LR73 multidrug-resistant cells revealed by FCS

    NASA Astrophysics Data System (ADS)

    Winckler, Pascale; Jaffiol, Rodolphe; Cailler, Aurélie; Morjani, Hamid; Jeannesson, Pierre; Deturche, Régis

    2011-03-01

    Tumoral cells could present a multidrug resistance (MDR) to chemotherapeutic treatments. This drug resistance would be associated to biomechanisms occurring at the plasma membrane level, involving modification of membrane fluidity, drug permeability, presence of microdomains (rafts, caveolae...), and membrane proteins overexpression such as Pglycoprotein. Fluorescence correlation spectroscopy (FCS) is the relevant method to investigate locally the fluidity of biological membranes through the lateral diffusion of a fluorescent membrane probe. Thus, we use FCS to monitor the plasma membrane local organization of LR73 carcinoma cells and three derived multidrug-resistant cancer cells lines. Measurements were conducted at the single cell level, which enabled us to get a detailed overview of the plasma membrane microviscosity distribution of each cell line studied. Moreover, we propose 2D diffusion simulation based on a Monte Carlo model to investigate the membrane organisation in terms of microdomains. This simulation allows us to relate the differences in the fluidity distributions with microorganization changes in plasma membrane of MDR cells.

  11. Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks.

    PubMed

    Neves, Susana R; Tsokas, Panayiotis; Sarkar, Anamika; Grace, Elizabeth A; Rangamani, Padmini; Taubenfeld, Stephen M; Alberini, Cristina M; Schaff, James C; Blitzer, Robert D; Moraru, Ion I; Iyengar, Ravi

    2008-05-16

    The role of cell size and shape in controlling local intracellular signaling reactions, and how this spatial information originates and is propagated, is not well understood. We have used partial differential equations to model the flow of spatial information from the beta-adrenergic receptor to MAPK1,2 through the cAMP/PKA/B-Raf/MAPK1,2 network in neurons using real geometries. The numerical simulations indicated that cell shape controls the dynamics of local biochemical activity of signal-modulated negative regulators, such as phosphodiesterases and protein phosphatases within regulatory loops to determine the size of microdomains of activated signaling components. The model prediction that negative regulators control the flow of spatial information to downstream components was verified experimentally in rat hippocampal slices. These results suggest a mechanism by which cellular geometry, the presence of regulatory loops with negative regulators, and key reaction rates all together control spatial information transfer and microdomain characteristics within cells.

  12. HETEROTYPIC INTERACTIONS ENABLED BY POLARIZED NEUTROPHIL MICRODOMAINS MEDIATE THROMBO-INFLAMMATORY INJURY

    PubMed Central

    Hidalgo, Andrés; Chang, Jungshan; Jang, Jung-Eun; Peired, Anna J.; Chiang, Elaine Y.; Frenette, Paul S.

    2009-01-01

    Selectins and their ligands mediate leukocyte rolling allowing interactions with chemokines that lead to integrin activation and arrest. Here, we demonstrate that E-selectin is critical to induce a secondary wave of activating signals transduced specifically by E-selectin ligand-1, that induces polarized, activated αMβ2 integrin clusters at the leading edge of crawling neutrophils, allowing the capture of circulating erythrocytes or platelets. In a humanized model of sickle cell disease (SCD), the capture of erythrocytes by αMβ2 microdomains leads to acute lethal vascular occlusions. In a model of transfusion-related acute lung injury, polarized neutrophils capture circulating platelets, resulting in the generation of oxidative species that produces vascular damage and lung injury. Inactivation of E-selectin or αMβ2 prevented tissue injury in both inflammatory models, suggesting broad implications of this paradigm in thrombo-inflammatory diseases. These results indicate that endothelial selectins can influence neutrophil behavior beyond its canonical rolling step through delayed, organ-damaging, polarized activation. PMID:19305412

  13. MreB-Dependent Organization of the E. coli Cytoplasmic Membrane Controls Membrane Protein Diffusion.

    PubMed

    Oswald, Felix; Varadarajan, Aravindan; Lill, Holger; Peterman, Erwin J G; Bollen, Yves J M

    2016-03-08

    The functional organization of prokaryotic cell membranes, which is essential for many cellular processes, has been challenging to analyze due to the small size and nonflat geometry of bacterial cells. Here, we use single-molecule fluorescence microscopy and three-dimensional quantitative analyses in live Escherichia coli to demonstrate that its cytoplasmic membrane contains microdomains with distinct physical properties. We show that the stability of these microdomains depends on the integrity of the MreB cytoskeletal network underneath the membrane. We explore how the interplay between cytoskeleton and membrane affects trans-membrane protein (TMP) diffusion and reveal that the mobility of the TMPs tested is subdiffusive, most likely caused by confinement of TMP mobility by the submembranous MreB network. Our findings demonstrate that the dynamic architecture of prokaryotic cell membranes is controlled by the MreB cytoskeleton and regulates the mobility of TMPs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Calcium release microdomains and mitochondria.

    PubMed

    Kohlhaas, Michael; Maack, Christoph

    2013-05-01

    The processes of excitation-contraction (EC) coupling consume large amounts of energy that need to be replenished by oxidative phosphorylation in the mitochondria. Since Ca(2+) activates key enzymes of the Krebs cycle in the mitochondrial matrix, it is important to understand the mechanisms and kinetics of mitochondrial Ca(2+) uptake to delineate how in cardiac myocytes, energy supply is efficiently matched to demand. In recent years, the identification of various proteins involved in mitochondrial Ca(2+) signalling and the tethering of mitochondria to the sarcoplasmic reticulum (SR) has considerably advanced the field and supported the concept of a mitochondrial Ca(2+) microdomain, in which Ca(2+) concentrations are high enough to overcome the low Ca(2+) affinity of the principal mitochondrial Ca(2+) uptake mechanism, the Ca(2+) uniporter. Furthermore, defects in EC coupling that occur in heart failure disrupt SR-mitochondrial Ca(2+) crosstalk and may cause energetic deficit and oxidative stress, both factors that are thought to be causally involved in the initiation and progression of the disease.

  15. The plasma membrane as a capacitor for energy and metabolism.

    PubMed

    Ray, Supriyo; Kassan, Adam; Busija, Anna R; Rangamani, Padmini; Patel, Hemal H

    2016-02-01

    When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as "capacitors for energy and metabolism." Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell.

  16. Effect of Exogenous Cues on Covert Spatial Orienting in Deaf and Normal Hearing Individuals

    PubMed Central

    Prasad, Seema Gorur; Patil, Gouri Shanker; Mishra, Ramesh Kumar

    2015-01-01

    Deaf individuals have been known to process visual stimuli better at the periphery compared to the normal hearing population. However, very few studies have examined attention orienting in the oculomotor domain in the deaf, particularly when targets appear at variable eccentricity. In this study, we examined if the visual perceptual processing advantage reported in the deaf people also modulates spatial attentional orienting with eye movement responses. We used a spatial cueing task with cued and uncued targets that appeared at two different eccentricities and explored attentional facilitation and inhibition. We elicited both a saccadic and a manual response. The deaf showed a higher cueing effect for the ocular responses than the normal hearing participants. However, there was no group difference for the manual responses. There was also higher facilitation at the periphery for both saccadic and manual responses, irrespective of groups. These results suggest that, owing to their superior visual processing ability, the deaf may orient attention faster to targets. We discuss the results in terms of previous studies on cueing and attentional orienting in deaf. PMID:26517363

  17. Effect of Exogenous Cues on Covert Spatial Orienting in Deaf and Normal Hearing Individuals.

    PubMed

    Prasad, Seema Gorur; Patil, Gouri Shanker; Mishra, Ramesh Kumar

    2015-01-01

    Deaf individuals have been known to process visual stimuli better at the periphery compared to the normal hearing population. However, very few studies have examined attention orienting in the oculomotor domain in the deaf, particularly when targets appear at variable eccentricity. In this study, we examined if the visual perceptual processing advantage reported in the deaf people also modulates spatial attentional orienting with eye movement responses. We used a spatial cueing task with cued and uncued targets that appeared at two different eccentricities and explored attentional facilitation and inhibition. We elicited both a saccadic and a manual response. The deaf showed a higher cueing effect for the ocular responses than the normal hearing participants. However, there was no group difference for the manual responses. There was also higher facilitation at the periphery for both saccadic and manual responses, irrespective of groups. These results suggest that, owing to their superior visual processing ability, the deaf may orient attention faster to targets. We discuss the results in terms of previous studies on cueing and attentional orienting in deaf.

  18. Optimum runway orientation relative to crosswinds

    NASA Technical Reports Server (NTRS)

    Falls, L. W.; Brown, S. C.

    1972-01-01

    Specific magnitudes of crosswinds may exist that could be constraints to the success of an aircraft mission such as the landing of the proposed space shuttle. A method is required to determine the orientation or azimuth of the proposed runway which will minimize the probability of certain critical crosswinds. Two procedures for obtaining the optimum runway orientation relative to minimizing a specified crosswind speed are described and illustrated with examples. The empirical procedure requires only hand calculations on an ordinary wind rose. The theoretical method utilizes wind statistics computed after the bivariate normal elliptical distribution is applied to a data sample of component winds. This method requires only the assumption that the wind components are bivariate normally distributed. This assumption seems to be reasonable. Studies are currently in progress for testing wind components for bivariate normality for various stations. The close agreement between the theoretical and empirical results for the example chosen substantiates the bivariate normal assumption.

  19. Facet orientation in the thoracolumbar spine: three-dimensional anatomic and biomechanical analysis.

    PubMed

    Masharawi, Youssef; Rothschild, Bruce; Dar, Gali; Peleg, Smadar; Robinson, Dror; Been, Ella; Hershkovitz, Israel

    2004-08-15

    Thoracolumbar facet orientations were measured and analyzed. To establish a comprehensive database for facet orientation in the thoracolumbar vertebrae and to determine the normal human condition. Most studies on facet orientation have based their conclusions on two-dimensional measurements, in small samples or isolated vertebrae. The amount of normal asymmetry in facet orientation is poorly addressed. Transverse and longitudinal facet angles were measured directly from 240 human vertebral columns (males/females, blacks/whites). The specimens' osteologic material is part of the Hamann-Todd Osteological Collection housed at the Cleveland Museum of Natural History (Cleveland, OH). A total of 4,080 vertebrae (T1-L5) from the vertebral columns of individuals 20 to 80 years of age were measured, using a Microscribe three-dimensional apparatus (Immersion Co., San Jose, CA). Data were recorded directly on computer software. Statistical analysis included paired t tests and analysis of variance. RESULTS.: Facet orientation is independent of gender, age, and ethnic group. Asymmetry in facet orientation is found in the thorax. All thoracolumbar facets are positioned in an oblique plane. In the transverse plane, all facets from T1 to T11 are positioned with an anterior inclination of approximately 25 degrees to 30 degrees from the frontal plane. The facets of T12-L2 are oriented closer to the midsagittal plane of the vertebral body (mean range, 25.89 degrees-33.87 degrees), while the facets of L3-L5 are oriented away from that plane (mean range, 40.40 degrees-56.30 degrees). Facet transverse orientation at the thoracolumbar junction is highly variable (approximately 80% with approximately 101 degrees and approximately 20% with 35 degrees). All facets are oriented more vertically from T1 (approximately 150 degrees) to L5 (approximately 170 degrees). The facet sagittal orientations of the lumbar zygoapophyseal joints are not equivalent. CONCLUSIONS.: Asymmetry in facet orientation is a normal characteristic in the thorax.

  20. Effects of Personal Space Invasion and Anomia on Anxiety, Nonperson Orientation and Source Credibility.

    ERIC Educational Resources Information Center

    Heston, Judee K.

    It is hypothesized that subjects who are highly anomic will demonstrate less anxiety and higher nonperson orientation than normal subjects will when personal space is invaded. Fifty-six pretested subjects classified as either anomic (14 males, 14 females) or normal (14 males, 14 females) were placed in one of two interview conditions: personal…

  1. Salt geometry influence on present-day stress orientations in the Nile Delta: Insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Eckert, Andreas; Zhang, Weicheng

    2016-02-01

    The offshore Nile Delta displays sharply contrasting orientations of the maximum horizontal stress, SH, in regions above Messinian evaporites (suprasalt) and regions below Messinian evaporites (subsalt). Published stress orientation data predominantly show margin-normal suprasalt SH orientations but a margin-parallel subsalt SH orientation. While these data sets provide the first major evidence that evaporite sequences can act as mechanical detachment horizons, the cause for the stress orientation contrast remains unclear. In this study, 3D finite element analysis is used to investigate the causes for stress re-orientation based on two different hypotheses. The modeling study evaluates the influence of different likely salt geometries and whether stress reorientations are the result of basal drag forces induced by gravitational gliding or whether they represent localized variations due to mechanical property contrasts. The modeling results show that when salt is present as a continuous layer, gravitational gliding occurs and basal drag forces induced in the suprasalt layers result in the margin-normal principal stress becoming the maximum horizontal stress. With the margin-normal stress increase being confined to the suprasalt layers, the salt acts as a mechanical detachment horizon, resulting in different SH orientations in the suprasalt compared to the subsalt layers. When salt is present as isolated bodies localized stress variations occur due to the mechanical property contrasts imposed by the salt, also resulting in different SH orientations in the suprasalt compared to the subsalt layers. The modeling results provide additional quantitative evidence to confirm the role of evaporite sequences as mechanical detachment horizons.

  2. Development and matching of binocular orientation preference in mouse V1.

    PubMed

    Bhaumik, Basabi; Shah, Nishal P

    2014-01-01

    Eye-specific thalamic inputs converge in the primary visual cortex (V1) and form the basis of binocular vision. For normal binocular perceptions, such as depth and stereopsis, binocularly matched orientation preference between the two eyes is required. A critical period of binocular matching of orientation preference in mice during normal development is reported in literature. Using a reaction diffusion model we present the development of RF and orientation selectivity in mouse V1 and investigate the binocular orientation preference matching during the critical period. At the onset of the critical period the preferred orientations of the modeled cells are mostly mismatched in the two eyes and the mismatch decreases and reaches levels reported in juvenile mouse by the end of the critical period. At the end of critical period 39% of cells in binocular zone in our model cortex is orientation selective. In literature around 40% cortical cells are reported as orientation selective in mouse V1. The starting and the closing time for critical period determine the orientation preference alignment between the two eyes and orientation tuning in cortical cells. The absence of near neighbor interaction among cortical cells during the development of thalamo-cortical wiring causes a salt and pepper organization in the orientation preference map in mice. It also results in much lower % of orientation selective cells in mice as compared to ferrets and cats having organized orientation maps with pinwheels.

  3. You Sank My Lipid Rafts!

    ERIC Educational Resources Information Center

    Campbell, Tessa N.

    2009-01-01

    The plasma membrane is the membrane that serves as a boundary between the interior of a cell and its extracellular environment. Lipid rafts are microdomains within a cellular membrane that possess decreased fluidity due to the presence of cholesterol, glycolipids, and phospholipids containing longer fatty acids. These domains are involved in many…

  4. IDENTIFICATION OF FLOTILLIN-1 ON EIMERIA TENELLA SPOROZOITES AND ITS ROLE IN HOST CELL INVASION

    USDA-ARS?s Scientific Manuscript database

    Lipid rafts are detergent-resistant, liquid-ordered microdomains in plasma membranes that are enriched in cholesterol and sphingolipids and involved in intracellular signal transduction, membrane trafficking, and molecular sorting. In this study, we investigated the possibility that lipid rafts on E...

  5. Lipid Rafts Assemble Dynein Ensembles.

    PubMed

    Nirschl, Jeffrey J; Ghiretti, Amy E; Holzbaur, Erika L F

    2016-05-01

    New work by Rai et al. identifies a novel mechanism regulating phagosome transport in cells: the clustering of dynein motors into lipid microdomains, leading to enhanced unidirectional motility. Clustering may be especially important for dynein, a motor that works most efficiently in teams. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unseren, M.A.

    The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associatedmore » with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.« less

  7. Cardiac voltage gated calcium channels and their regulation by β-adrenergic signaling.

    PubMed

    Kumari, Neema; Gaur, Himanshu; Bhargava, Anamika

    2018-02-01

    Voltage-gated calcium channels (VGCCs) are the predominant source of calcium influx in the heart leading to calcium-induced calcium release and ultimately excitation-contraction coupling. In the heart, VGCCs are modulated by the β-adrenergic signaling. Signaling through β-adrenergic receptors (βARs) and modulation of VGCCs by β-adrenergic signaling in the heart are critical signaling and changes to these have been significantly implicated in heart failure. However, data related to calcium channel dysfunction in heart failure is divergent and contradictory ranging from reduced function to no change in the calcium current. Many recent studies have highlighted the importance of functional and spatial microdomains in the heart and that may be the key to answer several puzzling questions. In this review, we have briefly discussed the types of VGCCs found in heart tissues, their structure, and significance in the normal and pathological condition of the heart. More importantly, we have reviewed the modulation of VGCCs by βARs in normal and pathological conditions incorporating functional and structural aspects. There are different types of βARs, each having their own significance in the functioning of the heart. Finally, we emphasize the importance of location of proteins as it relates to their function and modulation by co-signaling molecules. Its implication on the studies of heart failure is speculated. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Use of structured personality survey techniques to indicate operator response to stressful situations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waller, M.A.

    Under given circumstances, a person will tend to operate in one of four dominant orientations: (1) to perform tasks; (2) to achieve consensus; (3) to achieve understanding, or (4) to maintain structure. Historically, personality survey techniques, such as the Myers-Briggs type indicator, have been used to determine these tendencies. While these techniques can accurately reflect a person's orientation under normal social situations, under different sets of conditions, the same person may exhibit other tendencies, displaying a similar or entirely different orientation. While most do not exhibit extreme tendencies or changes of orientation, the shift in personality from normal to stressfulmore » conditions can be rather dramatic, depending on the individual. Structured personality survey techniques have been used to indicate operator response to stressful situations. These techniques have been extended to indicate the balance between orientations that the control room team has through the various levels of cognizance.« less

  9. Development and matching of binocular orientation preference in mouse V1

    PubMed Central

    Bhaumik, Basabi; Shah, Nishal P.

    2014-01-01

    Eye-specific thalamic inputs converge in the primary visual cortex (V1) and form the basis of binocular vision. For normal binocular perceptions, such as depth and stereopsis, binocularly matched orientation preference between the two eyes is required. A critical period of binocular matching of orientation preference in mice during normal development is reported in literature. Using a reaction diffusion model we present the development of RF and orientation selectivity in mouse V1 and investigate the binocular orientation preference matching during the critical period. At the onset of the critical period the preferred orientations of the modeled cells are mostly mismatched in the two eyes and the mismatch decreases and reaches levels reported in juvenile mouse by the end of the critical period. At the end of critical period 39% of cells in binocular zone in our model cortex is orientation selective. In literature around 40% cortical cells are reported as orientation selective in mouse V1. The starting and the closing time for critical period determine the orientation preference alignment between the two eyes and orientation tuning in cortical cells. The absence of near neighbor interaction among cortical cells during the development of thalamo-cortical wiring causes a salt and pepper organization in the orientation preference map in mice. It also results in much lower % of orientation selective cells in mice as compared to ferrets and cats having organized orientation maps with pinwheels. PMID:25104927

  10. Improved ultrasonic TV images achieved by use of Lamb-wave orientation technique

    NASA Technical Reports Server (NTRS)

    Berger, H.

    1967-01-01

    Lamb-wave sample orientation technique minimizes the interference from standing waves in continuous wave ultrasonic television imaging techniques used with thin metallic samples. The sample under investigation is oriented such that the wave incident upon it is not normal, but slightly angled.

  11. New self-assembly strategies for next generation lithography

    NASA Astrophysics Data System (ADS)

    Schwartz, Evan L.; Bosworth, Joan K.; Paik, Marvin Y.; Ober, Christopher K.

    2010-04-01

    Future demands of the semiconductor industry call for robust patterning strategies for critical dimensions below twenty nanometers. The self assembly of block copolymers stands out as a promising, potentially lower cost alternative to other technologies such as e-beam or nanoimprint lithography. One approach is to use block copolymers that can be lithographically patterned by incorporating a negative-tone photoresist as the majority (matrix) phase of the block copolymer, paired with photoacid generator and a crosslinker moiety. In this system, poly(α-methylstyrene-block-hydroxystyrene)(PαMS-b-PHOST), the block copolymer is spin-coated as a thin film, processed to a desired microdomain orientation with long-range order, and then photopatterned. Therefore, selfassembly of the block copolymer only occurs in select areas due to the crosslinking of the matrix phase, and the minority phase polymer can be removed to produce a nanoporous template. Using bulk TEM analysis, we demonstrate how the critical dimension of this block copolymer is shown to scale with polymer molecular weight using a simple power law relation. Enthalpic interactions such as hydrogen bonding are used to blend inorganic additives in order to enhance the etch resistance of the PHOST block. We demonstrate how lithographically patternable block copolymers might fit in to future processing strategies to produce etch-resistant self-assembled features at length scales impossible with conventional lithography.

  12. Activity-induced convergence of APP and BACE-1 in acidic microdomains via an endocytosis-dependent pathway

    PubMed Central

    Das, Utpal; Scott, David; Ganguly, Archan; Koo, Edward H.; Tang, Yong; Roy, Subhojit

    2013-01-01

    The convergence of APP (substrate) and BACE-1 (enzyme) is a rate-limiting, obligatory event triggering the amyloidogenic pathway – a key step in Alzheimer’s disease (AD) pathology. However, as both APP/BACE-1 are highly expressed in brain, mechanisms precluding their unabated convergence are unclear. Exploring dynamic localization of APP/BACE-1 in cultured hippocampal neurons, we found that after synthesis via the secretory-pathway, dendritic APP/BACE-1-containing vesicles are largely segregated in physiologic states. While BACE-1 is largely sorted into acidic recycling endosomes, APP is conveyed in Golgi-derived vesicles. However upon activity-induction – a known trigger of the amyloidogenic pathway – APP is routed into BACE-1-positive recycling endosomes via a clathrin-dependent mechanism. A partitioning/convergence of APP/BACE-1 vesicles is also apparent in control/AD brains respectively. Considering BACE-1 is optimally active in an acidic environment, our experiments suggest that neurons have evolved trafficking strategies that normally limit APP/BACE-1 proximity; and also uncover a pathway routing APP into BACE-1-containing organelles – triggering amyloidogenesis. PMID:23931995

  13. The effect of normal load on polytetrafluoroethylene tribology.

    PubMed

    Barry, Peter R; Chiu, Patrick Y; Perry, Scott S; Sawyer, W Gregory; Phillpot, Simon R; Sinnott, Susan B

    2009-04-08

    The tribological behavior of oriented poly(tetrafluoroethylene) (PTFE) sliding surfaces is examined as a function of sliding direction and applied normal load in classical molecular dynamics (MD) simulations. The forces are calculated with the second-generation reactive empirical bond-order potential for short-range interactions, and with a Lennard-Jones potential for long-range interactions. The range of applied normal loads considered is 5-30 nN. The displacement of interfacial atoms from their initial positions during sliding is found to vary by a factor of seven, depending on the relative orientation of the sliding chains. However, within each sliding configuration the magnitude of the interfacial atomic displacements exhibits little dependence on load over the range considered. The predicted friction coefficients are also found to vary with chain orientation and are in excellent quantitative agreement with experimental measurements.

  14. The effect of normal load on polytetrafluoroethylene tribology

    NASA Astrophysics Data System (ADS)

    Barry, Peter R.; Chiu, Patrick Y.; Perry, Scott S.; Sawyer, W. Gregory; Phillpot, Simon R.; Sinnott, Susan B.

    2009-04-01

    The tribological behavior of oriented poly(tetrafluoroethylene) (PTFE) sliding surfaces is examined as a function of sliding direction and applied normal load in classical molecular dynamics (MD) simulations. The forces are calculated with the second-generation reactive empirical bond-order potential for short-range interactions, and with a Lennard-Jones potential for long-range interactions. The range of applied normal loads considered is 5-30 nN. The displacement of interfacial atoms from their initial positions during sliding is found to vary by a factor of seven, depending on the relative orientation of the sliding chains. However, within each sliding configuration the magnitude of the interfacial atomic displacements exhibits little dependence on load over the range considered. The predicted friction coefficients are also found to vary with chain orientation and are in excellent quantitative agreement with experimental measurements.

  15. Casein hydrolysate augments antimicrobial and antioxidative efficacy of cheddar whey based edible coating of retail-cut beefsteak

    USDA-ARS?s Scientific Manuscript database

    Hydrolysis of casein using chymotrypsin results in the formation of polypeptides (casein hydrolyzate, CH) with a hydrophobic aromatic amino acid on one end of the chain because the enzyme selectively cleaves the adjacent peptide-bond. Due to resonance of the aromatic micro-domain, thiols become redo...

  16. Fluorescent probes for lipid rafts: from model membranes to living cells.

    PubMed

    Klymchenko, Andrey S; Kreder, Rémy

    2014-01-16

    Membrane microdomains (rafts) remain one of the controversial issues in biophysics. Fluorescent molecular probes, which make these lipid nanostructures visible through optical techniques, are one of the tools currently used to study lipid rafts. The most common are lipophilic fluorescent probes that partition specifically into liquid ordered or liquid disordered phase. Their partition depends on the lipid composition of a given phase, which complicates their use in cellular membranes. A second class of probes is based on environment-sensitive dyes, which partition into both phases, but stain them by different fluorescence color, intensity, or lifetime. These probes can directly address the properties of each separate phase, but their cellular applications are still limited. The present review focuses on summarizing the current state in the field of developing and applying fluorescent molecular probes to study lipid rafts. We highlight an urgent need to develop new probes, specifically adapted for cell plasma membranes and compatible with modern fluorescence microscopy techniques to push the understanding of membrane microdomains forward. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Continuity of monolayer-bilayer junctions for localization of lipid raft microdomains in model membranes

    DOE PAGES

    Ryu, Yong -Sang; Wittenberg, Nathan J.; Suh, Jeng -Hun; ...

    2016-05-27

    We show that the selective localization of cholesterol-rich domains and associated ganglioside receptors prefer to occur in the monolayer across continuous monolayer-bilayer junctions (MBJs) in supported lipid membranes. For the MBJs, glass substrates were patterned with poly(dimethylsiloxane) (PDMS) oligomers by thermally-assisted contact printing, leaving behind 3 nm-thick PDMS patterns. The hydrophobicity of the transferred PDMS patterns was precisely tuned by the stamping temperature. Lipid monolayers were formed on the PDMS patterned surface while lipid bilayers were on the bare glass surface. Due to the continuity of the lipid membranes over the MBJs, essentially free diffusion of lipids was allowed betweenmore » the monolayer on the PDMS surface and the upper leaflet of the bilayer on the glass substrate. The preferential localization of sphingomyelin, ganglioside GM1 and cholesterol in the monolayer region enabled to develop raft microdomains through coarsening of nanorafts. Furthermore, our methodology provides a simple and effective scheme of non-disruptive manipulation of the chemical landscape associated with lipid phase separations, which leads to more sophisticated applications in biosensors and as cell culture substrates.« less

  18. Dimerization and endocytosis of the sucrose transporter StSUT1 in mature sieve elements

    PubMed Central

    Liesche, Johannes; Schulz, Alexander; Krügel, Undine; Grimm, Bernhard

    2008-01-01

    The sucrose transporter StSUT1 from Solanum tuberosum was shown to be regulated post-translationally by redox reagents. Its activity is increased at least 10-fold in the presence of oxidizing agents if expressed in yeast. Oxidation has also an effect on plasma membrane targeting and dimerization of the protein. In response to oxidizing agents, StSUT1 is targeted to lipid raft-like microdomains and SUT1 protein is detectable in the detergent resistant membrane fraction of plant plasma membranes. Interestingly, StSUT1 treated with brefeldin A seems to aggregate in endocytic compartments in mature sieve elements.1 Further analysis of SUT1 targeting will certainly provide more information about the putative involvement of lipid raft-like microdomains in endocytic events. We provide here additional information on the dimerization and endocytosis of the SUT1 protein. The oligomerization of overexpressed SoSUT1 from Spinacia oleracea in transgenic potato plants was analyzed by two-dimensional gel electrophoresis and endocytosis of the StSUT1 protein was confirmed by immunogold labeling. PMID:19704459

  19. The plasma membrane as a capacitor for energy and metabolism

    PubMed Central

    Ray, Supriyo; Kassan, Adam; Busija, Anna R.; Rangamani, Padmini

    2016-01-01

    When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as “capacitors for energy and metabolism.” Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell. PMID:26771520

  20. Plasma membrane lipids and their role in fungal virulence.

    PubMed

    Rella, Antonella; Farnoud, Amir M; Del Poeta, Maurizio

    2016-01-01

    There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains have been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies. Published by Elsevier Ltd.

  1. Lipid microdomains and the regulation of ion channel function

    PubMed Central

    Dart, Caroline

    2010-01-01

    Many types of ion channel localize to cholesterol and sphingolipid-enriched regions of the plasma membrane known as lipid microdomains or ‘rafts’. The precise physiological role of these unique lipid microenvironments remains elusive due largely to difficulties associated with studying these potentially extremely small and dynamic domains. Nevertheless, increasing evidence suggests that membrane rafts regulate channel function in a number of different ways. Raft-enriched lipids such as cholesterol and sphingolipids exert effects on channel activity either through direct protein–lipid interactions or by influencing the physical properties of the bilayer. Rafts also appear to selectively recruit interacting signalling molecules to generate subcellular compartments that may be important for efficient and selective signal transduction. Direct interaction with raft-associated scaffold proteins such as caveolin can also influence channel function by altering gating kinetics or by affecting trafficking and surface expression. Selective association of ion channels with specific lipid microenvironments within the membrane is thus likely to be an important and fundamental regulatory aspect of channel physiology. This brief review highlights some of the existing evidence for raft modulation of channel function. PMID:20519314

  2. Constructing dual-defense mechanisms on membrane surfaces by synergy of PFSA and SiO2 nanoparticles for persistent antifouling performance

    NASA Astrophysics Data System (ADS)

    Zhou, Linjie; Gao, Kang; Jiao, Zhiwei; Wu, Mengyuan; He, Mingrui; Su, Yanlei; Jiang, Zhongyi

    2018-05-01

    Synthetic antifouling membrane surfaces with dual-defense mechanisms (fouling-resistant and fouling-release mechanism) were constructed through the synergy of perfluorosulfonic acid (PFSA) and SiO2 nanoparticles. During the nonsolvent induced phase separation (NIPS) process, the amphiphilic PFSA polymers spontaneously segregated to membrane surfaces and catalyzed the hydrolysis-polycondensation of tetraethyl orthosilicate (TEOS) to generate hydrophilic SiO2 nanoparticles (NPs). The resulting PVDF/PFSA/SiO2 hybrid membranes were characterized by contact angle measurements, FTIR, XPS, SEM, AFM, TGA, and TEM. The hydrophilic microdomains and low surface energy microdomains of amphiphilic PFSA polymers respectively endowed membrane surfaces with fouling-resistant mechanism and fouling-release mechanism, while the hydrophilic SiO2 NPs intensified the fouling-resistant mechanism. When the addition of TEOS reached 3 wt%, the hybrid membrane with optimal synergy of PFSA and SiO2 NPs displayed low flux decline (17.4% DRt) and high flux recovery (99.8% FRR) during the filtration of oil-in-water emulsion. Meanwhile, the long-time stability test verified that the hybrid membrane possessed persistent antifouling performance.

  3. Single-molecule microscopy reveals membrane microdomain organization of cells in a living vertebrate.

    PubMed

    Schaaf, Marcel J M; Koopmans, Wiepke J A; Meckel, Tobias; van Noort, John; Snaar-Jagalska, B Ewa; Schmidt, Thomas S; Spaink, Herman P

    2009-08-19

    It has been possible for several years to study the dynamics of fluorescently labeled proteins by single-molecule microscopy, but until now this technology has been applied only to individual cells in culture. In this study, it was extended to stem cells and living vertebrate organisms. As a molecule of interest we used yellow fluorescent protein fused to the human H-Ras membrane anchor, which has been shown to serve as a model for proteins anchored in the plasma membrane. We used a wide-field fluorescence microscopy setup to visualize individual molecules in a zebrafish cell line (ZF4) and in primary embryonic stem cells. A total-internal-reflection microscopy setup was used for imaging in living organisms, in particular in epidermal cells in the skin of 2-day-old zebrafish embryos. Our results demonstrate the occurrence of membrane microdomains in which the diffusion of membrane proteins in a living organism is confined. This membrane organization differed significantly from that observed in cultured cells, illustrating the relevance of performing single-molecule microscopy in living organisms.

  4. Multimodal second harmonic generation and two photon fluorescence imaging of microdomain calcium contraction coupling in single cardiomyocytes

    NASA Astrophysics Data System (ADS)

    Chan, James; Awasthi, Samir; Izu, Leighton; Mao, Ziliang; Jian, Zhong; Landas, Trevor; Lerner, Aaron; Shimkunas, Rafael; Woldeyesus, Rahwa; Bossuyt, Julie; Wood, Brittani; Chen, Yi-Je; Matthews, Dennis; Lieu, Deborah; Chiamvimonvat, Nipavan; Lam, Kit; Chen-Izu, Ye

    2016-11-01

    The objective of this study was to develop a method for simultaneously measuring the calcium and contraction dynamics of single, live cardiomyocytes at high spatial resolutions. Such measurements are important to investigate local calcium release and the mechanical response at the sarcomere level (i.e. the basic unit of contraction), which have important implications in cardiac dysfunction and arrhythmias in conditions such as hypertension, atrial fibrillation, and myocardial infarction. Here, we describe a multimodal second harmonic generation (SHG) and two photon fluorescence (2PF) microscopy technique that is used to simultaneously measure subsarcomere calcium and contraction events at high spatial and temporal resolutions. The method takes advantage of the label-free nature of SHG for imaging the sarcomeres and the high spatial colocalization of the SHG signal and the fluorescence signal excited from calcium indicators. This microscope was used to measure calcium sparks and waves and associated contractions in subcellular microdomains, leading to the generation of subcellular strain. We anticipate this new imaging tool will play an important role in studying mechanical stress-induced heart disease.

  5. Continuity of Monolayer-Bilayer Junctions for Localization of Lipid Raft Microdomains in Model Membranes

    PubMed Central

    Ryu, Yong-Sang; Wittenberg, Nathan J.; Suh, Jeng-Hun; Lee, Sang-Wook; Sohn, Youngjoo; Oh, Sang-Hyun; Parikh, Atul N.; Lee, Sin-Doo

    2016-01-01

    We show that the selective localization of cholesterol-rich domains and associated ganglioside receptors prefer to occur in the monolayer across continuous monolayer-bilayer junctions (MBJs) in supported lipid membranes. For the MBJs, glass substrates were patterned with poly(dimethylsiloxane) (PDMS) oligomers by thermally-assisted contact printing, leaving behind 3 nm-thick PDMS patterns. The hydrophobicity of the transferred PDMS patterns was precisely tuned by the stamping temperature. Lipid monolayers were formed on the PDMS patterned surface while lipid bilayers were on the bare glass surface. Due to the continuity of the lipid membranes over the MBJs, essentially free diffusion of lipids was allowed between the monolayer on the PDMS surface and the upper leaflet of the bilayer on the glass substrate. The preferential localization of sphingomyelin, ganglioside GM1 and cholesterol in the monolayer region enabled to develop raft microdomains through coarsening of nanorafts. Our methodology provides a simple and effective scheme of non-disruptive manipulation of the chemical landscape associated with lipid phase separations, which leads to more sophisticated applications in biosensors and as cell culture substrates. PMID:27230411

  6. Dimerization and endocytosis of the sucrose transporter StSUT1 in mature sieve elements.

    PubMed

    Liesche, Johannes; Schulz, Alexander; Krügel, Undine; Grimm, Bernhard; Kühn, Christina

    2008-12-01

    The sucrose transporter StSUT1 from Solanum tuberosum was shown to be regulated post-translationally by redox reagents. Its activity is increased at least 10-fold in the presence of oxidizing agents if expressed in yeast. Oxidation has also an effect on plasma membrane targeting and dimerization of the protein. In response to oxidizing agents, StSUT1 is targeted to lipid raft-like microdomains and SUT1 protein is detectable in the detergent resistant membrane fraction of plant plasma membranes. Interestingly, StSUT1 treated with brefeldin A seems to aggregate in endocytic compartments in mature sieve elements.1 Further analysis of SUT1 targeting will certainly provide more information about the putative involvement of lipid raft-like microdomains in endocytic events. We provide here additional information on the dimerization and endocytosis of the SUT1 protein. The oligomerization of overexpressed SoSUT1 from Spinacia oleracea in transgenic potato plants was analyzed by two-dimensional gel electrophoresis and endocytosis of the StSUT1 protein was confirmed by immunogold labeling.

  7. Fault orientations in extensional and conjugate strike-slip environments and their implications

    USGS Publications Warehouse

    Thatcher, W.; Hill, D.P.

    1991-01-01

    Seismically active conjugate strike-slip faults in California and Japan typically have mutually orthogonal right- and left-lateral fault planes. Normal-fault dips at earthquake nucleation depths are concentrated between 40?? and 50??. The observed orientations and their strong clustering are surprising, because conventional faulting theory suggests fault initiation with conjugate 60?? and 120?? intersecting planes and 60?? normal-fault dip or fault reactivation with a broad range of permitted orientations. The observations place new constraints on the mechanics of fault initiation, rotation, and evolutionary development. We speculate that the data could be explained by fault rotation into the observed orientations and deactivation for greater rotation or by formation of localized shear zones beneath the brittle-ductile transition in Earth's crust. Initiation as weak frictional faults seems unlikely. -Authors

  8. About Turn: How Object Orientation Affects Categorisation and Mental Rotation

    ERIC Educational Resources Information Center

    Milivojevic, Branka; Hamm, Jeff P.; Corballis, Michael C.

    2011-01-01

    High-density ERPs evoked by rotated alphanumeric characters were examined to determine how neural processing is affected by stimulus orientation during letter/digit classifications and during mirror/normal discriminations. The former task typically produces response times that are unaffected by stimulus orientation while the latter is thought to…

  9. Ethanol Enhances TGF-β Activity by Recruiting TGF-β Receptors From Intracellular Vesicles/Lipid Rafts/Caveolae to Non-Lipid Raft Microdomains.

    PubMed

    Huang, Shuan Shian; Chen, Chun-Lin; Huang, Franklin W; Johnson, Frank E; Huang, Jung San

    2016-04-01

    Regular consumption of moderate amounts of ethanol has important health benefits on atherosclerotic cardiovascular disease (ASCVD). Overindulgence can cause many diseases, particularly alcoholic liver disease (ALD). The mechanisms by which ethanol causes both beneficial and harmful effects on human health are poorly understood. Here we demonstrate that ethanol enhances TGF-β-stimulated luciferase activity with a maximum of 0.5-1% (v/v) in Mv1Lu cells stably expressing a luciferase reporter gene containing Smad2-dependent elements. In Mv1Lu cells, 0.5% ethanol increases the level of P-Smad2, a canonical TGF-β signaling sensor, by ∼ 2-3-fold. Ethanol (0.5%) increases cell-surface expression of the type II TGF-β receptor (TβR-II) by ∼ 2-3-fold from its intracellular pool, as determined by I(125) -TGF-β-cross-linking/Western blot analysis. Sucrose density gradient ultracentrifugation and indirect immunofluorescence staining analyses reveal that ethanol (0.5% and 1%) also displaces cell-surface TβR-I and TβR-II from lipid rafts/caveolae and facilitates translocation of these receptors to non-lipid raft microdomains where canonical signaling occurs. These results suggest that ethanol enhances canonical TGF-β signaling by increasing non-lipid raft microdomain localization of the TGF-β receptors. Since TGF-β plays a protective role in ASCVD but can also cause ALD, the TGF-β enhancer activity of ethanol at low and high doses appears to be responsible for both beneficial and harmful effects. Ethanol also disrupts the location of lipid raft/caveolae of other membrane proteins (e.g., neurotransmitter, growth factor/cytokine, and G protein-coupled receptors) which utilize lipid rafts/caveolae as signaling platforms. Displacement of these membrane proteins induced by ethanol may result in a variety of pathologies in nerve, heart and other tissues. © 2015 Wiley Periodicals, Inc.

  10. Caveolin-1 is enriched in the peroxisomal membrane of rat hepatocytes.

    PubMed

    Woudenberg, Jannes; Rembacz, Krzysztof P; van den Heuvel, Fiona A J; Woudenberg-Vrenken, Titia E; Buist-Homan, Manon; Geuken, Mariska; Hoekstra, Mark; Deelman, Leo E; Enrich, Carlos; Henning, Rob H; Moshage, Han; Faber, Klaas Nico

    2010-05-01

    Caveolae are a subtype of cholesterol-enriched lipid microdomains/rafts that are routinely detected as vesicles pinching off from the plasma membrane. Caveolin-1 is an essential component of caveolae. Hepatic caveolin-1 plays an important role in liver regeneration and lipid metabolism. Expression of caveolin-1 in hepatocytes is relatively low, and it has been suggested to also reside at other subcellular locations than the plasma membrane. Recently, we found that the peroxisomal membrane contains lipid microdomains. Like caveolin-1, hepatic peroxisomes are involved in lipid metabolism. Here, we analyzed the subcellular location of caveolin-1 in rat hepatocytes. The subcellular location of rat hepatocyte caveolin-1 was analyzed by cell fractionation procedures, immunofluorescence, and immuno-electron microscopy. Green fluorescent protein (GFP)-tagged caveolin-1 was expressed in rat hepatocytes. Lipid rafts were characterized after Triton X-100 or Lubrol WX extraction of purified peroxisomes. Fenofibric acid-dependent regulation of caveolin-1 was analyzed. Peroxisome biogenesis was studied in rat hepatocytes after RNA interference-mediated silencing of caveolin-1 and caveolin-1 knockout mice. Cell fractionation and microscopic analyses reveal that caveolin-1 colocalizes with peroxisomal marker proteins (catalase, the 70 kDa peroxisomal membrane protein PMP70, the adrenoleukodystrophy protein ALDP, Pex14p, and the bile acid-coenzyme A:amino acid N-acyltransferase BAAT) in rat hepatocytes. Artificially expressed GFP-caveolin-1 accumulated in catalase-positive organelles. Peroxisomal caveolin-1 is associated with detergent-resistant microdomains. Caveolin-1 expression is strongly repressed by the peroxisome proliferator-activated receptor-alpha agonist fenofibric acid. Targeting of peroxisomal matrix proteins and peroxisome number and shape were not altered in rat hepatocytes with 70%-80% reduced caveolin-1 levels and in livers of caveolin-1 knockout mice. Caveolin-1 is enriched in peroxisomes of hepatocytes. Caveolin-1 is not required for peroxisome biogenesis, but this unique subcellular location may determine its important role in hepatocyte proliferation and lipid metabolism.

  11. Anomalous extracellular diffusion in rat cerebellum.

    PubMed

    Xiao, Fanrong; Hrabe, Jan; Hrabetova, Sabina

    2015-05-05

    Extracellular space (ECS) is a major channel transporting biologically active molecules and drugs in the brain. Diffusion-mediated transport of these substances is hindered by the ECS structure but the microscopic basis of this hindrance is not fully understood. One hypothesis proposes that the hindrance originates in large part from the presence of dead-space (DS) microdomains that can transiently retain diffusing molecules. Because previous theoretical and modeling work reported an initial period of anomalous diffusion in similar environments, we expected that brain regions densely populated by DS microdomains would exhibit anomalous extracellular diffusion. Specifically, we targeted granular layers (GL) of rat and turtle cerebella that are populated with large and geometrically complex glomeruli. The integrative optical imaging (IOI) method was employed to evaluate diffusion of fluorophore-labeled dextran (MW 3000) in GL, and the IOI data analysis was adapted to quantify the anomalous diffusion exponent dw from the IOI records. Diffusion was significantly anomalous in rat GL, where dw reached 4.8. In the geometrically simpler turtle GL, dw was elevated but not robustly anomalous (dw = 2.6). The experimental work was complemented by numerical Monte Carlo simulations of anomalous ECS diffusion in several three-dimensional tissue models containing glomeruli-like structures. It demonstrated that both the duration of transiently anomalous diffusion and the anomalous exponent depend on the size of model glomeruli and the degree of their wrapping. In conclusion, we have found anomalous extracellular diffusion in the GL of rat cerebellum. This finding lends support to the DS microdomain hypothesis. Transiently anomalous diffusion also has a profound effect on the spatiotemporal distribution of molecules released into the ECS, especially at diffusion distances on the order of a few cell diameters, speeding up short-range diffusion-mediated signals in less permeable structures. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Comparative analysis of guide mode of government - oriented industry guidance funds under china’s new normal of economic growth

    NASA Astrophysics Data System (ADS)

    Sun, Chunling; Cheng, Xuemei

    2017-11-01

    The government-oriented industry guidance Funds solve the problem of financing difficulty and high innovation under the background of China’s new normal. Through the provinces and cities of the policies and regulations of the collation and comparative analysis, it will be divided into three modes. And then compare among three modes and analyze applicability to guide the construction of provinces and cities.

  13. About turn: how object orientation affects categorisation and mental rotation.

    PubMed

    Milivojevic, Branka; Hamm, Jeff P; Corballis, Michael C

    2011-11-01

    High-density ERPs evoked by rotated alphanumeric characters were examined to determine how neural processing is affected by stimulus orientation during letter/digit classifications and during mirror/normal discriminations. The former task typically produces response times that are unaffected by stimulus orientation while the latter is thought to require mental rotation. Sensitivity to orientation was first observed around 100-140 ms and this effect was attributed to differences in low-level features between vertical and oblique orientations. Subsequently, character misorientation amplified the N170, a neural marker of object classification, between 160 and 220 ms. Top-down processing is reflected in the ERPs beginning at 280-320 ms and this time range may reflect binding of ventral and dorsal stream information. In the case of mirror-normal discrimination these top-down processes can lead to mental rotation between 340 and 700 ms. Therefore, although neural processing reflects object orientation, these effects do not translate into increases in reaction-times or impaired accuracy for categorisation, and precede those that do in the mental-rotation task. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Detection of alterations in human sperm using magnetic orientation techniques

    NASA Astrophysics Data System (ADS)

    Sakhnini, Lama; Dairi, Maheen; Manaa, Hacene

    2007-09-01

    In this study we report on magnetic orientation of human sperms. Samples were taken from 17 donors. Normal human sperms became oriented with their long axis perpendicular to the magnetic field ( 1 Tesla maximum). Total orientation was achieved with magnetic field at about one Tesla, while for abnormal sperms the magnetic behavior was different. The dependence of the measured degree of orientation on the intensity of the magnetic field was in good agreement with the theoretical equation for the magnetic orientation of diamagnetic substances. As a result for a numerical analysis based on the equation, the anisotropic diamagnetic susceptibility of normal sperm was found to be ▵ χ= 8×10 -20 J/T2. The degree of orientation was influenced by the alterations in the shape of the head, body or the tail. It has been suggested that the DNA in the sperm head retain the strong magnetic anisotropy to counter balance the magnetic anisotropy retained by flagellum microtubules. Recent studies demonstrated a well-defined nuclear architecture in human sperm nucleus, where the head morphology has significant correlation with sperm chromatin structure assay SCSA. Then as the methods to evaluate SCSA can be difficult and expensive our simple magnetic orientation technique can be an alternative to diagnose alteration in DNA.

  15. A simple combined floating and anchored collagen gel for enhancing mechanical strength of culture system.

    PubMed

    Harada, Ichiro; Kim, Sung-Gon; Cho, Chong Su; Kurosawa, Hisashi; Akaike, Toshihiro

    2007-01-01

    In this study, a simple combined method consisting of floating and anchored collagen gel in a ligament or tendon equivalent culture system was used to produce the oriented fibrils in fibroblast-populated collagen matrices (FPCMs) during the remodeling and contraction of the collagen gel. Orientation of the collagen fibrils along single axis occurred over the whole area of the floating section and most of the fibroblasts were elongated and aligned along the oriented collagen fibrils, whereas no significant orientation of fibrils was observed in normally contracted FPCMs by the floating method. Higher elasticity and enhanced mechanical strength were obtained using our simple method compared with normally contracted floating FPCMs. The Young's modulus and the breaking point of the FPCMs were dependent on the initial cell densities. This simple method will be applied as a convenient bioreactor to study cellular processes of the fibroblasts in the tissues with highly oriented fibrils such as ligaments or tendons. (c) 2006 Wiley Periodicals, Inc.

  16. Reduced protein carbonylation of cube steak and catfish fillet using antioxidative coatings containing cheddar whey, casein hydrolyzate and oolong tea extract

    USDA-ARS?s Scientific Manuscript database

    Hydrolysis of casein using chymotrypsin results in the formation of polypeptides (casein hydrolyzate, CH) with a hydrophobic aromatic amino acid on one end of the chain because the enzyme selectively cleaves the adjacent peptide-bond. Due to resonance of the aromatic micro-domain, thiols become redo...

  17. Posterior Displacement of Supraspinatus Central Tendon Observed on Magnetic Resonance Imaging: A Useful Preoperative Indicator of Rotator Cuff Tear Characteristics.

    PubMed

    Updegrove, Gary F; Armstrong, April D; Mosher, Timothy J; Kim, H Mike

    2015-11-01

    To characterize the orientation of the normal supraspinatus central tendon and describe the displacement patterns of the central tendon in rotator cuff tears using a magnetic resonance imaging (MRI)-based method. We performed a retrospective MRI and chart review of 183 patients with a rotator cuff tear (cuff tear group), 52 with a labral tear but no rotator cuff tear (labral tear group), and 74 with a normal shoulder (normal group). The orientation of the supraspinatus central tendon relative to the bicipital groove was evaluated based on axial MRI and was numerically represented by the shortest distance from the lateral extension line of the central tendon to the bicipital groove. Tear size, fatty degeneration, and involvement of the anterior supraspinatus were evaluated to identify the factors associated with orientation changes. The mean distance from the bicipital groove to the central tendon line was 0.7 mm and 1.3 mm in the normal group and labral tear group, respectively. Full-thickness cuff tears involving the anterior supraspinatus showed a significantly greater distance (17.7 mm) than those sparing the anterior supraspinatus (4.9 mm, P = .001). Fatty degeneration of the supraspinatus was significantly correlated with the distance (P = .006). Disruption of the anterior supraspinatus and fatty degeneration of the supraspinatus were independent predictors of posterior displacement. The supraspinatus central tendon has a constant orientation toward the bicipital groove in normal shoulders, and the central tendon is frequently displaced posteriorly in full-thickness rotator cuff tears involving the anterior leading edge of the supraspinatus. The degree of posterior displacement is proportional to tear size and severity of fatty degeneration of the supraspinatus muscle. A simple and quick assessment of the central tendon orientation on preoperative MRI can be a useful indicator of tear characteristics, potentially providing insight into the intraoperative repair strategy. Level IV, diagnostic case-control study. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  18. Crystallographic orientation of the c-axis of biological apatite as a new index of the quality of subchondral bone in knee joint osteoarthritis.

    PubMed

    Lee, Jee-Wook; Kobayashi, Akio; Nakano, Takayoshi

    2017-05-01

    The aim of the present study was to investigate the preferred orientation of biological apatite (BAp) as a new index of the quality of subchondral bone (SB) in knee joint osteoarthritis (OA). Ten OA and five normal knee joints were obtained. Thickness, quantity and bone mineral density (BMD) of SB were analyzed at the medial condyle of the femur in dry conditions by peripheral quantitative computed tomography. In addition, the preferred crystallographic orientation of the c-axis of BAp was evaluated as bone quality parameter using a microbeam X-ray diffractometer technique. BMD and thickness of SB were significantly increased in OA specimens compared to normal knee specimens (P < 0.01), and the preferred orientation of the c-axis of BAp along the normal direction of SB surface was significantly higher in OA specimens (P < 0.01), reflecting the change in stress of concentration in the pathological portion without cartilage. SB sclerosis in OA results in both proliferation of bone tissues and enhanced degree of preferential alignment of the c-axis of BAp. Our findings could have major implications for the diagnosis of clinical studies, including pathologic elucidation in OA.

  19. Multiple adaptable mechanisms early in the primate visual pathway

    PubMed Central

    Dhruv, Neel T.; Tailby, Chris; Sokol, Sach H.; Lennie, Peter

    2011-01-01

    We describe experiments that isolate and characterize multiple adaptable mechanisms that influence responses of orientation-selective neurons in primary visual cortex (V1) of anesthetized macaque (Macaca fascicularis). The results suggest that three adaptable stages of machinery shape neural responses in V1: a broadly-tuned early stage and a spatio-temporally tuned later stage, both of which provide excitatory input, and a normalization pool that is also broadly tuned. The early stage and the normalization pool are revealed by adapting gratings that themselves fail to evoke a response from the neuron: either low temporal frequency gratings at the null orientation or gratings of any orientation drifting at high temporal frequencies. When effective, adapting stimuli that altered the sensitivity of these two mechanisms caused reductions of contrast gain and often brought about a paradoxical increase in response gain due to a relatively greater desensitization of the normalization pool. The tuned mechanism is desensitized only by stimuli well-matched to a neuron’s receptive field. We could thus infer desensitization of the tuned mechanism by comparing effects obtained with adapting gratings of preferred and null orientation modulated at low temporal frequencies. PMID:22016535

  20. Orientational tomography of optical axes directions distributions of multilayer biological tissues birefringent polycrystalline networks

    NASA Astrophysics Data System (ADS)

    Zabolotna, Natalia I.; Dovhaliuk, Rostyslav Y.

    2013-09-01

    We present a novel measurement method of optic axes orientation distribution which uses a relatively simple measurement setup. The principal difference of our method from other well-known methods lies in direct approach for measuring the orientation of optical axis of polycrystalline networks biological crystals. Our test polarimetry setup consists of HeNe laser, quarter wave plate, two linear polarizers and a CCD camera. We also propose a methodology for processing of measured optic axes orientation distribution which consists of evaluation of statistical, correlational and spectral moments. Such processing of obtained data can be used to classify particular tissue sample as "healthy" or "pathological". For our experiment we use thin layers of histological section of normal and muscular dystrophy tissue sections. It is shown that the difference between mentioned moments` values of normal and pathological samples can be quite noticeable with relative difference up to 6.26.

  1. Vision for perception and vision for action: normal and unusual development.

    PubMed

    Dilks, Daniel D; Hoffman, James E; Landau, Barbara

    2008-07-01

    Evidence suggests that visual processing is divided into the dorsal ('how') and ventral ('what') streams. We examined the normal development of these streams and their breakdown under neurological deficit by comparing performance of normally developing children and Williams syndrome individuals on two tasks: a visually guided action ('how') task, in which participants posted a card into an oriented slot, and a perception ('what') task, in which they matched a card to the slot's orientation. Results showed that all groups performed worse on the action task than the perception task, but the disparity was more pronounced in WS individuals and in normal 3-4-year-olds than in older children. These findings suggest that the 'how' system may be relatively slow to develop and more vulnerable to breakdown than the 'what' system.

  2. A Validity Study of the Working Group's Orientation Test for Individuals with Moderate to Severe Intellectual Disability

    ERIC Educational Resources Information Center

    Pyo, G.; Curtis, K.; Curtis, R.; Markwell, S.

    2009-01-01

    Background: Decline in orientation skill has been reported as an early indicator of Dementia of Alzheimer's Type (DAT). Orientation subtest of the Working Group's Test Battery was examined whether this test is useful to identify DAT patients among adults with moderate to severe ID. Methods: Sixteen DAT patients and 35 non-demented normal controls…

  3. Human Endometrial CD98 Is Essential for Blastocyst Adhesion

    PubMed Central

    Domínguez, Francisco; Simón, Carlos; Quiñonero, Alicia; Ramírez, Miguel Ángel; González-Muñoz, Elena; Burghardt, Hans; Cervero, Ana; Martínez, Sebastián; Pellicer, Antonio; Palacín, Manuel; Sánchez-Madrid, Francisco; Yáñez-Mó, María

    2010-01-01

    Background Understanding the molecular basis of embryonic implantation is of great clinical and biological relevance. Little is currently known about the adhesion receptors that determine endometrial receptivity for embryonic implantation in humans. Methods and Principal Findings Using two human endometrial cell lines characterized by low and high receptivity, we identified the membrane receptor CD98 as a novel molecule selectively and significantly associated with the receptive phenotype. In human endometrial samples, CD98 was the only molecule studied whose expression was restricted to the implantation window in human endometrial tissue. CD98 expression was restricted to the apical surface and included in tetraspanin-enriched microdomains of primary endometrial epithelial cells, as demonstrated by the biochemical association between CD98 and tetraspanin CD9. CD98 expression was induced in vitro by treatment of primary endometrial epithelial cells with human chorionic gonadotropin, 17-β-estradiol, LIF or EGF. Endometrial overexpression of CD98 or tetraspanin CD9 greatly enhanced mouse blastocyst adhesion, while their siRNA-mediated depletion reduced the blastocyst adhesion rate. Conclusions These results indicate that CD98, a component of tetraspanin-enriched microdomains, appears to be an important determinant of human endometrial receptivity during the implantation window. PMID:20976164

  4. Cytoskeletal Components Define Protein Location to Membrane Microdomains*

    PubMed Central

    Szymanski, Witold G.; Zauber, Henrik; Erban, Alexander; Gorka, Michal; Wu, Xu Na; Schulze, Waltraud X.

    2015-01-01

    The plasma membrane is an important compartment that undergoes dynamic changes in composition upon external or internal stimuli. The dynamic subcompartmentation of proteins in ordered low-density (DRM) and disordered high-density (DSM) membrane phases is hypothesized to require interactions with cytoskeletal components. Here, we systematically analyzed the effects of actin or tubulin disruption on the distribution of proteins between membrane density phases. We used a proteomic screen to identify candidate proteins with altered submembrane location, followed by biochemical or cell biological characterization in Arabidopsis thaliana. We found that several proteins, such as plasma membrane ATPases, receptor kinases, or remorins resulted in a differential distribution between membrane density phases upon cytoskeletal disruption. Moreover, in most cases, contrasting effects were observed: Disruption of actin filaments largely led to a redistribution of proteins from DRM to DSM membrane fractions while disruption of tubulins resulted in general depletion of proteins from the membranes. We conclude that actin filaments are necessary for dynamic movement of proteins between different membrane phases and that microtubules are not necessarily important for formation of microdomains as such, but rather they may control the protein amount present in the membrane phases. PMID:26091700

  5. Polymer ligand–induced autonomous sorting and reversible phase separation in binary particle blends

    DOE PAGES

    Schmitt, Michael; Zhang, Jianan; Lee, Jaejun; ...

    2016-12-23

    The tethering of ligands to nanoparticles has emerged as an important strategy to control interactions and organization in particle assembly structures. Here, we demonstrate that ligand interactions in mixtures of polymer-tethered nanoparticles (which are modified with distinct types of polymer chains) can impart upper or lower critical solution temperature (UCST/LCST)–type phase behavior on binary particle mixtures in analogy to the phase behavior of the corresponding linear polymer blends. Therefore, cooling (or heating) of polymer-tethered particle blends with appropriate architecture to temperatures below (or above) the UCST (or LCST) results in the organization of the individual particle constituents into monotype microdomainmore » structures. The shape (bicontinuous or island-type) and lengthscale of particle microdomains can be tuned by variation of the composition and thermal process conditions. Thermal cycling of LCST particle brush blends through the critical temperature enables the reversible growth and dissolution of monoparticle domain structures. The ability to autonomously and reversibly organize multicomponent particle mixtures into monotype microdomain structures could enable transformative advances in the high-throughput fabrication of solid films with tailored and mutable structures and properties that play an important role in a range of nanoparticle-based material technologies.« less

  6. Broadband pH-Sensing Organic Transistors with Polymeric Sensing Layers Featuring Liquid Crystal Microdomains Encapsulated by Di-Block Copolymer Chains.

    PubMed

    Seo, Jooyeok; Song, Myeonghun; Jeong, Jaehoon; Nam, Sungho; Heo, Inseok; Park, Soo-Young; Kang, Inn-Kyu; Lee, Joon-Hyung; Kim, Hwajeong; Kim, Youngkyoo

    2016-09-14

    We report broadband pH-sensing organic field-effect transistors (OFETs) with the polymer-dispersed liquid crystal (PDLC) sensing layers. The PDLC layers are prepared by spin-coating using ethanol solutions containing 4-cyano-4'-pentyl-biphenyl (5CB) and a diblock copolymer (PAA-b-PCBOA) that consists of LC-philic block [poly(4-cyano-biphenyl-4-oxyundecyl acrylate) (PCBOA)] and acrylic acid block [poly(acrylic acid) (PAA)]. The spin-coated sensing layers feature of 5CB microdomains (<5 μm) encapsulated by the PAA-b-PCBOA polymer chains. The resulting LC-integrated-OFETs (PDLC-i-OFETs) can detect precisely and reproducibly a wide range of pH with only small amounts (10-40 μL) of analyte solutions in both static and dynamic perfusion modes. The positive drain current change is measured for acidic solutions (pH < 7), whereas basic solutions (pH > 7) result in the negative change of drain current. The drain current trend in the present PDLC-i-OFET devices is explained by the shrinking-expanding mechanism of the PAA chains in the diblock copolymer layers.

  7. Effects of cholesterol depletion on membrane nanostructure in MCF-7 cells by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Yuhua; Jiang, Ningcheng; Shi, Aisi; Zheng, Liqin; Yang, Hongqin; Xie, Shusen

    2017-02-01

    The cell membrane is composed of phospholipids, glycolipids, cholesterol and proteins that are dynamic and heterogeneous distributed in the bilayer structure and many researches have showed that the plasma membrane in eukaryotic cells contains microdomains termed "lipid raft" in which cholesterol, sphingolipids and specific membrane proteins are enriched. Cholesterol extraction induced lipid raft disruption is one of the most widely used methods for lipid raft research and MβCD is a type of solvent to extract the cholesterol from cell membranes. In this study, the effect of MβCD treatment on the membrane nanostructure in MCF-7 living cells was investigated by atomic force microscopy. Different concentrations of MβCD were selected to deplete cholesterol for 30 min and the viability of cells was tested by MTT assay to obtain the optimal concentration. Then the nanostructure of the cell membrane was detected. The results show that an appropriate concentration of MβCD can induce the alteration of cell membranes nanostructure and the roughness of membrane surface decreases significantly. This may indicate that microdomains of the cell membrane disappear and the cell membrane appears more smoothly. Cholesterol can affect nanostructure and inhomogeneity of the plasma membrane in living cells.

  8. Endoplasmic reticulum mediated signaling in cellular microdomains

    PubMed Central

    Biwer, Lauren; Isakson, Brant E

    2016-01-01

    The endoplasmic reticulum (ER) is a prime mediator of cellular signaling due to its functions as an internal cellular store for calcium, as well as a site for synthesis of proteins and lipids. Its peripheral network of sheets and tubules facilitate calcium and lipid signaling, especially in areas of the cell that are more distant to the main cytoplasmic network. Specific membrane proteins shape the peripheral ER architecture and influence the network stability in order to project into restricted spaces. The signaling microdomains are anatomically separate from the cytoplasm as a whole and exhibit localized protein, ion channel and cytoskeletal element expression. Signaling can also occur between the ER and other organelles, such as the Golgi or mitochondria. Lipids made in the ER membrane can be sent to the Golgi via specialized transfer proteins and specific phospholipid synthases are enriched at ER-mitochondria junctions to more efficiently expedite phospholipid transfer. As a hub for protein and lipid synthesis, a store for intracellular calcium [Ca2+]i, and a mediator of cellular stress, the ER is an important cellular organelle. Its ability to organize into tubules and project into restricted spaces allows for discrete and temporal signaling, which is important for cellular physiology and organism homeostasis. PMID:26973141

  9. Functional implications of orientation maps in primary visual cortex

    NASA Astrophysics Data System (ADS)

    Koch, Erin; Jin, Jianzhong; Alonso, Jose M.; Zaidi, Qasim

    2016-11-01

    Stimulus orientation in the primary visual cortex of primates and carnivores is mapped as iso-orientation domains radiating from pinwheel centres, where orientation preferences of neighbouring cells change circularly. Whether this orientation map has a function is currently debated, because many mammals, such as rodents, do not have such maps. Here we show that two fundamental properties of visual cortical responses, contrast saturation and cross-orientation suppression, are stronger within cat iso-orientation domains than at pinwheel centres. These differences develop when excitation (not normalization) from neighbouring oriented neurons is applied to different cortical orientation domains and then balanced by inhibition from un-oriented neurons. The functions of the pinwheel mosaic emerge from these local intra-cortical computations: Narrower tuning, greater cross-orientation suppression and higher contrast gain of iso-orientation cells facilitate extraction of object contours from images, whereas broader tuning, greater linearity and less suppression of pinwheel cells generate selectivity for surface patterns and textures.

  10. Analysis of breast thermograms using Gabor wavelet anisotropy index.

    PubMed

    Suganthi, S S; Ramakrishnan, S

    2014-09-01

    In this study, an attempt is made to distinguish the normal and abnormal tissues in breast thermal images using Gabor wavelet transform. Thermograms having normal, benign and malignant tissues are considered in this study and are obtained from public online database. Segmentation of breast tissues is performed by multiplying raw image and ground truth mask. Left and right breast regions are separated after removing the non-breast regions from the segmented image. Based on the pathological conditions, the separated breast regions are grouped as normal and abnormal tissues. Gabor features such as energy and amplitude in different scales and orientations are extracted. Anisotropy and orientation measures are calculated from the extracted features and analyzed. A distinctive variation is observed among different orientations of the extracted features. It is found that the anisotropy measure is capable of differentiating the structural changes due to varied metabolic conditions. Further, the Gabor features also showed relative variations among different pathological conditions. It appears that these features can be used efficiently to identify normal and abnormal tissues and hence, improve the relevance of breast thermography in early detection of breast cancer and content based image retrieval.

  11. Scoliosis convexity and organ anatomy are related.

    PubMed

    Schlösser, Tom P C; Semple, Tom; Carr, Siobhán B; Padley, Simon; Loebinger, Michael R; Hogg, Claire; Castelein, René M

    2017-06-01

    Primary ciliary dyskinesia (PCD) is a respiratory syndrome in which 'random' organ orientation can occur; with approximately 46% of patients developing situs inversus totalis at organogenesis. The aim of this study was to explore the relationship between organ anatomy and curve convexity by studying the prevalence and convexity of idiopathic scoliosis in PCD patients with and without situs inversus. Chest radiographs of PCD patients were systematically screened for existence of significant lateral spinal deviation using the Cobb angle. Positive values represented right-sided convexity. Curve convexity and Cobb angles were compared between PCD patients with situs inversus and normal anatomy. A total of 198 PCD patients were screened. The prevalence of scoliosis (Cobb >10°) and significant spinal asymmetry (Cobb 5-10°) was 8 and 23%, respectively. Curve convexity and Cobb angle were significantly different within both groups between situs inversus patients and patients with normal anatomy (P ≤ 0.009). Moreover, curve convexity correlated significantly with organ orientation (P < 0.001; ϕ = 0.882): In 16 PCD patients with scoliosis (8 situs inversus and 8 normal anatomy), except for one case, matching of curve convexity and orientation of organ anatomy was observed: convexity of the curve was opposite to organ orientation. This study supports our hypothesis on the correlation between organ anatomy and curve convexity in scoliosis: the convexity of the thoracic curve is predominantly to the right in PCD patients that were 'randomized' to normal organ anatomy and to the left in patients with situs inversus totalis.

  12. Magnetic field alignment of coil-coil diblock copolymers and blends via intrinsic chain anisotropy

    NASA Astrophysics Data System (ADS)

    Rokhlenko, Yekaterina; Majewski, Pawel; Larson, Steven; Yager, Kevin; Gopalan, Padma; Avgeropoulos, Apostolos; Chan, Edwin; Osuji, Chinedum

    Magnetic fields can control alignment of self-assembled soft materials such as block copolymers provided there is a suitably large magnetic susceptibility anisotropy present in the system. Recent results have highlighted the existence of a non-trivial intrinsic anisotropy in coil-coil diblock copolymers, specifically in lamellar-forming PS-b-P4VP, which enables alignment at field strengths of a few tesla in systems lacking mesogenic components. Alignment is predicated on correlation in the orientation of end-end vectors implied by the localization of block junctions at the microdomain interface and is observed on cooling across the order-disorder transition in the presence of the field. For appropriate combinations of field strength and grain size, we can leverage intrinsic chain anisotropy to magnetically direct self-assembly of many non-mesogenic systems, including other coil-coil BCPs like PS-b-PDMS and PS-b-PMMA, blends of BCPs of disparate morphologies and MWs, and blends of BCPs with homopolymers. This is noteworthy as blends of PS-b-P4VP with PEO provide a route to form functional materials such as nanoporous films by dissolution of PEO, or aligned ion conduction materials. We survey these various systems using TEM and in-situ X-ray scattering to study the phase behavior and temperature-, time- and field- dependent dynamics of alignment.

  13. Dynamic distribution of the SecA and SecY translocase subunits and septal localization of the HtrA surface chaperone/protease during Streptococcus pneumoniae D39 cell division.

    PubMed

    Tsui, Ho-Ching Tiffany; Keen, Susan K; Sham, Lok-To; Wayne, Kyle J; Winkler, Malcolm E

    2011-01-01

    The Sec translocase pathway is the major route for protein transport across and into the cytoplasmic membrane of bacteria. Previous studies reported that the SecA translocase ATP-binding subunit and the cell surface HtrA protease/chaperone formed a single microdomain, termed "ExPortal," in some species of ellipsoidal (ovococcus) Gram-positive bacteria, including Streptococcus pyogenes. To investigate the generality of microdomain formation, we determined the distribution of SecA and SecY by immunofluorescent microscopy in Streptococcus pneumoniae (pneumococcus), which is an ovococcus species evolutionarily distant from S. pyogenes. In the majority (≥ 75%) of exponentially growing cells, S. pneumoniae SecA (SecA (Spn)) and SecY (Spn) located dynamically in cells at different stages of division. In early divisional cells, both Sec subunits concentrated at equators, which are future sites of constriction. Further along in division, SecA(Spn) and SecY(Spn) remained localized at mid-cell septa. In late divisional cells, both Sec subunits were hemispherically distributed in the regions between septa and the future equators of dividing cells. In contrast, the HtrA (Spn) homologue localized to the equators and septa of most (> 90%) dividing cells, whereas the SrtA(Spn) sortase located over the surface of cells in no discernable pattern. This dynamic pattern of Sec distribution was not perturbed by the absence of flotillin family proteins, but was largely absent in most cells in early stationary phase and in cls mutants lacking cardiolipin synthase. These results do not support the existence of an ExPortal microdomain in S. pneumoniae. Instead, the localization of the pneumococcal Sec translocase depends on the stage of cell division and anionic phospholipid content. Two patterns of Sec translocase distribution, an ExPortal microdomain in certain ovococcus-shaped species like Streptococcus pyogenes and a spiral pattern in rod-shaped species like Bacillus subtilis, have been reported for Gram-positive bacteria. This study provides evidence for a third pattern of Sec localization in the ovococcus human pathogen Streptococcus pneumoniae. The SecA motor and SecY channel subunits of the Sec translocase localize dynamically to different places in the mid-cell region during the division cycle of exponentially growing, but not stationary-phase, S. pneumoniae. Unexpectedly, the S. pneumoniae HtrA (HtrA(Spn)) protease/chaperone principally localizes to cell equators and division septa. The coincident localization of SecA(Spn), SecY (Spn), and HtrA (Spn) to regions of peptidoglycan (PG) biosynthesis in unstressed, growing cells suggests that the pneumococcal Sec translocase directs assembly of the PG biosynthesis apparatus to regions where it is needed during division and that HtrA(Spn) may play a general role in quality control of proteins exported by the Sec translocase.

  14. Horizontal and sun-normal spectral biologically effective ultraviolet irradiances.

    PubMed

    Parisi, A V; Kimlin, M G

    1999-01-01

    The dependence of the spectral biologically effective solar UV irradiance on the orientation of the receiver with respect to the sun has been determined for relatively cloud-free days at a sub-tropical Southern Hemisphere latitude for the solar zenith angle range 35-64 degrees. For the UV and biologically effective irradiances, the sun-normal to horizontal ratio for the total UV ranges from 1.18 +/- 0.05 to 1.27 +/- 0.06. The sun-normal to horizontal ratio for biologically effective irradiance is dependent on the relative effectiveness of the relevant action spectrum in the UV-A waveband. In contrast to the total UV, the diffuse UV and diffuse biologically effective irradiances are reduced in a sun-normal compared with a horizontal orientation by a factor ranging from 0.70 +/- 0.05 to 0.76 +/- 0.03.

  15. Altered Subcellular Localization of a Tobacco Membrane Raft-Associated Remorin Protein by Tobamovirus Infection and Transient Expression of Viral Replication and Movement Proteins

    PubMed Central

    Sasaki, Nobumitsu; Takashima, Eita; Nyunoya, Hiroshi

    2018-01-01

    Remorins are plant specific proteins found in plasma membrane microdomains (termed lipid or membrane rafts) and plasmodesmata. A potato remorin is reported to be involved in negatively regulating potexvirus movement and plasmodesmal permeability. In this study, we isolated cDNAs of tobacco remorins (NtREMs) and examined roles of an NtREM in infection by tomato mosaic virus (ToMV). Subcellular localization analysis using fluorescently tagged NtREM, ToMV, and viral replication and movement proteins (MPs) indicated that virus infection and transient expression of the viral proteins promoted the formation of NtREM aggregates by altering the subcellular distribution of NtREM, which was localized uniformly on the plasma membrane under normal conditions. NtREM aggregates were often observed associated closely with endoplasmic reticulum networks and bodies of the 126K replication and MPs. The bimolecular fluorescence complementation assay indicated that NtREM might interact directly with the MP on the plasma membrane and around plasmodesmata. In addition, transient overexpression of NtREM facilitated ToMV cell-to-cell movement. Based on these results, we discuss possible roles of the tobacco remorin in tobamovirus movement. PMID:29868075

  16. Performance of Thermal Mass Flow Meters in a Variable Gravitational Environment

    NASA Technical Reports Server (NTRS)

    Brooker, John E.; Ruff, Gary A.

    2004-01-01

    The performance of five thermal mass flow meters, MKS Instruments 179A and 258C, Unit Instruments UFM-8100, Sierra Instruments 830L, and Hastings Instruments HFM-200, were tested on the KC-135 Reduced Gravity Aircraft in orthogonal, coparallel, and counterparallel orientations relative to gravity. Data was taken throughout the parabolic trajectory where the g-level varied from 0.01 to 1.8 times normal gravity. Each meter was calibrated in normal gravity in the orthogonal position prior to flight followed by ground testing at seven different flow conditions to establish a baseline operation. During the tests, the actual flow rate was measured independently using choked-flow orifices. Gravitational acceleration and attitude had a unique effect on the performance of each meter. All meters operated within acceptable limits at all gravity levels in the calibrated orthogonal position. However, when operated in other orientations, the deviations from the reference flow became substantial for several of the flow meters. Data analysis indicated that the greatest source of error was the effect of orientation, followed by the gravity level. This work emphasized that when operating thermal flow meters in a variable gravity environment, it is critical to orient the meter in the same direction relative to gravity in which it was calibrated. Unfortunately, there was no test in normal gravity that could predict the performance of a meter in reduced gravity. When operating in reduced gravity, all meters indicated within 5 percent of the full scale reading at all flow conditions and orientations.

  17. The Central Limit Theorem for Supercritical Oriented Percolation in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Tzioufas, Achillefs

    2018-04-01

    We consider the cardinality of supercritical oriented bond percolation in two dimensions. We show that, whenever the the origin is conditioned to percolate, the process appropriately normalized converges asymptotically in distribution to the standard normal law. This resolves a longstanding open problem pointed out to in several instances in the literature. The result applies also to the continuous-time analog of the process, viz. the basic one-dimensional contact process. We also derive general random-indices central limit theorems for associated random variables as byproducts of our proof.

  18. The Central Limit Theorem for Supercritical Oriented Percolation in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Tzioufas, Achillefs

    2018-06-01

    We consider the cardinality of supercritical oriented bond percolation in two dimensions. We show that, whenever the the origin is conditioned to percolate, the process appropriately normalized converges asymptotically in distribution to the standard normal law. This resolves a longstanding open problem pointed out to in several instances in the literature. The result applies also to the continuous-time analog of the process, viz. the basic one-dimensional contact process. We also derive general random-indices central limit theorems for associated random variables as byproducts of our proof.

  19. Human Prostate Cancer Infiltrating Lymphocytes: Raft Microdomains, Signaling and Activation in Organ Cultures

    DTIC Science & Technology

    2006-06-01

    and cell growth and differentiation (14). Increased ARG activity has long been detected in pa- tients with colon, breast , lung, and prostate cancer ...activity has long been detected in patients with colon, breast , lung and prostate cancer [23] and it was advanced that this enzymatic activity...AD_________________ Award Number: DAMD 17-03-01-0032 TITLE: Human Prostate Cancer Infiltrating

  20. When do healthiness and liking drive children's food choices? The influence of social context and weight status.

    PubMed

    Marty, Lucile; Nicklaus, Sophie; Miguet, Maud; Chambaron, Stéphanie; Monnery-Patris, Sandrine

    2018-06-01

    Children identify liking and healthiness of foods as factors influencing their food choices. However, the food decision making process is also influenced by both personal characteristics and food contexts. The present study explored the influence of liking and perceived healthiness of foods in normal- and overweight children's food choices intentions in a pleasure-oriented social eating context and a health-oriented social eating context. Children aged from 6 to 11 years old (n = 63; 34 children who were of normal weight and 29 who were overweight) were asked to select 5 foods among 10, based on food pictures, to make up a snack that would be suitable for their birthday party or a nutrition class. In addition, they rated their liking and healthiness perception of the foods. No significant difference in food choices was found between children who were of normal weight and children who were overweight. Both groups of children chose more healthy food items in a health-oriented social context (i.e., a fictive nutrition class) than in a pleasure-oriented social context (i.e., a fictive birthday party). Moreover, only liking significantly predicted food choices in the pleasure-oriented social context whereas both healthiness and liking significantly predicted food choices in the health-oriented social context. Overall these results advance our understanding on how children make food decisions and inform strategies that may help children to adopt a healthy diet. Because liking predicted children's food choices in both eating contexts, emphasizing the "good" taste of healthy foods and providing children with healthy foods they like could be efficient strategies to promote healthy eating habits in children. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Spatial Coding of Eye Movements Relative to Perceived Orientations During Roll Tilt with Different Gravitoinertial Loads

    NASA Technical Reports Server (NTRS)

    Wood, Scott; Clement, Gilles

    2013-01-01

    This purpose of this study was to examine the spatial coding of eye movements during roll tilt relative to perceived orientations while free-floating during the microgravity phase of parabolic flight or during head tilt in normal gravity. Binocular videographic recordings obtained in darkness from six subjects allowed us to quantify the mean deviations in gaze trajectories along both horizontal and vertical coordinates relative to the aircraft and head orientations. Both variability and curvature of gaze trajectories increased during roll tilt compared to the upright position. The saccades were less accurate during parabolic flight compared to measurements obtained in normal gravity. The trajectories of saccades along perceived horizontal orientations tended to deviate in the same direction as the head tilt, while the deviations in gaze trajectories along the perceived vertical orientations deviated in the opposite direction relative to the head tilt. Although subjects were instructed to look off in the distance while performing the eye movements, fixation distance varied with vertical gaze direction independent of whether the saccades were made along perceived aircraft or head orientations. This coupling of horizontal vergence with vertical gaze is in a consistent direction with the vertical slant of the horopter. The increased errors in gaze trajectories along both perceived orientations during microgravity can be attributed to the otolith's role in spatial coding of eye movements.

  2. Alteration of Oriented Deposition of Cellulose Microfibrils by Mutation of a Katanin-Like Microtubule-Severing Protein

    PubMed Central

    Burk, David H.; Ye, Zheng-Hua

    2002-01-01

    It has long been hypothesized that cortical microtubules (MTs) control the orientation of cellulose microfibril deposition, but no mutants with alterations of MT orientation have been shown to affect this process. We have shown previously that in Arabidopsis, the fra2 mutation causes aberrant cortical MT orientation and reduced cell elongation, and the gene responsible for the fra2 mutation encodes a katanin-like protein. In this study, using field emission scanning electron microscopy, we found that the fra2 mutation altered the normal orientation of cellulose microfibrils in walls of expanding cells. Although cellulose microfibrils in walls of wild-type cells were oriented transversely along the elongation axis, cellulose microfibrils in walls of fra2 cells often formed bands and ran in different directions. The fra2 mutation also caused aberrant deposition of cellulose microfibrils in secondary walls of fiber cells. The aberrant orientation of cellulose microfibrils was shown to be correlated with disorganized cortical MTs in several cell types examined. In addition, the thickness of both primary and secondary cell walls was reduced significantly in the fra2 mutant. These results indicate that the katanin-like protein is essential for oriented cellulose microfibril deposition and normal cell wall biosynthesis. We further demonstrated that the Arabidopsis katanin-like protein possessed MT-severing activity in vitro; thus, it is an ortholog of animal katanin. We propose that the aberrant MT orientation caused by the mutation of katanin results in the distorted deposition of cellulose microfibrils, which in turn leads to a defect in cell elongation. These findings strongly support the hypothesis that cortical MTs regulate the oriented deposition of cellulose microfibrils that determines the direction of cell elongation. PMID:12215512

  3. Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein.

    PubMed

    Burk, David H; Ye, Zheng-Hua

    2002-09-01

    It has long been hypothesized that cortical microtubules (MTs) control the orientation of cellulose microfibril deposition, but no mutants with alterations of MT orientation have been shown to affect this process. We have shown previously that in Arabidopsis, the fra2 mutation causes aberrant cortical MT orientation and reduced cell elongation, and the gene responsible for the fra2 mutation encodes a katanin-like protein. In this study, using field emission scanning electron microscopy, we found that the fra2 mutation altered the normal orientation of cellulose microfibrils in walls of expanding cells. Although cellulose microfibrils in walls of wild-type cells were oriented transversely along the elongation axis, cellulose microfibrils in walls of fra2 cells often formed bands and ran in different directions. The fra2 mutation also caused aberrant deposition of cellulose microfibrils in secondary walls of fiber cells. The aberrant orientation of cellulose microfibrils was shown to be correlated with disorganized cortical MTs in several cell types examined. In addition, the thickness of both primary and secondary cell walls was reduced significantly in the fra2 mutant. These results indicate that the katanin-like protein is essential for oriented cellulose microfibril deposition and normal cell wall biosynthesis. We further demonstrated that the Arabidopsis katanin-like protein possessed MT-severing activity in vitro; thus, it is an ortholog of animal katanin. We propose that the aberrant MT orientation caused by the mutation of katanin results in the distorted deposition of cellulose microfibrils, which in turn leads to a defect in cell elongation. These findings strongly support the hypothesis that cortical MTs regulate the oriented deposition of cellulose microfibrils that determines the direction of cell elongation.

  4. Labeling Same-Sex Sexuality in a Tolerant Society That Values Normality: The Dutch Case.

    PubMed

    van Lisdonk, Jantine; Nencel, Lorraine; Keuzenkamp, Saskia

    2017-10-16

    Studies have pointed to a trend in Western societies toward the normalization of homosexuality and emerging "post-gayness" among young people, who no longer consider their sexual identity meaningful in defining themselves. This article takes a closer look at the Dutch case where tolerance is regarded as a national virtue, while society remains heteronormative. In 38 interviews with Dutch same-sex-attracted young people, we investigated the labels they used to describe their sexual orientation to reveal what they can tell us about normalization, tolerance, and heteronormativity. In their labeling strategies, participants de-emphasized their sexual identity, othered, and reinforced the hetero/homo binary. They preferred labels without connotations to gender expression. While post-gay rhetoric was ideologically appealing, its use was not an outcome of their sexual orientation having become insignificant; it rather enabled them to produce normality. We discuss the findings against the backdrop of "Dutch tolerance," which rests on an ideology of normality.

  5. The effects of lesions of the superior colliculus on locomotor orientation and the orienting reflex in the rat.

    PubMed

    Goodale, M A; Murison, R C

    1975-05-02

    The effects of bilateral removal of the superior colliculus or visual cortex on visually guided locomotor movements in rats performing a brightness discrimination task were investigated directly with the use of cine film. Rats with collicular lesions showed patterns of locomotion comparable to or more efficient than those of normal animals when approaching one of 5 small doors located at one end of a large open area. In contrast, animals with large but incomplete lesions of visual cortex were distinctly impaired in their visual control of approach responses to the same stimuli. On the other hand, rats with collicular damage showed no orienting reflex or evidence of distraction in the same task when novel visual or auditory stimuli were presented. However, both normal and visual-decorticate rats showed various components of the orienting reflex and disturbance in task performance when the same novel stimuli were presented. These results suggest that although the superior colliculus does not appear to be essential to the visual control of locomotor orientation, this midbrain structure might participate in the mediation of shifts in visual fixation and attention. Visual cortex, while contributing to visuospatial guidance of locomotor movements, might not play a significant role in the control and integration of the orienting reflex.

  6. Mechanical remodeling of normally sized mammalian cells under a gravity vector.

    PubMed

    Zhang, Chen; Zhou, Lüwen; Zhang, Fan; Lü, Dongyuan; Li, Ning; Zheng, Lu; Xu, Yanhong; Li, Zhan; Sun, Shujin; Long, Mian

    2017-02-01

    Translocation of the dense nucleus along a gravity vector initiates mechanical remodeling of a cell, but the underlying mechanisms of cytoskeletal network and focal adhesion complex (FAC) reorganization in a mammalian cell remain unclear. We quantified the remodeling of an MC3T3-E1 cell placed in upward-, downward-, or edge-on-orientated substrate. Nucleus longitudinal translocation presents a high value in downward orientation at 24 h or in edge-on orientation at 72 h, which is consistent with orientation-dependent distribution of perinuclear actin stress fibers and vimentin cords. Redistribution of total FAC area and fractionized super mature adhesion number coordinates this dependence at short duration. This orientation-dependent remodeling is associated with nucleus flattering and lamin A/C phosphorylation. Actin depolymerization or Rho-associated protein kinase signaling inhibition abolishes the orientation dependence of nucleus translocation, whereas tubulin polymerization inhibition or vimentin disruption reserves the dependence. A biomechanical model is therefore proposed for integrating the mechanosensing of nucleus translocation with cytoskeletal remodeling and FAC reorganization induced by a gravity vector.-Zhang, C., Zhou, L., Zhang, F., Lü, D., Li, N., Zheng, L., Xu, Y., Li, Z., Sun, S., Long, M. Mechanical remodeling of normally sized mammalian cells under a gravity vector. © FASEB.

  7. Boundary Layer Effect on Behavior of Discrete Models.

    PubMed

    Eliáš, Jan

    2017-02-10

    The paper studies systems of rigid bodies with randomly generated geometry interconnected by normal and tangential bonds. The stiffness of these bonds determines the macroscopic elastic modulus while the macroscopic Poisson's ratio of the system is determined solely by the normal/tangential stiffness ratio. Discrete models with no directional bias have the same probability of element orientation for any direction and therefore the same mechanical properties in a statistical sense at any point and direction. However, the layers of elements in the vicinity of the boundary exhibit biased orientation, preferring elements parallel with the boundary. As a consequence, when strain occurs in this direction, the boundary layer becomes stiffer than the interior for the normal/tangential stiffness ratio larger than one, and vice versa. Nonlinear constitutive laws are typically such that the straining of an element in shear results in higher strength and ductility than straining in tension. Since the boundary layer tends, due to the bias in the elemental orientation, to involve more tension than shear at the contacts, it also becomes weaker and less ductile. The paper documents these observations and compares them to the results of theoretical analysis.

  8. Structure, function, and long-term maintenance of the isolated turtle colon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeFevre, M.E.; Reisman, L.

    1978-01-01

    We describe the 5-day maintenance of sacs of turtle colonic mucosa in enriched bathing solutions. The mean maximum transepithelial potential difference (PD) developed by the sacs in Ringer solution enriched with tissue-culture medium and gassed with 95% air-5% CO/sub 2/ was 126 mV at 24 hours. Lower values were observed in other solutions. The PD of 24-hour sacs was partially or totally inhibited by ouabain, replacement of Na by choline in mucosal bathing fluids, or removal of Ca from serosal bathing fluids. The sacs transported Na in excess of H/sub 2/O forming a dilute mucosal solution. The responses of fourmore » different sac preparations (normally oriented or everted, and stripped normally oriented or everted) to long incubation were compared. Stripped normally oriented tissue developed the highest PD and maintained the lowest water content. The morphology of fresh and long-incubated tissue was examined. This investigation demonstrates that the turtle colon can be maintained in vitro for long periods, and it provides information on the morphology and physiology of this tissue.« less

  9. Mechanical model of suture joints with fibrous connective layer

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, Kateryna; Liu, Lei; Tsukrov, Igor; Li, Yaning

    2018-02-01

    A composite model for suture joints with a connective layer of aligned fibers embedded in soft matrix is proposed. Based on the principle of complementary virtual work, composite cylinder assemblage (CCA) approach and generalized self-consistent micro-mechanical models, a hierarchical homogenization methodology is developed to systematically quantify the synergistic effects of suture morphology and fiber orientation on the overall mechanical properties of sutures. Suture joints with regular triangular wave-form serve as an example material system to apply this methodology. Both theoretical and finite element mechanical models are developed and compared to evaluate the overall normal stiffness of sutures as a function of wavy morphology of sutures, fiber orientation, fiber volume fraction, and the mechanical properties of fibers and matrix in the interfacial layer. It is found that generally due to the anisotropy-induced coupling effects between tensile and shear deformation, the effective normal stiffness of sutures is highly dependent on the fiber orientation in the connective layer. Also, the effective shear modulus of the connective layer and the stiffness ratio between the fiber and matrix significantly influence the effects of fiber orientation. In addition, optimal fiber orientations are found to maximize the stiffness of suture joints.

  10. Molecularly designed lipid microdomains for solid dispersions using a polymer/inorganic carrier matrix produced by hot-melt extrusion.

    PubMed

    Adler, Camille; Schönenberger, Monica; Teleki, Alexandra; Kuentz, Martin

    2016-02-29

    Amorphous solid dispersions have for many years been a focus in oral formulations, especially in combination with a hot-melt extrusion process. The present work targets a novel approach with a system based on a fatty acid, a polymer and an inorganic carrier. It was intended to adsorb the acidic lipid by specific molecular interactions onto the solid carrier to design disorder in the alkyl chains of the lipid. Such designed lipid microdomains (DLM) were created as a new microstructure to accommodate a compound in a solid dispersion. Vibrational spectroscopy, X-ray powder diffraction, atomic force microscopy as well as electron microscopic imaging were employed to study a system of stearic acid, hydroxypropylcellulose and aluminum magnesium silicate. β-carotene was used as a poorly water-soluble model substance that is difficult to formulate with conventional solid dispersion formulations. The results indicated that the targeted molecular excipient interactions indeed led to DLMs for specific compositions. The different methods provided complementary aspects and important insights into the created microstructure. The novel delivery system appeared to be especially promising for the formulation of oral compounds that exhibit both high crystal energy and lipophilicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Surface dynamics of aerolysin on the plasma membrane of living cells.

    PubMed

    Abrami, L; Fivaz, M; van der Goot, F G

    2000-10-01

    Aerolysin secreted by the human pathogen Aeromonas hydrophila belongs to a group of bacterial toxins that are hemolytic and form channels in biological membranes. The toxin is secreted as an inactive precursor proaerolysin that must be proteolytically processed at its C-terminus to become active. The toxin then polymerizes into a heptameric ring that is amphipathic and can insert into a lipid bilayer and form a pore. We have examined these various steps at the surface of target cells. The toxin binds to specific receptors. Various receptors have been identified, all of which are anchored to the plasma membrane via a glycosylphosphatidyl inositol (GPI)-anchored moiety. The GPI anchor confers to the protein that is linked to it two usual properties: (i) the protein has a higher lateral mobility in a phospholipid bilayer than its transmembrane counterpart, (ii) the protein has the capacity to transiently associate with cholesterol-glycosphingolipid-rich microdomains. We have shown that both these properties of GPI-anchored proteins are exploited by proaerolysin bound to its receptor. The high lateral mobility within the phosphoglyceride region of the plasma membrane favors the encounter of the protoxin with its converting enzyme furin. The ability to associate with microdomains on the other hand favors the oligomerization process presumably by concentrating the toxin locally.

  12. High-Resolution FRET Microscopy of Cholera Toxin B-Subunit and GPI-anchored Proteins in Cell Plasma Membranes

    PubMed Central

    Kenworthy, Anne K.; Petranova, Nadezda; Edidin, Michael

    2000-01-01

    “Lipid rafts” enriched in glycosphingolipids (GSL), GPI-anchored proteins, and cholesterol have been proposed as functional microdomains in cell membranes. However, evidence supporting their existence has been indirect and controversial. In the past year, two studies used fluorescence resonance energy transfer (FRET) microscopy to probe for the presence of lipid rafts; rafts here would be defined as membrane domains containing clustered GPI-anchored proteins at the cell surface. The results of these studies, each based on a single protein, gave conflicting views of rafts. To address the source of this discrepancy, we have now used FRET to study three different GPI-anchored proteins and a GSL endogenous to several different cell types. FRET was detected between molecules of the GSL GM1 labeled with cholera toxin B-subunit and between antibody-labeled GPI-anchored proteins, showing these raft markers are in submicrometer proximity in the plasma membrane. However, in most cases FRET correlated with the surface density of the lipid raft marker, a result inconsistent with significant clustering in microdomains. We conclude that in the plasma membrane, lipid rafts either exist only as transiently stabilized structures or, if stable, comprise at most a minor fraction of the cell surface. PMID:10793141

  13. Association of Shiga toxin glycosphingolipid receptors with membrane microdomains of toxin-sensitive lymphoid and myeloid cells.

    PubMed

    Kouzel, Ivan U; Pohlentz, Gottfried; Storck, Wiebke; Radamm, Lena; Hoffmann, Petra; Bielaszewska, Martina; Bauwens, Andreas; Cichon, Christoph; Schmidt, M Alexander; Mormann, Michael; Karch, Helge; Müthing, Johannes

    2013-03-01

    Glycosphingolipids (GSLs) of the globo-series constitute specific receptors for Shiga toxins (Stxs) released by certain types of pathogenic Escherichia coli strains. Stx-loaded leukocytes may act as transporter cells in the blood and transfer the toxin to endothelial target cells. Therefore, we performed a thorough investigation on the expression of globo-series GSLs in serum-free cultivated Raji and Jurkat cells, representing B- and T-lymphocyte descendants, respectively, as well as THP-1 and HL-60 cells of the monocyte and granulocyte lineage, respectively. The presence of Stx-receptors in GSL preparations of Raji and THP-1 cells and the absence in Jurkat and HL-60 cells revealed high compliance of solid-phase immunodetection assays with the expression profiles of receptor-related glycosyltransferases, performed by qRT-PCR analysis, and Stx2-caused cellular damage. Canonical microdomain association of Stx GSL receptors, sphingomyelin, and cholesterol in membranes of Raji and THP-1 cells was assessed by comparative analysis of detergent-resistant membrane (DRM) and nonDRM fractions obtained by density gradient centrifugation and showed high correlation based on nonparametric statistical analysis. Our comprehensive study on the expression of Stx-receptors and their subcellular distribution provides the basis for exploring the functional role of lipid raft-associated Stx-receptors in cells of leukocyte origin.

  14. Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses

    PubMed Central

    Shigetomi, Eiji; Bushong, Eric A.; Haustein, Martin D.; Tong, Xiaoping; Jackson-Weaver, Olan; Kracun, Sebastian; Xu, Ji; Sofroniew, Michael V.; Ellisman, Mark H.

    2013-01-01

    Intracellular Ca2+ transients are considered a primary signal by which astrocytes interact with neurons and blood vessels. With existing commonly used methods, Ca2+ has been studied only within astrocyte somata and thick branches, leaving the distal fine branchlets and endfeet that are most proximate to neuronal synapses and blood vessels largely unexplored. Here, using cytosolic and membrane-tethered forms of genetically encoded Ca2+ indicators (GECIs; cyto-GCaMP3 and Lck-GCaMP3), we report well-characterized approaches that overcome these limitations. We used in vivo microinjections of adeno-associated viruses to express GECIs in astrocytes and studied Ca2+ signals in acute hippocampal slices in vitro from adult mice (aged ∼P80) two weeks after infection. Our data reveal a sparkling panorama of unexpectedly numerous, frequent, equivalently scaled, and highly localized Ca2+ microdomains within entire astrocyte territories in situ within acute hippocampal slices, consistent with the distribution of perisynaptic branchlets described using electron microscopy. Signals from endfeet were revealed with particular clarity. The tools and experimental approaches we describe in detail allow for the systematic study of Ca2+ signals within entire astrocytes, including within fine perisynaptic branchlets and vessel-associated endfeet, permitting rigorous evaluation of how astrocytes contribute to brain function. PMID:23589582

  15. Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses.

    PubMed

    Shigetomi, Eiji; Bushong, Eric A; Haustein, Martin D; Tong, Xiaoping; Jackson-Weaver, Olan; Kracun, Sebastian; Xu, Ji; Sofroniew, Michael V; Ellisman, Mark H; Khakh, Baljit S

    2013-05-01

    Intracellular Ca(2+) transients are considered a primary signal by which astrocytes interact with neurons and blood vessels. With existing commonly used methods, Ca(2+) has been studied only within astrocyte somata and thick branches, leaving the distal fine branchlets and endfeet that are most proximate to neuronal synapses and blood vessels largely unexplored. Here, using cytosolic and membrane-tethered forms of genetically encoded Ca(2+) indicators (GECIs; cyto-GCaMP3 and Lck-GCaMP3), we report well-characterized approaches that overcome these limitations. We used in vivo microinjections of adeno-associated viruses to express GECIs in astrocytes and studied Ca(2+) signals in acute hippocampal slices in vitro from adult mice (aged ∼P80) two weeks after infection. Our data reveal a sparkling panorama of unexpectedly numerous, frequent, equivalently scaled, and highly localized Ca(2+) microdomains within entire astrocyte territories in situ within acute hippocampal slices, consistent with the distribution of perisynaptic branchlets described using electron microscopy. Signals from endfeet were revealed with particular clarity. The tools and experimental approaches we describe in detail allow for the systematic study of Ca(2+) signals within entire astrocytes, including within fine perisynaptic branchlets and vessel-associated endfeet, permitting rigorous evaluation of how astrocytes contribute to brain function.

  16. Raft-mediated trafficking of apical resident proteins occurs in both direct and transcytotic pathways in polarized hepatic cells: role of distinct lipid microdomains.

    PubMed

    Slimane, Tounsia Aït; Trugnan, Germain; Van IJzendoorn, Sven C D; Hoekstra, Dick

    2003-02-01

    In polarized hepatic cells, pathways and molecular principles mediating the flow of resident apical bile canalicular proteins have not yet been resolved. Herein, we have investigated apical trafficking of a glycosylphosphatidylinositol-linked and two single transmembrane domain proteins on the one hand, and two polytopic proteins on the other in polarized HepG2 cells. We demonstrate that the former arrive at the bile canalicular membrane via the indirect transcytotic pathway, whereas the polytopic proteins reach the apical membrane directly, after Golgi exit. Most importantly, cholesterol-based lipid microdomains ("rafts") are operating in either pathway, and protein sorting into such domains occurs in the biosynthetic pathway, largely in the Golgi. Interestingly, rafts involved in the direct pathway are Lubrol WX insoluble but Triton X-100 soluble, whereas rafts in the indirect pathway are both Lubrol WX and Triton X-100 insoluble. Moreover, whereas cholesterol depletion alters raft-detergent insolubility in the indirect pathway without affecting apical sorting, protein missorting occurs in the direct pathway without affecting raft insolubility. The data implicate cholesterol as a traffic direction-determining parameter in the direct apical pathway. Furthermore, raft-cargo likely distinguishing single vs. multispanning membrane anchors, rather than rafts per se (co)determine the sorting pathway.

  17. Raft-mediated Trafficking of Apical Resident Proteins Occurs in Both Direct and Transcytotic Pathways in Polarized Hepatic Cells: Role of Distinct Lipid Microdomains

    PubMed Central

    Slimane, Tounsia Aït; Trugnan, Germain; van IJzendoorn, Sven C.D.; Hoekstra, Dick

    2003-01-01

    In polarized hepatic cells, pathways and molecular principles mediating the flow of resident apical bile canalicular proteins have not yet been resolved. Herein, we have investigated apical trafficking of a glycosylphosphatidylinositol-linked and two single transmembrane domain proteins on the one hand, and two polytopic proteins on the other in polarized HepG2 cells. We demonstrate that the former arrive at the bile canalicular membrane via the indirect transcytotic pathway, whereas the polytopic proteins reach the apical membrane directly, after Golgi exit. Most importantly, cholesterol-based lipid microdomains (“rafts”) are operating in either pathway, and protein sorting into such domains occurs in the biosynthetic pathway, largely in the Golgi. Interestingly, rafts involved in the direct pathway are Lubrol WX insoluble but Triton X-100 soluble, whereas rafts in the indirect pathway are both Lubrol WX and Triton X-100 insoluble. Moreover, whereas cholesterol depletion alters raft-detergent insolubility in the indirect pathway without affecting apical sorting, protein missorting occurs in the direct pathway without affecting raft insolubility. The data implicate cholesterol as a traffic direction-determining parameter in the direct apical pathway. Furthermore, raft-cargo likely distinguishing single vs. multispanning membrane anchors, rather than rafts per se (co)determine the sorting pathway. PMID:12589058

  18. Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure.

    PubMed

    Dinkla, S; Wessels, K; Verdurmen, W P R; Tomelleri, C; Cluitmans, J C A; Fransen, J; Fuchs, B; Schiller, J; Joosten, I; Brock, R; Bosman, G J C G M

    2012-10-18

    Inflammation enhances the secretion of sphingomyelinases (SMases). SMases catalyze the hydrolysis of sphingomyelin into phosphocholine and ceramide. In erythrocytes, ceramide formation leads to exposure of the removal signal phosphatidylserine (PS), creating a potential link between SMase activity and anemia of inflammation. Therefore, we studied the effects of SMase on various pathophysiologically relevant parameters of erythrocyte homeostasis. Time-lapse confocal microscopy revealed a SMase-induced transition from the discoid to a spherical shape, followed by PS exposure, and finally loss of cytoplasmic content. Also, SMase treatment resulted in ceramide-associated alterations in membrane-cytoskeleton interactions and membrane organization, including microdomain formation. Furthermore, we observed increases in membrane fragility, vesiculation and invagination, and large protein clusters. These changes were associated with enhanced erythrocyte retention in a spleen-mimicking model. Erythrocyte storage under blood bank conditions and during physiological aging increased the sensitivity to SMase. A low SMase activity already induced morphological and structural changes, demonstrating the potential of SMase to disturb erythrocyte homeostasis. Our analyses provide a comprehensive picture in which ceramide-induced changes in membrane microdomain organization disrupt the membrane-cytoskeleton interaction and membrane integrity, leading to vesiculation, reduced deformability, and finally loss of erythrocyte content. Understanding these processes is highly relevant for understanding anemia during chronic inflammation, especially in critically ill patients receiving blood transfusions.

  19. Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure

    PubMed Central

    Dinkla, S; Wessels, K; Verdurmen, W P R; Tomelleri, C; Cluitmans, J C A; Fransen, J; Fuchs, B; Schiller, J; Joosten, I; Brock, R; Bosman, G J C G M

    2012-01-01

    Inflammation enhances the secretion of sphingomyelinases (SMases). SMases catalyze the hydrolysis of sphingomyelin into phosphocholine and ceramide. In erythrocytes, ceramide formation leads to exposure of the removal signal phosphatidylserine (PS), creating a potential link between SMase activity and anemia of inflammation. Therefore, we studied the effects of SMase on various pathophysiologically relevant parameters of erythrocyte homeostasis. Time-lapse confocal microscopy revealed a SMase-induced transition from the discoid to a spherical shape, followed by PS exposure, and finally loss of cytoplasmic content. Also, SMase treatment resulted in ceramide-associated alterations in membrane–cytoskeleton interactions and membrane organization, including microdomain formation. Furthermore, we observed increases in membrane fragility, vesiculation and invagination, and large protein clusters. These changes were associated with enhanced erythrocyte retention in a spleen-mimicking model. Erythrocyte storage under blood bank conditions and during physiological aging increased the sensitivity to SMase. A low SMase activity already induced morphological and structural changes, demonstrating the potential of SMase to disturb erythrocyte homeostasis. Our analyses provide a comprehensive picture in which ceramide-induced changes in membrane microdomain organization disrupt the membrane–cytoskeleton interaction and membrane integrity, leading to vesiculation, reduced deformability, and finally loss of erythrocyte content. Understanding these processes is highly relevant for understanding anemia during chronic inflammation, especially in critically ill patients receiving blood transfusions. PMID:23076218

  20. Inhibition of VEGF-dependent angiogenesis by the anti-CD82 monoclonal antibody 4F9 through regulation of lipid raft microdomains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo

    CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulatingmore » the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis. -- Highlights: •Knockdown of CD82 decreases EC migration, proliferation and angiogenesis. •Anti-CD82 mAb 4F9 inhibits EC migration, proliferation and angiogenesis. •4F9 inhibits VEGFR2 phosphorylation via control of CD82 distribution in lipid rafts.« less

  1. The dynamics and endocytosis of Flot1 protein in response to flg22 in Arabidopsis.

    PubMed

    Yu, Meng; Liu, Haijiao; Dong, Ziyi; Xiao, Jianwei; Su, Bodan; Fan, Lusheng; Komis, George; Šamaj, Jozef; Lin, Jinxing; Li, Ruili

    2017-08-01

    Membrane microdomains play vital roles in the process of bacterial infection. The membrane microdomain-associated protein Flot1 acts in an endocytic pathway and is required for seedling development, however, whether Flot1 is a part of host defense mechanisms remains unknown. During an analysis of callose deposition, we found that Flot1 amiRNAi mutants exhibited defects in response to flg22. Using variable-angle total internal reflection fluorescence microscopy (VA-TIRFM), structured illumination microscopy (SIM) and fluorescence cross spectroscopy (FCS), we determined that the dynamic behavior of GFP-Flot1 in Arabidopsis thaliana cotyledon epidermal cells changed significantly in plants treated with the elicitor flg22. Moreover, we found that Flot1 was constitutively recycled via an endocytic pathway and that flg22 could promote endocytosis. Importantly, targeting of Flot1 to the late endosome/vacuole for degradation increased in response to flg22 treatment; immunoblot analysis showed that when triggered by flg22, GFP-Flot1 was gradually degraded in a time-dependent manner. Taken together, these findings support the hypothesis that the changing of dynamics and oligomeric states can promote the endocytosis and degradation of Flot1 under flg22 treatment in plant cells. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Cholesterol Regulates μ-Opioid Receptor-Induced β-Arrestin 2 Translocation to Membrane Lipid RaftsS⃞

    PubMed Central

    Qiu, Yu; Wang, Yan; Chen, Hong-Zhuan; Loh, Horace H.

    2011-01-01

    μ-Opioid receptor (OPRM1) is mainly localized in lipid raft microdomains but internalizes through clathrin-dependent pathways. Our previous studies demonstrated that disruption of lipid rafts by cholesterol-depletion reagent blocked the agonist-induced internalization of OPRM1 and G protein-dependent signaling. The present study demonstrated that reduction of cholesterol level decreased and culturing cells in excess cholesterol increased the agonist-induced internalization and desensitization of OPRM1, respectively. Further analyses indicated that modulation of cellular cholesterol level did not affect agonist-induced receptor phosphorylation but did affect membrane translocation of β-arrestins. The translocation of β-arrestins was blocked by cholesterol reduction, and the effect could be reversed by incubating with cholesterol. OptiPrep gradient separation of lipid rafts revealed that excess cholesterol retained more receptors in lipid raft domains and facilitated the recruitment of β-arrestins to these microdomains upon agonist activation. Moreover, excess cholesterol could evoke receptor internalization and protein kinase C-independent extracellular signal-regulated kinases activation upon morphine treatment. Therefore, these results suggest that cholesterol not only can influence OPRM1 localization in lipid rafts but also can effectively enhance the recruitment of β-arrestins and thereby affect the agonist-induced trafficking and agonist-dependent signaling of OPRM1. PMID:21518774

  3. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health.

    PubMed

    Ibarguren, Maitane; López, David J; Escribá, Pablo V

    2014-06-01

    This review deals with the effects of synthetic and natural fatty acids on the biophysical properties of membranes, and on their implication on cell function. Natural fatty acids are constituents of more complex lipids, like triacylglycerides or phospholipids, which are used by cells to store and obtain energy, as well as for structural purposes. Accordingly, natural and synthetic fatty acids may modify the structure of the lipid membrane, altering its microdomain organization and other physical properties, and provoking changes in cell signaling. Therefore, by modulating fatty acids it is possible to regulate the structure of the membrane, influencing the cell processes that are reliant on this structure and potentially reverting pathological cell dysfunctions that may provoke cancer, diabetes, hypertension, Alzheimer's and Parkinson's disease. The so-called Membrane Lipid Therapy offers a strategy to regulate the membrane composition through drug administration, potentially reverting pathological processes by re-adapting cell membrane structure. Certain fatty acids and their synthetic derivatives are described here that may potentially be used in such therapies, where the cell membrane itself can be considered as a target to combat disease. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Equilibrium intermediate-state patterns in a type-I superconducting slab in an arbitrarily oriented applied magnetic field

    DOE PAGES

    Clem, John; Prozorov, Ruslan; Wijngaarden, Rinke J.

    2013-09-04

    The equilibrium topology of superconducting and normal domains in flat type-I superconductors is investigated. Important improvements with respect to previous work are that (1) the energy of the external magnetic field, as deformed by the presence of superconducting domains, is calculated in the same way for three different topologies and (2) calculations are made for arbitrary orientation of the applied field. A phase diagram is presented for the minimum-energy topology as a function of applied field magnitude and angle. For small (large) applied fields, normal (superconducting) tubes are found, while for intermediate fields, parallel domains have a lower energy. Themore » range of field magnitudes for which the superconducting-tubes structure is favored shrinks when the field is more in-plane oriented.« less

  5. Faulting, Seismicity and Stress Interaction in the Salton Sea Region of Southern California

    NASA Astrophysics Data System (ADS)

    Kilb, D. L.; Brothers, D. S.; Lin, G.; Kent, G.; Newman, R. L.; Driscoll, N.

    2009-12-01

    The Salton Sea region in southern California provides an ideal location to study the relationship between transcurrent and extensional motion in the northern Gulf of California margin, allowing us to investigate the spatial and temporal interaction of faults in the area and better understand their kinematics. In this region, the San Andreas Fault (SAF) and Imperial Fault present two major transform faults separated by the Salton Sea transtensional domain. Earthquakes over magnitude 4 in this area almost always have associated aftershock sequences. Recent seismic reflection surveys in the Salton Sea reveal that the majority of faults under the southern Salton Sea trend ~N15°E, appear normal-dominant and have very minimal associated microseismicity. These normal faults rupture every 100-300 years in large earthquakes and most of the nearby microseismicity locates east of the mapped surface traces. For example, there is profuse microseismicity in the Brawley Seismic Zone (BSZ), which is coincident with the southern terminus of the SAF as it extends offshore into the Salton Sea. Earthquakes in the BSZ are dominantly swarm-like, occurring along short (<5 km) ~N45°E oriented sinistral and N35°W oriented dextral fault planes. This mapped seismicity makes a rung-and-ladder pattern. In an effort to reconcile differences between processes at the surface and those at seismogenic depths we integrate near surface fault kinematics, geometry and paleoseismic history with seismic data. We identify linear and planer trends in these data (20 near surface faults, >20,000 relocated earthquakes and >2,000 earthquake focal mechanisms) and when appropriate estimate the fault strike and dip using principal component analysis. With our more detailed image of the fault structure we assess how static stress changes imparted by magnitude ~6.0 ruptures along N15E oriented normal faults beneath the Salton Sea can modulate the stress field in the BSZ and along the SAF. These tests include exploring sensitivity of the results to parameter uncertainties. In general, we find rupture of the normal faults produces a butterfly pattern of static stress changes on the SAF with decreases along the southernmost portion below latitude 33.3±0.1 and increases on segments above these latitudes. Additionally, simulated ruptures on the normal faults predict optimally oriented sinistral faults that align with the “rungs” in the BSZ and optimally oriented dextral faults that are parallel to the SAF. Given these observations and results, we favor the scenario that normal faults beneath the Salton Sea accommodate most of the strain budget, rupturing as magnitude ~6.0-6.6 events every 100 years or so, and the consequent stress field generated within the relatively weak crust shapes the orientation of the short faults in the BSZ.

  6. Calcium/calmodulin-dependent kinase II and nitric oxide synthase 1-dependent modulation of ryanodine receptors during β-adrenergic stimulation is restricted to the dyadic cleft.

    PubMed

    Dries, Eef; Santiago, Demetrio J; Johnson, Daniel M; Gilbert, Guillaume; Holemans, Patricia; Korte, Sanne M; Roderick, H Llewelyn; Sipido, Karin R

    2016-10-15

    The dyadic cleft, where coupled ryanodine receptors (RyRs) reside, is thought to serve as a microdomain for local signalling, as supported by distinct modulation of coupled RyRs dependent on Ca 2+ /calmodulin-dependent kinase II (CaMKII) activation during high-frequency stimulation. Sympathetic stimulation through β-adrenergic receptors activates an integrated signalling cascade, enhancing Ca 2+ cycling and is at least partially mediated through CaMKII. Here we report that CaMKII activation during β-adrenergic signalling is restricted to the dyadic cleft, where it enhances activity of coupled RyRs thereby contributing to the increase in diastolic events. Nitric oxide synthase 1 equally participates in the local modulation of coupled RyRs. In contrast, the increase in the Ca 2+ content of the sarcoplasmic reticulum and related increase in the amplitude of the Ca 2+ transient are primarily protein kinase A-dependent. The present data extend the concept of microdomain signalling in the dyadic cleft and give perspectives for selective modulation of RyR subpopulations and diastolic events. In cardiac myocytes, β-adrenergic stimulation enhances Ca 2+ cycling through an integrated signalling cascade modulating L-type Ca 2+ channels (LTCCs), phospholamban and ryanodine receptors (RyRs). Ca 2+ /calmodulin-dependent kinase II (CaMKII) and nitric oxide synthase 1 (NOS1) are proposed as prime mediators for increasing RyR open probability. We investigate whether this pathway is confined to the high Ca 2+ microdomain of the dyadic cleft and thus to coupled RyRs. Pig ventricular myocytes are studied under whole-cell voltage-clamp and confocal line-scan imaging with Fluo-4 as a [Ca 2+ ] i indicator. Following conditioning depolarizing pulses, spontaneous RyR activity is recorded as Ca 2+ sparks, which are assigned to coupled and non-coupled RyR clusters. Isoproterenol (ISO) (10 nm) increases Ca 2+ spark frequency in both populations of RyRs. However, CaMKII inhibition reduces spark frequency in coupled RyRs only; NOS1 inhibition mimics the effect of CaMKII inhibition. Moreover, ISO induces the repetitive activation of coupled RyR clusters through CaMKII activation. Immunostaining shows high levels of CaMKII phosphorylation at the dyadic cleft. CaMKII inhibition reduces I CaL and local Ca 2+ transients during depolarizing steps but has only modest effects on amplitude or relaxation of the global Ca 2+ transient. In contrast, protein kinase A (PKA) inhibition reduces spark frequency in all RyRs concurrently with a reduction of sarcoplasmic reticulum Ca 2+ content, Ca 2+ transient amplitude and relaxation. In conclusion, CaMKII activation during β-adrenergic stimulation is restricted to the dyadic cleft microdomain, enhancing LTCC-triggered local Ca 2+ release as well as spontaneous diastolic Ca 2+ release whilst PKA is the major pathway increasing global Ca 2+ cycling. Selective CaMKII inhibition may reduce potentially arrhythmogenic release without negative inotropy. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reister, D.B.; Unseren, M.A.; Baker, J.E.

    We discuss a series of surface following experiments using a range finder mounted on the end of an arm that is mounted on a vehicle. The goal is to keep the range finder at a fixed distance from an unknown surface and to keep the orientation of the range finder perpendicular to the surface. During the experiments, the vehicle moves along a predefined trajectory while planning software determines the position and orientation of the arm. To keep the range finder perpendicular to the surface, the planning software calculates the surface normal for the unknown surface. We assume that the unknownmore » surface is a cylinder (the surface depends on x and y but does not depend on z). To calculate the surface normal, the planning software must calculate the locations (x,y) of points on the surface in world coordinates. The calculation requires data on the position and orientation of the vehicle, the position and orientation of the arm, and the distance from the range finder to the surface. We discuss four series of experiments. During the first series of experiments, the calculated surface normal values had large high frequency random variations. A filter was used to produce an average value for the surface normal and we limited the rate of change in the yaw angle target for the arm. We performed the experiment for a variety of concave and convex surfaces. While the experiments were qualitative successes, the measured distance to the surface was significantly different than the target. The distance errors were systematic, low frequency, and had magnitudes up to 25 mm. During the second series of experiments, we reduced the variations in the calculated surface normal values. While reviewing the data collected while following the surface of a barrel, we found that the radius of the calculated surface was significantly different than the measured radius of the barrel.« less

  8. Orbital Debris Shape and Orientation Effects on Ballistic Limits

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.; Williamsen, Joel E.

    2005-01-01

    The SPHC hydrodynamic code was used to evaluate the effects of orbital debris particle shape and orientation on penetration of a typical spacecraft dual-wall shield. Impacts were simulated at near-normal obliquity at 12 km/sec. Debris cloud characteristics and damage potential are compared with those from impacts by spherical projectiles. Results of these simulations indicate the uncertainties in the predicted ballistic limits due to modeling uncertainty and to uncertainty in the impactor orientation.

  9. Localization of Cell Wall Polysaccharides in Normal and Compression Wood of Radiata Pine: Relationships with Lignification and Microfibril Orientation1

    PubMed Central

    Donaldson, Lloyd A.; Knox, J. Paul

    2012-01-01

    The distribution of noncellulosic polysaccharides in cell walls of tracheids and xylem parenchyma cells in normal and compression wood of Pinus radiata, was examined to determine the relationships with lignification and cellulose microfibril orientation. Using fluorescence microscopy combined with immunocytochemistry, monoclonal antibodies were used to detect xyloglucan (LM15), β(1,4)-galactan (LM5), heteroxylan (LM10 and LM11), and galactoglucomannan (LM21 and LM22). Lignin and crystalline cellulose were localized on the same sections used for immunocytochemistry by autofluorescence and polarized light microscopy, respectively. Changes in the distribution of noncellulosic polysaccharides between normal and compression wood were associated with changes in lignin distribution. Increased lignification of compression wood secondary walls was associated with novel deposition of β(1,4)-galactan and with reduced amounts of xylan and mannan in the outer S2 (S2L) region of tracheids. Xylan and mannan were detected in all lignified xylem cell types (tracheids, ray tracheids, and thick-walled ray parenchyma) but were not detected in unlignified cell types (thin-walled ray parenchyma and resin canal parenchyma). Mannan was absent from the highly lignified compound middle lamella, but xylan occurred throughout the cell walls of tracheids. Using colocalization measurements, we confirmed that polysaccharides containing galactose, mannose, and xylose have consistent correlations with lignification. Low or unsubstituted xylans were localized in cell wall layers characterized by transverse cellulose microfibril orientation in both normal and compression wood tracheids. Our results support the theory that the assembly of wood cell walls, including lignification and microfibril orientation, may be mediated by changes in the amount and distribution of noncellulosic polysaccharides. PMID:22147521

  10. Orientation Perception in Williams Syndrome: Discrimination and Integration

    ERIC Educational Resources Information Center

    Palomares, Melanie; Landau, Barbara; Egeth, Howard

    2009-01-01

    Williams Syndrome (WS) is a rare neurodevelopmental disorder, which stems from a genetic deletion on chromosome 7 and causes a profound weakness in visuospatial cognition. Our current study explores how orientation perception may contribute to the visuospatial deficits in WS. In Experiment 1, we found that WS individuals and normal 3-4 year olds…

  11. Exogenous orienting of attention depends upon the ability to execute eye movements.

    PubMed

    Smith, Daniel T; Rorden, Chris; Jackson, Stephen R

    2004-05-04

    Shifts of attention can be made overtly by moving the eyes or covertly with attention being allocated to a region of space that does not correspond to the current direction of gaze. However, the precise relationship between eye movements and the covert orienting of attention remains controversial. The influential premotor theory proposes that the covert orienting of attention is produced by the programming of (unexecuted) eye movements and thus predicts a strong relationship between the ability to execute eye movements and the operation of spatial attention. Here, we demonstrate for the first time that impaired spatial attention is observed in an individual (AI) who is neurologically healthy but who cannot execute eye movements as a result of a congenital impairment in the elasticity of her eye muscles. This finding provides direct support for the role of the eye-movement system in the covert orienting of attention and suggests that whereas intact cortical structures may be necessary for normal attentional reflexes, they are not sufficient. The ability to move our eyes is essential for the development of normal patterns of spatial attention.

  12. Temporal changes in stress preceding the 2004-2008 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Lehto, H.L.; Roman, D.C.; Moran, S.C.

    2010-01-01

    The 2004-2008 eruption of Mount St. Helens (MSH), Washington, was preceded by a swarm of shallow volcano-tectonic earthquakes (VTs) that began on September 23, 2004. We calculated locations and fault-plane solutions (FPS) for shallow VTs recorded during a background period (January 1999 to July 2004) and during the early vent-clearing phase (September 23 to 29, 2004) of the 2004-2008 eruption. FPS show normal and strike-slip faulting during the background period and on September 23; strike-slip and reverse faulting on September 24; and a mixture of strike-slip, reverse, and normal faulting on September 25-29. The orientation of ??1 beneath MSH, as estimated from stress tensor inversions, was found to be sub-horizontal for all periods and oriented NE-SW during the background period, NW-SE on September 24, and NE-SW on September 25-29. We suggest that the ephemeral ~90?? change in ??1 orientation was due to intrusion and inflation of a NE-SW-oriented dike in the shallow crust prior to the eruption onset. ?? 2010 Elsevier B.V.

  13. Graphene-based Material Systems for Nanoelectronics and Energy Storage Devices

    NASA Astrophysics Data System (ADS)

    Guo, Shirui

    Graphene is an allotrope of carbon in two-dimensional crystal form that has extraordinary electrical and optical properties. In this dissertation, we present the use of graphene in applications for chemical sensors, photovoltaics and supercapacitors. Firstly, carrier transport properties of single layer graphene films grown via chemical vapor deposition technique are tuned with functionalized molecules, polymers and inorganic nanoparticles. For example, cylindrical microdomains of polystyrene-4-polyvinylpyridine (PS-P4VP) block-copolymers (BCP) on graphene film provide spatial doping effects due to two distinct functional groups. Further, preferred interactions between CFx or fluorine radicals and BCP micro domains on graphene introduce localized doping of graphene film leading to controlling of Dirac point shift. Interaction between graphene and inorganic nanoparticles is studied by using CdSe quantum dots as a model system. Femtosecond time-resolved spectroscopy allowes us to demonstrate for the first time fast interfacial charge transfer for such systems in the picosecond and in the hundreds of femtosecond time domains, which also demonstrates high potential for photoelectrochemical cell. Secondly, graphene field effect transistors (GFET) as single strand DNA sensors are fabricated and detection limit as low as 3x10-9 M is demonstrated. Assembled BCP film on GFET sensor improved the sensor's stability and selectivity. The orientation and periodicity of the resulting cylindrical microdomains of BCP can facilitate the selective sensing property. With protective layer of BCP, sensor's stability under ambient atmosphere is improved up to 4 months. Thirdly, two different types of carbon nanotubes (CNT)/graphene hybrids are synthesized and used in fabrication of supercapacitors. The first type hybrid is graphene and vertically aligned carbon nanotubes which is successfully grown via one step chemical vapor deposition method. Our custom seamless growth method for such hybrids provides an attractive pathway for the fabrication of novel 3-Dimensional hybrid nanostructures. The second type hybrid is graphene oxide (GO) and SWCNT composite ink (GO-SWCNT ink). SWCNTs are dispersed using a GO aqueous solution (2mg/ml) with sonication support to achieve a SWCNT concentration of 12mg/ml, the highest reported value so far without surfactant assistance. Paper based electrodes for supercapacitors are fabricated using GO-SWCNT composite ink via dip casting method. By employing different concentrations of SWCNT inside the ink, supercapacitors demonstrated different capacitance values. The highest value of specific capacitance reaches up to 295 F/g at a current density of 0.5A/g with a GO/SWCNT weight ratio of 1:5. The cycling stability for the GO-SWCNT paper electrode supercapacitors indicates capacitance retention of 85% over 60,000 cycles. Finally, engineered interactions between nanomaterials, polymers, molecules and graphene/carbon nanotube can lead to the development of new types of devices for myriad applications.

  14. Detergent-Resistant Membrane Microdomains Facilitate Ib Oligomer Formation and Biological Activity of Clostridium perfringens Iota-Toxin

    DTIC Science & Technology

    2004-04-01

    spore-forming bacilli such as Clostridium spiroforme (iota-like toxin), Clostridium botulinum (C2 toxin), Bacillus anthracis (lethal and edema toxins...ously (28). Goat C. spiroforme and C. perfringens type C antisera were purchased from TechLab, Inc. (Blacksburg, Va.). Mouse monoclonal antibodies...membrane preparations was specific. Previous studies showed that the binary C. spiroforme toxin shares common epitopes with iota-toxin, and antisera

  15. Determining Equilibrium Position For Acoustical Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Aveni, G.; Putterman, S.; Rudnick, J.

    1989-01-01

    Equilibrium position and orientation of acoustically-levitated weightless object determined by calibration technique on Earth. From calibration data, possible to calculate equilibrium position and orientation in presence of Earth gravitation. Sample not levitated acoustically during calibration. Technique relies on Boltzmann-Ehrenfest adiabatic-invariance principle. One converts resonant-frequency-shift data into data on normalized acoustical potential energy. Minimum of energy occurs at equilibrium point. From gradients of acoustical potential energy, one calculates acoustical restoring force or torque on objects as function of deviation from equilibrium position or orientation.

  16. Dynamics and control of sister kinetochore behavior during the meiotic divisions in Drosophila spermatocytes

    PubMed Central

    2018-01-01

    Sister kinetochores are connected to the same spindle pole during meiosis I and to opposite poles during meiosis II. The molecular mechanisms controlling the distinct behavior of sister kinetochores during the two meiotic divisions are poorly understood. To study kinetochore behavior during meiosis, we have optimized time lapse imaging with Drosophila spermatocytes, enabling kinetochore tracking with high temporal and spatial resolution through both meiotic divisions. The correct bipolar orientation of chromosomes within the spindle proceeds rapidly during both divisions. Stable bi-orientation of the last chromosome is achieved within ten minutes after the onset of kinetochore-microtubule interactions. Our analyses of mnm and tef mutants, where univalents instead of bivalents are present during meiosis I, indicate that the high efficiency of normal bi-orientation depends on pronounced stabilization of kinetochore attachments to spindle microtubules by the mechanical tension generated by spindle forces upon bi-orientation. Except for occasional brief separation episodes, sister kinetochores are so closely associated that they cannot be resolved individually by light microscopy during meiosis I, interkinesis and at the start of meiosis II. Permanent evident separation of sister kinetochores during M II depends on spindle forces resulting from bi-orientation. In mnm and tef mutants, sister kinetochore separation can be observed already during meiosis I in bi-oriented univalents. Interestingly, however, this sister kinetochore separation is delayed until the metaphase to anaphase transition and depends on the Fzy/Cdc20 activator of the anaphase-promoting complex/cyclosome. We propose that univalent bi-orientation in mnm and tef mutants exposes a release of sister kinetochore conjunction that occurs also during normal meiosis I in preparation for bi-orientation of dyads during meiosis II. PMID:29734336

  17. Cell wall biogenesis in Oocystis: experimental alteration of microfibril assembly and orientation.

    PubMed

    Montezinos, D; Brown, R M

    1978-01-01

    Cell wall biogenesis in the unicellular green alga Oocystis apiculata has been studied. Under normal growth conditions, a cell wall with ordered microfibrils is synthesized. In each layer there are rows of parallel microfibrils. Layers are nearly perpendicular to each other. Terminal linear synthesizing complexes are located in the plasma membrane, and they are capable of bidirectional synthesis of cellulose microfibrils. Granule bands associated with the inner leaflet of the plasma membrane appear to control the orientation of newly synthesized microfibrils. Subcortical microtubules also are present during wall synthesis. Patterns of cell wall synthesis were studied after treatment with EDTA and EGTA as well as divalent cations (MgSO4, CaSO4, Cacl2). 0.1 M EDTA treatment for 15 min results in the disassociation of the terminal complexes from the ends of microfibrils. EDTA-treated cells followed by 15 min treatment with MgSO4 results in reaggregation of the linear complexes into a paired state, remote from the original ends to which they were associated. After 90 min treatment with MgSO4, normal synthesis resumes. EGTA and calcium salts do not affect the linear complexes or microfibril orientation. Treatments with colchicine and vinblastine sulphate do not depolymerize the microtubles, but the wall microfibril orientation is altered. With colchicine or vinblastine, the change in orientation from layer to layer is inhibited. The process is reversible upon removal of the drugs. Lumicolchicine has no effect upon microfibril orientation, but granule bands are disorganized. Treatment with coumarin, a known inhibitor of cellulose synthesis, causes the loss of visualization of subunits of the terminal complexes. The possibility of the existence of a membrane-associated colchicine-sensitive orientation protein for cellulose microfibrils is discussed. Transmembrane modulation of microfibril synthesis and orientation is presented.

  18. Boundary Layer Effect on Behavior of Discrete Models

    PubMed Central

    Eliáš, Jan

    2017-01-01

    The paper studies systems of rigid bodies with randomly generated geometry interconnected by normal and tangential bonds. The stiffness of these bonds determines the macroscopic elastic modulus while the macroscopic Poisson’s ratio of the system is determined solely by the normal/tangential stiffness ratio. Discrete models with no directional bias have the same probability of element orientation for any direction and therefore the same mechanical properties in a statistical sense at any point and direction. However, the layers of elements in the vicinity of the boundary exhibit biased orientation, preferring elements parallel with the boundary. As a consequence, when strain occurs in this direction, the boundary layer becomes stiffer than the interior for the normal/tangential stiffness ratio larger than one, and vice versa. Nonlinear constitutive laws are typically such that the straining of an element in shear results in higher strength and ductility than straining in tension. Since the boundary layer tends, due to the bias in the elemental orientation, to involve more tension than shear at the contacts, it also becomes weaker and less ductile. The paper documents these observations and compares them to the results of theoretical analysis. PMID:28772517

  19. Orientations of dendritic growth during solidification

    NASA Astrophysics Data System (ADS)

    Lee, Dong Nyung

    2017-03-01

    Dendrites are crystalline forms which grow far from the limit of stability of the plane front and adopt an orientation which is as close as possible to the heat flux direction. Dendritic growth orientations for cubic metals, bct Sn, and hcp Zn, can be controlled by thermal conductivity, Young's modulus, and surface energy. The control factors have been elaborated. Since the dendrite is a single crystal, its properties such as thermal conductivity that influences the heat flux direction, the minimum Young's modulus direction that influences the strain energy minimization, and the minimum surface energy plane that influences the crystal/liquid interface energy minimization have been proved to control the dendritic growth direction. The dendritic growth directions of cubic metals are determined by the minimum Young's modulus direction and/or axis direction of symmetry of the minimum crystal surface energy plane. The dendritic growth direction of bct Sn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction. The primary dendritic growth direction of hcp Zn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction and the secondary dendrite arm direction of hcp Zn is normal to the primary dendritic growth direction.

  20. Consistently Showing Your Best Side? Intra-individual Consistency in #Selfie Pose Orientation

    PubMed Central

    Lindell, Annukka K.

    2017-01-01

    Painted and photographic portraits of others show an asymmetric bias: people favor their left cheek. Both experimental and database studies confirm that the left cheek bias extends to selfies. To date all such selfie studies have been cross-sectional; whether individual selfie-takers tend to consistently favor the same pose orientation, or switch between multiple poses, remains to be determined. The present study thus examined intra-individual consistency in selfie pose orientations. Two hundred selfie-taking participants (100 male and 100 female) were identified by searching #selfie on Instagram. The most recent 10 single-subject selfies for the each of the participants were selected and coded for type of selfie (normal; mirror) and pose orientation (left, midline, right), resulting in a sample of 2000 selfies. Results indicated that selfie-takers do tend to consistently adopt a preferred pose orientation (α = 0.72), with more participants showing an overall left cheek bias (41%) than would be expected by chance (overall right cheek bias = 31.5%; overall midline bias = 19.5%; no overall bias = 8%). Logistic regression modellng, controlling for the repeated measure of participant identity, indicated that sex did not affect pose orientation. However, selfie type proved a significant predictor when comparing left and right cheek poses, with a stronger left cheek bias for mirror than normal selfies. Overall, these novel findings indicate that selfie-takers show intra-individual consistency in pose orientation, and in addition, replicate the previously reported left cheek bias for selfies and other types of portrait, confirming that the left cheek bias also presents within individuals’ selfie corpora. PMID:28270790

  1. Remodeling of the Connective Tissue Microarchitecture of the Lamina Cribrosa in Early Experimental Glaucoma

    PubMed Central

    Roberts, Michael D.; Grau, Vicente; Grimm, Jonathan; Reynaud, Juan; Bellezza, Anthony J.; Burgoyne, Claude F.; Downs, J. Crawford

    2009-01-01

    Purpose To characterize the trabeculated connective tissue microarchitecture of the lamina cribrosa (LC) in terms of total connective tissue volume (CTV), connective tissue volume fraction (CTVF), predominant beam orientation, and material anisotropy in monkeys with early experimental glaucoma (EG). Methods The optic nerve heads from three monkeys with unilateral EG and four bilaterally normal monkeys were three dimensionally reconstructed from tissues perfusion fixed at an intraocular pressure of 10 mm Hg. A three-dimensional segmentation algorithm was used to extract a binary, voxel-based representation of the porous LC connective tissue microstructure that was regionalized into 45 subvolumes, and the following quantities were calculated: total CTV within the LC, mean and regional CTVF, regional predominant beam orientation, and mean and regional material anisotropy. Results Regional variation within the laminar microstructure was considerable within the normal eyes of all monkeys. The laminar connective tissue was generally most dense in the central and superior regions for the paired normal eyes, and laminar beams were radially oriented at the periphery for all eyes considered. CTV increased substantially in EG eyes compared with contralateral normal eyes (82%, 44%, 45% increases; P < 0.05), but average CTVF changed little (−7%, 1%, and −2% in the EG eyes). There were more laminar beams through the thickness of the LC in the EG eyes than in the normal controls (46%, 18%, 17% increases). Conclusions The substantial increase in laminar CTV with little change in CTVF suggests that significant alterations in connective and nonconnective tissue components in the laminar region occur in the early stages of glaucomatous damage. PMID:18806292

  2. System and method for extracting dominant orientations from a scene

    DOEpatents

    Straub, Julian; Rosman, Guy; Freifeld, Oren; Leonard, John J.; Fisher, III; , John W.

    2017-05-30

    In one embodiment, a method of identifying the dominant orientations of a scene comprises representing a scene as a plurality of directional vectors. The scene may comprise a three-dimensional representation of a scene, and the plurality of directional vectors may comprise a plurality of surface normals. The method further comprises determining, based on the plurality of directional vectors, a plurality of orientations describing the scene. The determined plurality of orientations explains the directionality of the plurality of directional vectors. In certain embodiments, the plurality of orientations may have independent axes of rotation. The plurality of orientations may be determined by representing the plurality of directional vectors as lying on a mathematical representation of a sphere, and inferring the parameters of a statistical model to adapt the plurality of orientations to explain the positioning of the plurality of directional vectors lying on the mathematical representation of the sphere.

  3. P-S & S-P Elastic Wave Conversions from Linear Arrays of Oriented Microcracks

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    Natural and induced processes can produce oriented mechanical discontinuities such as en echelon cracks, fractures and faults. Previous research has shown that compressional to shear (P-S) wave conversions occur at normal incidence to a fracture because of cross-coupling fracture compliances (Nakagawa et al., 2000). Here, experiments and computer simulation are presented to demonstrate the link among cross-coupling stiffness, microcrack orientation and energy partitioning among P, S, and P-S/S-P waves. A FormLabs 2 3D printer was used to fabricate 7 samples (50 mm x 50 mm x 100 mm) with linear arrays of microcracks oriented at 0, 15, 30, 45, 60, 75, and 900 with a print resolution of 0.025 mm. The microcracks were elliptical in cross-sections (2 mm long by 1 mm wide), through the 50 mm thickness of sample, and spaced 3 mm (center-to-center for adjacent cracks). A 25 mm length of each sample contained no microcracks to act as a reference material. Broadband transducers (0.2-1.5 MHz) were used to transmit and receive P and polarized S wave signals that were propagated at normal incidence to the linear array of microcracks. P-wave amplitude increased, while S-wave amplitude remained relatively constant, as the microcrack orientation increased from 0o to 90o. At normal incidence, P-S and S-P wave conversions emerged and increased in amplitude as the crack inclination increased from 00 to 450. From 450 to 900, the amplitude of these converted modes decreased. Between negative and positive crack angles, the P-to-S and S-to-P waves were 1800 phase reversed. The observed energy partitioning matched the computed compliances obtained from numerical simulations with ABAQUS. The cross-coupling compliance for cracks inclined at 450 was found to be the smallest magnitude. 3D printing enabled the study of microstructural effects on macro-scale wave measurements. Information on the orientation of microcracks or even en echelon fractures and faults is contained in P-S conversions even at normal incidence. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022) and by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).

  4. Ral-Arf6 crosstalk regulates Ral dependent exocyst trafficking and anchorage independent growth signalling.

    PubMed

    Pawar, Archana; Meier, Jeremy A; Dasgupta, Anwesha; Diwanji, Neha; Deshpande, Neha; Saxena, Kritika; Buwa, Natasha; Inchanalkar, Siddhi; Schwartz, Martin Alexander; Balasubramanian, Nagaraj

    2016-09-01

    Integrin dependent regulation of growth factor signalling confers anchorage dependence that is deregulated in cancers. Downstream of integrins and oncogenic Ras the small GTPase Ral is a vital mediator of adhesion dependent trafficking and signalling. This study identifies a novel regulatory crosstalk between Ral and Arf6 that controls Ral function in cells. In re-adherent mouse fibroblasts (MEFs) integrin dependent activation of RalA drives Arf6 activation. Independent of adhesion constitutively active RalA and RalB could both however activate Arf6. This is further conserved in oncogenic H-Ras containing bladder cancer T24 cells, which express anchorage independent active Ral that supports Arf6 activation. Arf6 mediates active Ral-exocyst dependent delivery of raft microdomains to the plasma membrane that supports anchorage independent growth signalling. Accordingly in T24 cells the RalB-Arf6 crosstalk is seen to preferentially regulate anchorage independent Erk signalling. Active Ral we further find uses a Ral-RalBP1-ARNO-Arf6 pathway to mediate Arf6 activation. This study hence identifies Arf6, through this regulatory crosstalk, to be a key downstream mediator of Ral isoform function along adhesion dependent pathways in normal and cancer cells. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Therapy of Pelizaeus-Merzbacher disease in mice by feeding a cholesterol-enriched diet.

    PubMed

    Saher, Gesine; Rudolphi, Fabian; Corthals, Kristina; Ruhwedel, Torben; Schmidt, Karl-Friedrich; Löwel, Siegrid; Dibaj, Payam; Barrette, Benoit; Möbius, Wiebke; Nave, Klaus-Armin

    2012-07-01

    Duplication of PLP1 (proteolipid protein gene 1) and the subsequent overexpression of the myelin protein PLP (also known as DM20) in oligodendrocytes is the most frequent cause of Pelizaeus-Merzbacher disease (PMD), a fatal leukodystrophy without therapeutic options. PLP binds cholesterol and is contained within membrane lipid raft microdomains. Cholesterol availability is the rate-limiting factor of central nervous system myelin synthesis. Transgenic mice with extra copies of the Plp1 gene are accurate models of PMD. Dysmyelination followed by demyelination, secondary inflammation and axon damage contribute to the severe motor impairment in these mice. The finding that in Plp1-transgenic oligodendrocytes, PLP and cholesterol accumulate in late endosomes and lysosomes (endo/lysosomes), prompted us to further investigate the role of cholesterol in PMD. Here we show that cholesterol itself promotes normal PLP trafficking and that dietary cholesterol influences PMD pathology. In a preclinical trial, PMD mice were fed a cholesterol-enriched diet. This restored oligodendrocyte numbers and ameliorated intracellular PLP accumulation. Moreover, myelin content increased, inflammation and gliosis were reduced and motor defects improved. Even after onset of clinical symptoms, cholesterol treatment prevented disease progression. Dietary cholesterol did not reduce Plp1 overexpression but facilitated incorporation of PLP into myelin membranes. These findings may have implications for therapeutic interventions in patients with PMD.

  6. Spatial disorientation in right-hemisphere infarction: a study of the speed of recovery.

    PubMed Central

    Meerwaldt, J D

    1983-01-01

    Sixteen patients with an infarct in the posterior region of the right hemisphere were tested at fixed intervals after a stroke (2 weeks, 6 weeks, 3 months, 6 months, 1 year) with the rod orientation test and the line orientation test. All patients initially showed spatial disorientation on the rod orientation test, while only three had a defective performance on the line orientation test. The recovery on the rod orientation test was parallel with the neurological improvement. Recovery mainly took place in the first six months after the stroke. Most patients then performed at a normal level. A relation between the size of the lesion (assessed from CT scans) and the speed of recovery was found. PMID:6101178

  7. [Differences in growth and ontogenetic development of plants grown in the Earth gravitational field in the natural and inverse orientation].

    PubMed

    Smolianina, S O; Berkovich, Iu A; Krivobok, N M; Ivanov, V B

    2003-01-01

    Wheat plants Triticum aestivum L., Apogee cultivar, were grown in the natural and inverse orientation of the Earth gravitational field. Special vegetation containers with double bottom were used for the cultivation. The upper bottom made of porous titanium served as a hydrophilic porous membrane stabilizing aquatic potential in the root-inhabited zone at a given level. Normal plants yielding viable seeds were obtained for both natural and inverse orientation. In our experiments, the inverse orientation induced dry weight accumulation by the plants as well as development of productive tillering shoots and increased the shoot-root dry weight ratio.

  8. Attention Determines Contextual Enhancement versus Suppression in Human Primary Visual Cortex.

    PubMed

    Flevaris, Anastasia V; Murray, Scott O

    2015-09-02

    Neural responses in primary visual cortex (V1) depend on stimulus context in seemingly complex ways. For example, responses to an oriented stimulus can be suppressed when it is flanked by iso-oriented versus orthogonally oriented stimuli but can also be enhanced when attention is directed to iso-oriented versus orthogonal flanking stimuli. Thus the exact same contextual stimulus arrangement can have completely opposite effects on neural responses-in some cases leading to orientation-tuned suppression and in other cases leading to orientation-tuned enhancement. Here we show that stimulus-based suppression and enhancement of fMRI responses in humans depends on small changes in the focus of attention and can be explained by a model that combines feature-based attention with response normalization. Neurons in the primary visual cortex (V1) respond to stimuli within a restricted portion of the visual field, termed their "receptive field." However, neuronal responses can also be influenced by stimuli that surround a receptive field, although the nature of these contextual interactions and underlying neural mechanisms are debated. Here we show that the response in V1 to a stimulus in the same context can either be suppressed or enhanced depending on the focus of attention. We are able to explain the results using a simple computational model that combines two well established properties of visual cortical responses: response normalization and feature-based enhancement. Copyright © 2015 the authors 0270-6474/15/3512273-08$15.00/0.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnew, Douglas W.; DiMucci, Ida M.; Arroyave, Alejandra

    A permanently porous, three-dimensional metal–organic material formed from zero-valent metal nodes is presented. Combination of ditopic m-terphenyl diisocyanide, [CNAr Mes2] 2, and the d 10 Ni(0) precursor Ni(COD) 2, produces a porous metal–organic material featuring tetrahedral [Ni(CNAr Mes2) 4] n structural sites. X-ray absorption spectroscopy provides firm evidence for the presence of Ni(0) centers, whereas gas-sorption and thermogravimetric analysis reveal the characteristics of a robust network with a microdomain N 2-adsorption profile.

  10. Viral attachment induces rapid recruitment of an innate immune sensor (TRIM5α) to the plasma membrane.

    PubMed

    Ohmine, Seiga; Singh, Raman Deep; Marks, David L; Meyer, Melissa A; Pagano, Richard E; Ikeda, Yasuhiro

    2013-01-01

    TRIM5α (tripartite motif 5α) acts as a pattern recognition receptor specific for the retrovirus capsid lattice and blocks infection by HIV-1 immediately after entry. However, the precise mechanisms underlying this rapid recognition of viral components remain elusive. Here, we analyzed the influence of viral exposure on TRIM5α. Total internal reflection fluorescence microscopy and lipid flotation assays revealed rapid recruitment of a TRIM5α subpopulation to the plasma membrane (PM) upon exposure to vesicular stomatitis virus-G-pseudotyped HIV-1 viral-like particles (VLPs), but not to envelope (Env)-less HIV-1 VLPs. TRIM5α signals were frequently colocalized with those of HIV-1 capsid at the PM. Exposure to HIV-1 Env-pseudotyped HIV-1 vectors also triggered translocation of endogenous TRIM5α to lipid microdomains within human T cells. Similarly, clustering of lipid microdomains by a glycosphingolipid stereoisomer resulted in rapid TRIM5α recruitment to the PM. Of note, recruitment of endogenous rhesus TRIM5α to the PM prior to HIV-1 infection significantly increased the potency of viral restriction. Our data therefore suggest the importance of TRIM5α recruitment to the PM for TRIM5α-mediated innate immune sensing and restriction of retroviral infection. Copyright © 2013 S. Karger AG, Basel.

  11. Structured illumination to spatially map chromatin motions.

    PubMed

    Bonin, Keith; Smelser, Amanda; Moreno, Naike Salvador; Holzwarth, George; Wang, Kevin; Levy, Preston; Vidi, Pierre-Alexandre

    2018-05-01

    We describe a simple optical method that creates structured illumination of a photoactivatable probe and apply this method to characterize chromatin motions in nuclei of live cells. A laser beam coupled to a diffractive optical element at the back focal plane of an excitation objective generates an array of near diffraction-limited beamlets with FWHM of 340  ±  30  nm, which simultaneously photoactivate a 7  ×  7 matrix pattern of GFP-labeled histones, with spots 1.70  μm apart. From the movements of the photoactivated spots, we map chromatin diffusion coefficients at multiple microdomains of the cell nucleus. The results show correlated motions of nearest chromatin microdomain neighbors, whereas chromatin movements are uncorrelated at the global scale of the nucleus. The method also reveals a DNA damage-dependent decrease in chromatin diffusion. The diffractive optical element instrumentation can be easily and cheaply implemented on commercial inverted fluorescence microscopes to analyze adherent cell culture models. A protocol to measure chromatin motions in nonadherent human hematopoietic stem and progenitor cells is also described. We anticipate that the method will contribute to the identification of the mechanisms regulating chromatin mobility, which influences most genomic processes and may underlie the biogenesis of genomic translocations associated with hematologic malignancies. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. Viruses and tetraspanins: lessons from single molecule approaches.

    PubMed

    Dahmane, Selma; Rubinstein, Eric; Milhiet, Pierre-Emmanuel

    2014-05-05

    Tetraspanins are four-span membrane proteins that are widely distributed in multi-cellular organisms and involved in several infectious diseases. They have the unique property to form a network of protein-protein interaction within the plasma membrane, due to the lateral associations with one another and with other membrane proteins. Tracking tetraspanins at the single molecule level using fluorescence microscopy has revealed the membrane behavior of the tetraspanins CD9 and CD81 in epithelial cell lines, providing a first dynamic view of this network. Single molecule tracking highlighted that these 2 proteins can freely diffuse within the plasma membrane but can also be trapped, permanently or transiently, in tetraspanin-enriched areas. More recently, a similar strategy has been used to investigate tetraspanin membrane behavior in the context of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) infection. In this review we summarize the main results emphasizing the relationship in terms of membrane partitioning between tetraspanins, some of their partners such as Claudin-1 and EWI-2, and viral proteins during infection. These results will be analyzed in the context of other membrane microdomains, stressing the difference between raft and tetraspanin-enriched microdomains, but also in comparison with virus diffusion at the cell surface. New advanced single molecule techniques that could help to further explore tetraspanin assemblies will be also discussed.

  13. Multiscale models and stochastic simulation methods for computing rare but key binding events in cell biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrier, C.; Holcman, D., E-mail: david.holcman@ens.fr; Mathematical Institute, Oxford OX2 6GG, Newton Institute

    The main difficulty in simulating diffusion processes at a molecular level in cell microdomains is due to the multiple scales involving nano- to micrometers. Few to many particles have to be simulated and simultaneously tracked while there are exploring a large portion of the space for binding small targets, such as buffers or active sites. Bridging the small and large spatial scales is achieved by rare events representing Brownian particles finding small targets and characterized by long-time distribution. These rare events are the bottleneck of numerical simulations. A naive stochastic simulation requires running many Brownian particles together, which is computationallymore » greedy and inefficient. Solving the associated partial differential equations is also difficult due to the time dependent boundary conditions, narrow passages and mixed boundary conditions at small windows. We present here two reduced modeling approaches for a fast computation of diffusing fluxes in microdomains. The first approach is based on a Markov mass-action law equations coupled to a Markov chain. The second is a Gillespie's method based on the narrow escape theory for coarse-graining the geometry of the domain into Poissonian rates. The main application concerns diffusion in cellular biology, where we compute as an example the distribution of arrival times of calcium ions to small hidden targets to trigger vesicular release.« less

  14. Fluorescence Recovery After Photobleaching Analysis of the Diffusional Mobility of Plasma Membrane Proteins: HER3 Mobility in Breast Cancer Cell Membranes.

    PubMed

    Sarkar, Mitul; Koland, John G

    2016-01-01

    The fluorescence recovery after photobleaching (FRAP) method is a straightforward means of assessing the diffusional mobility of membrane-associated proteins that is readily performed with current confocal microscopy instrumentation. We describe here the specific application of the FRAP method in characterizing the lateral diffusion of genetically encoded green fluorescence protein (GFP)-tagged plasma membrane receptor proteins. The method is exemplified in an examination of whether the previously observed segregation of the mammalian HER3 receptor protein in discrete plasma membrane microdomains results from its physical interaction with cellular entities that restrict its mobility. Our FRAP measurements of the diffusional mobility of GFP-tagged HER3 reporters expressed in MCF7 cultured breast cancer cells showed that despite the observed segregation of HER3 receptors within plasma membrane microdomains their diffusion on the macroscopic scale is not spatially restricted. Thus, in FRAP analyses of various HER3 reporters a near-complete recovery of fluorescence after photobleaching was observed, indicating that HER3 receptors are not immobilized by long-lived physical interactions with intracellular species. An examination of HER3 proteins with varying intracellular domain sequence truncations also indicated that a proposed formation of oligomeric HER3 networks, mediated by physical interactions involving specific HER3 intracellular domain sequences, either does not occur or does not significantly reduce HER3 mobility on the macroscopic scale.

  15. Identification, Localization, and Functional Implications of the Microdomain-Forming Stomatin Family in the Ciliated Protozoan Paramecium tetraurelia

    PubMed Central

    Stuermer, Claudia A. O.; Plattner, Helmut

    2013-01-01

    The SPFH protein superfamily is assumed to occur universally in eukaryotes, but information from protozoa is scarce. In the Paramecium genome, we found only Stomatins, 20 paralogs grouped in 8 families, STO1 to STO8. According to cDNA analysis, all are expressed, and molecular modeling shows the typical SPFH domain structure for all subgroups. For further analysis we used family-specific sequences for fluorescence and immunogold labeling, gene silencing, and functional tests. With all family members tested, we found a patchy localization at/near the cell surface and on vesicles. The Sto1p and Sto4p families are also associated with the contractile vacuole complex. Sto4p also makes puncta on some food vacuoles and is abundant on vesicles recycling from the release site of spent food vacuoles to the site of nascent food vacuole formation. Silencing of the STO1 family reduces mechanosensitivity (ciliary reversal upon touching an obstacle), thus suggesting relevance for positioning of mechanosensitive channels in the plasmalemma. Silencing of STO4 members increases pulsation frequency of the contractile vacuole complex and reduces phagocytotic activity of Paramecium cells. In summary, Sto1p and Sto4p members seem to be involved in positioning specific superficial and intracellular microdomain-based membrane components whose functions may depend on mechanosensation (extracellular stimuli and internal osmotic pressure). PMID:23376944

  16. Coupling of SK channels, L-type Ca2+ channels, and ryanodine receptors in cardiomyocytes.

    PubMed

    Zhang, Xiao-Dong; Coulibaly, Zana A; Chen, Wei Chun; Ledford, Hannah A; Lee, Jeong Han; Sirish, Padmini; Dai, Gu; Jian, Zhong; Chuang, Frank; Brust-Mascher, Ingrid; Yamoah, Ebenezer N; Chen-Izu, Ye; Izu, Leighton T; Chiamvimonvat, Nipavan

    2018-03-16

    Small-conductance Ca 2+ -activated K + (SK) channels regulate the excitability of cardiomyocytes by integrating intracellular Ca 2+ and membrane potentials on a beat-to-beat basis. The inextricable interplay between activation of SK channels and Ca 2+ dynamics suggests the pathology of one begets another. Yet, the exact mechanistic underpinning for the activation of cardiac SK channels remains unaddressed. Here, we investigated the intracellular Ca 2+ microdomains necessary for SK channel activation. SK currents coupled with Ca 2+ influx via L-type Ca 2+ channels (LTCCs) continued to be elicited after application of caffeine, ryanodine or thapsigargin to deplete SR Ca 2+ store, suggesting that LTCCs provide the immediate Ca 2+ microdomain for the activation of SK channels in cardiomyocytes. Super-resolution imaging of SK2, Ca v 1.2 Ca 2+ channel, and ryanodine receptor 2 (RyR2) was performed to quantify the nearest neighbor distances (NND) and localized the three molecules within hundreds of nanometers. The distribution of NND between SK2 and RyR2 as well as SK2 and Ca v 1.2 was bimodal, suggesting a spatial relationship between the channels. The activation mechanism revealed by our study paved the way for the understanding of the roles of SK channels on the feedback mechanism to regulate the activities of LTCCs and RyR2 to influence local and global Ca 2+ signaling.

  17. A Shotgun Proteomic Approach Reveals That Fe Deficiency Causes Marked Changes in the Protein Profiles of Plasma Membrane and Detergent-Resistant Microdomain Preparations from Beta vulgaris Roots.

    PubMed

    Gutierrez-Carbonell, Elain; Takahashi, Daisuke; Lüthje, Sabine; González-Reyes, José Antonio; Mongrand, Sébastien; Contreras-Moreira, Bruno; Abadía, Anunciación; Uemura, Matsuo; Abadía, Javier; López-Millán, Ana Flor

    2016-08-05

    In the present study we have used label-free shotgun proteomic analysis to examine the effects of Fe deficiency on the protein profiles of highly pure sugar beet root plasma membrane (PM) preparations and detergent-resistant membranes (DRMs), the latter as an approach to study microdomains. Altogether, 545 proteins were detected, with 52 and 68 of them changing significantly with Fe deficiency in PM and DRM, respectively. Functional categorization of these proteins showed that signaling and general and vesicle-related transport accounted for approximately 50% of the differences in both PM and DRM, indicating that from a qualitative point of view changes induced by Fe deficiency are similar in both preparations. Results indicate that Fe deficiency has an impact in phosphorylation processes at the PM level and highlight the involvement of signaling proteins, especially those from the 14-3-3 family. Lipid profiling revealed Fe-deficiency-induced decreases in phosphatidic acid derivatives, which may impair vesicle formation, in agreement with the decreases measured in proteins related to intracellular trafficking and secretion. The modifications induced by Fe deficiency in the relative enrichment of proteins in DRMs revealed the existence of a group of cytoplasmic proteins that appears to be more attached to the PM in conditions of Fe deficiency.

  18. An integrated mechanism of cardiomyocyte nuclear Ca(2+) signaling.

    PubMed

    Ibarra, Cristián; Vicencio, Jose Miguel; Varas-Godoy, Manuel; Jaimovich, Enrique; Rothermel, Beverly A; Uhlén, Per; Hill, Joseph A; Lavandero, Sergio

    2014-10-01

    In cardiomyocytes, Ca(2+) plays a central role in governing both contraction and signaling events that regulate gene expression. Current evidence indicates that discrimination between these two critical functions is achieved by segregating Ca(2+) within subcellular microdomains: transcription is regulated by Ca(2+) release within nuclear microdomains, and excitation-contraction coupling is regulated by cytosolic Ca(2+). Accordingly, a variety of agonists that control cardiomyocyte gene expression, such as endothelin-1, angiotensin-II or insulin-like growth factor-1, share the feature of triggering nuclear Ca(2+) signals. However, signaling pathways coupling surface receptor activation to nuclear Ca(2+) release, and the phenotypic responses to such signals, differ between agonists. According to earlier hypotheses, the selective control of nuclear Ca(2+) signals by activation of plasma membrane receptors relies on the strategic localization of inositol trisphosphate receptors at the nuclear envelope. There, they mediate Ca(2+) release from perinuclear Ca(2+) stores upon binding of inositol trisphosphate generated in the cytosol, which diffuses into the nucleus. More recently, identification of such receptors at nuclear membranes or perinuclear sarcolemmal invaginations has uncovered novel mechanisms whereby agonists control nuclear Ca(2+) release. In this review, we discuss mechanisms for the selective control of nuclear Ca(2+) signals with special focus on emerging models of agonist receptor activation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Association of Shiga toxin glycosphingolipid receptors with membrane microdomains of toxin-sensitive lymphoid and myeloid cells[S

    PubMed Central

    Kouzel, Ivan U.; Pohlentz, Gottfried; Storck, Wiebke; Radamm, Lena; Hoffmann, Petra; Bielaszewska, Martina; Bauwens, Andreas; Cichon, Christoph; Schmidt, M. Alexander; Mormann, Michael; Karch, Helge; Müthing, Johannes

    2013-01-01

    Glycosphingolipids (GSLs) of the globo-series constitute specific receptors for Shiga toxins (Stxs) released by certain types of pathogenic Escherichia coli strains. Stx-loaded leukocytes may act as transporter cells in the blood and transfer the toxin to endothelial target cells. Therefore, we performed a thorough investigation on the expression of globo-series GSLs in serum-free cultivated Raji and Jurkat cells, representing B- and T-lymphocyte descendants, respectively, as well as THP-1 and HL-60 cells of the monocyte and granulocyte lineage, respectively. The presence of Stx-receptors in GSL preparations of Raji and THP-1 cells and the absence in Jurkat and HL-60 cells revealed high compliance of solid-phase immunodetection assays with the expression profiles of receptor-related glycosyltransferases, performed by qRT-PCR analysis, and Stx2-caused cellular damage. Canonical microdomain association of Stx GSL receptors, sphingomyelin, and cholesterol in membranes of Raji and THP-1 cells was assessed by comparative analysis of detergent-resistant membrane (DRM) and nonDRM fractions obtained by density gradient centrifugation and showed high correlation based on nonparametric statistical analysis. Our comprehensive study on the expression of Stx-receptors and their subcellular distribution provides the basis for exploring the functional role of lipid raft-associated Stx-receptors in cells of leukocyte origin. PMID:23248329

  20. Lecithin organogels used as bioactive compounds carriers. A microdomain properties investigation.

    PubMed

    Avramiotis, Spyridon; Papadimitriou, Vassiliki; Hatzara, Elina; Bekiari, Vlasoula; Lianos, Panagiotis; Xenakis, Aristotelis

    2007-04-10

    Organogels were obtained by adding small amounts of water to a solution of lecithin in organic solvents. Either isooctane or isopropyl palmitate and isopropyl myristate were used as the continuous organic phase of the gels. EPR spectroscopy using both DSA membrane-sensitive and lipophilic spin probes was applied to define the dynamic structure of the surfactant monolayer and the continuous oil phase of lecithin organogels. It was found that by increasing the water quantity, an increase of the polar head area per lecithin molecule was induced, and as a consequence the total interface expanded. It was found that the use of esters as organic solvents induced a decrease of the size of the dispersed structures. The interconnection of the aqueous microdomains and their dynamics were monitored by both static and time-resolved fluorescence quenching spectroscopy using Ru(bipy)32+ as fluorophore and Fe(CN)63- as quencher. It was found that the rates of inter- and/or intra-micellar exchange of water molecules were very slow because they appeared quite immobilized close to the lecithin polar heads. According to the results of the dynamic studies, appropriate organogels were formulated and used to incorporate model bioactive compounds with medicinal or cosmetic interest such as caffeine and theophylline. When these systems were tested for trans-membrane diffusion, they showed a 24 h permeation of 20% and 35%, respectively.

  1. Shaping intercellular channels of plasmodesmata: the structure-to-function missing link.

    PubMed

    Nicolas, William J; Grison, Magali S; Bayer, Emmanuelle M

    2017-12-18

    Plasmodesmata (PD) are a hallmark of the plant kingdom and a cornerstone of plant biology and physiology, forming the conduits for the cell-to-cell transfer of proteins, RNA and various metabolites, including hormones. They connect the cytosols and endomembranes of cells, which allows enhanced cell-to-cell communication and synchronization. Because of their unique position as intercellular gateways, they are at the frontline of plant defence and signalling and constitute the battleground for virus replication and spreading. The membranous organization of PD is remarkable, where a tightly furled strand of endoplasmic reticulum comes into close apposition with the plasma membrane, the two connected by spoke-like elements. The role of these structural features is, to date, still not completely understood. Recent data on PD seem to point in an unexpected direction, establishing a close parallel between PD and membrane contact sites and defining plasmodesmal membranes as microdomains. However, the implications of this new viewpoint are not fully understood. Aided by available phylogenetic data, this review attempts to reassess the function of the different elements comprising the PD and the relevance of membrane lipid composition and biophysics in defining specialized microdomains of PD, critical for their function. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. TRPV4 channels stimulate Ca2+-induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses.

    PubMed

    Dunn, Kathryn M; Hill-Eubanks, David C; Liedtke, Wolfgang B; Nelson, Mark T

    2013-04-09

    In the CNS, astrocytes are sensory and regulatory hubs that play important roles in cerebral homeostatic processes, including matching local cerebral blood flow to neuronal metabolism (neurovascular coupling). These cells possess a highly branched network of processes that project from the soma to neuronal synapses as well as to arterioles and capillaries, where they terminate in "endfeet" that encase the blood vessels. Ca(2+) signaling within the endfoot mediates neurovascular coupling; thus, these functional microdomains control vascular tone and local perfusion in the brain. Transient receptor potential vanilloid 4 (TRPV4) channels--nonselective cation channels with considerable Ca(2+) conductance--have been identified in astrocytes, but their function is largely unknown. We sought to characterize the influence of TRPV4 channels on Ca(2+) dynamics in the astrocytic endfoot microdomain and assess their role in neurovascular coupling. We identified local TRPV4-mediated Ca(2+) oscillations in endfeet and further found that TRPV4 Ca(2+) signals are amplified and propagated by Ca(2+)-induced Ca(2+) release from inositol trisphosphate receptors (IP3Rs). Moreover, TRPV4-mediated Ca(2+) influx contributes to the endfoot Ca(2+) response to neuronal activation, enhancing the accompanying vasodilation. Our results identify a dynamic synergy between TRPV4 channels and IP3Rs in astrocyte endfeet and demonstrate that TRPV4 channels are engaged in and contribute to neurovascular coupling.

  3. Cytochrome P450 Organization and Function Are Modulated by Endoplasmic Reticulum Phospholipid Heterogeneity.

    PubMed

    Brignac-Huber, Lauren M; Park, Ji Won; Reed, James R; Backes, Wayne L

    2016-12-01

    Cytochrome P450s (P450s) comprise a superfamily of proteins that catalyze numerous monooxygenase reactions in animals, plants, and bacteria. In eukaryotic organisms, these proteins not only carry out reactions necessary for the metabolism of endogenous compounds, but they are also important in the oxidation of exogenous drugs and other foreign compounds. Eukaryotic P450 system proteins generally reside in membranes, primarily the endoplasmic reticulum or the mitochondrial membrane. These membranes provide a scaffold for the P450 system proteins that facilitate interactions with their redox partners as well as other P450s. This review focuses on the ability of specific lipid components to influence P450 activities, as well as the role of the membrane in P450 function. These studies have shown that P450s and NADPH-cytochrome P450 reductase appear to selectively associate with specific phospholipids and that these lipid-protein interactions influence P450 activities. Finally, because of the heterogeneous nature of the endoplasmic reticulum as well as other biologic membranes, the phospholipids are not arranged randomly but associate to generate lipid microdomains. Together, these characteristics can affect P450 function by 1) altering the conformation of the proteins, 2) influencing the P450 interactions with their redox partners, and 3) affecting the localization of the proteins into specific membrane microdomains. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case.

    PubMed

    Halova, Ivana; Draber, Petr

    2016-01-01

    The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.

  5. RaftProt: mammalian lipid raft proteome database.

    PubMed

    Shah, Anup; Chen, David; Boda, Akash R; Foster, Leonard J; Davis, Melissa J; Hill, Michelle M

    2015-01-01

    RaftProt (http://lipid-raft-database.di.uq.edu.au/) is a database of mammalian lipid raft-associated proteins as reported in high-throughput mass spectrometry studies. Lipid rafts are specialized membrane microdomains enriched in cholesterol and sphingolipids thought to act as dynamic signalling and sorting platforms. Given their fundamental roles in cellular regulation, there is a plethora of information on the size, composition and regulation of these membrane microdomains, including a large number of proteomics studies. To facilitate the mining and analysis of published lipid raft proteomics studies, we have developed a searchable database RaftProt. In addition to browsing the studies, performing basic queries by protein and gene names, searching experiments by cell, tissue and organisms; we have implemented several advanced features to facilitate data mining. To address the issue of potential bias due to biochemical preparation procedures used, we have captured the lipid raft preparation methods and implemented advanced search option for methodology and sample treatment conditions, such as cholesterol depletion. Furthermore, we have identified a list of high confidence proteins, and enabled searching only from this list of likely bona fide lipid raft proteins. Given the apparent biological importance of lipid raft and their associated proteins, this database would constitute a key resource for the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. FRET-Based Nanobiosensors for Imaging Intracellular Ca²⁺ and H⁺ Microdomains.

    PubMed

    Zamaleeva, Alsu I; Despras, Guillaume; Luccardini, Camilla; Collot, Mayeul; de Waard, Michel; Oheim, Martin; Mallet, Jean-Maurice; Feltz, Anne

    2015-09-23

    Semiconductor nanocrystals (NCs) or quantum dots (QDs) are luminous point emitters increasingly being used to tag and track biomolecules in biological/biomedical imaging. However, their intracellular use as highlighters of single-molecule localization and nanobiosensors reporting ion microdomains changes has remained a major challenge. Here, we report the design, generation and validation of FRET-based nanobiosensors for detection of intracellular Ca(2+) and H⁺ transients. Our sensors combine a commercially available CANdot(®)565QD as an energy donor with, as an acceptor, our custom-synthesized red-emitting Ca(2+) or H⁺ probes. These 'Rubies' are based on an extended rhodamine as a fluorophore and a phenol or BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid) for H⁺ or Ca(2+) sensing, respectively, and additionally bear a linker arm for conjugation. QDs were stably functionalized using the same SH/maleimide crosslink chemistry for all desired reactants. Mixing ion sensor and cell-penetrating peptides (that facilitate cytoplasmic delivery) at the desired stoichiometric ratio produced controlled multi-conjugated assemblies. Multiple acceptors on the same central donor allow up-concentrating the ion sensor on the QD surface to concentrations higher than those that could be achieved in free solution, increasing FRET efficiency and improving the signal. We validate these nanosensors for the detection of intracellular Ca(2+) and pH transients using live-cell fluorescence imaging.

  7. Anisotropy of magnetic susceptibility studies in Tertiary ridge-parallel dykes (Iceland), Tertiary margin-normal Aishihik dykes (Yukon), and Proterozoic Kenora Kabetogama composite dykes (Minnesota and Ontario)

    NASA Astrophysics Data System (ADS)

    Craddock, John P.; Kennedy, Bryan C.; Cook, Avery L.; Pawlisch, Melissa S.; Johnston, Stephen T.; Jackson, Mike

    2008-02-01

    Mafic dykes of different ages were collected from three different tectonic settings and analyzed using anisotropy of magnetic susceptibility (AMS) as a proxy for magmatic flow during intrusion. In Iceland, ridge-parallel basaltic dykes were sampled on each side of the active tectonic boundary. The dykes are < 10 m wide along a 1-2 km strike, and are the result of a single intrusion from 1-2 km deep magma chambers in oceanic crust. Thirteen samples were collected (7 N. American plate; 6 European) and 153 cores were analyzed by AMS and preserve a vertical Kmax orientation indicating vertical emplacement. The Eocene Aishihik dyke swarm intrudes the Yukon-Tanana terrane in the Yukon province, Canada over an area ~ 200 by 60 km. These dykes were intruded normal to the accretionary margin, are porphyritic andesites, and have an intermediate geochemical signature based on major and trace element analyses. Ten dykes were sampled and 111 cores analyzed using AMS, and the dykes preserve a vertical Kmax orientation, indicating intrusion was vertical through ~ 30 km of continental crust. The 2.06 Ga Kenora-Kabetogama dykes in northern Minnesota and western Ontario crosscut a variety of Archean terranes (thickness ~ 50 km) in a radiating pattern. The unmetamorphosed basaltic dykes are 1-120 m wide, 10-110 km in length, are vertical in orientation and can be grouped as either being single intrusion or multiple intrusion (composite) dykes. AMS data preserve a vertical Kmax orientation for the southerly locations (2 dykes, n = 53) and horizontal Kmax for the remainder to the northwest (15 dykes, n = 194). Maximum magnetic susceptibility axes (4 dykes, n = 92) for composite dykes are scattered and yield inconsistent flow directions with regard to the dyke margin. Almost all of our results are "normal" in that, the magnetic foliation (the plane containing Kmax and Kint, normal to Kmin) is parallel to the dyke planes, which gives us confidence that the magnetic lineations (i.e., Kmax orientations) are parallel to magmatic flow.

  8. Theory into Practice: Advancing Normalization for the Child under Three

    ERIC Educational Resources Information Center

    Conklin-Moore, Alyssa

    2017-01-01

    Alyssa Conklin-Moore discusses normalization in the child under three from several perspectives. She takes an extensive look at the child, including orienting parents to the Montessori environment, the child's entrance into the environment, addressing the sensitive periods, and fostering independence, contribution, and community. She reminds the…

  9. Earthquake damage orientation to infer seismic parameters in archaeological sites and historical earthquakes

    NASA Astrophysics Data System (ADS)

    Martín-González, Fidel

    2018-01-01

    Studies to provide information concerning seismic parameters and seismic sources of historical and archaeological seismic events are used to better evaluate the seismic hazard of a region. This is of especial interest when no surface rupture is recorded or the seismogenic fault cannot be identified. The orientation pattern of the earthquake damage (ED) (e.g., fallen columns, dropped key stones) that affected architectonic elements of cities after earthquakes has been traditionally used in historical and archaeoseismological studies to infer seismic parameters. However, in the literature depending on the authors, the parameters that can be obtained are contradictory (it has been proposed: the epicenter location, the orientation of the P-waves, the orientation of the compressional strain and the fault kinematics) and authors even question these relations with the earthquake damage. The earthquakes of Lorca in 2011, Christchurch in 2011 and Emilia Romagna in 2012 present an opportunity to measure systematically a large number and wide variety of earthquake damage in historical buildings (the same structures that are used in historical and archaeological studies). The damage pattern orientation has been compared with modern instrumental data, which is not possible in historical and archaeoseismological studies. From measurements and quantification of the orientation patterns in the studied earthquakes, it is observed that there is a systematic pattern of the earthquake damage orientation (EDO) in the proximity of the seismic source (fault trace) (<10 km). The EDO in these earthquakes is normal to the fault trend (±15°). This orientation can be generated by a pulse of motion that in the near fault region has a distinguishable acceleration normal to the fault due to the polarization of the S-waves. Therefore, the earthquake damage orientation could be used to estimate the seismogenic fault trend of historical earthquakes studies where no instrumental data are available.

  10. Anatomy and histology of the sacroiliac joints.

    PubMed

    Egund, Niels; Jurik, Anne Grethe

    2014-07-01

    The anatomy of joints provides an important basis for understanding the nature and imaging of pathologic lesions and their imaging appearance. This applies especially to the sacroiliac (SI) joints, which play a major role in the diagnosis of spondyloarthritis. They are composed of two different joint portions, a cartilage-covered portion ventrally and a ligamentous portion dorsally, and thus rather complex anatomically. Knowledge of anatomy and the corresponding normal imaging findings are important in the imaging diagnosis of sacroiliitis, especially by MR imaging. A certain distinction between the two joint portions by MR imaging is only obtainable by axial slice orientation. Together with a perpendicular coronal slice orientation, it provides adequate anatomical information and thereby a possibility for detecting the anatomical site of disease-specific characteristics and normal variants simulating disease. This overview describes current knowledge about the normal macroscopic and microscopic anatomy of the SI joints. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. Interactions between Polygonal Normal Faults and Larger Normal Faults, Offshore Nova Scotia, Canada

    NASA Astrophysics Data System (ADS)

    Pham, T. Q. H.; Withjack, M. O.; Hanafi, B. R.

    2017-12-01

    Polygonal faults, small normal faults with polygonal arrangements that form in fine-grained sedimentary rocks, can influence ground-water flow and hydrocarbon migration. Using well and 3D seismic-reflection data, we have examined the interactions between polygonal faults and larger normal faults on the passive margin of offshore Nova Scotia, Canada. The larger normal faults strike approximately E-W to NE-SW. Growth strata indicate that the larger normal faults were active in the Late Cretaceous (i.e., during the deposition of the Wyandot Formation) and during the Cenozoic. The polygonal faults were also active during the Cenozoic because they affect the top of the Wyandot Formation, a fine-grained carbonate sedimentary rock, and the overlying Cenozoic strata. Thus, the larger normal faults and the polygonal faults were both active during the Cenozoic. The polygonal faults far from the larger normal faults have a wide range of orientations. Near the larger normal faults, however, most polygonal faults have preferred orientations, either striking parallel or perpendicular to the larger normal faults. Some polygonal faults nucleated at the tip of a larger normal fault, propagated outward, and linked with a second larger normal fault. The strike of these polygonal faults changed as they propagated outward, ranging from parallel to the strike of the original larger normal fault to orthogonal to the strike of the second larger normal fault. These polygonal faults hard-linked the larger normal faults at and above the level of the Wyandot Formation but not below it. We argue that the larger normal faults created stress-enhancement and stress-reorientation zones for the polygonal faults. Numerous small, polygonal faults formed in the stress-enhancement zones near the tips of larger normal faults. Stress-reorientation zones surrounded the larger normal faults far from their tips. Fewer polygonal faults are present in these zones, and, more importantly, most polygonal faults in these zones were either parallel or perpendicular to the larger faults.

  12. Scattering from Rock and Rock Outcrops

    DTIC Science & Technology

    2014-09-30

    orientations and size distributions reflect the internal fault organization of the bedrock. The plot in Fig. 3 displays experimentally determined PFA...mechanisms contributing could be scattering from small scale roughness combined with specular scattering from facets oriented close to normal incidence to...Larvik, Norway made with a stereo photogrammetry system. 7 IMPACT/APPLICATIONS The primary work completed over the course of this project

  13. Graphene-Based Polymer Nanocomposites

    DTIC Science & Technology

    2015-03-31

    Raman band I(δ) X - ray scattering intensity in the azimuthal scan I(r) Raman band intensity within laser spot I(ω...Krenchel orientation factor Θ Angle between the incident and the scattering X - ray θ Angle between the surface normal of graphene and sample λ...Wavelength of laser or X - ray λ2/λ4 Parameter in orientation distribution function µ Molecular dipole moment

  14. Fine tuning and orientation control of surface Cu complexes on TiO2(110) premodified with mercapto compounds: the effect of different mercapto group positions.

    PubMed

    Takakusagi, Satoru; Nojima, Hirotaka; Ariga, Hiroko; Uehara, Hiromitsu; Miyazaki, Kotaro; Chun, Wang-Jae; Iwasawa, Yasuhiro; Asakura, Kiyotaka

    2013-09-07

    Three-dimensional structures of vacuum-deposited Cu species formed on TiO2(110) surfaces premodified with three mercaptobenzoic acid (MBA) isomers were studied using polarization-dependent total reflection fluorescence X-ray absorption fine structure (PTRF-XAFS). We explored the possibility of fine tuning and orientation control of the surface Cu structures, including their coordination and configuration against the surface, according to the different mercapto group positions of the three MBA isomers (o-, m-, and p-MBA). Almost linear S-Cu-O (lattice O of TiO2) surface compounds were formed on the three MBA-modified TiO2(110) surfaces; however, the orientation of the Cu species on the o- and m-MBA-modified TiO2(110) surfaces (40-45° inclined from the surface normal) was different from that on the p-MBA-modified TiO2(110) surface (60° from the surface normal). This work suggests that the selection of a different MBA isomer for premodification of a single crystal TiO2(110) surface enables fine tuning and orientation control of surface Cu complexes.

  15. Comparison of the diagnostic quality of computed tomography images of normal ocular and orbital structures acquired with and without the use of general anesthesia in the cat.

    PubMed

    Collins, Sean P; Matheson, Jodi S; Hamor, Ralph E; Mitchell, Mark A; Labelle, Amber L; O'Brien, Robert T

    2013-09-01

    To compare the diagnostic quality of computed tomography (CT) images of normal ocular and orbital structures acquired with and without the use of general anesthesia in the cat. Eleven privately owned cats with nasal disease presenting to a single referral hospital. All cats received a complete ophthalmic examination. A 16 multislice helical CT system was utilized to acquire images of the skull and neck with and without the use of general anesthesia. Images were acquired before and after the administration of intravenous iodinated contrast. Images of normal ocular and orbital structures were evaluated via consensus by two board-certified radiologists. Visibility of ocular and orbital structures, degree of motion, and streak artifact were assessed and scored for each image set in the transverse, dorsal, and sagittal planes. The use of general anesthesia did not significantly affect the diagnostic quality of images. No motion artifact was observed in any CT image. Streak artifact was significantly increased in scans performed in the transverse orientation but not in the dorsal orientation or sagittal orientation and did not affect the diagnostic quality of the images. Contrast enhancement did not significantly enhance the visibility of any ocular or orbital structures. Diagnostic CT images of normal ocular and orbital structures can be acquired without the use of general anesthesia in the cat. © 2012 American College of Veterinary Ophthalmologists.

  16. Reliability analysis of structural ceramics subjected to biaxial flexure

    NASA Technical Reports Server (NTRS)

    Chao, Luen-Yuan; Shetty, Dinesh K.

    1991-01-01

    The reliability of alumina disks subjected to biaxial flexure is predicted on the basis of statistical fracture theory using a critical strain energy release rate fracture criterion. Results on a sintered silicon nitride are consistent with reliability predictions based on pore-initiated penny-shaped cracks with preferred orientation normal to the maximum principal stress. Assumptions with regard to flaw types and their orientations in each ceramic can be justified by fractography. It is shown that there are no universal guidelines for selecting fracture criteria or assuming flaw orientations in reliability analyses.

  17. A Literature Survey of Reverberation Modeling: With Emphasis on Bellhop Compatibility for Operational Applications

    DTIC Science & Technology

    2010-09-01

    modèles à orientation opérationnelle ( comparativement à ceux orientés vers la recherche) qui pourraient être compatibles avec le modèle de propagation...concentre sur les modèles à orientation opérationnelle (en sacrifiant un certain degré d’exactitude pour accroître la réactivité, comparativement aux modèles...these modeling efforts are not applicable to Bellhop because they are designed specifically to take advantage of the normal mode decomposition

  18. Method for the fabrication of three-dimensional microstructures by deep X-ray lithography

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2005-04-05

    A method for the fabrication of three-dimensional microstructures by deep X-ray lithography (DXRL) comprises a masking process that uses a patterned mask with inclined mask holes and off-normal exposures with a DXRL beam aligned with the inclined mask holes. Microstructural features that are oriented in different directions can be obtained by using multiple off-normal exposures through additional mask holes having different orientations. Various methods can be used to block the non-aligned mask holes from the beam when using multiple exposures. A method for fabricating a precision 3D X-ray mask comprises forming an intermediate mask and a master mask on a common support membrane.

  19. Fabrication of Orientation-Controlled 3D Tissues Using a Layer-by-Layer Technique and 3D Printed a Thermoresponsive Gel Frame.

    PubMed

    Tsukamoto, Yoshinari; Akagi, Takami; Shima, Fumiaki; Akashi, Mitsuru

    2017-06-01

    Herein, we report the fabrication of orientation-controlled tissues similar to heart and nerve tissues using a cell accumulation and three-dimensional (3D) printing technique. We first evaluated the 3D shaping ability of hydroxybutyl chitosan (HBC), a thermoresponsive polymer, by using a robotic dispensing 3D printer. HBC polymer could be laminated to a height of 1124 ± 14 μm. Based on this result, we fabricated 3D gel frames of various shapes, such as square, triangular, rectangular, and circular, for shape control of 3D tissue and then normal human cardiac fibroblasts (NHCFs) coated with extracellular matrix nanofilms were seeded in the frames. Observation of shape-controlled tissues after 1 day of cultivation showed that the orientation of fibroblasts was in one direction when a short-sided, thin, rectangular-shaped frame was used. Next, we tried to fabricate orientation-controlled tissue with a vascular network by coculturing NHCF and normal human cardiac microvascular endothelial cells. As a consequence of cultivation for 4 days, observation of cocultured tissue confirmed aligned cells and blood capillaries in orientation-controlled tissue. Our results clearly demonstrated that it would be possible to control the cell orientation by controlling the shape of the tissues by combining a cell accumulation technique and a 3D printing system. The results of this study suggest promising strategies for the fabrication of oriented 3D tissues in vitro. These tissues, mimicking native organ structures, such as muscle and nerve tissue with a cell alignment structure, would be useful for tissue engineering, regenerative medicine, and pharmaceutical applications.

  20. Role of somatosensory and vestibular cues in attenuating visually induced human postural sway

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.; Benolken, Martha S.

    1993-01-01

    The purpose was to determine the contribution of visual, vestibular, and somatosensory cues to the maintenance of stance in humans. Postural sway was induced by full field, sinusoidal visual surround rotations about an axis at the level of the ankle joints. The influences of vestibular and somatosensory cues were characterized by comparing postural sway in normal and bilateral vestibular absent subjects in conditions that provided either accurate or inaccurate somatosensory orientation information. In normal subjects, the amplitude of visually induced sway reached a saturation level as stimulus amplitude increased. The saturation amplitude decreased with increasing stimulus frequency. No saturation phenomena was observed in subjects with vestibular loss, implying that vestibular cues were responsible for the saturation phenomenon. For visually induced sways below the saturation level, the stimulus-response curves for both normal and vestibular loss subjects were nearly identical implying that (1) normal subjects were not using vestibular information to attenuate their visually induced sway, possibly because sway was below a vestibular-related threshold level, and (2) vestibular loss subjects did not utilize visual cues to a greater extent than normal subjects; that is, a fundamental change in visual system 'gain' was not used to compensate for a vestibular deficit. An unexpected finding was that the amplitude of body sway induced by visual surround motion could be almost three times greater than the amplitude of the visual stimulus in normals and vestibular loss subjects. This occurred in conditions where somatosensory cues were inaccurate and at low stimulus amplitudes. A control system model of visually induced postural sway was developed to explain this finding. For both subject groups, the amplitude of visually induced sway was smaller by a factor of about four in tests where somatosensory cues provided accurate versus inaccurate orientation information. This implied that (1) the vestibular loss subjects did not utilize somatosensory cues to a greater extent than normal subjects; that is, changes in somatosensory system 'gain' were not used to compensate for a vestibular deficit, and (2) the threshold for the use of vestibular cues in normals was apparently lower in test conditions where somatosensory cues were providing accurate orientation information.

  1. [Perinatal clomiphene citrate treatment changes sexual orientations of male mice].

    PubMed

    He, Feng-Qin; Zhang, Heng-Rui

    2013-10-01

    Perinatal period and adolescence are critical for brain development, which is the biological basis of an individual's sexual orientation and sexual behavior. In this study, animals were divided into two groups and their sexual orientations were observed: one group experienced drug treatments during the perinatal period, and the other group was castrated at puberty. The results showed that estradiol treatment had no effect on mature male offspring's sexual orientations, but 9 days and 14 days of clomiphene citrate treatment significantly increased the chance of homosexuality and effeminized behavior. In addition, the sexual orientation of mature normal male offspring, which were castrated when they were 21 days old,was not significant different from the control animals. These findings suggest that the inhibition of perinatal estrogen activities could suppress individual male-typical responses, enhance female-typical responses and induce homosexual orientations. Moreover, the masculinizing effects of estrogen were more obvious during perinatal period than adolescence.

  2. Measurements of the STS orbiter's angular stability during in-orbit operations

    NASA Technical Reports Server (NTRS)

    Neupert, Werner M.; Epstein, Gabriel L.; Houston, James; Zarechnak, Andrew

    1995-01-01

    We report on measurements of the angular stability, commonly called 'jitter', of the STS Orbiter during normal operations in space. Measurements were carried out by measuring optically the Orbiter's roll and pitch orientation relative to the solar vector as the orbiter was held in a -Z(sub 0) solar inertial orientation (orbiter bay oriented toward the Sun). We also report observations of an interesting perturbation to the orbiter's orientation noted by the crew during the STS-60 mission. These data may be useful in analyzing the in-orbit response of the Orbiter to thruster firings and other applied torques, and may aid in the planning of future experiments that require fine-pointed operations by the orbiter.

  3. 3D highly oriented nanoparticulate and microparticulate array ofmetal oxide materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vayssieres, Lionel; Guo, Jinghua; Nordgren, Joseph

    2006-09-15

    Advanced nano and micro particulate thin films of 3d transition and post-transition metal oxides consisting of nanorods and microrods with parallel and perpendicular orientation with respect to the substrate normal, have been successfully grown onto various substrates by heteronucleation, without template and/or surfactant, from the aqueous condensation of solution of metal salts or metal complexes (aqueous chemical growth). Three-dimensional arrays of iron oxide nanorods and zinc oxide nanorods with parallel and perpendicular orientation are presented as well as the oxygen K-edge polarization dependent x-ray absorption spectroscopy (XAS) study of anisotropic perpendicularly oriented microrod array of ZnO performed at synchrotron radiationmore » source facility.« less

  4. Orientation of chain molecules in ionotropic gels: a Brownian dynamics model

    NASA Astrophysics Data System (ADS)

    Woelki, Stefan; Kohler, Hans-Helmut

    2003-09-01

    As is known from birefringence measurements, polysaccharide molecules of ionotropic gels are preferentially orientated normal to the direction of gel growth. In this paper the orientation effect is investigated by means of an off-lattice Brownian dynamics model simulating the gel formation process. The model describes the integration of a single coarse grained phantom chain into the growing gel. The equations of motion of the chain are derived. The computer simulations show that, during the process of integration, the chain is contracting normal to the direction of gel growth. A scaling relation is obtained for the degree of contraction as a function of the length parameters of the chain, the velocity of the gel formation front and the rate constant of the crosslinking reaction. It is shown that the scaling relation, if applied to the example of ionotropic copper alginate gel, leads to reasonable predictions of the time course of the degree of contraction of the alginate chains.

  5. Experimental analysis on viscoelasticity-induced migration of RBCs using digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2016-11-01

    Migration of particles in viscoelastic fluids has recently received large attention, because the generated elastic forces in viscoelastic fluids give rise to a simple focusing pattern over a wide range of flow rates. In this study, the vertical focusing and alignment of rigid spherical particles, normal and hardened RBCs in a viscoelastic fluid were experimentally investigated by employing a digital in-line holographic microscopy (DIHM). By the elastic forces, the three different particles are pushed away from the walls and concentrated in the midplane of the rectangular microchannel. Furthermore, most of both RBCs maintain face-on orientation in the microchannel. The effects of deformability of RBC on the viscoelasticity-induced migration and orientation in the channel were also examined. In contrary to non-deformable particles, normal RBCs are dispersed as flow rate increases. In the region near side wall of the microchannel, normal RBCs have edge-on orientation with a large angle of inclination, compared to hardened RBCs. These findings have a strong potential in the design of microfluidic devices for deformability-based separation of cells in viscoelastic fluid flows and label-free diagnoses of certain hematological diseases. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2008-0061991).

  6. 77 FR 21584 - Notice of Meeting, Front Range Resource Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... normal business hours. The FIRS is available 24 hours a day, 7 days a week, to leave a message or question with the above individual. You will receive a reply during normal business hours. SUPPLEMENTARY... of discussion items include: Trail work and native fish habitat restoration with the Orient Land...

  7. A conditioned visual orientation requires the ellipsoid body in Drosophila

    PubMed Central

    Guo, Chao; Du, Yifei; Yuan, Deliang; Li, Meixia; Gong, Haiyun; Gong, Zhefeng

    2015-01-01

    Orientation, the spatial organization of animal behavior, is an essential faculty of animals. Bacteria and lower animals such as insects exhibit taxis, innate orientation behavior, directly toward or away from a directional cue. Organisms can also orient themselves at a specific angle relative to the cues. In this study, using Drosophila as a model system, we established a visual orientation conditioning paradigm based on a flight simulator in which a stationary flying fly could control the rotation of a visual object. By coupling aversive heat shocks to a fly's orientation toward one side of the visual object, we found that the fly could be conditioned to orientate toward the left or right side of the frontal visual object and retain this conditioned visual orientation. The lower and upper visual fields have different roles in conditioned visual orientation. Transfer experiments showed that conditioned visual orientation could generalize between visual targets of different sizes, compactness, or vertical positions, but not of contour orientation. Rut—Type I adenylyl cyclase and Dnc—phosphodiesterase were dispensable for visual orientation conditioning. Normal activity and scb signaling in R3/R4d neurons of the ellipsoid body were required for visual orientation conditioning. Our studies established a visual orientation conditioning paradigm and examined the behavioral properties and neural circuitry of visual orientation, an important component of the insect's spatial navigation. PMID:25512578

  8. cGMP Signaling in the Cardiovascular System—The Role of Compartmentation and Its Live Cell Imaging

    PubMed Central

    Bork, Nadja I.; Nikolaev, Viacheslav O.

    2018-01-01

    The ubiquitous second messenger 3′,5′-cyclic guanosine monophosphate (cGMP) regulates multiple physiologic processes in the cardiovascular system. Its intracellular effects are mediated by stringently controlled subcellular microdomains. In this review, we will illustrate the current techniques available for real-time cGMP measurements with a specific focus on live cell imaging methods. We will also discuss currently accepted and emerging mechanisms of cGMP compartmentation in the cardiovascular system. PMID:29534460

  9. Ion Conduction in Perfectly Aligned Block Copolymer-Ionic Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Hong; Elabd, Yossef A.; Winey, Karen I.

    2011-03-01

    Our earlier work to correlate the transport measurements in diblock copolymer-ionic liquid mixtures was limited by our bulk samples that have only partial alignment. Here, thin films with perfect alignment of lamellar microdomains from mixtures of a poly(methyl methacrylate- b -styrene) diblock copolymer and an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, have been studied. The morphologies will be characterized by cross-sectional transmission electron microscopy. Ion conduction will be presented within and through the thin film.

  10. Aiding and abetting roles of NOX oxidases in cellular transformation

    PubMed Central

    Block, Karen; Gorin, Yves

    2013-01-01

    NADPH oxidases of the NADPH oxidase (NOX) family are dedicated reactive oxygen species-generating enzymes that broadly and specifically regulate redox-sensitive signalling pathways that are involved in cancer development and progression. They act at specific cellular membranes and microdomains through the activation of oncogenes and the inactivation of tumour suppressor proteins. In this Review, we discuss primary targets and redox-linked signalling systems that are influenced by NOX-derived ROS, and the biological role of NOX oxidases in the aetiology of cancer. PMID:22918415

  11. Rapid transitions between defect configurations in a block copolymer melt.

    PubMed

    Tsarkova, Larisa; Knoll, Armin; Magerle, Robert

    2006-07-01

    With in situ scanning force microscopy, we image the ordering of cylindrical microdomains in a thin film of a diblock copolymer melt. Tracking the evolution of individual defects reveals elementary steps of defect motion via interfacial undulations and repetitive transitions between distinct defect configurations on a time scale of tens of seconds. The velocity of these transitions suggests a cooperative movement of clusters of chains. The activation energy for the opening/closing of a connection between two cylinders is estimated.

  12. Mechanical Forces Program the Orientation of Cell Division during Airway Tube Morphogenesis.

    PubMed

    Tang, Zan; Hu, Yucheng; Wang, Zheng; Jiang, Kewu; Zhan, Cheng; Marshall, Wallace F; Tang, Nan

    2018-02-05

    Oriented cell division plays a key role in controlling organogenesis. The mechanisms for regulating division orientation at the whole-organ level are only starting to become understood. By combining 3D time-lapse imaging, mouse genetics, and mathematical modeling, we find that global orientation of cell division is the result of a combination of two types of spindles with distinct spindle dynamic behaviors in the developing airway epithelium. Fixed spindles follow the classic long-axis rule and establish their division orientation before metaphase. In contrast, rotating spindles do not strictly follow the long-axis rule and determine their division orientation during metaphase. By using both a cell-based mechanical model and stretching-lung-explant experiments, we showed that mechanical force can function as a regulatory signal in maintaining the stable ratio between fixed spindles and rotating spindles. Our findings demonstrate that mechanical forces, cell geometry, and oriented cell division function together in a highly coordinated manner to ensure normal airway tube morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Scattering from Rock and Rock Outcrops

    DTIC Science & Technology

    2013-09-30

    whose orientations and size distributions reflect the internal fault organization of the bedrock. A mathematical model of the leeward side of an...scattering from facets oriented close to normal incidence to the sonar system. Diffraction from sharp edges may also contribute strong scattering that 5 is...collected in a recent field experiment and are currently being analyzed. Figure 5 shows PhD student Derek Olson alongside the photogrammetry system

  14. Fracture propagation through a layered shale and limestone sequence at Nash Point, South Wales: Implications on the development of fracture networks in layered sequences

    NASA Astrophysics Data System (ADS)

    Forbes Inskip, N.; Meredith, P. G.; Gudmundsson, A.

    2017-12-01

    While considerable effort has been expended on the study of fracture propagation in rocks in recent years, our understanding of how fractures propagate through sedimentary rocks composed of layers with different mechanical and elastic properties remains poor. Yet the mechanical layering is a key parameter controlling the propagation of fractures in sedimentary sequences. Here we report measurements of the contrasting properties of the Lower Lias at Nash Point, South Wales, which comprises a sequence of interbedded shale and limestone layers, and how those properties influence fracture propagation. The static Young's modulus (Estat) of both rock types has been measured parallel and normal to bedding. The shale is highly anisotropic, with Estat varying from 2.4 GPa, in the bedding-normal orientation, to 7.9 GPa, in the bedding-parallel orientation, yielding an anisotropy of 107%. By contrast the limestone has a very low anisotropy of 8%, with Estat values varying from 28.5 GPa, in the bedding-normal orientation, to 26.3 GPa in the bedding-parallel orientation. It follows that for a vertical fracture propagating in this sequence the modulus contrast is by a factor of about 12. This is important because the contrast in elastic properties is a key factor in controlling whether fractures arrest, deflect, or propagate across interfaces between layers in a sequence. Preliminary numerical modelling results (using a finite element modelling software) of induced fractures at Nash Point demonstrate a rotation of the maximum principal compressive stress across interfaces but also the concentration of tensile stress within the more competent (high Estat) limestone layers. The tensile strength (σT), using the Brazil-disk technique, and fracture toughness (KIc), using the semi-circular bend methodology, of both rock types have been measured. Measurements were made in the three principal orientations relative to bedding, Arrester, Divider, and Short-Transverse, and also at 15° intervals between these planes. Again, values for the shale show a high degree of anisotropy; with similar values in the Arrester and Divider orientations, but much lower values in the Short-Transverse orientation. σT and KIc values for the limestone are considerably higher than those for the shale and exhibit no significant anisotropy.

  15. About normal distribution on SO(3) group in texture analysis

    NASA Astrophysics Data System (ADS)

    Savyolova, T. I.; Filatov, S. V.

    2017-12-01

    This article studies and compares different normal distributions (NDs) on SO(3) group, which are used in texture analysis. Those NDs are: Fisher normal distribution (FND), Bunge normal distribution (BND), central normal distribution (CND) and wrapped normal distribution (WND). All of the previously mentioned NDs are central functions on SO(3) group. CND is a subcase for normal CLT-motivated distributions on SO(3) (CLT here is Parthasarathy’s central limit theorem). WND is motivated by CLT in R 3 and mapped to SO(3) group. A Monte Carlo method for modeling normally distributed values was studied for both CND and WND. All of the NDs mentioned above are used for modeling different components of crystallites orientation distribution function in texture analysis.

  16. Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system.

    PubMed

    Liu, Kun; Liu, Tao; Shibata, Kyoko; Inoue, Yoshio; Zheng, Rencheng

    2009-12-11

    A new method using a double-sensor difference based algorithm for analyzing human segment rotational angles in two directions for segmental orientation analysis in the three-dimensional (3D) space was presented. A wearable sensor system based only on triaxial accelerometers was developed to obtain the pitch and yaw angles of thigh segment with an accelerometer approximating translational acceleration of the hip joint and two accelerometers measuring the actual accelerations on the thigh. To evaluate the method, the system was first tested on a 2 degrees of freedom mechanical arm assembled out of rigid segments and encoders. Then, to estimate the human segmental orientation, the wearable sensor system was tested on the thighs of eight volunteer subjects, who walked in a straight forward line in the work space of an optical motion analysis system at three self-selected speeds: slow, normal and fast. In the experiment, the subject was assumed to walk in a straight forward way with very little trunk sway, skin artifacts and no significant internal/external rotation of the leg. The root mean square (RMS) errors of the thigh segment orientation measurement were between 2.4 degrees and 4.9 degrees during normal gait that had a 45 degrees flexion/extension range of motion. Measurement error was observed to increase with increasing walking speed probably because of the result of increased trunk sway, axial rotation and skin artifacts. The results show that, without integration and switching between different sensors, using only one kind of sensor, the wearable sensor system is suitable for ambulatory analysis of normal gait orientation of thigh and shank in two directions of the segment-fixed local coordinate system in 3D space. It can then be applied to assess spatio-temporal gait parameters and monitoring the gait function of patients in clinical settings.

  17. Sport-Specific Physiological Adaptations in Highly Trained Endurance Athletes.

    PubMed

    Lundgren, Kari Margrethe; Karlsen, Trine; Sandbakk, Øyvind; James, Philip E; Tjønna, Arnt Erik

    2015-10-01

    This study aims to compare maximal oxygen uptake (V˙O2max), blood volume (BV), hemoglobin mass (Hbmass), and brachial endothelial function, measured as flow-mediated dilatation (FMD), in international-level endurance athletes primarily exercising with the whole body (cross-country skiing), lower body (orienteering), or upper body (flatwater kayak). Seventeen cross-country skiers, 15 orienteers, and 11 flatwater kayakers were tested for V˙O2max, BV, Hbmass, and FMD. Additionally, body composition and annual training (type, volume, and intensity of training) were analyzed. Absolute and body-mass-normalized V˙O2max values were 11.3% and 9.9% higher, respectively, in skiers (5.83 ± 0.60 L·min and 77.9 ± 4.2 mL·min·kg) compared to orienteers (5.24 ± 0.45 L·min and 70.9 ± 3.5 mL·min·kg) (P < 0.01), whereas kayakers (5.78 ± 0.56 L·min and 73.7 ± 6.3 mL·min·kg) did not differ from skiers. BV was 9.9%-11.8% higher in skiers and orienteers compared to kayakers when normalized for total body mass and fat-free mass, and skiers had 9.2% and 9.9% higher Hbmass normalized for total body mass and fat-free mass compared to kayakers (all P < 0.05). Arterial diameter was 11.8%-15.0% larger in kayakers (4.38 ± 0.63 mm) and skiers (4.22 ± 0.36 mm) compared to orienteers (3.81 ± 0.32 mm) (P < 0.05), whereas FMD did not differ between groups. This study indicates that higher V˙O2max in cross-country skiers and greater arterial diameters in the arms of skiers and kayakers are sport-specific physiological adaptations to chronic endurance training in whole-body and upper-body exercise modes. However, variations in these variables are not associated with BV or Hbmass.

  18. Non-exhibition of Bragg phenomenon by chevronic sculptured thin films

    NASA Astrophysics Data System (ADS)

    Vepachedu, Vikas; McAtee, Patrick D.; Lakhtakia, Akhlesh

    2017-08-01

    The unit cell of a chevronic sculptured thin film (ChevSTF) comprises two identical columnar thin films (CTFs) except that the nanocolumns of the first are oriented at an angle Χ and nanocolumns of the second are oriented at an angle π - χ with respect to the interface of the two CTFs. A ChevSTF containing 10 unit cells was fabricated and its planewave reflectance and transmittance spectrums of this ChevSTF were measured. Despite its structural periodicity, the ChevSTF did not exhibit the Bragg phenomenon. Theoretical calculations with the CTFs modeled as biaxial dielectric materials indicated that the Bragg phenomenon would not be manifested for normal and near-normal incidence, but vestigial manifestation was possible for sufficiently oblique incidence.

  19. Orientation specific deposition of mesoporous particles

    NASA Astrophysics Data System (ADS)

    Kjellman, Tomas; Bodén, Niklas; Wennerström, Hâkan; Edler, Karen J.; Alfredsson, Viveka

    2014-11-01

    We present a protocol for a facile orientation specific deposition of plate-like mesoporous SBA-15 silica particles onto a surface (mesopores oriented normal to surface). A drop of an aqueous dispersion of particles is placed on the surface and water vaporizes under controlled relative humidity. Three requirements are essential for uniform coverage: particle dispersion should not contain aggregates, a weak attraction between particles and surface is needed, and evaporation rate should be low. Aggregates are removed by stirring/sonication. Weak attraction is realized by introducing cationic groups to the surface. Insight into the mechanisms of the so-called coffee stain effect is also provided.

  20. Recording polarization gratings with a standing spiral wave

    NASA Astrophysics Data System (ADS)

    Vernon, Jonathan P.; Serak, Svetlana V.; Hakobyan, Rafik S.; Aleksanyan, Artur K.; Tondiglia, Vincent P.; White, Timothy J.; Bunning, Timothy J.; Tabiryan, Nelson V.

    2013-11-01

    A scalable and robust methodology for writing cycloidal modulation patterns of optical axis orientation in photosensitive surface alignment layers is demonstrated. Counterpropagating circularly polarized beams, generated by reflection of the input beam from a cholesteric liquid crystal, direct local surface orientation in a photosensitive surface. Purposely introducing a slight angle between the input beam and the photosensitive surface normal introduces a grating period/orientation that is readily controlled and templated. The resulting cycloidal diffractive waveplates offer utility in technologies requiring diffraction over a broad range of angles/wavelengths. This simple methodology of forming polarization gratings offers advantages over conventional fabrication techniques.

  1. Strain-relaxed structure in (001)/(100)-oriented epitaxial PbTiO3 films grown on (100) SrTiO3 substrates by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Nakaki, Hiroshi; Kim, Yong Kwan; Yokoyama, Shintaro; Ikariyama, Rikyu; Funakubo, Hiroshi; Nishida, Ken; Saito, Keisuke

    2007-09-01

    The authors grew (001)- and (001)/(100)-oriented epitaxial PbTiO3 films with various thicknesses on (100)SrTiO3 substrates. They used x-ray diffraction to measure the angles between surface normal [001] of (001)-oriented domains and [100] of (100)-oriented domains. The angles were found to be approximately 3.6° when the film thickness exceeded 1100nm. This value is consistent with the value obtained by a geometric calculation for strain-free PbTiO3. This result suggests that thick epitaxial PbTiO3 films grown on (100)SrTiO3 substrates have a fully strain-relaxed structure.

  2. Three-dimensional simulations of the orientation and structure of reconnection X-lines

    NASA Astrophysics Data System (ADS)

    Schreier, R.; Swisdak, M.; Drake, J. F.; Cassak, P. A.

    2010-11-01

    This letter employs Hall magnetohydrodynamic simulations to study X-lines formed during the reconnection of magnetic fields with differing strengths and orientations embedded in plasmas of differing densities. Although random initial perturbations trigger the growth of X-lines with many orientations, a few robust X-lines sharing an orientation consistent with the direction of maximal outflow speed, as predicted by Swisdak and Drake [Geophys. Res. Lett. 34, L11106 (2007)] eventually dominate the system. Reconnection in the geometry examined here contradicts the suggestion of Sonnerup [J. Geophys. Res. 79, 1546 (1974)] that it occurs in a plane normal to the equilibrium current. At late time, the X-lines' growth stagnates, leaving them shorter than the simulation domain.

  3. Genetic analysis of the gravitropic set-point angle in lateral roots of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Mullen, J. L.; Hangarter, R. P.; Kiss, J. Z. (Principal Investigator)

    2003-01-01

    Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their characteristically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of new lateral roots appears to be determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  4. Measurement of Epidermal Growth Factor Receptor-Derived Signals Within Plasma Membrane Clathrin Structures.

    PubMed

    Lucarelli, Stefanie; Delos Santos, Ralph Christian; Antonescu, Costin N

    2017-01-01

    The epidermal growth factor (EGF) receptor (EGFR) is an important regulator of cell growth, proliferation, survival, migration, and metabolism. EGF binding to EGFR triggers the activation of the receptor's intrinsic kinase activity, in turn eliciting the recruitment of many secondary signaling proteins and activation of downstream signals, such as the activation of phosphatidylinositol-3-kinase (PI3K) and Akt, a process requiring the phosphorylation of Gab1. While the identity of many signals that can be activated by EGFR has been revealed, how the spatiotemporal organization of EGFR signaling within cells controls receptor outcome remains poorly understood. Upon EGF binding at the plasma membrane, EGFR is internalized by clathrin-mediated endocytosis following recruitment to clathrin-coated pits (CCPs). Further, plasma membrane CCPs, but not EGFR internalization, are required for EGF-stimulated Akt phosphorylation. Signaling intermediates such as phosphorylated Gab1, which lead to Akt phosphorylation, are enriched within CCPs upon EGF stimulation. These findings indicate that some plasma membrane CCPs also serve as signaling microdomains required for certain facets of EGFR signaling and are enriched in key EGFR signaling intermediates. Understanding how the spatiotemporal organization of EGFR signals within CCP microdomains controls receptor signaling outcome requires imaging methods that can systematically resolve and analyze the properties of CCPs, EGFR and key signaling intermediates. Here, we describe methods using total internal reflection fluorescence microscopy imaging and analysis to systematically study the enrichment of EGFR and key EGFR-derived signals within CCPs.

  5. Functional imaging of microdomains in cell membranes.

    PubMed

    Duggan, James; Jamal, Ghadir; Tilley, Mark; Davis, Ben; McKenzie, Graeme; Vere, Kelly; Somekh, Michael G; O'Shea, Paul; Harris, Helen

    2008-10-01

    The presence of microdomains or rafts within cell membranes is a topic of intense study and debate. The role of these structures in cell physiology, however, is also not yet fully understood with many outstanding problems. This problem is partly based on the small size of raft structures that presents significant problems to their in vivo study, i.e., within live cell membranes. But the structure and dynamics as well as the factors that control the assembly and disassembly of rafts are also of major interest. In this review we outline some of the problems that the study of rafts in cell membranes present as well as describing some views of what are considered the generalised functions of membrane rafts. We point to the possibility that there may be several different 'types' of membrane raft in cell membranes and consider the factors that affect raft assembly and disassembly, particularly, as some researchers suggest that the lifetimes of rafts in cell membranes may be sub-second. We attempt to review some of the methods that offer the ability to interrogate rafts directly as well as describing factors that appear to affect their functionality. The former include both near-field and far-field optical approaches as well as scanning probe techniques. Some of the advantages and disadvantages of these techniques are outlined. Finally, we describe our own views of raft functionality and properties, particularly, concerning the membrane dipole potential, and describe briefly some of the imaging strategies we have developed for their study.

  6. The Design of New HIV-IN Tethered Bifunctional Inhibitors using Multiple Microdomain Targeted Docking.

    PubMed

    Ciubotaru, Mihai; Musat, Mihaela Georgiana; Surleac, Marius; Ionita, Elena; Petrescu, Andrei Jose; Abele, Edgars; Abele, Ramona

    2018-04-05

    Currently used antiretroviral HIV therapy drugs exclusively target critical groups in the enzymes essential for the viral life cycle. Increased mutagenesis of their genes, changes these viral enzymes which once mutated can evade therapeutic targeting, effects which confer drug resistance. To circumvent this, our review addresses a strategy to design and derive HIV-Integrase (HIV-IN) inhibitors which simultaneously target two IN functional domains, rendering it inactive even if the enzyme accumulates many mutations. First we review the enzymatic role of IN to insert the copied viral DNA into a chromosome of the host T lymphocyte, highlighting its main functional and structural features to be subjected to inhibitory action. From a functional and structural perspective we present all classes of HIV-IN inhibitors with their most representative candidates. For each chosen compound we also explain its mechanism of IN inhibition. We use the recently resolved cryo EM IN tetramer intasome DNA complex [1] onto which we dock various reference IN inhibitory chemical scaffolds such as to target adjacent functional IN domains. Pairing compounds with complementary activity, which dock in the vicinity of a IN structural microdomain, we design bifunctional new drugs which may not only be more resilient to IN mutations but also may be more potent inhibitors than their original counterparts. In the end of our review we propose synthesis pathways to link such paired compounds with enhanced synergistic IN inhibitory effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Rotavirus RRV associates with lipid membrane microdomains during cell entry.

    PubMed

    Isa, Pavel; Realpe, Mauricio; Romero, Pedro; López, Susana; Arias, Carlos F

    2004-05-01

    Rotavirus cell entry is a multistep process, not completely understood, which requires at least four interactions between the virus and cell surface molecules. In this work, we investigated the role of the sphingolipid- and cholesterol-enriched lipid microdomains (rafts) in the entry of rotavirus strain RRV to MA104 cells. We found that ganglioside GM1, integrin subunits alpha2 and beta3, and the heat shock cognate protein 70 (hsc70), all of which have been implicated as rotavirus receptors, are associated with TX-100 and Lubrol WX detergent-resistant membranes (DRMs). Integrin subunits alpha2 and beta3 were found to be particularly enriched in DRMs resistant to lysis by Lubrol WX. When purified RRV particles were incubated with cells at 4 degrees C, about 10% of the total infectious virus was found associated with DRMs, and the DRM-associated virus increased to 37% in Lubrol-resistant membrane domains after 60-min incubation at 37 degrees C. The virus was excluded from DRMs if the cells were treated with methyl-beta-cyclodextrin (MbetaCD). Immunoblot analysis of the viral proteins showed that the virus surface proteins became enriched in DRMs upon incubation at 37 degrees C, being almost exclusively localized in Lubrol-resistant DRMs after 60 min. These data suggest that detergent-resistant membrane domains play an important role in the cell entry of rotaviruses, which could provide a platform to facilitate the efficient interaction of the rotavirus receptors with the virus particle.

  8. Size and Shape of Amyloid Fibrils Induced by Ganglioside Nanoclusters: Role of Sialyl Oligosaccharide in Fibril Formation.

    PubMed

    Matsubara, Teruhiko; Nishihara, Masaya; Yasumori, Hanaki; Nakai, Mako; Yanagisawa, Katsuhiko; Sato, Toshinori

    2017-12-05

    Ganglioside-enriched microdomains in the presynaptic neuronal membrane play a key role in the initiation of amyloid ß-protein (Aß) assembly related to Alzheimer's disease. We previously isolated lipids from a detergent-resistant membrane microdomain fraction of synaptosomes prepared from aged mouse brain and found that spherical Aß assemblies were formed on Aß-sensitive ganglioside nanoclusters (ASIGN) of reconstituted lipid bilayers in the synaptosomal fraction. In the present study, we investigated the role of oligosaccharides in Aß fibril formation induced by ganglioside-containing mixed lipid membranes that mimic the features of ASIGN. Ganglioside nanoclusters were constructed as ternary mixed lipid bilayers composed of ganglioside (GM1, GM2, GM3, GD1a, or GT1b), sphingomyelin, and cholesterol, and their surface topography was visualized by atomic force microscopy. Aß fibril formation on the nanocluster was strongly induced in the presence of 10 mol % ganglioside, and Aß-sensitive features were observed at cholesterol contents of 35-55 mol %. GM1-, GD1a-, and GT1b-containing membranes induced longer fibrils than those containing GD1b and GM2, indicating that the terminal galactose of GM1 along with N-acetylneuraminic acid accelerates protofibril elongation. These results demonstrate that Aß fibril formation is induced by ASIGN that are highly enriched ganglioside nanoclusters with a limited number of components and that the generation and elongation of Aß protofibrils are regulated by the oligosaccharide structure of gangliosides.

  9. MHC Class II and CD9 in human eosinophils localize to detergent-resistant membrane microdomains.

    PubMed

    Akuthota, Praveen; Melo, Rossana C N; Spencer, Lisa A; Weller, Peter F

    2012-02-01

    Eosinophils function in murine allergic airways inflammation as professional antigen-presenting cells (APCs). In murine professional APC cell types, optimal functioning of MHC Class II depends on its lateral association in plasma membranes and colocalization with the tetraspanin CD9 into detergent-resistant membrane microdomains (DRMs). With human eosinophils, we evaluated the localization of MHC Class II (HLA-DR) to DRMs and the functional significance of such localization. In granulocyte-macrophage colony-stimulating factor-stimulated human eosinophils, antibody cross-linked HLA-DR colocalized by immunofluorescence microscopy focally on plasma membranes with CD9 and the DRM marker ganglioside GM1. In addition, HLA-DR coimmunoprecipitates with CD9 after chemical cross-linking of CD9. HLA-DR and CD9 were localized by Western blotting in eosinophil DRM subcellular fractions. DRM disruption with the cholesterol-depleting agent methyl-β-cyclodextrin decreased eosinophil surface expression of HLA-DR and CD9. We show that CD9 is abundant on the surface of eosinophils, presenting the first electron microscopy data of the ultrastructural immunolocalization of CD9 in human eosinophils. Disruption of HLA-DR-containing DRMs decreased the ability of superantigen-loaded human eosinophils to stimulate CD4(+) T-cell activation (CD69 expression), proliferation, and cytokine production. Our results, which demonstrate that eosinophil MHC Class II localizes to DRMs in association with CD9 in a functionally significant manner, represent a novel insight into the organization of the antigen presentation complex of human eosinophils.

  10. MHC Class II and CD9 in Human Eosinophils Localize to Detergent-Resistant Membrane Microdomains

    PubMed Central

    Akuthota, Praveen; Melo, Rossana C. N.; Spencer, Lisa A.

    2012-01-01

    Eosinophils function in murine allergic airways inflammation as professional antigen-presenting cells (APCs). In murine professional APC cell types, optimal functioning of MHC Class II depends on its lateral association in plasma membranes and colocalization with the tetraspanin CD9 into detergent-resistant membrane microdomains (DRMs). With human eosinophils, we evaluated the localization of MHC Class II (HLA-DR) to DRMs and the functional significance of such localization. In granulocyte-macrophage colony-stimulating factor–stimulated human eosinophils, antibody cross-linked HLA-DR colocalized by immunofluorescence microscopy focally on plasma membranes with CD9 and the DRM marker ganglioside GM1. In addition, HLA-DR coimmunoprecipitates with CD9 after chemical cross-linking of CD9. HLA-DR and CD9 were localized by Western blotting in eosinophil DRM subcellular fractions. DRM disruption with the cholesterol-depleting agent methyl-β-cyclodextrin decreased eosinophil surface expression of HLA-DR and CD9. We show that CD9 is abundant on the surface of eosinophils, presenting the first electron microscopy data of the ultrastructural immunolocalization of CD9 in human eosinophils. Disruption of HLA-DR–containing DRMs decreased the ability of superantigen-loaded human eosinophils to stimulate CD4+ T-cell activation (CD69 expression), proliferation, and cytokine production. Our results, which demonstrate that eosinophil MHC Class II localizes to DRMs in association with CD9 in a functionally significant manner, represent a novel insight into the organization of the antigen presentation complex of human eosinophils. PMID:21885678

  11. The early endosome: a busy sorting station for proteins at the crossroads

    PubMed Central

    Jovic, Marko; Sharma, Mahak; Rahajeng, Juliati; Caplan, Steve

    2010-01-01

    Summary Endocytosis marks the entry of internalized receptors into the complex network of endocytic trafficking pathways. Endocytic vesicles are rapidly targeted to a distinct membrane-bound endocytic organelle referred to as the early endosome. Despite the existence of numerous internalization routes, early endosomes (EE) serve as a focal point of the endocytic pathway. Sorting events initiated at this compartment determine the subsequent fate of internalized proteins and lipids, destining them either for recycling to the plasma membrane, degradation in lysosomes or delivery to the trans-Golgi network. Sorting of endocytic cargo to the latter compartments is accomplished through the formation of distinct microdomains within early endosomes, through the coordinate recruitment and assembly of the sorting machinery. An elaborate network of interactions between endocytic regulatory proteins ensures synchronized sorting of cargo to microdomains followed by morphological changes at the early endosomal membranes. Consequently, the cargo targeted either for recycling back to the plasma membrane, or for retrograde transport to the trans-Golgi network, localizes to newly-formed tubular membranes. With a high ratio of membrane surface to lumenal volume, these tubules effectively concentrate the recycling cargo, ensuring efficient transport out of the EE. Conversely, receptors sorted for degradation cluster at the flat clathrin lattices involved in invaginations of the limiting membrane, associating with newly formed intralumenal vesicles. In this review we will discuss the characteristics of early endosomes, their role in the regulation of endocytic transport, and their aberrant function in a variety of diseases. PMID:19924646

  12. Equilibrium water and solute uptake in silicone hydrogels.

    PubMed

    Liu, D E; Dursch, T J; Oh, Y; Bregante, D T; Chan, S Y; Radke, C J

    2015-05-01

    Equilibrium water content of and solute partitioning in silicone hydrogels (SiHys) are investigated using gravimetric analysis, fluorescence confocal laser-scanning microscopy (FCLSM), and back extraction with UV/Vis-absorption spectrophotometry. Synthesized silicone hydrogels consist of silicone monomer, hydrophilic monomer, cross-linking agent, and triblock-copolymer macromer used as an amphiphilic compatibilizer to prevent macrophase separation. In all cases, immiscibility of the silicone and hydrophilic polymers results in microphase-separated morphologies. To investigate solute uptake in each of the SiHy microphases, equilibrium partition coefficients are obtained for two hydrophilic solutes (i.e., theophylline and caffeine dissolved in aqueous phosphate-buffered saline) and two oleophilic solutes (i.e., Nile Red and Bodipy Green dissolved in silicone oil), respectively. Measured water contents and aqueous-solute partition coefficients increase linearly with increasing solvent-free hydrophilic-polymer volume fraction. Conversely, oleophilic-solute partition coefficients decrease linearly with rising solvent-free hydrophilic-polymer volume fraction (i.e., decreasing hydrophobic silicone-polymer fraction). We quantitatively predict equilibrium SiHy water and solute uptake assuming that water and aqueous solutes reside only in hydrophilic microdomains, whereas oleophilic solutes partition predominately into silicone microdomains. Predicted water contents and solute partition coefficients are in excellent agreement with experiment. Our new procedure permits a priori estimation of SiHy water contents and solute partition coefficients based solely on properties of silicone and hydrophilic homopolymer hydrogels, eliminating the need for further mixed-polymer-hydrogel experiments. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane.

    PubMed

    Danielsen, E Michael; Hansen, Gert H

    2013-01-01

    The small intestinal brush border has an unusually high proportion of glycolipids which promote the formation of lipid raft microdomains, stabilized by various cross-linking lectins. This unique membrane organization acts to provide physical and chemical stability to the membrane that faces multiple deleterious agents present in the gut lumen, such as bile salts, digestive enzymes of the pancreas, and a plethora of pathogens. In the present work, we studied the constitutive endocytosis from the brush border of cultured jejunal explants of the pig, and the results indicate that this process functions to enrich the contents of lipid raft components in the brush border. The lipophilic fluorescent marker FM, taken up into early endosomes in the terminal web region (TWEEs), was absent from detergent resistant membranes (DRMs), implying an association with non-raft membrane. Furthermore, neither major lipid raft-associated brush border enzymes nor glycolipids were detected by immunofluorescence microscopy in subapical punctae resembling TWEEs. Finally, two model raft lipids, BODIPY-lactosylceramide and BODIPY-GM1, were not endocytosed except when cholera toxin subunit B (CTB) was present. In conclusion, we propose that constitutive, selective endocytic removal of non-raft membrane acts as a sorting mechanism to enrich the brush border contents of lipid raft components, such as glycolipids and the major digestive enzymes. This sorting may be energetically driven by changes in membrane curvature when molecules move from a microvillar surface to an endocytic invagination.

  14. Caveolae-localized L-type Ca2+ channels do not contribute to function or hypertrophic signalling in the mouse heart.

    PubMed

    Correll, Robert N; Makarewich, Catherine A; Zhang, Hongyu; Zhang, Chen; Sargent, Michelle A; York, Allen J; Berretta, Remus M; Chen, Xiongwen; Houser, Steven R; Molkentin, Jeffery D

    2017-06-01

    L-type Ca2+ channels (LTCCs) in adult cardiomyocytes are localized to t-tubules where they initiate excitation-contraction coupling. Our recent work has shown that a subpopulation of LTCCs found at the surface sarcolemma in caveolae of adult feline cardiomyocytes can also generate a Ca2+ microdomain that activates nuclear factor of activated T-cells signaling and cardiac hypertrophy, although the relevance of this paradigm to hypertrophy regulation in vivo has not been examined. Here we generated heart-specific transgenic mice with a putative caveolae-targeted LTCC activator protein that was ineffective in initiating or enhancing cardiac hypertrophy in vivo. We also generated transgenic mice with cardiac-specific overexpression of a putative caveolae-targeted inhibitor of LTCCs, and while this protein inhibited caveolae-localized LTCCs without effects on global Ca2+ handling, it similarly had no effect on cardiac hypertrophy in vivo. Cardiac hypertrophy was elicited by pressure overload for 2 or 12 weeks or with neurohumoral agonist infusion. Caveolae-specific LTCC activator or inhibitor transgenic mice showed no greater change in nuclear factor of activated T-cells activity after 2 weeks of pressure overload stimulation compared with control mice. Our results indicate that LTCCs in the caveolae microdomain do not affect cardiac function and are not necessary for the regulation of hypertrophic signaling in the adult mouse heart. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  15. Vimentin affects localization and activity of sodium-glucose cotransporter SGLT1 in membrane rafts.

    PubMed

    Runembert, Isabelle; Queffeulou, Guillaume; Federici, Pierre; Vrtovsnik, François; Colucci-Guyon, Emma; Babinet, Charles; Briand, Pascale; Trugnan, Germain; Friedlander, Gérard; Terzi, Fabiola

    2002-02-15

    It has been reported that vimentin, a cytoskeleton filament that is expressed only in mesenchymal cells after birth, is re-expressed in epithelial cells in vivo under pathological conditions and in vitro in primary culture. Whether vimentin re-expression is only a marker of cellular dedifferentiation or is instrumental in the maintenance of cell structure and/or function is a matter of debate. To address this issue, we used renal proximal tubular cells in primary culture from vimentin-null mice (Vim(-/-)) and from wild-type littermates (Vim(+/+)). The absence of vimentin did not affect cell morphology, proliferation and activity of hydrolases, but dramatically decreased Na-glucose cotransport activity. This phenotype was associated with a specific reduction of SGLT1 protein in the detergent-resistant membrane microdomains (DRM). In Vim(+/+) cells, disruption of these microdomains by methyl-beta-cyclodextrin decreased SGLT1 protein abundance in DRM, a change that was paralleled by a decrease of Na-glucose transport activity. Importantly, we showed that vimentin is located to DRM, but it disappeared after methyl-beta-cyclodextrin treatment. In Vim(-/-) cells, supplementation of cholesterol with cholesterol-methyl-beta-cyclodextrin complexes completely restored Na-glucose transport activity. Interestingly, neither cholesterol content nor cholesterol metabolism changed in Vim(-/-) cells. Our results are consistent with the view that re-expression of vimentin in epithelial cells could be instrumental to maintain the physical state of rafts and, thus, the function of DRM-associated proteins.

  16. Isolation and characterization of lipid rafts in Emiliania huxleyi: a role for membrane microdomains in host-virus interactions.

    PubMed

    Rose, Suzanne L; Fulton, James M; Brown, Christopher M; Natale, Frank; Van Mooy, Benjamin A S; Bidle, Kay D

    2014-04-01

    Coccolithoviruses employ a suite of glycosphingolipids (GSLs) to successfully infect the globally important coccolithophore Emiliania huxleyi. Lipid rafts, chemically distinct membrane lipid microdomains that are enriched in GSLs and are involved in sensing extracellular stimuli and activating signalling cascades through protein-protein interactions, likely play a fundamental role in host-virus interactions. Using combined lipidomics, proteomics and bioinformatics, we isolated and characterized the lipid and protein content of lipid rafts from control E. huxleyi cells and those infected with EhV86, the type strain for Coccolithovirus. Lipid raft-enriched fractions were isolated and purified as buoyant, detergent-resistant membranes (DRMs) in OptiPrep density gradients. Transmission electron microscopy of vesicle morphology, polymerase chain reaction amplification of the EhV major capsid protein gene and immunoreactivity to flotillin antisera served as respective physical, molecular and biochemical markers. Subsequent lipid characterization of DRMs via high performance liquid chromatography-triple quadrapole mass spectrometry revealed four distinct GSL classes. Parallel proteomic analysis confirmed flotillin as a major lipid raft protein, along with a variety of proteins affiliated with host defence, programmed cell death and innate immunity pathways. The detection of an EhV86-encoded C-type lectin-containing protein confirmed that infection occurs at the interface between lipid rafts and cellular stress/death pathways via specific GSLs and raft-associated proteins. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. BEHAVIOR THERAPY FOR TRANSSEXUALISM

    PubMed Central

    Andrade, A. Chitra; Kumaraiah, V.; Mishra, H.; Chatterji, S.; Andrade, Chittaranjan

    1995-01-01

    Transsexualism is a rare disorder, and there is little literature available on its treatment. A case is presented of transsexualism with homosexual orientation in a 24 year old male. Since the disorder appeared to have behavioral antecedents, it was treated with a behavior therapy package comprising relaxation, aversion therapy with aversion relief, modelling, hypnosis, orgasmic reconditioning, behavioral counselling and sex education. Therapy resulted in normalization of gender identity, but the homosexual orientation persisted. PMID:21743738

  18. Swim stress, motion, and deformation of active matter: effect of an external field.

    PubMed

    Takatori, Sho C; Brady, John F

    2014-12-21

    We analyze the stress, dispersion, and average swimming speed of self-propelled particles subjected to an external field that affects their orientation and speed. The swimming trajectory is governed by a competition between the orienting influence (i.e., taxis) associated with the external (e.g., magnetic, gravitational, thermal, nutrient concentration) field versus the effects that randomize the particle orientations (e.g., rotary Brownian motion and/or an intrinsic tumbling mechanism like the flagella of bacteria). The swimmers' motion is characterized by a mean drift velocity and an effective translational diffusivity that becomes anisotropic in the presence of the orienting field. Since the diffusivity yields information about the micromechanical stress, the anisotropy generated by the external field creates a normal stress difference in the recently developed "swim stress" tensor [Takatori, Yan, and Brady, Phys. Rev. Lett., 2014]. This property can be exploited in the design of soft, compressible materials in which their size, shape, and motion can be manipulated and tuned by loading the material with active swimmers. Since the swimmers exert different normal stresses in different directions, the material can compress/expand, elongate, and translate depending on the external field strength. Such an active system can be used as nano/micromechanical devices and motors. Analytical solutions are corroborated by Brownian dynamics simulations.

  19. Feasibility on fiber orientation detection on unidirectional CFRP composite laminates using nondestructive evaluation techniques

    NASA Astrophysics Data System (ADS)

    Yang, In-Young; Kim, Ji-Hoon; Cha, Cheon-Seok; Lee, Kil-Sung; Hsu, David K.; Im, Kwang-Hee

    2007-07-01

    In particular, CFRP (carbon fiber reinforced plastics) composite materials have found wide applicability because of their inherent design flexibility and improved material properties. CFRP composites were manufactured from uni-direction prepreg sheet in this paper. It is important to assess fiber orientation, material properties and part defect in order to ensure product quality and structural integrity of CFRP because strength and stiffness of composites depend on fiber orientation. It is desirable to perform nondestructive evaluation which is very beneficial. An new method for nondestructively determining the fiber orientation in a composite laminate is presented. A one-sided pitch-catch setup was used in the detection and evaluation of flaws and material anomalies in the unidirectional CFRP composite laminates. Two Rayleigh wave transducers were joined head-to-head and used in the pitch-catch mode on the surface of the composites. The pitch-catch signal was found to be more sensitive than normal incidence backwall echo of longitudinal wave to subtle flaw conditions in the composite. Especially, ultrasonic waves were extensively characterized in the CFRP composite laminates both normal to fiber and along to fiber with using a one-sided direction of Rayleigh wave transducers. Also, one-sided ultrasonic measurement was made with using a Rayleigh wave transducers and a conventional scanner was used in an immersion tank for extracting fiber orientation information from the ultrasonic reflection in the unidirectional laminate. Therefore, it is thought that the proposed method is useful to evaluate integrity of CFRP laminates.

  20. Interplanetary sector boundaries, 1971 - 1973

    NASA Technical Reports Server (NTRS)

    Klein, L.; Burlaga, L. F.

    1979-01-01

    Eighteen interplanetary sector boundary crossings observed at 1 AU by the magnetometer on the IMP-6 spacecraft are discussed. The events were examined on many different time scales ranging from days on either side of the boundary to high resolution measurements of 12.5 vectors per second. Two categories of boundaries were found, one group being relatively thin and the other being thick. In many cases the field vector rotated in a plane from one polarity to the other. Only two of the transitions were null sheets. Using the minimum variance analysis to determine the normals to the plane of rotation, and assuming that this is the same as the normal to the sector boundary surface, it was found that the normals were close to the ecliptic plane. An analysis of tangential discontinuities contained in 4-day periods about the events showed that their orientations were generally not related to the orientations of the sector boundary surface, but rather their characteristics were about the same as those for discontinuities outside the sector boundaries.

  1. Past orientation of the lunar spin axis.

    PubMed

    Ward, W R

    1975-08-01

    The orientation of the lunar spin axis is traced from the early history of the earth-moon system to the present day. Tides raised on the earth by the moon have caused an expansion of the lunar orbit. Tides raised on the moon by the earth have de-spun the moon to synchronous rotation and driven its spin axis to a Cassini state-that is, in a coprecessing configuration, coplanar with the lunar orbit normal and the normal to the Laplacian plane (which is at present coincident with the normal to the ecliptic). This combination of events has resulted in a complex history for the lunar spin axis. For much of the period during which its orbital semimajor axis expanded between 30 and 40 earth radii, the obliquity of the moon was of order 25 degrees to 50 degrees . In fact, for a brief period the obliquity periodically attained a value as high as 77 degrees ; that is, the spin axis of the moon was only 13 degrees from lying in its orbit plane.

  2. Past orientation of the lunar spin axis

    NASA Technical Reports Server (NTRS)

    Ward, W. R.

    1975-01-01

    The orientation of the lunar spin axis is traced from the early history of the earth-moon system to the present day. Tides raised on the earth by the moon have caused an expansion of the lunar orbit. Tides raised on the moon by the earth have de-spun the moon to synchronous rotation and driven its spin axis to a Cassini state - that is, in a coprecessing configuration, coplanar with the lunar orbit normal and the normal to the Laplacian plane (which is at present coincident with the normal to the ecliptic). This combination of events has resulted in a complex history for the lunar spin axis. For much of the period during which its orbital semimajor axis expanded between 30 and 40 earth radii, the obliquity of the moon was of order 25 to 50 deg. In fact, for a brief period the obliquity periodically attained a value as high as 77 deg; that is, the spin axis of the moon was only 13 deg from lying in its orbit plane.

  3. Controlling sub-microdomain structure in microphase-ordered block copolymers and their nanocomposites

    NASA Astrophysics Data System (ADS)

    Bowman, Michelle Kathleen

    Block copolymers exhibit a wealth of morphologies that continue to find ubiquitous use in a diverse variety of mature and emergent (nano)technologies, such as photonic crystals, integrated circuits, pharmaceutical encapsulents, fuel cells and separation membranes. While numerous studies have explored the effects of molecular confinement on such copolymers, relatively few have examined the sub-microdomain structure that develops upon modification of copolymer molecular architecture or physical incorporation of nanoscale objects. This work will address two relevant topics in this vein: (i) bidisperse brushes formed by single block copolymer molecules and (ii) copolymer nanocomposites formed by addition of molecular or nanoscale additives. In the first case, an isomorphic series of asymmetric poly(styrene-b -isoprene-b-styrene) (S1IS2) triblock copolymers of systematically varied chain length has been synthesized from a parent SI diblock copolymer. Small-angle x-ray scattering, coupled with dynamic rheology and self-consistent field theory (SCFT), reveals that the progressively grown S2 block initially resides in the I-rich matrix and effectively reduces the copolymer incompatibility until a critical length is reached. At this length, the S2 block co-locates with the S1 block so that the two blocks generate a bidisperse brush (insofar as the S1 and S2 lengths differ). This single-molecule analog to binary block copolymer blends affords unique opportunities for materials design at sub-microdomain length scales and provides insight into the transition from diblock to triblock copolymer (and thermoplastic elastomeric nature). In the second case, I explore the distribution of molecular and nanoscale additives in microphase-ordered block copolymers and demonstrate via SCFT that an interfacial excess, which depends strongly on additive concentration, selectivity and relative size, develops. These predictions are in agreement with experimental findings. Moreover, using a poly(styrene-b-methyl methacrylate) (SM) diblock copolymer with an order-disorder transition temperature (TODT) of 186°C, we find that the addition of clustered and discrete nanoparticles of varying size and surface selectivity can cause T ODT to generally decrease, but occasionally increase. Also experimenting with a poly(styrene-b-isoprene) (SI) diblock copolymer with an TODT of 116°C, we find that the addition of smaller nanoparticles at small volume fractions effect the TODT more profoundly. The latter unexpected results are likewise predicted by SCFT and provide a unique strategy by which to improve the nanostructure stability of block copolymers by physical means.

  4. Local structure of Rb{sub 2}Li{sub 4}(SeO{sub 4}){sub 3}{center_dot}2H{sub 2}O by the modeling of X-ray diffuse scattering - from average-structure to microdomain model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komornicka, Dorota; Wolcyrz, Marek, E-mail: m.wolcyrz@int.pan.wroc.pl; Pietraszko, Adam

    2012-08-15

    Local structure of dirubidium tetralithium tris(selenate(VI)) dihydrate - Rb{sub 2}Li{sub 4}(SeO{sub 4}){sub 3}{center_dot} 2H{sub 2}O has been determined basing on the modeling of X-ray diffuse scattering. The origin of observed structured diffuse streaks is SeO{sub 4} tetrahedra switching between two alternative positions in two quasi-planar layers existing in each unit cell and formation of domains with specific SeO{sub 4} tetrahedra configuration locally fulfilling condition for C-centering in the 2a Multiplication-Sign 2b Multiplication-Sign c superstructure cell. The local structure solution is characterized by a uniform distribution of rather large domains (ca. thousand of unit cells) in two layers, but also monodomainsmore » can be taken into account. Inside a single domain SeO{sub 4} tetrahedra are ordered along ab-diagonal forming two-string ribbons. Inside the ribbons SeO{sub 4} and LiO{sub 4} tetrahedra share the oxygen corners, whereas ribbons are bound to each other by a net of hydrogen bonds and fastened by corner sharing SeO{sub 4} tetrahedra of the neighboring layers. - Graphical abstract: Experimental sections of the reciprocal space showing diffraction effects observed for RLSO. Bragg spots are visible on sections with integer indices (1 kl section - on the left), streaks - on sections with fractional ones (1.5 kl section - on the right). At the center: resulting local structure of the A package modeled as a microdomain: two-string ribbons of ordered oxygen-corners-sharing SeO{sub 4} and LiO{sub 4} terahedra extended along ab-diagonal are seen; ribbons are bound by hydrogen bonds (shown in pink); the multiplied 2a Multiplication-Sign 2b unit cell is shown. Highlights: Black-Right-Pointing-Pointer X-ray diffuse scattering in RLSO was registered and modeled. Black-Right-Pointing-Pointer The origin of diffuse streaks is SeO{sub 4} tetrahedra switching in two structure layers. Black-Right-Pointing-Pointer The local structure is characterized by a uniform distribution of microdomains. Black-Right-Pointing-Pointer Inside a single domain SeO{sub 4} tetrahedra are ordered along ab-diagonal forming ribbons. Black-Right-Pointing-Pointer The ribbons are bound to each other by a net of hydrogen bonds.« less

  5. Theory of third-order spectroscopic methods to extract detailed molecular orientational dynamics for planar surfaces and other uniaxial systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishida, Jun; Fayer, Michael D., E-mail: fayer@stanford.edu

    Functionalized organic monolayers deposited on planar two-dimensional surfaces are important systems for studying ultrafast orientational motions and structures of interfacial molecules. Several studies have successfully observed the orientational relaxation of functionalized monolayers by fluorescence depolarization experiments and recently by polarization-resolved heterodyne detected vibrational transient grating (HDTG) experiments. In this article we provide a model-independent theory to extract orientational correlation functions unique to interfacial molecules and other uniaxial systems based on polarization-resolved resonant third-order spectroscopies, such as pump-probe spectroscopy, HDTG spectroscopy, and fluorescence depolarization experiment. It will be shown (in the small beam-crossing angle limit) that five measurements are necessary tomore » completely characterize the monolayer's motions: I{sub ∥}(t) and I{sub ⊥}(t) with the incident beams normal to the surface, I{sub ∥}(t) and I{sub ⊥}(t) with a non-zero incident angle, and a time averaged linear dichroism measurement. Once these measurements are performed, two orientational correlation functions corresponding to in-plane and out-of-plane motions are obtained. The procedure is applicable not only for monolayers on flat surfaces, but any samples with uniaxial symmetry such as uniaxial liquid crystals and aligned planar bilayers. The theory is valid regardless of the nature of the actual molecular motions on interface. We then apply the general results to wobbling-in-a-cone model, in which molecular motions are restricted to a limited range of angles. Within the context of the model, the cone angle, the tilt of the cone relative to the surface normal, and the orientational diffusion constant can be determined. The results are extended to describe analysis of experiments where the beams are not crossing in the small angle limit.« less

  6. Atomic Force Microscopy Studies of Functional and Dysfunctional Pulmonary Surfactant Films. I. Micro- and Nanostructures of Functional Pulmonary Surfactant Films and the Effect of SP-A

    PubMed Central

    Zuo, Yi Y.; Keating, Eleonora; Zhao, Lin; Tadayyon, Seyed M.; Veldhuizen, Ruud A. W.; Petersen, Nils O.; Possmayer, Fred

    2008-01-01

    Monolayers of a functional pulmonary surfactant (PS) can reach very low surface tensions well below their equilibrium value. The mechanism by which PS monolayers reach such low surface tensions and maintain film stability remains unknown. As shown previously by fluorescence microscopy, phospholipid phase transition and separation seem to be important for the normal biophysical properties of PS. This work studied phospholipid phase transitions and separations in monolayers of bovine lipid extract surfactant using atomic force microscopy. Atomic force microscopy showed phospholipid phase separation on film compression and a monolayer-to-multilayer transition at surface pressure 40–50 mN/m. The tilted-condensed phase consisted of domains not only on the micrometer scale, as detected previously by fluorescence microscopy, but also on the nanometer scale, which is below the resolution limits of conventional optical methods. The nanodomains were embedded uniformly within the liquid-expanded phase. On compression, the microdomains broke up into nanodomains, thereby appearing to contribute to tilted-condensed and liquid-expanded phase remixing. Addition of surfactant protein A altered primarily the nanodomains and promoted the formation of multilayers. We conclude that the nanodomains play a predominant role in affecting the biophysical properties of PS monolayers and the monolayer-to-multilayer transition. PMID:18212010

  7. Severe Alterations in Lipid Composition of Frontal Cortex Lipid Rafts from Parkinson’s Disease and Incidental Parkinson’s Disease

    PubMed Central

    Fabelo, Noemí; Martín, Virginia; Santpere, Gabriel; Marín, Raquel; Torrent, Laia; Ferrer, Isidre; Díaz, Mario

    2011-01-01

    Lipid rafts are cholesterol- and sphingomyelin-enriched microdomains that provide a highly saturated and viscous physicochemical microenvironment to promote protein–lipid and protein–protein interactions. We purified lipid rafts from human frontal cortex from normal, early motor stages of Parkinson’s disease (PD) and incidental Parkinson’s disease (iPD) subjects and analyzed their lipid composition. We observed that lipid rafts from PD and iPD cortices exhibit dramatic reductions in their contents of n-3 and n-6 long-chain polyunsaturated fatty acids, especially docosahexaenoic acid (22:6-n3) and arachidonic acid (20:4n-6). Also, saturated fatty acids (16:0 and 18:0) were significantly higher than in control brains. Paralleling these findings, unsaturation and peroxidability indices were considerably reduced in PD and iPD lipid rafts. Lipid classes were also affected in PD and iPD lipid rafts. Thus, phosphatidylserine and phosphatidylinositol were increased in PD and iPD, whereas cerebrosides and sulfatides and plasmalogen levels were considerably diminished. Our data pinpoint a dramatic increase in lipid raft order due to the aberrant biochemical structure in PD and iPD and indicate that these abnormalities of lipid rafts in the frontal cortex occur at early stages of PD pathology. The findings correlate with abnormal lipid raft signaling and cognitive decline observed during the development of these neurodegenerative disorders. PMID:21717034

  8. Theoretical investigation of confocal microscopy using an elliptically polarized cylindrical vector laser beam: Visualization of quantum emitters near interfaces

    NASA Astrophysics Data System (ADS)

    Boichenko, Stepan

    2018-04-01

    We theoretically study laser-scanning confocal fluorescence microscopy using elliptically polarized cylindrical vector excitation light as a tool for visualization of arbitrarily oriented single quantum dipole emitters located (1) near planar surfaces enhancing fluorescence, (2) in a thin supported polymer film, (3) in a freestanding polymer film, and (4) in a dielectric planar microcavity. It is shown analytically that by using a tightly focused azimuthally polarized beam, it is possible to exclude completely the orientational dependence of the image intensity maximum of a quantum emitter that absorbs light as a pair of incoherent independent linear dipoles. For linear dipole quantum emitters, the orientational independence degree higher than 0.9 can normally be achieved (this quantity equal to 1 corresponds to completely excluded orientational dependence) if the collection efficiency of the microscope objective and the emitter's total quantum yield are not strongly orientationally dependent. Thus, the visualization of arbitrarily oriented single quantum emitters by means of the studied technique can be performed quite efficiently.

  9. Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses.

    PubMed

    Hamperl, Stephan; Bocek, Michael J; Saldivar, Joshua C; Swigut, Tomek; Cimprich, Karlene A

    2017-08-10

    Conflicts between transcription and replication are a potent source of DNA damage. Co-transcriptional R-loops could aggravate such conflicts by creating an additional barrier to replication fork progression. Here, we use a defined episomal system to investigate how conflict orientation and R-loop formation influence genome stability in human cells. R-loops, but not normal transcription complexes, induce DNA breaks and orientation-specific DNA damage responses during conflicts with replication forks. Unexpectedly, the replisome acts as an orientation-dependent regulator of R-loop levels, reducing R-loops in the co-directional (CD) orientation but promoting their formation in the head-on (HO) orientation. Replication stress and deregulated origin firing increase the number of HO collisions leading to genome-destabilizing R-loops. Our findings connect DNA replication to R-loop homeostasis and suggest a mechanistic basis for genome instability resulting from deregulated DNA replication, observed in cancer and other disease states. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Modeling and Studying the Effect of Texture and Elastic Anisotropy of Copper Microstructure in Nanoscale Interconnects on Reliability in Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Basavalingappa, Adarsh

    Copper interconnects are typically polycrystalline and follow a lognormal grain size distribution. Polycrystalline copper interconnect microstructures with a lognormal grain size distribution were obtained with a Voronoi tessellation approach. The interconnect structures thus obtained were used to study grain growth mechanisms, grain boundary scattering, scattering dependent resistance of interconnects, stress evolution, vacancy migration, reliability life times, impact of orientation dependent anisotropy on various mechanisms, etc. In this work, the microstructures were used to study the impact of microstructure and elastic anisotropy of copper on thermal and electromigration induced failure. A test structure with copper and bulk moduli values was modeled to do a comparative study with the test structures with textured microstructure and elastic anisotropy. By subjecting the modeled test structure to a thermal stress by ramping temperature down from 400 °C to 100 °C, a significant variation in normal stresses and pressure were observed at the grain boundaries. This variation in normal stresses and hydrostatic stresses at the grain boundaries was found to be dependent on the orientation, dimensions, surroundings, and location of the grains. This may introduce new weak points within the metal line where normal stresses can be very high depending on the orientation of the grains leading to delamination and accumulation sites for vacancies. Further, the hydrostatic stress gradients act as a driving force for vacancy migration. The normal stresses can exceed certain grain orientation dependent critical threshold values and induce delamination at the copper and cap material interface, thereby leading to void nucleation and growth. Modeled test structures were subjected to a series of copper depositions at 250 °C followed by copper etch at 25 °C to obtain initial stress conditions. Then the modeled test structures were subjected to 100,000 hours ( 11.4 years) of simulated thermal stress at an elevated temperature of 150 °C. Vacancy migration due to concentration gradients, thermal gradients, and mechanical stress gradients were considered under the applied thermal stress. As a result, relatively high concentrations of vacancies were observed in the test structure due to a driving force caused by the pressure gradients resulting from the elastic anisotropy of copper. The grain growth mechanism was not considered in these simulations. Studies with two grain analysis demonstrated that the stress gradients developed will be severe when (100) grains are adjacent to (111) grains, therefore making them the weak points for potentially reliability failures. Ilan Blech discovered that electromigration occurs above a critical product of the current density and metal length, commonly referred as Blech condition. Electromigration stress simulations in this work were carried out by subjecting test structures to scaled current densities to overcome the Blech condition of (jL)crit for small dimensions of test structure and the low temperature stress condition used. Vacancy migration under the electromigration stress conditions was considered along with the vacancy migration induced stress evolution. A simple void growth model was used which assumes voids start to form when vacancies reach a critical level. Increase of vacancies in a localized region increases the resistance of the metal line. Considering a 10% increase in resistance as a failure criterion, the distributions of failure times were obtained for given electromigration stress conditions. Bimodal/multimodal failure distributions were obtained as a result. The sigma values were slightly lower than the ones commonly observed from experiments. The anisotropy of the elastic moduli of copper leads to the development of significantly different stress values which are dependent on the orientation of the grains. This results in some grains having higher normal stress than the others. This grain orientation dependent normal stress can reach a critical stress necessary to induce delamination at the copper and cap interface. Time taken to reach critical stress was considered as time to fail and distributions of failure times were obtained for structures with different grain orientations in the microstructure for different critical stress values. The sigma values of the failure distributions thus obtained for different constant critical stress values had a strong dependence of on the critical stress. It is therefore critical to use the appropriate critical stress value for the delamination of copper and cap interface. The critical stress necessary to overcome the local adhesion of the copper and the cap material interface is dependent on grain orientation of the copper. Simulations were carried out by considering grain orientation dependent critical normal stress values as failure criteria. The sigma value thus obtained with selected critical stress values were comparable to sigma values commonly observed from experiments.

  11. Spatial frequency-dependent feedback of visual cortical area 21a modulating functional orientation column maps in areas 17 and 18 of the cat.

    PubMed

    Huang, Luoxiu; Chen, Xin; Shou, Tiande

    2004-02-20

    The feedback effect of activity of area 21a on orientation maps of areas 17 and 18 was investigated in cats using intrinsic signal optical imaging. A spatial frequency-dependent decrease in response amplitude of orientation maps to grating stimuli was observed in areas 17 and 18 when area 21a was inactivated by local injection of GABA, or by a lesion induced by liquid nitrogen freezing. The decrease in response amplitude of orientation maps of areas 17 and 18 after the area 21a inactivation paralleled the normal response without the inactivation. Application in area 21a of bicuculline, a GABAa receptor antagonist caused an increase in response amplitude of orientation maps of area 17. The results indicate a positive feedback from high-order visual cortical area 21a to lower-order areas underlying a spatial frequency-dependent mechanism.

  12. Time-sequential observation of spindle and phragmoplast orientation in BY-2 cells with altered cortical actin microfilament patterning.

    PubMed

    Kojo, Kei H; Yasuhara, Hiroki; Hasezawa, Seiichiro

    2014-01-01

    Precise division plane determination is essential for plant development. At metaphase, a dense actin microfilament meshwork appears on both sides of the cell center, forming a characteristic cortical actin microfilament twin peak pattern in BY-2 cells. We previously reported a strong correlation between altered cortical actin microfilament patterning and an oblique mitotic spindle orientation, implying that these actin microfilament twin peaks play a role in the regulation of mitotic spindle orientation. In the present study, time-sequential observation was used to reveal the progression from oblique phragmoplast to oblique cell plate orientation in cells with altered cortical actin microfilament patterning. In contrast to cells with normal actin microfilament twin peaks, oblique phragmoplast reorientation was rarely observed in cells with altered cortical actin microfilament patterning. These results support the important roles of cortical actin microfilament patterning in division plane orientation.

  13. Time-sequential observation of spindle and phragmoplast orientation in BY-2 cells with altered cortical actin microfilament patterning.

    PubMed

    Kojo, Kei H; Yasuhara, Hiroki; Hasezawa, Seiichiro

    2014-06-18

    Precise division plane determination is essential for plant development. At metaphase, a dense actin microfilament meshwork appears on both sides of the cell center, forming a characteristic cortical actin microfilament twin peak pattern in BY-2 cells. We previously reported a strong correlation between altered cortical actin microfilament patterning and an oblique mitotic spindle orientation, implying that these actin microfilament twin peaks play a role in the regulation of mitotic spindle orientation. In the present study, time-sequential observation was used to reveal the progression from oblique phragmoplast to oblique cell plate orientation in cells with altered cortical actin microfilament patterning. In contrast to cells with normal actin microfilament twin peaks, oblique phragmoplast reorientation was rarely observed in cells with altered cortical actin microfilament patterning. These results support the important roles of cortical actin microfilament patterning in division plane orientation.

  14. Improved Multispectral Skin Detection and its Application to Search Space Reduction for Dismount Detection Based on Histograms of Oriented Gradients

    DTIC Science & Technology

    2010-03-01

    2-29 2.7.4 Normalized Difference Skin Index (NDSI) . . . . 2-30 2.7.5 Normalized Difference Vegetation Index ( NDVI ) 2-31 2.7.6...C-1 C.2 NDVI Method . . . . . . . . . . . . . . . . . . . . . . . C-4 Bibliography... NDVI ,NDSI) and (NDGRI,NDSI) values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 4.3. Joint distributions of ( NDVI ,NDSI) and

  15. Role of somatosensory and vestibular cues in attenuating visually induced human postural sway

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Benolken, M. S.

    1995-01-01

    The purpose of this study was to determine the contribution of visual, vestibular, and somatosensory cues to the maintenance of stance in humans. Postural sway was induced by full-field, sinusoidal visual surround rotations about an axis at the level of the ankle joints. The influences of vestibular and somatosensory cues were characterized by comparing postural sway in normal and bilateral vestibular absent subjects in conditions that provided either accurate or inaccurate somatosensory orientation information. In normal subjects, the amplitude of visually induced sway reached a saturation level as stimulus amplitude increased. The saturation amplitude decreased with increasing stimulus frequency. No saturation phenomena were observed in subjects with vestibular loss, implying that vestibular cues were responsible for the saturation phenomenon. For visually induced sways below the saturation level, the stimulus-response curves for both normal subjects and subjects experiencing vestibular loss were nearly identical, implying (1) that normal subjects were not using vestibular information to attenuate their visually induced sway, possibly because sway was below a vestibular-related threshold level, and (2) that subjects with vestibular loss did not utilize visual cues to a greater extent than normal subjects; that is, a fundamental change in visual system "gain" was not used to compensate for a vestibular deficit. An unexpected finding was that the amplitude of body sway induced by visual surround motion could be almost 3 times greater than the amplitude of the visual stimulus in normal subjects and subjects with vestibular loss. This occurred in conditions where somatosensory cues were inaccurate and at low stimulus amplitudes. A control system model of visually induced postural sway was developed to explain this finding. For both subject groups, the amplitude of visually induced sway was smaller by a factor of about 4 in tests where somatosensory cues provided accurate versus inaccurate orientation information. This implied (1) that the subjects experiencing vestibular loss did not utilize somatosensory cues to a greater extent than normal subjects; that is, changes in somatosensory system "gain" were not used to compensate for a vestibular deficit, and (2) that the threshold for the use of vestibular cues in normal subjects was apparently lower in test conditions where somatosensory cues were providing accurate orientation information.

  16. Measurements of three-dimensional glenoid erosion when planning the prosthetic replacement of osteoarthritic shoulders.

    PubMed

    Terrier, A; Ston, J; Larrea, X; Farron, A

    2014-04-01

    The three-dimensional (3D) correction of glenoid erosion is critical to the long-term success of total shoulder replacement (TSR). In order to characterise the 3D morphology of eroded glenoid surfaces, we looked for a set of morphological parameters useful for TSR planning. We defined a scapular coordinates system based on non-eroded bony landmarks. The maximum glenoid version was measured and specified in 3D by its orientation angle. Medialisation was considered relative to the spino-glenoid notch. We analysed regular CT scans of 19 normal (N) and 86 osteoarthritic (OA) scapulae. When the maximum version of OA shoulders was higher than 10°, the orientation was not only posterior, but extended in postero-superior (35%), postero-inferior (6%) and anterior sectors (4%). The medialisation of the glenoid was higher in OA than normal shoulders. The orientation angle of maximum version appeared as a critical parameter to specify the glenoid shape in 3D. It will be very useful in planning the best position for the glenoid in TSR.

  17. Focusing and alignment of erythrocytes in a viscoelastic medium

    NASA Astrophysics Data System (ADS)

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2017-01-01

    Viscoelastic fluid flow-induced cross-streamline migration has recently received considerable attention because this process provides simple focusing and alignment over a wide range of flow rates. The lateral migration of particles depends on the channel geometry and physicochemical properties of particles. In this study, digital in-line holographic microscopy (DIHM) is employed to investigate the lateral migration of human erythrocytes induced by viscoelastic fluid flow in a rectangular microchannel. DIHM provides 3D spatial distributions of particles and information on particle orientation in the microchannel. The elastic forces generated in the pressure-driven flows of a viscoelastic fluid push suspended particles away from the walls and enforce erythrocytes to have a fixed orientation. Blood cell deformability influences the lateral focusing and fixed orientation in the microchannel. Different from rigid spheres and hardened erythrocytes, deformable normal erythrocytes disperse from the channel center plane, as the flow rate increases. Furthermore, normal erythrocytes have a higher angle of inclination than hardened erythrocytes in the region near the side-walls of the channel. These results may guide the label-free diagnosis of hematological diseases caused by abnormal erythrocyte deformability.

  18. Coherence of structural visual cues and pictorial gravity paves the way for interceptive actions.

    PubMed

    Zago, Myrka; La Scaleia, Barbara; Miller, William L; Lacquaniti, Francesco

    2011-09-20

    Dealing with upside-down objects is difficult and takes time. Among the cues that are critical for defining object orientation, the visible influence of gravity on the object's motion has received limited attention. Here, we manipulated the alignment of visible gravity and structural visual cues between each other and relative to the orientation of the observer and physical gravity. Participants pressed a button triggering a hitter to intercept a target accelerated by a virtual gravity. A factorial design assessed the effects of scene orientation (normal or inverted) and target gravity (normal or inverted). We found that interception was significantly more successful when scene direction was concordant with target gravity direction, irrespective of whether both were upright or inverted. This was so independent of the hitter type and when performance feedback to the participants was either available (Experiment 1) or unavailable (Experiment 2). These results show that the combined influence of visible gravity and structural visual cues can outweigh both physical gravity and viewer-centered cues, leading to rely instead on the congruence of the apparent physical forces acting on people and objects in the scene.

  19. Stress field estimation based on focal mechanisms and back projected imaging in the Eastern Llanos Basin (Colombia)

    NASA Astrophysics Data System (ADS)

    Gómez-Alba, Sebastián; Fajardo-Zarate, Carlos Eduardo; Vargas, Carlos Alberto

    2016-11-01

    At least 156 earthquakes (Mw 2.8-4.4) were detected in Puerto Gaitán, Colombia (Eastern Llanos Basin) between April 2013 and December 2014. Out of context, this figure is not surprising. However, from its inception in 1993, the Colombian National Seismological Network (CNSN) found no evidence of significant seismic events in this region. In this study, we used CNSN data to model the rupture front and orientation of the highest-energy events. For these earthquakes, we relied on a joint inversion method to estimate focal mechanisms and, in turn, determine the area's fault trends and stress tensor. While the stress tensor defines maximum stress with normal tendency, focal mechanisms generally represent normal faults with NW orientation, an orientation which lines up with the tracking rupture achieved via Back Projection Imaging for the study area. We ought to bear in mind that this anomalous earthquake activity has taken place within oil fields. In short, the present paper argues that, based on the spatiotemporal distribution of seismic events, hydrocarbon operations may induce the study area's seismicity.

  20. Fractures, stress and fluid flow prior to stimulation of well 27-15, Desert Peak, Nevada, EGS project

    USGS Publications Warehouse

    Davatzes, Nicholas C.; Hickman, Stephen H.

    2009-01-01

    A suite of geophysical logs has been acquired for structural, fluid flow and stress analysis of well 27-15 in the Desert Peak Geothermal Field, Nevada, in preparation for stimulation and development of an Enhanced Geothermal System (EGS). Advanced Logic Technologies Borehole Televiewer (BHTV) and Schlumberger Formation MicroScanner (FMS) image logs reveal extensive drilling-induced tensile fractures, showing that the current minimum compressive horizontal stress, Shmin, in the vicinity of well 27-15 is oriented along an azimuth of 114±17°. This orientation is consistent with the dip direction of recently active normal faults mapped at the surface and with extensive sets of fractures and some formation boundaries seen in the BHTV and FMS logs. Temperature and spinner flowmeter surveys reveal several minor flowing fractures that are well oriented for normal slip, although over-all permeability in the well is quite low. These results indicate that well 27-15 is a viable candidate for EGS stimulation and complements research by other investigators including cuttings analysis, a reflection seismic survey, pressure transient and tracer testing, and micro-seismic monitoring.

  1. BUCLAP2

    NASA Technical Reports Server (NTRS)

    Halstead, D. W.; Tripp, L. L.; Tamekuni, M.; Baker, L. L.; Viswanathan, A. V.

    1976-01-01

    Program is used to predict buckling of rectangular flat and curved laminated plates subjected to in-plane normal and shearing loads, with each lamina composed of orthotropic material with arbitrary orientation of orthotropic axes.

  2. On the colour of wing scales in butterflies: iridescence and preferred orientation of single gyroid photonic crystals

    PubMed Central

    2017-01-01

    Lycaenid butterflies from the genera Callophrys, Cyanophrys and Thecla have evolved remarkable biophotonic gyroid nanostructures within their wing scales that have only recently been replicated by nanoscale additive manufacturing. These nanostructures selectively reflect parts of the visible spectrum to give their characteristic non-iridescent, matte-green appearance, despite a distinct blue–green–yellow iridescence predicted for individual crystals from theory. It has been hypothesized that the organism must achieve its uniform appearance by growing crystals with some restrictions on the possible distribution of orientations, yet preferential orientation observed in Callophrys rubi confirms that this distribution need not be uniform. By analysing scanning electron microscope and optical images of 912 crystals in three wing scales, we find no preference for their rotational alignment in the plane of the scales. However, crystal orientation normal to the scale was highly correlated to their colour at low (conical) angles of view and illumination. This correlation enabled the use of optical images, each containing up to 104–105 crystals, for concluding the preferential alignment seen along the at the level of single scales, appears ubiquitous. By contrast, orientations were found to occur at no greater rate than that expected by chance. Above a critical cone angle, all crystals reflected bright green light indicating the dominant light scattering is due to the predicted band gap along the direction, independent of the domain orientation. Together with the natural variation in scale and wing shapes, we can readily understand the detailed mechanism of uniform colour production and iridescence suppression in these butterflies. It appears that the combination of preferential alignment normal to the wing scale, and uniform distribution within the plane is a near optimal solution for homogenizing the angular distribution of the band gap relative to the wings. Finally, the distributions of orientations, shapes, sizes and degree of order of crystals within single scales provide useful insights for understanding the mechanisms at play in the formation of these biophotonic nanostructures. PMID:28630678

  3. Modelling and simulation techniques for membrane biology.

    PubMed

    Burrage, Kevin; Hancock, John; Leier, André; Nicolau, Dan V

    2007-07-01

    One of the most important aspects of Computational Cell Biology is the understanding of the complicated dynamical processes that take place on plasma membranes. These processes are often so complicated that purely temporal models cannot always adequately capture the dynamics. On the other hand, spatial models can have large computational overheads. In this article, we review some of these issues with respect to chemistry, membrane microdomains and anomalous diffusion and discuss how to select appropriate modelling and simulation paradigms based on some or all the following aspects: discrete, continuous, stochastic, delayed and complex spatial processes.

  4. Polarized light microscopy for 3-dimensional mapping of collagen fiber architecture in ocular tissues.

    PubMed

    Yang, Bin; Jan, Ning-Jiun; Brazile, Bryn; Voorhees, Andrew; Lathrop, Kira L; Sigal, Ian A

    2018-04-06

    Collagen fibers play a central role in normal eye mechanics and pathology. In ocular tissues, collagen fibers exhibit a complex 3-dimensional (3D) fiber orientation, with both in-plane (IP) and out-of-plane (OP) orientations. Imaging techniques traditionally applied to the study of ocular tissues only quantify IP fiber orientation, providing little information on OP fiber orientation. Accurate description of the complex 3D fiber microstructures of the eye requires quantifying full 3D fiber orientation. Herein, we present 3dPLM, a technique based on polarized light microscopy developed to quantify both IP and OP collagen fiber orientations of ocular tissues. The performance of 3dPLM was examined by simulation and experimental verification and validation. The experiments demonstrated an excellent agreement between extracted and true 3D fiber orientation. Both IP and OP fiber orientations can be extracted from the sclera and the cornea, providing previously unavailable quantitative 3D measures and insight into the tissue microarchitecture. Together, the results demonstrate that 3dPLM is a powerful imaging technique for the analysis of ocular tissues. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Supranormal orientation selectivity of visual neurons in orientation-restricted animals.

    PubMed

    Sasaki, Kota S; Kimura, Rui; Ninomiya, Taihei; Tabuchi, Yuka; Tanaka, Hiroki; Fukui, Masayuki; Asada, Yusuke C; Arai, Toshiya; Inagaki, Mikio; Nakazono, Takayuki; Baba, Mika; Kato, Daisuke; Nishimoto, Shinji; Sanada, Takahisa M; Tani, Toshiki; Imamura, Kazuyuki; Tanaka, Shigeru; Ohzawa, Izumi

    2015-11-16

    Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure.

  6. Supranormal orientation selectivity of visual neurons in orientation-restricted animals

    PubMed Central

    Sasaki, Kota S.; Kimura, Rui; Ninomiya, Taihei; Tabuchi, Yuka; Tanaka, Hiroki; Fukui, Masayuki; Asada, Yusuke C.; Arai, Toshiya; Inagaki, Mikio; Nakazono, Takayuki; Baba, Mika; Kato, Daisuke; Nishimoto, Shinji; Sanada, Takahisa M.; Tani, Toshiki; Imamura, Kazuyuki; Tanaka, Shigeru; Ohzawa, Izumi

    2015-01-01

    Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure. PMID:26567927

  7. The Role of Grain Orientation and Grain Boundary Characteristics in the Mechanical Twinning Formation in a High Manganese Twinning-Induced Plasticity Steel

    NASA Astrophysics Data System (ADS)

    Shterner, Vadim; Timokhina, Ilana B.; Rollett, Anthony D.; Beladi, Hossein

    2018-04-01

    In the current study, the dependence of mechanical twinning on grain orientation and grain boundary characteristics was investigated using quasi in-situ tensile testing. The grains of three main orientations (i.e., <111>, <110>, and <100> parallel to the tensile axis (TA)) and certain characteristics of grain boundaries (i.e., the misorientation angle and the inclination angle between the grain boundary plane normal and the TA) were examined. Among the different orientations, <111> and <100> were the most and the least favored orientations for the formation of mechanical twins, respectively. The <110> orientation was intermediate for twinning. The annealing twin boundaries appeared to be the most favorable grain boundaries for the nucleation of mechanical twinning. No dependence was found for the inclination angle of annealing twin boundaries, but the orientation of grains on either side of the annealing twin boundary exhibited a pronounced effect on the propensity for mechanical twinning. Annealing twin boundaries adjacent to high Taylor factor grains exhibited a pronounced tendency for twinning regardless of their inclination angle. In general, grain orientation has a significant influence on twinning on a specific grain boundary.

  8. Germination of pine seed in weightlessness (investigation in Kosmos 782)

    NASA Technical Reports Server (NTRS)

    Platonova, R. N.; Parfenov, G. P.; Olkhovenko, V. P.; Karpova, N. I.; Pichugov, M. Y.

    1978-01-01

    An investigation was made of the orientation of aboveground and underground organs of pine plants grown from seed in weightlessness. Orientation was found to be caused by the position of the seeds relative to the substrate surface. Normal growth was manifest only for the plants grown from seed oriented with embryo toward the substrate. Differences were noted between experiment and control as to the quantitative content of nucleoli in the meristematic cells of the rootlets and the shape of cells in the cotyledonous leaflets. No complete agreement was found between data obtained in weightlessness and when gravity was compensated (clinostat treatment with horizontal rotation).

  9. Geochemistry and metamorphic evolution of a Ti-metagabbro in the Asnawa Group of the Shalair terrain (Sanandaj-Sirjan Zone), Kurdistan region, Iraq.

    NASA Astrophysics Data System (ADS)

    Yara, Irfan; Schulz, Bernhard; Tichomirowa, Marion; Mohammad, Yousif; Matschullat, Jörg

    2014-05-01

    Geochemistry and metamorphic evolution of a Ti-metagabbro in the Asnawa Group of the Shalair terrain (Sanandaj-Sirjan Zone), Kurdistan region, Iraq. We present geochemical data, mineral chemistry, petrography, and theP-T conditions of a Ti-metagabbro from the Asnawa Group in the Shalair Terrain (Sanandaj-Sirjan Zone).Geochemical data indicate that this Ti-metagabbro has tholeiitic characteristics with low-K contents. Factor analyses of the elements indicate fractionation of common mineral phases such as clinopyroxene, hornblende, plagioclase, Ti-bearing phases (rutile, ilmenite, titanite), and apatite. The normal mid-oceanic ridge basalt (N-MORB)-normalized incompatible trace element diagram shows close similarity with typical N-MORB pattern. Tectonomagmatic discrimination diagrams suggest a dominating MORB environment. The rock/chondrite-normalized REE diagram of the amphibolites also shows their N-MORB-type signature, with relative enrichment in LREE. The rock derived from mixed primitive and depleted mantel. The formation and preservation of the various metamorphic mineral assemblages and their mineral chemical characteristicsare strongly affected by the original magmatic whole-rock composition. This can be demonstrated by different microdomains, which contain different amphiboles and plagioclases. The metamorphic history can be subdivided into the stages M1-M2-M3. The first stage of metamorphism was recorded by crystallisation of actinolite replacing clinopyroxene and igneous amphibole (M1 stage, 410< T < 490°C; 1.8 < P <2.2 kbar). Increase of temperature resulted in the formation of hornblende pseudomorphism and hornblende and sphene coronae growing on previous amphibole or clinopyroxene and ilmenite, respectively (M2 stage, 540 < T <580°C; 4.5 < P < 5.5 kbar). The third stage (M3 stage, 730 < T °C < 780°C; 6.5 < P < 7.5 kbar) led to the formation of a ferro-tschermakite corona, around the M2 amphibole, and rutile that developed on the sphene and ilmenite of M2, This as a result of continental collisional process, in Eocene between Arabian and Iranian plates.

  10. Open angle glaucoma effects on preattentive visual search efficiency for flicker, motion displacement and orientation pop-out tasks.

    PubMed

    Loughman, James; Davison, Peter; Flitcroft, Ian

    2007-11-01

    Preattentive visual search (PAVS) describes rapid and efficient retinal and neural processing capable of immediate target detection in the visual field. Damage to the nerve fibre layer or visual pathway might reduce the efficiency with which the visual system performs such analysis. The purpose of this study was to test the hypothesis that patients with glaucoma are impaired on parallel search tasks, and that this would serve to distinguish glaucoma in early cases. Three groups of observers (glaucoma patients, suspect and normal individuals) were examined, using computer-generated flicker, orientation, and vertical motion displacement targets to assess PAVS efficiency. The task required rapid and accurate localisation of a singularity embedded in a field of 119 homogeneous distractors on either the left or right-hand side of a computer monitor. All subjects also completed a choice reaction time (CRT) task. Independent sample T tests revealed PAVS efficiency to be significantly impaired in the glaucoma group compared with both normal and suspect individuals. Performance was impaired in all types of glaucoma tested. Analysis between normal and suspect individuals revealed a significant difference only for motion displacement response times. Similar analysis using a PAVS/CRT index confirmed the glaucoma findings but also showed statistically significant differences between suspect and normal individuals across all target types. A test of PAVS efficiency appears capable of differentiating early glaucoma from both normal and suspect cases. Analysis incorporating a PAVS/CRT index enhances the diagnostic capacity to differentiate normal from suspect cases.

  11. Structural basis of orientation sensitivity of cat retinal ganglion cells.

    PubMed

    Leventhal, A G; Schall, J D

    1983-11-10

    We investigated the structural basis of the physiological orientation sensitivity of retinal ganglion cells (Levick and Thibos, '82). The dendritic fields of 840 retinal ganglion cells labeled by injections of horseradish peroxidase into the dorsal lateral geniculate nucleus (LGNd) or optic tracts of normal cats. Siamese cats, and cat deprived of patterned visual experience from birth by monocular lid-suture (MD) were studied. Mathematical techniques designed to analyze direction were used to find the dendritic field orientation of each cell. Statistical techniques designed for angular data were used to determine the relationship between dendritic field orientation and angular position on the retina (polar angle). Our results indicate that 88% of retinal ganglion cells have oriented dendritic fields and that dendritic field orientation is related systematically to retinal position. In all regions of retina more that 0.5 mm from the area centralis the dendritic fields of retinal ganglion cells are oriented radially, i.e., like the spokes of a wheel having the area centralis at its hub. This relationship was present in all animals and cell types studied and was strongest for cells located close to the horizontal meridian (visual streak) of the retina. Retinal ganglion cells appear to be sensitive to stimulus orientation because they have oriented dendritic fields.

  12. Fault strength in Marmara region inferred from the geometry of the principle stress axes and fault orientations: A case study for the Prince's Islands fault segment

    NASA Astrophysics Data System (ADS)

    Pinar, Ali; Coskun, Zeynep; Mert, Aydin; Kalafat, Dogan

    2015-04-01

    The general consensus based on historical earthquake data point out that the last major moment release on the Prince's islands fault was in 1766 which in turn signals an increased seismic risk for Istanbul Metropolitan area considering the fact that most of the 20 mm/yr GPS derived slip rate for the region is accommodated mostly by that fault segment. The orientation of the Prince's islands fault segment overlaps with the NW-SE direction of the maximum principle stress axis derived from the focal mechanism solutions of the large and moderate sized earthquakes occurred in the Marmara region. As such, the NW-SE trending fault segment translates the motion between the two E-W trending branches of the North Anatolian fault zone; one extending from the Gulf of Izmit towards Çınarcık basin and the other extending between offshore Bakırköy and Silivri. The basic relation between the orientation of the maximum and minimum principal stress axes, the shear and normal stresses, and the orientation of a fault provides clue on the strength of a fault, i.e., its frictional coefficient. Here, the angle between the fault normal and maximum compressive stress axis is a key parameter where fault normal and fault parallel maximum compressive stress might be a necessary and sufficient condition for a creeping event. That relation also implies that when the trend of the sigma-1 axis is close to the strike of the fault the shear stress acting on the fault plane approaches zero. On the other hand, the ratio between the shear and normal stresses acting on a fault plane is proportional to the coefficient of frictional coefficient of the fault. Accordingly, the geometry between the Prince's islands fault segment and a maximum principal stress axis matches a weak fault model. In the frame of the presentation we analyze seismological data acquired in Marmara region and interpret the results in conjuction with the above mentioned weak fault model.

  13. On the Training Model of China's Local Normal University Students during the Transitional Period from the Perspective of Happiness Management

    ERIC Educational Resources Information Center

    Weiwei, Huang

    2016-01-01

    As a theory based on the hypothesis of "happy man" about human nature, happiness management plays a significant guiding role in the optimization of the training model of local Chinese normal university students during the transitional period. Under the guidance of this theory, China should adhere to the people-oriented principle,…

  14. Effects of spatial gradients in thermophysical properties on the topology of turbulence in heated channel flow of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Azih, Chukwudi; Yaras, Metin I.

    2018-01-01

    The current literature suggests that large spatial gradients of thermophysical properties, which occur in the vicinity of the pseudo-critical thermodynamic state, may result in significant variations in forced-convection heat transfer rates. Specifically, these property gradients induce inertia- and buoyancy-driven phenomena that may enhance or deteriorate the turbulence-dominated heat convection process. Through direct numerical simulations, the present study investigates the role of coherent flow structures in channel geometries for non-buoyant and buoyant flows of supercritical water, with buoyant configurations involving wall-normal oriented gravitational acceleration and downstream-oriented gravitational acceleration. This sequence of simulations enables the evaluation of the relative contributions of inertial and buoyancy phenomena to heat transfer variations. In these simulations, the state of the working fluid is in the vicinity of the pseudo-critical point. The uniform wall heat flux and the channel mass flux are specified such that the heat to mass flux ratio is 3 kJ/kg, with an inflow Reynolds number of 12 000 based on the channel hydraulic diameter, the area-averaged inflow velocity, and fluid properties evaluated at the bulk temperature and pressure of the inflow plane. In the absence of buoyancy forces, notable reductions in the density and viscosity in close proximity of the heated wall are observed to promote generation of small-scale vortices, with resultant breakdown into smaller scales as they interact with preexisting larger near-wall vortices. This interaction results in a reduction in the overall thermal mixing at particular wall-normal regions of the channel. Under the influence of wall-normal gravitational acceleration, the wall-normal density gradients are noted to enhance ejection motions due to baroclinic vorticity generation on the lower wall, thus providing additional wall-normal thermal mixing. Along the upper wall, the same mechanism generates streamwise vorticity of the opposing sense of rotation in the close vicinity to the respective legs of the hairpin vortices causing a net reduction in thermal mixing. Finally, in the case of downstream-oriented gravitational acceleration, baroclinic vorticity generation as per spanwise density gradients causes additional wall-normal thermal mixing by promoting larger-scale ejection and sweep motions.

  15. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes.

    PubMed

    Osato, Naoki

    2018-01-19

    Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional enrichments were related to the cellular functions. The normalized number of functional enrichments of human putative transcriptional target genes changed according to the criteria of enhancer-promoter assignments and correlated with the median expression level of the target genes. These analyses and characters of human putative transcriptional target genes would be useful to examine the criteria of enhancer-promoter assignments and to predict the novel mechanisms and factors such as DNA binding proteins and DNA sequences of enhancer-promoter interactions.

  16. A tectorin-based matrix and planar cell polarity genes are required for normal collagen-fibril orientation in the developing tectorial membrane.

    PubMed

    Goodyear, Richard J; Lu, Xiaowei; Deans, Michael R; Richardson, Guy P

    2017-11-01

    The tectorial membrane is an extracellular structure of the cochlea. It develops on the surface of the auditory epithelium and contains collagen fibrils embedded in a tectorin-based matrix. The collagen fibrils are oriented radially with an apically directed slant - a feature considered crucial for hearing. To determine how this pattern is generated, collagen-fibril formation was examined in mice lacking a tectorin-based matrix, epithelial cilia or the planar cell polarity genes Vangl2 and Ptk7 In wild-type mice, collagen-fibril bundles appear within a tectorin-based matrix at E15.5 and, as fibril number rapidly increases, become co-aligned and correctly oriented. Epithelial width measurements and data from Kif3a cKO mice suggest, respectively, that radial stretch and cilia play little, if any, role in determining normal collagen-fibril orientation; however, evidence from tectorin-knockout mice indicates that confinement is important. PRICKLE2 distribution reveals the planar cell polarity axis in the underlying epithelium is organised along the length of the cochlea and, in mice in which this polarity is disrupted, the apically directed collagen offset is no longer observed. These results highlight the importance of the tectorin-based matrix and epithelial signals for precise collagen organisation in the tectorial membrane. © 2017. Published by The Company of Biologists Ltd.

  17. Influence of crystallographic texture in X70 pipeline steels on toughness anisotropy and delamination

    NASA Astrophysics Data System (ADS)

    Al-Jabr, Haytham M.

    The effects of microstructure and crystallographic texture in four commercially-produced API X70 pipeline steels and their relation to planar anisotropy of toughness and delamination were evaluated. The experimental steels were processed through either a hot strip mill, a Steckel mill, or a compact strip mill. Different processing routes were selected to obtain plates with potential variations in the microstructure and anisotropic characteristics. Tensile and Charpy impact testing were used to evaluate the mechanical properties in three orientations: longitudinal (L), transverse (T) and diagonal (D) with respect to the rolling direction to evaluate mechanical property anisotropy. The yield and tensile strengths were higher in the T orientation and toughness was lower in the D orientation for all plates. Delamination was observed in some of the ductile fracture surfaces of the impact samples. To further study the splitting behavior and effects on impact toughness, a modified impact test (MCVN) specimen with side grooves was designed to intensify induced stresses parallel to the notch root and thus facilitate evaluation of delamination. Scanning electron microscopy combined with electron backscattered diffraction (EBSD) were used to evaluate the grain size, microstructural constituents, and crystallographic texture to determine the factors leading to delamination and the anisotropy in toughness. The ferrite grain size is mainly responsible for the differences in DBTTs between the L and T orientations. The higher DBTT in the D orientation observed in pipeline steels is attributed to crystallographic texture. The higher DBTT in the D direction is due to the higher volume fraction of grains having their {100} planes parallel or close to the primary fracture plane for the D orientation. An equation based on a new "brittleness parameter," based on an assessment of grain orientations based on EBSD data, was developed to predict the changes in DBTTs with respect to sample orientation based on grain size and texture. The calculated DBTTs correlated well with the experimental values. The {001} and {113} components are the main preferred orientations that cause brittleness in the D direction, since their {001} planes make an angle less than 20° with the primary fracture plane of the samples oriented in the D direction. It was also concluded that delamination occurs due to banded bainite regions that were oriented such that their {001} planes make a small angle with the rolling plane leading to degradation in crack arrestability. The texture of the banded regions consisted of {001}, {113} or {111} orientations. It was concluded that the {001} and {113} orientations promote splitting because their fracture strengths in the normal direction are low. The {111} orientation has a calculated fracture strength more than twice the {001} and {113} orientations and therefore banded regions with the {111} texture are more susceptible to cleavage fracture perpendicular to the normal direction.

  18. Type of faulting and orientation of stress and strain as a function of space and time in Kilauea's south flank, Hawaii

    USGS Publications Warehouse

    Gillard, D.; Wyss, M.; Okubo, P.

    1996-01-01

    Earthquake focal mechanisms of events occurring between 1972 and 1992 in the south flank of Kilauea volcano, Hawaii, are used to infer the state of stress and strain as a function of time and space. We have determined 870 fault plane solutions from P wave first motion polarities for events with magnitudes ML ??? 2.5 and depth ranging between 6 and 12 km. Faulting is characterized by a mixture of decollement, reverse, and normal faults. Most large earthquakes with magnitude M 7 rupture the decollement plane, since it is the only surface large enough to generate magnitude 7 or larger earthquakes. The percentage of reverse faulting events is high compared to the decollement and normal faulting mechanisms for the period 1972-1983. The percentage of decollement type focal mechanisms becomes dominant after 1983. This pattern of faulting activity suggests that pressure was building up within Kilauea's rift zone prior to the 1983 Puu'Oo eruption. Overall, a single stress orientation with the maximum compressive stress oriented SE perpendicular to the rift and dipping at 45?? is compatible with the coeval existence of decollement, reverse, and normal faults. However, in a crustal volume east of longitude 155??10'W, we find a change of the orientation of ??1 from nearly horizontal to plunging 45?? SE occurring in 1979. This stress rotation suggests magma movements within the aseismic part of Kilauea's east rift zone. The strain and stress orientations are coaxial in the south flank except within the volume where the stress rotation is observed. We observe a change in the relationship between stress and strain directions caused either by the shifting of seismic activity from reverse faults to decollements, while stress stays constant, or by a rotation of stress, while strain remains constant. Assuming that the model of a noncohesive Coulomb wedge is appropriate for Kilauea's south flank, we find that high pore pressures are prevalent along the decollement and within the wedge for a coefficient of friction equal to 0.85.

  19. Local pH domains regulate NHE3-mediated Na+ reabsorption in the renal proximal tubule

    PubMed Central

    Burford, James L.; McDonough, Alicia A.; Holstein-Rathlou, Niels-Henrik; Peti-Peterdi, Janos

    2014-01-01

    The proximal tubule Na+/H+ exchanger 3 (NHE3), located in the apical dense microvilli (brush border), plays a major role in the reabsorption of NaCl and water in the renal proximal tubule. In response to a rise in blood pressure NHE3 redistributes in the plane of the plasma membrane to the base of the brush border, where NHE3 activity is reduced. This NHE3 redistribution is assumed to provoke pressure natriuresis; however, it is unclear how NHE3 redistribution per se reduces NHE3 activity. To investigate if the distribution of NHE3 in the brush border can change the reabsorption rate, we constructed a spatiotemporal mathematical model of NHE3-mediated Na+ reabsorption across a proximal tubule cell and compared the model results with in vivo experiments in rats. The model predicts that when NHE3 is localized exclusively at the base of the brush border, it creates local pH microdomains that reduce NHE3 activity by >30%. We tested the model's prediction experimentally: the rat kidney cortex was loaded with the pH-sensitive fluorescent dye BCECF, and cells of the proximal tubule were imaged in vivo using confocal fluorescence microscopy before and after an increase of blood pressure by ∼50 mmHg. The experimental results supported the model by demonstrating that a rise of blood pressure induces the development of pH microdomains near the bottom of the brush border. These local changes in pH reduce NHE3 activity, which may explain the pressure natriuresis response to NHE3 redistribution. PMID:25298526

  20. The CD157-integrin partnership controls transendothelial migration and adhesion of human monocytes.

    PubMed

    Lo Buono, Nicola; Parrotta, Rossella; Morone, Simona; Bovino, Paola; Nacci, Giulia; Ortolan, Erika; Horenstein, Alberto L; Inzhutova, Alona; Ferrero, Enza; Funaro, Ada

    2011-05-27

    CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β(1) and β(2) integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes.

  1. The CD157-Integrin Partnership Controls Transendothelial Migration and Adhesion of Human Monocytes*

    PubMed Central

    Lo Buono, Nicola; Parrotta, Rossella; Morone, Simona; Bovino, Paola; Nacci, Giulia; Ortolan, Erika; Horenstein, Alberto L.; Inzhutova, Alona; Ferrero, Enza; Funaro, Ada

    2011-01-01

    CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β1 and β2 integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes. PMID:21478153

  2. Blood-nerve barrier: distribution of anionic sites on the endothelial plasma membrane and basal lamina of dorsal root ganglia.

    PubMed

    Bush, M S; Reid, A R; Allt, G

    1991-09-01

    Previous investigations of the blood-nerve barrier have correlated the greater permeability of ganglionic endoneurial vessels, compared to those of nerve trunks, with the presence of fenestrations and open intercellular junctions. Recent studies have demonstrated reduced endothelial cell surface charge in blood vessels showing greater permeability. To determine the distribution of anionic sites on the plasma membranes and basal laminae of endothelial cells in dorsal root ganglia, cationic colloidal gold and cationic ferritin were used. Electron microscopy revealed the existence of endothelial microdomains with differing labelling densities. Labelling indicated that caveolar and fenestral diaphragms and basal laminae are highly anionic at physiological pH, luminal plasma membranes and endothelial processes are moderately charged and abluminal plasma membranes are weakly anionic. Tracers did not occur in caveolae or cytoplasmic vesicles. In vitro tracer experiments at pH values of 7.3, 5.0, 3.5 and 2.0 indicated that the anionic charge on the various endothelial domains was contributed by chemical groups with differing pKa values. In summary, the labelling of ganglionic and sciatic nerve vessels was similar except for the heavy labelling of diaphragms in a minority of endoneurial vessels in ganglia. This difference is likely to account in part for the greater permeability of ganglionic endoneurial vessels. The results are discussed with regard to the blood-nerve and -brain barriers and vascular permeability in other tissues and a comparison made between the ultrastructure and anionic microdomains of epi-, peri- and endoneurial vessels of dorsal root ganglia and sciatic nerves.

  3. Evidence of proteolipid domain formation in an inner mitochondrial membrane mimicking model.

    PubMed

    Cheniour, Mouhedine; Brewer, Jonathan; Bagatolli, Luis; Marcillat, Olivier; Granjon, Thierry

    2017-05-01

    Mitochondrial creatine kinase (mtCK) is highly abundant in mitochondria; its quantity is equimolecular to the Adenylic Nucleotide Translocator and represents 1% of the mitochondrial proteins. It is a multitask protein localized in the mitochondria intermembrane space where it binds to the specific cardiolipin (CL) phospholipid. If mtCK was initially thought to be exclusively implicated in energy transfer between mitochondria and cytosol through a mechanism referred to as the phosphocreatine shuttle, several recent studies suggested an additional role in maintaining mitochondria membrane structure. To further characterized mtCK binding process we used multiphoton excitation fluorescence microscopy coupled with Giant Unilamellar Vesicles (GUV) and laurdan as fluorescence probe. We gathered structural and dynamical information on the molecular events occurring during the binding of mtCK to the mitochondria inner membrane. We present the first visualization of mtCK-induced CL segregation on a bilayer model forming micrometer-size proteolipid domains at the surface of the GUV. Those microdomains, which only occurred when CL is included in the lipid mixture, were accompanied by the formation of protein multimolecular assembly, vesicle clamping, and changes in both vesicle curvature and membrane fluidity CONCLUSION: Those results highlighted the importance of the highly abundant mtCK in the lateral organization of the mitochondrial inner membrane. Microdomains were induced in mitochondria-mimicking membranes composed of natural phospholipids without cholesterol and/or sphingolipids differing from the proposed cytoplasmic membrane rafts. Those findings as well as membrane curvature modification were discussed in relation with protein-membrane interaction and protein cluster involvement in membrane morphology. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Cholesterol Depletion Disorganizes Oocyte Membrane Rafts Altering Mouse Fertilization

    PubMed Central

    Buschiazzo, Jorgelina; Ialy-Radio, Come; Auer, Jana; Wolf, Jean-Philippe; Serres, Catherine

    2013-01-01

    Drastic membrane reorganization occurs when mammalian sperm binds to and fuses with the oocyte membrane. Two oocyte protein families are essential for fertilization, tetraspanins and glycosylphosphatidylinositol-anchored proteins. The firsts are associated to tetraspanin-enriched microdomains and the seconds to lipid rafts. Here we report membrane raft involvement in mouse fertilization assessed by cholesterol modulation using methyl-β-cyclodextrin. Cholesterol removal induced: (1) a decrease of the fertilization rate and index; and (2) a delay in the extrusion of the second polar body. Cholesterol repletion recovered the fertilization ability of cholesterol-depleted oocytes, indicating reversibility of these effects. In vivo time-lapse analyses using fluorescent cholesterol permitted to identify the time-point at which the probe is mainly located at the plasma membrane enabling the estimation of the extent of the cholesterol depletion. We confirmed that the mouse oocyte is rich in rafts according to the presence of the raft marker lipid, ganglioside GM1 on the membrane of living oocytes and we identified the coexistence of two types of microdomains, planar rafts and caveolae-like structures, by terms of two differential rafts markers, flotillin-2 and caveolin-1, respectively. Moreover, this is the first report that shows characteristic caveolae-like invaginations in the mouse oocyte identified by electron microscopy. Raft disruption by cholesterol depletion disturbed the subcellular localization of the signal molecule c-Src and the inhibition of Src kinase proteins prevented second polar body extrusion, consistent with a role of Src-related kinases in fertilization via signaling complexes. Our data highlight the functional importance of intact membrane rafts for mouse fertilization and its dependence on cholesterol. PMID:23638166

  5. Quantitative membrane proteomics reveals a role for tetraspanin enriched microdomains during entry of human cytomegalovirus

    PubMed Central

    John, Nessy; Malouli, Daniel

    2017-01-01

    Human cytomegalovirus (HCMV) depends on and modulates multiple host cell membrane proteins during each stage of the viral life cycle. To gain a global view of the impact of HCMV-infection on membrane proteins, we analyzed HCMV-induced changes in the abundance of membrane proteins in fibroblasts using stable isotope labeling with amino acids (SILAC), membrane fractionation and protein identification by two-dimensional liquid chromatography and tandem mass spectrometry. This systematic approach revealed that CD81, CD44, CD98, caveolin-1 and catenin delta-1 were down-regulated during infection whereas GRP-78 was up-regulated. Since CD81 downregulation was also observed during infection with UV-inactivated virus we hypothesized that this tetraspanin is part of the viral entry process. Interestingly, additional members of the tetraspanin family, CD9 and CD151, were also downregulated during HCMV-entry. Since tetraspanin-enriched microdomains (TEM) cluster host cell membrane proteins including known CMV receptors such as integrins, we studied whether TEMs are required for viral entry. When TEMs were disrupted with the cholesterol chelator methyl-β-cylcodextrin, viral entry was inhibited and this inhibition correlated with reduced surface levels of CD81, CD9 and CD151, whereas integrin levels remained unchanged. Furthermore, simultaneous siRNA-mediated knockdown of multiple tetraspanins inhibited viral entry whereas individual knockdown had little effect suggesting essential, but redundant roles for individual tetraspanins during entry. Taken together, our data suggest that TEM act as platforms for receptors utilized by HCMV for entry into cells. PMID:29121670

  6. Mechanisms of nuclear lamina growth in interphase.

    PubMed

    Zhironkina, Oxana A; Kurchashova, Svetlana Yu; Pozharskaia, Vasilisa A; Cherepanynets, Varvara D; Strelkova, Olga S; Hozak, Pavel; Kireev, Igor I

    2016-04-01

    The nuclear lamina represents a multifunctional platform involved in such diverse yet interconnected processes as spatial organization of the genome, maintenance of mechanical stability of the nucleus, regulation of transcription and replication. Most of lamina activities are exerted through tethering of lamina-associated chromatin domains (LADs) to the nuclear periphery. Yet, the lamina is a dynamic structure demonstrating considerable expansion during the cell cycle to accommodate increased number of LADs formed during DNA replication. We analyzed dynamics of nuclear growth during interphase and changes in lamina structure as a function of cell cycle progression. The nuclear lamina demonstrates steady growth from G1 till G2, while quantitative analysis of lamina meshwork by super-resolution microscopy revealed that microdomain organization of the lamina is maintained, with lamin A and lamin B microdomain periodicity and interdomain gap sizes unchanged. FRAP analysis, in contrast, demonstrated differences in lamin A and B1 exchange rates; the latter showing higher recovery rate in S-phase cells. In order to further analyze the mechanism of lamina growth in interphase, we generated a lamina-free nuclear envelope in living interphase cells by reversible hypotonic shock. The nuclear envelope in nuclear buds formed after such a treatment initially lacked lamins, and analysis of lamina formation revealed striking difference in lamin A and B1 assembly: lamin A reassembled within 30 min post-treatment, whereas lamin B1 did not incorporate into the newly formed lamina at all. We suggest that in somatic cells lamin B1 meshwork growth is coordinated with replication of LADs, and lamin A meshwork assembly seems to be chromatin-independent process.

  7. Preparation of membrane rafts.

    PubMed

    Waugh, Mark G; Hsuan, J Justin

    2009-01-01

    The concept that biological membranes contain microdomains of specialized lipid and protein composition has attracted great attention in recent years. Initially, the focus in the field was very much on the characterization of cholesterol-and sphingolipid-rich plasma membrane microdomains that were resistant to solubilization in the cold non-ionic detergent Triton X-100. Such detergent-insoluble membrane domains were of low buoyant density and could be readily purified on sucrose equilibrium density gradients. The intrinsic buoyancy of the detergent-insoluble domains gave rise to the term "lipid rafts." Cholesterol- and sphingolipid-rich rafts at the plasma membrane have been implicated in a wide range of cellular processes, including pathogen invasion, receptor signaling, and endocytosis. However, work with other non-ionic detergents such as Lubrol WX and Brij-98 has revealed the existence of various raft subtypes with differing lipid compositions and proposed functions. More recently, there has been some focus on isolating lipid rafts from intracellular organelles, in particular membranes from the Golgi-endosomal pathway, where raft lipids have been proposed to function in processes such as the sorting of vesicular cargo and the processing of amyloid precursor protein. While there remains a large degree of controversy surrounding the purity, the physiological importance, and even the existence of different types of lipid rafts in intact cells, the ability to routinely purify such domains has led to significant progress in understanding the functional architecture of biological membranes. We describe a number of widely used methods to prepare rafts, based on early preparations of caveolae by density gradient ultracentrifugation and immunoaffinity precipitation.

  8. Synaptic proteins associate with a sub-set of lipid rafts when isolated from nerve endings at physiological temperature.

    PubMed

    Gil, Carles; Cubí, Roger; Blasi, Juan; Aguilera, José

    2006-10-06

    Although the high presence of cholesterol in nerve terminals is well documented, specific roles of this lipid in transmitter release have remained elusive. Since cholesterol is a highly enriched component in the membrane microdomains known as lipid rafts, it is probable that these domains are very important in synaptic function. The extraction of lipid rafts using Brij 98 at 37 degrees C avoids the formation of nonspecific membrane aggregates at low temperature, allowing the isolation of more physiologically relevant lipid rafts. In the present work, we examine, by means of buoyancy analysis in sucrose gradients after solubilization of the membranes with Brij 98 or with Lubrol WX, the presence of proteins involved in exocytosis in detergent-resistant membranes (DRM) using rat brain synaptosomes as a neurological model. Significant proportions of the proteins tested in the present work, which are involved in neurotransmitter release, are found in Brij 98 raft fractions, demonstrating that significant pools of synaptic proteins are segregated in specific parts of the membrane at physiological temperature. On the other hand, Lubrol WX is unable to solubilize the major fraction of the proteins tested. Treatment of synaptosomes with methyl-beta-cyclodextrin (mbetaCD) causes alteration in the buoyancy properties of proteins initially present in Brij- as well as in Lubrol-resistant membranes, indicating the cholesterol-dependency of both kinds of microdomains. Finally, we detect the depolarization-induced enhancement of the cholesterol-dependent association of syntaxin 1 with Brij 98-rafts, under the same conditions in which prolonged neurotransmitter release is stimulated.

  9. Promotion of Bone Morphogenetic Protein Signaling by Tetraspanins and Glycosphingolipids

    PubMed Central

    Szymczak, Lindsey C.; Aydin, Taner; Yun, Sijung; Constas, Katharine; Schaeffer, Arielle; Ranjan, Sinthu; Kubba, Saad; Alam, Emad; McMahon, Devin E.; He, Jingpeng; Shwartz, Neta; Tian, Chenxi; Plavskin, Yevgeniy; Lindy, Amanda; Dad, Nimra Amir; Sheth, Sunny; Amin, Nirav M.; Zimmerman, Stephanie; Liu, Dennis; Schwarz, Erich M.; Smith, Harold; Krause, Michael W.; Liu, Jun

    2015-01-01

    Bone morphogenetic proteins (BMPs) belong to the transforming growth factor β (TGFβ) superfamily of secreted molecules. BMPs play essential roles in multiple developmental and homeostatic processes in metazoans. Malfunction of the BMP pathway can cause a variety of diseases in humans, including cancer, skeletal disorders and cardiovascular diseases. Identification of factors that ensure proper spatiotemporal control of BMP signaling is critical for understanding how this pathway is regulated. We have used a unique and sensitive genetic screen to identify the plasma membrane-localized tetraspanin TSP-21 as a key new factor in the C. elegans BMP-like “Sma/Mab” signaling pathway that controls body size and postembryonic M lineage development. We showed that TSP-21 acts in the signal-receiving cells and genetically functions at the ligand-receptor level. We further showed that TSP-21 can associate with itself and with two additional tetraspanins, TSP-12 and TSP-14, which also promote Sma/Mab signaling. TSP-12 and TSP-14 can also associate with SMA-6, the type I receptor of the Sma/Mab pathway. Finally, we found that glycosphingolipids, major components of the tetraspanin-enriched microdomains, are required for Sma/Mab signaling. Our findings suggest that the tetraspanin-enriched membrane microdomains are important for proper BMP signaling. As tetraspanins have emerged as diagnostic and prognostic markers for tumor progression, and TSP-21, TSP-12 and TSP-14 are all conserved in humans, we speculate that abnormal BMP signaling due to altered expression or function of certain tetraspanins may be a contributing factor to cancer development. PMID:25978409

  10. Microbial products activate monocytic cells through detergent-resistant membrane microdomains.

    PubMed

    Epelman, Slava; Berenger, Byron; Stack, Danuta; Neely, Graham G; Ma, Ling Ling; Mody, Christopher H

    2008-12-01

    Patients with cystic fibrosis suffer recurrent pulmonary infections that are characterized by an overactive yet ineffective and destructive inflammatory response that is associated with respiratory infections by Pseudomonas aeruginosa, a pathogen that produces a number of phlogistic molecules. To better understand this process, we used exoenzyme S (ExoS), one of the key P. aeruginosa-secreted exoproducts, which is known to stimulate cells via the Toll-like receptor (TLR) pathway. We found that ExoS induced proinflammatory cytokine production via the NF-kappaB, Erk1/2, and Src kinase pathways. Because Src kinases are concentrated within cholesterol-containing, detergent-resistant membrane microdomains (DRM) (also called lipid rafts) and DRM act as signaling platforms and amplifiers on the surface of cells, we addressed the role of DRM in ExoS signaling. ExoS bound directly to a subset of DRM and induced the phosphorylation of multiple proteins within DRM, including Src kinases. Disruption of DRM by cholesterol extraction prevented NF-kappaB and Erk 1/2 activation and TNF-alpha production in response to ExoS. Activation of monocytic cells by other TLR and Nod-like receptor agonists, such as lipoteichoic acid, lipopolysaccharide, and peptidoglycan, were also dependent on DRM, and disruption prevented TNF-alpha production. Disruption of DRM did not prevent ExoS binding but did release the Src kinase, Lyn, from the DRM fraction into the detergent-soluble fraction, a site in which Src kinases are not active. These studies show that ExoS, a TLR agonist, requires direct binding to DRM for optimal signaling, which suggests that DRM are possible therapeutic targets in cystic fibrosis.

  11. Identification of detergent-resistant plasma membrane microdomains in dictyostelium: enrichment of signal transduction proteins.

    PubMed Central

    Xiao, Z; Devreotes, P N

    1997-01-01

    Unlike most other cellular proteins, the chemoattractant receptor, cAR1, of Dictyostelium is resistant to extraction by the zwitterionic detergent, CHAPS. We exploited this property to isolate a subcellular fraction highly enriched in cAR1 by flotation of CHAPS lysates of cells in sucrose density gradients. Immunogold electron microscopy studies revealed a homogeneous preparation of membrane bilayer sheets. This preparation, designated CHAPS-insoluble floating fraction (CHIEF), also contained a defined set of 20 other proteins and a single uncharged lipid. Cell surface biotinylation and preembedding immunoelectron microscopy both confirmed the plasma membrane origin of this preparation. The cell surface phosphodiesterase (PDE) and a downstream effector of cAR1, adenylate cyclase (ACA), were specifically localized in these structures, whereas the cell adhesion molecule gp80, most of the major cell surface membrane proteins, cytoskeletal components, the actin-binding integral membrane protein ponticulin, and G-protein alpha- and beta-subunits were absent. Overall, CHIFF represents about 3-5% of cell externally exposed membrane proteins. All of these results indicate that CHIFF is derived from specialized microdomains of the plasma membrane. The method of isolation is analogous to that of caveolae. However, we were unable to detect distinct caveolae-like structures on the cell surface associated with cAR1, which showed a diffuse staining profile. The discovery of CHIFF facilitates the purification of cAR1 and related signaling proteins and the biochemical characterization of receptor-mediated processes such as G-protein activation and desensitization. It also has important implications for the "fluid mosaic" model of the plasma membrane structures. Images PMID:9168471

  12. Peptide-coated semiconductor quantum dots and their applications in biological imaging of single molecules in live cells and organisms

    NASA Astrophysics Data System (ADS)

    Pinaud, Fabien Florent

    2007-12-01

    A new surface chemistry has been developed for the solubilization and biofunctionalization of inorganic semiconductor nanocrystals fluorescent probes, also known as quantum dots. This chemistry is based on the surface coating of quantum dots with custom-designed polycysteine peptides and yields water-soluble, small, monodispersed and colloidally stable probes that remain bright and photostable in complex biological milieus. This peptide coating strategy was successfully tested on several types of core and core-shell quantum dots emitting from the visible (e.g. CdSe/ZnS) to the NIR spectrum range (e.g. CdTe/CdSe/ZnS). By taking advantage of the versatile physico-chemical properties of peptides, a peptide "toolkit" was designed and employed to impart several biological functions to individual quantum dots and control their biochemical activity at the nanometer scale. These biofunctionalized peptide-coated quantum dots were exploited in very diverse biological applications. Near-infrared emitting quantum dot probes were engineered with optimized blood circulation and biodistribution properties for in vivo animal imaging. Visible emitting quantum dots were used for single molecule tracking of raft-associated GPI-anchored proteins in live cells. This last application revealed the presence of discrete and non-caveolar lipid microdomains capable of impeding free lateral diffusions in the plasma membrane of Hela cells. Imaging and tracking of peptide-coated quantum dots provided the first direct evidence that microdomains having the composition and behavior expected for lipid rafts can induce molecular compartmentalization in the membrane of living cells.

  13. NbIT - A New Information Theory-Based Analysis of Allosteric Mechanisms Reveals Residues that Underlie Function in the Leucine Transporter LeuT

    PubMed Central

    LeVine, Michael V.; Weinstein, Harel

    2014-01-01

    Complex networks of interacting residues and microdomains in the structures of biomolecular systems underlie the reliable propagation of information from an input signal, such as the concentration of a ligand, to sites that generate the appropriate output signal, such as enzymatic activity. This information transduction often carries the signal across relatively large distances at the molecular scale in a form of allostery that is essential for the physiological functions performed by biomolecules. While allosteric behaviors have been documented from experiments and computation, the mechanism of this form of allostery proved difficult to identify at the molecular level. Here, we introduce a novel analysis framework, called N-body Information Theory (NbIT) analysis, which is based on information theory and uses measures of configurational entropy in a biomolecular system to identify microdomains and individual residues that act as (i)-channels for long-distance information sharing between functional sites, and (ii)-coordinators that organize dynamics within functional sites. Application of the new method to molecular dynamics (MD) trajectories of the occluded state of the bacterial leucine transporter LeuT identifies a channel of allosteric coupling between the functionally important intracellular gate and the substrate binding sites known to modulate it. NbIT analysis is shown also to differentiate residues involved primarily in stabilizing the functional sites, from those that contribute to allosteric couplings between sites. NbIT analysis of MD data thus reveals rigorous mechanistic elements of allostery underlying the dynamics of biomolecular systems. PMID:24785005

  14. Identification of detergent-resistant plasma membrane microdomains in dictyostelium: enrichment of signal transduction proteins.

    PubMed

    Xiao, Z; Devreotes, P N

    1997-05-01

    Unlike most other cellular proteins, the chemoattractant receptor, cAR1, of Dictyostelium is resistant to extraction by the zwitterionic detergent, CHAPS. We exploited this property to isolate a subcellular fraction highly enriched in cAR1 by flotation of CHAPS lysates of cells in sucrose density gradients. Immunogold electron microscopy studies revealed a homogeneous preparation of membrane bilayer sheets. This preparation, designated CHAPS-insoluble floating fraction (CHIEF), also contained a defined set of 20 other proteins and a single uncharged lipid. Cell surface biotinylation and preembedding immunoelectron microscopy both confirmed the plasma membrane origin of this preparation. The cell surface phosphodiesterase (PDE) and a downstream effector of cAR1, adenylate cyclase (ACA), were specifically localized in these structures, whereas the cell adhesion molecule gp80, most of the major cell surface membrane proteins, cytoskeletal components, the actin-binding integral membrane protein ponticulin, and G-protein alpha- and beta-subunits were absent. Overall, CHIFF represents about 3-5% of cell externally exposed membrane proteins. All of these results indicate that CHIFF is derived from specialized microdomains of the plasma membrane. The method of isolation is analogous to that of caveolae. However, we were unable to detect distinct caveolae-like structures on the cell surface associated with cAR1, which showed a diffuse staining profile. The discovery of CHIFF facilitates the purification of cAR1 and related signaling proteins and the biochemical characterization of receptor-mediated processes such as G-protein activation and desensitization. It also has important implications for the "fluid mosaic" model of the plasma membrane structures.

  15. Tumor cell cholesterol depletion and V-ATPase inhibition as an inhibitory mechanism to prevent cell migration and invasiveness in melanoma.

    PubMed

    Costa, Gildeíde Aparecida; de Souza, Sávio Bastos; da Silva Teixeira, Layz Ribeiro; Okorokov, Lev A; Arnholdt, Andrea Cristina Vetö; Okorokova-Façanha, Anna L; Façanha, Arnoldo Rocha

    2018-03-01

    V-ATPase interactions with cholesterol enriched membrane microdomains have been related to metastasis in a variety of cancers, but the underlying mechanism remains at its beginnings. It has recently been reported that the inhibition of this H + pump affects cholesterol mobilization to the plasma membrane. Inhibition of melanoma cell migration and invasiveness was assessed by wound healing and Transwell assays in murine cell lines (B16F10 and Melan-A). V-ATPase activity was measured in vitro by ATP hydrolysis and H + transport in membrane vesicles, and intact cell H + fluxes were measured by using a non-invasive Scanning Ion-selective Electrode Technique (SIET). Cholesterol depletion by 5mM MβCD was found to be inhibitory to the hydrolytic and H + pumping activities of the V-ATPase of melanoma cell lines, as well as to the migration and invasiveness capacities of these cells. Nearly the same effects were obtained using concanamycin A, a specific inhibitor of V-ATPase, which also promoted a decrease of the H + efflux in live cells at the same extent of MβCD. We found that cholesterol depletion significantly affects the V-ATPase activity and the initial metastatic processes following a profile similar to those observed in the presence of the V-ATPase specific inhibitor, concanamycin. The results shed new light on the functional role of the interactions between V-ATPases and cholesterol-enriched microdomains of cell membranes that contribute with malignant phenotypes in melanoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The potent effect of mycolactone on lipid membranes

    PubMed Central

    Maniti, Ofelia; Marion, Estelle; Marsollier, Laurent; Dufourc, Erick J.; Canaan, Stéphane

    2018-01-01

    Mycolactone is a lipid-like endotoxin synthesized by an environmental human pathogen, Mycobacterium ulcerans, the causal agent of Buruli ulcer disease. Mycolactone has pleiotropic effects on fundamental cellular processes (cell adhesion, cell death and inflammation). Various cellular targets of mycolactone have been identified and a literature survey revealed that most of these targets are membrane receptors residing in ordered plasma membrane nanodomains, within which their functionalities can be modulated. We investigated the capacity of mycolactone to interact with membranes, to evaluate its effects on membrane lipid organization following its diffusion across the cell membrane. We used Langmuir monolayers as a cell membrane model. Experiments were carried out with a lipid composition chosen to be as similar as possible to that of the plasma membrane. Mycolactone, which has surfactant properties, with an apparent saturation concentration of 1 μM, interacted with the membrane at very low concentrations (60 nM). The interaction of mycolactone with the membrane was mediated by the presence of cholesterol and, like detergents, mycolactone reshaped the membrane. In its monomeric form, this toxin modifies lipid segregation in the monolayer, strongly affecting the formation of ordered microdomains. These findings suggest that mycolactone disturbs lipid organization in the biological membranes it crosses, with potential effects on cell functions and signaling pathways. Microdomain remodeling may therefore underlie molecular events, accounting for the ability of mycolactone to attack multiple targets and providing new insight into a single unifying mechanism underlying the pleiotropic effects of this molecule. This membrane remodeling may act in synergy with the other known effects of mycolactone on its intracellular targets, potentiating these effects. PMID:29320578

  17. Determination of the two methyl group orientations at vapor/acetone interface with polarization null angle method in SFG vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Gan, Wei; Wu, Bao-hua; Wu, Dan; Zhang, Zhen; Wang, Hong-fei

    2005-06-01

    We report a direct measurement of the orientation of the two CH 3 groups of acetone molecule at the vapor/acetone interface. The interfacial acetone molecule is found well-ordered, with one methyl group points away around 14.4° ± 1.9° and another into the bulk liquid around 102.8° ± 1.9° from the interface normal, and thus the C dbnd O group points into the bulk around 135.8° ± 1.9°. These results directly confirmed the highly ordered and even crystal like interfacial structure of the vapor/acetone interface from previous MD simulation. The general formulation and accurate determination of the orientational parameter D can be used to treat interfaces with complex molecular orientations.

  18. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Furukawa, Takuro; Toma, Ryo

    By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operatesmore » unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.« less

  19. Incident flux angle induced crystal texture transformation in nanostructured molybdenum films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L.; Lu, T.-M.; Wang, G.-C.

    2012-07-15

    Molybdenum films were observed to undergo a dramatic change in crystal texture orientation when the incident flux angle was varied in an oblique angle sputter deposition on amorphous substrates. Reflection high-energy electron diffraction pole figure and scanning electron microscopy were used to analyze in detail the texture orientation of the films. The normal incident deposition resulted in a fiber texture film with the minimum energy (110) crystal plane parallel to the substrate surface. A (110)[110] biaxial texture was observed for the samples grown with low incident angles of less than 45 Degree-Sign , with respect to the surface normal. Onmore » the other hand, for an oblique angle deposition of larger than 60 Degree-Sign , a (111)[112] biaxial texture was observed and appeared to be consistent with a zone T structure where the geometrically fastest growth [001] direction of a crystal plays a dominant role in defining the texture. We argue that a structural transition had occurred when the incident flux was varied from near normal incidence to a large angle.« less

  20. Cholesterol orientation and tilt modulus in DMPC bilayers

    PubMed Central

    Khelashvili, George; Pabst, Georg; Harries, Daniel

    2010-01-01

    We performed molecular dynamics (MD) simulations of hydrated bilayers containing mixtures of dimyristoylphosphatidylcholine (DMPC) and Cholesterol at various ratios, to study the effect of cholesterol concentration on its orientation, and to characterize the link between cholesterol tilt and overall phospholipid membrane organization. The simulations show a substantial probability for cholesterol molecules to transiently orient perpendicular to the bilayer normal, and suggest that cholesterol tilt may be an important factor for inducing membrane ordering. In particular, we find that as cholesterol concentration increases (1%–40% cholesterol) the average cholesterol orientation changes in a manner strongly (anti)correlated with the variation in membrane thickness. Furthermore, cholesterol orientation is found to be determined by the aligning force exerted by other cholesterol molecules. To quantify this aligning field, we analyzed cholesterol orientation using, to our knowledge, the first estimates of the cholesterol tilt modulus χ from MD simulations. Our calculations suggest that the aligning field that determines χ is indeed strongly linked to sterol composition. This empirical parameter (χ) should therefore become a useful quantitative measure to describe cholesterol interaction with other lipids in bilayers, particularly in various coarse-grained force fields. PMID:20518573

  1. High- and Low-Temperature Deformation Behavior of Different Orientation Hot-Rolled Annealed Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Zong, Yingying; Gen, Qingfeng; Jiang, Hongwei; Shan, Debin; Guo, Bin

    2018-03-01

    In this paper, the hot-rolled annealed Zircaloy-4 samples with different orientation were subjected to uniaxial compression with a strain rate of 0.001 s-1 to obtain the stress-strain curves of different initial orientation samples at different temperatures. Electron backscatter diffraction (EBSD) technique and transmission electron microscope (TEM) technique were used to analyze the microstructures and textures of compressed samples. The mechanical properties and microstructural evolution of rolling directions (RD), transverse directions (TD) and normal directions (ND) were investigated under the conditions of - 150 °C low temperature, room temperature and 200 °C high temperature (simulated lunar temperature environment). The results show that the strength of Zircaloy-4 decreases with the increase in deformation temperature, and the strength in three orientations is ND > TD > RD. The deformation mechanism of hot-rolled annealed Zircaloy-4 with different orientation is different. In RD, { 10\\bar{1}0} < {a} > prismatic slip has the highest Schmid factor (SF), so it is most easy to activate the slip, followed by TD orientation, and ND orientation is the most difficult to activate. The deformed grains abide slip→twinning→slip rule, and the different orientation Zircaloy-4 deformation mechanisms mainly are the twinning coordinated with the slip.

  2. Biologically Inspired Model for Inference of 3D Shape from Texture

    PubMed Central

    Gomez, Olman; Neumann, Heiko

    2016-01-01

    A biologically inspired model architecture for inferring 3D shape from texture is proposed. The model is hierarchically organized into modules roughly corresponding to visual cortical areas in the ventral stream. Initial orientation selective filtering decomposes the input into low-level orientation and spatial frequency representations. Grouping of spatially anisotropic orientation responses builds sketch-like representations of surface shape. Gradients in orientation fields and subsequent integration infers local surface geometry and globally consistent 3D depth. From the distributions in orientation responses summed in frequency, an estimate of the tilt and slant of the local surface can be obtained. The model suggests how 3D shape can be inferred from texture patterns and their image appearance in a hierarchically organized processing cascade along the cortical ventral stream. The proposed model integrates oriented texture gradient information that is encoded in distributed maps of orientation-frequency representations. The texture energy gradient information is defined by changes in the grouped summed normalized orientation-frequency response activity extracted from the textured object image. This activity is integrated by directed fields to generate a 3D shape representation of a complex object with depth ordering proportional to the fields output, with higher activity denoting larger distance in relative depth away from the viewer. PMID:27649387

  3. Differences in Learning Strategies, Goal Orientations, and Self-Concept between Overachieving, Normal-Achieving, and Underachieving Secondary Students.

    PubMed

    Castejón, Juan L; Gilar, Raquel; Veas, Alejandro; Miñano, Pablo

    2016-01-01

    The aims of this work were to identify and establish differential characteristics in learning strategies, goal orientations, and self-concept between overachieving, normal-achieving and underachieving secondary students. A total of 1400 Spanish first and second year high school students from the South-East geographical area participated in this study. Three groups of students were established: a group with underachieving students, a group with a normal level of achievement, and a third group with overachieving students. The students were assigned to each group depending on the residual punctuations obtained from a multiple regression analysis in which the punctuation of an IQ test was the predictor and a measure composed of the school grades of nine subjects was the criteria. The results of one-way ANOVA and the Games-Howell post-hoc test showed that underachieving students had significantly lower punctuations in all of the measures of learning strategies and learning goals, as well as all of the academic self-concept, personal self-concept, parental relationship, honesty, and personal stability factors. In contrast, overachieving students had higher punctuations than underachieving students in the same variables and higher punctuations than normal-achieving students in most of the variables in which significant differences were detected. These results have clear educational implications.

  4. Differences in Learning Strategies, Goal Orientations, and Self-Concept between Overachieving, Normal-Achieving, and Underachieving Secondary Students

    PubMed Central

    Castejón, Juan L.; Gilar, Raquel; Veas, Alejandro; Miñano, Pablo

    2016-01-01

    The aims of this work were to identify and establish differential characteristics in learning strategies, goal orientations, and self-concept between overachieving, normal-achieving and underachieving secondary students. A total of 1400 Spanish first and second year high school students from the South-East geographical area participated in this study. Three groups of students were established: a group with underachieving students, a group with a normal level of achievement, and a third group with overachieving students. The students were assigned to each group depending on the residual punctuations obtained from a multiple regression analysis in which the punctuation of an IQ test was the predictor and a measure composed of the school grades of nine subjects was the criteria. The results of one-way ANOVA and the Games-Howell post-hoc test showed that underachieving students had significantly lower punctuations in all of the measures of learning strategies and learning goals, as well as all of the academic self-concept, personal self-concept, parental relationship, honesty, and personal stability factors. In contrast, overachieving students had higher punctuations than underachieving students in the same variables and higher punctuations than normal-achieving students in most of the variables in which significant differences were detected. These results have clear educational implications. PMID:27729879

  5. Fixation orientation in ankle fractures with syndesmosis injury.

    PubMed

    Nimick, Craig J; Collman, David R; Lagaay, Pieter

    2013-01-01

    Accurate reduction of the syndesmosis has been shown to be an important prognostic factor for functional outcome in ankle injuries that disrupt the syndesmosis. The purpose of the present case series was to assess the fixation orientation and the position of the fibula within the tibial incisura after open reduction and internal fixation of ankle fractures with syndesmosis injury. Computed tomography was used to assess the accuracy of the reduction. Twelve patients were included in the present case series. A ratio representing the relationship between the tibia and fibula and the orientation of the syndesmotic fixation was measured preoperatively and postoperatively and compared with the uninjured contralateral ankle, representing the patient's normal anatomy. The measurements were accomplished electronically to one tenth of 1 mm using Stentor Intelligent Informatics, I-site, version 3.3.1 (Phillips Electronics; Andover, MA). Posteriorly oriented syndesmotic fixation caused posterior translation of the fibula with respect to the tibia and anteriorly oriented syndesmotic fixation caused anterior translation. Copyright © 2013. Published by Elsevier Inc.

  6. Alignment of crystal orientations of the multi-domain photonic crystals in Parides sesostris wing scales

    PubMed Central

    Yoshioka, S.; Fujita, H.; Kinoshita, S.; Matsuhana, B.

    2014-01-01

    It is known that the wing scales of the emerald-patched cattleheart butterfly, Parides sesostris, contain gyroid-type photonic crystals, which produce a green structural colour. However, the photonic crystal is not a single crystal that spreads over the entire scale, but it is separated into many small domains with different crystal orientations. As a photonic crystal generally has band gaps at different frequencies depending on the direction of light propagation, it seems mysterious that the scale is observed to be uniformly green under an optical microscope despite the multi-domain structure. In this study, we have carefully investigated the structure of the wing scale and discovered that the crystal orientations of different domains are not perfectly random, but there is a preferred crystal orientation that is aligned along the surface normal of the scale. This finding suggests that there is an additional factor during the developmental process of the microstructure that regulates the crystal orientation. PMID:24352678

  7. A Computational Study of How Orientation Bias in the Lateral Geniculate Nucleus Can Give Rise to Orientation Selectivity in Primary Visual Cortex

    PubMed Central

    Kuhlmann, Levin; Vidyasagar, Trichur R.

    2011-01-01

    Controversy remains about how orientation selectivity emerges in simple cells of the mammalian primary visual cortex. In this paper, we present a computational model of how the orientation-biased responses of cells in lateral geniculate nucleus (LGN) can contribute to the orientation selectivity in simple cells in cats. We propose that simple cells are excited by lateral geniculate fields with an orientation-bias and disynaptically inhibited by unoriented lateral geniculate fields (or biased fields pooled across orientations), both at approximately the same retinotopic co-ordinates. This interaction, combined with recurrent cortical excitation and inhibition, helps to create the sharp orientation tuning seen in simple cell responses. Along with describing orientation selectivity, the model also accounts for the spatial frequency and length–response functions in simple cells, in normal conditions as well as under the influence of the GABAA antagonist, bicuculline. In addition, the model captures the response properties of LGN and simple cells to simultaneous visual stimulation and electrical stimulation of the LGN. We show that the sharp selectivity for stimulus orientation seen in primary visual cortical cells can be achieved without the excitatory convergence of the LGN input cells with receptive fields along a line in visual space, which has been a core assumption in classical models of visual cortex. We have also simulated how the full range of orientations seen in the cortex can emerge from the activity among broadly tuned channels tuned to a limited number of optimum orientations, just as in the classical case of coding for color in trichromatic primates. PMID:22013414

  8. Limited period of graviresponsiveness in germinating spores of Ceratopteris richardii

    NASA Technical Reports Server (NTRS)

    Edwards, E. S.; Roux, S. J.

    1994-01-01

    Rhizoids of the fern Ceratopteris richardii Brogn. usually emerge 40 h after germination is initiated by light, and more than 90% of them emerge growing in a downward direction. However, when the spores are germinated on a clinostat, the emerging rhizoids show no preferential orientation. This indicates that under normal 1 g conditions the initial growth direction of rhizoids can be oriented by gravity. If the orientation of the spores is changed 3 h or less after the start of germination, the growth direction of most emerging rhizoids becomes downward relative to the new orientation. However, if the orientation of the spores is changed by 180 degrees 8 h or more after germination is initiated by light, most rhizoids emerge growing upward; i.e., the same direction as if there had been no orientation change. Emerged rhizoids also do not change their direction of growth if their orientation is changed. These results indicate that the growth direction of emerging rhizoids is set by gravity prior to actual emergence, and that the time of full orientation responsiveness is limited to a period ranging from the initiation of germination to about 3-4 h after the start of germination. There is a gravity-oriented nuclear movement beginning at about 13 h after germination, and this movement appears to predict the initial growth direction of rhizoids.

  9. Limited period of graviresponsiveness in germinating spores of Ceratopteris richardii.

    PubMed

    Edwards, E S; Roux, S J

    1994-01-01

    Rhizoids of the fern Ceratopteris richardii Brogn. usually emerge 40 h after germination is initiated by light, and more than 90% of them emerge growing in a downward direction. However, when the spores are germinated on a clinostat, the emerging rhizoids show no preferential orientation. This indicates that under normal 1 g conditions the initial growth direction of rhizoids can be oriented by gravity. If the orientation of the spores is changed 3 h or less after the start of germination, the growth direction of most emerging rhizoids becomes downward relative to the new orientation. However, if the orientation of the spores is changed by 180 degrees 8 h or more after germination is initiated by light, most rhizoids emerge growing upward; i.e., the same direction as if there had been no orientation change. Emerged rhizoids also do not change their direction of growth if their orientation is changed. These results indicate that the growth direction of emerging rhizoids is set by gravity prior to actual emergence, and that the time of full orientation responsiveness is limited to a period ranging from the initiation of germination to about 3-4 h after the start of germination. There is a gravity-oriented nuclear movement beginning at about 13 h after germination, and this movement appears to predict the initial growth direction of rhizoids.

  10. On the Gas Dynamics of Inert-Gas-Assisted Laser Cutting of Steel Plate

    NASA Astrophysics Data System (ADS)

    Brandt, A. D.; Settles, G. S.; Scroggs, S. D.

    1996-11-01

    Laser beam cutting of sheet metal requires an assist gas to blow away the molten material. Since the assist-gas dynamics influences the quality and speed of the cut, the orientation of the gas nozzle with respect to the kerf is also expected to be important. A 1 kW cw CO2 laser with nitrogen assist gas was used to cut mild steel sheet of 1 to 4 mm thickness, using a sonic coaxial nozzle as a baseline. Off-axis nozzles were oriented from 20 deg to 60 deg from normal with exit Mach numbers from 1 to 2.4. Results showed maximum cutting speed at a 40 deg nozzle orientation. Shadowgrams of a geometrically-similar model kerf then revealed a separated shock wave-boundary layer interaction within the kerf for the (untilted) coaxial nozzle case. This was alleviated, resulting in a uniform supersonic flow throughout the kerf and consequent higher cutting speeds, by tilting the nozzle between 20 deg and 45 deg from the normal. This result did not depend upon the exit Mach number of the nozzle. (Research supported by NSF Grant DMI-9400119.)

  11. Twinning of amphibian embryos by centrifugation

    NASA Technical Reports Server (NTRS)

    Black, S. D.

    1984-01-01

    In the frog Xenopus laevis, the dorsal structures of the embryonic body axis normally derive from the side of the egg opposite the side of sperm entry. However, if the uncleaved egg is inclined at lg or centrifuged in an inclined position, this topographic relationship is overridden: the egg makes its dorsal axial structures according to its orientation in the gravitational/centrifugal field, irrespective of the position of sperm entry. Certain conditions of centrifugation cause eggs to develop into conjoined twins with two sets of axial structures. A detailed analysis of twinning provided some insight into experimental axis orientation. First, as with single-axis embryos, both axes in twins are oriented according to the direction of centrifugation. One axis forms at the centripetal side of the egg and the other forms at the centrifugal side, even when the side of sperm entry is normal to the centrifugal force vector. Second, if eggs are centrifuged to give twins, but are inclined at lg to prevent post-centrifugation endoplasmic redistributions, only single-axis embryos develop. Thus, a second redistribution is required for high-frequency secondary axis formation. This can be accomplished by lg (as in the single centrifugations) or by a second centrifugation directed along the egg's animal-vegetal axis.

  12. In vivo characterization of cortical and white matter neuroaxonal pathology in early multiple sclerosis.

    PubMed

    Granberg, Tobias; Fan, Qiuyun; Treaba, Constantina Andrada; Ouellette, Russell; Herranz, Elena; Mangeat, Gabriel; Louapre, Céline; Cohen-Adad, Julien; Klawiter, Eric C; Sloane, Jacob A; Mainero, Caterina

    2017-11-01

    Neuroaxonal pathology is a main determinant of disease progression in multiple sclerosis; however, its underlying pathophysiological mechanisms, including its link to inflammatory demyelination and temporal occurrence in the disease course are still unknown. We used ultra-high field (7 T), ultra-high gradient strength diffusion and T1/T2-weighted myelin-sensitive magnetic resonance imaging to characterize microstructural changes in myelin and neuroaxonal integrity in the cortex and white matter in early stage multiple sclerosis, their distribution in lesional and normal-appearing tissue, and their correlations with neurological disability. Twenty-six early stage multiple sclerosis subjects (disease duration ≤5 years) and 24 age-matched healthy controls underwent 7 T T2*-weighted imaging for cortical lesion segmentation and 3 T T1/T2-weighted myelin-sensitive imaging and neurite orientation dispersion and density imaging for assessing microstructural myelin, axonal and dendrite integrity in lesional and normal-appearing tissue of the cortex and the white matter. Conventional mean diffusivity and fractional anisotropy metrics were also assessed for comparison. Cortical lesions were identified in 92% of early multiple sclerosis subjects and they were characterized by lower intracellular volume fraction (P = 0.015 by paired t-test), lower myelin-sensitive contrast (P = 0.030 by related-samples Wilcoxon signed-rank test) and higher mean diffusivity (P = 0.022 by related-samples Wilcoxon signed-rank test) relative to the contralateral normal-appearing cortex. Similar findings were observed in white matter lesions relative to normal-appearing white matter (all P < 0.001), accompanied by an increased orientation dispersion (P < 0.001 by paired t-test) and lower fractional anisotropy (P < 0.001 by related-samples Wilcoxon signed-rank test) suggestive of less coherent underlying fibre orientation. Additionally, the normal-appearing white matter in multiple sclerosis subjects had diffusely lower intracellular volume fractions than the white matter in controls (P = 0.029 by unpaired t-test). Cortical thickness did not differ significantly between multiple sclerosis subjects and controls. Higher orientation dispersion in the left primary motor-somatosensory cortex was associated with increased Expanded Disability Status Scale scores in surface-based general linear modelling (P < 0.05). Microstructural pathology was frequent in early multiple sclerosis, and present mainly focally in cortical lesions, whereas more diffusely in white matter. These results suggest early demyelination with loss of cells and/or cell volumes in cortical and white matter lesions, with additional axonal dispersion in white matter lesions. In the cortex, focal lesion changes might precede diffuse atrophy with cortical thinning. Findings in the normal-appearing white matter reveal early axonal pathology outside inflammatory demyelinating lesions. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Hemispheric dominance during the mental rotation task in patients with schizophrenia.

    PubMed

    Chen, Jiu; Yang, Laiqi; Zhao, Jin; Li, Lanlan; Liu, Guangxiong; Ma, Wentao; Zhang, Yan; Wu, Xingqu; Deng, Zihe; Tuo, Ran

    2012-04-01

    Mental rotation is a spatial representation conversion capability using an imagined object and either object or self-rotation. This capability is impaired in schizophrenia. To provide a more detailed assessment of impaired cognitive functioning in schizophrenia by comparing the electrophysiological profiles of patients with schizophrenia and controls while completing a mental rotation task using both normally-oriented images and mirror images. This electroencephalographic study compared error rates, reaction times and the topographic map of event-related potentials in 32 participants with schizophrenia and 29 healthy controls during mental rotation tasks involving both normal images and mirror images. Among controls the mean error rate and the mean reaction time for normal images and mirror images were not significantly different but in the patient group the mean (sd) error rate was higher for mirror images than for normal images (42% [6%] vs. 32% [9%], t=2.64, p=0.031) and the mean reaction time was longer for mirror images than for normal images (587 [11] ms vs. 571 [18] ms, t=2.83, p=0.028). The amplitude of the P500 component at Pz (parietal area), Cz (central area), P3 (left parietal area) and P4 (right parietal area) were significantly lower in the patient group than in the control group for both normal images and mirror images. In both groups the P500 for both the normal and mirror images was significantly higher in the right parietal area (P4) compared with left parietal area (P3). The mental rotation abilities of patients with schizophrenia for both normally-oriented images and mirror images are impaired. Patients with schizophrenia show a diminished left cerebral contribution to the mental rotation task, a more rapid response time, and a differential response to normal images versus mirror images not seen in healthy controls. Specific topographic characteristics of the EEG during mental rotation tasks are potential biomarkers for schizophrenia.

  14. PET-Based Confirmation of Orientation Sensitivity of TMS-Induced Cortical Activation in Humans

    PubMed Central

    Krieg, Todd D.; Salinas, Felipe S.; Narayana, Shalini; Fox, Peter T.; Mogul, David J.

    2017-01-01

    Background Currently, it is difficult to predict precise regions of cortical activation in response to transcranial magnetic stimulation (TMS). Most analytical approaches focus on applied magnetic field strength in the target region as the primary factor, placing activation on the gyral crowns. However, imaging studies support M1 targets being typically located in the sulcal banks. Objective/hypothesis To more thoroughly investigate this inconsistency, we sought to determine whether neocortical surface orientation was a critical determinant of regional activation. Methods MR images were used to construct cortical and scalp surfaces for 18 subjects. The angle (θ) between the cortical surface normal and its nearest scalp normal for ~50,000 cortical points per subject was used to quantify cortical location (i.e., gyral vs. sulcal). TMS-induced activations of primary motor cortex (M1) were compared to brain activations recorded during a finger-tapping task using concurrent positron emission tomographic (PET) imaging. Results Brain activations were primarily sulcal for both the TMS and task activations (P < 0.001 for both) compared to the overall cortical surface orientation. Also, the location of maximal blood flow in response to either TMS or finger-tapping correlated well using the cortical surface orientation angle or distance to scalp (P < 0.001 for both) as criteria for comparison between different neocortical activation modalities. Conclusion This study provides further evidence that a major factor in cortical activation using TMS is the orientation of the cortical surface with respect to the induced electric field. The results show that, despite the gyral crown of the cortex being subjected to a larger magnetic field magnitude, the sulcal bank of M1 had larger cerebral blood flow (CBF) responses during TMS. PMID:23827648

  15. Selective loss of orientation column maps in visual cortex during brief elevation of intraocular pressure.

    PubMed

    Chen, Xin; Sun, Chao; Huang, Luoxiu; Shou, Tiande

    2003-01-01

    To compare the orientation column maps elicited by different spatial frequency gratings in cortical area 17 of cats before and during brief elevation of intraocular pressure (IOP). IOP was elevated by injecting saline into the anterior chamber of a cat's eye through a syringe needle. The IOP was elevated enough to cause a retinal perfusion pressure (arterial pressure minus IOP) of approximately 30 mm Hg during a brief elevation of IOP. The visual stimulus gratings were varied in spatial frequency, whereas other parameters were kept constant. The orientation column maps of the cortical area 17 were monocularly elicited by drifting gratings of different spatial frequencies and revealed by a brain intrinsic signal optical imaging system. These maps were compared before and during short-term elevation of IOP. The response amplitude of the orientation maps in area 17 decreased during a brief elevation of IOP. This decrease was dependent on the retinal perfusion pressure but not on the absolute IOP. The location of the most visible maps was spatial-frequency dependent. The blurring or loss of the pattern of the orientation maps was most severe when high-spatial-frequency gratings were used and appeared most significantly on the posterior part of the exposed cortex while IOP was elevated. However, the basic patterns of the maps remained unchanged. Changes in cortical signal were not due to changes in the optics of the eye with elevation of IOP. A stable normal IOP is essential for maintaining normal visual cortical functions. During a brief and high elevation of IOP, the cortical processing of high-spatial-frequency visual information was diminished because of a selectively functional decline of the retinogeniculocortical X pathway by a mechanism of retinal circulation origin.

  16. Pathogens: raft hijackers.

    PubMed

    Mañes, Santos; del Real, Gustavo; Martínez-A, Carlos

    2003-07-01

    Throughout evolution, organisms have developed immune-surveillance networks to protect themselves from potential pathogens. At the cellular level, the signalling events that regulate these defensive responses take place in membrane rafts--dynamic microdomains that are enriched in cholesterol and glycosphingolipids--that facilitate many protein-protein and lipid-protein interactions at the cell surface. Pathogens have evolved many strategies to ensure their own survival and to evade the host immune system, in some cases by hijacking rafts. However, understanding the means by which pathogens exploit rafts might lead to new therapeutic strategies to prevent or alleviate certain infectious diseases, such as those caused by HIV-1 or Ebola virus.

  17. The Area between Exchange Curves as a Measure of Conformational Differences in Hydrogen-Deuterium Exchange Mass Spectrometry Studies

    PubMed Central

    Mazur, Sharlyn J.; Weber, Daniel P.

    2018-01-01

    Hydrogen-deuterium exchange mass spectrometry (HDX-MS) provides information about protein conformational mobility under native conditions. The area between exchange curves, Abec, a functional data analysis concept, was adapted to the interpretation of HDX-MS data and provides a useful measure of exchange curve dissimilarity for tests of significance. Importantly, for most globular proteins under native conditions, Abec values provide an estimate of the log ratio of exchange-competent fractions in the two states, and thus are related to differences in the free energy of microdomain unfolding. PMID:28236290

  18. Crystalline Coordination Networks of Zero-Valent Metal Centers: Formation of a 3-Dimensional Ni(0) Framework with m-Terphenyl Diisocyanides.

    PubMed

    Agnew, Douglas W; DiMucci, Ida M; Arroyave, Alejandra; Gembicky, Milan; Moore, Curtis E; MacMillan, Samantha N; Rheingold, Arnold L; Lancaster, Kyle M; Figueroa, Joshua S

    2017-12-06

    A permanently porous, three-dimensional metal-organic material formed from zero-valent metal nodes is presented. Combination of ditopic m-terphenyl diisocyanide, [CNAr Mes2 ] 2 , and the d 10 Ni(0) precursor Ni(COD) 2 , produces a porous metal-organic material featuring tetrahedral [Ni(CNAr Mes2 ) 4 ] n structural sites. X-ray absorption spectroscopy provides firm evidence for the presence of Ni(0) centers, whereas gas-sorption and thermogravimetric analysis reveal the characteristics of a robust network with a microdomain N 2 -adsorption profile.

  19. Subcellular Redox Targeting: Bridging in Vitro and in Vivo Chemical Biology.

    PubMed

    Long, Marcus J C; Poganik, Jesse R; Ghosh, Souradyuti; Aye, Yimon

    2017-03-17

    Networks of redox sensor proteins within discrete microdomains regulate the flow of redox signaling. Yet, the inherent reactivity of redox signals complicates the study of specific redox events and pathways by traditional methods. Herein, we review designer chemistries capable of measuring flux and/or mimicking subcellular redox signaling at the cellular and organismal level. Such efforts have begun to decipher the logic underlying organelle-, site-, and target-specific redox signaling in vitro and in vivo. These data highlight chemical biology as a perfect gateway to interrogate how nature choreographs subcellular redox chemistry to drive precision redox biology.

  20. Crystalline Coordination Networks of Zero-Valent Metal Centers: Formation of a 3-Dimensional Ni(0) Framework with m-Terphenyl Diisocyanides

    DOE PAGES

    Agnew, Douglas W.; DiMucci, Ida M.; Arroyave, Alejandra; ...

    2017-11-13

    A permanently porous, three-dimensional metal–organic material formed from zero-valent metal nodes is presented. Combination of ditopic m-terphenyl diisocyanide, [CNAr Mes2] 2, and the d 10 Ni(0) precursor Ni(COD) 2, produces a porous metal–organic material featuring tetrahedral [Ni(CNAr Mes2) 4] n structural sites. X-ray absorption spectroscopy provides firm evidence for the presence of Ni(0) centers, whereas gas-sorption and thermogravimetric analysis reveal the characteristics of a robust network with a microdomain N 2-adsorption profile.

  1. Gonadotropin-releasing hormone receptor (Gnrhr) gene knock out: Normal growth and development of sensory, motor and spatial orientation behavior but altered metabolism in neonatal and prepubertal mice

    PubMed Central

    Busby, Ellen R.; Sherwood, Nancy M.

    2017-01-01

    Gonadotropin-releasing hormone (GnRH) is important in the control of reproduction, but its actions in non-reproductive processes are less well known. In this study we examined the effect of disrupting the GnRH receptor in mice to determine if growth, metabolism or behaviors that are not associated with reproduction were affected. To minimize the effects of other hormones such as FSH, LH and sex steroids, the neonatal-prepubertal period of 2 to 28 days of age was selected. The study shows that regardless of sex or phenotype in the Gnrhr gene knockout line, there was no significant difference in the daily development of motor control, sensory detection or spatial orientation among the wildtype, heterozygous or null mice. This included a series of behavioral tests for touch, vision, hearing, spatial orientation, locomotory behavior and muscle strength. Neither the daily body weight nor the final weight on day 28 of the kidney, liver and thymus relative to body weight varied significantly in any group. However by day 28, metabolic changes in the GnRH null females compared with wildtype females showed a significant reduction in inguinal fat pad weight normalized to body weight; this was accompanied by an increase in glucose compared with wildtype females shown by Student-Newman-Keuls Multiple Comparison test and Student's unpaired t tests. Our studies show that the GnRH-GnRHR system is not essential for growth or motor/sensory/orientation behavior during the first month of life prior to puberty onset. The lack of the GnRH-GnRHR axis, however, did affect females resulting in reduced subcutaneous inguinal fat pad weight and increased glucose with possible insulin resistance; the loss of the normal rise of estradiol at postnatal days 15–28 may account for the altered metabolism in the prepubertal female pups. PMID:28346489

  2. Vertical or horizontal orientation of foot radiographs does not affect image interpretation

    PubMed Central

    Ferran, Nicholas Antonio; Ball, Luke; Maffulli, Nicola

    2012-01-01

    Summary This study determined whether the orientation of dorsoplantar and oblique foot radiographs has an effect on radiograph interpretation. A test set of 50 consecutive foot radiographs were selected (25 with fractures, and 25 normal), and duplicated in the horizontal orientation. The images were randomly arranged, numbered 1 through 100, and analysed by six image interpreters. Vertical and horizontal area under the ROC curve, accuracy, sensitivity and specificity were calculated for each image interpreter. There was no significant difference in the area under the ROC curve, accuracy, sensitivity or specificity of image interpretation between images viewed in the vertical or horizontal orientation. While conventions for display of radiographs may help to improve the development of an efficient visual search strategy in trainees, and allow for standardisation of publication of radiographic images, variation from the convention in clinical practice does not appear to affect the sensitivity or specificity of image interpretation. PMID:23738310

  3. Mixture modeling methods for the assessment of normal and abnormal personality, part I: cross-sectional models.

    PubMed

    Hallquist, Michael N; Wright, Aidan G C

    2014-01-01

    Over the past 75 years, the study of personality and personality disorders has been informed considerably by an impressive array of psychometric instruments. Many of these tests draw on the perspective that personality features can be conceptualized in terms of latent traits that vary dimensionally across the population. A purely trait-oriented approach to personality, however, might overlook heterogeneity that is related to similarities among subgroups of people. This article describes how factor mixture modeling (FMM), which incorporates both categories and dimensions, can be used to represent person-oriented and trait-oriented variability in the latent structure of personality. We provide an overview of different forms of FMM that vary in the degree to which they emphasize trait- versus person-oriented variability. We also provide practical guidelines for applying FMM to personality data, and we illustrate model fitting and interpretation using an empirical analysis of general personality dysfunction.

  4. A technique for in vivo measurement of photoreceptor orientation in the chicken retina.

    PubMed

    Beresford, J A; Crewther, S G; Crewther, D P

    1999-01-01

    The aim of the current study was to develop a method for simultaneously assessing central and peripheral photoreceptor alignment in vivo in animal models. The stimulus apparatus consisted of nine light-emitting diodes (LED) positioned 7.5 degrees apart around an arc. The stimulus was viewed through a pinhole imaged into the entrance pupil of the eye using a telecentric lens system. Photodiodes placed over an array of the VERIS imaging system stimulated the electroretinogram. Data were obtained by positioning the pinhole at 0.25-mm intervals across the pupil and recording (Volk Optical, Mentor, OH, USA) at each location. Orientation assessed in normal chickens demonstrates that photoreceptors orientate towards a locus near the centre of the pupil and that there is a systematic change in peak location with eccentricity. This technique provides a valuable method for determining photoreceptor orientation properties in vivo and can be applied to animal models of pathology.

  5. The Influence of Lamellar Orientation on Corneal Material Behavior: Biomechanical and Structural Changes in an Avian Corneal Disorder

    PubMed Central

    Elsheikh, Ahmed; Kassem, Wael; Kamma-Lorger, Christina S.; Hocking, Paul M.; White, Nick; Inglehearn, Chris F.; Ali, Manir; Meek, Keith M.

    2011-01-01

    Purpose. Retinopathy, globe enlarged (RGE) is an inherited genetic disease of chickens with a corneal phenotype characterized by loss of tissue curvature and changes in peripheral collagen fibril alignment. This study aimed to characterize the material behavior of normal and RGE chicken corneas under inflation and compare this with new spatial- and depth-resolved microstructural information to investigate how stromal fibril architecture determines corneal behavior under intraocular pressure (IOP). Methods. Six RGE chicken corneas and six age-matched normal controls were tested using trephinate inflation and their stress-strain behavior determined as a function of posterior pressure. Second harmonic generation mulitphoton microscopy was used to compare the in-plane appearance and degree of through-plane interlacing of collagen lamellae between normal and mutant corneas. Results. RGE corneas displayed a 30–130% increase in material stiffness [Etangent(RGE) = 0.94 ± 0.18 MPa to 3.09 ± 0.66 MPa; Etangent(normals) = 0.72 ± 0.13 MPa to 1.34 ± 0.35 MPa] (P ≤ 0.05). The normal in-plane disposition of anterior collagen in the peripheral cornea was altered in RGE but through-plane lamellar interlacing was unaffected. Conclusions. This article demonstrates changes in corneal material behavior in RGE that are qualitatively consistent with microstructural collagen alterations identified both herein and previously. This study indicates that, in general, changes in stromal fibril orientation may significantly affect corneal material behavior and thereby its response to IOP. PMID:21051696

  6. Sleep patterning and behaviour in cats with pontine lesions creating REM without atonia.

    PubMed

    Sanford; Morrison; Mann; Harris; Yoo; Ross

    1994-12-01

    Lesions of the dorsal pontine tegmentum release muscle tone and motor behaviour, much of it similar to orienting during wakefulness, into rapid eye movement sleep (REM), a state normally characterized by paralysis. Sleep after pontine lesions may be altered, with more REM-A episodes of shorter duration compared to normal REM. We examined behaviour, ponto-geniculo-occipital (PGO) waves (which may be central markers of orienting) and sleep in lesioned cats: (i) to characterize the relationship of PGO waves to behaviour in REM-A; (ii) to determine whether post-lesion changes in the timing and duration of REM-A episodes were due to activity-related awakenings: and (iii) to determine whether alterations in sleep changed the circadian sleep/wake cycle in cats. Behavioural release in REM-A was generally related to episode length, but episode length was not necessarily shorter than normal REM in cats capable of full locomotion in REM-A. PGO wave frequency was reduced overall during REM-A, but was higher during REM-A with behaviour than during quiet REM-A without overt behaviour. Pontine lesions did not significantly alter the circadian sleep/wake cycle: REM-A had approximately the same Light/Dark distribution as normal REM. Differences in the patterning of normal REM and REM-A within sleep involve more than mere movement-induced awakenings. Brainstem lesions that eliminate the atonia of REM may damage neural circuitry involved in REM initiation and maintenance; this circuitry is separate from circadian control mechanisms.

  7. Structural testing of the Los Alamos National Laboratory Heat Source/Radioisotopic Thermoelectric Generator shipping container

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronowski, D.R.; Madsen, M.M.

    The Heat Source/Radioisotopic Thermoelectric Generator shipping container is a Type B packaging design currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to the normal and hypothetical accident environments defined in Title 10 Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this package design. This report documents the test program portion of the design verification, using several prototype packages. Four types of testing were performed: 30-foot hypothetical accident condition drop tests in threemore » orientations, 40-inch hypothetical accident condition puncture tests in five orientations, a 21 psi external overpressure test, and a normal conditions of transport test consisting of a water spray and a 4 foot drop test. 18 refs., 104 figs., 13 tabs.« less

  8. Transit Time and Normal Orientation of ICME-driven Shocks

    NASA Astrophysics Data System (ADS)

    Case, A. W.; Spence, H.; Owens, M.; Riley, P.; Linker, J.; Odstrcil, D.

    2006-12-01

    Interplanetary Coronal Mass Ejections (ICMEs) can drive shocks that accelerate particles to great energies. It is important to understand the acceleration, transport, and spectra of these particles in order to quantify this fundamental physical process operating throughout the cosmos. This understanding also helps to better protect astronauts and spacecraft in upcoming missions. We show that the ambient solar wind is crucial in determining characteristics of ICME-driven shocks, which in turn affect energetic particle production. We use a coupled 3-D MHD code of the corona and heliosphere to simulate ICME propagation from 30 solar radii to 1AU. ICMEs of different velocities are injected into a realistic solar wind to determine how the initial speed affects the shape and deceleration of the ICME-driven shock. We use shock transit time and shock normal orientation to quantify these dependencies. We also inject identical ICMEs into different ambient solar winds to quantify the effective drag force on an ICME.

  9. On the colour of wing scales in butterflies: iridescence and preferred orientation of single gyroid photonic crystals.

    PubMed

    Corkery, Robert W; Tyrode, Eric C

    2017-08-06

    Lycaenid butterflies from the genera Callophrys , Cyanophrys and Thecla have evolved remarkable biophotonic gyroid nanostructures within their wing scales that have only recently been replicated by nanoscale additive manufacturing. These nanostructures selectively reflect parts of the visible spectrum to give their characteristic non-iridescent, matte-green appearance, despite a distinct blue-green-yellow iridescence predicted for individual crystals from theory. It has been hypothesized that the organism must achieve its uniform appearance by growing crystals with some restrictions on the possible distribution of orientations, yet preferential orientation observed in Callophrys rubi confirms that this distribution need not be uniform. By analysing scanning electron microscope and optical images of 912 crystals in three wing scales, we find no preference for their rotational alignment in the plane of the scales. However, crystal orientation normal to the scale was highly correlated to their colour at low (conical) angles of view and illumination. This correlation enabled the use of optical images, each containing up to 10 4 -10 5 crystals, for concluding the preferential alignment seen along the [Formula: see text] at the level of single scales, appears ubiquitous. By contrast, [Formula: see text] orientations were found to occur at no greater rate than that expected by chance. Above a critical cone angle, all crystals reflected bright green light indicating the dominant light scattering is due to the predicted band gap along the [Formula: see text] direction, independent of the domain orientation. Together with the natural variation in scale and wing shapes, we can readily understand the detailed mechanism of uniform colour production and iridescence suppression in these butterflies. It appears that the combination of preferential alignment normal to the wing scale, and uniform distribution within the plane is a near optimal solution for homogenizing the angular distribution of the [Formula: see text] band gap relative to the wings. Finally, the distributions of orientations, shapes, sizes and degree of order of crystals within single scales provide useful insights for understanding the mechanisms at play in the formation of these biophotonic nanostructures.

  10. Source mechanisms of persistent shallow earthquakes during eruptive and non-eruptive periods between 1981 and 2011 at Mount St. Helens, Washington

    USGS Publications Warehouse

    Lehto, Heather L.; Roman, Diana C.; Moran, Seth C.

    2013-01-01

    Shallow seismicity between 0 and 3-km depth has persisted at Mount St. Helens, Washington (MSH) during both eruptive and non-eruptive periods for at least the past thirty years. In this study we investigate the source mechanisms of shallow volcano-tectonic (VT) earthquakes at MSH by calculating high-quality hypocenter locations and fault plane solutions (FPS) for all VT events recorded during two eruptive periods (1981–1986 and 2004–2008) and two non-eruptive periods (1987–2004 and 2008–2011). FPS show a mixture of normal, reverse, and strike-slip faulting during all periods, with a sharp increase in strike-slip faulting observed in 1987–1997 and an increase in normal faulting in 1998–2004. FPS P-axis orientations show a ~ 90° rotation with respect to regional σ1 (N23°E) during 1981–1986 and 2004–2008, bimodal orientations (~ N-S and ~ E-W) during 1987–2004, and bimodal orientations at ~ N-E and ~ S-W from 2008–2011. We interpret these orientations to likely be due to pressurization accompanying the shallow intrusion and subsequent eruption of magma as domes during 1981–1986 and 2004–2008 and the buildup of pore pressure beneath a seismogenic volume (located at 0–1 km) with a smaller component due to the buildup of tectonic forces during 1987–2004 and 2008–2011.

  11. Lenalidomide induces lipid raft assembly to enhance erythropoietin receptor signaling in myelodysplastic syndrome progenitors.

    PubMed

    McGraw, Kathy L; Basiorka, Ashley A; Johnson, Joseph O; Clark, Justine; Caceres, Gisela; Padron, Eric; Heaton, Ruth; Ozawa, Yukiyasu; Wei, Sheng; Sokol, Lubomir; List, Alan F

    2014-01-01

    Anemia remains the principal management challenge for patients with lower risk Myelodysplastic Syndromes (MDS). Despite appropriate cytokine production and cellular receptor display, erythropoietin receptor (EpoR) signaling is impaired. We reported that EpoR signaling is dependent upon receptor localization within lipid raft microdomains, and that disruption of raft integrity abolishes signaling capacity. Here, we show that MDS erythroid progenitors display markedly diminished raft assembly and smaller raft aggregates compared to normal controls (p = 0.005, raft number; p = 0.023, raft size). Because lenalidomide triggers raft coalescence in T-lymphocytes promoting immune synapse formation, we assessed effects of lenalidomide on raft assembly in MDS erythroid precursors and UT7 cells. Lenalidomide treatment rapidly induced lipid raft formation accompanied by EpoR recruitment into raft fractions together with STAT5, JAK2, and Lyn kinase. The JAK2 phosphatase, CD45, a key negative regulator of EpoR signaling, was displaced from raft fractions. Lenalidomide treatment prior to Epo stimulation enhanced both JAK2 and STAT5 phosphorylation in UT7 and primary MDS erythroid progenitors, accompanied by increased STAT5 DNA binding in UT7 cells, and increased erythroid colony forming capacity in both UT7 and primary cells. Raft induction was associated with F-actin polymerization, which was blocked by Rho kinase inhibition. These data indicate that deficient raft integrity impairs EpoR signaling, and provides a novel strategy to enhance EpoR signal fidelity in non-del(5q) MDS.

  12. Lenalidomide Induces Lipid Raft Assembly to Enhance Erythropoietin Receptor Signaling in Myelodysplastic Syndrome Progenitors

    PubMed Central

    McGraw, Kathy L.; Basiorka, Ashley A.; Johnson, Joseph O.; Clark, Justine; Caceres, Gisela; Padron, Eric; Heaton, Ruth; Ozawa, Yukiyasu; Wei, Sheng; Sokol, Lubomir; List, Alan F.

    2014-01-01

    Anemia remains the principal management challenge for patients with lower risk Myelodysplastic Syndromes (MDS). Despite appropriate cytokine production and cellular receptor display, erythropoietin receptor (EpoR) signaling is impaired. We reported that EpoR signaling is dependent upon receptor localization within lipid raft microdomains, and that disruption of raft integrity abolishes signaling capacity. Here, we show that MDS erythroid progenitors display markedly diminished raft assembly and smaller raft aggregates compared to normal controls (p = 0.005, raft number; p = 0.023, raft size). Because lenalidomide triggers raft coalescence in T-lymphocytes promoting immune synapse formation, we assessed effects of lenalidomide on raft assembly in MDS erythroid precursors and UT7 cells. Lenalidomide treatment rapidly induced lipid raft formation accompanied by EpoR recruitment into raft fractions together with STAT5, JAK2, and Lyn kinase. The JAK2 phosphatase, CD45, a key negative regulator of EpoR signaling, was displaced from raft fractions. Lenalidomide treatment prior to Epo stimulation enhanced both JAK2 and STAT5 phosphorylation in UT7 and primary MDS erythroid progenitors, accompanied by increased STAT5 DNA binding in UT7 cells, and increased erythroid colony forming capacity in both UT7 and primary cells. Raft induction was associated with F-actin polymerization, which was blocked by Rho kinase inhibition. These data indicate that deficient raft integrity impairs EpoR signaling, and provides a novel strategy to enhance EpoR signal fidelity in non-del(5q) MDS. PMID:25469886

  13. Experimental Method for Characterizing Electrical Steel Sheets in the Normal Direction

    PubMed Central

    Hihat, Nabil; Lecointe, Jean Philippe; Duchesne, Stephane; Napieralska, Ewa; Belgrand, Thierry

    2010-01-01

    This paper proposes an experimental method to characterise magnetic laminations in the direction normal to the sheet plane. The principle, which is based on a static excitation to avoid planar eddy currents, is explained and specific test benches are proposed. Measurements of the flux density are made with a sensor moving in and out of an air-gap. A simple analytical model is derived in order to determine the permeability in the normal direction. The experimental results for grain oriented steel sheets are presented and a comparison is provided with values obtained from literature. PMID:22163394

  14. Crystallographic texture in pulsed laser deposited hydroxyapatite bioceramic coatings

    PubMed Central

    Kim, Hyunbin; Camata, Renato P.; Lee, Sukbin; Rohrer, Gregory S.; Rollett, Anthony D.; Vohra, Yogesh K.

    2008-01-01

    The orientation texture of pulsed laser deposited hydroxyapatite coatings was studied by X-ray diffraction techniques. Increasing the laser energy density of the KrF excimer laser used in the deposition process from 5 to 7 J/cm2 increases the tendency for the c-axes of the hydroxyapatite grains to be aligned perpendicular to the substrate. This preferred orientation is most pronounced when the incidence direction of the plume is normal to the substrate. Orientation texture of the hydroxyapatite grains in the coatings is associated with the highly directional and energetic nature of the ablation plume. Anisotropic stresses, transport of hydroxyl groups and dehydroxylation effects during deposition all seem to play important roles in the texture development. PMID:18563207

  15. Cleavage in conical sand dollar eggs.

    PubMed

    Rappaport, R; Rappaport, B N

    1994-07-01

    Previous experiments have shown that the mitotic apparatus and the surface can interact and produce functional furrows in various unusual geometrical circumstances. The consistent development of the furrow in the plane equidistant from the aster centers has led to conjecture about the need for a special structural configuration of the subsurface in the future cleavage plane. In most experiments involving altered cell geometry, the relation between each aster and nearby surface was symmetrical, and the effect of that symmetry upon the position and orientation of the cleavage mechanism in the cortex has not been systematically analyzed. The normal symmetry of sand dollar eggs can be changed by reshaping them into cones. When the cone and mitotic axes are parallel, the aster center closer to the vertex is also closer to the nearby surface, and the cleavage plane develops on the vertex side of the midpoint between the asters. A mitotic apparatus oriented perpendicular to the cone axis produces in the base of the cone a normal unilateral furrow that advances toward the vertex, and a second contractile band that isolates the vertex region. This event only occurs when the surface is conical and the mitotic apparatus is perpendicular to the cone axis. Furrow formation is not restricted to the plane of the metaphase plate or the midpoint between the aster centers. The orientation of mitotic apparatus-produced contractile bands is not limited to the circumstances in normal cytokinesis, but may vary according to surface contour. These results confirm predictions of the Harris and Gewalt model of contractile ring induction.

  16. Strength and deformation of shocked diamond single crystals: Orientation dependence

    DOE PAGES

    Lang, John Michael Jr.; Winey, J. M.; Gupta, Y. M.

    2018-03-01

    Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ~120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100]more » direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}<110> slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (~33 GPa) are 25-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (~23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.« less

  17. Strength and deformation of shocked diamond single crystals: Orientation dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, John Michael Jr.; Winey, J. M.; Gupta, Y. M.

    Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ~120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100]more » direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}<110> slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (~33 GPa) are 25-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (~23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.« less

  18. Strength and deformation of shocked diamond single crystals: Orientation dependence

    NASA Astrophysics Data System (ADS)

    Lang, J. M.; Winey, J. M.; Gupta, Y. M.

    2018-03-01

    Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ˜120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100] direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}⟨110⟩ slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (˜33 GPa) are 25%-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (˜23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.

  19. Oxidant production from source-oriented particulate matter - Part 1: Oxidative potential using the dithiothreitol (DTT) assay

    NASA Astrophysics Data System (ADS)

    Charrier, J. G.; Richards-Henderson, N. K.; Bein, K. J.; McFall, A. S.; Wexler, A. S.; Anastasio, C.

    2014-09-01

    Recent epidemiological evidence supports the hypothesis that health effects from inhalation of ambient particulate matter (PM) are governed by more than just the mass of PM inhaled. Both specific chemical components and sources have been identified as important contributors to mortality and hospital admissions, even when these endpoints are unrelated to PM mass. Sources may cause adverse health effects via their ability to produce reactive oxygen species, possibly due to the transition metal content of the PM. Our goal is to quantify the oxidative potential of ambient particle sources collected during two seasons in Fresno, CA using the dithiothreitol (DTT) assay. We collected PM from different sources or source combinations into different ChemVol (CV) samplers in real time using a novel source-oriented sampling technique based on single particle mass spectrometry. We segregated the particles from each source-oriented mixture into two size fractions - ultrafine (Dp ≤ 0.17 μm) and submicron fine (0.17 μm ≤ Dp ≤ 1.0 μm) - and measured metals and the rate of DTT loss in each PM extract. We find that the mass-normalized oxidative potential of different sources varies by up to a actor of 8 and that submicron fine PM typically has a larger mass-normalized oxidative potential than ultrafine PM from the same source. Vehicular Emissions, Regional Source Mix, Commute Hours, Daytime Mixed Layer and Nighttime Inversion sources exhibit the highest mass-normalized oxidative potential. When we apportion the volume-normalized oxidative potential, which also accounts for the source's prevalence, cooking sources account for 18-29% of the total DTT loss while mobile (traffic) sources account for 16-28%. When we apportion DTT activity for total PM sampled to specific chemical compounds, soluble copper accounts for roughly 50% of total air-volume-normalized oxidative potential, soluble manganese accounts for 20%, and other unknown species, likely including quinones and other organics, account for 30%. During nighttime, soluble copper and manganese largely explain the oxidative potential of PM, while daytime has a larger contribution from unknown (likely organic) species.

  20. Oriented antibody immobilization on self-assembled monolayers applied as impedance biosensors

    NASA Astrophysics Data System (ADS)

    Tsugimura, Kaiki; Ohnuki, Hitoshi; Wu, Haiyun; Endo, Hideaki; Tsuya, Daiju; Izumi, Mitsuru

    2017-11-01

    Oriented immobilization of antibodies on a sensor chip is crucial for enhancing both the sensitivity and antigen-binding capacity of immunosensors. Here, we report a comparative study of the effect of oriented and random antibody immobilization on the binding efficiency by electrochemical impedance spectroscopy (EIS). Oriented immobilization of anti-myoglobin immunoglobulin G (anti-Myo IgG) was achieved by bonding to an Fc receptor of protein G (PrG) on a self-assembled monolayer (SAM), which results in the myoglobin (Myo) binding sites being exposed outside the sensing surface. Random immobilization of anti-Myo IgG was achieved by direct covalent attachment to the SAM surface. Both immobilizations were applied to interdigitated electrodes to enhance the electrochemical signal, and the Myo biosensor performance was then evaluated by a series of EIS measurements. We found that (i) the rate of the normalized charge transfer resistance for the oriented sample was 3 times higher than that for the random sample and (ii) the detection limit was 0.001 ng/mL, which is the lowest recorded detection limit among Myo immunosensors based on EIS. These findings indicate that oriented antibody immobilization is crucial for preparing highly sensitive EIS-based biosensors.

Top