ERIC Educational Resources Information Center
McCrory, David L.; Maughan, George R.
This document--intended for secondary school and college students--contains technology education instructional units on engines and power, energy conversion, energy futures, energy sources, communication and society, energy and power in communication, communication systems, microelectronics in communication, transportation in society, energy and…
NASA Astrophysics Data System (ADS)
1984-07-01
Precisely because the Federal Republic of Germany is a nation with a strong export orientation the capability to develop and apply, with an eye to the market, modern information and communication technologies and microelectronics which provides the basis for them has a very important bearing on the nations competitive position. To attain a leadership position in information technology, the men and women of the FRG must take up the challenge of this technology in terms of training and continuing education as well as in the media and in public life. Industry must agressively seek out markets and engage in international competition and the state must remove existing obstacles and create the kind of conditions that will make its assistance programs most effective. Programs which reflect the government's resolve to meet the challenge of information technology and to help improve the FRG's competitive position in this field are outlined.
ERIC Educational Resources Information Center
Ham, Seung-Hwan; Cha, Yun-Kyung
2009-01-01
One of the most distinctive qualities that characterize present-day society is the social fact that people are shifting to the information age. In recent years, they have witnessed remarkable developments in information and communication technology (ICT), in which microelectronics, computers, and telecommunications have converged. Transnational…
ERIC Educational Resources Information Center
Belland, John C.
1982-01-01
Technological advances in microelectronics-photonics, brain research, and genetic manipulation are discussed, along with their implications for school media programs. Three possible futures for the year 2001 are proffered. Media specialists are urged to adopt only those technologies which truly contribute to efficient management, information…
1988-01-29
Hungarian founders are the Microelectronics Enterprise and the Communications Technology Cooperative. The Soviet founders are the Union of Nauchniy Centr...selection, growing and breeding of new plant and animal species, and the development of manufacturing technology for the food industry. Direct...the reforms our economy still has not undergone a rapid enough technological modernization. We have, for example, failed to make any progress in the
Eye vision system using programmable micro-optics and micro-electronics
NASA Astrophysics Data System (ADS)
Riza, Nabeel A.; Amin, M. Junaid; Riza, Mehdi N.
2014-02-01
Proposed is a novel eye vision system that combines the use of advanced micro-optic and microelectronic technologies that includes programmable micro-optic devices, pico-projectors, Radio Frequency (RF) and optical wireless communication and control links, energy harvesting and storage devices and remote wireless energy transfer capabilities. This portable light weight system can measure eye refractive powers, optimize light conditions for the eye under test, conduct color-blindness tests, and implement eye strain relief and eye muscle exercises via time sequenced imaging. Described is the basic design of the proposed system and its first stage system experimental results for vision spherical lens refractive error correction.
NASA Astrophysics Data System (ADS)
Nutu, Catalin Silviu; Axinte, Tiberiu
2016-12-01
The article is centralizing and is concentrating the information from a considerable amount of papers related to the field of microelectronics and nanotechnology and also provides an approach to science and to the future evolution of science, based on the theory of the fractals. The new science of microelectronics and nanotechnology is one of the best examples of how the science of future will look like, namely at the confluence of increasingly more other sciences, where increasingly more sciences are to be added in the structure of the new science and the role of the multidisciplinary and interdisciplinary is becoming more and more important. Although not giving explicit details (e.g. specific formulas) the theory of fractals is used in the paper to explain the way of generation of new science for the specific case of microelectronics and nanotechnology, but is also used in the paper to outline a different way to approach new science and eventually to approach new sciences to come. There are mainly two motivations for the present article, namely: on the one hand, the position of the microelectronics and nanotechnologies in the fractal-like structure of science, and, on the other hand, that much of the communication, information, knowledge and science transfer, dissemination and advancement in sciences are taking place using the new technologies related to microelectronics and nanotechnologies.
Micro-Electronics, Robotics and Jobs. Information Computer Communication Policy Series No. 7.
ERIC Educational Resources Information Center
Organisation for Economic Cooperation and Development, Paris (France).
This monograph contains selected papers presented at the Second Special Session on Information Technologies, Productivity and Labour Market Implications, which took place at the Organisation for Economic Cooperation and Development on October 19-21, 1981. An introductory note summarizes significant points from the meeting. Part 1 contains a report…
State-of-the-art methods for testing materials outdoors
R. Sam Williams
2004-01-01
In recent years, computers, sensors, microelectronics, and communication technologies have made it possible to automate the way materials are tested in the field. It is now possible to purchase monitoring equipment to measure weather and materials properties. The measurement of materials response often requires innovative approaches and added expense, but the...
Microelectronics and Special Education. CET/MEP Information Sheet.
ERIC Educational Resources Information Center
Council for Educational Technology, London (England).
Used as an additional aid by the teacher, microelectronics can assist mentally and physically handicapped children to meet educational objectives that have been specifically agreed upon for the individual child. Microelectronics can help deaf children develop speech production, communication skills, and grammar and sentence construction;…
Center for Space Microelectronics Technology. 1993 Technical Report
NASA Technical Reports Server (NTRS)
1995-01-01
The 1993 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 170 publications, 193 presentations, and 84 New Technology Reports and patents. The 1993 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 170 publications, 193 presentations, and 84 New Technology Reports and patents.
Moore's law and the impact on trusted and radiation-hardened microelectronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Kwok Kee
2011-12-01
In 1965 Gordon Moore wrote an article claiming that integrated circuit density would scale exponentially. His prediction has remained valid for more than four decades. Integrated circuits have changed all aspects of everyday life. They are also the 'heart and soul' of modern systems for defense, national infrastructure, and intelligence applications. The United States government needs an assured and trusted microelectronics supply for military systems. However, migration of microelectronics design and manufacturing from the United States to other countries in recent years has placed the supply of trusted microelectronics in jeopardy. Prevailing wisdom dictates that it is necessary to usemore » microelectronics fabricated in a state-of-the-art technology for highest performance and military system superiority. Close examination of silicon microelectronics technology evolution and Moore's Law reveals that this prevailing wisdom is not necessarily true. This presents the US government the possibility of a totally new approach to acquire trusted microelectronics.« less
Wireless infrared communications for space and terrestrial applications
NASA Technical Reports Server (NTRS)
Crimmins, James W.
1993-01-01
Voice and data communications via wireless (and fiberless) optical means has been commonplace for many years. However, continuous advances in optoelectronics and microelectronics have resulted in significant advances in wireless optical communications over the last decade. Wilton has specialized in diffuse infrared voice and data communications since 1979. In 1986, NASA Johnson Space Center invited Wilton to apply its wireless telecommunications and factory floor technology to astronaut voice communications aboard the shuttle. In September, 1988 a special infrared voice communications system flew aboard a 'Discovery' Shuttle mission as a flight experiment. Since then the technology has been further developed, resulting in a general purpose of 2Mbs wireless voice/data LAN which has been tested for a variety of applications including use aboard Spacelab. Funds for Wilton's wireless IR development were provided in part by NASA's Technology Utilization Office and by the NASA Small Business Innovative Research Program. As a consequence, Wilton's commercial product capability has been significantly enhanced to include diffuse infrared wireless LAN's as well as wireless infrared telecommunication systems for voice and data.
Center for Space Microelectronics Technology 1988-1989 technical report
NASA Technical Reports Server (NTRS)
Olsen, Peggy
1990-01-01
The 1988 to 1989 Technical Report of the JPL Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center. Listed are 321 publications, 282 presentations, and 140 new technology reports and patents.
Center for Space Microelectronics Technology
NASA Technical Reports Server (NTRS)
1991-01-01
The 1990 technical report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center during 1990. The report lists 130 publications, 226 presentations, and 87 new technology reports and patents.
Center for Space Microelectronics Technology
NASA Technical Reports Server (NTRS)
1992-01-01
The 1991 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 193 publications, 211 presentations, and 125 new technology reports and patents.
1988-08-17
asynchronous TDM for all channels; and hybrid solu- However, since technoeconomic considerations may im- tions, possibly involving dynamic rearranging. A...qualitative electronic switching are favored: CMOS, silicon bipolar, analysis , under the headings: timing of introduction, net- and gallium arsenide...or ring configurations. tem requirements. Project 1029. In this project an up-to-date analysis Microelectronic Components was made of the state of the
NASA Astrophysics Data System (ADS)
Li, Yu; Li, Jiachen; Yu, Hongchen; Yu, Hai; Chen, Hongwei; Yang, Sigang; Chen, Minghua
2018-04-01
The explosive growth of data centers, cloud computing and various smart devices is limited by the current state of microelectronics, both in terms of speed and heat generation. Benefiting from the large bandwidth, promising low power consumption and passive calculation capability, experts believe that the integrated photonics-based signal processing and transmission technologies can break the bottleneck of microelectronics technology. In recent years, integrated photonics has become increasingly reliable and access to the advanced fabrication process has been offered by various foundries. In this paper, we review our recent works on the integrated optical signal processing system. We study three different kinds of on-chip signal processors and use these devices to build microsystems for the fields of microwave photonics, optical communications and spectrum sensing. The microwave photonics front receiver was demonstrated with a signal processing range of a full-band (L-band to W-band). A fully integrated microwave photonics transceiver without the on-chip laser was realized on silicon photonics covering the signal frequency of up 10 GHz. An all-optical orthogonal frequency division multiplexing (OFDM) de-multiplier was also demonstrated and used for an OFDM communication system with the rate of 64 Gbps. Finally, we show our work on the monolithic integrated spectrometer with a high resolution of about 20 pm at the central wavelength of 1550 nm. These proposed on-chip signal processing systems potential applications in the fields of radar, 5G wireless communication, wearable devices and optical access networks.
The Legacy of the Microelectronics Education Programme.
ERIC Educational Resources Information Center
Thorne, Michael
1987-01-01
Describes the Microelectronics Education Programme (MEP), a plan developed to help British secondary school students learn about microcomputers and the role of technology in society, and its successor, the Microelectronics Support Unit (MESU). Highlights include curriculum development, teacher training, computer assisted instruction and the…
Educational Implications of Microelectronics and Microprocessors.
ERIC Educational Resources Information Center
Harris, N. D. C., Ed.
This conference report explores microelectronic technology, its effect on educational methods and objectives, and its implications for educator responsibilities. Two main areas were considered: the significance of the likely impact of the large scale introduction of microprocessors and microelectronics on commercial and industrial processes, the…
Center for space microelectronics technology
NASA Technical Reports Server (NTRS)
1993-01-01
The 1992 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center during the past year. The report lists 187 publications, 253 presentations, and 111 new technology reports and patents in the areas of solid-state devices, photonics, advanced computing, and custom microcircuits.
Microelectronics in the Curriculum--The Science Teacher's Contribution.
ERIC Educational Resources Information Center
Association for Science Education, Cambridge (England).
Rapid advances in microelectronics over the past few years have generally been beneficial, but they have also created some problems, and questions must be asked about the philosophy for including aspects of the new technology in the school curriculum. This statement, prepared by the Microelectronics and Science Education Subcommittee of the…
[Facing the challenges of ubiquitous computing in the health care sector].
Georgieff, Peter; Friedewald, Michael
2010-01-01
The steady progress of microelectronics, communications and information technology will enable the realisation of the vision for "ubiquitous computing" where the Internet extends into the real world embracing everyday objects. The necessary technical basis is already in place. Due to their diminishing size, constantly falling price and declining energy consumption, processors, communications modules and sensors are being increasingly integrated into everyday objects today. This development is opening up huge opportunities for both the economy and individuals. In the present paper we discuss possible applications, but also technical, social and economic barriers to a wide-spread use of ubiquitous computing in the health care sector. .
Photonic technology revolution influence on the defence area
NASA Astrophysics Data System (ADS)
Galas, Jacek; Litwin, Dariusz; Błocki, Narcyz; Daszkiewicz, Marek
2017-10-01
Revolutionary progress in the photonic technology provides the ability to develop military systems of new properties not possible to obtain with the use of classical technologies. In recent years, this progress has resulted in developing advanced, complex, multifunctional and relatively cheap Photonic Integrated Circuits (PIC) or Hybrid Photonics Circuits (HPC) built of a collection of standardized optical, optoelectronic and photonic components. This idea is similar to the technology of Electronic Integrated Circuits, which has revolutionized the microelectronic market. The novel approach to photonic technology is now revolutionizing the photonics' market. It simplifies the photonics technology and enables creation of technological centers for designing, development and production of advanced optical and photonic systems in the EU and other countries. This paper presents some selected photonic technologies and their impact on such defense systems like radars, radiolocation, telecommunication, and radio-communication systems.
Design, processing and testing of LSI arrays, hybrid microelectronics task
NASA Technical Reports Server (NTRS)
Himmel, R. P.; Stuhlbarg, S. M.; Ravetti, R. G.; Zulueta, P. J.; Rothrock, C. W.
1979-01-01
Mathematical cost models previously developed for hybrid microelectronic subsystems were refined and expanded. Rework terms related to substrate fabrication, nonrecurring developmental and manufacturing operations, and prototype production are included. Sample computer programs were written to demonstrate hybrid microelectric applications of these cost models. Computer programs were generated to calculate and analyze values for the total microelectronics costs. Large scale integrated (LST) chips utilizing tape chip carrier technology were studied. The feasibility of interconnecting arrays of LSU chips utilizing tape chip carrier and semiautomatic wire bonding technology was demonstrated.
Macro management of microelectronics in India in 1990s
NASA Astrophysics Data System (ADS)
Gupta, Parmod K.
1992-08-01
Development of microelectronics is taking place at a very fast rate all over the globe, including India. New technologies are introduced at very short intervals in order to capture the consumer market. It is essential that these technologies are managed properly at the macro level in order to bring the desired results. Microelectronics plays a very vital role in office automation for achieving cost effective results in a highly competitive environment. Introduction of various facilities like laser printers, photo copiers, dictaphone-selectronic boards, electronic telexes, teleconference rooms, telephone answering machines, computer, word processors, sensors, etc. have all revolutionized the industry. Keeping the above in view, the present and future status of microelectronics, with special emphasis on its role in office automation in India, are discussed in detail in this paper.
Reliability Considerations for Ultra- Low Power Space Applications
NASA Technical Reports Server (NTRS)
White, Mark; Johnston, Allan
2012-01-01
NASA, the aerospace community, and other high reliability (hi-rel) users of advanced microelectronic products face many challenges as technology continues to scale into the deep sub- micron region and ULP devices are sought after. Technology trends, ULP microelectronics, scaling and performance tradeoffs, reliability considerations, and spacecraft environments will be presented from a ULP perspective for space applications.
ERIC Educational Resources Information Center
Acero, Liliana
Microelectronic technologies have had an impact on the nature of work in industry for both white-collar and blue-collar workers. Evidence from sector- and enterprise-level studies shows changes in skills and job content for blue-collar workers involved with numerically controlled machine tools, robots, and other microelectronics applications.…
Uses of ceramics in microelectronics: A survey
NASA Technical Reports Server (NTRS)
Bratschun, W. R.; Mountvala, A. J.; Pincus, A. G.
1971-01-01
The properties and behavior of ceramic materials used in components for electronic circuitry are examined to appraise the present and future directions for microelectronics, and to suggest further product development, and how innovations may be useful in other technologies. Ceramic and glass insulators, resistors, capacitors, and the use of ceramics and glasses in microcircuitry are discussed along with technology transfer to nonaerospace uses.
Microelectronics used for Semiconductor Imaging Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heijne, Erik H. M.
Semiconductor crystal technology, microelectronics developments and nuclear particle detection have been in a relation of symbiosis, all the way from the beginning. The increase of complexity in electronics chips can now be applied to obtain much more information on the incident nuclear radiation. Some basic technologies are described, in order to acquire insight in possibilities and limitations for the most recent detectors.
Book of Knowledge (BOK) for NASA Electronic Packaging Roadmap
NASA Technical Reports Server (NTRS)
Ghaffarian, Reza
2015-01-01
The objective of this document is to update the NASA roadmap on packaging technologies (initially released in 2007) and to present the current trends toward further reducing size and increasing functionality. Due to the breadth of work being performed in the area of microelectronics packaging, this report presents only a number of key packaging technologies detailed in three industry roadmaps for conventional microelectronics and a more recently introduced roadmap for organic and printed electronics applications. The topics for each category were down-selected by reviewing the 2012 reports of the International Technology Roadmap for Semiconductor (ITRS), the 2013 roadmap reports of the International Electronics Manufacturing Initiative (iNEMI), the 2013 roadmap of association connecting electronics industry (IPC), the Organic Printed Electronics Association (OE-A). The report also summarizes the results of numerous articles and websites specifically discussing the trends in microelectronics packaging technologies.
Microsystem technology as a road from macro to nanoworld.
Grabiec, Piotr; Domański, Krzysztof; Janus, Paweł; Zaborowski, Michał; Jaroszewicz, Bogdan
2005-04-01
Tremendous progress of microelectronic technology observed within last 40 years is closely related to even more remarkable progress of technological tools. It is important to note however, that these new tools may be used for fabrication of diverse multifunctional structures as well. Such devices, called MEMS (Micro-Electro-Mechanical-System) and MOEMS (Micro-Electro-Opto-Mechanical-System) integrate microelectronic and micromechanical structures in one system enabling interdisciplinary application, with most interesting and prospective being bio-medical investigations. Development of these applications requires however cooperation of multidisciplinary team of specialists, covering broad range of physics, (bio) chemistry and electronics, not mentioning medical doctors and other medical specialists. Thus, dissemination, of knowledge about existing processing capabilities is of key importance. In this paper, examples of various applications of microelectronic technology for fabrication of Microsystems which may be used for medicine and chemistry, will be presented. Besides, information concerning a design and technology potential available in poland and new, emerging opportunities will be given.
A microelectronics approach for the ROSETTA surface science package
NASA Technical Reports Server (NTRS)
Sandau, Rainer (Editor); Alkalaj, Leon
1996-01-01
In relation to the Rosetta surface science package, the benefits of the application of advanced microelectronics packaging technologies and other output from the Mars environmental survey (MESUR) integrated microelectronics study are reported on. The surface science package will be designed to operate for tens of hours. Its limited mass and power consumption make necessary a highly integrated design with all the instruments and subunits operated from a centralized control and information management subsystem.
Electronics for better healthcare.
Wolf, Bernhard; Herzog, Karolin
2013-06-01
Microelectronics and microsystem technology have changed our daily lives considerably in the past 50 years. Countless everyday objects contain microelectronic components. In healthcare up to the present, however, it has not been possible to make major alterations in introducing electronics and information technology that would lead to innovative improvements and greater transparency. This paper describes initial steps in diagnostics and oncological therapy including telematic healthcare systems which can, for example, assist patients with cardiovascular diseases and shows, through these areas, how electronics and microsystems technology can contribute to better healthcare.
NASA Astrophysics Data System (ADS)
Hughes, R. C.; Drebing, C. G.
1990-04-01
The technology that led to very large scale integrated circuits on silicon chips also provides a basis for new microsensors that are small, inexpensive, low power, rugged, and reliable. Two examples of microsensors Sandia is developing that take advantage of this technology are the microelectronic chemical sensor array and the radiation sensing field effect transistor (RADFET). Increasingly, the technology of chemical sensing needs new microsensor concepts. Applications in this area include environmental monitoring, criminal investigations, and state-of-health monitoring, both for equipment and living things. Chemical microsensors can satisfy sensing needs in the industrial, consumer, aerospace, and defense sectors. The microelectronic chemical-sensor array may address some of these applications. We have fabricated six separate chemical gas sensing areas on the microelectronic chemical sensor array. By using different catalytic metals on the gate areas of the diodes, we can selectively sense several gases.
1983-10-28
Computing. By seizing an opportunity to leverage recent advances in artificial intelligence, computer science, and microelectronics, the Agency plans...occurred in many separated areas of artificial intelligence, computer science, and microelectronics. Advances in "expert system" technology now...and expert knowledge o Advances in Artificial Intelligence: Mechanization of speech recognition, vision, and natural language understanding. o
Labour-Saving versus Work-Amplifying Effects of Micro-Electronics.
ERIC Educational Resources Information Center
Watanabe, Susumu
1986-01-01
This article argues that the labor-displacement effect of microelectronic machinery, especially numerically controlled machine tools and robots, has been exaggerated and that people tend to confuse the impact of intensified international competition with that of the new technology. (Author/CT)
Comparative Advantages in Microelectronics,
The initial point of departure for analyzing comparative advantages in microelectronics is to make certain explicit assumptions. First, technology...changes conditions but does not determine comparative advantages . Secondly, the entire industrial infrastructure is becoming increasingly abstract...that informatics will profoundly affect the productive infrastructure and the international division of labour.
Managing the Manpower Aspects of Applying Micro-Electronics Technology.
ERIC Educational Resources Information Center
Thornton, P.; Routledge, C.
1980-01-01
Outlines major effects that the application of micro-electronics devices in products/processes and in office systems will have on future manpower and skill requirements in manufacturing organizations. Identifies the type of problems these changes will pose for manpower managers. Provides general guidelines for the successful management of these…
1992-08-17
Conclusions. Key personnel planned and administered the 193-nm lithography SBIR workshop on May 7, 1992 as well as planned the GaAs Insertion...converters can use Josephson junctions (JJ) to improve performance. Superconductive quantum interference devices (SQUIDs), such as JJs, are used to form...forward control of a lithography stepper. Mark Conner at Booz-Allen has copies of the charts. You should take a few minutes to review them. I asked Costos
NASA Technical Reports Server (NTRS)
Jackson, George L.; LaBel, Kenneth A.; Marshall, Cheryl; Barth, Janet; Seidleck, Christina; Marshall, Paul
1998-01-01
NASA Goddard Spare Flight Center's (GSFC) Dual Rate 1773 (DR1773) Experiment on the Microelectronic and Photonic Test Bed (MPTB) has provided valuable information on the performance of the AS 1773 fiber optic data bus in the space radiation environment. Correlation of preliminary experiment data to ground based radiation test results show the AS 1773 bus is employable in future spacecraft applications requiring radiation tolerant communication links.
Advanced Microelectronics Technologies for Future Small Satellite Systems
NASA Technical Reports Server (NTRS)
Alkalai, Leon
1999-01-01
Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.
The NASA Electronic Parts and Packaging (NEPP) Program: An Overview
NASA Technical Reports Server (NTRS)
Label, Kenneth A.; Sampson, Michael J.
2016-01-01
This presentation provides an overview of the NEPP Program. The NEPP Mission is to provide guidance to NASA for the selection and application of microelectronics technologies; Improve understanding of the risks related to the use of these technologies in the space environment; Ensure that appropriate research is performed to meet NASA mission assurance needs. NEPP's Goals are to provide customers with appropriate and cost-effective risk knowledge to aid in: Selection and application of microelectronics technologies; Improved understanding of risks related to the use of these technologies in the space environment; Appropriate evaluations to meet NASA mission assurance needs; Guidelines for test and application of parts technologies in space; Assurance infrastructure and support for technologies in use by NASA space systems.
Complex VLSI Feature Comparison for Commercial Microelectronics Verification
2014-03-27
69 4.2.4 Circuit E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3 Summary...used for high-performance consumer microelectronics. Volume is a significant factor in constraining the technology limit for defense circuits, but it...surveyed in a 2010 Department of Commerce report found counterfeit chips difficult to identify due to improved fabrication quality in overseas counterfeit
Reliability and quality EEE parts issues
NASA Technical Reports Server (NTRS)
Barney, Dan; Feigenbaum, Irwin
1990-01-01
NASA policy and procedures are established which govern the selection, testing, and application of electrical, electronic, and electromechanical (EEE) parts. Recent advances in the state-of-the-art of electronic parts and associated technologies can significantly impact the electronic designs and reliability of NASA space transportation avionics. Significant issues that result from these advances are examined, including: recent advances in microelectronics technology (as applied to or considered for use in NASA projects); electron packaging technology advances (concurrent with, and as a result of, the development of the advanced microelectronic devices); availability of parts used in space avionics; and standardization and integration of parts activities between projects, centers, and contractors.
Using federal technology policy to strength the US microelectronics industry
NASA Astrophysics Data System (ADS)
Gover, J. E.; Gwyn, C. W.
1994-07-01
A review of US and Japanese experiences with using microelectronics consortia as a tool for strengthening their respective industries reveals major differences. Japan has established catch-up consortia with focused goals. These consortia have a finite life targeted from the beginning, and emphasis is on work that supports or leads to product and process-improvement-driven commercialization. Japan's government has played a key role in facilitating the development of consortia and has used consortia promote domestic competition. US consortia, on the other hand, have often emphasized long-range research with considerably less focus than those in Japan. The US consortia have searched for and often made revolutionary technology advancements. However, technology transfer to their members has been difficult. Only SEMATECH has assisted its members with continuous improvements, compressing product cycles, establishing relationships, and strengthening core competencies. The US government has not been a catalyst nor provided leadership in consortia creation and operation. We propose that in order to regain world leadership in areas where US companies lag foreign competition, the US should create industry-wide, horizontal-vertical, catch-up consortia or continue existing consortia in the six areas where the US lags behind Japan -- optoelectronics, displays, memories, materials, packaging, and manufacturing equipment. In addition, we recommend that consortia be established for special government microelectronics and microelectronics research integration and application. We advocate that these consortia be managed by an industry-led Microelectronics Alliance, whose establishment would be coordinated by the Department of Commerce. We further recommend that the Semiconductor Research Corporation, the National Science Foundation Engineering Research Centers, and relevant elements of other federal programs be integrated into this consortia complex.
Using federal technology policy to strength the US microelectronics industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gover, J.E.; Gwyn, C.W.
1994-07-01
A review of US and Japanese experiences with using microelectronics consortia as a tool for strengthening their respective industries reveals major differences. Japan has established catch-up consortia with focused goals. These consortia have a finite life targeted from the beginning, and emphasis is on work that supports or leads to product and process-improvement-driven commercialization. Japan`s government has played a key role in facilitating the development of consortia and has used consortia promote domestic competition. US consortia, on the other hand, have often emphasized long-range research with considerably less focus than those in Japan. The US consortia have searched for andmore » often made revolutionary technology advancements. However, technology transfer to their members has been difficult. Only SEMATECH has assisted its members with continuous improvements, compressing product cycles, establishing relationships, and strengthening core competencies. The US government has not been a catalyst nor provided leadership in consortia creation and operation. We propose that in order to regain world leadership in areas where US companies lag foreign competition, the US should create industry-wide, horizontal-vertical, catch-up consortia or continue existing consortia in the six areas where the US lags behind Japan -- optoelectronics, displays, memories, materials, packaging, and manufacturing equipment. In addition, we recommend that consortia be established for special government microelectronics and microelectronics research integration and application. We advocate that these consortia be managed by an industry-led Microelectronics Alliance, whose establishment would be coordinated by the Department of Commerce. We further recommend that the Semiconductor Research Corporation, the National Science Foundation Engineering Research Centers, and relevant elements of other federal programs be integrated into this consortia complex.« less
Crystallization Process of Superlattice-Like Sb/SiO2 Thin Films for Phase Change Memory Application
NASA Astrophysics Data System (ADS)
Zhu, Xiao-Qin; Zhang, Rui; Hu, Yi-Feng; Lai, Tian-Shu; Zhang, Jian-Hao; Zou, Hua; Song, Zhi-Tang
2018-05-01
Not Available Supported by the National Natural Science Foundation of China under Grant No 11774438, the Natural Science Foundation of Jiangsu Province under Grant No BK20151172, the Changzhou Science and Technology Bureau under Grant No CJ20160028, the Qing Lan Project, the Opening Project of State Key Laboratory of Silicon Materials under Grant No SKL2017-04, and the Opening Project of Key Laboratory of Microelectronic Devices and Integrated Technology of Institute of Microelectronics of Chinese Academy of Sciences.
Investigation of “benign” ionic content in epoxy that induces microelectronic device failure
Gregory T. Schueneman; Jeffery Kingsbury; Edmund Klinkerch
2011-01-01
Microelectronics and the devices dependent upon them have the extremely challenging requirements of becoming more capable and less expensive every year. This drives the industry to pack more functions into an ever smaller footprint until the next technological revolution. Adding to this situation is the removal of lead from the bill of materials followed closely by...
Using SDI-12 with ST microelectronics MCU's
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saari, Alexandra; Hinzey, Shawn Adrian; Frigo, Janette Rose
2015-09-03
ST Microelectronics microcontrollers and processors are readily available, capable and economical processors. Unfortunately they lack a broad user base like similar offerings from Texas Instrument, Atmel, or Microchip. All of these devices could be useful in economical devices for remote sensing applications used with environmental sensing. With the increased need for environmental studies, and limited budgets, flexibility in hardware is very important. To that end, and in an effort to increase open support of ST devices, I am sharing my teams' experience in interfacing a common environmental sensor communication protocol (SDI-12) with ST devices.
Risk Management of New Microelectronics for NASA: Radiation Knowledge-base
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.
2004-01-01
Contents include the following: NASA Missions - implications to reliability and radiation constraints. Approach to Insertion of New Technologies Technology Knowledge-base development. Technology model/tool development and validation. Summary comments.
The MOS silicon gate technology and the first microprocessors
NASA Astrophysics Data System (ADS)
Faggin, F.
2015-12-01
Today we are so used to the enormous capabilities of microelectronics that it is hard to imagine what it might have been like in the early Sixties and Seventies when much of the technology we use today was being developed. This paper will first present a brief history of microelectronics and computers, taking us to the threshold of the inventions of the MOS silicon gate technology and the microprocessor. These two creations provided the basic technology that would allow only a few years later to merge microelectronics and computers into the first commercial monolithic computer. By the late Seventies, the first monolithic computer weighting less than one gram, occupying a volume of less than one cubic centimeter, dissipating less than one Watt, and selling for less than ten dollars, could perform more information processing than the UNIVAC I, the first commercial electronic computer introduced in 1951, made with 5200 vacuum tubes, dissipating 125kW, weighting 13 metric tons, occupying a room larger than 35m2, and selling for more than one million dollars per unit. The first-person story of the SGT and the early microprocessors will be told by the Italian-born physicist who led both projects.
JPRS report. Science and technology: Europe and Latin America
NASA Astrophysics Data System (ADS)
1987-12-01
Topics addressed include: advanced materials; aerospace; civil aviation; automative industry; biotechnology; computers; metallurgical industries; microelectronics; science and technology policy; and lasers, sensor, and optics.
Monitoring Composite Material Pressure Vessels with a Fiber-Optic/Microelectronic Sensor System
NASA Technical Reports Server (NTRS)
Klimcak, C.; Jaduszliwer, B.
1995-01-01
We discuss the concept of an integrated, fiber-optic/microelectronic distributed sensor system that can monitor composite material pressure vessels for Air Force space systems to provide assessments of the overall health and integrity of the vessel throughout its entire operating history from birth to end of life. The fiber optic component would include either a semiconductor light emitting diode or diode laser and a multiplexed fiber optic sensing network incorporating Bragg grating sensors capable of detecting internal temperature and strain. The microelectronic components include a power source, a pulsed laser driver, time domain data acquisition hardware, a microprocessor, a data storage device, and a communication interface. The sensing system would be incorporated within the composite during its manufacture. The microelectronic data acquisition and logging system would record the environmental conditions to which the vessel has been subjected to during its storage and transit, e.g., the history of thermal excursions, pressure loading data, the occurrence of mechanical impacts, the presence of changing internal strain due to aging, delamination, material decomposition, etc. Data would be maintained din non-volatile memory for subsequent readout through a microcomputer interface.
NASA Astrophysics Data System (ADS)
Wenger, Christian; Fompeyrine, Jean; Vallée, Christophe; Locquet, Jean-Pierre
2012-12-01
More than Moore explores a new area of Silicon based microelectronics, which reaches beyond the boundaries of conventional semiconductor applications. Creating new functionality to semiconductor circuits, More than Moore focuses on motivating new technological possibilities. In the past decades, the main stream of microelectronics progresses was mainly powered by Moore's law, with two focused development arenas, namely, IC miniaturization down to nano scale, and SoC based system integration. While the microelectronics community continues to invent new solutions around the world to keep Moore's law alive, there is increasing momentum for the development of 'More than Moore' technologies which are based on silicon technologies but do not simply scale with Moore's law. Typical examples are RF, Power/HV, Passives, Sensor/Actuator/MEMS or Bio-chips. The More than Moore strategy is driven by the increasing social needs for high level heterogeneous system integration including non-digital functions, the necessity to speed up innovative product creation and to broaden the product portfolio of wafer fabs, and the limiting cost and time factors of advanced SoC development. It is believed that More than Moore will add value to society on top of and beyond advanced CMOS with fast increasing marketing potentials. Important key challenges for the realization of the 'More than Moore' strategy are: perspective materials for future THz devices materials systems for embedded sensors and actuators perspective materials for epitaxial approaches material systems for embedded innovative memory technologies development of new materials with customized characteristics The Hot topics covered by the symposium M (More than Moore: Novel materials approaches for functionalized Silicon based Microelectronics) at E-MRS 2012 Spring Meeting, 14-18 May 2012 have been: development of functional ceramics thin films New dielectric materials for advanced microelectronics bio- and CMOS compatible material systems piezoelectric films and nanostructures Atomic Layer Deposition (ALD) of oxides and nitrides characterization and metrology of very thin oxide layers We would like to take this opportunity to thank the Scientific Committee and Local Committee for bringing together a coherent and high quality Symposium at E-MRS 2012 Spring Meeting. Christian Wenger, Jean Fompeyrine, Christophe Vallée and Jean-Pierre Locquet Organizing Committee of Symposium M September 2012
Twenty-Five Years of Dynamic Growth.
ERIC Educational Resources Information Center
Pipes, Lana
1980-01-01
Discusses developments in instructional technology in the past 25 years in the areas of audio, video, micro-electronics, social evolution, the space race, and living with rapidly changing technology. (CMV)
Gendrault, Yves; Madec, Morgan; Lallement, Christophe; Haiech, Jacques
2014-04-01
Nowadays, synthetic biology is a hot research topic. Each day, progresses are made to improve the complexity of artificial biological functions in order to tend to complex biodevices and biosystems. Up to now, these systems are handmade by bioengineers, which require strong technical skills and leads to nonreusable development. Besides, scientific fields that share the same design approach, such as microelectronics, have already overcome several issues and designers succeed in building extremely complex systems with many evolved functions. On the other hand, in systems engineering and more specifically in microelectronics, the development of the domain has been promoted by both the improvement of technological processes and electronic design automation tools. The work presented in this paper paves the way for the adaptation of microelectronics design tools to synthetic biology. Considering the similarities and differences between the synthetic biology and microelectronics, the milestones of this adaptation are described. The first one concerns the modeling of biological mechanisms. To do so, a new formalism is proposed, based on an extension of the generalized Kirchhoff laws to biology. This way, a description of all biological mechanisms can be made with languages widely used in microelectronics. Our approach is therefore successfully validated on specific examples drawn from the literature.
ERIC Educational Resources Information Center
Rumberger, Russell
Job loss through technological advancement, particularly technologies based on microelectronics, is increasing for all economic sectors in a nation already hard challenged in world and domestic markets for goods and services. But assessing technology's employment impact remains difficult not only because of its direct and indirect effects and…
NASA Astrophysics Data System (ADS)
Weiner, D.; Paul, C. R.; Whalen, J.
1985-04-01
This research effort was devoted to eliminating some of the basic technological gaps in the two important areas of: (1) electromagnetic effects (EM) on microelectronic circuits and (2) EM coupling and testing. The results are presented in fourteen reports which have been organized into six volumes. The reports are briefly summarized in this volume. In addition, an experiment is described which was performed to demonstrate the feasibility of applying several of the results to a problem involving electromagnetic interference. Specifically, experimental results are provided for the randomness associated with: (1) crosstalk in cable harnesses and (2) demodulation of amplitude modulated (AM) signals in operational amplifiers. These results are combined to predict candidate probability density functions (pdf's) for the amplitude of an AM interfering signal required to turn on a light emitting diode. The candidate pdf's are shown to be statistically consistent with measured data.
Direct broadcast satellite-radio market, legal, regulatory, and business considerations
NASA Technical Reports Server (NTRS)
Sood, Des R.
1991-01-01
A Direct Broadcast Satellite-Radio (DBS-R) System offers the prospect of delivering high quality audio broadcasts to large audiences at costs lower than or comparable to those incurred using the current means of broadcasting. The maturation of mobile communications technologies, and advances in microelectronics and digital signal processing now make it possible to bring this technology to the marketplace. Heightened consumer interest in improved audio quality coupled with the technological and economic feasibility of meeting this demand via DBS-R make it opportune to start planning for implementation of DBS-R Systems. NASA-Lewis and the Voice of America as part of their on-going efforts to improve the quality of international audio broadcasts, have undertaken a number of tasks to more clearly define the technical, marketing, organizational, legal, and regulatory issues underlying implementation of DBS-R Systems. The results and an assessment is presented of the business considerations underlying the construction, launch, and operation of DBS-R Systems.
NASA SBIR product catalog, 1991
NASA Technical Reports Server (NTRS)
1991-01-01
This catalog is a partial list of products of NASA SBIR (Small Business Innovation Research) projects that have advanced to some degree into Phase 3. While most of the products evolved from work conducted during SBIR Phase 1 and 2, a few advanced to commercial status solely from Phase 1 activities. The catalog presents information provided to NASA by SBIR contractors who wished to have their products exhibited at Technology 2001, a NASA-sponsored technology transfer conference held in San Jose, California, on December 4, 5, and 6, 1991. The catalog presents the product information in the following technology areas: computer and communication systems; information processing and AI; robotics and automation; signal and image processing; microelectronics; electronic devices and equipment; microwave electronic devices; optical devices and lasers; advanced materials; materials processing; materials testing and NDE; materials instrumentation; aerodynamics and aircraft; fluid mechanics and measurement; heat transfer devices; refrigeration and cryogenics; energy conversion devices; oceanographic instruments; atmosphere monitoring devices; water management; life science instruments; and spacecraft electromechanical systems.
Direct broadcast satellite-radio market, legal, regulatory, and business considerations
NASA Astrophysics Data System (ADS)
Sood, Des R.
1991-03-01
A Direct Broadcast Satellite-Radio (DBS-R) System offers the prospect of delivering high quality audio broadcasts to large audiences at costs lower than or comparable to those incurred using the current means of broadcasting. The maturation of mobile communications technologies, and advances in microelectronics and digital signal processing now make it possible to bring this technology to the marketplace. Heightened consumer interest in improved audio quality coupled with the technological and economic feasibility of meeting this demand via DBS-R make it opportune to start planning for implementation of DBS-R Systems. NASA-Lewis and the Voice of America as part of their on-going efforts to improve the quality of international audio broadcasts, have undertaken a number of tasks to more clearly define the technical, marketing, organizational, legal, and regulatory issues underlying implementation of DBS-R Systems. The results and an assessment is presented of the business considerations underlying the construction, launch, and operation of DBS-R Systems.
NASA Astrophysics Data System (ADS)
Tekin, Tolga; Töpper, Michael; Reichl, Herbert
2009-05-01
Technological frontiers between semiconductor technology, packaging, and system design are disappearing. Scaling down geometries [1] alone does not provide improvement of performance, less power, smaller size, and lower cost. It will require "More than Moore" [2] through the tighter integration of system level components at the package level. System-in-Package (SiP) will deliver the efficient use of three dimensions (3D) through innovation in packaging and interconnect technology. A key bottleneck to the implementation of high-performance microelectronic systems, including SiP, is the lack of lowlatency, high-bandwidth, and high density off-chip interconnects. Some of the challenges in achieving high-bandwidth chip-to-chip communication using electrical interconnects include the high losses in the substrate dielectric, reflections and impedance discontinuities, and susceptibility to crosstalk [3]. Obviously, the incentive for the use of photonics to overcome the challenges and leverage low-latency and highbandwidth communication will enable the vision of optical computing within next generation architectures. Supercomputers of today offer sustained performance of more than petaflops, which can be increased by utilizing optical interconnects. Next generation computing architectures are needed with ultra low power consumption; ultra high performance with novel interconnection technologies. In this paper we will discuss a CMOS compatible underlying technology to enable next generation optical computing architectures. By introducing a new optical layer within the 3D SiP, the development of converged microsystems, deployment for next generation optical computing architecture will be leveraged.
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Barth, Janet L.; Brewer, Dana A.
2003-01-01
This viewgraph presentation provides information on flight validation experiments for technologies to determine solar effects. The experiments are intended to demonstrate tolerance to a solar variant environment. The technologies tested are microelectronics, photonics, materials, and sensors.
Heterogeneous Integration Technology
2017-05-19
Distribution A. Approved for public release; distribution unlimited. (APRS-RY-17-0383) Heterogeneous Integration Technology Dr. Burhan...2013 and 2015 [4]. ...................................... 9 Figure 3: 3D integration of similar or diverse technology components follows More Moore and...10 Figure 4: Many different technologies are used in the implementation of modern microelectronics systems can benefit from
From Microelectronics to Nanoelectronics
NASA Astrophysics Data System (ADS)
Hoefflinger, Bernd
We highlight key events in over 100 years of electronic amplifiers and their incorporation in computers and communication in order to appreciate the electron as man's most powerful token of information. We recognize that it has taken about 25 years or almost a generation for inventions to make it into new products, and that, within these periods, it still took major campaigns, like the Sputnik effect or what we shall call 10× programs, to achieve major technology steps. From Lilienfeld's invention 1926 of the solid-state field-effect triode to its realization 1959 in Kahng's MOS field-effect transistor, it took 33 years, and this pivotal year also saw the first planar integrated silicon circuit as patented by Noyce. This birth of the integrated microchip launched the unparalleled exponential growth of microelectronics with many great milestones. Among these, we point out the 3D integration of CMOS transistors by Gibbons in 1979 and the related Japanese program on Future Electron Devices (FED). The 3D domain has finally arrived as a broad development since 2005. Consecutively, we mark the neural networks on-chip of 1989 by Mead and others, now, 20 years later, a major project by DARPA. We highlight cooperatives like SRC and SEMATECH, their impact on progress and more recent nanoelectronic milestones until 2010.
ERIC Educational Resources Information Center
Bayoumi, Magdy
As part of a 3-year study to identify emerging issues and trends in technology for special education, this paper addresses the implications of very large scale integrated (VLSI) technology. The first section reviews the development of educational technology, particularly microelectronics technology, from the 1950s to the present. The implications…
Development and ESCC evaluation of a monolithic silicon phototransistor array for optical encoders
NASA Astrophysics Data System (ADS)
Bregoli, M.; Ceriani, S.; Erspan, M.; Collini, A.; Ficorella, F.; Giacomini, G.; Bellutti, P.; How, L. S.; Hernandez, S.; Lundmark, K.
2017-11-01
Optoelettronica Italia Srl, better known as Optoi, is an Italian Company dealing with optoelectronics and microelectronics and focusing on back-end technologies. The growing volume of activities concerning the aerospace field has recently brought to the creation of a company unit, with collaborations with ESA, CNES and ASI. In this context, Optoi's key partner for the microelectronic front-end is Fondazione Bruno Kessler (FBK) and specifically its Micro Nano Facility (MNF).
ERIC Educational Resources Information Center
Appalachia, 1984
1984-01-01
Panel I features two case histories of state government, university, and private corporation cooperation to bring technology to the workplace (Microelectronics Center of North Carolina and Ben Franklin Partnership Program) and presentations about Burlington Industries and General Electric Company investments in technology to save jobs and boost…
Applying CLIPS to control of molecular beam epitaxy processing
NASA Technical Reports Server (NTRS)
Rabeau, Arthur A.; Bensaoula, Abdelhak; Jamison, Keith D.; Horton, Charles; Ignatiev, Alex; Glover, John R.
1990-01-01
A key element of U.S. industrial competitiveness in the 1990's will be the exploitation of advanced technologies which involve low-volume, high-profit manufacturing. The demands of such manufacture limit participation to a few major entities in the U.S. and elsewhere, and offset the lower manufacturing costs of other countries which have, for example, captured much of the consumer electronics market. One such technology is thin-film epitaxy, a technology which encompasses several techniques such as Molecular Beam Epitaxy (MBE), Chemical Beam Epitaxy (CBE), and Vapor-Phase Epitaxy (VPE). Molecular Beam Epitaxy (MBE) is a technology for creating a variety of electronic and electro-optical materials. Compared to standard microelectronic production techniques (including gaseous diffusion, ion implantation, and chemical vapor deposition), MBE is much more exact, though much slower. Although newer than the standard technologies, MBE is the technology of choice for fabrication of ultraprecise materials for cutting-edge microelectronic devices and for research into the properties of new materials.
Technology Roadmaps for Compound Semiconductors
Bennett, Herbert S.
2000-01-01
The roles cited for compound semiconductors in public versions of existing technology roadmaps from the National Electronics Manufacturing Initiative, Inc., Optoelectronics Industry Development Association, Microelectronics Advanced Research Initiative on Optoelectronic Interconnects, and Optoelectronics Industry and Technology Development Association (OITDA) are discussed and compared within the context of trends in the Si CMOS industry. In particular, the extent to which these technology roadmaps treat compound semiconductors at the materials processing and device levels will be presented for specific applications. For example, OITDA’s Optical Communications Technology Roadmap directly connects the information demand of delivering 100 Mbit/s to the home to the requirement of producing 200 GHz heterojunction bipolar transistors with 30 nm bases and InP high electron mobility transistors with 100 nm gates. Some general actions for progress towards the proposed International Technology Roadmap for Compound Semiconductors (ITRCS) and methods for determining the value of an ITRCS will be suggested. But, in the final analysis, the value added by an ITRCS will depend on how industry leaders respond. The technical challenges and economic opportunities of delivering high quality digital video to consumers provide concrete examples of where the above actions and methods could be applied. PMID:27551615
Delidding and resealing hybrid microelectronic packages
NASA Astrophysics Data System (ADS)
Luce, W. F.
1982-05-01
The objective of this single phase MM and T contract was to develop the manufacturing technology necessary for the precision removal (delidding) and replacement (resealing) of covers on hermetically sealed hybrid microelectronic packages. The equipment and processes developed provide a rework technique which does not degrade the reliability of the package of the enclosed circuitry. A qualification test was conducted on 88 functional hybrid packages, with excellent results. A petition will be filed, accompanied by this report, requesting Mil-M-38510 be amended to allow this rework method.
NASA Astrophysics Data System (ADS)
Miao, Yuan-Hao; Hu, Hui-Yong; Song, Jian-Jun; Xuan, Rong-Xi; Zhang, He-Ming
2017-12-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61474085 and 61704130), the Science Research Plan in Shaanxi Province, China (Grant No. 2016GY-085), the Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences (Grant No. 90109162905), and the Fundamental Research Funds for the Central Universities, China (Grant No. 61704130).
NASA Technical Reports Server (NTRS)
Hardage, Donna (Technical Monitor); Walters, R. J.; Morton, T. L.; Messenger, S. R.
2004-01-01
The objective is to develop an improved space solar cell radiation response analysis capability and to produce a computer modeling tool which implements the analysis. This was accomplished through analysis of solar cell flight data taken on the Microelectronics and Photonics Test Bed experiment. This effort specifically addresses issues related to rapid technological change in the area of solar cells for space applications in order to enhance system performance, decrease risk, and reduce cost for future missions.
Nano-interconnection for microelectronics and polymers with benzo-triazole
NASA Technical Reports Server (NTRS)
Park, Yeonjoon; Choi, Sang H.; Noh, Hyunpil; Kuk, Young
2006-01-01
Benzo-Triazole (BTA) is considered as an important bridging material that can connect an organic polymer to the metal electrode on silicon wafers as a part of the microelectronics fabrication technology. We report a detailed process of surface induced 3-D polymerization of BTA on the Cu electrode material which was measured with the Ultraviolet Photoemission Spectroscopy (UPS), X-ray Photoemission Spectroscopy (XPS), and Scanning Tunneling Microscope (STM). The electric utilization of shield and chain polymerization of BTA on Cu surface is contemplated in this study.
Educational Technology in the Crystal Ball.
ERIC Educational Resources Information Center
Langham-Johnson, Shirley
This paper predicts that microelectronic circuitry will have an impact on education comparable to that of the industrial revolution or the invention of the printing press. Present conditions influencing educational technology and trends are considered in light of five considerations: (1) recent redefinitions of what educational technology is; (2)…
Nanocharacterization Challenges in a Changing Microelectronics Landscape
NASA Astrophysics Data System (ADS)
Brilloüt, Michel
2011-11-01
As the microelectronics industry enters the "nano"-era new challenges emerge. Traditional scaling of the MOS transistor faces major obstacles in fulfilling "Moore's law". New features like strain and new materials (e.g. high k—metal gate stack) are introduced in order to sustain performance increases. For a better electrostatic control, devices will use the third dimension, e.g., in gate-all-around nanowire structures. Due to the escalating cost and complexity of sub-28 nm technologies fewer industrial players can afford the development and production of advanced CMOS processes and many companies acknowledge the fact that the value in products can also be obtained in using more diversified non-digital technologies (the so-called "More-than-Moore" domain). This evolving landscape brings new requirements—discussed in this paper—in terms of physical characterization of technologies and devices.
Evaluation of advanced microelectronic fluxless solder-bump contacts for hybrid microcircuits
NASA Technical Reports Server (NTRS)
Mandal, R. P.
1976-01-01
Technology for interconnecting monolithic integrated circuit chips with other components is investigated. The advantages and disadvantages of the current flip-chip approach as compared to other interconnection methods are outlined. A fluxless solder-bump contact technology is evaluated. Multiple solder-bump contacts were formed on silicon integrated circuit chips. The solder-bumps, comprised of a rigid nickel under layer and a compliant solder overlayer, were electroformed onto gold device pads with the aid of thick dry film photomasks. Different solder alloys and the use of conductive epoxy for bonding were explored. Fluxless solder-bump bond quality and reliability were evaluated by measuring the effects of centrifuge, thermal cycling, and high temperature storage on bond visual characteristics, bond electrical continuity, and bond shear tests. The applicability and suitability of this technology for hybrid microelectronic packaging is discussed.
Scaled CMOS Technology Reliability Users Guide
NASA Technical Reports Server (NTRS)
White, Mark
2010-01-01
The desire to assess the reliability of emerging scaled microelectronics technologies through faster reliability trials and more accurate acceleration models is the precursor for further research and experimentation in this relevant field. The effect of semiconductor scaling on microelectronics product reliability is an important aspect to the high reliability application user. From the perspective of a customer or user, who in many cases must deal with very limited, if any, manufacturer's reliability data to assess the product for a highly-reliable application, product-level testing is critical in the characterization and reliability assessment of advanced nanometer semiconductor scaling effects on microelectronics reliability. A methodology on how to accomplish this and techniques for deriving the expected product-level reliability on commercial memory products are provided.Competing mechanism theory and the multiple failure mechanism model are applied to the experimental results of scaled SDRAM products. Accelerated stress testing at multiple conditions is applied at the product level of several scaled memory products to assess the performance degradation and product reliability. Acceleration models are derived for each case. For several scaled SDRAM products, retention time degradation is studied and two distinct soft error populations are observed with each technology generation: early breakdown, characterized by randomly distributed weak bits with Weibull slope (beta)=1, and a main population breakdown with an increasing failure rate. Retention time soft error rates are calculated and a multiple failure mechanism acceleration model with parameters is derived for each technology. Defect densities are calculated and reflect a decreasing trend in the percentage of random defective bits for each successive product generation. A normalized soft error failure rate of the memory data retention time in FIT/Gb and FIT/cm2 for several scaled SDRAM generations is presented revealing a power relationship. General models describing the soft error rates across scaled product generations are presented. The analysis methodology may be applied to other scaled microelectronic products and their key parameters.
Science and Technological Innovation.
ERIC Educational Resources Information Center
Braun, Ernest
1979-01-01
This article is based on a presentation at the 1979 conference of the Education Group of The Institute of Physics which was held in Cambridge, England. It discusses the interaction between science and technological innovation using a historical approach: the development of microelectronics. (HM)
Information Retrieval Research and ESPRIT.
ERIC Educational Resources Information Center
Smeaton, Alan F.
1987-01-01
Describes the European Strategic Programme of Research and Development in Information Technology (ESPRIT), and its five programs: advanced microelectronics, software technology, advanced information processing, office systems, and computer integrated manufacturing. The emphasis on logic programming and ESPRIT as the European response to the…
MEMS reliability: The challenge and the promise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, W.M.; Tanner, D.M.; Miller, S.L.
1998-05-01
MicroElectroMechanical Systems (MEMS) that think, sense, act and communicate will open up a broad new array of cost effective solutions only if they prove to be sufficiently reliable. A valid reliability assessment of MEMS has three prerequisites: (1) statistical significance; (2) a technique for accelerating fundamental failure mechanisms, and (3) valid physical models to allow prediction of failures during actual use. These already exist for the microelectronics portion of such integrated systems. The challenge lies in the less well understood micromachine portions and its synergistic effects with microelectronics. This paper presents a methodology addressing these prerequisites and a description ofmore » the underlying physics of reliability for micromachines.« less
Advanced Electronic Technology
1977-11-15
Electronics 15 III. Materials Research 15 TV. Microelectronics 16 V. Surface- Wave Technology 16 DATA SYSTEMS DIVISION 2 INTRODUCTION This...Processing Digital Voice Processing Packet Speech Wideband Integrated Voice/Data Technology Radar Signal Processing Technology Nuclear Safety Designs...facilities make it possible to track the status of these jobs, retrieve their job control language listings, and direct a copy of printed or punched
Mars Relay Satellite: Key to Enabling Low-Cost Exploration Missions
NASA Technical Reports Server (NTRS)
Hastrup, R.; Cesarone, R.; Miller, A.
1993-01-01
Recently, there has been increasing evidence of a renewed focus on Mars exploration both by NASA and the international community. The thrust of this renewed interest appears to be manifesting itself in numerous low-cost missions employing small, light weight elements, which utilize advanced technologies including integrated microelectronics. A formidable problem facing these low-cost missions is communications with Earth. Providing adequate direct-link performance has very significant impacts on spacecraft power, pointing, mass and overall complexity. Additionally, for elements at or near the surface of Mars, there are serious connectivity constraints, especially at higher latitudes, which lose view of Earth for up to many months at a time. This paper will discuss the role a Mars relay satellite can play in enabling and enhancing low-cost missions to Mars...
Research in speech communication.
Flanagan, J
1995-10-24
Advances in digital speech processing are now supporting application and deployment of a variety of speech technologies for human/machine communication. In fact, new businesses are rapidly forming about these technologies. But these capabilities are of little use unless society can afford them. Happily, explosive advances in microelectronics over the past two decades have assured affordable access to this sophistication as well as to the underlying computing technology. The research challenges in speech processing remain in the traditionally identified areas of recognition, synthesis, and coding. These three areas have typically been addressed individually, often with significant isolation among the efforts. But they are all facets of the same fundamental issue--how to represent and quantify the information in the speech signal. This implies deeper understanding of the physics of speech production, the constraints that the conventions of language impose, and the mechanism for information processing in the auditory system. In ongoing research, therefore, we seek more accurate models of speech generation, better computational formulations of language, and realistic perceptual guides for speech processing--along with ways to coalesce the fundamental issues of recognition, synthesis, and coding. Successful solution will yield the long-sought dictation machine, high-quality synthesis from text, and the ultimate in low bit-rate transmission of speech. It will also open the door to language-translating telephony, where the synthetic foreign translation can be in the voice of the originating talker.
Progress and profit through microtechnologies: commercial applications of MEMS/MOEMS
NASA Astrophysics Data System (ADS)
Ehrfeld, Wolfgang; Ehrfeld, Ursula
2001-09-01
Micro technology deals with miniaturization and integration in all areas of technology outside of microelectronics like micro mechanics, micro optics, micro acoustics, micro fluid technology, micro reaction technology and further disciplines which are focused on technical components and systems with characteristic dimensions in the micrometer range. Within a period of about ten years a multi-billion dollar market has been set up with many products for daily life. The growth rate of the market of micro technology will remain on a high level for the years to come. Mega trends resulting from fundamental human wishes for health, information, mobility and sustainable development are creating a further growing basis for micro technical products. A broad spectrum of production processes and materials has been developed to meet the requirements of a strongly diversified range of applications. For the development of new components and systems the importance of software tools for simulation of functional properties, production processes and comprehensive optimization is growing rapidly. Micro devices are meanwhile used extensively in information, automotive, and medical technologies. In addition, micro technology is generating a completely novel basis for chemical engineering, life sciences, industrial automation and optical communication, to mention only a few disciplines where future innovation will be dominated by miniaturization.
Database Management Systems: A Case Study of Faculty of Open Education
ERIC Educational Resources Information Center
Kamisli, Zehra
2004-01-01
We live in the information and the microelectronic age, where technological advancements become a major determinant of our lifestyle. Such advances in technology cannot possibly be made or sustained without concurrent advancement in management systems (5). The impact of computer technology on organizations and society is increasing as new…
Report on High Technology Programs in Illinois Public Community Colleges.
ERIC Educational Resources Information Center
Illinois Community Coll. Board, Springfield.
Survey results are presented from a study of the steps being taken by the 52 Illinois public community colleges to develop and provide programs in high technology fields. First, high technology programs are defined as those occupational programs that educate and train individuals to operate, maintain, and/or repair micro-electronic or computerized…
Materials and processing science: Limits for microelectronics
NASA Astrophysics Data System (ADS)
Rosenberg, R.
1988-09-01
The theme of this talk will be to illustrate examples of technologies that will drive materials and processing sciences to the limit and to describe some of the research being pursued to understand materials interactions which are pervasive to projected structure fabrication. It is to be expected that the future will see a progression to nanostructures where scaling laws will be tested and quantum transport will become more in evidence, to low temperature operation for tighter control and improved performance, to complex vertical profiles where 3D stacking and superlattices will produce denser packing and device flexibility, to faster communication links with optoelectronics, and to compatible packaging technologies. New low temperature processing techniques, such as epitaxy of silicon, PECVD of dielectrics, low temperature high pressure oxidation, silicon-germanium heterostructures, etc., must be combined with shallow metallurgies, new lithographic technologies, maskless patterning, rapid thermal processing (RTP) to produce needed profile control, reduce process incompatibilities and develop new device geometries. Materials interactions are of special consequence for chip substrates and illustrations of work in metal-ceramic and metal-polymer adhesion will be offered.
Microelectronics, radiation, and superconductivity.
Gochfeld, M
1990-01-01
Among the costs of technology are health hazards that face employees and consumers. New advances in the highly competitive field of microelectronics involve exposure to a variety of hazards such as gallium arsenide. Small high-technology industries appear unprepared to invest in health and safety. Although stray electromagnetic fields are not a new development, researchers are beginning to assemble data indicating that such fields pose a significant cancer risk under certain circumstances. Data have been obtained on fields associated with power lines on the one hand and consumer products on the other. Although not conclusive, the data are sufficient to warrant carefully designed research into the risks posed by electromagnetic fields. Because the scientific issues require research, there is a need to make basic social value decisions that will determine which technologies will be developed and which ones may be set aside because of their danger at the present time. PMID:2401267
Space, Atmospheric, and Terrestrial Radiation Environments
NASA Technical Reports Server (NTRS)
Barth, Janet L.; Dyer, C. S.; Stassinopoulos, E. G.
2003-01-01
The progress on developing models of the radiation environment since the 1960s is reviewed with emphasis on models that can be applied to predicting the performance of microelectronics used in spacecraft and instruments. Space, atmospheric, and ground environments are included. It is shown that models must be adapted continually to account for increased understanding of the dynamics of the radiation environment and the changes in microelectronics technology. The IEEE Nuclear and Space Radiation Effects Conference is a vital forum to report model progress to the radiation effects research community.
Possibilities for mixed mode chip manufacturing in EUROPRACTICE
NASA Astrophysics Data System (ADS)
Das, C.
1997-02-01
EUROPRACTICE is an EC initiative under the ESPRIT programme which aims to stimulate the wider exploitation of state-of-the-art microelectronics technologies by European industry and to enhance European industrial competitiveness in the global market-place. Through EUROPRACTICE, the EC has created a range of Basic Services that offer users a cost-effective and flexible means of accessing three main microelectronics-based technologies: Application Specific Integrated Circuit (ASICs), Multi-Chip Modules (MCMs) and Microsystems. EUROPRACTICE Basic Services reduce the cost and risk for companies wishing to begin using these technologies. EUROPRACTICE offers a fully supported, low cost route for companies to design and fabricate ASICs for their individual applications. Low cost is achieved by consolidating designs from many users onto a single semiconductor wafer (MPW: Multi Project Wafer). The EUROPRACTICE IC Manufacturing Service (ICMS) offers a broad range of fabrication technologies including CMOS, BiCMOS and GaAs. The Service extends from enabling users to produce prototype ASICs for testing and evaluation, through to low-volume production runs.
NASA Electronic Parts and Packaging (NEPP) Program - Radiation Activities
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Sampson, Michael J.
2008-01-01
The NEPP mission is to provide guidance to NASA for the selection and application of microelectronics technologies, to improve understanding of the risks related to the use of these technologies in the space environment and to ensure that appropriate research is performed to meet NASA mission assurance needs.
Wrist display concept demonstration based on 2-in. color AMOLED
NASA Astrophysics Data System (ADS)
Meyer, Frederick M.; Longo, Sam J.; Hopper, Darrel G.
2004-09-01
The wrist watch needs an upgrade. Recent advances in optoelectronics, microelectronics, and communication theory have established a technology base that now make the multimedia Dick Tracy watch attainable during the next decade. As a first step towards stuffing the functionality of an entire personnel computer (PC) and television receiver under a watch face, we have set a goal of providing wrist video capability to warfighters. Commercial sector work on the wrist form factor already includes all the functionality of a personal digital assistant (PDA) and full PC operating system. Our strategy is to leverage these commercial developments. In this paper we describe our use of a 2.2 in. diagonal color active matrix light emitting diode (AMOLED) device as a wrist-mounted display (WMD) to present either full motion video or computer generated graphical image formats.
S-band antenna phased array communications system
NASA Technical Reports Server (NTRS)
Delzer, D. R.; Chapman, J. E.; Griffin, R. A.
1975-01-01
The development of an S-band antenna phased array for spacecraft to spacecraft communication is discussed. The system requirements, antenna array subsystem design, and hardware implementation are examined. It is stated that the phased array approach offers the greatest simplicity and lowest cost. The objectives of the development contract are defined as: (1) design of a medium gain active phased array S-band communications antenna, (2) development and test of a model of a seven element planar array of radiating elements mounted in the appropriate cavity matrix, and (3) development and test of a breadboard transmit/receive microelectronics module.
Research in speech communication.
Flanagan, J
1995-01-01
Advances in digital speech processing are now supporting application and deployment of a variety of speech technologies for human/machine communication. In fact, new businesses are rapidly forming about these technologies. But these capabilities are of little use unless society can afford them. Happily, explosive advances in microelectronics over the past two decades have assured affordable access to this sophistication as well as to the underlying computing technology. The research challenges in speech processing remain in the traditionally identified areas of recognition, synthesis, and coding. These three areas have typically been addressed individually, often with significant isolation among the efforts. But they are all facets of the same fundamental issue--how to represent and quantify the information in the speech signal. This implies deeper understanding of the physics of speech production, the constraints that the conventions of language impose, and the mechanism for information processing in the auditory system. In ongoing research, therefore, we seek more accurate models of speech generation, better computational formulations of language, and realistic perceptual guides for speech processing--along with ways to coalesce the fundamental issues of recognition, synthesis, and coding. Successful solution will yield the long-sought dictation machine, high-quality synthesis from text, and the ultimate in low bit-rate transmission of speech. It will also open the door to language-translating telephony, where the synthetic foreign translation can be in the voice of the originating talker. Images Fig. 1 Fig. 2 Fig. 5 Fig. 8 Fig. 11 Fig. 12 Fig. 13 PMID:7479806
JPRS Report, Science and Technology Japan, 3rd Microelectronics Symposium
1990-04-20
Electric Power Insulating Substrate; Degree of Sintering, Thermal Conductivity of Aluminum Nitride Ultrafine Particles ; Effect of Baking Pressure on AlN Sintering; Thick Film Resistor for Use in AlN Ceramics.
Research News: Are VLSI Microcircuits Too Hard to Design?
ERIC Educational Resources Information Center
Robinson, Arthur L.
1980-01-01
This research news article on microelectronics discusses the scientific challenge the integrated circuit industry will have in the next decade, for designing the complicated microcircuits made possible by advancing miniaturization technology. (HM)
Modernization (Selected Articles),
1986-09-18
newly developed science such as control theory, artificial intelligence, model identification, computer and microelectronics technology, graphic...five "top guns" from around the country specializing in intellignece , mechanics, software and hardware as our technical advisors. In addition
NASA spinoffs to bioengineering and medicine
NASA Technical Reports Server (NTRS)
Rouse, Doris J.; Winfield, Daniel L.; Canada, S. Catherine
1989-01-01
The societal and economic benefits derived from the application of aerospace technology to improved health care are examined, and examples of the space-technology spinoffs are presented. Special attention is given to the applications of aerospace technology from digital image processing, space medicine and biology, microelectronics, optics and electrooptics, and ultrasonic imaging. The role of the NASA Technology Application Team in helping the potential technology users to identify and evaluate the technology transfer opportunities and to apply space technology in the field of medicine is discussed.
Millimeter-wave MMIC technology for smart weapons
NASA Astrophysics Data System (ADS)
Seashore, Charles R.
1994-12-01
Millimeter wave MMIC component technology has made dramatic progress over the last ten years largely due to funding stimulation received under the ARPA Tri-Service MIMIC program. In several smart weapon systems, MMIC components are now specified as the baseline approach for millimeter wave radar transceiver hardware. Availability of this new frontier in microelectronics has also enabled realization of sensor fusion for multispectral capability to defeat many forms of known countermeasures. The current frequency range for these MMIC-based components is approximately 30 to 100 GHz. In several cases, it has been demonstrated that the MMIC component performance has exceeded that available from hybrid microstrip circuits using selected discrete devices. However, challenges still remain in chip producibility enhancement and cost reduction since many of the essential device structure candidates are themselves emerging technologies with a limited wafer fabrication history and accumulated test databases. It is concluded that smart weapons of the future will rely heavily on advanced microelectronics to satisfy performance requirements as well as meeting stringent packaging and power source constraints.
Technology Development Activities for the Space Environment and its Effects on Spacecraft
NASA Technical Reports Server (NTRS)
Kauffman, Billy; Hardage, Donna; Minor, Jody; Barth, Janet; LaBel, Ken
2003-01-01
Reducing size and weight of spacecraft, along with demanding increased performance capabilities, introduces many uncertainties in the engineering design community on how emerging microelectronics will perform in space. The engineering design community is forever behind on obtaining and developing new tools and guidelines to mitigate the harmful effects of the space environment. Adding to this complexity is the push to use Commercial-off-the-shelf (COTS) and shrinking microelectronics behind less shielding and the potential usage of unproven technologies such as large solar sail structures and nuclear electric propulsion. In order to drive down these uncertainties, various programs are working together to avoid duplication, save what resources are available in this technical area and possess a focused agenda to insert these new developments into future mission designs. This paper will describe the relationship between the Living With a Star (LWS): Space Environment Testbeds (SET) Project and NASA's Space Environments and Effects (SEE) Program and their technology development activities funded as a result from the recent SEE Program's NASA Research Announcement.
A New Microelectronics Curriculum Created by Synopsys, Inc.
ERIC Educational Resources Information Center
Goldman, Rich; Bartleson, Karen; Wood, Troy; Melikyan, Vazgen; Wang, Zhi-hua; Chen, Lan
2009-01-01
Rapid changes in integrated circuits (IC) technology and constantly shrinking process geometries demand a new curriculum that meets the contemporary requirements for IC design. This is especially important for 90nm and below technologies and the use of state-of-the-art EDA design tools and advanced IC design techniques. The creation of new…
ERIC Educational Resources Information Center
Harris, N. D. C.
Discussed are the multiple impacts of microelectronics on society. Included are discussions of the problem of predicting effects, difficulty of exploiting new technology, manpower consequences, and needs within the United Kingdom relating to microprocessors. (RE)
ERIC Educational Resources Information Center
Allen, Robert
Because of the increasing use of microelectronic componentry in automobiles, vocational educators must reexamine existing automotive mechanics curricula to ensure that they can continue to provide relevant job training. After examining recent trends in the impact of computers and electronics on automotive design and engineering, existing auto…
ERIC Educational Resources Information Center
Mandex, Inc., Vienna, VA.
This compendium of current and recent innovative methods of health care delivery focuses on telemedicine, and educational and energy management and control applications. Each application is doumented in a project abstract describing the system and the technology employed, and citing relevant information sources and a personal or organizational…
NASA Astrophysics Data System (ADS)
Jasiński, Piotr; Górecki, Krzysztof; Bogdanowicz, Robert
2016-01-01
These proceedings are a collection of the selected articles presented at the 39th International Microelectronics and Packaging IMAPS Poland Conference, held in Gdansk, Poland on September 20-23, 2015 (IMAPS Poland 2015). The conference has been held under the scientific patronage of the International Microelectronics and Packaging Society Poland Chapter and the Committee of Electronics and Telecommunication, Polish Academy of Science and jointly hosted by the Gdansk University of Technology, Faculty of Electronics, Telecommunication and Informatics (GUT) and the Gdynia Maritime University, Faculty of Electrical Engineering (GMU). The IMAPS Poland conference series aims to advance interdisciplinary scientific information exchange and the discussion of the science and technology of advanced electronics. The IMAPS Poland 2015 conference took place in the heart of Gdansk, two minutes walking distance from the beach. The surroundings and location of the venue guaranteed excellent working and leisure conditions. The three-day conference highlighted invited talks by outstanding scientists working in important areas of electronics and electronic material science. The eight sessions covered areas in the fields of electronics packaging, interconnects on PCB, Low Temperature Co-fired Ceramic (LTCC), MEMS devices, transducers, sensors and modelling of electronic devices. The conference was attended by 99 participants from 11 countries. The conference schedule included 18 invited presentations and 78 poster presentations.
Structural health monitoring system for bridges based on skin-like sensor
NASA Astrophysics Data System (ADS)
Loupos, Konstantinos; Damigos, Yannis; Amditis, Angelos; Gerhard, Reimund; Rychkov, Dmitry; Wirges, Werner; Schulze, Manuel; Lenas, Sotiris-Angelos; Chatziandreoglou, Christos; Malliou, Christina M.; Tsaoussidis, Vassilis; Brady, Ken; Frankenstein, Bernd
2017-09-01
Structural health monitoring activities are of primal importance for managing transport infrastructure, however most SHM methodologies are based on point-based sensors that have limitations in terms of their spatial positioning requirements, cost of development and measurement range. This paper describes the progress on the SENSKIN EC project whose objective is to develop a dielectric-elastomer and micro-electronics-based sensor, formed from a large highly extensible capacitance sensing membrane supported by advanced microelectronic circuitry, for monitoring transport infrastructure bridges. Such a sensor could provide spatial measurements of strain in excess of 10%. The actual sensor along with the data acquisition module, the communication module and power electronics are all integrated into a compact unit, the SENSKIN device, which is energy-efficient, requires simple signal processing and it is easy to install over various surface types. In terms of communication, SENSKIN devices interact with each other to form the SENSKIN system; a fully distributed and autonomous wireless sensor network that is able to self-monitor. SENSKIN system utilizes Delay-/Disruption-Tolerant Networking technologies to ensure that the strain measurements will be received by the base station even under extreme conditions where normal communications are disrupted. This paper describes the architecture of the SENSKIN system and the development and testing of the first SENSKIN prototype sensor, the data acquisition system, and the communication system.
1992-01-07
AD-A259 259 FASTC-ID FOREIGN AEROSPACE SCIENCE AND TECHNOLOGY CENTER GaAs COMPUTER TECHNOLOGY (1) by Wang Qiao-yu 93-00999 Distrir bution t,,,Nm ted...FASTC- ID(RS)T-0310-92 HUMAN TRANSLATION FASTC-ID(RS)T-0310-92 7 January 1993 GaAs COMPUTER TECHNOLOGY (1) By: Wang Qiao-yu English pages: 6 Source...the best quality copy available. j C] " ------ GaAs Computer Technology (1) Wang Qiao-yu (Li-Shan Microelectronics Institute) Abstract: The paper
Semiconductors: Still a Wide Open Frontier for Scientists/Engineers
NASA Astrophysics Data System (ADS)
Seiler, David G.
1997-10-01
A 1995 Business Week article described several features of the explosive use of semiconductor chips today: ``Booming'' personal computer markets are driving high demand for microprocessors and memory chips; (2) New information superhighway markets will `ignite' sales of multimedia and communication chips; and (3) Demand for digital-signal-processing and data-compression chips, which speed up video and graphics, is `red hot.' A Washington Post article by Stan Hinden said that technology is creating an unstoppable demand for electronic elements. This ``digital pervasiveness'' means that a semiconductor chip is going into almost every high-tech product that people buy - cars, televisions, video recorders, telephones, radios, alarm clocks, coffee pots, etc. ``Semiconductors are everywhere.'' Silicon and compound semiconductors are absolutely essential and are pervasive enablers for DoD operations and systems. DoD's Critical Technologies Plan of 1991 says that ``Semiconductor materials and microelectronics are critically important and appropriately lead the list of critical defense technologies.'' These trends continue unabated. This talk describes some of the frontiers of semiconductors today and shows how scientists and engineers can effectively contribute to its advancement. Cooperative, multidisciplinary efforts are increasing. Specific examples will be given for scanning capacitance microscopy and thin-film metrology.
PREFACE: The Second Conference on Microelectronics, Microsystems and Nanotechnology
NASA Astrophysics Data System (ADS)
Nassiopoulou, Androula G.; Papanikolaou, Nikos; Tsamis, Christos
2005-01-01
The Second Conference on Microelectronics, Microsystems and Nanotechnology took place at the National Centre for Scientific Research `Demokritos', in Athens, Greece, between 14 and 17 November 2004. The conference was organized by the Institute of Microelectronics (IMEL) with the aim to bring together scientists and engineers working in the above exciting fields in an interactive forum. The conference included 45 oral presentations with 9 invited papers and was attended by 146 participants from 16 countries. The topics covered were nanotechnologies, quantum devices, sensors, micro- and nano-systems, semiconductor devices, C-MOS fabrication and characterization techniques, new materials, and IC design. Quantum devices and nanostructured materials attracted considerable attention. Both theoretical and experimental studies of metallic and semiconducting quantum systems were presented, with emphasis on their applications in electronics, optoelectronics, and nanocrystal memory devices. Another exciting topic was the recent developments in biocompatible lithographic processes for applications in biosensors. In particular novel processes for bio-friendly lithography, together with innovations in Si sensors for applications in medicine and food industry were presented. Recent developments and perspectives in CMOS technology towards the ultimate limit were also discussed. The conference covered issues and concepts of IC design with two invited talks on RF design and cryptography.The conference included presentations from several companies active in the field of microelectronics and systems in Greece.
A stable solution-processed polymer semiconductor with record high-mobility for printed transistors
Li, Jun; Zhao, Yan; Tan, Huei Shuan; Guo, Yunlong; Di, Chong-An; Yu, Gui; Liu, Yunqi; Lin, Ming; Lim, Suo Hon; Zhou, Yuhua; Su, Haibin; Ong, Beng S.
2012-01-01
Microelectronic circuits/arrays produced via high-speed printing instead of traditional photolithographic processes offer an appealing approach to creating the long-sought after, low-cost, large-area flexible electronics. Foremost among critical enablers to propel this paradigm shift in manufacturing is a stable, solution-processable, high-performance semiconductor for printing functionally capable thin-film transistors — fundamental building blocks of microelectronics. We report herein the processing and optimisation of solution-processable polymer semiconductors for thin-film transistors, demonstrating very high field-effect mobility, high on/off ratio, and excellent shelf-life and operating stabilities under ambient conditions. Exceptionally high-gain inverters and functional ring oscillator devices on flexible substrates have been demonstrated. This optimised polymer semiconductor represents a significant progress in semiconductor development, dispelling prevalent skepticism surrounding practical usability of organic semiconductors for high-performance microelectronic devices, opening up application opportunities hitherto functionally or economically inaccessible with silicon technologies, and providing an excellent structural framework for fundamental studies of charge transport in organic systems. PMID:23082244
Maxwell, James L; Rose, Chris R; Black, Marcie R; Springer, Robert W
2014-03-11
Microelectronic structures and devices, and method of fabricating a three-dimensional microelectronic structure is provided, comprising passing a first precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures to enhance formation of a first portion of said three-dimensional microelectronic structure; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said first portion of a selected three-dimensional microelectronic structure is formed from said first precursor material; positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs; passing a second precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures whereby a second portion of said three-dimensional microelectronic structure formation is enhanced; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said second portion of a selected three-dimensional microelectronic structure is formed from said second precursor material; and, positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs.
Risk Management of Microelectronics: The NASA Electronic Parts and Packaging (NEPP) Program
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Sampson, Michael J.
2005-01-01
This viewgraph information provides information on how the NASA Electronic Parts and Packaging (NEPP) Program evaluates the reliability of technologies for Electrical, Electronic, and Electromechanical (EEE) parts, and their suitability for spacecraft applications.
ERIC Educational Resources Information Center
Bailey, Thomas
This report on the textile industry focuses on the training and education of production-level textile workers--from unskilled factory hands to first-level supervisors. It is part of a larger study of the educational implications of broad economic changes, particularly the spread of microelectronic technologies, growing national and international…
High peak power solid-state laser for micromachining of hard materials
NASA Astrophysics Data System (ADS)
Herbst, Ludolf; Quitter, John P.; Ray, Gregory M.; Kuntze, Thomas; Wiessner, Alexander O.; Govorkov, Sergei V.; Heglin, Mike
2003-06-01
Laser micromachining has become a key enabling technology in the ever-continuing trend of miniaturization in microelectronics, micro-optics, and micromechanics. New applications have become commercially viable due to the emergence of innovative laser sources, such as diode pumped solid-state lasers (DPSSL), and the progress in processing technology. Examples of industrial applications are laser-drilled micro-injection nozzles for highly efficient automobile engines, or manufacturing of complex spinnerets for production of synthetic fibers. The unique advantages of laser-based techniques stem from their ability to produce high aspect ratio holes, while yielding low heat affected zones with exceptional surface quality, roundness and taper tolerances. Additionally, the ability to drill blind holes and slots in very hard materials such as diamond, silicon, sapphire, ceramics and steel is of great interest for many applications in microelectronics, semiconductor and automotive industry. This kind of high quality, high aspect ratio micromachining requires high peak power and short pulse durations.
Nanophotonic applications for silicon-on-insulator (SOI)
NASA Astrophysics Data System (ADS)
de la Houssaye, Paul R.; Russell, Stephen D.; Shimabukuro, Randy L.
2004-07-01
Silicon-on-insulator is a proven technology for very large scale integration of microelectronic devices. The technology also offers the potential for development of nanophotonic devices and the ability to interface such devices to the macroscopic world. This paper will report on fabrication techniques used to form nano-structured silicon wires on an insulating structure that is amenable to interfacing nanostructured sensors with high-performance microelectronic circuitry for practical implementation. Nanostructures formed on silicon-on-sapphire can also exploit the transparent substrate for novel device geometries. This research harnesses the unique properties of a high-quality single crystal film of silicon on sapphire and uses the film thickness as one of the confinement dimensions. Lateral arrays of silicon nanowires were fabricated in the thin (5 to 20 nm) silicon layer and studied. This technique offers simplified contact to individual wires and provides wire surfaces that are more readily accessible for controlled alteration and device designs.
JPRS report: Science and Technology. Europe and Latin America
NASA Astrophysics Data System (ADS)
1988-01-01
Articles from the popular and trade press are included on the following subjects: advanced materials, aerospace industry, automotive industry, biotechnology, computers, factory automation and robotics, microelectronics, and science and technology policy. The aerospace articles discuss briefly and in a nontechnical way the SAGEM bubble memories for space applications, Ariane V new testing facilities, innovative technologies of TDF-1 satellite, and the restructuring of the Aviation Division at France's Aerospatiale.
NASA Technical Reports Server (NTRS)
Hilbert, E. E.; Carl, C.; Goss, W.; Hansen, G. R.; Olsasky, M. J.; Johnston, A. R.
1978-01-01
An integrated sensor for traffic surveillance on mainline sections of urban freeways is described. Applicable imaging and processor technology is surveyed and the functional requirements for the sensors and the conceptual design of the breadboard sensors are given. Parameters measured by the sensors include lane density, speed, and volume. The freeway image is also used for incident diagnosis.
Microelectronic electroporation array
NASA Astrophysics Data System (ADS)
Johnson, Lee J.; Shaffer, Kara J.; Skeath, Perry; Perkins, Frank K.; Pancrazio, Joseph; Scribner, Dean
2004-06-01
Gene Array technology has allowed for the study of gene binding by creating thousands of potential binding sites on a single device. A limitation of the current technology is that the effects of the gene and the gene-derived proteins cannot be studied in situ the same way, thousand site cell arrays are not readily available. We propose a new device structure to study the effects of gene modification on cells. This new array technology uses electroporation to target specific areas within a cell culture for transfection of genes. Electroporation arrays will allow high throughput analysis of gene effects on a given cell's response to a stress or a genes ability to restore normal cell function in disease modeling cells. Fluorescent imaging of dye labeled indicator molecules or cell viability will provide results indicating the most effective genes. The electroporation array consists of a microelectronic circuit, ancillary electronics, protecting electrode surface for cell culturing and a perfusion system for gene or drug delivery. The advantages of the current device are that there are 3200 sites for electroporation, all or any subsets of the electrodes can be activated. The cells are held in place by the electrode material. This technology could also be applied to high throughput screening of cell impermeant drugs.
JPRS report: Science and technology. Europe and Latin America
NASA Astrophysics Data System (ADS)
1988-01-01
Articles from the popular and trade press of Western Europe and Latin America are presented on advanced materials, aerospace and civial aviation, computers, defense industries, factory automation and robotics, lasers, senors, optics microelectronics, science and technology policy, biotechnology, marine technology, and nuclear developments. The aerospace articles include an overview of Austrian space activities and plans and a report on a panel of West German experts recommending against self-sufficiency for the Airbus.
Information Systems and Development in the Third World.
ERIC Educational Resources Information Center
Heitzman, James
1990-01-01
Discussion of the relationship between information and development in Third World countries highlights information systems development in four South Asian nations: India, Pakistan, Sri Lanka, and Bangladesh. The impact of microelectronics technology, development theories, multinational corporations, international information agencies, and…
Evaluation of advanced microelectronics for inclusion in MIL-STD-975
NASA Technical Reports Server (NTRS)
Scott, W. Richard
1991-01-01
The approach taken by NASA and JPL (Jet Propulsion Laboratory) in the development of a MIL-STD-975 section which contains advanced technology such as Large Scale Integration and Very Large Scale Integration (LSI/VLSI) microelectronic devices is described. The parts listed in this section are recommended as satisfactory for NASA flight applications, in the absence of alternate qualified devices, based on satisfactory results of a vendor capability audit, the availability of sufficient characterization and reliability data from the manufacturers and users and negotiated detail procurement specifications. The criteria used in the selection and evaluation of the vendors and candidate parts, the preparation of procurement specifications, and the status of this activity are discussed.
The design of radiation-hardened ICs for space - A compendium of approaches
NASA Technical Reports Server (NTRS)
Kerns, Sherra E.; Shafer, B. D; Rockett, L. R., Jr.; Pridmore, J. S.; Berndt, D. F.
1988-01-01
Several technologies, including bulk and epi CMOS, CMOS/SOI-SOS (silicon-on-insulator-silicon-on-sapphire), CML (current-mode logic), ECL (emitter-coupled logic), analog bipolar (JI, single-poly DI, and SOI) and GaAs E/D (enhancement/depletion) heterojunction MESFET, are discussed. The discussion includes the direct effects of space radiation on microelectronic materials and devices, how these effects are evidenced in circuit and device design parameter variations, the particular effects of most significance to each functional class of circuit, specific techniques for hardening high-speed circuits, design examples for integrated systems, including operational amplifiers and A/D (analog/digital) converters, and the computer simulation of radiation effects on microelectronic ISs.
Flexible packaging for microelectronic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Benjamin John; Nielson, Gregory N.; Cruz-Campa, Jose Luis
An apparatus, method, and system, the apparatus and system including a flexible microsystems enabled microelectronic device package including a microelectronic device positioned on a substrate; an encapsulation layer encapsulating the microelectronic device and the substrate; a protective layer positioned around the encapsulating layer; and a reinforcing layer coupled to the protective layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device. The method including encapsulating a microelectronic device positioned on a substrate within an encapsulation layer; sealing the encapsulated microelectronic device within a protective layer; and coupling themore » protective layer to a reinforcing layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device.« less
Active Microelectronic Neurosensor Arrays for Implantable Brain Communication Interfaces
Song, Y.-K.; Borton, D. A.; Park, S.; Patterson, W. R.; Bull, C. W.; Laiwalla, F.; Mislow, J.; Simeral, J. D.; Donoghue, J. P.; Nurmikko, A. V.
2010-01-01
We have built a wireless implantable microelectronic device for transmitting cortical signals transcutaneously. The device is aimed at interfacing a microelectrode array cortical to an external computer for neural control applications. Our implantable microsystem enables presently 16-channel broadband neural recording in a non-human primate brain by converting these signals to a digital stream of infrared light pulses for transmission through the skin. The implantable unit employs a flexible polymer substrate onto which we have integrated ultra-low power amplification with analog multiplexing, an analog-to-digital converter, a low power digital controller chip, and infrared telemetry. The scalable 16-channel microsystem can employ any of several modalities of power supply, including via radio frequency by induction, or infrared light via a photovoltaic converter. As of today, the implant has been tested as a sub-chronic unit in non-human primates (~ 1 month), yielding robust spike and broadband neural data on all available channels. PMID:19502132
1996 Laboratory directed research and development annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.
This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.
On-Campus Projects: Inventing a Microchip.
ERIC Educational Resources Information Center
Basta, Nicholas
1985-01-01
In response to growth of microelectronics and changes in microchip design/manufacturing technology, universities are supporting class projects for students. Approximately 50 schools now conduct such programs which have resulted from earlier National Science Foundation sponsorship. Major advantages for the students include designing experience,…
Microelectronics Revolution And The Impact Of Automation In The New Industrialized Countries
NASA Astrophysics Data System (ADS)
Baranauskas, Vitor
1984-08-01
A brief review of some important historical points on the origin of the Factories and the Industrial Revolution is presented with emphasis in the social problems related to the automation of the human labor. Until the World War I, the social changes provoked by the Industrial Revolution caused one division of the World in developed and underdeveloped countries. After that period, the less developed nations began their industrialization mainly through the Multinationals Corporations (MC). These enterprises were very important to the production and exportation of utilities and manufactures in general, mainly in those products which required intensive and direct human labor. At present time, with the pervasiveness of microelectronics in the automation, this age seems to reaching an end because all continous processes in industry tend economicaly toward total automation. This fact will cause a retraction in long-term investments and, beyond massive unemployment, there is a tendency for these MC industries to return to their original countries. The most promising alternative to avoid these events, and perhaps the unique, is to incentive an autonomous development in areas of high technology, as for instance, the microelectronics itself.
ERIC Educational Resources Information Center
Bailey, Thomas; Noyelle, Thierry
The subject of this report is the impact of microelectronic technology on the process of skill formation with particular reference to two industries: banking and textiles. A recent research effort sought to identify and understand how changes in the structure and nature of skills were affecting the process of skill formation and the balance of…
USSR Report, Cybernetics Computers and Automation Technology
1985-09-05
understand each other excellently, although in their speech they frequently omit, it would seem, needed words. However, the life experience of the...participants in a conversa- tion and their perception of voice intonations and gestures make it possible to fill in the missing elements of speech ...the Soviet Union. Comrade M. S. Gorbachev’s speech pointed out that microelectronics, computer technology, instrument building and the whole
Product Reliability Trends, Derating Considerations and Failure Mechanisms with Scaled CMOS
NASA Technical Reports Server (NTRS)
White, Mark; Vu, Duc; Nguyen, Duc; Ruiz, Ron; Chen, Yuan; Bernstein, Joseph B.
2006-01-01
As microelectronics is scaled into the deep sub-micron regime, space and aerospace users of advanced technology CMOS are reassessing how scaling effects impact long-term product reliability. The effects of electromigration (EM), time-dependent-dielectric-breakdown (TDDB) and hot carrier degradation (HCI and NBTI) wearout mechanisms on scaled technologies and product reliability are investigated, accelerated stress testing across several technology nodes is performed, and FA is conducted to confirm the failure mechanism(s).
DOT National Transportation Integrated Search
2008-08-11
It will be advantageous to have information on the state of health of infrastructure at all times in : order to carry out effective on-demand maintenance. With the tremendous advancement in technology, it is : possible to employ devices embedded in s...
characterization, design, and new device technologies. This workshop will consist of invited talks, contributed and Reliability Semiconductor package reliability, Design for Manufacturability, Stacked die packaging and Novel assembly processes Microelectronic Circuit Design New product design, high-speed and/or low
Simple Chemical Vapor Deposition Experiment
ERIC Educational Resources Information Center
Pedersen, Henrik
2014-01-01
Chemical vapor deposition (CVD) is a process commonly used for the synthesis of thin films for several important technological applications, for example, microelectronics, hard coatings, and smart windows. Unfortunately, the complexity and prohibitive cost of CVD equipment makes it seldom available for undergraduate chemistry students. Here, a…
Methodology of Education and R&D in Mechatronics.
ERIC Educational Resources Information Center
Yamazaki, K.; And Others
1985-01-01
Describes the concept and methodology of "mechatronics" (application of microelectronics to mechanism control) and research and development (R&D) projects through the activities initiated at the Precision Machining Laboratory of the Department of Production Systems Engineering of the new Toyohashi University of Technology. (JN)
FBIS report. Science and technology: Europe/International, March 29, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-29
;Partial Contents: Advanced Materials (EU Project to Improve Production in Metal Matrix Compounds Noted, Germany: Extremely Hard Carbon Coating Development, Italy: Director of CNR Metallic Materials Institute Interviewed); Aerospace (ESA Considers Delays, Reductions as Result of Budget Cuts, Italy: Space Agency`s Director on Restructuring, Future Plans); Automotive, Transportation (EU: Clean Diesel Engine Technology Research Reviewed); Biotechnology (Germany`s Problems, Successes in Biotechnology Discussed); Computers (EU Europort Parallel Computing Project Concluded, Italy: PQE 2000 Project on Massively Parallel Systems Viewed); Defense R&D (France: Future Tasks of `Brevel` Military Intelligence Drone Noted); Energy, Environment (German Scientist Tests Elimination of Phosphates); Advanced Manufacturing (France:more » Advanced Rapid Prototyping System Presented); Lasers, Sensors, Optics (France: Strategy of Cilas Laser Company Detailed); Microelectronics (France: Simulation Company to Develop Microelectronic Manufacturing Application); Nuclear R&D (France: Megajoule Laser Plan, Cooperation with Livermore Lab Noted); S&T Policy (EU Efforts to Aid Small Companies` Research Viewed); Telecommunications (France Telecom`s Way to Internet).« less
Trends in Dielectric Etch for Microelectronics Processing
NASA Astrophysics Data System (ADS)
Hudson, Eric A.
2003-10-01
Dielectric etch technology faces many challenges to meet the requirements for leading-edge microelectronics processing. The move to sub 100-nm device design rules increases the aspect ratios of certain features, imposes tighter restrictions on etched features' critical dimensions, and increases the density of closely packed arrays of features. Changes in photolithography are driving transitions to new photoresist materials and novel multilayer resist methods. The increasing use of copper metallization and low-k interlayer dielectric materials has introduced dual-damascene integration methods, with specialized dielectric etch applications. A common need is the selective removal of multiple layers which have very different compositions, while maintaining close control of the etched features' profiles. To increase productivity, there is a growing trend toward in-situ processing, which allows several films to be successively etched during a single pass through the process module. Dielectric etch systems mainly utilize capacitively coupled etch reactors, operating with medium-density plasmas and low gas residence time. Commercial technology development increasingly relies upon plasma diagnostics and modeling to reduce development cycle time and maximize performance.
Apparatus for assembly of microelectronic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okandan, Murat; Nielson, Gregory N.; Cruz-Campa, Jose Luis
An apparatus including a carrier substrate configured to move a microelectronic device. The apparatus further includes a rotatable body configured to receive the microelectronic device. Additionally, the apparatus includes a second substrate configured to receive the microelectronic device from the rotatable body.
Reliability Considerations of ULP Scaled CMOS in Spacecraft Systems
NASA Technical Reports Server (NTRS)
White, Mark; MacNeal, Kristen; Cooper, Mark
2012-01-01
NASA, the aerospace community, and other high reliability (hi-rel) users of advanced microelectronic products face many challenges as technology continues to scale into the deep sub-micron region. Decreasing the feature size of CMOS devices not only allows more components to be placed on a single chip, but it increases performance by allowing faster switching (or clock) speeds with reduced power compared to larger scaled devices. Higher performance, and lower operating and stand-by power characteristics of Ultra-Low Power (ULP) microelectronics are not only desirable, but also necessary to meet low power consumption design goals of critical spacecraft systems. The integration of these components in such systems, however, must be balanced with the overall risk tolerance of the project.
Japan's technology and manufacturing infrastructure
NASA Astrophysics Data System (ADS)
Boulton, William R.; Meieran, Eugene S.; Tummala, Rao R.
1995-02-01
The JTEC panel found that, after four decades of development in electronics and manufacturing technologies, Japanese electronics companies are leaders in the development, support, and management of complex, low-cost packaging and assembly technologies used in the production of a broad range of consumer electronics products. The electronics industry's suppliers provide basic materials and equipment required for electronic packaging applications. Panelists concluded that some Japanese firms could be leading U.S. competitors by as much as a decade in these areas. Japan's technology and manufacturing infrastructure is an integral part of its microelectronics industry's success.
Japan's technology and manufacturing infrastructure
NASA Technical Reports Server (NTRS)
Boulton, William R.; Meieran, Eugene S.; Tummala, Rao R.
1995-01-01
The JTEC panel found that, after four decades of development in electronics and manufacturing technologies, Japanese electronics companies are leaders in the development, support, and management of complex, low-cost packaging and assembly technologies used in the production of a broad range of consumer electronics products. The electronics industry's suppliers provide basic materials and equipment required for electronic packaging applications. Panelists concluded that some Japanese firms could be leading U.S. competitors by as much as a decade in these areas. Japan's technology and manufacturing infrastructure is an integral part of its microelectronics industry's success.
Advance Power Technology Experiment for the Starshine 3 Satellite
NASA Technical Reports Server (NTRS)
Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas; Bailey, Sheila (Technical Monitor); Hepp, A. (Technical Monitor)
2001-01-01
The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IWS) for evaluation.
Advance Power Technology Demonstration on Starshine 3
NASA Technical Reports Server (NTRS)
Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas
2002-01-01
The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IMPS) for evaluation.
Implications of Pb-free microelectronics assembly in aerospace applications
NASA Technical Reports Server (NTRS)
Shapiro, A. A.; Bonner, J. K.; Ogunseitan, D.; Saphores, J. D.; Schoenung, J.
2003-01-01
The commercial microelectronics industry is rapidly moving to completely Pb-free assembly strategies within the next decade. This trend is being driven by existing and proposed legislation in Europe and in Japan. The microelectronics industry has become truly global, as indicated by major U .S. firms who already adopted Pb-free implementation programs. Among these forward-looking firms are AT&T, IBM, Motorola, HP and Intel to name a few.Following Moore's law, advances in microelectronics are happening very rapidly. In many cases, commercial industry is ahead of the aerospace sector in technology. Progress by commercial industry, along with cost, drives the use of Commercial Off-The-Shelf (COTS) parts for military and space applications. We can thus anticipate that the aerospace industry will, at some point, be forced to use Pb-free components and subsystems as part of their standard business practices. In this paper we attempt to provide a snapshot of the commercial industry trends and how they may impact electronics in the aerospace environment. In addition, we also look at different strategies for implementation. Finally we present data collected on a recent NASA project to focus on finding suitable alternatives to eutectic tin-lead solders and solder pastes. The world is moving toward implementation of environmentally friendly manufacturing techniques. The aerospace industry will be forced to deal with issues related with Pb free assembly, either by availability or legislation. This paper provides some insight into some of the tradeoffs that should be considered.
NASA Astrophysics Data System (ADS)
Sigurdson, J.; Tagerud, J.
1986-05-01
A UNIDO publication about machine tools with automatic control discusses the following: (1) numerical control (NC) machine tool perspectives, definition of NC, flexible manufacturing systems, robots and their industrial application, research and development, and sensors; (2) experience in developing a capability in NC machine tools; (3) policy issues; (4) procedures for retrieval of relevant documentation from data bases. Diagrams, statistics, bibliography are included.
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Cohn, Lewis M.
2008-01-01
At an earlier conference we discussed a selection of the challenges for radiation testing of modern semiconductor devices focusing on state-of-the-art CMOS technologies. In this presentation, we extend this discussion focusing on the following areas: (1) Device packaging, (2) Evolving physical single even upset mechanisms, (3) Device complexity, and (4) the goal of understanding the limitations and interpretation of radiation testing results.
Data Acquisition and Mass Storage
NASA Astrophysics Data System (ADS)
Vande Vyvre, P.
2004-08-01
The experiments performed at supercolliders will constitute a new challenge in several disciplines of High Energy Physics and Information Technology. This will definitely be the case for data acquisition and mass storage. The microelectronics, communication, and computing industries are maintaining an exponential increase of the performance of their products. The market of commodity products remains the largest and the most competitive market of technology products. This constitutes a strong incentive to use these commodity products extensively as components to build the data acquisition and computing infrastructures of the future generation of experiments. The present generation of experiments in Europe and in the US already constitutes an important step in this direction. The experience acquired in the design and the construction of the present experiments has to be complemented by a large R&D effort executed with good awareness of industry developments. The future experiments will also be expected to follow major trends of our present world: deliver physics results faster and become more and more visible and accessible. The present evolution of the technologies and the burgeoning of GRID projects indicate that these trends will be made possible. This paper includes a brief overview of the technologies currently used for the different tasks of the experimental data chain: data acquisition, selection, storage, processing, and analysis. The major trends of the computing and networking technologies are then indicated with particular attention paid to their influence on the future experiments. Finally, the vision of future data acquisition and processing systems and their promise for future supercolliders is presented.
Introduction: Towards Sustainable 2020 Nanoelectronics
NASA Astrophysics Data System (ADS)
Hoefflinger, Bernd
Faced with the immanent end of the nanometer roadmap at 10 nm, and with an electronics energy crisis, we have to engineer the largest strategy change in the 50-years history of microelectronics, renamed to nanoelectronics in 2000 with the first chips containing 100-nm transistors. Accepting the 10 nm-limit, the new strategy for the future growth of chip functionalities and markets has to deliver, within a decade, another 1,000× improvement in the energy per processing operation as well as in the energy per bit of memory and of communication. As a team from industry and from research, we present expectations, requirements and possible solutions for this challenging energy scenario of femto- and atto-Joule electronics. The introduction outlines the book's structure, which aims to describe the innovation eco-system needed for optimum-energy, sustainable nanoelectronics. For the benefit of the reader, chapters are grouped together into interest areas like transistors and circuits, technology, products and markets, radical innovations, as well as business and policy issues.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-19
... Leased Workers From Adecco Employment Services, Aerotek, Inc., CDI IT Solutions, Inc. (CDI Corporation..., Aerotek, Inc., CDI IT Solutions, D&Z Microelectronics, Pentagon Technology, Proactive Business Solution... include the Unemployment Insurance (UI) wages for on-site leased workers from CDI IT Solutions is reported...
Highest integration in microelectronics: Development of digital ASICs for PARS3-LR
NASA Astrophysics Data System (ADS)
Scholler, Peter; Vonlutz, Rainer
Essential electronic system components by PARS3-LR, show high requirements in calculation power, power consumption and reliability, by immediately increasing integration thicknesses. These problems are solved by using integrated circuits, developed by LSI LOGIC, that uses the technical and economic advantages of this leading edge technology.
Secondary School Projects and the Microchip.
ERIC Educational Resources Information Center
Irvine, A. F.
This study of the applications of microelectronic devices in industry, together with an assessment of their value for use in schools, emphasizes the basic principles underlying the new technology and the practical ways in which these can contribute to associated work in computing and other disciplines in the school curriculum. Following a…
NASA Technical Reports Server (NTRS)
Tang, Tony K.
1999-01-01
At NASA, the focus for smaller, less costly missions has given impetus for the development of microspacecraft. MicroElectroMechanical System (MEMS) technology advances in the area of sensor, propulsion systems, and instruments, make the notion of a specialized microspacecraft feasible in the immediate future. Similar to the micro-electronics revolution,the emerging MEMS technology offers the integration of recent advances in micromachining and nanofabrication techniques with microelectronics in a mass-producible format,is viewed as the next step in device and instrument miniaturization. MEMS technology offers the potential of enabling or enhancing NASA missions in a variety of ways. This new technology allows the miniaturization of components and systems, where the primary benefit is a reduction in size, mass and power. MEMS technology also provides new capabilities and enhanced performance, where the most significant impact is in performance, regardless of system size. Finally,with the availability of mass-produced, miniature MEMS instrumentation comes the opportunity to rethink our fundamental measurement paradigms. It is now possible to expand our horizons from a single instrument perspective to one involving multi-node distributed systems. In the distributed systems and missions, a new system in which the functionality is enabled through a multiplicity of elements. Further in the future, the integration of electronics, photonics, and micromechanical functionalities into "instruments-on-a-chip" will provide the ultimate size, cost, function, and performance advantage. In this presentation, I will discuss recent development, requirement, and applications of various MEMS technologies and devices for space applications.
Hydrogen sensors based on catalytic metals
NASA Astrophysics Data System (ADS)
Beklemyshev, V. I.; Berezine, V.; Bykov, Victor A.; Kiselev, L.; Makhonin, I.; Pevgov, V.; Pustovoy, V.; Semynov, A.; Sencov, Y.; Shkuropat, I.; Shokin, A.
1999-11-01
On the base of microelectronical and micromechanical technology were designed and developed converters of hydrogen concentration to electrical signals. The devices of controlling concentration of hydrogen in the air were developed. These devices were applied for ensuring fire and explosion security of complex technological teste of missile oxygen-hydrogen engine, developed for cryogenic accelerations block. The sensor block of such device was installed directly on the armor-plate, to which was attached tested engine.
Data encryption standard ASIC design and development report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Perry J.; Pierson, Lyndon George; Witzke, Edward L.
2003-10-01
This document describes the design, fabrication, and testing of the SNL Data Encryption Standard (DES) ASIC. This device was fabricated in Sandia's Microelectronics Development Laboratory using 0.6 {micro}m CMOS technology. The SNL DES ASIC was modeled using VHDL, then simulated, and synthesized using Synopsys, Inc. software and finally IC layout was performed using Compass Design Automation's CAE tools. IC testing was performed by Sandia's Microelectronic Validation Department using a HP 82000 computer aided test system. The device is a single integrated circuit, pipelined realization of DES encryption and decryption capable of throughputs greater than 6.5 Gb/s. Several enhancements accommodate ATMmore » or IP network operation and performance scaling. This design is the latest step in the evolution of DES modules.« less
Ultralow-Loss CMOS Copper Plasmonic Waveguides.
Fedyanin, Dmitry Yu; Yakubovsky, Dmitry I; Kirtaev, Roman V; Volkov, Valentyn S
2016-01-13
Surface plasmon polaritons can give a unique opportunity to manipulate light at a scale well below the diffraction limit reducing the size of optical components down to that of nanoelectronic circuits. At the same time, plasmonics is mostly based on noble metals, which are not compatible with microelectronics manufacturing technologies. This prevents plasmonic components from integration with both silicon photonics and silicon microelectronics. Here, we demonstrate ultralow-loss copper plasmonic waveguides fabricated in a simple complementary metal-oxide semiconductor (CMOS) compatible process, which can outperform gold plasmonic waveguides simultaneously providing long (>40 μm) propagation length and deep subwavelength (∼λ(2)/50, where λ is the free-space wavelength) mode confinement in the telecommunication spectral range. These results create the backbone for the development of a CMOS plasmonic platform and its integration in future electronic chips.
Kim, Kang O; Kim, Sunjung
2016-05-01
Cu-Ag alloy interconnect is promising for ultra-large-scale integration (ULSI) microelectronic system of which device dimension keeps shrinking. In this study, seedless electrodeposition of Cu-Ag alloy directly on W diffusion barrier as interconnect technology is presented in respect of nano-nucleation control. Chemical equilibrium state of electrolyte was fundamentally investigated according to the pH of electrolyte because direct nano-nucleation of Cu-Ag alloy on W surface is challenging. Chelation behavior of Cu2+ and Ag+ ions with citrate (Cit) and ammonia ligands was dependent on the pH of electrolyte. The amount and kind of Cu- and Ag-based complexes determine the deposition rate, size, elemental composition, and surface morphology of Cu-Ag alloy nano-nuclei formed on W surface.
Smart sensors development based on a distributed bus for microsystems applications
NASA Astrophysics Data System (ADS)
Ferrer, Carles; Lorente, Bibiana
2003-04-01
Our main objective in this work has been to develop a comunication system applicable between sensors and actuators and the data processing circuitry inside the microsystem in order to develop a flexible and modular architecture. This communication system is based on the use of a dedicated sensor bus composed by only two wires (a bidirectional data line and a clock line for sincronization). The basic philosophy of this development has been to create an IP model with VHDL for the bus driver that can be added to the sensor or the actuator to create an smart device that could be easily plugged with the other componets of the microsystem architecture. This methodology can be applied to a high integrated microsystem based on an extensively use of microelectronics technologies (ASICs, SoCs & MCMs). The reduced number of wires is an extraordinary advatage because produce a minimal interconnection between all the components and as a consequence the size of the microinstrument becomes smaller. The second aspect that we have considered in this development has been to reach a communication protocol that permits to built-up a very simple but robust bus driver interface that minimize the circuit overhead. This interconnection system has been applied to biomedical and aerospatial microsystems applications.
An Electronic Patch for wearable health monitoring by reflectance pulse oximetry.
Haahr, Rasmus G; Duun, Sune B; Toft, Mette H; Belhage, Bo; Larsen, Jan; Birkelund, Karen; Thomsen, Erik V
2012-02-01
We report the development of an Electronic Patch for wearable health monitoring. The Electronic Patch is a new health monitoring system incorporating biomedical sensors, microelectronics, radio frequency (RF) communication, and a battery embedded in a 3-dimensional hydrocolloid polymer. In this paper the Electronic Patch is demonstrated with a new optical biomedical sensor for reflectance pulse oximetry so that the Electronic Patch in this case can measure the pulse and the oxygen saturation. The reflectance pulse oximetry solution is based on a recently developed annular backside silicon photodiode to enable low power consumption by the light emitting components. The Electronic Patch has a disposable part of soft adhesive hydrocolloid polymer and a reusable part of hard polylaurinlactam. The disposable part contains the battery. The reusable part contains the reflectance pulse oximetry sensor and microelectronics. The reusable part is 'clicked' into the disposable part when the patch is prepared for use. The patch has a size of 88 mm by 60 mm and a thickness of 5 mm.
Retinal Implants for Blind Patients
NASA Astrophysics Data System (ADS)
Rothermel, Albrecht
Recently, very promising results have been obtained in clinical trials with eye-prostheses for the blind. There is a chance that advances in surgical techniques, microelectronics design, and material science may lead to the first really useful applications of retinal implants in the near future. This chapter will focus on the actual status of subretinal surgery and implant technologies. Opportunities and limitations of the different technologies will be discussed in terms of patients benefit and technological challenges. Finally, a vision on how the devices may work and look like in the future will be given.
Microelectronic Precision Optical Element Fabrication
2009-01-01
spectra for a 0-25V reverse bias and the device tilted at -35° to the optical axis. Also shown is the diode reverse bias I-V curve . 1530 1540...optical modulator using an MEMS deformable micromirror array," Journal of Lightwave Technology, vol. 24(1), pp. 516-525, January 2006. [4] D. H. Parker, M
Education and Training in Japan in the Cybernetic Age. Program Report No. 85-B2.
ERIC Educational Resources Information Center
Muta, Hiromitsu
The introduction of computers and other microelectronic equipment throughout the Japanese economy has not affected employment negatively, owing to economic growth and the adaptability of the workers and business organizations affected. Because rapid advances in technology are making many specialized skills and areas of knowledge obsolete, it is…
ERIC Educational Resources Information Center
Dollar, Charles M.
This study is a review of trends in information-handling technology and significant developments which are changing or will change the general environment within which archivists and records managers in international organizations will have to work. Trends in microelectronics, electronic storage, software, data transmission, computer architecture,…
A Brief History of ... Semiconductors
ERIC Educational Resources Information Center
Jenkins, Tudor
2005-01-01
The development of studies in semiconductor materials is traced from its beginnings with Michael Faraday in 1833 to the production of the first silicon transistor in 1954, which heralded the age of silicon electronics and microelectronics. Prior to the advent of band theory, work was patchy and driven by needs of technology. However, the arrival…
Strobel, Sebastian; Hernández, Rocío Murcia; Hansen, Allan G; Tornow, Marc
2008-09-17
We report the fabrication and characterization of vertical nanogap electrode devices using silicon-on-insulator substrates. Using only standard silicon microelectronic process technology, nanogaps down to 26 nm electrode separation were prepared. Transmission electron microscopy cross-sectional analysis revealed the well defined material architecture of the nanogap, comprising two electrodes of dissimilar geometrical shape. This asymmetry is directly reflected in transport measurements on molecule-nanoparticle hybrid systems formed by self-assembling a monolayer of mercaptohexanol on the electrode surface and the subsequent dielectrophoretic trapping of 30 nm diameter Au nanoparticles. The observed Coulomb staircase I-V characteristic measured at T = 4.2 K is in excellent agreement with theoretical modelling, whereby junction capacitances of the order of a few 10(-18) farad and asymmetric resistances of 30 and 300 MΩ, respectively, are also supported well by our independent estimates for the formed double barrier tunnelling system. We propose our nanoelectrode system for integrating novel functional electronic devices such as molecular junctions or nanoparticle hybrids into existing silicon microelectronic process technology.
NASA Astrophysics Data System (ADS)
Konakov, S. A.; Krzhizhanovskaya, V. V.
2016-08-01
We present a novel three-jet microreactor design for localized deposition of gallium arsenide (GaAs) by low-pressure Metal-Organic Chemical Vapour Deposition (MOCVD) for semiconductor devices, microelectronics and solar cells. Our approach is advantageous compared to the standard lithography and etching technology, since it preserves the nanostructure of the deposited material, it is less time-consuming and less expensive. We designed two versions of reactor geometry with a 10-micron central microchannel for precursor supply and with two side jets of a dilutant to control the deposition area. To aid future experiments, we performed computational modeling of a simplified-geometry (twodimensional axisymmetric) microreactor, based on Navier-Stokes equations for a laminar flow of chemically reacting gas mixture of Ga(CH3)3-AsH3-H2. Simulation results show that we can achieve a high-rate deposition (over 0.3 μm/min) on a small area (less than 30 μm diameter). This technology can be used in material production for microelectronics, optoelectronics, photovoltaics, solar cells, etc.
Oktem, Ozgur; Bildik, Gamze; Senbabaoglu, Filiz; Lack, Nathan A; Akin, Nazli; Yakar, Feridun; Urman, Defne; Guzel, Yilmaz; Balaban, Basak; Iwase, Akira; Urman, Bulent
2016-04-01
A recently developed technology (xCelligence) integrating micro-electronics and cell biology allows real-time, uninterrupted and quantitative analysis of cell proliferation, viability and cytotoxicity by measuring the electrical impedance of the cell population in the wells without using any labeling agent. In this study we investigated if this system is a suitable model to analyze the effects of mitogenic (FSH) and cytotoxic (chemotherapy) agents with different toxicity profiles on human granulosa cells in comparison to conventional methods of assessing cell viability, DNA damage, apoptosis and steroidogenesis. The system generated the real-time growth curves of the cells, and determined their doubling times, mean cell indices and generated dose-response curves after exposure to cytotoxic and mitogenic stimuli. It accurately predicted the gonadotoxicity of the drugs and distinguished less toxic agents (5-FU and paclitaxel) from more toxic ones (cisplatin and cyclophosphamide). This platform can be a useful tool for specific end-point assays in reproductive toxicology. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Atwell, William; Koontz, Steve; Normand, Eugene
2012-01-01
Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems. The effects of primary cosmic ray particles and secondary particle showers produced by nuclear reactions with the atmosphere, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth s surface, especially if the net target area of the sensitive electronic system components is large. Finally, accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO). In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as human health and the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based atmospheric flight, and space flight environments. Ground test methods applied to microelectronic components and systems are used in combinations with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport codes are used to evaluate possible human health effects of cosmic ray exposure, however, the health effects are based on worst-case analysis and extrapolation of a very limited human exposure data base combined with some limited experimental animal data. Finally, the limitations on human space operations beyond low-Earth orbit imposed by long term exposure to galactic cosmic rays are discussed.
High surface area silicon materials: fundamentals and new technology.
Buriak, Jillian M
2006-01-15
Crystalline silicon forms the basis of just about all computing technologies on the planet, in the form of microelectronics. An enormous amount of research infrastructure and knowledge has been developed over the past half-century to construct complex functional microelectronic structures in silicon. As a result, it is highly probable that silicon will remain central to computing and related technologies as a platform for integration of, for instance, molecular electronics, sensing elements and micro- and nanoelectromechanical systems. Porous nanocrystalline silicon is a fascinating variant of the same single crystal silicon wafers used to make computer chips. Its synthesis, a straightforward electrochemical, chemical or photochemical etch, is compatible with existing silicon-based fabrication techniques. Porous silicon literally adds an entirely new dimension to the realm of silicon-based technologies as it has a complex, three-dimensional architecture made up of silicon nanoparticles, nanowires, and channel structures. The intrinsic material is photoluminescent at room temperature in the visible region due to quantum confinement effects, and thus provides an optical element to electronic applications. Our group has been developing new organic surface reactions on porous and nanocrystalline silicon to tailor it for a myriad of applications, including molecular electronics and sensing. Integration of organic and biological molecules with porous silicon is critical to harness the properties of this material. The construction and use of complex, hierarchical molecular synthetic strategies on porous silicon will be described.
Integrating silicon photonic interconnects with CMOS: Fabrication to architecture
NASA Astrophysics Data System (ADS)
Sherwood, Nicholas Ramsey
While it was for many years the goal of microelectronics to speed up our daily tasks, the focus of today's technological developments is heavily centered on electronic media. Anyone can share their thoughts as text, sound, images or full videos, they can even make phone calls and download full movies on their computers, tablets and phones. The impact of this upsurge in bandwidth is directly on the infrastructure that carries this data. Long distance telecom lines were long ago replaced by optical fibers; now shorter and shorter distance connections have moved to optical transmission to keep up with the bandwidth requirements. Yet microprocessors that make up the switching nodes as well as the endpoints are not only stagnant in terms of processing speed, but also unlikely to continue Moore's transistor-doubling trend for much longer. Silicon photonics stands to make a technical leap in microprocessor technology by allowing monolithic communication speeds between arbitrarily spaced processing elements. The improvement in on-chip communication could reduce power and enable new improvements in this field. This work explores a few aspects involved in making such a leap practical in real life. The first part of the thesis develops process techniques and materials to make silicon photonics truly compatible with CMOS electronics, for two different stack layouts, including a glimpse into multilayerd photonics. Following this is an evaluation of the limitations of integrated devices and a post-fabrication/stabilizing solution using thermal index shifting. In the last parts we explore higher level device design and architecture on the SOI platform.
Field-programmable lab-on-a-chip based on microelectrode dot array architecture.
Wang, Gary; Teng, Daniel; Lai, Yi-Tse; Lu, Yi-Wen; Ho, Yingchieh; Lee, Chen-Yi
2014-09-01
The fundamentals of electrowetting-on-dielectric (EWOD) digital microfluidics are very strong: advantageous capability in the manipulation of fluids, small test volumes, precise dynamic control and detection, and microscale systems. These advantages are very important for future biochip developments, but the development of EWOD microfluidics has been hindered by the absence of: integrated detector technology, standard commercial components, on-chip sample preparation, standard manufacturing technology and end-to-end system integration. A field-programmable lab-on-a-chip (FPLOC) system based on microelectrode dot array (MEDA) architecture is presented in this research. The MEDA architecture proposes a standard EWOD microfluidic component called 'microelectrode cell', which can be dynamically configured into microfluidic components to perform microfluidic operations of the biochip. A proof-of-concept prototype FPLOC, containing a 30 × 30 MEDA, was developed by using generic integrated circuits computer aided design tools, and it was manufactured with standard low-voltage complementary metal-oxide-semiconductor technology, which allows smooth on-chip integration of microfluidics and microelectronics. By integrating 900 droplet detection circuits into microelectrode cells, the FPLOC has achieved large-scale integration of microfluidics and microelectronics. Compared to the full-custom and bottom-up design methods, the FPLOC provides hierarchical top-down design approach, field-programmability and dynamic manipulations of droplets for advanced microfluidic operations.
Broadband image sensor array based on graphene-CMOS integration
NASA Astrophysics Data System (ADS)
Goossens, Stijn; Navickaite, Gabriele; Monasterio, Carles; Gupta, Shuchi; Piqueras, Juan José; Pérez, Raúl; Burwell, Gregory; Nikitskiy, Ivan; Lasanta, Tania; Galán, Teresa; Puma, Eric; Centeno, Alba; Pesquera, Amaia; Zurutuza, Amaia; Konstantatos, Gerasimos; Koppens, Frank
2017-06-01
Integrated circuits based on complementary metal-oxide-semiconductors (CMOS) are at the heart of the technological revolution of the past 40 years, enabling compact and low-cost microelectronic circuits and imaging systems. However, the diversification of this platform into applications other than microcircuits and visible-light cameras has been impeded by the difficulty to combine semiconductors other than silicon with CMOS. Here, we report the monolithic integration of a CMOS integrated circuit with graphene, operating as a high-mobility phototransistor. We demonstrate a high-resolution, broadband image sensor and operate it as a digital camera that is sensitive to ultraviolet, visible and infrared light (300-2,000 nm). The demonstrated graphene-CMOS integration is pivotal for incorporating 2D materials into the next-generation microelectronics, sensor arrays, low-power integrated photonics and CMOS imaging systems covering visible, infrared and terahertz frequencies.
Photovoltaic Power for Future NASA Missions
NASA Technical Reports Server (NTRS)
Landis, Geoffrey; Bailey, Sheila G.; Lyons, Valerie J. (Technical Monitor)
2002-01-01
Recent advances in crystalline solar cell technology are reviewed. Dual-junction and triple-junction solar cells are presently available from several U. S. vendors. Commercially available triple-junction cells consisting of GaInP, GaAs, and Ge layers can produce up to 27% conversion efficiency in production lots. Technology status and performance figures of merit for currently available photovoltaic arrays are discussed. Three specific NASA mission applications are discussed in detail: Mars surface applications, high temperature solar cell applications, and integrated microelectronic power supplies for nanosatellites.
Radiation Effects and Hardening Techniques for Spacecraft Microelectronics
NASA Astrophysics Data System (ADS)
Gambles, J. W.; Maki, G. K.
2002-01-01
The natural radiation from the Van Allen belts, solar flares, and cosmic rays found outside of the protection of the earth's atmosphere can produce deleterious effects on microelectronics used in space systems. Historically civil space agencies and the commercial satellite industry have been able to utilize components produced in special radiation hardened fabrication process foundries that were developed during the 1970s and 1980s under sponsorship of the Departments of Defense (DoD) and Energy (DoE). In the post--cold war world the DoD and DoE push to advance the rad--hard processes has waned. Today the available rad--hard components lag two-plus technology node generations behind state- of-the-art commercial technologies. As a result space craft designers face a large performance gap when trying to utilize available rad--hard components. Compounding the performance gap problems, rad--hard components are becoming increasingly harder to get. Faced with the economic pitfalls associated with low demand versus the ever increasing investment required for integrated circuit manufacturing equipment most sources of rad--hard parts have simply exited this market in recent years, leaving only two domestic US suppliers of digital rad--hard components. This paper summarizes the radiation induced mechanisms that can cause digital microelectronics to fail in space, techniques that can be applied to mitigate these failure mechanisms, and ground based testing used to validate radiation hardness/tolerance. The radiation hardening techniques can be broken down into two classes, Hardness By Process (HBP) and Hardness By Design (HBD). Fortunately many HBD techniques can be applied to commercial fabrication processes providing space craft designer with radiation tolerant Application Specific Integrated Circuits (ASICs) that can bridge the performance gap between the special HBP foundries and the commercial state-of-the-art performance.
Towards tunable and multifunctional interfaces: Multicomponent amorphous alloys and bilayer stacks
NASA Astrophysics Data System (ADS)
Kast, Matthew G.
Controlling the electronic structure and requisite charge transfer at and across interfaces is a grand challenge of materials science. Despite decades of research and numerous successes in the fields microelectronics and photovoltaics much work remains to be done. In many applications, whether they be in microelectronics, photovoltaics or display technology there is a demand for multiple functions at a single interface. Historically, existent materials were either discarded as an option due to known properties or tested with some application based figure of merit in mind. Following this, the quality of the material and/or the preparation of the surface/interface to which the material would be deposited was optimized. As the microelectronics and photovoltaics industries have matured, continued progress (faster, lower power transistors and more efficient, cheaper, abundant solar cells) will require new materials (possibly not previously existent) that are fundamentally better for their application than their highly optimized existent counter parts. The manifestation of this has been seen in the microelectronics field with introduction of hafnium silicates to replace silica (which had previously been monumentally successful) as the gate dielectrics for the most advanced transistors. Continued progress in efficient, cheap, abundant photovoltaics will require similar advances. Advances will be needed in the area of new abundant absorbers that can be deposited cheaply which result in materials with high efficiencies. In addition, selective contacts capable of extracting charge from efficient absorbers with low ohmic losses and low recombination rates will be needed. Presented here are two approaches to the multifunctional interface problem, first the use of amorphous alloys that open up the accessible composition space of thin films significantly and second the use of bilayers that loosen the requirements of a single film at an interface.
Charge collection and SEU mechanisms
NASA Astrophysics Data System (ADS)
Musseau, O.
1994-01-01
In the interaction of cosmic ions with microelectronic devices a dense electron-hole plasma is created along the ion track. Carriers are separated and transported by the electric field and under the action of the concentration gradient. The subsequent collection of these carriers induces a transient current at some electrical node of the device. This "ionocurrent" (single ion induced current) acts as any electrical perturbation in the device, propagating in the circuit and inducing failures. In bistable systems (registers, memories) the stored data can be upset. In clocked devices (microprocessors) the parasitic perturbation may propagate through the device to the outputs. This type of failure only effects the information, and do not degrade the functionally of the device. The purpose of this paper is to review the mechanisms of single event upset in microelectronic devices. Experimental and theoretical results are presented, and actual questions and problems are discussed. A brief introduction recalls the creation of the dense plasma of electron-hole pairs. The basic processes for charge collection in a simple np junction (drift and diffusion) are presented. The funneling-field effect is discussed and experimental results are compared to numerical simulations and semi-empirical models. Charge collection in actual microelectronic structures is then presented. Due to the parasitic elements, coupling effects are observed. Geometrical effects, in densely packed structures, results in multiple errors. Electronic couplings are due to the carriers in excess, acting as minority carriers, that trigger parasitic bipolar transistors. Single event upset of memory cells is discussed, based on numerical and experimental data. The main parameters for device characterization are presented. From the physical interpretation of charge collection mechanisms, the intrinsic sensitivity of various microelectronic technologies is determined and compared to experimental data. Scaling laws and future trends are finally discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, Richard P.
2017-07-01
Sandia National Laboratories has developed a broad set of capabilities in quantum information science (QIS), including elements of quantum computing, quantum communications, and quantum sensing. The Sandia QIS program is built atop unique DOE investments at the laboratories, including the MESA microelectronics fabrication facility, the Center for Integrated Nanotechnologies (CINT) facilities (joint with LANL), the Ion Beam Laboratory, and ASC High Performance Computing (HPC) facilities. Sandia has invested $75 M of LDRD funding over 12 years to develop unique, differentiating capabilities that leverage these DOE infrastructure investments.
Solid state microelectronics tolerant to radiation and high temperature. [JFET thick film hybrids
NASA Technical Reports Server (NTRS)
Draper, B. L.; Palmer, D. W.
1981-01-01
The 300 C electronics technology based on JFET thick film hybrids was tested up to 10 to the 9th power rad gamma (Si) and 10 to the 15th power neutrons/sq cm. Circuits and individual components from this technology all survived this total dose although some devices required 1 hour of annealing at 200 or 300 C to regain functionality. This technology used with real time annealing should function to levels greater than 10 to the 10th power rad gamma and 10 to the 16th power n/sq cm.
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Cohn, Lewis M.
2008-01-01
At GOMAC 2007, we discussed a selection of the challenges for radiation testing of modern semiconductor devices focusing on state-of-the-art memory technologies. This included FLASH non-volatile memories (NVMs) and synchronous dynamic random access memories (SDRAMs). In this presentation, we extend this discussion in device packaging and complexity as well as single event upset (SEU) mechanisms using several technology areas as examples including: system-on-a-chip (SOC) devices and photonic or fiber optic systems. The underlying goal is intended to provoke thought for understanding the limitations and interpretation of radiation testing results.
Goals, achievements of microelectronics program
NASA Astrophysics Data System (ADS)
Schronk, L.
1985-05-01
Besides reviewing the objectives of the government's microelectronics program, the Microelectronics Enterprise, the production of metal oxide semiconductors and bipolar integrated-circuit chips, specific research and development results to date, and the plans for future activity are discussed. Marketing and domestic demand are discussed.
Study of a two-stage photobase generator for photolithography in microelectronics.
Turro, Nicholas J; Li, Yongjun; Jockusch, Steffen; Hagiwara, Yuji; Okazaki, Masahiro; Mesch, Ryan A; Schuster, David I; Willson, C Grant
2013-03-01
The investigation of the photochemistry of a two-stage photobase generator (PBG) is described. Absorption of a photon by a latent PBG (1) (first step) produces a PBG (2). Irradiation of 2 in the presence of water produces a base (second step). This two-photon sequence (1 + hν → 2 + hν → base) is an important component in the design of photoresists for pitch division technology, a method that doubles the resolution of projection photolithography for the production of microelectronic chips. In the present system, the excitation of 1 results in a Norrish type II intramolecular hydrogen abstraction to generate a 1,4-biradiacal that undergoes cleavage to form 2 and acetophenone (Φ ∼ 0.04). In the second step, excitation of 2 causes cleavage of the oxime ester (Φ = 0.56) followed by base generation after reaction with water.
Integrated microelectronics for smart textiles.
Lauterbach, Christl; Glaser, Rupert; Savio, Domnic; Schnell, Markus; Weber, Werner
2005-01-01
The combination of textile fabrics with microelectronics will lead to completely new applications, thus achieving elements of ambient intelligence. The integration of sensor or actuator networks, using fabrics with conductive fibres as a textile motherboard enable the fabrication of large active areas. In this paper we describe an integration technology for the fabrication of a "smart textile" based on a wired peer-to-peer network of microcontrollers with integrated sensors or actuators. A self-organizing and fault-tolerant architecture is accomplished which detects the physical shape of the network. Routing paths are formed for data transmission, automatically circumventing defective or missing areas. The network architecture allows the smart textiles to be produced by reel-to-reel processes, cut into arbitrary shapes subsequently and implemented in systems at low installation costs. The possible applications are manifold, ranging from alarm systems to intelligent guidance systems, passenger recognition in car seats, air conditioning control in interior lining and smart wallpaper with software-defined light switches.
Spatial light modulator array with heat minimization and image enhancement features
Jain, Kanti [Briarcliff Manor, NY; Sweatt, William C [Albuquerque, NM; Zemel, Marc [New Rochelle, NY
2007-01-30
An enhanced spatial light modulator (ESLM) array, a microelectronics patterning system and a projection display system using such an ESLM for heat-minimization and resolution enhancement during imaging, and the method for fabricating such an ESLM array. The ESLM array includes, in each individual pixel element, a small pixel mirror (reflective region) and a much larger pixel surround. Each pixel surround includes diffraction-grating regions and resolution-enhancement regions. During imaging, a selected pixel mirror reflects a selected-pixel beamlet into the capture angle of a projection lens, while the diffraction grating of the pixel surround redirects heat-producing unused radiation away from the projection lens. The resolution-enhancement regions of selected pixels provide phase shifts that increase effective modulation-transfer function in imaging. All of the non-selected pixel surrounds redirect all radiation energy away from the projection lens. All elements of the ESLM are fabricated by deposition, patterning, etching and other microelectronic process technologies.
A Survey of Current Trends in Master's Programs in Microelectronics
ERIC Educational Resources Information Center
Bozanic, Mladen; Sinha, Saurabh
2018-01-01
Contribution: This paper brings forward a paradigm shift in microelectronic and nanoelectronic engineering education. Background: An increasing number of universities are offering graduate-level electrical engineering degree programs with multi-disciplinary Master's-level specialization in microelectronics or nanoelectronics. The paradigm shift…
ERIC Educational Resources Information Center
Orton, Richard J. J.
2011-01-01
The history and meaning of the term "microelectronics" is reviewed, followed by a discussion of the key inventions of the Intel microprocessor in 1971 and the Texas Instruments electronic pocket calculator in 1975. The six characteristic features of microelectronic components are then defined. The UK prime minister Jim Callaghan's…
NASA Astrophysics Data System (ADS)
Liao, Yang; Lin, Jintian; Cheng, Ya
2013-12-01
Recently, hybrid integration of multifunctional micro-components for creating complex, intelligent micro/nano systems has attracted significant attention. These micro-/nano-systems have important applications in a variety of areas, such as healthcare, environment, communication, national security, and so on. However, fabrication of micro/nano systems incorporated with different functions is still a challenging task, which generally requires fabrication of discrete microcomponents beforehand followed by assembly and packaging procedures. Furthermore, current micro-/nano-fabrication techniques are mainly based on the well-established planar lithographic approach, which suffer from severe issues in producing three dimensional (3D) structures with complex geometries and arbitrary configurations. In recent years, the rapid development of femtosecond laser machining technology has enabled 3D direct fabrication and integration of multifunctional components, such as microfluidics, microoptics, micromechanics, microelectronics, etc., into single substrates. In this invited talk, we present our recent progress in this active area. Particularly, we focus on fabrication of 3D micro- and nanofluidic devices and 3D high-Q microcavities in glass substrates by femtosecond laser direct writing.
Radiation Effects: Overview for Space Environment Specialists
NASA Technical Reports Server (NTRS)
Ladbury, Ray
2017-01-01
Radiation Hardness Assurance (RHA) methodologies need to evolve to capitalize on the increased flexibility introduced by new models of space radiation environments. This presentation examines the characteristics of various radiation threats, the sources of error that RHA methodologies seek to control and the contributions of environment models to those errors. The influence of trends in microelectronic device technology is also considered.
2015 Marine Corps Security Environment Forecast: Futures 2030-2045
2015-01-01
The technologies that make the iPhone “smart” were publically funded—the Internet, wireless networks, the global positioning system, microelectronics...Energy Revolution (63 percent); Internet of Things (ubiquitous sensors embedded in interconnected computing devices) (50 percent); “Sci-Fi...Neuroscience & artificial intelligence - Sensors /control systems -Power & energy -Human-robot interaction Robots/autonomous systems will become part of the
Microelectronics and Office Jobs. The Impact of the Chip on Women's Employment.
ERIC Educational Resources Information Center
Werneke, Diane
As labor-saving, efficiency-increasing electronic technology is introduced into offices, jobs held by women will change. Although some jobs may be lost, most job loss will be absorbed by attrition and reduction of waste. Fewer new openings may occur in office jobs, however, especially in a recessionary economy. On the other hand, the jobs that are…
The international electronics industry.
LaDou, J; Rohm, T
1998-01-01
High-technology microelectronics has a major presence in countries such as China, India, Indonesia, and Malaysia, now the third-largest manufacturer of semiconductor chips. The migration of European, Japanese, and American companies accommodates regional markets. Low wage rates and limited enforcement of environmental regulations in developing countries also serve as incentives for the dramatic global migration of this industry. The manufacture of microelectonics products is accompanied by a high incidence of occupational illnesses, which may reflect the widespread use of toxic materials. Metals, photoactive chemicals, solvents, acids, and toxic gases are used in a wide variety of combinations and workplace settings. The industry also presents problems of radiation exposure and various occupational stressors, including some unresolved ergonomic issues. The fast-paced changes of the technology underlying this industry, as well as the stringent security precautions, have added to the difficulty of instituting proper health and safety measures. Epidemiologic studies reveal an alarming increase in spontaneous abortions among cleanroom manufacturing workers; no definitive study has yet identified its cause. Other health issues, including occupational cancer, are yet to be studied. The microelectronics industry is a good example of an industry that is exported to many areas of the world before health and safety problems are properly addressed and resolved.
Microelectronics and Music Education.
ERIC Educational Resources Information Center
Hofstetter, Fred T.
1979-01-01
This look at the impact of microelectronics on computer-assisted instruction (CAI) in music notes trends toward new applications and lower costs. Included are: a rationale for CAI in music, a list of sample programs, comparison of five microelectronic music systems, PLATO cost projections, and sources of further information. (SJL)
Future of the Particle Replication in Nonwetting Templates (PRINT) Technology
Xu, Jing; Wong, Dominica H. C.; Byrne, James D.; Chen, Kai; Bowerman, Charles
2014-01-01
Particle replication in nonwetting templates (PRINT) is a continuous, roll-to-roll, high-resolution molding technology which allows the design and synthesis of precisely defined micro- and nanoparticles. This technology adapts the lithographic techniques from the microelectronics industry and marries these with the roll-to-roll processes from the photographic film industry to enable researchers to have unprecedented control over particle size, shape, chemical composition, cargo, modulus, and surface properties. In addition, PRINT is a GMP-compliant (GMP = good manufacturing practice) platform amenable for particle fabrication on a large scale. Herein, we describe some of our most recent work involving the PRINT technology for application in the biomedical and material sciences. PMID:23670869
Integrated automation for manufacturing of electronic assemblies
NASA Technical Reports Server (NTRS)
Sampite, T. Joseph
1991-01-01
Since 1985, the Naval Ocean Systems Center has been identifying and developing needed technology for flexible manufacturing of hybrid microelectronic assemblies. Specific projects have been accomplished through contracts with manufacturing companies, equipment suppliers, and joint efforts with other government agencies. The resulting technology has been shared through semi-annual meetings with government, industry, and academic representatives who form an ad hoc advisory panel. More than 70 major technical capabilities have been identified for which new development is needed. Several of these developments have been completed and are being shared with industry.
Trends in Microfabrication Capabilities & Device Architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Todd; Jones, Adam; Lentine, Anthony L.
The last two decades have seen an explosion in worldwide R&D, enabling fundamentally new capabilities while at the same time changing the international technology landscape. The advent of technologies for continued miniaturization and electronics feature size reduction, and for architectural innovations, will have many technical, economic, and national security implications. It is important to anticipate possible microelectronics development directions and their implications on US national interests. This report forecasts and assesses trends and directions for several potentially disruptive microfabrication capabilities and device architectures that may emerge in the next 5-10 years.
Smart Materials for Electromagnetic and Optical Applications
NASA Astrophysics Data System (ADS)
Ramesh, Prashanth
The research presented in this dissertation focuses on the development of solid-state materials that have the ability to sense, act, think and communicate. Two broad classes of materials, namely ferroelectrics and wideband gap semiconductors were investigated for this purpose. Ferroelectrics possess coupled electromechanical behavior which makes them sensitive to mechanical strains and fluctuations in ambient temperature. Use of ferroelectrics in antenna structures, especially those subject to mechanical and thermal loads, requires knowledge of the phenomenological relationship between the ferroelectric properties of interest (especially dielectric permittivity) and the external physical variables, viz. electric field(s), mechanical strains and temperature. To this end, a phenomenological model of ferroelectric materials based on the Devonshire thermodynamic theory was developed. This model was then used to obtain a relationship expressing the dependence of the dielectric permittivity on the mechanical strain, applied electric field and ambient temperature. The relationship is shown to compare well with published experimental data and other related models in literature. A model relating ferroelectric loss tangent to the applied electric field and temperature is also discussed. Subsequently, relationships expressing the dependence of antenna operating frequency and radiation efficiency on those external physical quantities are described. These relationships demonstrate the tunability of load-bearing antenna structures that integrate ferroelectrics when they are subjected to mechanical and thermal loads. In order to address the inability of ferroelectrics to integrate microelectronic devices, a feature needed in a material capable of sensing, acting, thinking and communicating, the material Gallium Nitride (GaN) is pursued next. There is an increasing utilization of GaN in the area of microelectronics due to the advantages it offers over other semiconductors. This dissertation demonstrates GaN as a candidate material well suited for novel microelectromechanical systems. The potential of GaN for MEMS is demonstrated via the design, analysis, fabrication, testing and characterization of an optical microswitch device actuated by piezoelectric and electrostrictive means. The piezoelectric and electrostrictive properties of GaN and its differences from common piezoelectrics are discussed before elaborating on the device configuration used to implement the microswitch device. Next, the development of two recent fabrication technologies, Photoelectrochemical etch and Bias-enabled Dark Electrochemical etch, used to realize the 3-dimensional device structure in GaN are described in detail. Finally, an ultra-low-cost, laser-based, non-contact approach to test and characterize the microswitch device is described, followed by the device testing results.
1982-05-01
SELECTION AND EVALUATION . . . . . . . . . . . . . . 2 2.2 MICROELECTRONIC PACKAGES AND THEIR QUALITY . . . * . . . . . . . . 5 2.3 EQUIPMENT...liquid penetrant testing for various microelectronic package hermeticity. I t I MATERIALS AND EQUIPMENT 2.1 DYE PENETRANT SELECTION AND EVALUATION...a commercial visible dye penetrant and a commercial fluorescent dye penetrant were selected as being suitable for the testing of microelectronic
Initial Results from the Radiation Dosimetry Experiment (RaD-X) Balloon Flight Mission
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.
2015-01-01
The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. The four dosimeters flown on the RaD-X science payload are a Hawk version 3.0 Tissue Equivalent Proportional Counter (TEPC) manufactured by Far West Technologies, a Liulin dosimeter-spectrometer produced by the Solar Research and Technology Institute, Bulgarian Academy of Sciences, a total ionizing dose detector manufactured by Teledyne Microelectronic Technologies, and the RaySure detector provided by the University of Surrey.
JPRS Report, Science & Technology, Europe
1991-08-13
Integrate Former Dresden Microelectronics Center [Duesseldorf VDI NACHRICHTEN, 23 Aug 91] 35 Switzerland’s Contraves To Increase Thin-Film... drugs on the mem- brane systems of living cells will be the first application. Microtest systems of this type can be utilized in phar- macy for...other drugs affecting the membrane, and to their effects on the cellular system. German Research Ministry Funds Biosensor Project 91MI0556 Bonn
2007-03-01
Prosthetics to enable return to units without loss of capability Quantum...and will give us a big advantage in terms of unrestricted warfare. Figure 17 high-Productivity Computing System PRoSThETICS We have an exciting...program in prosthetics (Figure 18). It started with a monkey at Duke University. We put microelectronic implants into her brain, taught her
Potential of e-beam writing for diffractive optics
NASA Astrophysics Data System (ADS)
Kley, Ernst-Bernhard; Wyrowski, Frank
1997-05-01
E-beam lithography (EBL) is a powerful tool in optics. Optician can use the progress in EBL to fabricate optical components and systems with novel functions. However, EBL is dominated by microelectronics. Therefore the demands of optics are not always met by the exiting EBL technology. Some possibilities as well as limits of EBL in optics are discussed at the example of diffractive optics.
USSR Report Machine Tools and Metalworking Equipment
1986-01-24
meat -packing plants). In the past, the main emphasis on finished products in individual areas slowed down development and modernization, as well as...social effect . Also related to further improvement in the microelectronic base, micro and minicomputers is development work on the creation of a...more effectively as well as those being built; develop scientific technological and production cooperation; use achievements obtained as a result of
Status of research and development in coordinate-measurement technology
NASA Astrophysics Data System (ADS)
Dich, L. Z.; Latyev, S. M.
1994-09-01
This paper discusses problems involved in developing and operating coordinate-measuring machines. The status of this area of precision instrumentation is analyzed. These problems are made critical not only by the requirements of the machine-tool industry but also by those of the microelectronics industry, both of which use coordinate tables, step-up gears, and other equipment in which precise coordinate measurements are necessary.
Communication acoustics in Bell Labs
NASA Astrophysics Data System (ADS)
Flanagan, J. L.
2004-05-01
Communication aoustics has been a central theme in Bell Labs research since its inception. Telecommunication serves human information exchange. And, humans favor spoken language as a principal mode. The atmospheric medium typically provides the link between articulation and hearing. Creation, control and detection of sound, and the human's facility for generation and perception are basic ingredients of telecommunication. Electronics technology of the 1920s ushered in great advances in communication at a distance, a strong economical impetus being to overcome bandwidth limitations of wireline and cable. Early research established criteria for speech transmission with high quality and intelligibility. These insights supported exploration of means for efficient transmission-obtaining the greatest amount of speech information over a given bandwidth. Transoceanic communication was initiated by undersea cables for telegraphy. But these long cables exhibited very limited bandwidth (order of few hundred Hz). The challenge of sending voice across the oceans spawned perhaps the best known speech compression technique of history-the Vocoder, which parametrized the signal for transmission in about 300 Hz bandwidth, one-tenth that required for the typical waveform channel. Quality and intelligibility were grave issues (and they still are). At the same time parametric representation offered possibilities for encryption and privacy inside a traditional voice bandwidth. Confidential conversations between Roosevelt and Churchill during World War II were carried over high-frequency radio by an encrypted vocoder system known as Sigsaly. Major engineering advances in the late 1940s and early 1950s moved telecommunications into a new regime-digital technology. These key advances were at least three: (i) new understanding of time-discrete (sampled) representation of signals, (ii) digital computation (especially binary based), and (iii) evolving capabilities in microelectronics that ultimately provided circuits of enormous complexity with low cost and power. Digital transmission (as exemplified in pulse code modulation-PCM, and its many derivatives) became a telecommunication mainstay, along with switches to control and route information in digital form. Concomitantly, storage means for digital information advanced, providing another impetus for speech compression. More and more, humans saw the need to exchange speech information with machines, as well as with other humans. Human-machine speech communication came to full stride in the early 1990s, and now has expanded to multimodal domains that begin to support enhanced naturalness, using contemporaneous sight, sound and touch signaling. Packet transmission is supplanting circuit switching, and voice and video are commonly being carried by Internet protocol.
Microelectronics bioinstrumentation systems
NASA Technical Reports Server (NTRS)
Ko, W. H.
1977-01-01
Microelectronic bioinstrumentation systems to be employed in the Cardiovascular Deconditioning Program were developed. Implantable telemetry systems for long-term monitoring of animals on earth were designed to collect physiological data necessary for the understanding of the mechanisms of cardiovascular deconditioning. In-flight instrumentation systems, microelectronic instruments, and RF powering techniques for other life science experiments in the NASA program were studied.
Relevance of microelectronic education to industrial needs
NASA Technical Reports Server (NTRS)
Prince, J. L.; Lathrop, J. W.
1977-01-01
The relevance of microelectronic education to industrial needs was evaluated, and four categories were surveyed: (1) facts and rules; (2) skills; (3) personality; and (4) deductive-inductive reasoning. Examples of specific items in each category are given to illustrate their meaning and it was indicated as to which items in each category are strongly impacted by microelectronics courses and laboratories.
NASA Technical Reports Server (NTRS)
Culver, Harry
1999-01-01
Abstract NASA's Goddard Space Flight Center (GSFC) is currently developing a new class of satellites called the nano-satellite (nano-sat). A major objective of this development effort is to provide the technology required to enable a constellation of tens to hundreds of nano-satellites to make both remote and in-situ measurements from space. The Nano-sat will be a spacecraft weighing a maximum of 10 kg, including the propellant mass, and producing at least 5 Watts of power to operate the spacecraft. The electronics are required to survive a total radiation dose rate of 100 krads for a mission lifetime of two years. There are many unique challenges that must be met in order to develop the avionics for such a spacecraft. The first challenge is to develop an architecture that will operate on the allotted 5 Watts and meet the diverging requirements of multiple missions. This architecture will need to incorporate a multitude of new advanced microelectronic technologies. The microelectronics developed must be a modular and scalable packaging of technology to solve the problem of developing a solution to both reduce cost and meet the requirements of various missions. This development will utilize the most cost effective approach, whether infusing commercially driven semiconductor devices into spacecraft applications or partnering with industry to design and develop low cost, low power, low mass, and high capacity data processing devices. This paper will discuss the nano-sat architecture and the major technologies that will be developed. The major technologies that will be covered include: (1) Light weight Low Power Electronics Packaging, (2) Radiation Hard/Tolerant, Low Power Processing Platforms, (3) High capacity Low Power Memory Systems (4) Radiation Hard reconfiguragble field programmable gate array (rFPGA)
Wireless health monitoring of cracks in structures with MEMS-IDT sensors
NASA Astrophysics Data System (ADS)
Kim, Jae-Sung; Vinoy, K. J.; Varadan, Vijay K.
2002-07-01
The integration of MEMS, IDTs and required microelectronics and conformal antennas to realize programmable, robust and low cost passive microsensors suitable for many military structures and systems including aircraft, missiles and munitions is presented in this paper. The technology is currently being applied to the structural health monitoring of accelerometers, gyroscopes and vibration monitoring devices with signal processing electronics to provide real- time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ Aircraft structural health monitoring system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensors and MEMS for structural applications including load, vibration and acoustics characteristics and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. Additionally a range of sensor types can be integrated onto a single chip with built-in electronics and ASIC, providing a low power microsystem. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State smart electronics or wireless communication systems suitable for condition monitoring of aircraft structures in-flight. A hybrid accelerometer and gyroscope in a single chip suitable for inertial navigation system and other microsensors for health monitoring and condition-based maintenance of structures, drag sensing and control of aircraft, strain and deflection of structures and systems, ice sensing on aircraft, remote temperature and humidity measurement of propellant in munitions, chemical sensing, etc. are discussed.
Wireless microsensors for health monitoring of aircraft structures
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.
2003-01-01
The integration of MEMS, IDTs (interdigital transducers) and required microelectronics and conformal antennas to realize programmable, robust and low cost passive microsensors suitable for many military structures and systems including aircraft, missiles and munitions is presented in this paper. The technology is currently being applied to the structural health monitoring of critical aircraft components. The approach integrates acoustic emission, strain gauges, MEMS accelerometers, gyroscopes and vibration monitoring devices with signal processing electronics to provide real-time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ Aircraft structural health monitoring (ASHM) system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensors and MEMS for structural applications including load, vibration and acoustics characterization and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. Additionally a range of sensor types can be integrated onto a single chip with built-in electronics and ASIC (Application Specific Integrated Circuit), providing a low power Microsystems. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State smart electronics or wireless communication systems suitable for condition monitoring of aircraft structures in-flight. A hybrid accelerometer and gyroscope in a single chip suitable for inertial navigation system and other microsensors for health monitoring and condition-based maintenance of structures, drag sensing and control of aircraft, strain and deflection of structures and systems, ice sensing on aircraft, remote temperature and humidity measurement of propellant in munitions, chemical sensing, etc. are discussed.
Bi-level microelectronic device package with an integral window
Peterson, Kenneth A.; Watson, Robert D.
2004-01-06
A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The multilayered package can be formed of a LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded so that the light-sensitive side is optically accessible through the window. The package has at least two levels of circuits for making electrical interconnections to a pair of microelectronic devices. The result is a compact, low-profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device(s).
Single level microelectronic device package with an integral window
Peterson, Kenneth A.; Watson, Robert D.
2003-12-09
A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The package can be formed of a multilayered LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during cofiring. The microelectronic device can be flip-chip interconnected so that the light-sensitive side is optically accessible through the window. A glob-top encapsulant or protective cover can be used to protect the microelectronic device and electrical interconnections. The result is a compact, low profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device.
Spreading devices into a 2-D module layout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P.; Gupta, Vipin P.; Nielson, Gregory N.
An apparatus, method, and system, the apparatus including a receiving member dimensioned to receive an array of microelectronic devices; and a linkage member coupled to the receiving member, the linkage member configured to move the receiving member in at least two dimensions so as to modify a spacing between the electronic devices within the array of microelectronic devices received by the receiving member. The method including coupling an array of microelectronic devices to an expansion assembly; and expanding the expansion assembly so as to expand the array of microelectronic devices in at least two directions within a single plane. Themore » system including a support member; an expansion assembly coupled to the support member, the expansion assembly having a plurality of receiving members configured to move in at least two dimensions within a single plane; and a plurality of microelectronic devices coupled to each of the plurality of receiving members.« less
Photoemission-based microelectronic devices
Forati, Ebrahim; Dill, Tyler J.; Tao, Andrea R.; Sievenpiper, Dan
2016-01-01
The vast majority of modern microelectronic devices rely on carriers within semiconductors due to their integrability. Therefore, the performance of these devices is limited due to natural semiconductor properties such as band gap and electron velocity. Replacing the semiconductor channel in conventional microelectronic devices with a gas or vacuum channel may scale their speed, wavelength and power beyond what is available today. However, liberating electrons into gas/vacuum in a practical microelectronic device is quite challenging. It often requires heating, applying high voltages, or using lasers with short wavelengths or high powers. Here, we show that the interaction between an engineered resonant surface and a low-power infrared laser can cause enough photoemission via electron tunnelling to implement feasible microelectronic devices such as transistors, switches and modulators. The proposed photoemission-based devices benefit from the advantages of gas-plasma/vacuum electronic devices while preserving the integrability of semiconductor-based devices. PMID:27811946
Biomedical applications of NASA technology
NASA Technical Reports Server (NTRS)
Friedman, Donald S.
1991-01-01
Through the active transfer of technology, NASA Technology Utilization (TU) Program assists private companies, associations, and government agencies to make effective use of NASA's technological resources to improve U.S. economic competitiveness and to provide societal benefit. Aerospace technology from such areas as digital image processing, space medicine and biology, microelectronics, optics, and electro-optics, and ultrasonic imaging have found many secondary applications in medicine. Examples of technology spinoffs are briefly discussed to illustrate the benefits realized through adaptation of aerospace technology to solve health care problems. Successful implementation of new technologies increasingly requires the collaboration of industry, universities, and government and the TU Program serves as the liaison to establish such collaborations with NASA. NASA technology is an important resource to support the development of new medical products and techniques that will further advance the quality of health care available in the U.S. and worldwide.
Future of the particle replication in nonwetting templates (PRINT) technology.
Xu, Jing; Wong, Dominica H C; Byrne, James D; Chen, Kai; Bowerman, Charles; DeSimone, Joseph M
2013-06-24
Particle replication in nonwetting templates (PRINT) is a continuous, roll-to-roll, high-resolution molding technology which allows the design and synthesis of precisely defined micro- and nanoparticles. This technology adapts the lithographic techniques from the microelectronics industry and marries these with the roll-to-roll processes from the photographic film industry to enable researchers to have unprecedented control over particle size, shape, chemical composition, cargo, modulus, and surface properties. In addition, PRINT is a GMP-compliant (GMP=good manufacturing practice) platform amenable for particle fabrication on a large scale. Herein, we describe some of our most recent work involving the PRINT technology for application in the biomedical and material sciences. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electron Technology: ELTE 2016
NASA Astrophysics Data System (ADS)
Pisarkiewicz, Tadeusz; Kucewicz, Wojciech
2016-12-01
In this paper we present a review of research results and technical accomplishments presented by researchers from technical universities, governmental institutes and research companies during the XIIth Scientific Conference Electron Technology, ELTE 2016. This review is based on materials presented at four topical conference sessions: Microelectronics and Nanoelectronics, Photonics, Materials and Technologies, and Microsystems and also on materials presented by invited speakers at two dedicated sessions. Oral sessions were accompanied by the poster sessions. In effect about 50 papers gathered in this volume reflect the topics discussed at the Conference. A short description of technological and measurement possibilities in the laboratories of Academic Centre for Materials and Nanotechnology and also in the Department of Electronics of the Faculty of Computer Science, Electronics and Telecommunications AGH UST are given.
Human factors technology for America's space program
NASA Technical Reports Server (NTRS)
Montemerlo, M. D.
1982-01-01
NASA is initiating a space human factors research and technology development program in October 1982. The impetus for this program stems from: the frequent and economical access to space provided by the Shuttle, the advances in control and display hardware/software made possible through the recent explosion in microelectronics technology, heightened interest in a space station, heightened interest by the military in space operations, and the fact that the technology for long duration stay times for man in space has received relatively little attention since the Apollo and Skylab missions. The rationale for and issues in the five thrusts of the new program are described. The main thrusts are: basic methodology, crew station design, ground control/operations, teleoperations and extra vehicular activity.
REVIEW ARTICLE: How will physics be involved in silicon microelectronics
NASA Astrophysics Data System (ADS)
Kamarinos, Georges; Felix, Pierre
1996-03-01
By the year 2000 electronics will probably be the basis of the largest industry in the world. Silicon microelectronics will continue to keep a dominant place covering 99% of the `semiconductor market'. The aim of this review article is to indicate for the next decade the domains in which research work in `physics' is needed for a technological advance towards increasing speed, complexity and density of silicon ultra large scale integration (ULSI) integrated circuits (ICs). By `physics' we mean here not only condensed matter physics but also the basic physical chemistry and thermodynamics. The review begins with a brief and general introduction in which we elucidate the current state of the art and the trends in silicon microelectronics. Afterwards we examine the involvement of physics in silicon microelectronics in the two main sections. The first section concerns the processes of fabrication of ICs: lithography, oxidation, diffusion, chemical and physical vapour deposition, rapid thermal processing, etching, interconnections, ultra-clean processing and microcontamination. The second section concerns the electrical operation of the ULSI devices. It defines the integration scales and points out the importance of the intermediate scale of integration which is the scale of the next generation of ICs. The emergence of cryomicroelectronics is also reviewed and an extended paragraph is dedicated to the problem of reliability and ageing of devices and ICs: hot carrier degradation, interdevice coupling and noise are considered. It is shown, during our analysis, that the next generation of silicon ICs needs mainly: (i) `scientific' fabrication and (ii) microscopic modelling and simulation of the electrical characteristics of the scaled down devices. To attain the above objectives a return to the `first principles' of physics as well as a recourse to nonlinear and non-equilibrium thermodynamics are mandatory. In the references we list numerous review papers and references of specialized colloquia proceedings so that a more detailed survey of the subject is possible for the reader.
Deep Space 1: Testing New Technologies for Future Small Bodies Missions
NASA Technical Reports Server (NTRS)
Rayman, Marc D.
2001-01-01
Launched on October 24, 1998, Deep Space 1 (DS1) was the first mission of NASA's New Millennium Program, chartered to validate in space high-risk, new technologies important for future space science programs. The advanced technology payload that was tested on DS1 comprises solar electric propulsion, solar concentrator arrays, autonomous on-board navigation and other autonomous systems, several telecommunications and microelectronics devices, and two low-mass integrated science instrument packages. The mission met or exceeded all of its success criteria. The 12 technologies were rigorously exercised so that subsequent flight projects would not have to incur the cost and risk of being the fist users of these new capabilities. Examples of the benefits to future small body missions from DS1's technologies will be described.
NASA Technical Reports Server (NTRS)
1995-01-01
The recent evolution of microelectronic technologies coupled with the growth of micro-electro-mechanical systems (MEMS) has had significant impact in the commercial sector. The focus of this conference was to anticipate and extend the incorporation of nano-electronics and MEMS into application specific integrated microinstruments (ASIM's) in space systems. Presentations ranged from mission application of nano-satellites to silicon micromachining for photonic applications.
Vision Technology for Automated Inspection of Hybrid Microelectronics Assemblies
1988-06-01
circuits are a very efficient packaging technique, with the primary advantages of size, better resistance to environ - 0 ments, and the flexibility to...produced for the military are much more complex and have more stringent performance requirements, particularly in their resistance to environments and...boards, particularly because of the need to protect circuits from a hostile environment such as salt, heat, and moisture. Included among the major U.S
Impact of Spacecraft Shielding on Direct Ionization Soft Error Rates for sub-130 nm Technologies
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.; Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Michael M.; Sanders, Anthony B.; Ladbury, Raymond L.; Oldham, Timothy R.; Marshall, Paul W.; Heidel, David F.; Rodbell, Kenneth P.
2010-01-01
We use ray tracing software to model various levels of spacecraft shielding complexity and energy deposition pulse height analysis to study how it affects the direct ionization soft error rate of microelectronic components in space. The analysis incorporates the galactic cosmic ray background, trapped proton, and solar heavy ion environments as well as the October 1989 and July 2000 solar particle events.
Impact of Spacecraft Shielding on Direct Ionization Soft Error Rates for Sub-130 nm Technologies
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.; Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Sanders, Anthony B.; Ladbury, Raymond L.; Oldham, Timothy R.; Marshall, Paul W.; Heidel, David F.; Rodbell, Kenneth P.
2010-01-01
We use ray tracing software to model various levels of spacecraft shielding complexity and energy deposition pulse height analysis to study how it affects the direct ionization soft error rate of microelectronic components in space. The analysis incorporates the galactic cosmic ray background, trapped proton, and solar heavy ion environments as well as the October 1989 and July 2000 solar particle events.
Vacuum microelectronics for beam power and rectennas
NASA Technical Reports Server (NTRS)
Gray, Henry F.
1989-01-01
Vacuum Microelectronic devices can be described as vacuum transistors or micro-miniature vacuum tubes, as one chooses. The fundamental reason behind this new technology is the very large current densities available from field emitters, namely as high as 10(8) A/sq cm. Array current densities as high as 1000 A/sq cm have been measured. Total electron transit times from source to drain for 1 micron feature size devices have been predicted to be about 150fs. This very short transit time implies the possibility of submillimeter wave transmitters and rectennas in devices which can operate with reasonably high voltages and which are small in size and are lightweight. In addition, they are expected to be extremely radiation hard and very temperature insensitive. That is, they are expected to have radiation hardness characteristics similar to vacuum tubes, and both the high temperature and low temperature limits should be determined by the package. That is, there should be no practical intrinsic temperature or carrier freezeout problems for devices based on metals or composites. But the technology is difficult to implement at the present time because it is based on 300 to 500 angstrom radius field emitters which must be relatively uniform. There is also the need to understand the non-equilibrium transport physics in the near-surface regions of the field emitters.
Laios, Eleftheria; Drogari, Euridiki
2006-12-01
Three mutations in the low density lipoprotein receptor (LDLR) gene account for 49% of familial hypercholesterolemia (FH) cases in Greece. We used the microelectronic array technology of the NanoChip Molecular Biology Workstation to develop a multiplex method to analyze these single-nucleotide polymorphisms (SNPs). Primer pairs amplified the region encompassing each SNP. The biotinylated PCR amplicon was electronically addressed to streptavidin-coated microarray sites. Allele-specific fluorescently labeled oligonucleotide reporters were designed and used for detection of wild-type and SNP sequences. Genotypes were compared to PCR-restriction fragment length polymorphism (PCR-RFLP). We developed three monoplex assays (1 SNP/site) and an optimized multiplex assay (3SNPs/site). We performed 92 Greece II, 100 Genoa, and 98 Afrikaner-2 NanoChip monoplex assays (addressed to duplicate sites and analyzed separately). Of the 580 monoplex genotypings (290 samples), 579 agreed with RFLP. Duplicate sites of one sample were not in agreement with each other. Of the 580 multiplex genotypings, 576 agreed with the monoplex results. Duplicate sites of three samples were not in agreement with each other, indicating requirement for repetition upon which discrepancies were resolved. The multiplex assay detects common LDLR mutations in Greek FH patients and can be extended to accommodate additional mutations.
Trusted Defense Microelectronics: Future Access and Capabilities Are Uncertain
2015-10-28
Board Task Force on High Performance Microchip Supply and documentation and discussions with industry and DOD officials in September and October...the defense and microelectronics industry . DOD’s review of this report deemed some of this information as sensitive but unclassified. What GAO...increased specialization and industry consolidation. • Once dominated by domestic sources, the supply chain for microelectronics manufacturing is a global one
NASA spinoffs to bioengineering and medicine
NASA Technical Reports Server (NTRS)
Rouse, D. J.; Winfield, D. L.; Canada, S. C.
1991-01-01
Through the active transfer of technology, the National Aeronautics and Space Administration (NASA) Technology Utilization (TU) Program assists private companies, associations, and government agencies to make effective use of NASA's technological resources to improve U.S. economic competitiveness and to provide societal benefit. Aerospace technology from areas such as digital image processing, space medicine and biology, microelectronics, optics and electrooptics, and ultrasonic imaging have found many secondary applications in medicine. Examples of technology spinoffs are briefly discussed to illustrate the benefits realized through adaptation of aerospace technology to solve health care problems. Successful implementation of new technologies increasingly requires the collaboration of industry, universities, and government, and the TU Program serves as the liaison to establish such collaborations with NASA. NASA technology is an important resource to support the development of new medical products and techniques that will further advance the quality of health care available in the U.S. and worldwide.
NASA Astrophysics Data System (ADS)
Lebedev, A. A.; Ivanova, E. G.; Komleva, V. A.; Klokov, N. M.; Komlev, A. A.
2017-01-01
The considered method of learning the basics of microelectronic circuits and systems amplifier enables one to understand electrical processes deeper, to understand the relationship between static and dynamic characteristics and, finally, bring the learning process to the cognitive process. The scheme of problem-based learning can be represented by the following sequence of procedures: the contradiction is perceived and revealed; the cognitive motivation is provided by creating a problematic situation (the mental state of the student), moving the desire to solve the problem, to raise the question "why?", the hypothesis is made; searches for solutions are implemented; the answer is looked for. Due to the complexity of architectural schemes in the work the modern methods of computer analysis and synthesis are considered in the work. Examples of engineering by students in the framework of students' scientific and research work of analog circuits with improved performance based on standard software and software developed at the Department of Microelectronics MEPhI.
Advanced optical modeling of TiN metal hard mask for scatterometric critical dimension metrology
NASA Astrophysics Data System (ADS)
Ebersbach, Peter; Urbanowicz, Adam M.; Likhachev, Dmitriy; Hartig, Carsten
2017-03-01
The majority of scatterometric production control models assume constant optical properties of the materials and only dimensional parameters are allowed to vary. However, this assumption, especially in case of thin-metal films, negatively impacts model precision and accuracy. In this work we focus on optical modeling of the TiN metal hardmask for scatterometry applications. Since the dielectric function of TiN exhibits thickness dependence, we had to take this fact into account. Moreover, presence of the highly absorbing films influences extracted thicknesses of dielectric layers underneath the metal films. The later phenomenon is often not reflected by goodness of fit. We show that accurate optical modeling of metal is essential to achieve desired scatterometric model quality for automatic process control in microelectronic production. Presented modeling methodology can be applied to other TiN applications such as diffusion barriers and metal gates as well as for other metals used in microelectronic manufacturing for all technology nodes.
Marketing NASA Langley Polymeric Materials
NASA Technical Reports Server (NTRS)
Flynn, Diane M.
1995-01-01
A marketing tool was created to expand the knowledge of LaRC developed polymeric materials, in order to facilitate the technology transfer process and increase technology commercialization awareness among a non-technical audience. The created brochure features four materials, LaRC-CP, LaRC-RP46, LaRC-SI, and LaRC-IA, and highlights their competitive strengths in potential commercial applications. Excellent opportunities exist in the $40 million per year microelectronics market and the $6 billion adhesives market. It is hoped that the created brochure will generate inquiries regarding the use of the above materials in markets such as these.
NASA Electronic Parts and Packaging (NEPP) Program
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Sampson, Michael J.
2008-01-01
This viewgraph presentation reviews NASA's Electronic Parts and Packaging (NEPP) Program. The NEPP mission is to provide guidance to NASA for the selection and and application of microelectronics technologies, to improve understanding of the risks related to the use of these technologies in the space environment and to ensure that appropriate research is performed to meet NASA mission needs. The NEPP Program focuses on the reliability aspects of electronic devices. Three principal aspects to this reliability: (1) lifetime, (2) effects of space radiation and the space environment, and (3) creation and maintenance of the assurance support infrastructure required for success.
The NASA Electronic Parts and Packaging (NEPP) Program: Results and Direction
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.
2007-01-01
The NASA Electronic Parts and Packaging (NEPP) Program's mission is to provide guidance to NASA for the selection and application of microelectronic technologies, to improve understanding of the risks related to the use of these technologies in the space environment and to ensure that appropriate research is performed to meet NASA mission assurance needs. This viewgraph presentation reviews the NEPP program's goals and objectives, and reviews many of the missions that the NEPP program has impacted, both in and out of NASA. Also included are examples of the evaluation that the program performed.
Hall, Gordon H; Sloan, David L; Ma, Tianchi; Couse, Madeline H; Martel, Stephane; Elliott, Duncan G; Glerum, D Moira; Backhouse, Christopher J
2014-07-04
Electrophoresis is an integral part of many molecular diagnostics protocols and an inexpensive implementation would greatly facilitate point-of-care (POC) applications. However, the high instrumentation cost presents a substantial barrier, much of it associated with fluorescence detection. The cost of such systems could be substantially reduced by placing the fluidic channel and photodiode directly above the detector in order to collect a larger portion of the fluorescent light. In future, this could be achieved through the integration and monolithic fabrication of photoresist microchannels on complementary metal-oxide semiconductor microelectronics (CMOS). However, the development of such a device is expensive due to high non-recurring engineering costs. To facilitate that development, we present a system that utilises an optical relay to integrate low-cost polymeric microfluidics with a CMOS chip that provides a photodiode, analog-digital conversion and a standard serial communication interface. This system embodies an intermediate level of microelectronic integration, and significantly decreases development costs. With a limit of detection of 1.3±0.4nM of fluorescently end-labeled deoxyribonucleic acid (DNA), it is suitable for diagnostic applications. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
White, Mark; Huang, Bing; Qin, Jin; Gur, Zvi; Talmor, Michael; Chen, Yuan; Heidecker, Jason; Nguyen, Duc; Bernstein, Joseph
2005-01-01
As microelectronics are scaled in to the deep sub-micron regime, users of advanced technology CMOS, particularly in high-reliability applications, should reassess how scaling effects impact long-term reliability. An experimental based reliability study of industrial grade SRAMs, consisting of three different technology nodes, is proposed to substantiate current acceleration models for temperature and voltage life-stress relationships. This reliability study utilizes step-stress techniques to evaluate memory technologies (0.25mum, 0.15mum, and 0.13mum) embedded in many of today's high-reliability space/aerospace applications. Two acceleration modeling approaches are presented to relate experimental FIT calculations to Mfr's qualification data.
Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip.
Atabaki, Amir H; Moazeni, Sajjad; Pavanello, Fabio; Gevorgyan, Hayk; Notaros, Jelena; Alloatti, Luca; Wade, Mark T; Sun, Chen; Kruger, Seth A; Meng, Huaiyu; Al Qubaisi, Kenaish; Wang, Imbert; Zhang, Bohan; Khilo, Anatol; Baiocco, Christopher V; Popović, Miloš A; Stojanović, Vladimir M; Ram, Rajeev J
2018-04-01
Electronic and photonic technologies have transformed our lives-from computing and mobile devices, to information technology and the internet. Our future demands in these fields require innovation in each technology separately, but also depend on our ability to harness their complementary physics through integrated solutions 1,2 . This goal is hindered by the fact that most silicon nanotechnologies-which enable our processors, computer memory, communications chips and image sensors-rely on bulk silicon substrates, a cost-effective solution with an abundant supply chain, but with substantial limitations for the integration of photonic functions. Here we introduce photonics into bulk silicon complementary metal-oxide-semiconductor (CMOS) chips using a layer of polycrystalline silicon deposited on silicon oxide (glass) islands fabricated alongside transistors. We use this single deposited layer to realize optical waveguides and resonators, high-speed optical modulators and sensitive avalanche photodetectors. We integrated this photonic platform with a 65-nanometre-transistor bulk CMOS process technology inside a 300-millimetre-diameter-wafer microelectronics foundry. We then implemented integrated high-speed optical transceivers in this platform that operate at ten gigabits per second, composed of millions of transistors, and arrayed on a single optical bus for wavelength division multiplexing, to address the demand for high-bandwidth optical interconnects in data centres and high-performance computing 3,4 . By decoupling the formation of photonic devices from that of transistors, this integration approach can achieve many of the goals of multi-chip solutions 5 , but with the performance, complexity and scalability of 'systems on a chip' 1,6-8 . As transistors smaller than ten nanometres across become commercially available 9 , and as new nanotechnologies emerge 10,11 , this approach could provide a way to integrate photonics with state-of-the-art nanoelectronics.
The Co-60 gamma-ray irradiation effects on the Al/HfSiO4/p-Si/Al MOS capacitors
NASA Astrophysics Data System (ADS)
Lok, R.; Kaya, S.; Karacali, H.; Yilmaz, E.
2017-12-01
In this work, the initial interface trap density (Nit) to examine device compability for microelectronics and then the Co-60 gamma irradiation responses of Al/HfSiO4/p-Si/Al (MOS) capacitors were investigated in various dose ranges up to 70 Gy. Pre-irradiation response of the devices was evaluated from high frequency (HF) and low frequency (LF) capacitance method and the Nit was calculated as 9.91 × 1011 cm-2 which shows that the HfSiO4/p-Si interface quality is convenient for microelectronics applications. The irradiation responses of the devices were carried out from flat-band and mid-gap voltage shifts obtained from stretch of capacitance characteristics prior to and after irradiation. The results show that the flat band voltages very slightly shifted to positive voltage values demonstrating the enhancement of negative charge trapping in device structure. The sensitivity of the Al/HfSiO4/p-Si/Al MOS capacitors was found to be 4.41 mV/Gy for 300 nm-thick HfSiO4 gate dielectrics. This value approximately 6.5 times smaller compared to the same thickness conventional SiO2 based MOS devices. Therefore, HfSiO4 exhibits crucial irradiation tolerance in gamma irradiation environment. Consequently, HfSiO4 dielectrics may have significant usage for microelectronic technology as a radiation hard material where radiation field exists such as in space applications.
Protection of microelectronic devices during packaging
Peterson, Kenneth A.; Conley, William R.
2002-01-01
The present invention relates to a method of protecting a microelectronic device during device packaging, including the steps of applying a water-insoluble, protective coating to a sensitive area on the device; performing at least one packaging step; and then substantially removing the protective coating, preferably by dry plasma etching. The sensitive area can include a released MEMS element. The microelectronic device can be disposed on a wafer. The protective coating can be a vacuum vapor-deposited parylene polymer, silicon nitride, metal (e.g. aluminum or tungsten), a vapor deposited organic material, cynoacrylate, a carbon film, a self-assembled monolayered material, perfluoropolyether, hexamethyldisilazane, or perfluorodecanoic carboxylic acid, silicon dioxide, silicate glass, or combinations thereof. The present invention also relates to a method of packaging a microelectronic device, including: providing a microelectronic device having a sensitive area; applying a water-insoluble, protective coating to the sensitive area; providing a package; attaching the device to the package; electrically interconnecting the device to the package; and substantially removing the protective coating from the sensitive area.
Temporary coatings for protection of microelectronic devices during packaging
Peterson, Kenneth A.; Conley, William R.
2005-01-18
The present invention relates to a method of protecting a microelectronic device during device packaging, including the steps of applying a water-insoluble, temporary protective coating to a sensitive area on the device; performing at least one packaging step; and then substantially removing the protective coating, preferably by dry plasma etching. The sensitive area can include a released MEMS element. The microelectronic device can be disposed on a wafer. The protective coating can be a vacuum vapor-deposited parylene polymer, silicon nitride, metal (e.g. aluminum or tungsten), a vapor deposited organic material, cynoacrylate, a carbon film, a self-assembled monolayered material, perfluoropolyether, hexamethyldisilazane, or perfluorodecanoic carboxylic acid, silicon dioxide, silicate glass, or combinations thereof. The present invention also relates to a method of packaging a microelectronic device, including: providing a microelectronic device having a sensitive area; applying a water-insoluble, protective coating to the sensitive area; providing a package; attaching the device to the package; electrically interconnecting the device to the package; and substantially removing the protective coating from the sensitive area.
Unobstructive Body Area Networks (BAN) for efficient movement monitoring.
Felisberto, Filipe; Costa, Nuno; Fdez-Riverola, Florentino; Pereira, António
2012-01-01
The technological advances in medical sensors, low-power microelectronics and miniaturization, wireless communications and networks have enabled the appearance of a new generation of wireless sensor networks: the so-called wireless body area networks (WBAN). These networks can be used for continuous monitoring of vital parameters, movement, and the surrounding environment. The data gathered by these networks contributes to improve users' quality of life and allows the creation of a knowledge database by using learning techniques, useful to infer abnormal behaviour. In this paper we present a wireless body area network architecture to recognize human movement, identify human postures and detect harmful activities in order to prevent risk situations. The WBAN was created using tiny, cheap and low-power nodes with inertial and physiological sensors, strategically placed on the human body. Doing so, in an as ubiquitous as possible way, ensures that its impact on the users' daily actions is minimum. The information collected by these sensors is transmitted to a central server capable of analysing and processing their data. The proposed system creates movement profiles based on the data sent by the WBAN's nodes, and is able to detect in real time any abnormal movement and allows for a monitored rehabilitation of the user.
2010-01-01
TERMS MEMS , acoustic wave devices, acoustic wave sensors Qing-Ming Wang University of Pittsburgh 123 University Place University Club Pittsburgh, PA...resonators,” Proc. SPIE Vol. 6223, 62230I, Micro ( MEMS ) and Nanotechnologies for Space Applications; Thomas George, Zhong-Yang Cheng; Eds. (May...microelectromechanical resonators has been recognized as a technological challenge in the current microelectronics and MEMS development. The
NASA Technical Reports Server (NTRS)
Mcguire, Gary E. (Editor); Mcintyre, Dale C. (Editor); Hofmann, Siegfried (Editor)
1991-01-01
A conference on metallurgical coatings and thin films produced papers in the areas of coatings for use at high temperatures; hard coatings and deposition technologies; diamonds and related materials; tribological coatings/surface modifications; thin films for microelectronics and high temperature superconductors; optical coatings, film characterization, magneto-optics, and guided waves; and methods for characterizing films and modified surfaces.
Electric Field Control of Magnetism Using BiFeO3-Based Heterostructures
2014-04-22
dissipation in the form of heat has become a center stage issue for the microelectronics industry. By taking advantage of the strong correlations...speed and storage density, significant energy dissipation in the form of heat has become a center stage issue for the microelectronics industry. By...and storage density, significant energy dissipation in the form of heat has become a center stage issue for the microelectronics industry. By taking
Kim, Inah; Kim, Myoung-Hee; Lim, Sinye
2015-01-01
Despite the global expansion of supply chains and changes to the production process, few studies since the mid-1990 s and 2000s have examined reproductive risks of the microelectronics industry; we examined the reproductive risks among female microelectronics workers in South Korea. Based on claim data from the National Health Insurance (2008-2012), we estimated age-specific rates of spontaneous abortion (SAB) and menstrual aberration (MA) among women aged 20 to 39 years. We compared data between microelectronics workers and three different control groups: economically inactive women, the working population as a whole, and workers employed in the bank industry. For an effect measure, age-stratified relative risks (RRs) were estimated. Female workers in the microelectronics industry showed significantly higher risk for SAB and MA compared to control groups. The RRs for SAB with reference to economically inactive women, working population, and bank workers in their twenties were 1.57, 1.40, and 1.37, respectively, and the RRs for MA among females in their twenties were 1.54, 1.38, and 1.48, respectively. For women in their thirties, RRs for SAB were 1.58, 1.67, and 1.13, and those for MA were 1.25, 1.35, and 1.23 compared to the three control populations, respectively. All RRs were statistically significant at a level of 0.05, except for the SAB case comparison with bank workers in their thirties. Despite technical innovations and health and safety measures, female workers in microelectronics industry in South Korea have high rates of SAB and MA, suggesting continued exposure to reproductive hazards. Further etiologic studies based on primary data collection and careful surveillance are required to confirm these results.
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Housner, Jerrold M.
1993-01-01
Recent advances in computer technology that are likely to impact structural analysis and design of flight vehicles are reviewed. A brief summary is given of the advances in microelectronics, networking technologies, and in the user-interface hardware and software. The major features of new and projected computing systems, including high performance computers, parallel processing machines, and small systems, are described. Advances in programming environments, numerical algorithms, and computational strategies for new computing systems are reviewed. The impact of the advances in computer technology on structural analysis and the design of flight vehicles is described. A scenario for future computing paradigms is presented, and the near-term needs in the computational structures area are outlined.
Multilayered Microelectronic Device Package With An Integral Window
Peterson, Kenneth A.; Watson, Robert D.
2004-10-26
A microelectronic package with an integral window mounted in a recessed lip for housing a microelectronic device. The device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can be formed of a low temperature co-fired ceramic (LTCC) or high temperature cofired ceramic (HTCC) multilayered material, with the integral window being simultaneously joined (e.g. co-fired) to the package body during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded and oriented so that a light-sensitive side is optically accessible through the window. The result is a compact, low profile package, having an integral window mounted in a recessed lip, that can be hermetically sealed.
MOEMs-based new functionalities for future instrumentation in space
NASA Astrophysics Data System (ADS)
Zamkotsian, Frédéric; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean; Hinglais, Emmanuel; Villenave, Michel
2017-11-01
Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. In Earth Observation, Universe Observation and Planet Exploration, scientific return of the instruments must be optimized in future missions. MOEMS devices are based on the mature micro-electronics technology and in addition to their compactness, scalability, and specific task customization, they could generate new functions not available with current technologies. CNES has initiated a study with LAM and TAS for listing the new functions associated with several types of MEMS (programmable slits, programmable micro-diffraction gratings, micro-deformable mirrors). Instrumental applications are then derived and promising concepts are described.
Embedded CMOS basecalling for nanopore DNA sequencing.
Chengjie Wang; Junli Zheng; Magierowski, Sebastian; Ghafar-Zadeh, Ebrahim
2016-08-01
DNA sequencing based on nanopore sensors is now entering the marketplace. The ability to interface this technology to established CMOS microelectronics promises significant improvements in functionality and miniaturization. Among the key functions to benefit from this interface will be basecalling, the conversion of raw electronic molecular signatures to nucleotide sequence predictions. This paper presents the design and performance potential of custom CMOS base-callers embedded alongside nanopore sensors. A basecalliing architecture implemented in 32-nm technology is discussed with the ability to process the equivalent of 20 human genomes per day in real-time at a power density of 5 W/cm2 assuming a 3-mer nanopore sensor.
The Strength of the Metal. Aluminum Oxide Interface
NASA Technical Reports Server (NTRS)
Pepper, S. V.
1984-01-01
The strength of the interface between metals and aluminum oxide is an important factor in the successful operation of devices found throughout modern technology. One finds the interface in machine tools, jet engines, and microelectronic integrated circuits. The strength of the interface, however, should be strong or weak depending on the application. The diverse technological demands have led to some general ideas concerning the origin of the interfacial strength, and have stimulated fundamental research on the problem. Present status of our understanding of the source of the strength of the metal - aluminum oxide interface in terms of interatomic bonds are reviewed. Some future directions for research are suggested.
Programmable wide field spectrograph for earth observation
NASA Astrophysics Data System (ADS)
Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean
2017-11-01
In Earth Observation, Universe Observation and Planet Exploration, scientific return of the instruments must be optimized in future missions. Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. These devices are based on the mature micro-electronics technology and in addition to their compactness, scalability, and specific task customization, they could generate new functions not available with current technologies. French and European space agencies, the Centre National d'Etudes Spatiales (CNES) and the European Space Agency (ESA) have initiated several studies with LAM and TAS for listing the new functions associated with several types of MEMS, and developing new ideas of instruments.
NASA Astrophysics Data System (ADS)
Boulton, William R.
1995-02-01
The purpose of this JTEC study is to evaluate Japan's electronic manufacturing and packaging capabilities within the context of global economic competition. To carry out this study, the JTEC panel evaluated the framework of the Japanese consumer electronics industry and various technological and organizational factors that are likely to determine who will win and lose in the marketplace. This study begins with a brief overview of the electronics industry, especially as it operates in Japan today. Succeeding chapters examine the electronics infrastructure in Japan and take an in-depth look at the central issues of product development in order to identify those parameters that will determine future directions for electronic packaging technologies.
NASA Technical Reports Server (NTRS)
Boulton, William R.
1995-01-01
The purpose of this JTEC study is to evaluate Japan's electronic manufacturing and packaging capabilities within the context of global economic competition. To carry out this study, the JTEC panel evaluated the framework of the Japanese consumer electronics industry and various technological and organizational factors that are likely to determine who will win and lose in the marketplace. This study begins with a brief overview of the electronics industry, especially as it operates in Japan today. Succeeding chapters examine the electronics infrastructure in Japan and take an in-depth look at the central issues of product development in order to identify those parameters that will determine future directions for electronic packaging technologies.
Toxic gases used in the microelectronics industry.
Wald, P H; Becker, C E
1986-01-01
Toxic gases are among the most dangerous materials used in manufacturing semiconductors and related devices. The storage, handling, and disposal of these gases pose a major hazard to workers and to communities located near high-technology companies. It must be anticipated that accidents, acts of terrorism, and natural calamities will result in exposure. Flammability, corrosiveness, and concentration must be considered, as well as the immediate danger to life and known human health effects of the gases used.
NASA Technical Reports Server (NTRS)
Thakoor, Anil
1991-01-01
The JPL Center for Space Microelectronics Technology (CSMT) is actively pursuing research in the neural network theory, algorithms, and electronics as well as optoelectronic neural net hardware implementations, to explore the strengths and application potential for a variety of NASA, DoD, as well as commercial application problems, where conventional computing techniques are extremely time-consuming, cumbersome, or simply non-existent. An overview of the JPL electronic neural network hardware development activities and some of the striking applications of the JPL electronic neuroprocessors are presented.
1982-03-01
Aircraft Company ARECAaSOENT CSR Ground Systems Group Task 007 Fullerton, California 92634 Project No. R1023 I$. =OTRS4.IWmOr SP NAnE lAD ABDASE it. REPORT...HMA feed mechanism, multiple type test sockets or adapters, and a localized UUT vessel for functional tests at temperature. The engineering model AP...test excluding (deactivated) microprocessor. * Models UUT and test adapter as a ROM. Independent latches or registers from interconnecting ports to
High-energy capacitance electrostatic micromotors
NASA Astrophysics Data System (ADS)
Baginsky, I. L.; Kostsov, E. G.
2003-03-01
The design and parameters of a new electrostatic micromotor with high energy output are described. The motor is created by means of microelectronic technology. Its operation is based on the electromechanic energy conversion during the electrostatic rolling of the metallic films (petals) on the ferroelectric film surface. The mathematical simulation of the main characteristics of the rolling process is carried out. The experimentally measured parameters of the petal step micromotors are shown. The motor operation and its efficiency are investigated.
The Integration of Bacteriorhodopsin Proteins with Semiconductor Heterostructure Devices
NASA Astrophysics Data System (ADS)
Xu, Jian
2008-03-01
Bioelectronics has emerged as one of the most rapidly developing fields among the active frontiers of interdisciplinary research. A major thrust in this field is aimed at the coupling of the technologically-unmatched performance of biological systems, such as neural and sensing functions, with the well developed technology of microelectronics and optoelectronics. To this end we have studied the integration of a suitably engineered protein, bacteriorhodopsin (BR), with semiconductor optoelectronic devices and circuits. Successful integration will potentially lead to ultrasensitive sensors with polarization selectivity and built-in preprocessing capabilities that will be useful for high speed tracking, motion and edge detection, biological detection, and artificial vision systems. In this presentation we will summarize our progresses in this area, which include fundamental studies on the transient dynamics of photo-induced charge shift in BR and the coupling mechanism at protein-semiconductor interface for effective immobilizing and selectively integrating light sensitive proteins with microelectronic devices and circuits, and the device engineering of BR-transistor-integrated optical sensors as well as their applications in phototransceiver circuits. Work done in collaboration with Pallab Bhattacharya, Jonghyun Shin, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI; Robert R. Birge, Department of Chemistry, University of Connecticut, Storrs, CT 06269; and György V'ar'o, Institute of Biophysics, Biological Research Center of the Hungarian Academy of Science, H-6701 Szeged, Hungary.
NASA Astrophysics Data System (ADS)
Xu, Hao; Yang, Hong; Luo, Wei-Chun; Xu, Ye-Feng; Wang, Yan-Rong; Tang, Bo; Wang, Wen-Wu; Qi, Lu-Wei; Li, Jun-Feng; Yan, Jiang; Zhu, Hui-Long; Zhao, Chao; Chen, Da-Peng; Ye, Tian-Chun
2016-08-01
The thickness effect of the TiN capping layer on the time dependent dielectric breakdown (TDDB) characteristic of ultra-thin EOT high-k metal gate NMOSFET is investigated in this paper. Based on experimental results, it is found that the device with a thicker TiN layer has a more promising reliability characteristic than that with a thinner TiN layer. From the charge pumping measurement and secondary ion mass spectroscopy (SIMS) analysis, it is indicated that the sample with the thicker TiN layer introduces more Cl passivation at the IL/Si interface and exhibits a lower interface trap density. In addition, the influences of interface and bulk trap density ratio N it/N ot are studied by TDDB simulations through combining percolation theory and the kinetic Monte Carlo (kMC) method. The lifetime reduction and Weibull slope lowering are explained by interface trap effects for TiN capping layers with different thicknesses. Project supported by the National High Technology Research and Development Program of China (Grant No. SS2015AA010601), the National Natural Science Foundation of China (Grant Nos. 61176091 and 61306129), and the Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of MicroElectronics of Chinese Academy of Sciences.
Silicon photonics for high-performance interconnection networks
NASA Astrophysics Data System (ADS)
Biberman, Aleksandr
2011-12-01
We assert in the course of this work that silicon photonics has the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems, and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. This work showcases that chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, enable unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of this work, we demonstrate such feasibility of waveguides, modulators, switches, and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. Furthermore, we leverage the unique properties of available silicon photonic materials to create novel silicon photonic devices, subsystems, network topologies, and architectures to enable unprecedented performance of these photonic interconnection networks and computing systems. We show that the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. Furthermore, we explore the immense potential of all-optical functionalities implemented using parametric processing in the silicon platform, demonstrating unique methods that have the ability to revolutionize computation and communication. Silicon photonics enables new sets of opportunities that we can leverage for performance gains, as well as new sets of challenges that we must solve. Leveraging its inherent compatibility with standard fabrication techniques of the semiconductor industry, combined with its capability of dense integration with advanced microelectronics, silicon photonics also offers a clear path toward commercialization through low-cost mass-volume production. Combining empirical validations of feasibility, demonstrations of massive performance gains in large-scale systems, and the potential for commercial penetration of silicon photonics, the impact of this work will become evident in the many decades that follow.
NASA IVHM Technology Experiment for X-vehicles (NITEX)
NASA Technical Reports Server (NTRS)
Sandra, Hayden; Bajwa, Anupa
2001-01-01
The purpose of the NASA IVHM Technology Experiment for X-vehicles (NITEX) is to advance the development of selected IVHM technologies in a flight environment and to demonstrate the potential for reusable launch vehicle ground processing savings. The technologies to be developed and demonstrated include system-level and detailed diagnostics for real-time fault detection and isolation, prognostics for fault prediction, automated maintenance planning based on diagnostic and prognostic results, and a microelectronics hardware platform. Complete flight The Evolution of Flexible Insulation as IVHM consists of advanced sensors, distributed data acquisition, data processing that includes model-based diagnostics, prognostics and vehicle autonomy for control or suggested action, and advanced data storage. Complete ground IVHM consists of evolved control room architectures, advanced applications including automated maintenance planning and automated ground support equipment. This experiment will advance the development of a subset of complete IVHM.
CVD diamond substrate for microelectronics. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burden, J.; Gat, R.
1996-11-01
Chemical Vapor Deposition (CVD) of diamond films has evolved dramatically in recent years, and commercial opportunities for diamond substrates in thermal management applications are promising. The objective of this technology transfer initiative (TTI) is for Applied Science and Technology, Inc. (ASTEX) and AlliedSignal Federal Manufacturing and Technologies (FM&T) to jointly develop and document the manufacturing processes and procedures required for the fabrication of multichip module circuits using CVD diamond substrates, with the major emphasis of the project concentrating on lapping/polishing prior to metallization. ASTEX would provide diamond films for the study, and FM&T would use its experience in lapping, polishing,more » and substrate metallization to perform secondary processing on the parts. The primary goal of the project was to establish manufacturing processes that lower the manufacturing cost sufficiently to enable broad commercialization of the technology.« less
Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics.
Fu, Haoran; Nan, Kewang; Bai, Wubin; Huang, Wen; Bai, Ke; Lu, Luyao; Zhou, Chaoqun; Liu, Yunpeng; Liu, Fei; Wang, Juntong; Han, Mengdi; Yan, Zheng; Luan, Haiwen; Zhang, Yijie; Zhang, Yutong; Zhao, Jianing; Cheng, Xu; Li, Moyang; Lee, Jung Woo; Liu, Yuan; Fang, Daining; Li, Xiuling; Huang, Yonggang; Zhang, Yihui; Rogers, John A
2018-03-01
Three-dimensional (3D) structures capable of reversible transformations in their geometrical layouts have important applications across a broad range of areas. Most morphable 3D systems rely on concepts inspired by origami/kirigami or techniques of 3D printing with responsive materials. The development of schemes that can simultaneously apply across a wide range of size scales and with classes of advanced materials found in state-of-the-art microsystem technologies remains challenging. Here, we introduce a set of concepts for morphable 3D mesostructures in diverse materials and fully formed planar devices spanning length scales from micrometres to millimetres. The approaches rely on elastomer platforms deformed in different time sequences to elastically alter the 3D geometries of supported mesostructures via nonlinear mechanical buckling. Over 20 examples have been experimentally and theoretically investigated, including mesostructures that can be reshaped between different geometries as well as those that can morph into three or more distinct states. An adaptive radiofrequency circuit and a concealable electromagnetic device provide examples of functionally reconfigurable microelectronic devices.
Wolf, Bernhard; Scholze, Christian
2018-05-01
A paradigm shift seems to emerge, not only in industrial engineering ("Industry 4.0") but also in medicine: we are on the threshold to "Medicine 4.0". For many years, molecular biology had a leading position in life sciences, but today scientists start realizing that microelectronic systems, due to an increasing miniaturization, are reaching the scale of human cells and consequently can be used for therapeutic approaches. This article shows how microelectronics can play a major role in modern medicine, through the example of customized chemotherapy. This consists in determining, before the beginning of the treatment, what kind of chemotherapy or drug combination will be most effective for a given patient, and at which dose. This of course allows the lessening of a patient burden during treatment, but also to be more efficient and, in the long run, to save money. In order to do this, we have developed the Intelligent Microplate Reader (IMR), which allows us to accurately test different drugs on living cells by mimicking part of their usual environment. © 2018 médecine/sciences – Inserm.
Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics
NASA Astrophysics Data System (ADS)
Fu, Haoran; Nan, Kewang; Bai, Wubin; Huang, Wen; Bai, Ke; Lu, Luyao; Zhou, Chaoqun; Liu, Yunpeng; Liu, Fei; Wang, Juntong; Han, Mengdi; Yan, Zheng; Luan, Haiwen; Zhang, Yijie; Zhang, Yutong; Zhao, Jianing; Cheng, Xu; Li, Moyang; Lee, Jung Woo; Liu, Yuan; Fang, Daining; Li, Xiuling; Huang, Yonggang; Zhang, Yihui; Rogers, John A.
2018-03-01
Three-dimensional (3D) structures capable of reversible transformations in their geometrical layouts have important applications across a broad range of areas. Most morphable 3D systems rely on concepts inspired by origami/kirigami or techniques of 3D printing with responsive materials. The development of schemes that can simultaneously apply across a wide range of size scales and with classes of advanced materials found in state-of-the-art microsystem technologies remains challenging. Here, we introduce a set of concepts for morphable 3D mesostructures in diverse materials and fully formed planar devices spanning length scales from micrometres to millimetres. The approaches rely on elastomer platforms deformed in different time sequences to elastically alter the 3D geometries of supported mesostructures via nonlinear mechanical buckling. Over 20 examples have been experimentally and theoretically investigated, including mesostructures that can be reshaped between different geometries as well as those that can morph into three or more distinct states. An adaptive radiofrequency circuit and a concealable electromagnetic device provide examples of functionally reconfigurable microelectronic devices.
Towards co-packaging of photonics and microelectronics in existing manufacturing facilities
NASA Astrophysics Data System (ADS)
Janta-Polczynski, Alexander; Cyr, Elaine; Bougie, Jerome; Drouin, Alain; Langlois, Richard; Childers, Darrell; Takenobu, Shotaro; Taira, Yoichi; Lichoulas, Ted W.; Kamlapurkar, Swetha; Engelmann, Sebastian; Fortier, Paul; Boyer, Nicolas; Barwicz, Tymon
2018-02-01
The impact of integrated photonics on optical interconnects is currently muted by challenges in photonic packaging and in the dense integration of photonic modules with microelectronic components on printed circuit boards. Single mode optics requires tight alignment tolerance for optical coupling and maintaining this alignment in a cost-efficient package can be challenging during thermal excursions arising from downstream microelectronic assembly processes. In addition, the form factor of typical fiber connectors is incompatible with the dense module integration expected on printed circuit boards. We have implemented novel approaches to interfacing photonic chips to standard optical fibers. These leverage standard high throughput microelectronic assembly tooling and self-alignment techniques resulting in photonic packaging that is scalable in manufacturing volume and in the number of optical IOs per chip. In addition, using dense optical fiber connectors with space-efficient latching of fiber patch cables results in compact module size and efficient board integration, bringing the optics closer to the logic chip to alleviate bandwidth bottlenecks. This packaging direction is also well suited for embedding optics in multi-chip modules, including both photonic and microelectronic chips. We discuss the challenges and rewards in this type of configuration such as thermal management and signal integrity.
Physical Limitations in Lithography for Microelectronics.
ERIC Educational Resources Information Center
Flavin, P. G.
1981-01-01
Describes techniques being used in the production of microelectronics kits which have replaced traditional optical lithography, including contact and optical projection printing, and X-ray and electron beam lithography. Also includes limitations of each technique described. (SK)
1998-01-01
deployment of the two first systems Iridium and Globalstar. This event forces us to reconsider prospects of creating new systems of a similar class...Korolev, Moscow Region, Russian Federation Now are created and the new electro-optics equipment of the earth remote sensing are developed which...PC for control and data preprocessing; • software. The modern level of microelectronics development allows to create an advanced SMASSIR with new
NASA Technical Reports Server (NTRS)
1984-01-01
The two manufacturing concepts developed represent innovative, technologically advanced manufacturing schemes. The concepts were selected to facilitate an in depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, and artificial intelligence. While the cost effectiveness of these facilities has not been analyzed as part of this study, both appear entirely feasible for the year 2000 timeframe. The growing demand for high quality gallium arsenide microelectronics may warrant the ventures.
Investigation of discrete component chip mounting technology for hybrid microelectronic circuits
NASA Technical Reports Server (NTRS)
Caruso, S. V.; Honeycutt, J. O.
1975-01-01
The use of polymer adhesives for high reliability microcircuit applications is a radical deviation from past practices in electronic packaging. Bonding studies were performed using two gold-filled conductive adhesives, 10/90 tin/lead solder and Indalloy no. 7 solder. Various types of discrete components were mounted on ceramic substrates using both thick-film and thin-film metallization. Electrical and mechanical testing were performed on the samples before and after environmental exposure to MIL-STD-883 screening tests.
Kim, Inah; Kim, Myoung-Hee; Lim, Sinye
2015-01-01
Objectives Despite the global expansion of supply chains and changes to the production process, few studies since the mid-1990s and 2000s have examined reproductive risks of the microelectronics industry; we examined the reproductive risks among female microelectronics workers in South Korea. Methods Based on claim data from the National Health Insurance (2008–2012), we estimated age-specific rates of spontaneous abortion (SAB) and menstrual aberration (MA) among women aged 20 to 39 years. We compared data between microelectronics workers and three different control groups: economically inactive women, the working population as a whole, and workers employed in the bank industry. For an effect measure, age-stratified relative risks (RRs) were estimated. Results Female workers in the microelectronics industry showed significantly higher risk for SAB and MA compared to control groups. The RRs for SAB with reference to economically inactive women, working population, and bank workers in their twenties were 1.57, 1.40, and 1.37, respectively, and the RRs for MA among females in their twenties were 1.54, 1.38, and 1.48, respectively. For women in their thirties, RRs for SAB were 1.58, 1.67, and 1.13, and those for MA were 1.25, 1.35, and 1.23 compared to the three control populations, respectively. All RRs were statistically significant at a level of 0.05, except for the SAB case comparison with bank workers in their thirties. Conclusions Despite technical innovations and health and safety measures, female workers in microelectronics industry in South Korea have high rates of SAB and MA, suggesting continued exposure to reproductive hazards. Further etiologic studies based on primary data collection and careful surveillance are required to confirm these results. PMID:25938673
Advanced imaging research and development at DARPA
NASA Astrophysics Data System (ADS)
Dhar, Nibir K.; Dat, Ravi
2012-06-01
Advances in imaging technology have huge impact on our daily lives. Innovations in optics, focal plane arrays (FPA), microelectronics and computation have revolutionized camera design. As a result, new approaches to camera design and low cost manufacturing is now possible. These advances are clearly evident in visible wavelength band due to pixel scaling, improvements in silicon material and CMOS technology. CMOS cameras are available in cell phones and many other consumer products. Advances in infrared imaging technology have been slow due to market volume and many technological barriers in detector materials, optics and fundamental limits imposed by the scaling laws of optics. There is of course much room for improvements in both, visible and infrared imaging technology. This paper highlights various technology development projects at DARPA to advance the imaging technology for both, visible and infrared. Challenges and potentials solutions are highlighted in areas related to wide field-of-view camera design, small pitch pixel, broadband and multiband detectors and focal plane arrays.
Superconducting Microelectronics.
ERIC Educational Resources Information Center
Henry, Richard W.
1984-01-01
Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…
Intermetallic compounds in 3D integrated circuits technology: a brief review
NASA Astrophysics Data System (ADS)
Annuar, Syahira; Mahmoodian, Reza; Hamdi, Mohd; Tu, King-Ning
2017-12-01
The high performance and downsizing technology of three-dimensional integrated circuits (3D-ICs) for mobile consumer electronic products have gained much attention in the microelectronics industry. This has been driven by the utilization of chip stacking by through-Si-via and solder microbumps. Pb-free solder microbumps are intended to replace conventional Pb-containing solder joints due to the rising awareness of environmental preservation. The use of low-volume solder microbumps has led to crucial constraints that cause several reliability issues, including excessive intermetallic compounds (IMCs) formation and solder microbump embrittlement due to IMCs growth. This article reviews technologies related to 3D-ICs, IMCs formation mechanisms and reliability issues concerning IMCs with Pb-free solder microbumps. Finally, future outlook on the potential growth of research in this area is discussed.
Intermetallic compounds in 3D integrated circuits technology: a brief review.
Annuar, Syahira; Mahmoodian, Reza; Hamdi, Mohd; Tu, King-Ning
2017-01-01
The high performance and downsizing technology of three-dimensional integrated circuits (3D-ICs) for mobile consumer electronic products have gained much attention in the microelectronics industry. This has been driven by the utilization of chip stacking by through-Si-via and solder microbumps. Pb-free solder microbumps are intended to replace conventional Pb-containing solder joints due to the rising awareness of environmental preservation. The use of low-volume solder microbumps has led to crucial constraints that cause several reliability issues, including excessive intermetallic compounds (IMCs) formation and solder microbump embrittlement due to IMCs growth. This article reviews technologies related to 3D-ICs, IMCs formation mechanisms and reliability issues concerning IMCs with Pb-free solder microbumps. Finally, future outlook on the potential growth of research in this area is discussed.
Sandia Technology engineering and science accomplishments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report briefly discusses the following research being conducted at Sandia Laboratories: Advanced Manufacturing -- Sandia technology helps keep US industry in the lead; Microelectronics-Sandia`s unique facilities transform research advances into manufacturable products; Energy -- Sandia`s energy programs focus on strengthening industrial growth and political decisionmaking; Environment -- Sandia is a leader in environmentally conscious manufacturing and hazardous waste reduction; Health Care -- New biomedical technologies help reduce cost and improve quality of health care; Information & Computation -- Sandia aims to help make the information age a reality; Transportation -- This new initiative at the Labs will help improvemore » transportation, safety,l efficiency, and economy; Nonproliferation -- Dismantlement and arms control are major areas of emphasis at Sandia; and Awards and Patents -- Talented, dedicated employees are the backbone of Sandia`s success.« less
Physics through the 1990s: Scientific interfaces and technological applications
NASA Technical Reports Server (NTRS)
1986-01-01
The volume examines the scientific interfaces and technological applications of physics. Twelve areas are dealt with: biological physics-biophysics, the brain, and theoretical biology; the physics-chemistry interface-instrumentation, surfaces, neutron and synchrotron radiation, polymers, organic electronic materials; materials science; geophysics-tectonics, the atmosphere and oceans, planets, drilling and seismic exploration, and remote sensing; computational physics-complex systems and applications in basic research; mathematics-field theory and chaos; microelectronics-integrated circuits, miniaturization, future trends; optical information technologies-fiber optics and photonics; instrumentation; physics applications to energy needs and the environment; national security-devices, weapons, and arms control; medical physics-radiology, ultrasonics, MNR, and photonics. An executive summary and many chapters contain recommendations regarding funding, education, industry participation, small-group university research and large facility programs, government agency programs, and computer database needs.
Monolithic integration of SOI waveguide photodetectors and transimpedance amplifiers
NASA Astrophysics Data System (ADS)
Li, Shuxia; Tarr, N. Garry; Ye, Winnie N.
2018-02-01
In the absence of commercial foundry technologies offering silicon-on-insulator (SOI) photonics combined with Complementary Metal Oxide Semiconductor (CMOS) transistors, monolithic integration of conventional electronics with SOI photonics is difficult. Here we explore the implementation of lateral bipolar junction transistors (LBJTs) and Junction Field Effect Transistors (JFETs) in a commercial SOI photonics technology lacking MOS devices but offering a variety of n- and p-type ion implants intended to provide waveguide modulators and photodetectors. The fabrication makes use of the commercial Institute of Microelectronics (IME) SOI photonics technology. Based on knowledge of device doping and geometry, simple compact LBJT and JFET device models are developed. These models are then used to design basic transimpedance amplifiers integrated with optical waveguides. The devices' experimental current-voltage characteristics results are reported.
Cagnin, Stefano; Cimetta, Elisa; Guiducci, Carlotta; Martini, Paolo; Lanfranchi, Gerolamo
2012-01-01
In the past few decades the scientific community has been recognizing the paramount role of the cell microenvironment in determining cell behavior. In parallel, the study of human stem cells for their potential therapeutic applications has been progressing constantly. The use of advanced technologies, enabling one to mimic the in vivo stem cell microenviroment and to study stem cell physiology and physio-pathology, in settings that better predict human cell biology, is becoming the object of much research effort. In this review we will detail the most relevant and recent advances in the field of biosensors and micro- and nano-technologies in general, highlighting advantages and disadvantages. Particular attention will be devoted to those applications employing stem cells as a sensing element. PMID:23202240
Cagnin, Stefano; Cimetta, Elisa; Guiducci, Carlotta; Martini, Paolo; Lanfranchi, Gerolamo
2012-11-19
In the past few decades the scientific community has been recognizing the paramount role of the cell microenvironment in determining cell behavior. In parallel, the study of human stem cells for their potential therapeutic applications has been progressing constantly. The use of advanced technologies, enabling one to mimic the in vivo stem cell microenviroment and to study stem cell physiology and physio-pathology, in settings that better predict human cell biology, is becoming the object of much research effort. In this review we will detail the most relevant and recent advances in the field of biosensors and micro- and nano-technologies in general, highlighting advantages and disadvantages. Particular attention will be devoted to those applications employing stem cells as a sensing element.
Evidence for adverse reproductive outcomes among women microelectronic assembly workers.
Huel, G; Mergler, D; Bowler, R
1990-01-01
Microelectronics assembly entails complex processes where several potentially fetotoxic chemical compounds are used extensively. This study was undertaken to assess the potential adverse reproductive outcomes among former women workers in a microelectronics assembly plant in New Mexico with respect to a comparable population from the same geographical region and to examine the relation between these outcomes and employment history in this plant. After matching a pool of 143 former microelectronic female workers and 105 referents, 90 former microelectronic female worker-referent pairs were constituted (representing 302 and 324 pregnancies in former workers and referents respectively). The odds ratio (for pair matching design) of spontaneous abortion among women workers, before beginning to assemble microelectronic components, was 0.9 (chi 2 = 0.04; NS). After the beginning of employment this odds ratio became 5.6 (chi 2 = 9.8; p less than 1%). This estimated odds ratio decreased to 4.0, taking into account the increased risk for spontaneous abortion in previous pregnancies before employment (chi 2 = 5.4; p less than 5%). It was not possible to determine if this effect was reversible owing to the small number of pairs available after employment. The findings of this study corroborate the results of former studies that suggest a potential association between electronic manufacturing activity and risk of spontaneous abortion. Although the organic solvents were suspected of being the potential risk factor, this study was inconclusive from this point of view. Nevertheless, these investigations may provide some insight into reproductive outcomes among female workers exposed to solvents. PMID:2378817
Preface to the special issue of Solid State Electronics EUROSOI/ULIS 2017
NASA Astrophysics Data System (ADS)
Nassiopoulou, Androula G.
2018-05-01
This special issue is devoted to selected papers presented at the EuroSOI-ULIS2017 international conference, held in Athens on 3-5 April 2017. EuroSOI-ULIS2017 Conference was mainly devoted to Si devices, which constitute the basic building blocks of any microelectronic circuit. It included papers on advanced Si technologies, novel nanoscale devices, advanced electronic materials and device architectures, mechanisms involved, test structures, substrate materials and technologies, modeling/simulation and characterization. Both CMOS and beyond CMOS devices were presented, covering the More Moore domain, as well as new functionalities in silicon-compatible nanostructures and innovative devices, representing the More than Moore domain (on-chip sensors, biosensors, energy harvesting devices, RF passives, etc.).
"Silicon millefeuille": From a silicon wafer to multiple thin crystalline films in a single step
NASA Astrophysics Data System (ADS)
Hernández, David; Trifonov, Trifon; Garín, Moisés; Alcubilla, Ramon
2013-04-01
During the last years, many techniques have been developed to obtain thin crystalline films from commercial silicon ingots. Large market applications are foreseen in the photovoltaic field, where important cost reductions are predicted, and also in advanced microelectronics technologies as three-dimensional integration, system on foil, or silicon interposers [Dross et al., Prog. Photovoltaics 20, 770-784 (2012); R. Brendel, Thin Film Crystalline Silicon Solar Cells (Wiley-VCH, Weinheim, Germany 2003); J. N. Burghartz, Ultra-Thin Chip Technology and Applications (Springer Science + Business Media, NY, USA, 2010)]. Existing methods produce "one at a time" silicon layers, once one thin film is obtained, the complete process is repeated to obtain the next layer. Here, we describe a technology that, from a single crystalline silicon wafer, produces a large number of crystalline films with controlled thickness in a single technological step.
From microsystems technology to the Saenger II space transportation system
NASA Astrophysics Data System (ADS)
Vogels, Hanns Arnt
The role of space projects as drivers and catalysts of technology advances is discussed and illustrated from the perspective of the West German aerospace industry, summarizing a talk presented at the 1986 meeting of the German aerospace society DGLR. The history of space-transportation-system (STS) technology since the 1950s is traced, emphasizing the needs for greater payload weights and lower costs, and the design concept of Saenger II, a proposed two-stage ESA STS employing a hypersonic jet transport aircraft as its first stage, is outlined. It is argued that experience gained in developing the rocket-launched Hermes STS will be applicable to the second stage of Saenger II. Recent developments in microsystems (combining microelectronics, micromechanics, and microoptics), advanced materials (fiber-reinforced plastics, metals, and ceramics), and energy technology (hydrogen-based systems and solar cells) are surveyed, and their applicability to STSs is considered.
NASA Technical Reports Server (NTRS)
Lyke, J. C.; Michalicek, M. A.; Singaraju, B. K.
1995-01-01
Micro-electro-mechanical systems (MEMS) provide an emerging technology that has the potential for revolutionizing the way space systems are designed, assembled, and tested. The high launch costs of current space systems are a major determining factor in the amount of functionality that can be integrated in a typical space system. MEMS devices have the ability to increase the functionality of selected satellite subsystems while simultaneously decreasing spacecraft weight. The Air Force Phillips Laboratory (PL) is supporting the development of a variety of MEMS related technologies as one of several methods to reduce the weight of space systems and increase their performance. MEMS research is a natural extension of PL research objectives in micro-electronics and advanced packaging. Examples of applications that are under research include on-chip micro-coolers, micro-gyroscopes, vibration sensors, and three-dimensional packaging technologies to integrate electronics with MEMS devices. The first on-orbit space flight demonstration of these and other technologies is scheduled for next year.
Unobstructive Body Area Networks (BAN) for Efficient Movement Monitoring
Felisberto, Filipe; Costa, Nuno; Fdez-Riverola, Florentino; Pereira, António
2012-01-01
The technological advances in medical sensors, low-power microelectronics and miniaturization, wireless communications and networks have enabled the appearance of a new generation of wireless sensor networks: the so-called wireless body area networks (WBAN). These networks can be used for continuous monitoring of vital parameters, movement, and the surrounding environment. The data gathered by these networks contributes to improve users' quality of life and allows the creation of a knowledge database by using learning techniques, useful to infer abnormal behaviour. In this paper we present a wireless body area network architecture to recognize human movement, identify human postures and detect harmful activities in order to prevent risk situations. The WBAN was created using tiny, cheap and low-power nodes with inertial and physiological sensors, strategically placed on the human body. Doing so, in an as ubiquitous as possible way, ensures that its impact on the users' daily actions is minimum. The information collected by these sensors is transmitted to a central server capable of analysing and processing their data. The proposed system creates movement profiles based on the data sent by the WBAN's nodes, and is able to detect in real time any abnormal movement and allows for a monitored rehabilitation of the user. PMID:23112726
NASA Technical Reports Server (NTRS)
Megaridis, C. M.; Bayer, I. S.; Poulikakos, D.; Nayagam, V.
2002-01-01
Driven by advancements in microelectronics manufacturing, this research investigates the oblique (non-axisymmetric) impact of liquid-metal droplets on flat substrates. The problem of interest is relevant to the development of the novel technology of on-demand dispension (printing) of microscopic solder deposits for the surface mounting of microelectronic devices. The technology, known as solder jetting, features on-demand deposition of miniature solder droplets (30 to 120 microns in diameter) in very fine, very accurate patterns using techniques analogous to those developed for the ink-jet printing industry. Despite its promise, severe limitations exist currently with regards to the throughput rates of the technology; some of these limitations are largely due to the lack of the capability for reliable prediction of solder bump positioning and shapes, especially under ballistic deposition conditions where the droplet impact phenomena are inherently three-dimensional. The study consists of a theoretical and an experimental component. The theoretical work uses a finite element formulation to simulate numerically the non-axisymmetric (3-D) fluid mechanics and heat transfer phenomena of a liquid solder droplet impacting at an angle alpha on a flat substrate. The work focuses on the pre-solidification regime. The modeling of the most challenging fluid mechanics part of the process has been completed successfully. It is based upon the full laminar Navier-Stokes equations employing a Lagrangian frame of reference. Due to the large droplet deformation, the surface (skin) as well as the volumetric mesh have to be regenerated during the calculations in order to maintain the high accuracy of the numerical scheme. The pressure and velocity fields are then interpolated on the newly created mesh. The numerical predictions are being tested against experiments, for cases where wetting phenomena are not important. For the impact parameters used in the example shown (We = 2.38, Fr = 16300, Re = 157), the droplet rolls along the substrate, but its shape remains practically axisymmetric for all impact angles within the range from 0 to 60 deg. Interestingly, the substrate/droplet contact area during the recoiling phase of the impact is not a monotonically decreasing function of time. The experimental component of the research tests the numerical predictions and provides necessary input data (contact angles) for the theoretical model. The experiments are performed in microgravity (2.2s drop tower of the NASA GRC) in order to allow for the use of mm-size solder droplets, which make feasible the performance of accurate measurements, while maintaining similitude of the relevant fluid dynamic groups (Re, Fr, We, Ste). Preliminary oblique impact experiments have been performed using water droplets in normal gravity.
Porous Diblock Copolymer Thin Films in High-Performance Semiconductor Microelectronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, C.T.
2011-02-01
The engine fueling more than 40 years of performance improvements in semiconductor integrated circuits (ICs) has been industry's ability to pattern circuit elements at ever-higher resolution and with ever-greater precision. Steady advances in photolithography - the process wherein ultraviolet light chemically changes a photosensitive polymer resist material in order to create a latent image - have resulted in scaling of minimum printed feature sizes from tens of microns during the 1980s to sub-50 nanometer transistor gate lengths in today's state-of-the-art ICs. The history of semiconductor technology scaling as well as future technology requirements is documented in the International Technology Roadmapmore » for Semiconductors (ITRS). The progression of the semiconductor industry to the realm of nanometer-scale sizes has brought enormous challenges to device and circuit fabrication, rendering performance improvements by conventional scaling alone increasingly difficult. Most often this discussion is couched in terms of field effect transistor (FET) feature sizes such as the gate length or gate oxide thickness, however these challenges extend to many other aspects of the IC, including interconnect dimensions and pitch, device packing density, power consumption, and heat dissipation. The ITRS Technology Roadmap forecasts a difficult set of scientific and engineering challenges with no presently-known solutions. The primary focus of this chapter is the research performed at IBM on diblock copolymer films composed of polystyrene (PS) and poly(methyl-methacrylate) (PMMA) (PS-b-PMMA) with total molecular weights M{sub n} in the range of {approx}60K (g/mol) and polydispersities (PD) of {approx}1.1. These materials self assemble to form patterns having feature sizes in the range of 15-20nm. PS-b-PMMA was selected as a self-assembling patterning material due to its compatibility with the semiconductor microelectronics manufacturing infrastructure, as well as the significant body of existing research on understanding its material properties.« less
Microelectronics and Computers in Medicine.
ERIC Educational Resources Information Center
Meindl, James D.
1982-01-01
The use of microelectronics and computers in medicine is reviewed, focusing on medical research; medical data collection, storage, retrieval, and manipulation; medical decision making; computed tomography; ultrasonic imaging; role in clinical laboratories; and use as adjuncts for diagnostic tests, monitors of critically-ill patients, and with the…
Miniature vibration isolation system for space applications
NASA Astrophysics Data System (ADS)
Quenon, Dan; Boyd, Jim; Buchele, Paul; Self, Rick; Davis, Torey; Hintz, Timothy L.; Jacobs, Jack H.
2001-06-01
In recent years, there has been a significant interest in, and move towards using highly sensitive, precision payloads on space vehicles. In order to perform tasks such as communicating at extremely high data rates between satellites using laser cross-links, or searching for new planets in distant solar systems using sparse aperture optical elements, a satellite bus and its payload must remain relatively motionless. The ability to hold a precision payload steady is complicated by disturbances from reaction wheels, control moment gyroscopes, solar array drives, stepper motors, and other devices. Because every satellite is essentially unique in its construction, isolating or damping unwanted vibrations usually requires a robust system over a wide bandwidth. The disadvantage of these systems is that they typically are not retrofittable and not tunable to changes in payload size or inertias. Previous work, funded by AFRL, DARPA, BMDO and others, developed technology building blocks that provide new methods to control vibrations of spacecraft. The technology of smart materials enables an unprecedented level of integration of sensors, actuators, and structures; this integration provides the opportunity for new structural designs that can adaptively influence their surrounding environment. To date, several demonstrations have been conducted to mature these technologies. Making use of recent advances in smart materials, microelectronics, Micro-Electro Mechanical Systems (MEMS) sensors, and Multi-Functional Structures (MFS), the Air Force Research Laboratory along with its partner DARPA, have initiated an aggressive program to develop a Miniature Vibration Isolation System (MVIS) (patent pending) for space applications. The MVIS program is a systems-level demonstration of the application of advanced smart materials and structures technology that will enable programmable and retrofittable vibration control of spacecraft precision payloads. The current effort has been awarded to Honeywell Space Systems Operation. AFRL is providing in-house research and testing in support of the program as well. The MVIS program will culminate in a flight demonstration that shows the benefits of applying smart materials for vibration isolation in space and precision payload control.
NASA Astrophysics Data System (ADS)
Hirzinger, G.
(Robots in space)—The paper emphasizes the enormous automation impact in industry caused by microelectronics, a "byproduct" of space-technology. The evolutionary stages of robotic are outlined and it is shown that there are a lot of reasons for more automation, artificial intelligence and robotic in space, too. The telemanipulator concept is compared with the industrial robot concept, both showing up an increasing degree of similarity. The state of the art in sensory systems is discussed. By hand of the typical operations needed in space as rendezvous, assembly and docking the required robot skill is indicated. As a conclusion it is stated that the basic technologies available with industrial robots today could solve a lot of space problems. What remains to do—apart of course from ongoing research—is better integration and adaption of industrial techniques to the need of space technology.
Planar Fully-Depleted-Silicon-On-Insulator technologies: Toward the 28 nm node and beyond
NASA Astrophysics Data System (ADS)
Doris, B.; DeSalvo, B.; Cheng, K.; Morin, P.; Vinet, M.
2016-03-01
This paper presents a comprehensive overview of the research done in the last decade on planar Fully-Depleted-Silicon-On-Insulator (FDSOI) technologies in the frame of the joint development program between IBM, ST Microelectronics and CEA-LETI. In particular, we review the technological developments ranging from substrate engineering to process modules that enable functionality and improve FDSOI performance over several generations. Various multi Vt integration schemes to maximize the benefits of the thin BOX FDSOI platform are discussed. Manufacturability as well as scalability concerns are highlighted and addressed. In addition, this work provides understanding of the performance/power trade-offs for FDSOI circuits and device variability. Finally, clear directions for future application-specific products are given, demonstrating that FDSOI is an attractive CMOS option for next generation high performance and low-power applications.
Intermetallic compounds in 3D integrated circuits technology: a brief review
Annuar, Syahira; Mahmoodian, Reza; Hamdi, Mohd; Tu, King-Ning
2017-01-01
Abstract The high performance and downsizing technology of three-dimensional integrated circuits (3D-ICs) for mobile consumer electronic products have gained much attention in the microelectronics industry. This has been driven by the utilization of chip stacking by through-Si-via and solder microbumps. Pb-free solder microbumps are intended to replace conventional Pb-containing solder joints due to the rising awareness of environmental preservation. The use of low-volume solder microbumps has led to crucial constraints that cause several reliability issues, including excessive intermetallic compounds (IMCs) formation and solder microbump embrittlement due to IMCs growth. This article reviews technologies related to 3D-ICs, IMCs formation mechanisms and reliability issues concerning IMCs with Pb-free solder microbumps. Finally, future outlook on the potential growth of research in this area is discussed. PMID:29057024
Radiation effects in advanced microelectronics technologies
NASA Astrophysics Data System (ADS)
Johnston, A. H.
1998-06-01
The pace of device scaling has increased rapidly in recent years. Experimental CMOS devices have been produced with feature sizes below 0.1 /spl mu/m, demonstrating that devices with feature sizes between 0.1 and 0.25 /spl mu/m will likely be available in mainstream technologies after the year 2000. This paper discusses how the anticipated changes in device dimensions and design are likely to affect their radiation response in space environments. Traditional problems, such as total dose effects, SEU and latchup are discussed, along with new phenomena. The latter include hard errors from heavy ions (microdose and gate-rupture errors), and complex failure modes related to advanced circuit architecture. The main focus of the paper is on commercial devices, which are displacing hardened device technologies in many space applications. However, the impact of device scaling on hardened devices is also discussed.
Creating Nanotechnicians for the 21st Century Workplace
NASA Astrophysics Data System (ADS)
Burke, Michael; Jean, Kristi; Brown, Cheryl; Barrett, Rick; Leopold, Carrie
The North Dakota State College of Science (NDSCS) Nanoscience Technology Training Program was designed and implemented to meet the growing demand for technicians skilled in nanofabrication, surface analysis and production of various micro and nano-scale products. The program emphasizes hands-on training and utilizes a state-of-the-art Applied Science and Advanced Manufacturing Training Laboratory to develop the KSA’s (knowledge, skills, attitudes) needed by industry. Two-year Associate in Applied Science degree, diploma and certificate tracks are offered in four industry focus areas; nanotechnology, microelectronics technology, bio-fuels technology and biotechnology. Students learn to work in multidisciplinary teams on design, prototyping, analysis and manufacturing processes of products. The program also hosts an extensive hands-on outreach program which interacted with over 8000 secondary school science students and 500 teachers in the first 12 months of operation.
1989-07-26
resulting Laplacian matrix. This © 1989 lOP Publishing Ltd l • m m i m mIlia ItoI 110 Vacuum microelectronics 89 approach does not easily yield accurate...Schottky diodes p-InP-Ag A L Musatov, S L Filippov and VL Korotkikh 57-60 Stimulated cold-cathode emission from metal electrodes coated with Langmuir...quantum transport K L Jensen and FA Buot 141-144 Silicon cold cathodes based on PIN diodes P A M van der Heide, G G P van Gorkom, A M E Hoeberechts, A A
76 FR 10395 - BreconRidge Manufacturing Solutions, Now Known as Sanmina-SCI Corporation, Division...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-24
... Solutions, Now Known as Sanmina-SCI Corporation, Division Optoelectronic and Microelectronic Design and Manufacturing, a Subsidiary of Sanmina-SCI Corporation, Including On- Site Leased Workers From Kelly Services... Manufacturing Solutions, now known as Sanmina-SCI Corporation, Division Optoelectronic and Microelectronic...
Mask industry assessment: 2008
NASA Astrophysics Data System (ADS)
Hughes, Greg; Yun, Henry
2008-10-01
Microelectronics industry leaders routinely name the cost and cycle time of mask technology and mask supply as top critical issues. A survey was created with support from SEMATECH and administered by David Powell Consulting to gather information about the mask industry as an objective assessment of its overall condition. The survey is designed with the input of semiconductor company mask technologists, merchant mask suppliers, and industry equipment makers. This year's assessment is the seventh in the current series of annual reports. With ongoing industry support, the report can be used as a baseline to gain perspective on the technical and business status of the mask and microelectronics industries. The report will continue to serve as a valuable reference to identify the strengths and opportunities of the mask industry. The results will be used to guide future investments pertaining to critical path issues. This year's survey is basically the same as the 2005 through 2007 surveys. Questions are grouped into categories: General Business Profile Information, Data Processing, Yields and Yield Loss Mechanisms, Delivery Times, Returns, and Services. Within each category is a multitude of questions that create a detailed profile of both the business and technical status of the critical mask industry.
Mask industry assessment trend analysis: 2010
NASA Astrophysics Data System (ADS)
Hughes, Greg; Yun, Henry
2010-05-01
Microelectronics industry leaders consistently cite the cost and cycle time of mask technology and mask supply as top critical issues. A survey was designed with input from semiconductor company mask technologists and merchant mask suppliers and support from SEMATECH to gather information about the mask industry as an objective assessment of its overall condition. This year's assessment was the eighth in the current series of annual reports. Its data were presented in detail at BACUS, and the detailed trend analysis is presented at EMLC. With continued industry support, the report can be used as a baseline to gain perspective on the technical and business status of the mask and microelectronics industries. The report will continue to serve as a valuable reference to identify the strengths and opportunities of the mask industry. Its results will be used to guide future investments on critical path issues. This year's survey is basically the same as the surveys in 2005 through 2009. Questions are grouped into six categories: General Business Profile Information, Data Processing, Yields and Yield Loss Mechanisms, Delivery Times, Returns, and Services. Within each category is a multitude of questions that creates a detailed profile of both the business and technical status of the critical mask industry.
The 2002 to 2010 mask survey trend analysis
NASA Astrophysics Data System (ADS)
Hughes, Greg; Chan, David
2011-03-01
Microelectronics industry leaders consistently cite the cost and cycle time of mask technology and mask supply as top critical issues. A survey was designed with input from semiconductor company mask technologists and merchant mask suppliers and support from SEMATECH to gather information about the mask industry as an objective assessment of its overall condition. This year's assessment was the ninth in the current series of annual reports. Its data were presented in detail at BACUS, and the detailed trend analysis is presented at EMLC. With continued industry support, the report can be used as a baseline to gain perspective on the technical and business status of the mask and microelectronics industries. The report will continue to serve as a valuable reference to identify the strengths and opportunities of the mask industry. Results will be used to guide future investments in critical path issues. This year's survey is basically the same as the 2005 through 2010 surveys. Questions are grouped into six categories: General Business Profile Information, Data Processing, Yields and Yield Loss Mechanisms, Delivery Times, Returns, and Services. Within each category are multiple questions that ultimately create a detailed profile of both the business and technical status of the critical mask industry.
NASA Astrophysics Data System (ADS)
Sajid, Muhammad
This tutorial/survey paper presents the assessment/determination of level of hazard/threat to emerging microelectronics devices in Low Earth Orbit (LEO) space radiation environment with perigee at 300 Km, apogee at 600Km altitude having different orbital inclinations to predict the reliability of onboard Bulk Built-In Current Sensor (BBICS) fabricated in 350nm technology node at OptMA Lab. UFMG Brazil. In this context, the various parameters for space radiation environment have been analyzed to characterize the ionizing radiation environment effects on proposed BBICS. The Space radiation environment has been modeled in the form of particles trapped in Van-Allen radiation belts(RBs), Energetic Solar Particles Events (ESPE) and Galactic Cosmic Rays (GCR) where as its potential effects on Device- Under-Test (DUT) has been predicted in terms of Total Ionizing Dose (TID), Single-Event Effects (SEE) and Displacement Damage Dose (DDD). Finally, the required mitigation techniques including necessary shielding requirements to avoid undesirable effects of radiation environment at device level has been estimated /determined with assumed standard thickness of Aluminum shielding. In order to evaluate space radiation environment and analyze energetic particles effects on BBICS, OMERE toolkit developed by TRAD was utilized.
NASA Technical Reports Server (NTRS)
Jones, Ross M.
1988-01-01
The current status and potential scientific applications of intelligent 1-5-kg projectiles being developed by SDIO and DARPA for military missions are discussed. The importance of advanced microelectronics for such small spacecraft is stressed, and it is pointed out that both chemical rockets and EM launchers are currently under consideration for these lightweight exoatmospheric projectiles (LEAPs). Long-duration power supply is identified as the primary technological change required if LEAPs are to be used for interplanetary scientific missions, and the design concept of a solar-powered space-based railgun to accelerate LEAPs on such missions is considered.
Micro-Scale Avionics Thermal Management
NASA Technical Reports Server (NTRS)
Moran, Matthew E.
2001-01-01
Trends in the thermal management of avionics and commercial ground-based microelectronics are converging, and facing the same dilemma: a shortfall in technology to meet near-term maximum junction temperature and package power projections. Micro-scale devices hold the key to significant advances in thermal management, particularly micro-refrigerators/coolers that can drive cooling temperatures below ambient. A microelectromechanical system (MEMS) Stirling cooler is currently under development at the NASA Glenn Research Center to meet this challenge with predicted efficiencies that are an order of magnitude better than current and future thermoelectric coolers.
Fine Collimator Grids Using Silicon Metering Structure
NASA Technical Reports Server (NTRS)
Eberhard, Carol
1998-01-01
The project Fine Collimator Grids Using Silicon Metering Structure was managed by Dr. Carol Eberhard of the Electromagnetic Systems & Technology Department (Space & Technology Division) of TRW who also wrote this final report. The KOH chemical etching of the silicon wafers was primarily done by Dr. Simon Prussin of the Electrical Engineering Department of UCLA at the laboratory on campus. Moshe Sergant of the Superconductor Electronics Technology Department (Electronics Systems & Technology Division) of TRW and Dr. Prussin were instrumental in developing the low temperature silicon etching processes. Moshe Sergant and George G. Pinneo of the Microelectronics Production Department (Electronics Systems & Technology Division) of TRW were instrumental in developing the processes for filling the slots etched in the silicon wafers with metal-filled materials. Their work was carried out in the laboratories at the Space Park facility. Moshe Sergant is also responsible for the impressive array of Scanning Electron Microscope images with which the various processes were monitored. Many others also contributed their time and expertise to the project. I wish to thank them all.
A decade of neural networks: Practical applications and prospects
NASA Technical Reports Server (NTRS)
Kemeny, Sabrina (Editor); Thakoor, Anil (Editor)
1994-01-01
On May 11-13, 1994, JPL's Center for Space Microelectronics Technology (CSMT) hosted a neural network workshop entitled, 'A Decade of Neural Networks: Practical Applications and Prospects,' sponsored by DOD and NASA. The past ten years of renewed activity in neural network research has brought the technology to a crossroads regarding the overall scope of its future practical applicability. The purpose of the workshop was to bring together the sponsoring agencies, active researchers, and the user community to formulate a vision for the next decade of neural network research and development prospects, with emphasis on practical applications. Of the 93 participants, roughly 15% were from government agencies, 30% were from industry, 20% were from universities, and 35% were from Federally Funded Research and Development Centers (FFRDC's).
Research development of thermal aberration in 193nm lithography exposure system
NASA Astrophysics Data System (ADS)
Wang, Yueqiang; Liu, Yong
2014-08-01
Lithographic exposure is the key process in the manufacture of the integrated circuit, and the performance of exposure system decides the level of microelectronic manufacture technology. Nowadays, the 193nm ArF immersion exposure tool is widely used by the IC manufacturer. With the uniformity of critical dimension (CDU) and overlay become tighter and the requirement for throughput become higher, the thermal aberration caused by lens material and structure absorbing the laser energy cannot be neglected. In this paper, we introduce the efforts and methods that researcher on thermal aberration and its control. Further, these methods were compared to show their own pros and cons. Finally we investigated the challenges of thermal aberration control for state of the art technologies.
PREFACE: Quantum information processing
NASA Astrophysics Data System (ADS)
Briggs, Andrew; Ferry, David; Stoneham, Marshall
2006-05-01
Microelectronics and the classical information technologies transformed the physics of semiconductors. Photonics has given optical materials a new direction. Quantum information technologies, we believe, will have immense impact on condensed matter physics. The novel systems of quantum information processing need to be designed and made. Their behaviours must be manipulated in ways that are intrinsically quantal and generally nanoscale. Both in this special issue and in previous issues (see e.g., Spiller T P and Munro W J 2006 J. Phys.: Condens. Matter 18 V1-10) we see the emergence of new ideas that link the fundamentals of science to the pragmatism of market-led industry. We hope these papers will be followed by many others on quantum information processing in the Journal of Physics: Condensed Matter.
Government Microelectronics Assessment for Trust (GOMAT)
NASA Technical Reports Server (NTRS)
Berg, Melanie D.; LaBel, Kenneth A.
2018-01-01
NASA Electronic Parts and Packaging (NEPP) is developing a process to be employed in critical applications. The framework assesses levels of trust and assurance in microelectronic systems. The process is being created with participation from a variety of organizations. We present a synopsis of the framework that includes contributions from The Aerospace Corporation.
Reparable, high-density microelectronic module provides effective heat sink
NASA Technical Reports Server (NTRS)
Carlson, K. J.; Maytone, F. F.
1967-01-01
Reparable modular system is used for packaging microelectronic flat packs and miniature discrete components. This three-dimensional compartmented structure incorporates etched phosphor bronze sheets and frames with etched wire conductors. It provides an effective heat sink for electric power dissipation in the absence of convective cooling means.
Teaching and Learning in a Microelectronic Age.
ERIC Educational Resources Information Center
Shane, Harold G.
General background information on microtechnologies with implications for educators provides an introduction to this review of past and current developments in microelectronics and specific ways in which the microchip is permeating society, creating problems and opportunities both in the workplace and the home. Topics discussed in the first of two…
NASA Technical Reports Server (NTRS)
Montgomery, R. C.; Tabak, D.
1979-01-01
The study involves the bank of filters approach to analytical redundancy management since this is amenable to microelectronic implementation. Attention is given to a study of the UD factorized filter to determine if it gives more accurate estimates than the standard Kalman filter when data processing word size is reduced. It is reported that, as the word size is reduced, the effect of modeling error dominates the filter performance of the two filters. However, the UD filter is shown to maintain a slight advantage in tracking performance. It is concluded that because of the UD filter's stability in the serial processing mode, it remains the leading candidate for microelectronic implementation.
NASA Astrophysics Data System (ADS)
Kosulya, A. V.; Verbitskii, V. G.
2017-09-01
The dependence of the transverse section of an electron beam on the distance between plates and on the accelerating potential difference is determined for a chevron unit of a microelectronic position-sensitive detector (MPSD) with two microchannel plates. The geometry of the MPSD chevron unit is designed and optimized.
ERIC Educational Resources Information Center
National Science Foundation, Arlington, VA. Directorate for Computer and Information Science and Engineering.
The purpose of this summary of awards is to provide the scientific and engineering communities with a summary of the grants awarded in 1994 by the National Science Foundation's Division of Microelectronic Information Processing Systems. Similar areas of research are grouped together. Grantee institutions and principal investigators are identified…
The large scale microelectronics Computer-Aided Design and Test (CADAT) system
NASA Technical Reports Server (NTRS)
Gould, J. M.
1978-01-01
The CADAT system consists of a number of computer programs written in FORTRAN that provide the capability to simulate, lay out, analyze, and create the artwork for large scale microelectronics. The function of each software component of the system is described with references to specific documentation for each software component.
NASA Astrophysics Data System (ADS)
Zhang, Yumin
2014-12-01
Microelectronics is a challenging course to many undergraduate students and is often described as very messy. Before taking this course, all the students have learned circuit analysis, where basically all the problems can be solved by applying Kirchhoff's laws. In addition, most engineering students have also learned engineering mechanics: statics and dynamics, where Newton's laws and related principles can be applied in solving all the problems. However, microelectronics is not as clean as these courses. There are hundreds of equations for different circuits, and it is impossible to remember which equation should be applied to which circuit. One of the common pitfalls in learning this course is over-focusing at the equation level and ignoring the ideas (Tao) behind it. Unfortunately, these ideas are not summarized and emphasized in most microelectronics textbooks, though they cover various electronic circuits comprehensively. Therefore, most undergraduate students feel at a loss when they start to learn this topic. This book tries to illustrate the major ideas and the basic analysis techniques, so that students can derive the right equations easily when facing an electronic circuit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, J.H.; Ellis, J.R.; Montague, S.
1997-03-01
One of the principal applications of monolithically integrated micromechanical/microelectronic systems has been accelerometers for automotive applications. As integrated MEMS/CMOS technologies such as those developed by U.C. Berkeley, Analog Devices, and Sandia National Laboratories mature, additional systems for more sensitive inertial measurements will enter the commercial marketplace. In this paper, the authors will examine key technology design rules which impact the performance and cost of inertial measurement devices manufactured in integrated MEMS/CMOS technologies. These design parameters include: (1) minimum MEMS feature size, (2) minimum CMOS feature size, (3) maximum MEMS linear dimension, (4) number of mechanical MEMS layers, (5) MEMS/CMOS spacing.more » In particular, the embedded approach to integration developed at Sandia will be examined in the context of these technology features. Presently, this technology offers MEMS feature sizes as small as 1 {micro}m, CMOS critical dimensions of 1.25 {micro}m, MEMS linear dimensions of 1,000 {micro}m, a single mechanical level of polysilicon, and a 100 {micro}m space between MEMS and CMOS. This is applicable to modern precision guided munitions.« less
Laser Scanner Tests For Single-Event Upsets
NASA Technical Reports Server (NTRS)
Kim, Quiesup; Soli, George A.; Schwartz, Harvey R.
1992-01-01
Microelectronic advanced laser scanner (MEALS) is opto/electro/mechanical apparatus for nondestructive testing of integrated memory circuits, logic circuits, and other microelectronic devices. Multipurpose diagnostic system used to determine ultrafast time response, leakage, latchup, and electrical overstress. Used to simulate some of effects of heavy ions accelerated to high energies to determine susceptibility of digital device to single-event upsets.
ERIC Educational Resources Information Center
Dori, Yehudit Judy; Dangur, Vered; Avargil, Shirly; Peskin, Uri
2014-01-01
Chemistry students in Israel have two options for studying chemistry: basic or honors (advanced placement). For instruction in high school honors chemistry courses, we developed a module focusing on abstract topics in quantum mechanics: Chemistry--From the Nanoscale to Microelectronics. The module adopts a visual-conceptual approach, which…
Microelectronics in F. E.: Some Personal Perceptions. An Occasional Paper.
ERIC Educational Resources Information Center
Dean, K. J.
The recent microelectronics developments are having, and will continue to have, a sharp impact on various industries in Great Britain, and thus on the capacity of the Further Education System to produce qualified graduates. To maintain a high quality of education, instructors must learn of these new developments and teach them to their vocational…
Advanced Silicon-on-Insulator: Crystalline Silicon on Atomic Layer Deposited Beryllium Oxide.
Min Lee, Seung; Hwan Yum, Jung; Larsen, Eric S; Chul Lee, Woo; Keun Kim, Seong; Bielawski, Christopher W; Oh, Jungwoo
2017-10-16
Silicon-on-insulator (SOI) technology improves the performance of devices by reducing parasitic capacitance. Devices based on SOI or silicon-on-sapphire technology are primarily used in high-performance radio frequency (RF) and radiation sensitive applications as well as for reducing the short channel effects in microelectronic devices. Despite their advantages, the high substrate cost and overheating problems associated with complexities in substrate fabrication as well as the low thermal conductivity of silicon oxide prevent broad applications of this technology. To overcome these challenges, we describe a new approach of using beryllium oxide (BeO). The use of atomic layer deposition (ALD) for producing this material results in lowering the SOI wafer production cost. Furthermore, the use of BeO exhibiting a high thermal conductivity might minimize the self-heating issues. We show that crystalline Si can be grown on ALD BeO and the resultant devices exhibit potential for use in advanced SOI technology applications.
NASA Astrophysics Data System (ADS)
King, Sean W.; Simka, Harsono; Herr, Dan; Akinaga, Hiro; Garner, Mike
2013-10-01
Recent discussions concerning the continuation of Moore's law have focused on announcements by several major corporations to transition from traditional 2D planar to new 3D multi-gate field effect transistor devices. However, the growth and progression of the semiconductor microelectronics industry over the previous 4 decades has been largely driven by combined advances in new materials, lithography, and materials related process technologies. Looking forward, it is therefore anticipated that new materials and materials technologies will continue to play a significant role in both the pursuit of Moore's law and the evolution of the industry. In this research update, we discuss and illustrate some of the required and anticipated materials innovations that could potentially lead to the continuation of Moore's law for another decade (or more). We focus primarily on the innovations needed to achieve single digit nanometer technologies and illustrate how at these dimensions not only new materials but new metrologies and computational modeling will be needed.
NASA Astrophysics Data System (ADS)
Krawczak, Ewelina; Agata, Zdyb; Gulkowski, Slawomir; Fave, Alain; Fourmond, Erwann
2017-11-01
Transparent Conductive Oxides (TCOs) characterized by high visible transmittance and low electrical resistivity play an important role in photovoltaic technology. Aluminum doped zinc oxide (AZO) is one of the TCOs that can find its application in thin film solar cells (CIGS or CdTe PV technology) as well as in other microelectronic applications. In this paper some optical and electrical properties of ZnO:Al thin films deposited by RF magnetron sputtering method have been investigated. AZO layers have been deposited on the soda lime glass substrates with use of variable technological parameters such as pressure in the deposition chamber, power applied and temperature during the process. The composition of AZO films has been investigated by EDS method. Thickness and refraction index of the deposited layers in dependence on certain technological parameters of sputtering process have been determined by spectroscopic ellipsometry. The measurements of transmittance and sheet resistance were also performed.
Sealed symmetric multilayered microelectronic device package with integral windows
Peterson, Kenneth A.; Watson, Robert D.
2002-01-01
A sealed symmetric multilayered package with integral windows for housing one or more microelectronic devices. The devices can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The multilayered package can be formed of a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the windows being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. The microelectronic devices can be flip-chip bonded and oriented so that the light-sensitive sides are optically accessible through the windows. The result is a compact, low-profile, sealed symmetric package, having integral windows that can be hermetically-sealed.
North American Fuzzy Logic Processing Society (NAFIPS 1992), volume 1
NASA Technical Reports Server (NTRS)
Villarreal, James A. (Compiler)
1992-01-01
This document contains papers presented at the NAFIPS '92 North American Fuzzy Information Processing Society Conference. More than 75 papers were presented at this Conference, which was sponsored by NAFIPS in cooperation with NASA, the Instituto Tecnologico de Morelia, the Indian Society for Fuzzy Mathematics and Information Processing (ISFUMIP), the Instituto Tecnologico de Estudios Superiores de Monterrey (ITESM), the International Fuzzy Systems Association (IFSA), the Japan Society for Fuzzy Theory and Systems, and the Microelectronics and Computer Technology Corporation (MCC). The fuzzy set theory has led to a large number of diverse applications. Recently, interesting applications have been developed which involve the integration of fuzzy systems with adaptive processes such as neural networks and genetic algorithms. NAFIPS '92 was directed toward the advancement, commercialization, and engineering development of these technologies.
North American Fuzzy Logic Processing Society (NAFIPS 1992), volume 2
NASA Technical Reports Server (NTRS)
Villarreal, James A. (Compiler)
1992-01-01
This document contains papers presented at the NAFIPS '92 North American Fuzzy Information Processing Society Conference. More than 75 papers were presented at this Conference, which was sponsored by NAFIPS in cooperation with NASA, the Instituto Tecnologico de Morelia, the Indian Society for Fuzzy Mathematics and Information Processing (ISFUMIP), the Instituto Tecnologico de Estudios Superiores de Monterrey (ITESM), the International Fuzzy Systems Association (IFSA), the Japan Society for Fuzzy Theory and Systems, and the Microelectronics and Computer Technology Corporation (MCC). The fuzzy set theory has led to a large number of diverse applications. Recently, interesting applications have been developed which involve the integration of fuzzy systems with adaptive processes such a neural networks and genetic algorithms. NAFIPS '92 was directed toward the advancement, commercialization, and engineering development of these technologies.
NASA Technical Reports Server (NTRS)
Ghaffarian, Reza
2013-01-01
The use of printed electronics technologies (PETs), 2D or 3D printing approaches either by conventional electronic fabrication or by rapid graphic printing of organic or nonorganic electronic devices on various small or large rigid or flexible substrates, is projected to grow exponentially in commercial industry. This has provided an opportunity to determine whether or not PETs could be applicable for low volume and high-reliability applications. This report presents a summary of literature surveyed and provides a body of knowledge (BOK) gathered on the current status of organic and printed electronics technologies. It reviews three key industry roadmaps- on this subject-OE-A, ITRS, and iNEMI-each with a different name identification for this emerging technology. This followed by a brief review of the status of the industry on standard development for this technology, including IEEE and IPC specifications. The report concludes with key technologies and applications and provides a technology hierarchy similar to those of conventional microelectronics for electronics packaging. Understanding key technology roadmaps, parameters, and applications is important when judicially selecting and narrowing the follow-up of new and emerging applicable technologies for evaluation, as well as the low risk insertion of organic, large area, and printed electronics.
Compact VLSI neural computer integrated with active pixel sensor for real-time ATR applications
NASA Astrophysics Data System (ADS)
Fang, Wai-Chi; Udomkesmalee, Gabriel; Alkalai, Leon
1997-04-01
A compact VLSI neural computer integrated with an active pixel sensor has been under development to mimic what is inherent in biological vision systems. This electronic eye- brain computer is targeted for real-time machine vision applications which require both high-bandwidth communication and high-performance computing for data sensing, synergy of multiple types of sensory information, feature extraction, target detection, target recognition, and control functions. The neural computer is based on a composite structure which combines Annealing Cellular Neural Network (ACNN) and Hierarchical Self-Organization Neural Network (HSONN). The ACNN architecture is a programmable and scalable multi- dimensional array of annealing neurons which are locally connected with their local neurons. Meanwhile, the HSONN adopts a hierarchical structure with nonlinear basis functions. The ACNN+HSONN neural computer is effectively designed to perform programmable functions for machine vision processing in all levels with its embedded host processor. It provides a two order-of-magnitude increase in computation power over the state-of-the-art microcomputer and DSP microelectronics. A compact current-mode VLSI design feasibility of the ACNN+HSONN neural computer is demonstrated by a 3D 16X8X9-cube neural processor chip design in a 2-micrometers CMOS technology. Integration of this neural computer as one slice of a 4'X4' multichip module into the 3D MCM based avionics architecture for NASA's New Millennium Program is also described.
NASA Astrophysics Data System (ADS)
Narendar, Vadthiya; Rai, Saurabh; Tiwari, Siddharth; Mishra, R. A.
2016-12-01
The double-gate (DG) metal-oxide-semiconductor field effect transistors (MOSFETs) are the choice of technology in sub -100 nm regime of leading microelectronics industry. To enhance the analog and RF performance of DG MOSFET, an underlap dual-material (DM) DG MOSFET device structure has been considered because, it has the advantages of both underlap as well as that of dual-material gate (DMG). A 2D analytical surface potential, subthreshold current, subthreshold swing as well as transconductance modelling of underlap DMDG MOSFET has been done by solving the Poisson's equation. It has also been found that, numerically simulated data approves the analytically modelled data with commendable accuracy. As underlap length (Lun) increases, a substantial reduction of subthreshold current due to enhanced gate control over channel regime is observed. DMG structure facilitates to improve the average velocity of carriers which leads to superior drive current of the device. The underlap DMDG MOSFET device structure demonstrates an ameliorated subthreshold characteristic. The analog figure of merits (FOMs) such as transconductance (gm), transconductance generation factor (TGF), output conductance (gd), early voltage (VEA), intrinsic gain (AV) and RF FOMs namely cut-off frequency (fT), gain frequency product (GFP), transconductance frequency product (TFP) and gain transconductance frequency product (GTFP) have been evaluated. The aforesaid analysis revels that, the device is best suited for communication related Analog/RF applications.
Experimentally Observed Electrical Durability of 4H-SiC JFET ICs Operating from 500 C to 700 C
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Spry, David J.; Chen, Liangyu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.
2016-01-01
Prolonged 500 degrees Celsius to 700 degrees Celsius electrical testing data from 4H-SiC junction field effect transistor (JFET) integrated circuits (ICs) are combined with post-testing microscopic studies in order to gain more comprehensive understanding of the durability limits of the present version of NASA Glenn's extreme temperature microelectronics technology. The results of this study support the hypothesis that T = 500 degrees Celsius durability-limiting IC failure initiates with thermal-stress-related crack formation where dielectric passivation layers overcoat micron-scale vertical features including patterned metal traces.
Advanced educational program in optoelectronics for undergraduates and graduates in electronics
NASA Astrophysics Data System (ADS)
Vladescu, Marian; Schiopu, Paul
2015-02-01
The optoelectronics education included in electronics curricula at Faculty of Electronics, Telecommunications and Information Technology of "Politehnica" University of Bucharest started in early '90s, and evolved constantly since then, trying to address the growing demand of engineers with a complex optoelectronics profile and to meet the increased requirements of microelectronics, optoelectronics, and lately nanotechnologies. Our goal is to provide a high level of theoretical background combined with advanced experimental tools in laboratories, and also with simulation platforms. That's why we propose an advanced educational program in optoelectronics for both grades of our study program, bachelor and master.
Micro guidance and control synthesis: New components, architectures, and capabilities
NASA Technical Reports Server (NTRS)
Mettler, Edward; Hadaegh, Fred Y.
1993-01-01
New GN&C (guidance, navigation and control) system capabilities are shown to arise from component innovations that involve the synergistic use of microminiature sensors and actuators, microelectronics, and fiber optics. Micro-GN&C system and component concepts are defined that include micro-actuated adaptive optics, micromachined inertial sensors, fiber-optic data nets and light-power transmission, and VLSI microcomputers. The thesis is advanced that these micro-miniaturization products are capable of having a revolutionary impact on space missions and systems, and that GN&C is the pathfinder micro-technology application that can bring that about.
Space Qualified High Speed Reed Solomon Encoder
NASA Technical Reports Server (NTRS)
Gambles, Jody W.; Winkert, Tom
1993-01-01
This paper reports a Class S CCSDS recommendation Reed Solomon encoder circuit baselined for several NASA programs. The chip is fabricated using United Technologies Microelectronics Center's UTE-R radiation-hardened gate array family, contains 64,000 p-n transistor pairs, and operates at a sustained output data rate of 200 MBits/s. The chip features a pin selectable message interleave depth of from 1 to 8 and supports output block lengths of 33 to 255 bytes. The UTE-R process is reported to produce parts that are radiation hardened to 16 Rads (Si) total dose and 1.0(exp -10) errors/bit-day.
Room-temperature semiconductor heterostructure refrigeration
NASA Astrophysics Data System (ADS)
Chao, K. A.; Larsson, Magnus; Mal'shukov, A. G.
2005-07-01
With the proper design of semiconductor tunneling barrier structures, we can inject low-energy electrons via resonant tunneling, and take out high-energy electrons via a thermionic process. This is the operation principle of our semiconductor heterostructure refrigerator (SHR) without the need of applying a temperature gradient across the device. Even for the bad thermoelectric material AlGaAs, our calculation shows that at room temperature, the SHR can easily lower the temperature by 5-7K. Such devices can be fabricated with the present semiconductor technology. Besides its use as a kitchen refrigerator, the SHR can efficiently cool microelectronic devices.
NASA Technical Reports Server (NTRS)
Koontz, Steve
2015-01-01
In this presentation a review of galactic cosmic ray (GCR) effects on microelectronic systems and human health and safety is given. The methods used to evaluate and mitigate unwanted cosmic ray effects in ground-based, atmospheric flight, and space flight environments are also reviewed. However not all GCR effects are undesirable. We will also briefly review how observation and analysis of GCR interactions with planetary atmospheres and surfaces and reveal important compositional and geophysical data on earth and elsewhere. About 1000 GCR particles enter every square meter of Earth’s upper atmosphere every second, roughly the same number striking every square meter of the International Space Station (ISS) and every other low- Earth orbit spacecraft. GCR particles are high energy ionized atomic nuclei (90% protons, 9% alpha particles, 1% heavier nuclei) traveling very close to the speed of light. The GCR particle flux is even higher in interplanetary space because the geomagnetic field provides some limited magnetic shielding. Collisions of GCR particles with atomic nuclei in planetary atmospheres and/or regolith as well as spacecraft materials produce nuclear reactions and energetic/highly penetrating secondary particle showers. Three twentieth century technology developments have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems and assess effects on human health and safety effects. The key technology developments are: 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems. Space and geophysical exploration needs drove the development of the instruments and analytical tools needed to recover compositional and structural data from GCR induced nuclear reactions and secondary particle showers. Finally, the possible role of GCR secondary particle showers in addressing an important homeland security problem, finding nuclear contraband and weapons, will be briefly reviewed.
Carlton, Holly D.; Elmer, John W.; Li, Yan; ...
2016-04-13
For this study synchrotron radiation micro-tomography, a non-destructive three-dimensional imaging technique, is employed to investigate an entire microelectronic package with a cross-sectional area of 16 x 16 mm. Due to the synchrotron’s high flux and brightness the sample was imaged in just 3 minutes with an 8.7 μm spatial resolution.
Hayeck, Nathalie; Ravier, Sylvain; Gemayel, Rachel; Gligorovski, Sasho; Poulet, Irène; Maalouly, Jacqueline; Wortham, Henri
2015-11-01
Microelectronic wafers are exposed to airborne molecular contamination (AMC) during the fabrication process of microelectronic components. The organophosphate compounds belonging to the dopant group are one of the most harmful groups. Once adsorbed on the wafer surface these compounds hardly desorb and could diffuse in the bulk of the wafer and invert the wafer from p-type to n-type. The presence of these compounds on wafer surface could have electrical effect on the microelectronic components. For these reasons, it is of importance to control the amount of these compounds on the surface of the wafer. As a result, a fast quantitative and qualitative analytical method, nondestructive for the wafers, is needed to be able to adjust the process and avoid the loss of an important quantity of processed wafers due to the contamination by organophosphate compounds. Here we developed and validated an analytical method for the determination of organic compounds adsorbed on the surface of microelectronic wafers using the Direct Analysis in Real Time-Time of Flight-Mass Spectrometry (DART-ToF-MS) system. Specifically, the developed methodology concerns the organophosphate group. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gillet, Jean-Numa; Degorce, Jean-Yves; Belisle, Jonathan; Meunier, Michel
2004-03-01
Three-dimensional modeling of n^+-ν -n^+ and p^+-π -p^+ semiconducting devices for analog ULSI microelectronics Jean-Numa Gillet,^a,b Jean-Yves Degorce,^a Jonathan Bélisle^a and Michel Meunier.^a,c ^a École Polytechnique de Montréal, Dept. of Engineering Physics, CP 6079, Succ. Centre-vile, Montréal, Québec H3C 3A7, Canada. ^b Corresponding author. Email: Jean-Numa.Gillet@polymtl.ca ^c Also with LTRIM Technologies, 140-440, boul. A.-Frappier, Laval, Québec H7V 4B4, Canada. We present for the first time three-dimensional (3-D) modeling of n^+-ν -n^+ and p^+-π -p^+ semiconducting resistors, which are fabricated by laser-induced doping in a gateless MOSFET and present significant applications for analog ULSI microelectronics. Our modeling software is made up of three steps. The two first concerns modeling of a new laser-trimming fabrication process. With the molten-silicon temperature distribution obtained from the first, we compute in the second the 3-D dopant distribution, which creates the electrical link through the device gap. In this paper the emphasis is on the third step, which concerns 3-D modeling of the resistor electronic behavior with a new tube multiplexing algorithm (TMA). The device current-voltage (I-V) curve is usually obtained by solving three coupled partial differential equations with a finite-element method. A 3-D device as our resistor cannot be modeled with this classical method owing to its prohibitive computational cost in three dimensions. This problem is however avoided by our TMA, which divides the 3-D device into one-dimensional (1-D) multiplexed tubes. In our TMA 1-D systems of three ordinary differential equations are solved to determine the 3-D device I-V curve, which substantially increases computation speed compared with the classical method. Numerical results show a good agreement with experiments.
NASA Technical Reports Server (NTRS)
Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo
1989-01-01
The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.
Mask industry assessment trend analysis
NASA Astrophysics Data System (ADS)
Hughes, Greg; Yun, Henry
2009-01-01
Microelectronics industry leaders routinely name the cost and cycle time of mask technology and mask supply as top critical issues. A survey was created with support from SEMATECH to gather information about the mask industry as an objective assessment of its overall condition. This year's survey data were presented in detail at BACUS and the detailed trend analysis presented at EMLC. The survey is designed with the input of semiconductor company mask technologists and merchant mask suppliers. This year's assessment is the seventh in the current series of annual reports. With continued industry support, the report can be used as a baseline to gain perspective on the technical and business status of the mask and microelectronics industries. The report will continue to serve as a valuable reference to identify the strengths and opportunities of the mask industry. The results will be used to guide future investments on critical path issues. This year's survey is basically the same as the surveys in 2005 through 2007. Questions are grouped into seven categories: General Business Profile Information, Data Processing, Yields and Yield Loss, Mechanisms, Delivery Times, Returns, and Services. (Examples are given below). Within each category is a multitude of questions that creates a detailed profile of both the business and technical status of the critical mask industry.
Mask industry assessment: 2009
NASA Astrophysics Data System (ADS)
Hughes, Greg; Yun, Henry
2009-10-01
Microelectronics industry leaders routinely name the cost and cycle time of mask technology and mask supply as top critical issues. A survey was created with support from SEMATECH and administered by David Powell Consulting to gather information about the mask industry as an objective assessment of its overall condition. The survey is designed with the input of semiconductor company mask technologists and merchant mask suppliers. This year's assessment is the eighth in the current series of annual reports. With ongoing industry support, the report can be used as a baseline to gain perspective on the technical and business status of the mask and microelectronics industries. The report will continue to serve as a valuable reference to identify the strengths and opportunities of the mask industry. The results will be used to guide future investments pertaining to critical path issues. This year's survey is basically the same as the 2005 through 2008 surveys. Questions are grouped into categories: General Business Profile Information, Data Processing, Yields and Yield Loss Mechanisms, Delivery Times, Returns, and Services. Within each category is a multitude of questions that create a detailed profile of both the business and technical status of the critical mask industry. This in combination with the past surveys represents a comprehensive view of changes in the industry.
Mask industry assessment trend analysis: 2012
NASA Astrophysics Data System (ADS)
Chan, Y. David
2012-02-01
Microelectronics industry leaders consistently cite the cost and cycle time of mask technology and mask supply among the top critical issues for lithography. A survey was designed by SEMATECH with input from semiconductor company mask technologists and merchant mask suppliers to objectively assess the overall conditions of the mask industry. With the continued support of the industry, this year's assessment was the tenth in the current series of annual reports. This year's survey is basically the same as the 2005 through 2011 surveys. Questions are grouped into six categories: General Business Profile Information, Data Processing, Yields and Yield Loss Mechanisms, Delivery Times, Returns, and Services. Within each category is a multitude of questions that ultimately produce a detailed profile of both the business and technical status of the critical mask industry. We received data from 11 companies this year, which was a record high since the beginning of the series. The responding companies represented more than 96% of the volume shipped and about 90% of the 2011 revenue for the photomask industry. These survey reports are often used as a baseline to gain perspective on the technical and business status of the mask and microelectronics industries. They will continue to serve as a valuable reference to identify strengths and opportunities. Results can also be used to guide future investments in critical path issues.
Post-Fordist technology and the changing patterns of women's employment in the Third World.
Nanda, M
2000-01-01
Literate but unskilled--and largely female--labor has thus far fueled the tremendous increase in manufactured exports of garments and microelectronic products from the Third World to the industrially advanced economies of the North. The future growth of these sectors, however, may require literate and skilled workers--a category in which women are woefully under-represented, especially in the Third World. In the case of the garment industry, defensive innovation in the industrially advanced countries, including automation and flexible management, has initiated a relocation of jobs to these countries or to offshore locations geographically close to their markets. Automated garment production in these countries requires fewer but computer-literate workers. In the case of microelectronics, development policies of East Asian countries and the competitive pressures on start-up companies in the North have led to an increased demand for computer-literate, skilled technicians over the unskilled and overwhelmingly female workforce of manual-assembly workers. Women's continued employment and advancement in these industries globally will depend upon their acquisition of new technical skills. The ratification by the 1995 international women's conference at Beijing of the demand for better access to education and skills training for women, especially in the Third World, is a step in the right direction.
First-principles investigations of proton generation in α-quartz
NASA Astrophysics Data System (ADS)
Yue, Yunliang; Song, Yu; Zuo, Xu
2018-03-01
Proton plays a key role in the interface-trap formation that is one of the primary reliability concerns, thus learning how it behaves is key to understand the radiation response of microelectronic devices. The first-principles calculations have been applied to explore the defects and their reactions associated with the proton release in α-quartz, the well-known crystalline isomer of amorphous silica. When a high concentration of molecular hydrogen (H2) is present, the proton generation can be enhanced by cracking the H2 molecules at the positively charged oxygen vacancies in dimer configuration. If the concentration of molecular hydrogen is low, the proton generation mainly depends on the proton dissociation of the doubly-hydrogenated defects. In particular, a fully passivated {E}2^{\\prime } center can dissociate to release a proton barrierlessly by structure relaxation once trapping a hole. This research provides a microscopic insight into the proton release in silicon dioxide, the critical step associated with the interface-trap formation under radiation in microelectronic devices. Project supported by the Science Challenge Project, China (Grant No. TZ2016003-1-105), CAEP Microsystem and THz Science and Technology Foundation, China (Grant No. CAEPMT201501), the National Natural Science Foundation China (Grant No. NSFC 11404300), and the National Basic Research Program of China (Grant No. 2011CB606405).
Design Considerations in Capacitively Coupled Plasmas
NASA Astrophysics Data System (ADS)
Song, Sang-Heon; Ventzek, Peter; Ranjan, Alok
2015-11-01
Microelectronics industry has driven transistor feature size scaling from 10-6 m to 10-9 m during the past 50 years, which is often referred to as Moore's law. It cannot be overstated that today's information technology would not have been so successful without plasma material processing. One of the major plasma sources for the microelectronics fabrication is capacitively coupled plasmas (CCPs). The CCP reactor has been intensively studied and developed for the deposition and etching of different films on the silicon wafer. As the feature size gets to around 10 nm, the requirement for the process uniformity is less than 1-2 nm across the wafer (300 mm). In order to achieve the desired uniformity, the hardware design should be as precise as possible before the fine tuning of process condition is applied to make it even better. In doing this procedure, the computer simulation can save a significant amount of resources such as time and money which are critical in the semiconductor business. In this presentation, we compare plasma properties using a 2-dimensional plasma hydrodynamics model for different kinds of design factors that can affect the plasma uniformity. The parameters studied in this presentation include chamber accessing port, pumping port, focus ring around wafer substrate, and the geometry of electrodes of CCP.
Applications of Accelerators and Radiation Sources in the Field of Space Research and Industry.
Campajola, Luigi; Di Capua, Francesco
2016-12-01
Beyond their important economic role in commercial communications, satellites in general are critical infrastructure because of the services they provide. In addition to satellites providing information which facilitates a better understanding of the space environment and improved performance of physics experiments, satellite observations are also used to actively monitor weather, geological processes, agricultural development and the evolution of natural and man-made hazards. Defence agencies depend on satellite services for communication in remote locations, as well as for reconnaissance and intelligence. Both commercial and government users rely on communication satellites to provide communication in the event of a disaster that damages ground-based communication systems, provide news, education and entertainment to remote areas and connect global businesses. The space radiation environment is an hazard to most satellite missions and can lead to extremely difficult operating conditions for all of the equipment travelling in space. Here, we first provide an overview of the main components of space radiation environment, followed by a description of the basic mechanism of the interaction of radiation with matter. This is followed by an introduction to the space radiation hardness assurance problem and the main effects of natural radiation to the microelectronics (total ionizing dose, displacement damage and the single-event effect and a description of how different effects occurring in the space can be tested in on-ground experiments by using particle accelerators and radiation sources. We also discuss standards and the recommended procedures to obtain reliable results.
History highlights and future trends of infrared sensors
NASA Astrophysics Data System (ADS)
Corsi, Carlo
2010-10-01
Infrared (IR) technologies (materials, devices and systems) represent an area of excellence in science and technology and, even if they have been generally confined to a selected scientific community, they have achieved technological and scientific highlights constituting 'innovation drivers' for neighbouring disciplines, especially in the sensors field. The development of IR sensors, initially linked to astronomical observations, since World War II and for many years has been fostered essentially by defence applications, particularly thermo-vision and, later on, smart vision and detection, for surveillance and warning. Only in the last few decades, the impact of silicon technology has changed the development of IR detectors dramatically, with the advent of integrated signal read-outs and the opening of civilian markets (EO communications, biomedical, environmental, transport and energy applications). The history of infrared sensors contains examples of real breakthroughs, particularly true in the case of focal plane arrays that first appeared in the late 1970s, when the superiority of bi-dimensional arrays for most applications pushed the development of technologies providing the highest number of pixels. An impressive impulse was given to the development of FPA arrays by integration with charge coupled devices (CCD), with strong competition from different technologies (high-efficiency photon sensors, Schottky diodes, multi-quantum wells and, later on, room temperature microbolometers/cantilevers). This breakthrough allowed the development of high performance IR systems of small size, light weight and low cost - and therefore suitable for civil applications - thanks to the elimination of the mechanical scanning system and the progressive reduction of cooling requirements (up to the advent of microbolometers, capable of working at room temperature). In particular, the elimination of cryogenic cooling allowed the development and commercialisation of IR Smart Sensors; strategic components for important areas like transport, environment, territory control and security. Infrared history is showing oscillations and variations in raw materials, technology processes and in device design and characteristics. Various technologies oscillating between the two main detection techniques (photon and bolometer effects) have been developed and evaluated as the best ones, depending on the system use as well as expectable performances. Analysis of the 'waving change' in the history of IR sensor technologies is given with the fundamental theory of the various approaches. Highlights of the main historical IR developments and their impact and use in civil and military applications is shown and correlated with the leading technology of silicon microelectronics: scientific and economic comparisons are given and emerging technologies and forecasting of future developments are outlined.
2017-01-17
2016-0155 Kirtland AFB, NM 87117-5776 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) AFRL /RVSW 11...22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVSW/Clay Mayberry 1 cy Approved for... AFRL -RV-PS- AFRL -RV-PS- TR-2016-0155 TR-2016-0155 MICROELECTRONICS RELIABILITY Clay Mayberry and Joseph Bernstein 17 Jan 2017 Interim Report
Microelectronic bioinstrumentation system
NASA Technical Reports Server (NTRS)
Ko, W. H.; Yon, E. T.; Rodriguez, R. J.
1974-01-01
The progess made from April 1973 to June 1974 on a microelectronics bioinstrumentation system is reported and includes data for the following three individual projects: (1) a radio frequency powered implant telemetry system; (2) an ingestible temperature telemeter; and (3) development of pO2 and pH sensors. Proposed activities for continuation of the research for the period September 1, 1974 to August 31, 1975 are also discussed.
Radiofrequency and microwave radiation in the microelectronics industry.
Cohen, R
1986-01-01
The microscopic precision required to produce minute integrated circuits is dependent on several processes utilizing radiofrequency and microwave radiation. This article provides a review of radiofrequency and microwave exposures in microelectronics and of the physical and biologic properties of these types of radiation; summarizes the existing, relevant medical literature; and provides the clinician with guidelines for diagnosis and treatment of excessive exposures to microwave and radiofrequency radiation.
Photopolymerizable liquid encapsulants for microelectronic devices
NASA Astrophysics Data System (ADS)
Baikerikar, Kiran K.
2000-10-01
Plastic encapsulated microelectronic devices consist of a silicon chip that is physically attached to a leadframe, electrically interconnected to input-output leads, and molded in a plastic that is in direct contact with the chip, leadframe, and interconnects. The plastic is often referred to as the molding compound, and is used to protect the chip from adverse mechanical, thermal, chemical, and electrical environments. Encapsulation of microelectronic devices is typically accomplished using a transfer molding process in which the molding compound is cured by heat. Most transfer molding processes suffer from significant problems arising from the high operating temperatures and pressures required to fill the mold. These aspects of the current process can lead to thermal stresses, incomplete mold filling, and wire sweep. In this research, a new strategy for encapsulating microelectronic devices using photopolymerizable liquid encapsulants (PLEs) has been investigated. The PLEs consist of an epoxy novolac-based vinyl ester resin (˜25 wt.%), fused silica filler (70--74 wt.%), and a photoinitiator, thermal initiator, and silane coupling agent. For these encapsulants, the use of light, rather than heat, to initiate the polymerization allows precise control over when the reaction starts, and therefore completely decouples the mold filling and the cure. The low viscosity of the PLEs allows for low operating pressures and minimizes problems associated with wire sweep. In addition, the in-mold cure time for the PLEs is equivalent to the in-mold cure times of current transfer molding compounds. In this thesis, the thermal and mechanical properties, as well as the viscosity and adhesion of photopolymerizable liquid encapsulants, are reported in order to demonstrate that a UV-curable formulation can have the material properties necessary for microelectronic encapsulation. In addition, the effects of the illumination time, postcure time, fused silica loading, and the inclusion of a thermal initiator on the thermal and mechanical properties of the final cured encapsulants have been investigated. The results show that the material properties of the PLEs are the same, if not better, than those exhibited by conventional transfer molding compounds and demonstrate the potential of using PLEs for encapsulating microelectronic devices.
Brunner, Melissa; Hemsley, Bronwyn; Togher, Leanne; Palmer, Stuart
2017-01-01
To review the literature on communication technologies in rehabilitation for people with a traumatic brain injury (TBI), and: (a) determine its application to cognitive-communicative rehabilitation, and b) develop a model to guide communication technology use with people after TBI. This integrative literature review of communication technology in TBI rehabilitation and cognitive-communication involved searching nine scientific databases and included 95 studies. Three major types of communication technologies (assistive technology, augmentative and alternative communication technology, and information communication technology) and multiple factors relating to use of technology by or with people after TBI were categorized according to: (i) individual needs, motivations and goals; (ii) individual impairments, activities, participation and environmental factors; and (iii) technologies. While there is substantial research relating to communication technologies and cognitive rehabilitation after TBI, little relates specifically to cognitive-communication rehabilitation. Further investigation is needed into the experiences and views of people with TBI who use communication technologies, to provide the 'user' perspective and influence user-centred design. Research is necessary to investigate the training interventions that address factors fundamental for success, and any impact on communication. The proposed model provides an evidence-based framework for incorporating technology into speech pathology clinical practice and research.
Method of fabricating a microelectronic device package with an integral window
Peterson, Kenneth A.; Watson, Robert D.
2003-01-01
A method of fabricating a microelectronic device package with an integral window for providing optical access through an aperture in the package. The package is made of a multilayered insulating material, e.g., a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC). The window is inserted in-between personalized layers of ceramic green tape during stackup and registration. Then, during baking and firing, the integral window is simultaneously bonded to the sintered ceramic layers of the densified package. Next, the microelectronic device is flip-chip bonded to cofired thick-film metallized traces on the package, where the light-sensitive side is optically accessible through the window. Finally, a cover lid is attached to the opposite side of the package. The result is a compact, low-profile package, flip-chip bonded, hermetically-sealed package having an integral window.
Applicability of LET to single events in microelectronic structures
NASA Astrophysics Data System (ADS)
Xapsos, Michael A.
1992-12-01
LET is often used as a single parameter to determine the energy deposited in a microelectronic structure by a single event. The accuracy of this assumption is examined for ranges of ion energies and volumes of silicon appropriate for modern microelectronics. It is shown to be accurate only under very restricted conditions. Significant differences arise because (1) LET is related to energy lost by the ion, not energy deposited in the volume; and (2) LET is an average value and does not account for statistical variations in energy deposition. Criteria are suggested for determining when factors other than LET should be considered, and new analytical approaches are presented to account for them. One implication of these results is that improvements can be made in space upset rate predictions by incorporating the new methods into currently used codes such as CREME and CRUP.
Some infra-red applications in combustion technology. Interim report 1 March-31 August 78
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swithenbank, J.; Turan, A.; Taylor, D.S.
1978-01-01
Infrared technology finds many applications in the field of combustion ranging from pollution monitoring, through military systems, to the control of industrial furnaces and boilers. This review of some selected concepts highlights the interaction between the diagnostic role of infrared measurements and the current status of mathematical modelling of combustion systems. The link between measurement and and computing has also evolved to the point where a digital processor is becoming an inherent part of many new instruments. This point is illustrated by reference to the diffraction particle size meter, fire detection and alarm systems, and furnace control. In the future,more » as fuels become scarce and expensive, and micro-electronics become more available and inexpensive, it is certain that infrared devices will find increasing application in smaller industries and the home. (Author)« less
Nanotechnology: MEMS and NEMS and their applications to smart systems and devices
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.
2003-10-01
The microelectronics industry has seen explosive growth during the last thirty years. Extremely large markets for logic and memory devices have driven the development of new materials, and technologies for the fabrication of even more complex devices with features sizes now down at the sub micron and nanometer level. Recent interest has arisen in employing these materials, tools and technologies for the fabrication of miniature sensors and actuators and their integration with electronic circuits to produce smart devices and systems. This effort offers the promise of: (1) increasing the performance and manufacturability of both sensors and actuators by exploiting new batch fabrication processes developed including micro stereo lithographic and micro molding techniques; (2) developing novel classes of materials and mechanical structures not possible previously, such as diamond like carbon, silicon carbide and carbon nanotubes, micro-turbines and micro-engines; (3) development of technologies for the system level and wafer level integration of micro components at the nanometer precision, such as self-assembly techniques and robotic manipulation; (4) development of control and communication systems for MEMS devices, such as optical and RF wireless, and power delivery systems, etc. A novel composite structure can be tailored by functionalizing carbon nano tubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross-linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and Mechanical-MEMS devices derived from this hybrid composite provide a new avenue for future smart systems. The integration of NEMS (NanoElectroMechanical Systems), MEMS, IDTs (Interdigital Transducers) and required microelectronics and conformal antenna in the multifunctional smart materials and composites results in a smart system suitable for sending and control of a variety functions in automobile, aerospace, marine and civil strutures and food and medical industries. This unique combination of technologies also results in novel conformal sensors that can be remotely sensed by an antenna system with the advantage of no power requirements at the sensor site. This paper provides a brief review of MEMS and NEMS based smart systems for various applications mentioned above. Carbon Nano Tubes (CNT) with their unique structure, have already proven to be valuable in their application as tips for scanning probe microscopy, field emission devices, nanoelectronics, H2-storage, electromagnetic absorbers, ESD, EMI films and coatings and structural composites. For many of these applications, highly purified and functionalized CNT which are compatible with many host polymers are needed. A novel microwave CVD processing technique to meet these requirements has been developed at Penn State Center for the Engineering of Electronic and Acoustic Materials and Devices (CEEAMD). This method enables the production of highly purified carbon nano tubes with variable size (from 5 - 40 nm) at low cost (per gram) and high yield. Whereas, carbon nano tubes synthesized using the laser ablation or arc discharge evaporation method always include impurity due to catalyst or catalyst support. The Penn State research is based on the use of zeolites over other metal/metal oxides in the microwave field for a high production and uniformity of the product. An extended coventional purification method has been employed to purify our products in order to remove left over impurity. A novel composite structure can be tailored by functionalizing carbon nano tubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross-linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and Mechanical-MEMS devices derived from this hybrid composites will be presented.
MEMS- and NEMS-based smart devices and systems
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.
2001-11-01
The microelectronics industry has seen explosive growth during the last thirty years. Extremely large markets for logic and memory devices have driven the development of new materials, and technologies for the fabrication of even more complex devices with features sized now don at the sub micron and nanometer level. Recent interest has arisen in employing these materials, tools and technologies for the fabrication of miniature sensors and actuators and their integration with electronic circuits to produce smart devices and systems. This effort offers the promise of: 1) increasing the performance and manufacturability of both sensors and actuators by exploiting new batch fabrication processes developed including micro stereo lithographic an micro molding techniques; 2) developing novel classes of materials and mechanical structures not possible previously, such as diamond like carbon, silicon carbide and carbon nanotubes, micro-turbines and micro-engines; 3) development of technologies for the system level and wafer level integration of micro components at the nanometer precision, such as self-assembly techniques and robotic manipulation; 4) development of control and communication systems for MEMS devices, such as optical and RF wireless, and power delivery systems, etc. A novel composite structure can be tailored by functionalizing carbon nano tubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross-linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and Mechanical-MEMS devices derived from this hybrid composite provide a new avenue for future smart systems. The integration of NEMS (NanoElectroMechanical Systems), MEMS, IDTs (Interdigital Transducers) and required microelectronics and conformal antenna in the multifunctional smart materials and composites results in a smart system suitable for sensing and control of a variety functions in automobile, aerospace, marine and civil structures and food and medical industries. This unique combination of technologies also results in novel conformal sensors that can be remotely sensed by an antenna system with the advantage of no power requirements at the sensor site. This paper provides a brief review of MEMS and NEMS based smart systems for various applications mentioned above. Carbon Nano Tubes (CNT) with their unique structure, have already proven to be valuable in their application as tips for scanning probe microscopy, field emission devices, nanoelectronics, H2-storage, electromagnetic absorbers, ESD, EMI films and coatings and structural composites. For many of these applications, highly purified and functionalized CNT which are compatible with many host polymers are needed. A novel microwave CVD processing technique to meet these requirements has been developed at Penn State Center for the engineering of Electronic and Acoustic Materials and Devices (CEEAMD). This method enables the production of highly purified carbon nano tubes with variable size (from 5-40 nm) at low cost (per gram) and high yield. Whereas, carbon nano tubes synthesized using the laser ablation or arc discharge evaporation method always include impurity due to catalyst or catalyst support. The Penn State research is based on the use of zeolites over other metal/metal oxides in the microwave field for a high production and uniformity of the product. An extended conventional purification method has been employed to purify our products in order to remove left over impurity. A novel composite structure can be tailored by functionalizing carbon nano tubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross- linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and Mechanical-MEMS devices derived from this hybrid composites will be presented.
Microelectronic device package with an integral window
Peterson, Kenneth A.; Watson, Robert D.
2002-01-01
An apparatus for packaging of microelectronic devices, including an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can include a cofired ceramic frame or body. The package can have an internal stepped structure made of one or more plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination.
Using FLUKA to Calculate Spacecraft: Single Event Environments: A Practical Approach
NASA Technical Reports Server (NTRS)
Koontz, Steve; Boeder, Paul; Reddell, Brandon
2009-01-01
The FLUKA nuclear transport and reaction code can be developed into a practical tool for calculation of spacecraft and planetary surface asset SEE and TID environments. Nuclear reactions and secondary particle shower effects can be estimated with acceptable accuracy both in-flight and in test. More detailed electronic device and/or spacecraft geometries than are reported here are possible using standard FLUKA geometry utilities. Spacecraft structure and shielding mass. Effects of high Z elements in microelectronic structure as reported previously. Median shielding mass in a generic slab or concentric sphere target geometry are at least approximately applicable to more complex spacecraft shapes. Need the spacecraft shielding mass distribution function applicable to the microelectronic system of interest. SEE environment effects can be calculated for a wide range of spacecraft and microelectronic materials with complete nuclear physics. Evaluate benefits of low Z shielding mass can be evaluated relative to aluminum. Evaluate effects of high Z elements as constituents of microelectronic devices. The principal limitation on the accuracy of the FLUKA based method reported here are found in the limited accuracy and incomplete character of affordable heavy ion test data. To support accurate rate estimates with any calculation method, the aspect ratio of the sensitive volume(s) and the dependence must be better characterized.
Research of the application of the new communication technologies for distribution automation
NASA Astrophysics Data System (ADS)
Zhong, Guoxin; Wang, Hao
2018-03-01
Communication network is a key factor of distribution automation. In recent years, new communication technologies for distribution automation have a rapid development in China. This paper introduces the traditional communication technologies of distribution automation and analyse the defects of these traditional technologies. Then this paper gives a detailed analysis on some new communication technologies for distribution automation including wired communication and wireless communication and then gives an application suggestion of these new technologies.
Artificial Retina Project: Final Report for CRADA ORNL 01-0625
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenbaum, E; Little, J
The U.S. Department of Energy’s Artificial Retina Project is a collaborative, multi-institutional effort to develop an implantable microelectronic retinal prosthesis that restores useful vision to people blinded by retinal diseases. The ultimate goal of the project is to restore reading ability, facial recognition, and unaided mobility in people with retinitis pigmentosa and age-related macular degeneration. The project taps into the unique research technologies and resources developed at DOE national laboratories to surmount the many technical challenges involved with developing a safe, effective, and durable product. The research team includes six DOE national laboratories, four universities, and private industry.
Influence of temporary organic bond nature on the properties of compacts and ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ditts, A., E-mail: ditts@tpu.ru; Revva, I., E-mail: revva@tpu.ru; Pogrebenkov, V.
2016-01-15
This work contains results of investigation of obtaining high thermally conductive ceramics from commercial powders of aluminum nitride and yttrium oxide by the method of monoaxial compaction of granulate. The principal scheme of preparation is proposed and technological properties of granulate are defined. Compaction conditions for simple items to use as heat removal in microelectronics and power electrical engineering have been established. Investigations of thermophysical properties of obtained ceramics and its structure by the XRD and SEM methods have been carried out. Ceramics with thermal conductivity from 172 to 174 W/m·K has been obtained as result of this work.
Analysis of space radiation data of semiconductor memories
NASA Technical Reports Server (NTRS)
Stassinopoulos, E. G.; Brucker, G. J.; Stauffer, C. A.
1996-01-01
This article presents an analysis of radiation effects for several select device types and technologies aboard the Combined Release and Radiation Effects Satellite (CRRES) satellite. These space-flight measurements covered a period of about 14 months of mission lifetime. Single Event Upset (SEU) data of the investigated devices from the Microelectronics Package (MEP) were processed and analyzed. Valid upset measurements were determined by correcting for invalid readings, hard failures, missing data tapes (thus voids in data), and periods over which devices were disabled from interrogation. The basic resolution time of the measurement system was confirmed to be 2 s. Lessons learned, important findings, and recommendations are presented.
Single-Molecule Bioelectronics
Rosenstein, Jacob K.; Lemay, Serge G.; Shepard, Kenneth L.
2014-01-01
Experimental techniques which interface single biomolecules directly with microelectronic systems are increasingly being used in a wide range of powerful applications, from fundamental studies of biomolecules to ultra-sensitive assays. Here we review several technologies which can perform electronic measurements of single molecules in solution: ion channels, nanopore sensors, carbon nanotube field-effect transistors, electron tunneling gaps, and redox cycling. We discuss the shared features among these techniques that enable them to resolve individual molecules, and discuss their limitations. Recordings from each of these methods all rely on similar electronic instrumentation, and we discuss the relevant circuit implementations and potential for scaling these single-molecule bioelectronic interfaces to high-throughput arrayed sensing platforms. PMID:25529538
Transfer Orbit Plasma Interaction Experiment (TROPIX)
NASA Astrophysics Data System (ADS)
Hickman, Mark
Viewgraphs on the Transfer Orbit Plasma Interaction Experiment (TROPIX) are presented. Objectives of this research are (1) to map the charged particles in Earth's magnetosphere from LEO to GEO at high inclinations; (2) to measure plasma current collection and resulting shifts in vehicle electrical potential from LEO to GEO across range of orbital inclinations; (3) to study spacecraft interaction with plasma environment using solar electric propulsion (SEP) thrusters as plasma contactors; (4) to measure array degradation over mission duration; (5) to evaluate the potential of various microelectronics, spacecraft components, and instruments for future space missions; and (6) to demonstrate SEP technology applied to a flight vehicle. An overview of TROPIX is presented.
Laser-machined piezoelectric cantilevers for mechanical energy harvesting.
Kim, HyunUk; Bedekar, Vishwas; Islam, Rashed Adnan; Lee, Woo-Ho; Leo, Don; Priya, Shashank
2008-09-01
In this study, we report results on a piezoelectric- material-based mechanical energy-harvesting device that was fabricated by combining laser machining with microelectronics packaging technology. It was found that the laser-machining process did not have significant effect on the electrical properties of piezoelectric material. The fabricated device was tested in the low-frequency regime of 50 to 1000 Hz at constant force of 8 g (where g = 9.8 m/s(2)). The device was found to generate continuous power of 1.13 microW at 870 Hz across a 288.5 kOmega load with a power density of 301.3 microW/cm(3).
NASA Electronic Parts and Packaging (NEPP) Program - Update
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Sampson, Michael J.
2010-01-01
This slide presentation reviews the goals and mission of the NASA Electronic Parts and Packaging (NEPP) Program. The NEPP mission is to provide guidance to NASA for the selection and application of microelectronics technologies, to improve understanding of the risks related to the use of these technologies in the space environment and to ensure that appropriate research is performed to meet NASA mission assurance needs. The program has been supporting NASA for over 20 years. The focus is on the reliability aspects of electronic devices. In this work the program also supports the electronics industry. There are several areas that the program is involved in: Memories, systems on a chip (SOCs), data conversion devices, power MOSFETS, power converters, scaled CMOS, capacitors, linear devices, fiber optics, and other electronics such as sensors, cryogenic and SiGe that are used in space systems. Each of these area are reviewed with the work that is being done in reliability and effects of radiation on these technologies.
Øyen, Karianne Røssummoen; Sunde, Olivia Sissil; Solheim, Marit; Moricz, Sara; Ytrehus, Siri
2018-09-01
The aim of this study was to better understand nurses' and other staff members' attitudes toward the usefulness of information and communication technology in home-care settings. Research has found that beliefs about the expected benefits of information and communication technology impact the use of technology. Furthermore, inexperience with using information and communication technology may cause negative attitudes. This article is based on a questionnaire to 155 nurses and other staff members in home-care in Sogn og Fjordane county in Norway. The results revealed minimal use of information and communication technology at work; however, participants had positive attitudes regarding the potential benefits of information and communication technology use in home-care. Individuals' extensive use of and familiarity with different solutions in private lives could be an important context for explaining employees' attitudes. Given that information and communication technology is both a welfare service and a market good, this may explain individuals' positive attitudes toward information and communication technology despite their lack of experience with it at work. Experiences with information and communication technology as a market good and the way new technologies can affect work routines will affect the implementation of information and communication technology in home-care.
1999-10-01
Technical Report 5-20448 & 5- 20449 Contract No. DAAH01-98-D-R001 Delivery Order No. 34 Microelectronics Status Analysis and Secondary Part...Procureability Assessment of the THAAD Weapon System. (5-20448 & 5- 20449 ) Final Technical Report for Period 21 January 1999 through 30 September 1999...Huntsville Huntsville, AL 35899 5. FUNDING NUMBERS 8. PERFORMING ORGANIZATION REPORT NUMBER 5-20448 & 5- 20449 9. SPONSORING/MONITORING AGENCY
Reduction of particle deposition on substrates using temperature gradient control
Rader, Daniel J.; Dykhuizen, Ronald C.; Geller, Anthony S.
2000-01-01
A method of reducing particle deposition during the fabrication of microelectronic circuitry is presented. Reduction of particle deposition is accomplished by controlling the relative temperatures of various parts of the deposition system so that a large temperature gradient near the surface on which fabrication is taking place exists. This temperature gradient acts to repel particles from that surface, thereby producing cleaner surfaces, and thus obtaining higher yields from a given microelectronic fabrication process.
Electromagnetic Compatibility (EMC) in Microelectronics.
1983-02-01
Fault Tree Analysis", System Saftey Symposium, June 8-9, 1965, Seattle: The Boeing Company . 12. Fussell, J.B., "Fault Tree Analysis-Concepts and...procedure for assessing EMC in microelectronics and for applying DD, 1473 EOiTO OP I, NOV6 IS OESOL.ETE UNCLASSIFIED SECURITY CLASSIFICATION OF THIS...CRITERIA 2.1 Background 2 2.2 The Probabilistic Nature of EMC 2 2.3 The Probabilistic Approach 5 2.4 The Compatibility Factor 6 3 APPLYING PROBABILISTIC
Radiation measurement in the environment of FLASH using passive dosimeters
NASA Astrophysics Data System (ADS)
Mukherjee, B.; Rybka, D.; Makowski, D.; Lipka, T.; Simrock, S.
2007-08-01
Sophisticated electronic devices comprising sensitive microelectronic components have been installed in the close proximity of the 720 MeV superconducting electron linear accelerator (linac) driving the FLASH (Free Electron Laser in Hamburg), presently in operation at DESY in Hamburg. Microelectronic chips are inherently vulnerable to ionizing radiation, usually generated during routine operation of high-energy particle accelerator facilities like the FLASH. Hence, in order to assess the radiation effect on microelectronic chips and to develop suitable mitigation strategy, it becomes imperative to characterize the radiation field in the FLASH environment. We have evaluated the neutron and gamma energy (spectra) and dose distributions at critical locations in the FLASH tunnel using superheated emulsion (bubble) detectors, GaAs light emitting diodes (LED), LiF-thermoluminescence dosimeters (TLD) and radiochromic (Gafchromic EBT) films. This paper highlights the application of passive dosimeters for an accurate analysis of the radiation field produced by high-energy electron linear accelerators.
Laser processing of ceramics for microelectronics manufacturing
NASA Astrophysics Data System (ADS)
Sposili, Robert S.; Bovatsek, James; Patel, Rajesh
2017-03-01
Ceramic materials are used extensively in the microelectronics, semiconductor, and LED lighting industries because of their electrically insulating and thermally conductive properties, as well as for their high-temperature-service capabilities. However, their brittleness presents significant challenges for conventional machining processes. In this paper we report on a series of experiments that demonstrate and characterize the efficacy of pulsed nanosecond UV and green lasers in machining ceramics commonly used in microelectronics manufacturing, such as aluminum oxide (alumina) and aluminum nitride. With a series of laser pocket milling experiments, fundamental volume ablation rate and ablation efficiency data were generated. In addition, techniques for various industrial machining processes, such as shallow scribing and deep scribing, were developed and demonstrated. We demonstrate that lasers with higher average powers offer higher processing rates with the one exception of deep scribes in aluminum nitride, where a lower average power but higher pulse energy source outperformed a higher average power laser.
Bi-level multilayered microelectronic device package with an integral window
Peterson, Kenneth A.; Watson, Robert D.
2002-01-01
A bi-level, multilayered package with an integral window for housing a microelectronic device. The device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The multilayered package can be formed of a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded and oriented so that the light-sensitive side is optically accessible through the window. A second chip can be bonded to the backside of the first chip, with the second chip being wirebonded to the second level of the bi-level package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed.
Manojlovich, Milisa; Adler-Milstein, Julia; Harrod, Molly; Sales, Anne; Hofer, Timothy P; Saint, Sanjay; Krein, Sarah L
2015-06-11
Communication failures between physicians and nurses are one of the most common causes of adverse events for hospitalized patients, as well as a major root cause of all sentinel events. Communication technology (ie, the electronic medical record, computerized provider order entry, email, and pagers), which is a component of health information technology (HIT), may help reduce some communication failures but increase others because of an inadequate understanding of how communication technology is used. Increasing use of health information and communication technologies is likely to affect communication between nurses and physicians. The purpose of this study is to describe, in detail, how health information and communication technologies facilitate or hinder communication between nurses and physicians with the ultimate goal of identifying how we can optimize the use of these technologies to support effective communication. Effective communication is the process of developing shared understanding between communicators by establishing, testing, and maintaining relationships. Our theoretical model, based in communication and sociology theories, describes how health information and communication technologies affect communication through communication practices (ie, use of rich media; the location and availability of computers) and work relationships (ie, hierarchies and team stability). Therefore we seek to (1) identify the range of health information and communication technologies used in a national sample of medical-surgical acute care units, (2) describe communication practices and work relationships that may be influenced by health information and communication technologies in these same settings, and (3) explore how differences in health information and communication technologies, communication practices, and work relationships between physicians and nurses influence communication. This 4-year study uses a sequential mixed-methods design, beginning with a quantitative survey followed by a two-part qualitative phase. Survey results from aim 1 will provide a detailed assessment of health information and communication technologies in use and help identify sites with variation in health information and communication technologies for the qualitative phase of the study. In aim 2, we will conduct telephone interviews with hospital personnel in up to 8 hospitals to gather in-depth information about communication practices and work relationships on medical-surgical units. In aim 3, we will collect data in 4 hospitals (selected from telephone interview results) via observation, shadowing, focus groups, and artifacts to learn how health information and communication technologies, communication practices, and work relationships affect communication. Results from aim 1 will be published in 2016. Results from aims 2 and 3 will be published in subsequent years. As the majority of US hospitals do not yet have HIT fully implemented, results from our study will inform future development and implementation of health information and communication technologies to support effective communication between nurses and physicians.
Adler-Milstein, Julia; Harrod, Molly; Sales, Anne; Hofer, Timothy P; Saint, Sanjay; Krein, Sarah L
2015-01-01
Background Communication failures between physicians and nurses are one of the most common causes of adverse events for hospitalized patients, as well as a major root cause of all sentinel events. Communication technology (ie, the electronic medical record, computerized provider order entry, email, and pagers), which is a component of health information technology (HIT), may help reduce some communication failures but increase others because of an inadequate understanding of how communication technology is used. Increasing use of health information and communication technologies is likely to affect communication between nurses and physicians. Objective The purpose of this study is to describe, in detail, how health information and communication technologies facilitate or hinder communication between nurses and physicians with the ultimate goal of identifying how we can optimize the use of these technologies to support effective communication. Effective communication is the process of developing shared understanding between communicators by establishing, testing, and maintaining relationships. Our theoretical model, based in communication and sociology theories, describes how health information and communication technologies affect communication through communication practices (ie, use of rich media; the location and availability of computers) and work relationships (ie, hierarchies and team stability). Therefore we seek to (1) identify the range of health information and communication technologies used in a national sample of medical-surgical acute care units, (2) describe communication practices and work relationships that may be influenced by health information and communication technologies in these same settings, and (3) explore how differences in health information and communication technologies, communication practices, and work relationships between physicians and nurses influence communication. Methods This 4-year study uses a sequential mixed-methods design, beginning with a quantitative survey followed by a two-part qualitative phase. Survey results from aim 1 will provide a detailed assessment of health information and communication technologies in use and help identify sites with variation in health information and communication technologies for the qualitative phase of the study. In aim 2, we will conduct telephone interviews with hospital personnel in up to 8 hospitals to gather in-depth information about communication practices and work relationships on medical-surgical units. In aim 3, we will collect data in 4 hospitals (selected from telephone interview results) via observation, shadowing, focus groups, and artifacts to learn how health information and communication technologies, communication practices, and work relationships affect communication. Results Results from aim 1 will be published in 2016. Results from aims 2 and 3 will be published in subsequent years. Conclusions As the majority of US hospitals do not yet have HIT fully implemented, results from our study will inform future development and implementation of health information and communication technologies to support effective communication between nurses and physicians. PMID:26068442
Bretos, Iñigo; Jiménez, Ricardo; Tomczyk, Monika; Rodríguez-Castellón, Enrique; Vilarinho, Paula M.; Calzada, M. Lourdes
2016-01-01
Applications of ferroelectric materials in modern microelectronics will be greatly encouraged if the thermal incompatibility between inorganic ferroelectrics and semiconductor devices is overcome. Here, solution-processable layers of the most commercial ferroelectric compound ─ morphotrophic phase boundary lead zirconate titanate, namely Pb(Zr0.52Ti0.48)O3 (PZT) ─ are grown on silicon substrates at temperatures well below the standard CMOS process of semiconductor technology. The method, potentially transferable to a broader range of Zr:Ti ratios, is based on the addition of crystalline nanoseeds to photosensitive solutions of PZT resulting in perovskite crystallization from only 350 °C after the enhanced decomposition of metal precursors in the films by UV irradiation. A remanent polarization of 10.0 μC cm−2 is obtained for these films that is in the order of the switching charge densities demanded for FeRAM devices. Also, a dielectric constant of ~90 is measured at zero voltage which exceeds that of current single-oxide candidates for capacitance applications. The multifunctionality of the films is additionally demonstrated by their pyroelectric and piezoelectric performance. The potential integration of PZT layers at such low fabrication temperatures may redefine the concept design of classical microelectronic devices, besides allowing inorganic ferroelectrics to enter the scene of the emerging large-area, flexible electronics. PMID:26837240
Bretos, Iñigo; Jiménez, Ricardo; Tomczyk, Monika; Rodríguez-Castellón, Enrique; Vilarinho, Paula M; Calzada, M Lourdes
2016-02-03
Applications of ferroelectric materials in modern microelectronics will be greatly encouraged if the thermal incompatibility between inorganic ferroelectrics and semiconductor devices is overcome. Here, solution-processable layers of the most commercial ferroelectric compound--morphotrophic phase boundary lead zirconate titanate, namely Pb(Zr0.52Ti0.48)O3 (PZT)--are grown on silicon substrates at temperatures well below the standard CMOS process of semiconductor technology. The method, potentially transferable to a broader range of Zr:Ti ratios, is based on the addition of crystalline nanoseeds to photosensitive solutions of PZT resulting in perovskite crystallization from only 350 °C after the enhanced decomposition of metal precursors in the films by UV irradiation. A remanent polarization of 10.0 μC cm(-2) is obtained for these films that is in the order of the switching charge densities demanded for FeRAM devices. Also, a dielectric constant of ~90 is measured at zero voltage which exceeds that of current single-oxide candidates for capacitance applications. The multifunctionality of the films is additionally demonstrated by their pyroelectric and piezoelectric performance. The potential integration of PZT layers at such low fabrication temperatures may redefine the concept design of classical microelectronic devices, besides allowing inorganic ferroelectrics to enter the scene of the emerging large-area, flexible electronics.
Assessment of intrinsic small signal parameters of submicron SiC MESFETs
NASA Astrophysics Data System (ADS)
Riaz, Mohammad; Ahmed, Muhammad Mansoor; Rafique, Umair; Ahmed, Umer Farooq
2018-01-01
In this paper, a technique has been developed to estimate intrinsic small signal parameters of submicron SiC MESFETs, designed for high power microwave applications. In the developed technique, small signal parameters are extracted by involving drain-to-source current, Ids instead of Schottky barrier depletion layer expression. It has been demonstrated that in SiC MESFETs, the depletion layer gets modified due to intense transverse electric field and/or self-heating effects, which are conventionally not taken into account. Thus, assessment of AC small signal parameters by employing depletion layer expression loses its accuracy for devices meant for high power applications. A set of expressions for AC small signal elements has been developed using Ids and its dependence on device biasing has been discussed. The validity of the proposed technique has been demonstrated using experimental data. Dr. Ahmed research interests are in Microelectronics, Microwave and RF Engineering and he has supervised numerous MS and PhD research projects. He authored over 100 research papers in the field of microelectronics. Dr. Ahmed is a fellow of the Institution of Engineering and Technology (IET), UK.; a Chartered Engineer (CEng) from the UK Engineering Council and holds the title of European Engineer (Eur Ing) from the European Federation of National Engineering Association (FEANI), Brussels. He is a life member of PEC (Pak); EDS & MTTS (USA).
NASA Astrophysics Data System (ADS)
Kamarinos, Georges
1991-02-01
The Integrated Circuits and the microelectronics devices working in temperatures lower than 100 K are studied by cryomicroelectronics. In this short review paper the development of this new branch of microelectronics is described. Particularly the advantages and the drawbacks of the cooling of integrated circuits and devices are listed. Then the current research axis are given. They correspond to two different approaches ; the " classic " one which is based to the materials used in the present VLSI technology and the innovative way which aims at using new HT_c superconductors. L'objet de la cryomicroélectronique est l'étude des Circuits Intégrés et des composants microélectroniques à des températures inférieures à 100 K. Cet article de revue décrit très brièvement l'état d'avancement des connaissances relatives aux avantages et aux inconvénients des composants et Circuits Intégrés au Silicium fonctionnant à basse température. Ensuite on expose les axes de recherche actuels ; ils sont relatifs à deux approches : l'une, classique, est basée sur les matériaux utilisés actuellement dans la technologie de l'intégration à grande échelle; l'autre, novatrice, vise à utiliser les matériaux supraconducteurs à haute température critique.
Research on synchronization technology of frequency hopping communication system
NASA Astrophysics Data System (ADS)
Zhao, Xiangwu; Quan, Houde; Cui, Peizhang
2018-05-01
Frequency Hopping (FH) communication is a technology of spread spectrum communication. It has strong anti-interference, anti-interception and security capabilities, and has been widely applied in the field of communications. Synchronization technology is one of the most crucial technologies in frequency hopping communication. The speed of synchronization establishment and the reliability of synchronous system directly affect the performance of frequency hopping communication system. Therefore, the research of synchronization technology in frequency hopping communication has important value.
Silicon microelectronic field-emissive devices for advanced display technology
NASA Astrophysics Data System (ADS)
Morse, J. D.
1993-03-01
Field-emission displays (FED's) offer the potential advantages of high luminous efficiency, low power consumption, and low cost compared to AMLCD or CRT technologies. An LLNL team has developed silicon-point field emitters for vacuum triode structures and has also used thin-film processing techniques to demonstrate planar edge-emitter configurations. LLNL is interested in contributing its experience in this and other FED-related technologies to collaborations for commercial FED development. At LLNL, FED development is supported by computational capabilities in charge transport and surface/interface modeling in order to develop smaller, low-work-function field emitters using a variety of materials and coatings. Thin-film processing, microfabrication, and diagnostic/test labs permit experimental exploration of emitter and resistor structures. High field standoff technology is an area of long-standing expertise that guides development of low-cost spacers for FEDS. Vacuum sealing facilities are available to complete the FED production engineering process. Drivers constitute a significant fraction of the cost of any flat-panel display. LLNL has an advanced packaging group that can provide chip-on-glass technologies and three-dimensional interconnect generation permitting driver placement on either the front or the back of the display substrate.
The future scalability of pH-based genome sequencers: A theoretical perspective
NASA Astrophysics Data System (ADS)
Go, Jonghyun; Alam, Muhammad A.
2013-10-01
Sequencing of human genome is an essential prerequisite for personalized medicine and early prognosis of various genetic diseases. The state-of-art, high-throughput genome sequencing technologies provide improved sequencing; however, their reliance on relatively expensive optical detection schemes has prevented wide-spread adoption of the technology in routine care. In contrast, the recently announced pH-based electronic genome sequencers achieve fast sequencing at low cost because of the compatibility with the current microelectronics technology. While the progress in technology development has been rapid, the physics of the sequencing chips and the potential for future scaling (and therefore, cost reduction) remain unexplored. In this article, we develop a theoretical framework and a scaling theory to explain the principle of operation of the pH-based sequencing chips and use the framework to explore various perceived scaling limits of the technology related to signal to noise ratio, well-to-well crosstalk, and sequencing accuracy. We also address several limitations inherent to the key steps of pH-based genome sequencers, which are widely shared by many other sequencing platforms in the market but remained unexplained properly so far.
A Low Cost Rad-Tolerant Standard Cell Library
NASA Technical Reports Server (NTRS)
Gambles, Jody W.; Maki, Gary K.
1997-01-01
This paper describes circuit design techniques developed at the NASA Institute of Advanced Microelectronics that have been shown to protect CMOS circuits from the deleterious effects of the natural space radiation environment. The IAuE is leading a program to incorporate these radiation-tolerance providing design techniques into a commercial standard cell library that will be used in conjunction with available Electronic Design Automation tools to produce space flight qualified microelectronics fabricated at modern commercial CMOS foundries.
Update on NASA Microelectronics Activities
NASA Technical Reports Server (NTRS)
Label, Kenneth A.; Sampson, Michael J.; Casey, Megan; Lauenstein, Jean-Marie
2017-01-01
Mission Statement: The NASA Electronic Parts and Packaging (NEPP) Program provides NASA's leadership for developing and maintaining guidance for the screening, qualification, test. and usage of EEE parts by NASA as well as in collaboration with other government Agencies and industry. NASA Space Technology Mission Directorate (STMD) "STMD rapidly develops, demonstrates, and infuses revolutionary, high-payoff technologies through transparent, collaborative partnerships, expanding the boundaries of the aerospace enterprise." Mission Statement: The Space Environments Testing Management Office (SETMO) will identify, prioritize, and manage a select suite of Agency key capabilities/assets that are deemed to be essential to the future needs of NASA or the nation, including some capabilities that lack an adequate business base over the budget horizon. NESC mission is to perform value-added independent testing, analysis, and assessments of NASA's high-risk projects to ensure safety and mission success. NASA Space Environments and Avionics Fellows as well as Radiation and EEE Parts Community of Practice (CoP) leads.
NASA Astrophysics Data System (ADS)
Artun, Ozan
2017-07-01
In this paper, we intend to extend the nuclear data of 244Cm, 241Am, 238Pu, 210Po, 147Pm, 137Cs, 90Sr and 63Ni nuclei used in nuclear battery technology, because, these nuclei are quite important for space investigations in radioisotope thermoelectric generator (RTG) and for microelectronic technologies in betavoltaic batteries. Therefore, the nuclear structure properties of nuclei such as separation energies, neutron skin thicknesses, proton, charge and neutron density distributions as a function of radius, the root mean square (rms) proton, charge and neutron radii, binding energies per particle, have been investigated by Hartree-Fock with eight different Skyrme forces. The obtained results have been compared with the experimental data in literature and relativistic mean field theory (RMFT) results.
Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 2: Final report
NASA Technical Reports Server (NTRS)
Bekey, I.; Mayer, H. L.; Wolfe, M. G.
1976-01-01
The results are presented of a study which identifies over 100 new and highly capable space systems for the 1980-2000 time period: civilian systems which could bring benefits to large numbers of average citizens in everyday life, much enhance the kinds and levels of public services, increase the economic motivation for industrial investment in space, expand scientific horizons; and, in the military area, systems which could materially alter current concepts of tactical and strategic engagements. The requirements for space transportation, orbital support, and technology for these systems are derived, and those requirements likely to be shared between NASA and the DoD in the time period identified. The high leverage technologies for the time period are identified as very large microwave antennas and optics, high energy power subsystems, high precision and high power lasers, microelectronic circuit complexes and data processors, mosaic solid state sensing devices, and long-life cryogenic refrigerators.
Lee, Byung Yang; Seo, Sung Min; Lee, Dong Joon; Lee, Minbaek; Lee, Joohyung; Cheon, Jun-Ho; Cho, Eunju; Lee, Hyunjoong; Chung, In-Young; Park, Young June; Kim, Suhwan; Hong, Seunghun
2010-04-07
We developed a carbon nanotube (CNT)-based biosensor system-on-a-chip (SoC) for the detection of a neurotransmitter. Here, 64 CNT-based sensors were integrated with silicon-based signal processing circuits in a single chip, which was made possible by combining several technological breakthroughs such as efficient signal processing, uniform CNT networks, and biocompatible functionalization of CNT-based sensors. The chip was utilized to detect glutamate, a neurotransmitter, where ammonia, a byproduct of the enzymatic reaction of glutamate and glutamate oxidase on CNT-based sensors, modulated the conductance signals to the CNT-based sensors. This is a major technological advancement in the integration of CNT-based sensors with microelectronics, and this chip can be readily integrated with larger scale lab-on-a-chip (LoC) systems for various applications such as LoC systems for neural networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodds, Nathaniel Anson
2015-08-01
This report briefly summarizes three publications that resulted from a two-year LDRD. The three publications address a recently emerging reliability issue: namely, that low-energy protons (LEPs) can cause single-event effects (SEEs) in highly scaled microelectronics. These publications span from low to high technology readiness levels. In the first, novel experiments were used to prove that proton direct ionization is the dominant mechanism for LEP-induced SEEs. In the second, a simple method was developed to calculate expected on-orbit error rates for LEP effects. This simplification was enabled by creating (and characterizing) an accelerated space-like LEP environment in the laboratory. In themore » third publication, this new method was applied to many memory circuits from the 20-90 nm technology nodes to study the general importance of LEP effects, in terms of their contribution to the total on-orbit SEE rate.« less
Space Environments and Effects (SEE) Program: Spacecraft Charging Technology Development Activities
NASA Technical Reports Server (NTRS)
Kauffman, Billy; Hardage, Donna; Minor, Jody
2003-01-01
Reducing size and weight of spacecraft, along with demanding increased performance capabilities, introduces many uncertainties in the engineering design community on how materials and spacecraft systems will perform in space. The engineering design community is forever behind on obtaining and developing new tools and guidelines to mitigate the harmful effects of the space environment. Adding to this complexity is the continued push to use Commercial-off-the-shelf (COTS) microelectronics, potential usage of unproven technologies such as large solar sail structures and nuclear electric propulsion. In order to drive down these uncertainties, various programs are working together to avoid duplication, save what resources are available in this technical area and possess a focused agenda to insert these new developments into future mission designs. This paper will introduce the SEE Program, briefly discuss past and currently sponsored spacecraft charging activities and possible future endeavors.
Space Environments and Effects (SEE) Program: Spacecraft Charging Technology Development Activities
NASA Technical Reports Server (NTRS)
Kauffman, B.; Hardage, D.; Minor, J.
2004-01-01
Reducing size and weight of spacecraft, along with demanding increased performance capabilities, introduces many uncertainties in the engineering design community on how materials and spacecraft systems will perform in space. The engineering design community is forever behind on obtaining and developing new tools and guidelines to mitigate the harmful effects of the space environment. Adding to this complexity is the continued push to use Commercial-off-the-Shelf (COTS) microelectronics, potential usage of unproven technologies such as large solar sail structures and nuclear electric propulsion. In order to drive down these uncertainties, various programs are working together to avoid duplication, save what resources are available in this technical area and possess a focused agenda to insert these new developments into future mission designs. This paper will introduce the SEE Program, briefly discuss past and currently sponsored spacecraft charging activities and possible future endeavors.
Bayramzadeh, Sara; Alkazemi, Mariam F
2014-01-01
This study aims to explore the relationship between the nursing station design and use of communication technologies by comparing centralized and decentralized nursing stations. The rapid changes in communication technologies in healthcare are inevitable. Communication methods can change the way occupants use a space. In the meantime, decentralized nursing stations are emerging as a replacement for the traditional centralized nursing stations; however, not much research has been done on how the design of nursing stations can impact the use of communication technologies. A cross sectional study was conducted using an Internet-based survey among registered nurses in a Southeastern hospital in the United States. Two units with centralized nursing stations and two units with decentralized nursing stations were compared in terms of the application of communication technologies. A total of 70 registered nurses completed the survey in a 2-week period. The results revealed no significant differences between centralized and decentralized nursing stations in terms of frequency of communication technologies used. However, a difference was found between perception of nurses toward communication technologies and perceptions of the use of communication technologies in decentralized nursing stations. Although the study was limited to one hospital, the results indicate that nurses hold positive attitudes toward communication technologies. The results also reveal the strengths and weaknesses of each nursing station design with regard to communication technologies. Hospital, interdisciplinary, nursing, technology, work environment.
Microelectronic superconducting crossover and coil
Wellstood, F.C.; Kingston, J.J.; Clarke, J.
1994-03-01
A microelectronic component comprising a crossover is provided comprising a substrate, a first high T[sub c] superconductor thin film, a second insulating thin film comprising SrTiO[sub 3]; and a third high T[sub c] superconducting film which has strips which crossover one or more areas of the first superconductor film. An in situ method for depositing all three films on a substrate is provided which does not require annealing steps and which can be opened to the atmosphere between depositions. 13 figures.
Hwang, N-J; Patterson, W R; Song, Y-K; Atay, T; Nurmikko, A V
2004-01-01
We report the development of a microscale photovoltaic energy converter which has been designed and implemented to deliver power to CMOS-based microelectronic chips. The design targets the delivery of voltages on the order of 3V with power levels in excess of 10 mW. The geometry of the prototype device, which has been fabricated and tested, is specifically designed for coupling to an optical fiber, to facilitate remote power delivery in implantable component environment.
Sub-Shot Noise Power Source for Microelectronics
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry V.; Yu, Nan; Mansour, Kamjou
2011-01-01
Low-current, high-impedance microelectronic devices can be affected by electric current shot noise more than they are affected by Nyquist noise, even at room temperature. An approach to implementing a sub-shot noise current source for powering such devices is based on direct conversion of amplitude-squeezed light to photocurrent. The phenomenon of optical squeezing allows for the optical measurements below the fundamental shot noise limit, which would be impossible in the domain of classical optics. This becomes possible by affecting the statistical properties of photons in an optical mode, which can be considered as a case of information encoding. Once encoded, the information describing the photon (or any other elementary excitations) statistics can be also transmitted. In fact, it is such information transduction from optics to an electronics circuit, via photoelectric effect, that has allowed the observation of the optical squeezing. It is very difficult, if not technically impossible, to directly measure the statistical distribution of optical photons except at extremely low light level. The photoelectric current, on the other hand, can be easily analyzed using RF spectrum analyzers. Once it was observed that the photocurrent noise generated by a tested light source in question is below the shot noise limit (e.g. produced by a coherent light beam), it was concluded that the light source in question possess the property of amplitude squeezing. The main novelty of this technology is to turn this well-known information transduction approach around. Instead of studying the statistical property of an optical mode by measuring the photoelectron statistics, an amplitude-squeezed light source and a high-efficiency linear photodiode are used to generate photocurrent with sub-Poissonian electron statistics. By powering microelectronic devices with this current source, their performance can be improved, especially their noise parameters. Therefore, a room-temperature sub-shot noise current source can be built that will be beneficial for a very broad range of low-power, low-noise electronic instruments and applications, both cryogenic and room-temperature. Taking advantage of recent demonstrations of the squeezed light sources based on optical micro-disks, this sub-shot noise current source can be made compatible with the size/power requirements specific of the electronic devices it will support.
Beck, Mary S; Doscher, Mindy
2018-04-01
The current study described RN and patient care technician (PCT) communication in centralized and hybrid decentralized workstation designs using hands-free communication technology and infrared locator badge technology to facilitate communication. New construction of an oncology unit provided the opportunity to compare staff communication in two different workstation designs. Observations and questionnaires compared nurse and PCT communication in the two-unit designs. Descriptive statistics were used to analyze the differences. The hybrid decentralized unit had increased use of hands-free communication technology and hallway communication by nurses and PCTs, and increased patient room communication by nurses. Perceptions of communication between nurses and PCTs and congruency of priorities for care were similar for both units. The locator badge technology had limited adoption. Replacement of nurse workstations with new construction or remodeling impact staff communication patterns, necessitating that nurse leaders understand the impact of design and technology on communication. [Journal of Gerontological Nursing, 44(4), 17-22.]. Copyright 2018, SLACK Incorporated.
Light, Janice; Drager, Kathryn
2007-09-01
Augmentative and alternative communication (AAC) technologies offer the potential to provide children who have complex communication needs with access to the magic and power of communication. This paper is intended to (a) summarize the research related to AAC technologies for young children who have complex communication needs; and (b) define priorities for future research to improve AAC technologies and interventions for children with complex communication needs. With the realization of improved AAC technologies, young children with complex communication needs will have better tools to maximize their development of communication, language, and literacy skills, and attain their full potential.
Wireless microsensor network solutions for neurological implantable devices
NASA Astrophysics Data System (ADS)
Abraham, Jose K.; Whitchurch, Ashwin; Varadan, Vijay K.
2005-05-01
The design and development of wireless mocrosensor network systems for the treatment of many degenerative as well as traumatic neurological disorders is presented in this paper. Due to the advances in micro and nano sensors and wireless systems, the biomedical sensors have the potential to revolutionize many areas in healthcare systems. The integration of nanodevices with neurons that are in communication with smart microsensor systems has great potential in the treatment of many neurodegenerative brain disorders. It is well established that patients suffering from either Parkinson"s disease (PD) or Epilepsy have benefited from the advantages of implantable devices in the neural pathways of the brain to alter the undesired signals thus restoring proper function. In addition, implantable devices have successfully blocked pain signals and controlled various pelvic muscles in patients with urinary and fecal incontinence. Even though the existing technology has made a tremendous impact on controlling the deleterious effects of disease, it is still in its infancy. This paper presents solutions of many problems of today's implantable and neural-electronic interface devices by combining nanowires and microelectronics with BioMEMS and applying them at cellular level for the development of a total wireless feedback control system. The only device that will actually be implanted in this research is the electrodes. All necessary controllers will be housed in accessories that are outside the body that communicate with the implanted electrodes through tiny inductively-coupled antennas. A Parkinson disease patient can just wear a hat-system close to the implantable neural probe so that the patient is free to move around, while the sensors continually monitor, record, transmit all vital information to health care specialist. In the event of a problem, the system provides an early warning to the patient while they are still mobile thus providing them the opportunity to react and trigger the feed back system or contact a point-of-care office that can remotely control the implantable system. The remote monitoring technology can be adaptable to EEG monitoring of children with epilepsy, implantable cardioverters/defibrillators, pacemakers, chronic pain management systems, treatment for sleep disorders, patients with implantable devices for diabetes. In addition, the development of a wireless neural electronics interface to detect, transmit and analyze neural signals could help patients with spinal injuries to regain some semblance of mobile activity.
In-pixel conversion with a 10 bit SAR ADC for next generation X-ray FELs
NASA Astrophysics Data System (ADS)
Lodola, L.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G. F.; Fabris, L.; Forti, F.; Grassi, M.; Latreche, S.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Rizzo, G.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.
2016-07-01
This work presents the design of an interleaved Successive Approximation Register (SAR) ADC, part of the readout channel for the PixFEL detector. The PixFEL project aims at substantially advancing the state-of-the-art in the field of 2D X-ray imaging for applications at the next generation Free Electron Laser (FEL) facilities. For this purpose, the collaboration is developing the fundamental microelectronic building blocks for the readout channel. This work focuses on the design of the ADC carried out in a 65 nm CMOS technology. To obtain a good tradeoff between power consumption, conversion speed and area occupation, an interleaved SAR ADC architecture was adopted.
A high density two-dimensional electron gas in an oxide heterostructure on Si (001)
NASA Astrophysics Data System (ADS)
Jin, E. N.; Kornblum, L.; Kumah, D. P.; Zou, K.; Broadbridge, C. C.; Ngai, J. H.; Ahn, C. H.; Walker, F. J.
2014-11-01
We present the growth and characterization of layered heterostructures comprised of LaTiO3 and SrTiO3 epitaxially grown on Si (001). Magnetotransport measurements show that the sheet carrier densities of the heterostructures scale with the number of LaTiO3/SrTiO3 interfaces, consistent with the presence of an interfacial 2-dimensional electron gas (2DEG) at each interface. Sheet carrier densities of 8.9 × 1014 cm-2 per interface are observed. Integration of such high density oxide 2DEGs on silicon provides a bridge between the exceptional properties and functionalities of oxide 2DEGs and microelectronic technologies.
Fundamental understanding and rational design of high energy structural microbatteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxing; Li, Qiuyan; Cartmell, Samuel
Microbatteries play a critical role in determining the lifetime of downsized sensors, wearable devices and medical applications, etc. More often, structural batteries are required from the perspective of aesthetics and space utilization, which is however rarely explored. Herein, we discuss the fundamental issues associated with the rational design of practically usable high energy microbatteries. The tubular shape of the cell further allows the flexible integration of microelectronics. A functioning acoustic micro-transmitter continuously powered by this tubular battery has been successfully demonstrated. Multiple design features adopted to accommodate large mechanical stress during the rolling process are discussed providing new insights inmore » designing the structural microbatteries for emerging technologies.« less
Advancing MEMS Technology Usage through the MUMPS (Multi-User MEMS Processes) Program
NASA Technical Reports Server (NTRS)
Koester, D. A.; Markus, K. W.; Dhuler, V.; Mahadevan, R.; Cowen, A.
1995-01-01
In order to help provide access to advanced micro-electro-mechanical systems (MEMS) technologies and lower the barriers for both industry and academia, the Microelectronic Center of North Carolina (MCNC) and ARPA have developed a program which provides users with access to both MEMS processes and advanced electronic integration techniques. The four distinct aspects of this program, the multi-user MEMS processes (MUMP's), the consolidated micro-mechanical element library, smart MEMS, and the MEMS technology network are described in this paper. MUMP's is an ARPA-supported program created to provide inexpensive access to MEMS technology in a multi-user environment. It is both a proof-of-concept and educational tool that aids in the development of MEMS in the domestic community. MUMP's technologies currently include a 3-layer poly-silicon surface micromachining process and LIGA (lithography, electroforming, and injection molding) processes that provide reasonable design flexibility within set guidelines. The consolidated micromechanical element library (CaMEL) is a library of active and passive MEMS structures that can be downloaded by the MEMS community via the internet. Smart MEMS is the development of advanced electronics integration techniques for MEMS through the application of flip chip technology. The MEMS technology network (TechNet) is a menu of standard substrates and MEMS fabrication processes that can be purchased and combined to create unique process flows. TechNet provides the MEMS community greater flexibility and enhanced technology accessibility.
Code of Federal Regulations, 2013 CFR
2013-01-01
...; software and technology for communications intercepting devices. 742.13 Section 742.13 Commerce and Foreign... Communications intercepting devices; software and technology for communications intercepting devices. (a) License... wire, oral, or electronic communications (ECCNs 5A001.i and 5A980); and for related “software...
Lin, Y-P; Yen, L-L; Pan, L-Y; Chang, P-J; Cheng, T-J
2005-03-01
To explore the emerging tobacco epidemic in female workers in the growing micro-electronics industry of Taiwan. Workers were surveyed regarding their smoking status, sociodemographics and work characteristics. In total, 1950 female employees in two large micro-electronics companies in Taiwan completed the survey. Approximately 9.3% of the female employees were occasional or daily smokers at the time of the survey. The prevalence of smoking was higher in those aged 16-19 years (20.9%), those not married (12.9%), those with a high school education or less (11.7%), those employed by Company A (11.7%), shift workers (14.3%), and those who had been in their present employment for 1 year or less (13.6%). Results of multivariate adjusted logistic regression indicated that younger age, lower level of education, shorter periods of employment with the company and shift working were the important factors in determining cigarette smoking among the study participants. The odds ratio of being a daily smoker was similar to that of being a current smoker. Marital status was the only significant variable when comparing former smokers with current smokers. Smoking prevalence in female workers in the two micro-electronics companies studied was much higher than previous reports have suggested about female smoking prevalence in Taiwan and China. We suggest that smoking is no longer a 'male problem' in Taiwan. Future smoking cessation and prevention programmes should target young working women as well as men.
Sharpe, Bridget; Hemsley, Bronwyn
2016-05-01
Nurses communicating with patients who are unable to speak often lack access to tools and technologies to support communication. Although mobile communication technologies are ubiquitous, it is not known whether their use to support communication is feasible on a busy hospital ward. The aim of this study was to determine the views of hospital nurses on the feasibility of using mobile communication technologies to support nurse-patient communication with individuals who have communication impairments. This study involved an online survey followed by a focus group, with findings analyzed across the two data sources. Nurses expected that mobile communication devices could benefit patient care but lacked access to these devices, encountered policies against use, and held concerns over privacy and confidentiality. The use of mobile communication technologies with patients who have communication difficulties is feasible and may lead to improvements in communication and care, provided environmental barriers are removed and facilitators enhanced. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA's Advanced Communications Technology Satellite (ACTS)
NASA Technical Reports Server (NTRS)
Gedney, R. T.
1983-01-01
NASA recently restructured its Space Communications Program to emphasize the development of high risk communication technology useable in multiple frequency bands and to support a wide range of future communication needs. As part of this restructuring, the Advanced Communications Technology Satellite (ACTS) Project will develop and experimentally verify the technology associated with multiple fixed and scanning beam systems which will enable growth in communication satellite capacities and more effective utilization of the radio frequency spectrum. The ACTS requirements and operations as well as the technology significance for future systems are described.
InP on SOI devices for optical communication and optical network on chip
NASA Astrophysics Data System (ADS)
Fedeli, J.-M.; Ben Bakir, B.; Olivier, N.; Grosse, Ph.; Grenouillet, L.; Augendre, E.; Phillippe, P.; Gilbert, K.; Bordel, D.; Harduin, J.
2011-01-01
For about ten years, we have been developing InP on Si devices under different projects focusing first on μlasers then on semicompact lasers. For aiming the integration on a CMOS circuit and for thermal issue, we relied on SiO2 direct bonding of InP unpatterned materials. After the chemical removal of the InP substrate, the heterostructures lie on top of silicon waveguides of an SOI wafer with a separation of about 100nm. Different lasers or photodetectors have been achieved for off-chip optical communication and for intra-chip optical communication within an optical network. For high performance computing with high speed communication between cores, we developed InP microdisk lasers that are coupled to silicon waveguide and produced 100μW of optical power and that can be directly modulated up to 5G at different wavelengths. The optical network is based on wavelength selective circuits with ring resonators. InGaAs photodetectors are evanescently coupled to the silicon waveguide with an efficiency of 0.8A/W. The fabrication has been demonstrated at 200mm wafer scale in a microelectronics clean room for CMOS compatibility. For off-chip communication, silicon on InP evanescent laser have been realized with an innovative design where the cavity is defined in silicon and the gain localized in the QW of bonded InP hererostructure. The investigated devices operate at continuous wave regime with room temperature threshold current below 100 mA, the side mode suppression ratio is as high as 20dB, and the fibercoupled output power is {7mW. Direct modulation can be achieved with already 6G operation.
Assistive technology for communication of older adults: a systematic review.
Pedrozo Campos Antunes, Thaiany; Souza Bulle de Oliveira, Acary; Hudec, Robert; Brusque Crocetta, Tania; Ferreira de Lima Antão, Jennifer Yohanna; de Almeida Barbosa, Renata Thais; Guarnieri, Regiani; Massetti, Thais; Garner, David M; de Abreu, Luiz Carlos
2018-02-16
Describe the use of assistive technology to enhance communication opportunities for older adults. A systematic review was conducted in two databases, PubMed and Web of Science, by using two different searches in each. The search was limited to original articles, in English language, including people aged 60 years and older that used any type of assistive technology for communication. The articles found in the initial search were filtered by title, abstracts and the remaining articles were fully read. Eighteen studies were included in this review after the reading of full-texts. Most of the studies included apparently healthy participants with communication limitations due to aging related changes and the others included people with some pathology that prevent them from normal communication. Four categories of assistive technology were identified: assistive technology for people with speech problems; robot or videoconferencing systems; Information and Communication Technologies and, other types of assistive technology for communication, such as hearing aids and scrapbooks. Assistive technology for communication of older adults is not only used by people with disabilities that prevent them from usual communication. They are mostly for older adults without a pathological communication problem.
Code of Federal Regulations, 2014 CFR
2014-01-01
...; software and technology for communications intercepting devices. 742.13 Section 742.13 Commerce and Foreign... Communications intercepting devices; software and technology for communications intercepting devices. (a) License... wire, oral, or electronic communications (ECCNs 5A001.f.1 and 5A980); and for related “software...
NASA Technical Reports Server (NTRS)
Bretmersky, Steven C.; Bishop, William D.; Dailey, Justin E.; Chevalier, Christine T.
2014-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is performing communications systems research for the Unmanned Aircraft System (UAS) in the National Airspace System (NAS) Project. One of the goals of the communications element is to select and test a communications technology for the UAS Control and Non-Payload Communications (CNPC) link. The GRC UAS Modeling and Simulation (M/S) Sub Team will evaluate the performance of several potential technologies for the CNPC link through detailed software simulations. In parallel, an industry partner will implement a technology in hardware to be used for flight testing. The task necessitated a technical assessment of existing Radio Frequency (RF) communications technologies to identify the best candidate systems for use as the UAS CNPC link. The assessment provides a basis for selecting the technologies for the M/S effort and the hardware radio design. The process developed for the technical assessments for the Future Communications Study1 (FCS) was used as an initial starting point for this assessment. The FCS is a joint Federal Aviation Administration (FAA) and Eurocontrol study on technologies for use as a future aeronautical communications link. The FCS technology assessment process methodology can be applied to the UAS CNPC link; however the findings of the FCS are not directly applicable because of different requirements between a CNPC link and a general aeronautical data link. Additional technologies were added to the potential technologies list from the State of the Art Unmanned Aircraft System Communication Assessment developed by NASA GRC2. This document investigates the state of the art of communications as related to UAS. A portion of the document examines potential communications systems for a UAS communication architecture. Like the FCS, the state of the art assessment surveyed existing communications technologies. It did not, however, perform a detailed assessment of the technology necessary to recommend a technology for the UAS CNPC link. The technical assessment process, as shown in Figure 1, consists of the following steps. First, candidate RF communications technologies are identified. An initial review of each of these technologies is then performed to determine if the technology appears to be a good candidate and requires further review. Any technology that can be shown to be inadequate at that point is removed from consideration to allow for more detailed analysis of the remaining technologies. Criteria for the detailed assessments are defined and a scoring methodology is devised. This is followed by the detailed review and scoring of each technology. The least favorable technologies are removed during the process until only the few best candidates remain.
NASA Astrophysics Data System (ADS)
Baldi, Livio; Bez, Roberto; Sandhu, Gurtej
2014-12-01
Memory is a key component of any data processing system. Following the classical Turing machine approach, memories hold both the data to be processed and the rules for processing them. In the history of microelectronics, the distinction has been rather between working memory, which is exemplified by DRAM, and storage memory, exemplified by NAND. These two types of memory devices now represent 90% of all memory market and 25% of the total semiconductor market, and have been the technology drivers in the last decades. Even if radically different in characteristics, they are however based on the same storage mechanism: charge storage, and this mechanism seems to be near to reaching its physical limits. The search for new alternative memory approaches, based on more scalable mechanisms, has therefore gained new momentum. The status of incumbent memory technologies and their scaling limitations will be discussed. Emerging memory technologies will be analyzed, starting from the ones that are already present for niche applications, and which are getting new attention, thanks to recent technology breakthroughs. Maturity level, physical limitations and potential for scaling will be compared to existing memories. At the end the possible future composition of memory systems will be discussed.
NASA Astrophysics Data System (ADS)
Gigan, Olivier; Chen, Hua; Robert, Olivier; Renard, Stephane; Marty, Frederic
2002-11-01
This paper is dedicated to the fabrication and technological aspect of a silicon microresonator sensor. The entire project includes the fabrication processes, the system modelling/simulation, and the electronic interface. The mechanical model of such resonator is presented including description of frequency stability and Hysterises behaviour of the electrostatically driven resonator. Numeric model and FEM simulations are used to simulate the system dynamic behaviour. The complete fabrication process is based on standard microelectronics technology with specific MEMS technological steps. The key steps are described: micromachining on SOI by Deep Reactive Ion Etching (DRIE), specific release processes to prevent sticking (resist and HF-vapour release process) and collective vacuum encapsulation by Silicon Direct Bonding (SDB). The complete process has been validated and prototypes have been fabricated. The ASIC was designed to interface the sensor and to control the vibration amplitude. This electronic was simulated and designed to work up to 200°C and implemented in a standard 0.6μ CMOS technology. Characterizations of sensor prototypes are done both mechanically and electrostatically. These measurements showed good agreements with theory and FEM simulations.
Microactuateur electrothermique bistable: Etude d'implementation avec une technologie standard CMOS
NASA Astrophysics Data System (ADS)
Ressejac, Isabelle
The general objective of this Ph.D. thesis was to study the implementation of a new type of eletrothermal microactuator. This actuator presents the advantages to be bistable and fabricated in a standard CMOS process, allowing the integration of a microelectronics addressing circuit on the same substrate. Experimental research work, presented in this thesis, relate to the different steps carried out in order to implement this CMOS MEMS device: its theoretical conception, its fabrication with a standard CMOS technology, its micromachining as a post-process, its characterization and its electro-thermo-mechanical modeling. The device was designed and fabricated by using Mitel 1,5 mum CMOS technology and the Can-MEMS service which are both available via the Canadian Microelectronics Corporation. Fabricated monolithically within a standard CMOS process, our microactuator is suitable for large-scale integration due to its small dimensions (length ˜1000 mum and width ˜150 mum). It constitutes the basic component of a N by N matrix controlled by a microelectronic addressing system built on the same substrate. Initially, only one micromachining technique (involving TMAH) was used, and long etching times (>9 h) were requires} in order to release the microstructures. However, the passivation layer from the CMOS process could protect the underlying metal from the TMAH for a sufficient time (only ˜1--2 h). Consequently, we had to develop a micromachining strategy with shorter etching times to allow the complete release of the microstructures without damaging them. Post-processing begins with deposition (by sputtering) of a platinum layer intended to protect the abutment from subsequent etching. Our micromachining strategy is mainly based on the use of a hybrid etching process starting with a first anisotropic TMAH etching followed by a XeF2 isotropic etching. After micromachining, the released microactuator has a significant initial deflection with its tip reaching a height up to a hundred times higher than its thickness. This natural deflection results from the relaxation of internal stresses inside the thin films which are part of the microactuator. These internal stresses are intrinsics to the host CMOS process. We have developed a model of the microactuator's initial deflection using mechanical properties of thin films and dimensions of the structure. Actuation experiments were performed in order to characterize the deflection of the microactuator with respect to the heating of the bilayers (separately and together). We have developed a thermal actuation analytical model for an n-layers multimorph structure, which takes into account the initial deflection resulting from the relaxation of stresses as well as the deflection due to the temperature increase during the electrothermal activation of the bilayers. (Abstract shortened by UMI.)
Microengineering of magnetic bearings and actuators
NASA Astrophysics Data System (ADS)
Ghantasala, Muralihar K.; Qin, LiJiang; Sood, Dinesh K.; Zmood, Ronald B.
2000-06-01
Microengineering has evolved in the last decade as a subject of its own with the current research encompassing every possible area of devices from electromagnetic to optical and bio-micro electromechanical systems (MEMS). The primary advantage of the micro system technology is its small size, potential to produce high volume and low cost devices. However, the major impediments in the successful realization of many micro devices in practice are the reliability, packaging and integration with the existing microelectronics technology. Microengineering of actuators has recently grown tremendously due to its possible applicability to a wide range of devices of practical importance and the availability of a choice of materials. Selection of materials has been one of the important aspects of the design and fabrication of many micro system and actuators. This paper discusses the issues related to the selection of materials and subsequently their effect on the performance of the actuator. These will be discussed taking micro magnetic actuators and bearings, in particular, as examples. Fabrication and processing strategies and performance evaluation methods adopted will be described. Current status of the technology and projected futuristic applications in this area will be reviewed.
Gui, Qingyuan; Lawson, Tom; Shan, Suyan; Yan, Lu; Liu, Yong
2017-01-01
Various whole cell-based biosensors have been reported in the literature for the last 20 years and these reports have shown great potential for their use in the areas of pollution detection in environmental and in biomedical diagnostics. Unlike other reviews of this growing field, this mini-review argues that: (1) the selection of reporter genes and their regulatory proteins are directly linked to the performance of celllular biosensors; (2) broad enhancements in microelectronics and information technologies have also led to improvements in the performance of these sensors; (3) their future potential is most apparent in their use in the areas of medical diagnostics and in environmental monitoring; and (4) currently the most promising work is focused on the better integration of cellular sensors with nano and micro scaled integrated chips. With better integration it may become practical to see these cells used as (5) real-time portable devices for diagnostics at the bedside and for remote environmental toxin detection and this in situ application will make the technology commonplace and thus as unremarkable as other ubiquitous technologies. PMID:28703749
Assessment of Student Learning in Modern Experiments in the Introductory Calculus-Based Physics Labs
NASA Astrophysics Data System (ADS)
Woodahl, Brian; Ross, John; Lang, Sarah; Scott, Derek; Williams, Jeremy
2010-10-01
With the advent of newer microelectronic sensors it's now possible to modernize introductory physics labs with the latest technology and this may allow for enhanced student participation/learning in the experiments. For example, force plate sensors can digitize and record the force on an object, later it can be analyzed in detail (i.e, impulse from force vs. time). Small 3-axis accelerometers can record 3-dim, time-dependent acceleration of objects undergoing complex motions. These devices are small, fairly easy to use, and importantly, are likely to enhance student learning by ``personalizing'' data collection, i.e. making the student an active part of the measurement process and no longer a passive observer. To assess whether these new high-tech labs enhance student learning, we have implemented pre- and post- test sessions to measure the effectiveness of student learning. Four of our calculus-based lab sections were used: Two sections the control group, using the previous ``old technology'' labs, the other two, the experimental group, using the new ``modern technology'' labs. Initial returns of assessment data offer some surprising insight.
NASA Technical Reports Server (NTRS)
1973-01-01
Laser communication technology and laser communication performance are reviewed. The subjects discussed are: (1) characteristics of laser communication systems, (2) laser technology problems, (3) means of overcoming laser technology problems, and (4) potential schedule for including laser communications into data acquisition networks. Various types of laser communication systems are described and their capabilities are defined.
Mask industry assessment trend analysis
NASA Astrophysics Data System (ADS)
Shelden, Gilbert; Marmillion, Patricia; Hughes, Greg
2008-04-01
Microelectronics industry leaders routinely name the cost and cycle time of mask technology and mask supply as top critical issues. A survey was created with support from SEMATECH and administered by SEMI North America to gather information about the mask industry as an objective assessment of its overall condition. This year's survey data were presented in detail at BACUS and the detailed trend analysis presented at EMLC. The survey is designed with the input of semiconductor company mask technologists, merchant mask suppliers, and industry equipment makers. This year's assessment is the sixth in the current series of annual reports. With continued industry support, the report can be used as a baseline to gain perspective on the technical and business status of the mask and microelectronics industries. The report will continue to serve as a valuable reference to identify the strengths and opportunities of the mask industry. The results will be used to guide future investments on critical path issues. This year's survey is basically the same as the 2005 and 2006 surveys. Questions are grouped into eight categories: General Business Profile Information, Data Processing, Yields and Yield Loss, Mechanisms, Delivery Times, Returns and Services, Operating Cost Factors, and Equipment Utilization. Within each category is a multitude of questions that creates a detailed profile of both the business and technical status of the critical mask industry. Note: the questions covering operating cost factors and equipment utilization were added to the survey only in 2005; therefore, meaningful trend analysis is not available.
Fighting blindness with microelectronics.
Zrenner, Eberhart
2013-11-06
There is no approved cure for blindness caused by degeneration of the photoreceptor cells of the retina. However, there has been encouraging progress with attempts to restore vision using microelectronic retinal implant devices. Yet many questions remain to be addressed. Where is the best location to implant multielectrode arrays? How can spatial and temporal resolution be improved? What are the best ways to ensure the safety and longevity of these devices? Will color vision be possible? This Perspective discusses the current state of the art of retinal implants and attempts to address some of the outstanding questions.
NASA Astrophysics Data System (ADS)
Levin, Andrey V.
1996-04-01
High-speed, efficient method of laser surface treatment has been developed using (500 W) cw CO2 laser. The principal advantages of CO2 laser surface treatment in comparison with solid state lasers are the basis of the method. It has been affirmed that high efficiency of welding was a consequence of the fundamental properties of metal-IR-radiation (10,6 mkm) interaction. CO2 laser hermetization of metal frames of microelectronic devices is described as an example of the proposed method application.
Microelectronic superconducting device with multi-layer contact
Wellstood, Frederick C.; Kingston, John J.; Clarke, John
1993-01-01
A microelectronic component comprising a crossover is provided comprising a substrate, a first high T.sub.c superconductor thin film, a second insulating thin film comprising SrTiO.sub.3 ; and a third high T.sub.c superconducting film which has strips which crossover one or more areas of the first superconductor film. An insitu method for depositing all three films on a substrate is provided which does not require annealing steps. The photolithographic process is used to separately pattern the high T.sub.c superconductor thin films.
A software upgrade method for micro-electronics medical implants.
Cao, Yang; Hao, Hongwei; Xue, Lin; Li, Luming; Ma, Bozhi
2006-01-01
A software upgrade method for micro-electronics medical implants is designed to enhance the devices' function or renew the software if there are some bugs found, the software updating or some memory units disabled. The implants needn't be replaced by operations if the faults can be corrected through reprogramming, which reduces the patients' pain and improves the safety effectively. This paper introduces the software upgrade method using in-application programming (IAP) and emphasizes how to insure the system, especially the implanted part's reliability and stability while upgrading.
A Eu/Tb-mixed MOF for luminescent high-temperature sensing
NASA Astrophysics Data System (ADS)
Wang, Huizhen; Zhao, Dian; Cui, Yuangjing; Yang, Yu; Qian, Guodong
2017-02-01
Temperature measurements and thermal mapping using luminescent MOF operating in the high-temperature range are of great interest in the micro-electronic diagnosis. In this paper, we report a thermostable Eu/Tb-mixed MOF Eu0.37Tb0.63-BTC-a exhibiting strong luminescence at elevated temperature, which can serve as a ratiometric luminescent thermometer for high-temperature range. The high-temperature operating range (313-473 K), high relative sensitivity and accurate temperature resolution, make such a Eu/Tb-mixed MOF useful for micro-electronic diagnosis.
Microelectronic superconducting device with multi-layer contact
Wellstood, F.C.; Kingston, J.J.; Clarke, J.
1993-10-26
A microelectronic component comprising a crossover is provided comprising a substrate, a first high T[sub c] superconductor thin film, a second insulating thin film comprising SrTiO[sub 3] ; and a third high T[sub c] superconducting film which has strips which crossover one or more areas of the first superconductor film. An in situ method for depositing all three films on a substrate is provided which does not require annealing steps. The photolithographic process is used to separately pattern the high T[sub c] superconductor thin films. 14 figures.
Tsuo, Y. Simon; Deb, Satyen K.
1990-01-01
Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.
The New Millennium Program: Validating Advanced Technologies for Future Space Missions
NASA Technical Reports Server (NTRS)
Minning, Charles P.; Luers, Philip
1999-01-01
This presentation reviews the activities of the New Millennium Program (NMP) in validating advanced technologies for space missions. The focus of these breakthrough technologies are to enable new capabilities to fulfill the science needs, while reducing costs of future missions. There is a broad spectrum of NMP partners, including government agencies, universities and private industry. The DS-1 was launched on October 24, 1998. Amongst the technologies validated by the NMP on DS-1 are: a Low Power Electronics Experiment, the Power Activation and Switching Module, Multi-Functional Structures. The first two of these technologies are operational and the data analysis is still ongoing. The third program is also operational, and its performance parameters have been verified. The second program, DS-2, was launched January 3 1999. It is expected to impact near Mars southern polar region on 3 December 1999. The technologies used on this mission awaiting validation are an advanced microcontroller, a power microelectronics unit, an evolved water experiment and soil thermal conductivity experiment, Lithium-Thionyl Chloride batteries, the flexible cable interconnect, aeroshell/entry system, and a compact telecom system. EO-1 on schedule for launch in December 1999 carries several technologies to be validated. Amongst these are: a Carbon-Carbon Radiator, an X-band Phased Array Antenna, a pulsed plasma thruster, a wideband advanced recorder processor, an atmospheric corrector, lightweight flexible solar arrays, Advanced Land Imager and the Hyperion instrument
Spacecraft Data Simulator for the test of level zero processing systems
NASA Technical Reports Server (NTRS)
Shi, Jeff; Gordon, Julie; Mirchandani, Chandru; Nguyen, Diem
1994-01-01
The Microelectronic Systems Branch (MSB) at Goddard Space Flight Center (GSFC) has developed a Spacecraft Data Simulator (SDS) to support the development, test, and verification of prototype and production Level Zero Processing (LZP) systems. Based on a disk array system, the SDS is capable of generating large test data sets up to 5 Gigabytes and outputting serial test data at rates up to 80 Mbps. The SDS supports data formats including NASA Communication (Nascom) blocks, Consultative Committee for Space Data System (CCSDS) Version 1 & 2 frames and packets, and all the Advanced Orbiting Systems (AOS) services. The capability to simulate both sequential and non-sequential time-ordered downlink data streams with errors and gaps is crucial to test LZP systems. This paper describes the system architecture, hardware and software designs, and test data designs. Examples of test data designs are included to illustrate the application of the SDS.
Crescentini, Marco; Thei, Frederico; Bennati, Marco; Saha, Shimul; de Planque, Maurits R R; Morgan, Hywel; Tartagni, Marco
2015-06-01
Lipid bilayer membrane (BLM) arrays are required for high throughput analysis, for example drug screening or advanced DNA sequencing. Complex microfluidic devices are being developed but these are restricted in terms of array size and structure or have integrated electronic sensing with limited noise performance. We present a compact and scalable multichannel electrophysiology platform based on a hybrid approach that combines integrated state-of-the-art microelectronics with low-cost disposable fluidics providing a platform for high-quality parallel single ion channel recording. Specifically, we have developed a new integrated circuit amplifier based on a novel noise cancellation scheme that eliminates flicker noise derived from devices under test and amplifiers. The system is demonstrated through the simultaneous recording of ion channel activity from eight bilayer membranes. The platform is scalable and could be extended to much larger array sizes, limited only by electronic data decimation and communication capabilities.
Information Fusion in Ad hoc Wireless Sensor Networks for Aircraft Health Monitoring
NASA Astrophysics Data System (ADS)
Fragoulis, Nikos; Tsagaris, Vassilis; Anastassopoulos, Vassilis
In this paper the use of an ad hoc wireless sensor network for implementing a structural health monitoring system is discussed. The network is consisted of sensors deployed throughout the aircraft. These sensors being in the form of a microelectronic chip and consisted of sensing, data processing and communicating components could be easily embedded in any mechanical aircraft component. The established sensor network, due to its ad hoc nature is easily scalable, allowing adding or removing any number of sensors. The position of the sensor nodes need not necessarily to be engineered or predetermined, giving this way the ability to be deployed in inaccessible points. Information collected from various sensors of different modalities throughout the aircraft is then fused in order to provide a more comprehensive image of the aircraft structural health. Sensor level fusion along with decision quality information is used, in order to enhance detection performance.
Paterson, Helen; Carpenter, Christine
2015-01-01
This study aimed to explore how adults with severe acquired communication difficulties experience and make decisions about the communication methods they use. The primary objectives were to explore their perceptions of different communication methods, how they choose communication methods to use in different situations and with different communication partners, and what facilitates their decision-making. A qualitative phenomenological approach was used. Data collection methods were face-to-face video-recorded interviews using each participant's choice of communication method and e-mail interviews. The methodological challenges of involving participants with severe acquired communication disorders in research were addressed in the study design. Seven participants, all men, were recruited from a long-term care setting in a rehabilitation hospital. The data analysis process was guided by Colaizzi's (1978) analytic framework. Four main themes were identified: communicating in the digital age – e-mail and social media, encountering frustrations in using communication technologies, role and identity changes and the influences of communication technology and seeking a functional interaction using communication technologies. Adults with acquired communication difficulties find digital communication, such as e-mail and social media, and mainstream technologies, such as iPads, beneficial in communicating with others. Current communication technologies present a number of challenges for adults with disabilities and are limited in their communicative functions to support desired interactions. The implications for AAC technology development and speech and language therapy service delivery are addressed.
Nilsson, Carina; Skär, Lisa; Söderberg, Siv
2008-01-01
The use of information and communication technology has increased in the society, and can be useful in nursing care. The aim of this study was to describe district nurses’ attitudes regarding the implementation of information and communication technology in home nursing. The first and third authors performed five focus group discussions with 19 district nurses’ from five primary healthcare centres in northern Sweden. During the focus group discussions, the following topics were discussed: the current and future use of information and communication technology in home nursing; expectations, advantages, disadvantages and hindrances in the use of information and communication technology in home nursing; and the use of information and communication technology from an ethical perspective. The transcribed focus group discussions were analysed using qualitative content analysis. The results showed that district nurses’ attitudes were positive regarding the use of information and communication technology in their work. They also asked for possibilities to influence the design and its introduction. However, the use of information and communication technology in home nursing can be described as a complement to communication that could not replace human physical encounters. Improvements and risks, as well as the importance of physical presence in home nursing were considered vital. The results revealed that the use of information and communication technology requires changes in the district nurses’ work situation. PMID:19319223
Nilsson, Carina; Skär, Lisa; Söderberg, Siv
2008-01-01
The use of information and communication technology has increased in the society, and can be useful in nursing care. The aim of this study was to describe district nurses' attitudes regarding the implementation of information and communication technology in home nursing. The first and third authors performed five focus group discussions with 19 district nurses' from five primary healthcare centres in northern Sweden. During the focus group discussions, the following topics were discussed: the current and future use of information and communication technology in home nursing; expectations, advantages, disadvantages and hindrances in the use of information and communication technology in home nursing; and the use of information and communication technology from an ethical perspective. The transcribed focus group discussions were analysed using qualitative content analysis. The results showed that district nurses' attitudes were positive regarding the use of information and communication technology in their work. They also asked for possibilities to influence the design and its introduction. However, the use of information and communication technology in home nursing can be described as a complement to communication that could not replace human physical encounters. Improvements and risks, as well as the importance of physical presence in home nursing were considered vital. The results revealed that the use of information and communication technology requires changes in the district nurses' work situation.
High quality silicon-based substrates for microwave and millimeter wave passive circuits
NASA Astrophysics Data System (ADS)
Belaroussi, Y.; Rack, M.; Saadi, A. A.; Scheen, G.; Belaroussi, M. T.; Trabelsi, M.; Raskin, J.-P.
2017-09-01
Porous silicon substrate is very promising for next generation wireless communication requiring the avoidance of high-frequency losses originating from the bulk silicon. In this work, new variants of porous silicon (PSi) substrates have been introduced. Through an experimental RF performance, the proposed PSi substrates have been compared with different silicon-based substrates, namely, standard silicon (Std), trap-rich (TR) and high resistivity (HR). All of the mentioned substrates have been fabricated where identical samples of CPW lines have been integrated on. The new PSi substrates have shown successful reduction in the substrate's effective relative permittivity to values as low as 3.7 and great increase in the substrate's effective resistivity to values higher than 7 kΩ cm. As a concept proof, a mm-wave bandpass filter (MBPF) centred at 27 GHz has been integrated on the investigated substrates. Compared with the conventional MBPF implemented on standard silicon-based substrates, the measured S-parameters of the PSi-based MBPF have shown high filtering performance, such as a reduction in insertion loss and an enhancement of the filter selectivity, with the joy of having the same filter performance by varying the temperature. Therefore, the efficiency of the proposed PSi substrates has been well highlighted. From 1994 to 1995, she was assistant of physics at (USTHB), Algiers . From 1998 to 2011, she was a Researcher at characterization laboratory in ionized media and laser division at the Advanced Technologies Development Center. She has integrated the Analog Radio Frequency Integrated Circuits team as Researcher since 2011 until now in Microelectronic and Nanotechnology Division at Advanced Technologies Development Center (CDTA), Algiers. She has been working towards her Ph.D. degree jointly at CDTA and Ecole Nationale Polytechnique, Algiers, since 2012. Her research interest includes fabrication and characterization of microwave passive devices on porous silicon as new substrate, such as characterization of FinFET components.
Beyond Visual Communication Technology.
ERIC Educational Resources Information Center
Bell, Thomas P.
1993-01-01
Discusses various aspects of visual communication--light, semiotics, codes, photography, typography, and visual literacy--within the context of the communications technology area of technology education. (SK)
Technology modules from micro- and nano-electronics for the life sciences.
Birkholz, M; Mai, A; Wenger, C; Meliani, C; Scholz, R
2016-05-01
The capabilities of modern semiconductor manufacturing offer remarkable possibilities to be applied in life science research as well as for its commercialization. In this review, the technology modules available in micro- and nano-electronics are exemplarily presented for the case of 250 and 130 nm technology nodes. Preparation procedures and the different transistor types as available in complementary metal-oxide-silicon devices (CMOS) and BipolarCMOS (BiCMOS) technologies are introduced as key elements of comprehensive chip architectures. Techniques for circuit design and the elements of completely integrated bioelectronics systems are outlined. The possibility for life scientists to make use of these technology modules for their research and development projects via so-called multi-project wafer services is emphasized. Various examples from diverse fields such as (1) immobilization of biomolecules and cells on semiconductor surfaces, (2) biosensors operating by different principles such as affinity viscosimetry, impedance spectroscopy, and dielectrophoresis, (3) complete systems for human body implants and monitors for bioreactors, and (4) the combination of microelectronics with microfluidics either by chip-in-polymer integration as well as Si-based microfluidics are demonstrated from joint developments with partners from biotechnology and medicine. WIREs Nanomed Nanobiotechnol 2016, 8:355-377. doi: 10.1002/wnan.1367 For further resources related to this article, please visit the WIREs website. © 2015 Wiley Periodicals, Inc.
Emerging Communication Technologies (ECT) Phase 4 Report
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Marin, Jose A.; Nelson, Richard A.
2005-01-01
The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Crew Exploration Vehicle (CEV), Advanced Range Technology Working Group (ARTWG), and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures on a 24/7 basis. ECT is a continuation of the Range Information System Management (RISM) task started in 2002. This is the fourth year of the project.
Engineering Research and Development and Technology thrust area report FY92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langland, R.T.; Minichino, C.
1993-03-01
The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, theymore » are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.« less
Emerging Communication Technologies (ECT) Phase 2 Report. Volume 3; Ultra Wideband (UWB) Technology
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.
2003-01-01
The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB
Communication Technology: The Magic of Touch
ERIC Educational Resources Information Center
Deal, Walter F.
2008-01-01
It is interesting to note how technology has changed the way that people communicate with one another. Several of the major historical developments of communication are: (1) language; (2) alphabet; and (3) writing. These early forms of communication enabled humans to go beyond verbal and symbolic communication and on to such technologies as the…
ERIC Educational Resources Information Center
Sutriadi, Ridwan
2011-01-01
The objective of this study is to assess the role of mobile technology to promote a communicative city in Indonesia. The focus is on mobile technologies as symbols of the latest information and communication technology (ICT). Communication influences the capacity building of the governmental planning employees to conduct better planning…
NASA Activities as they Relate to Microwave Technology for Aerospace Communications Systems
NASA Technical Reports Server (NTRS)
Miranda, Felix A.
2011-01-01
This presentation discusses current NASA activities and plans as they relate to microwave technology for aerospace communications. The presentations discusses some examples of the aforementioned technology within the context of the existing and future communications architectures and technology development roadmaps. Examples of the evolution of key technology from idea to deployment are provided as well as the challenges that lay ahead regarding advancing microwave technology to ensure that future NASA missions are not constrained by lack of communication or navigation capabilities. The presentation closes with some examples of emerging ongoing opportunities for establishing collaborative efforts between NASA, Industry, and Academia to encourage the development, demonstration and insertion of communications technology in pertinent aerospace systems.
Emerging Communication Technologies (ECT) Phase 3 Final Report
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Bates, Lakesha D.; Nelson, Richard A.
2004-01-01
The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB.
Chen, Sung-Wei; Wang, Po-Chuan; Hsin, Ping-Lung; Oates, Anthony; Sun, I-Wen; Liu, Shen-Ing
2011-01-01
Microelectronic engineers are considered valuable human capital contributing significantly toward economic development, but they may encounter stressful work conditions in the context of a globalized industry. The study aims at identifying risk factors of depressive disorders primarily based on job stress models, the Demand-Control-Support and Effort-Reward Imbalance models, and at evaluating whether depressive disorders impair work performance in microelectronics engineers in Taiwan. The case-control study was conducted among 678 microelectronics engineers, 452 controls and 226 cases with depressive disorders which were defined by a score 17 or more on the Beck Depression Inventory and a psychiatrist's diagnosis. The self-administered questionnaires included the Job Content Questionnaire, Effort-Reward Imbalance Questionnaire, demography, psychosocial factors, health behaviors and work performance. Hierarchical logistic regression was applied to identify risk factors of depressive disorders. Multivariate linear regressions were used to determine factors affecting work performance. By hierarchical logistic regression, risk factors of depressive disorders are high demands, low work social support, high effort/reward ratio and low frequency of physical exercise. Combining the two job stress models may have better predictive power for depressive disorders than adopting either model alone. Three multivariate linear regressions provide similar results indicating that depressive disorders are associated with impaired work performance in terms of absence, role limitation and social functioning limitation. The results may provide insight into the applicability of job stress models in a globalized high-tech industry considerably focused in non-Western countries, and the design of workplace preventive strategies for depressive disorders in Asian electronics engineering population.
Synthesis of tin, silver and their alloy nanoparticles for lead-free interconnect applications
NASA Astrophysics Data System (ADS)
Jiang, Hongjin
SnPb solders have long been used as interconnect materials in microelectronic packaging. Due to the health threat of lead to human beings, the use of lead-free interconnect materials is imperative. Three kinds of lead-free interconnect materials are being investigated, namely lead-free metal solders (SnAg, SnAgCu, etc.), electrically conductive adhesives (ECAs) and carbon nanotubes (CNTs). However, there are still limitations for the full utilization of these lead-free interconnect materials in the microelectronic packaging, such as higher melting point of lead-free metal solders, lower electrical conductivity of the ECAs and poor adhesion of CNTs to substrates. This thesis is devoted to the research and development of low processing temperature lead-free interconnect materials for microelectronic packaging applications with an emphasis on fundamental studies of nanoparticles synthesis, dispersion and oxidation prevention, and nanocomposites fabrication. Oxide-free tin (Sn), tin/silver (96.5Sn3.5Ag) and tin/silver/copper (96.5Sn3.0Ag0.5Cu) alloy nanoparticles with different sizes were synthesized by a low temperature chemical reduction method. Both size dependent melting point and latent heat of fusion of the synthesized nanoparticles were obtained. The nano lead-free solder pastes/composites created by dispersing the SnAg or SnAgCu alloy nanoparticles into an acidic type flux spread and wet on the cleaned copper surface at 220 to 230°C. This study demonstrated the feasibility of nano sized SnAg or SnAgCu alloy particle pastes for low processing temperature lead-free interconnect applications in microelectronic packaging.
Use of communication technologies in document exchange for the management of construction projects
NASA Astrophysics Data System (ADS)
Mesároš, Peter; Mandičák, Tomáš
2016-06-01
Information and communication technologies represent a set of people, processes, technical and software tools providing collection, transport, storage and processing of data for distribution and presentation of information. Particularly communication systems are the main tool for information exchange. Of the other part, these technologies have a broad focus and use. One of them is the exchange of documents in the management of construction projects. Paper discusses the issue of exploitation level of communication technologies in construction project management. The main objective of this paper is to analyze exploitation level of communication technologies. Another aim of the paper is to compare exploitation level or rate of document exchange by electronic communication devices and face-to-face communication.
Madec, Morgan; Pecheux, François; Gendrault, Yves; Rosati, Elise; Lallement, Christophe; Haiech, Jacques
2016-10-01
The topic of this article is the development of an open-source automated design framework for synthetic biology, specifically for the design of artificial gene regulatory networks based on a digital approach. In opposition to other tools, GeNeDA is an open-source online software based on existing tools used in microelectronics that have proven their efficiency over the last 30 years. The complete framework is composed of a computation core directly adapted from an Electronic Design Automation tool, input and output interfaces, a library of elementary parts that can be achieved with gene regulatory networks, and an interface with an electrical circuit simulator. Each of these modules is an extension of microelectronics tools and concepts: ODIN II, ABC, the Verilog language, SPICE simulator, and SystemC-AMS. GeNeDA is first validated on a benchmark of several combinatorial circuits. The results highlight the importance of the part library. Then, this framework is used for the design of a sequential circuit including a biological state machine.
An innovative large scale integration of silicon nanowire-based field effect transistors
NASA Astrophysics Data System (ADS)
Legallais, M.; Nguyen, T. T. T.; Mouis, M.; Salem, B.; Robin, E.; Chenevier, P.; Ternon, C.
2018-05-01
Since the early 2000s, silicon nanowire field effect transistors are emerging as ultrasensitive biosensors while offering label-free, portable and rapid detection. Nevertheless, their large scale production remains an ongoing challenge due to time consuming, complex and costly technology. In order to bypass these issues, we report here on the first integration of silicon nanowire networks, called nanonet, into long channel field effect transistors using standard microelectronic process. A special attention is paid to the silicidation of the contacts which involved a large number of SiNWs. The electrical characteristics of these FETs constituted by randomly oriented silicon nanowires are also studied. Compatible integration on the back-end of CMOS readout and promising electrical performances open new opportunities for sensing applications.
Semiconductor measurement technology: Microelectronic ultrasonic bonding
NASA Technical Reports Server (NTRS)
Harman, G. G. (Editor)
1974-01-01
Information for making high quality ultrasonic wire bonds is presented as well as data to provide a basic understanding of the ultrasonic systems used. The work emphasizes problems and methods of solving them. The required measurement equipment is first introduced. This is followed by procedures and techniques used in setting up a bonding machine, and then various machine- or operator-induced reliability problems are discussed. The characterization of the ultrasonic system and its problems are followed by in-process bonding studies and work on the ultrasonic bonding (welding) mechanism. The report concludes with a discussion of various effects of bond geometry and wire metallurgical characteristics. Where appropriate, the latest, most accurate value of a particular measurement has been substituted for an earlier reported one.
Commercial aspects of epitaxial thin film growth in outer space
NASA Technical Reports Server (NTRS)
Ignatiev, Alex; Chu, C. W.
1988-01-01
A new concept for materials processing in space exploits the ultra vacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10 to the -14th torr or better pressures, semiinfinite pumping speeds and large ultra vacuum volume (about 100 cu m) without walls. These space ultra vacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials especially in the area of semiconductors for microelectronics use. For such thin film materials there is expected a very large value added from space ultra vacuum processing, and as a result the application of the epitaxial thin film growth technology to space could lead to major commercial efforts in space.
Fundamental understanding and rational design of high energy structural microbatteries
Wang, Yuxing; Li, Qiuyan; Cartmell, Samuel; ...
2017-11-21
We present that microbatteries play a critical role in determining the lifetime of downsized sensors, wearable devices, medical applications, and animal acoustic telemetry transmitters among others. More often, structural batteries are required from the perspective of aesthetics and space utilization, which is however rarely explored. Herein, we discuss the fundamental issues associated with the rational design of practically usable high energy microbatteries. The tubular shape of the cell further allows the flexible integration of microelectronics. A functioning acoustic micro-transmitter continuously powered by this tubular battery has been successfully demonstrated. Finally, multiple design features adopted to accommodate large mechanical stress duringmore » the rolling process are discussed providing new insights in designing the structural microbatteries for emerging technologies.« less
Method of forming a spacer for field emission flat panel displays
Bernhardt, A.F.; Contolini, R.J.
1997-08-19
Spacers are disclosed for applications such as field emission flat panel displays and vacuum microelectronics, and which involves the application of aerogel/xerogel technology to the formation of the spacer. In a preferred approach the method uses a mold and mold release agent wherein the gel precursor is a liquid which can be applied to the mold filling holes which expose the substrate (either the baseplate or the faceplate). A release agent is applied to the mold prior to precursor application to ease removal of the mold after formation of the dielectric spacer. The shrinkage of the gel during solvent extraction also improves mold removal. The final spacer material is a good dielectric, such as silica, secured to the substrate. 3 figs.
Fundamental understanding and rational design of high energy structural microbatteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxing; Li, Qiuyan; Cartmell, Samuel
We present that microbatteries play a critical role in determining the lifetime of downsized sensors, wearable devices, medical applications, and animal acoustic telemetry transmitters among others. More often, structural batteries are required from the perspective of aesthetics and space utilization, which is however rarely explored. Herein, we discuss the fundamental issues associated with the rational design of practically usable high energy microbatteries. The tubular shape of the cell further allows the flexible integration of microelectronics. A functioning acoustic micro-transmitter continuously powered by this tubular battery has been successfully demonstrated. Finally, multiple design features adopted to accommodate large mechanical stress duringmore » the rolling process are discussed providing new insights in designing the structural microbatteries for emerging technologies.« less
Dielectric spectroscopy of Ag-starch nanocomposite films
NASA Astrophysics Data System (ADS)
Meena; Sharma, Annu
2018-04-01
In the present work Ag-starch nanocomposite films were fabricated via chemical reduction route. The formation of Ag nanoparticles was confirmed using transmission electron microscopy (TEM). Further the effect of varying concentration of Ag nanoparticles on the dielectric properties of starch has been studied. The frequency response of dielectric constant (ε‧), dielectric loss (ε″) and dissipation factor tan(δ) has been studied in the frequency range of 100 Hz to 1 MHz. Dielectric data was further analysed using Cole-Cole plots. The dielectric constant of starch was found to be 4.4 which decreased to 2.35 in Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Such nanocomposites with low dielectric constant have potential applications in microelectronic technologies.
NASA Astrophysics Data System (ADS)
Sokolov, Leonid V.
2010-08-01
There is a need of measuring distributed pressure on the aircraft engine inlet with high precision within a wide operating temperature range in the severe environment to improve the efficiency of aircraft engine control. The basic solutions and principles of designing high-temperature (to 523K) microelectromechanical pressure sensors based on a membrane-type SOI heterostructure with a monolithic integral tensoframe (MEMS-SOIMT) are proposed in accordance with the developed concept, which excludes the use of electric p-n junctions in semiconductor microelectromechanical sensors. The MEMS-SOIMT technology relies on the group processes of microelectronics and micromechanics for high-precision microprofiling of a three-dimension micromechanical structure, which exclude high-temperature silicon doping processes.
NASA Astrophysics Data System (ADS)
Shahmoon, Asaf; Strauß, Johnnes; Zafri, Hadar; Schmidt, Michael; Zalevsky, Zeev
In this paper we present the fabrication procedure as well as the preliminary experimental results of a novel method for construction of high resolution nanometric interconnection lines. The fabrication procedure relies on a self-assembly process of gold nanoparticles at specific predetermined nanostructures. The nanostructures for the self-assembly process are based on the focused ion beam (FIB) or scanning electron beam (SEM) technology. The assembled nanoparticles are being illuminated using a picosecond laser with a wavelength of 532 nm. Different pulse energies have been investigated. The paper aimed at developing a novel and reliable process for fabrication of interconnection lines encompass three different disciplines, self-assembly of nanometric particles, optics and microelectronic.
Method of forming a spacer for field emission flat panel displays
Bernhardt, Anthony F.; Contolini, Robert J.
1997-01-01
Spacers for applications such as field emission flat panel displays and vacuum microelectronics, and which involves the application of aerogel/xerogel technology to the formation of the spacer. In a preferred approach the method uses a mold and mold release agent wherein the gel precursor is a liquid which can be applied to the mold filling holes which expose the substrate (either the baseplate or the faceplate). A release agent is applied to the mold prior to precursor application to ease removal of the mold after formation of the dielectric spacer. The shrinkage of the gel during solvent extraction also improves mold removal. The final spacer material is a good dielectric, such as silica, secured to the substrate.
Application of technology to social communication impairment in childhood and adolescence.
Wieckowski, Andrea Trubanova; White, Susan W
2017-03-01
Social communication impairment has been implicated in various mental health disorders. The primary aim of this review paper is to summarize the extant research on the development and application of technologies to address social communication deficits, conceptualized according to the four constructs outlined by the NIMH's Research Domain Criteria (RDoC), transdiagnostically in children and adolescents. An exhaustive and systematic search yielded 69 peer-reviewed articles meeting all inclusion criteria (i.e., used technology, applied the technology to target impairment in at least one of four constructs of social communication, included a child or adolescent samples). We found limited use of technology for exploration of impairment in reception of non-facial communication, compared to the other social communication constructs. In addition, there has been an overwhelming focus on social communication impairment in children and adolescents with Autism Spectrum Disorder (ASD), with relatively few studies evaluating technology application in other clinical populations. Implications for future directions for technological interventions to treat social communication impairments transdiagnostically are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mobile-Based Dictionary of Information and Communication Technology
NASA Astrophysics Data System (ADS)
Liando, O. E. S.; Mewengkang, A.; Kaseger, D.; Sangkop, F. I.; Rantung, V. P.; Rorimpandey, G. C.
2018-02-01
This study aims to design and build mobile-based dictionary of information and communication technology applications to provide access to information in the form of glossary of terms in the context of information and communication technologies. Applications built in this study using the Android platform, with SQLite database model. This research uses prototype model development method which covers the stages of communication, Quick Plan, Quick Design Modeling, Construction of Prototype, Deployment Delivery & Feedback, and Full System Transformation. The design of this application is designed in such a way as to facilitate the user in the process of learning and understanding the new terms or vocabularies encountered in the world of information and communication technology. Mobile-based dictionary of Information And Communication Technology applications that have been built can be an alternative to learning literature. In its simplest form, this application is able to meet the need for a comprehensive and accurate dictionary of Information And Communication Technology function.
SBIR Technology Applications to Space Communications and Navigation (SCaN)
NASA Technical Reports Server (NTRS)
Liebrecht, Phil; Eblen, Pat; Rush, John; Tzinis, Irene
2010-01-01
This slide presentation reviews the mission of the Space Communications and Navigation (SCaN) Office with particular emphasis on opportunities for technology development with SBIR companies. The SCaN office manages NASA's space communications and navigation networks: the Near Earth Network (NEN), the Space Network (SN), and the Deep Space Network (DSN). The SCaN networks nodes are shown on a world wide map and the networks are described. Two types of technologies are described: Pull technology, and Push technologies. A listing of technology themes is presented, with a discussion on Software defined Radios, Optical Communications Technology, and Lunar Lasercom Space Terminal (LLST). Other technologies that are being investigated are some Game Changing Technologies (GCT) i.e., technologies that offer the potential for improving comm. or nav. performance to the point that radical new mission objectives are possible, such as Superconducting Quantum Interference Filters, Silicon Nanowire Optical Detectors, and Auto-Configuring Cognitive Communications
Emerging Communication Technologies (ECT) Phase 2 Report. Volume 2; Appendices
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.
2003-01-01
The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB
Emerging Communication Technologies (ECT) Phase 2 Report. Volume 1; Main Report
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.
2003-01-01
The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB.
Precompetitive cooperative research: the culture of the '90s
NASA Astrophysics Data System (ADS)
Holton, William C.
1991-03-01
In the current worldwide technology environment, it is essential for the U.S. microelectronics industry. and especially for the integrated circuit portion of that industry, that precompeutive cooperative research alliances be formed and funded at a level that emables them to be effective in rapidly advancing technology. It is important to realize that technology advances with or without our direct participation. If we do not aggressively participate we are quickly left behind. Increasing complexity and miniaturization have been the themes in semiconductor technology. Many are aware that what began in the early 60's with a few masking steps and minimum dimensions measured in mils. has now evolved to a level of sophistication requiring a 100 MW workstation for IC design and the investment of nearly S400 million dollars in fab cost to produce today's microchips. The leading nations of the world have come to realize that their future well-being is closely tied to their ability to compete in this hi-tech environment. Industry coalitions have been formed to exploit the early ramifications of emeging technologies. Improvements in overseas manufacturing have been made and continue unabated with new producLs, new processes, and new services being introduced at an increasing rate. Many foreign governments are now actively involved in formulating and conducting industrial and technology policies to aid their hi-tech industry. To meet these challenges, U.S. firms, with U. S. government cooperation, must respond.
Affordable, Robust Ceramic Joining Technology (ARCJoint) Developed
NASA Technical Reports Server (NTRS)
Steele, Gynelle C.
2001-01-01
Affordable, Robust Ceramic Joining Technology (ARCJoint) is a method for joining high temperature- resistant ceramic pieces together, establishing joints that are strong, and allowing joining to be done in the field. This new way of joining allows complex shapes to be formed by joining together geometrically simple shapes. The joining technology at NASA is one of the enabling technologies for the application of silicon-carbide-based ceramic and composite components in demanding and high-temperature applications. The technology is being developed and tested for high-temperature propulsion parts for aerospace use. Commercially, it can be used for joining ceramic pieces used for high temperature applications in the power-generating and chemical industries, as well as in the microelectronics industry. This innovation could yield big payoffs for not only the power-generating industry but also the Silicon Valley chipmakers. This technology, which was developed at the NASA Glenn Research Center by Dr. Mrityunjay Singh, is a two-step process involving first using a paste to join together ceramic pieces and bonding them by heating the joint to 110 to 120 C for between 10 and 20 min. This makes the joint strong enough to be handled for the final joining. Then, a silicon-based substance is applied to the joint and heated to 1400 C for 10 to 15 min. The resulting joint is as strong as the original ceramic material and can withstand the same high temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert G. Baca; Edwin J. Heller; Gregory C. Frye-Mason
High sensitivity acoustic wave chemical microsensors are being developed on GaAs substrates. These devices take advantage of the piezoelectric properties of GaAs as well as its mature microelectronics fabrication technology and nascent micromachining technology. The design, fabrication, and response of GaAs SAW chemical microsensors are reported. Functional integrated GaAs SAW oscillators, suitable for chemical sensing, have been produced. The integrated oscillator requires 20 mA at 3 VK, operates at frequencies up to 500 MHz, and occupies approximately 2 mmz. Discrete GaAs sensor components, including IC amplifiers, SAW delay lines, and IC phase comparators have been fabricated and tested. A temperaturemore » compensation scheme has been developed that overcomes the large temperature dependence of GaAs acoustic wave devices. Packaging issues related to bonding miniature flow channels directly to the GaAs substrates have been resolved. Micromachining techniques for fabricating FPW and TSM microsensors on thin GaAs membranes are presented and GaAs FPW delay line performance is described. These devices have potentially higher sensitivity than existing GaAs and quartz SAW sensors.« less
The demise of plastic encapsulated microcircuit myths
NASA Astrophysics Data System (ADS)
Hakim, E. B.; Agarwal, R. K.; Pecht, M.
1994-10-01
Production of microelectronic devices encapsulated in solid, molded plastic packages has rapidly increased since the early 1980's. Today, millions of plastic-encapsulated devices are produced daily. On the other hand, only a few million hermetic (cavity) packages are produced per year. Reasons for the increased use of plastic-encapsulated packages include cost, availability, size, weight, quality, and reliability. Markets taking advantage of this technology range from computers and telecommunications to automotive uses. Yet, several industries, the military in particular, will not accept such devices. One reason for this reluctance to use the best available commercial parts is a perceived risk of poor reliability, derived from antiquated military specifications, standards, and handbooks; other common justifications cite differing environments; inadequate screens; inadequate test data, and required government audits of suppliers' processes. This paper describes failure mechanisms associated with plastic encapsulation and their elimination. It provides data indicating the relative reliability of cavity and solid-encapsulated packaging, and presents possible approaches to assuring quality and reliability in the procuring and applying this successful commercial technology.
Bringing order to the world of nanowire devices by phase shift lithography.
Subannajui, Kittitat; Güder, Firat; Zacharias, Margit
2011-09-14
Semiconductor nanowire devices have several properties which match future requirements of scaling down the size of electronics. In typical microelectronics production, a number of microstructures are aligned precisely on top of each other during the fabrication process. In the case of nanowires, this mandatory condition is still hard to achieve. A technological breakthrough is needed to accurately place nanowires at any specific position and then form devices in mass production. In this article, an upscalable process combining conventional micromachining with phase shift lithography will be demonstrated as a suitable tool for nanowire device technology. Vertical Si and ZnO nanowires are demonstrated on very large (several cm(2)) areas. We demonstrate how the nanowire positions can be controlled, and the resulting nanowires are used for device fabrication. As an example Si/ZnO heterojunction diode arrays are fabricated. The electrical characterization of the produced devices has also been performed to confirm the functionality of the fabricated diodes.
Graphene nanocomposites as thermal interface materials for cooling energy devices
NASA Astrophysics Data System (ADS)
Dmitriev, A. S.; Valeev, A. R.
2017-11-01
The paper describes the technology of creating samples of graphene nanocomposites based on graphene flakes obtained by splitting graphite with ultrasound of high power. Graphene nanocomposites in the form of samples are made by the technology of weak sintering at high pressure (200-300 bar) and temperature up to 150 0 C, and also in the form of compositions with polymer matrices. The reflection spectra in the visible range and the near infrared range for the surface of nanocomposite samples are studied, the data of optical and electronic spectroscopy of such samples are givenIn addition, data on the electrophysical and thermal properties of the nanocomposites obtained are presented. Some analytical models of wetting and spreading over graphene nanocomposite surfaces have been constructed and calculated, and their effective thermal conductivity has been calculated and compared with the available experimental data. Possible applications of graphene nanocomposites for use as thermal interface materials for heat removal and cooling for power equipment, as well as microelectronics and optoelectronics devices are described.
Challenges and trends in magnetic sensor integration with microfluidics for biomedical applications
NASA Astrophysics Data System (ADS)
Cardoso, S.; Leitao, D. C.; Dias, T. M.; Valadeiro, J.; Silva, M. D.; Chicharo, A.; Silverio, V.; Gaspar, J.; Freitas, P. P.
2017-06-01
Magnetoresistive (MR) sensors have been successfully applied in many technologies, in particular readout electronics and smart systems for multiple signal addressing and readout. When single sensors are used, the requirements relate to spatial resolution and localized field sources. The integration of MR sensors in adaptable media (e.g. flexible, stretchable substrates) offers the possibility to merge the magnetic detection with mechanical functionalities. In addition, the precision of a micrometric needle can benefit greatly from the integration of MR sensors with submicrometric resolution. In this paper, we demonstrate through several detailed examples how advanced MR sensors can be integrated with the systems described above, and also with microfluidic technologies. Here, the challenges of handling liquids over a chip combine with those for miniaturization of microelectronics for MR readout. However, when these are overcome, the result is an integrated system with added functionalities, capable of answering the demand in biomedicine and biochemistry for lab-on-a-chip devices.
Doped organic transistors operating in the inversion and depletion regime
Lüssem, Björn; Tietze, Max L.; Kleemann, Hans; Hoßbach, Christoph; Bartha, Johann W.; Zakhidov, Alexander; Leo, Karl
2013-01-01
The inversion field-effect transistor is the basic device of modern microelectronics and is nowadays used more than a billion times on every state-of-the-art computer chip. In the future, this rigid technology will be complemented by flexible electronics produced at extremely low cost. Organic field-effect transistors have the potential to be the basic device for flexible electronics, but still need much improvement. In particular, despite more than 20 years of research, organic inversion mode transistors have not been reported so far. Here we discuss the first realization of organic inversion transistors and the optimization of organic depletion transistors by our organic doping technology. We show that the transistor parameters—in particular, the threshold voltage and the ON/OFF ratio—can be controlled by the doping concentration and the thickness of the transistor channel. Injection of minority carriers into the doped transistor channel is achieved by doped contacts, which allows forming an inversion layer. PMID:24225722
Omnidirectional spin-wave nanograting coupler
Yu, Haiming; Duerr, G.; Huber, R.; Bahr, M.; Schwarze, T.; Brandl, F.; Grundler, D.
2013-01-01
Magnonics as an emerging nanotechnology offers functionalities beyond current semiconductor technology. Spin waves used in cellular nonlinear networks are expected to speed up technologically, demanding tasks such as image processing and speech recognition at low power consumption. However, efficient coupling to microelectronics poses a vital challenge. Previously developed techniques for spin-wave excitation (for example, by using parametric pumping in a cavity) may not allow for the relevant downscaling or provide only individual point-like sources. Here we demonstrate that a grating coupler of periodically nanostructured magnets provokes multidirectional emission of short-wavelength spin waves with giantly enhanced amplitude compared with a bare microwave antenna. Exploring the dependence on ferromagnetic materials, lattice constants and the applied magnetic field, we find the magnonic grating coupler to be more versatile compared with gratings in photonics and plasmonics. Our results allow one to convert, in particular, straight microwave antennas into omnidirectional emitters for short-wavelength spin waves, which are key to cellular nonlinear networks and integrated magnonics. PMID:24189978
The Impact of Developing Technology on Media Communications.
ERIC Educational Resources Information Center
MacDonald, Lindsay W.
1997-01-01
Examines changes in media communications resulting from new information technologies: communications technologies (networks, World Wide Web, digital set-top box); graphic arts (digital photography, CD and digital archives, desktop design and publishing, printing technology); television and video (digital editing, interactive television, news and…
NASA Astrophysics Data System (ADS)
Wang, Hao; Zhong, Guoxin
2018-03-01
Optical communication network is the mainstream technique of the communication networks for distribution automation, and self-healing technologies can improve the in reliability of the optical communication networks significantly. This paper discussed the technical characteristics and application scenarios of several network self-healing technologies in the access layer, the backbone layer and the core layer of the optical communication networks for distribution automation. On the base of the contrastive analysis, this paper gives an application suggestion of these self-healing technologies.
NASA Technical Reports Server (NTRS)
1987-01-01
Potential applications of robots for cost effective commercial microelectronic processes in space were studied and the associated robotic requirements were defined. Potential space application areas include advanced materials processing, bulk crystal growth, and epitaxial thin film growth and related processes. All possible automation of these processes was considered, along with energy and environmental requirements. Aspects of robot capabilities considered include system intelligence, ROM requirements, kinematic and dynamic specifications, sensor design and configuration, flexibility and maintainability. Support elements discussed included facilities, logistics, ground support, launch and recovery, and management systems.
Tsuo, Y.S.; Deb, S.K.
1990-10-02
Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.
Microelectronic components and metallic oxide studies and applications
NASA Technical Reports Server (NTRS)
Williams, L., Jr.
1976-01-01
The project involved work in two basic areas: (1) Evaluation of commercial screen printable thick film conductors, resistors, thermistors and dielectrics as well as alumina substrates used in hybird microelectronics industries. Results of tests made on materials produced by seven companies are presented. (2) Experimental studies on metallic oxides of copper and vanadium, in an effort to determine their electrochemical properties in crystalline, powder mixtures and as screen printable thick films constituted the second phase of the research effort. Oxide investigations were aimed at finding possible applications of these materials as switching devices memory elements and sensors.
Light, Janice; McNaughton, David
2013-12-01
Current technologies provide individuals with complex communication needs with a powerful array of communication, information, organization, and social networking options. However, there is the danger that the excitement over these new devices will result in a misplaced focus on the technology, to the neglect of what must be the central focus - the people with complex communication needs who require augmentative and alternative communication (AAC). In order to truly harness the power of technology, rehabilitation and educational professionals must ensure that AAC intervention is driven, not by the devices, but rather by the communication needs of the individual. Furthermore, those involved in AAC research and development activities must ensure that the design of AAC technologies is driven by an understanding of motor, sensory, cognitive, and linguistic processing, in order to minimize learning demands and maximize communication power for individuals with complex communication needs across the life span.
Flexible Display and Integrated Communication Devices (FDICD) Technology. Volume 2
2008-06-01
AFRL-RH-WP-TR-2008-0072 Flexible Display and Integrated Communication Devices (FDICD) Technology, Volume II David Huffman Keith Tognoni...14 April 2004 – 20 June 2008 4. TITLE AND SUBTITLE Flexible Display and Integrated Communication Devices (FDICD) Technology, Volume II 5a...14. ABSTRACT This flexible display and integrated communication devices (FDICD) technology program sought to create a family of powerful
Computing, Information, and Communications Technology (CICT) Program Overview
NASA Technical Reports Server (NTRS)
VanDalsem, William R.
2003-01-01
The Computing, Information and Communications Technology (CICT) Program's goal is to enable NASA's Scientific Research, Space Exploration, and Aerospace Technology Missions with greater mission assurance, for less cost, with increased science return through the development and use of advanced computing, information and communication technologies
31 CFR 542.306 - Information and communications technology.
Code of Federal Regulations, 2014 CFR
2014-07-01
... technology. 542.306 Section 542.306 Money and Finance: Treasury Regulations Relating to Money and Finance... Definitions § 542.306 Information and communications technology. The term information and communications technology means any hardware, software, or other product or service primarily intended to fulfill or enable...
Research Think Tank: "Complexifying" International Communication and Communication Technology.
ERIC Educational Resources Information Center
Thomas, Gail Fann
1997-01-01
Describes the Research Think Tank of the Association for Business Communication: its history, 1996 focus and participants, and its process. Notes that key ideas emerging from this process focused on international communication, communication technology, connecting international communication, and implications for researchers. (SR)
Research on key technology of space laser communication network
NASA Astrophysics Data System (ADS)
Chang, Chengwu; Huang, Huiming; Liu, Hongyang; Gao, Shenghua; Cheng, Liyu
2016-10-01
Since the 21st century, Spatial laser communication has made a breakthrough development. Europe, the United States, Japan and other space powers have carried out the test of spatial laser communication technology on-orbit, and put forward a series of plans. In 2011, China made the first technology demonstration of satellite-ground laser communication carried by HY-2 satellite. Nowadays, in order to improve the transmission rate of spatial network, the topic of spatial laser communication network is becoming a research hotspot at home and abroad. This thesis, from the basic problem of spatial laser communication network to solve, analyzes the main difference between spatial network and ground network, which draws forth the key technology of spatial laser communication backbone network, and systematically introduces our research on aggregation, addressing, architecture of spatial network. From the perspective of technology development status and trends, the thesis proposes the development route of spatial laser communication network in stages. So as to provide reference about the development of spatial laser communication network in China.
Giant step for communication satellite technology
NASA Technical Reports Server (NTRS)
Lovell, R. R.
1984-01-01
NASA's communications program, which is concerned with advanced communications technology, reflects the need for operational communications satellite capacity beyond the capabilities of current technology and the unwillingness of private industry in the U.S. to undertake making the required long-range, high-risk technology advances. It is pointed out that current satellites will not satisfy the forecasted demand for additional capacity in the 1990s and beyond. Current technology exists primarily up to 18 GHz. Designing a communications satellite at each of the three major uplink/downlink frequency bands (C, Ku, and Ka, 6/4 GHz, 14/11 GHz, and 30/20 GHz, respectively) presents different program management and technical problems. Increasing frequency or power can be done only by intensive sustained research. This is the rationale for NASA to pursue the Advanced Communications Technology Satellite (ACTS) program.
Giant step for communication satellite technology
NASA Astrophysics Data System (ADS)
Lovell, R. R.
1984-03-01
NASA's communications program, which is concerned with advanced communications technology, reflects the need for operational communications satellite capacity beyond the capabilities of current technology and the unwillingness of private industry in the U.S. to undertake making the required long-range, high-risk technology advances. It is pointed out that current satellites will not satisfy the forecasted demand for additional capacity in the 1990s and beyond. Current technology exists primarily up to 18 GHz. Designing a communications satellite at each of the three major uplink/downlink frequency bands (C, Ku, and Ka, 6/4 GHz, 14/11 GHz, and 30/20 GHz, respectively) presents different program management and technical problems. Increasing frequency or power can be done only by intensive sustained research. This is the rationale for NASA to pursue the Advanced Communications Technology Satellite (ACTS) program.
Mass Communication: Technology Use and Instruction. ERIC Digest.
ERIC Educational Resources Information Center
Brynildssen, Shawna
This Digest reviews the literature on recent attempts to incorporate technology into the instruction of journalism and mass communication. It first discusses the four main categories of current technology use in journalism and mass communication: classroom instruction; online syllabi/materials; distance learning; and technological literacy. It…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-26
... conduct the 2010 through 2012 Information and Communication Technology Survey (ICTS). The annual survey... payments) for four types of information and communication technology equipment and software (computers and... through the use of automated collection techniques or other forms of information technology. Comments...
NASA Technical Reports Server (NTRS)
Engler, N. A.; Nash, J. F.; Strange, J. D.
1978-01-01
Approximately 453 reports, papers, and articles catalogued into an information retrieval system, covering communications experiments and demonstrations conducted, utilizing the Communications Technology Satellite and the Applications Technology Satellites 1, 3, 5, and 6 are listed.
Christiansen, Line; Fagerström, Cecilia; Nilsson, Lina
2017-07-01
To facilitate communications between care levels and improve coordination during hospital discharges, there is great potential in using information and communication technology systems, because they can significantly help to deter unnecessary readmissions. However, there is still a lack of knowledge about how often nurses use information and communication technology and the indicators related to its use. The aims of this study were to describe the indicators related to nurses' use of an information and communication technology system for collaboration between care levels and to estimate whether the level of use can be related to nurses' perceptions of the information and communication technology system's contribution to improve coordination during hospital discharges. A quantitative survey of 37 nurses from 11 primary healthcare centers was performed in a county in southern Sweden. The data were analyzed using descriptive and comparative analyses. The results showed that perceptions concerning the information and communication technology system's usability and time consumption differed between nurses who used the system and those who did not. Simultaneously, the nurses were rather unaware of the ability of the information and communication technology system to improve coordination during patient discharges.
Sutcliffe, Paul; Martin, Steven; Sturt, Jackie; Powell, John; Griffiths, Frances; Adams, Ann; Dale, Jeremy
2011-01-06
Research has investigated whether communication technologies (e.g. mobile telephony, forums, email) can be used to transfer digital information between healthcare professionals and young people who live with diabetes. The systematic review evaluates the effectiveness and impact of these technologies on communication. Nine electronic databases were searched. Technologies were described and a narrative synthesis of all studies was undertaken. Of 20,925 publications identified, 19 met the inclusion criteria, with 18 technologies assessed. Five categories of communication technologies were identified: video-and tele-conferencing (n = 2); mobile telephony (n = 3); telephone support (n = 3); novel electronic communication devices for transferring clinical information (n = 10); and web-based discussion boards (n = 1). Ten studies showed a positive improvement in HbA1c following the intervention with four studies reporting detrimental increases in HbA1c levels. In fifteen studies communication technologies increased the frequency of contact between patient and healthcare professional. Findings were inconsistent of an association between improvements in HbA1c and increased contact. Limited evidence was available concerning behavioural and care coordination outcomes, although improvement in quality of life, patient-caregiver interaction, self-care and metabolic transmission were reported for some communication technologies. The breadth of study design and types of technologies reported make the magnitude of benefit and their effects on health difficult to determine. While communication technologies may increase the frequency of contact between patient and health care professional, it remains unclear whether this results in improved outcomes and is often the basis of the intervention itself. Further research is needed to explore the effectiveness and cost effectiveness of increasing the use of communication technologies between young people and healthcare professionals.
2011-01-01
Background Research has investigated whether communication technologies (e.g. mobile telephony, forums, email) can be used to transfer digital information between healthcare professionals and young people who live with diabetes. The systematic review evaluates the effectiveness and impact of these technologies on communication. Methods Nine electronic databases were searched. Technologies were described and a narrative synthesis of all studies was undertaken. Results Of 20,925 publications identified, 19 met the inclusion criteria, with 18 technologies assessed. Five categories of communication technologies were identified: video-and tele-conferencing (n = 2); mobile telephony (n = 3); telephone support (n = 3); novel electronic communication devices for transferring clinical information (n = 10); and web-based discussion boards (n = 1). Ten studies showed a positive improvement in HbA1c following the intervention with four studies reporting detrimental increases in HbA1c levels. In fifteen studies communication technologies increased the frequency of contact between patient and healthcare professional. Findings were inconsistent of an association between improvements in HbA1c and increased contact. Limited evidence was available concerning behavioural and care coordination outcomes, although improvement in quality of life, patient-caregiver interaction, self-care and metabolic transmission were reported for some communication technologies. Conclusions The breadth of study design and types of technologies reported make the magnitude of benefit and their effects on health difficult to determine. While communication technologies may increase the frequency of contact between patient and health care professional, it remains unclear whether this results in improved outcomes and is often the basis of the intervention itself. Further research is needed to explore the effectiveness and cost effectiveness of increasing the use of communication technologies between young people and healthcare professionals. PMID:21210964
The Chinese Politics of Communication Technology: Utility, State Building and Control
ERIC Educational Resources Information Center
Su, Dan
2012-01-01
This study provides an examination into the formulation and construction of information and communication technology policy in China. It traces the rise of information technology and the "informatization" drive in China's political rhetoric, and identifies the changes and trajectory of information and communication technology in China's…
The Role of Communication Technology in Adolescent Relationships and Identity Development
ERIC Educational Resources Information Center
Cyr, Betty-Ann; Berman, Steven L.; Smith, Megan L.
2015-01-01
Background: The popularity of communication technologies such as text messaging, e-mail, instant messaging, and social networking sites has grown exponentially, especially among adolescents. At the scale of growth along with the pressures and normative use of communication technology, psychological effects of these technologies need to be further…
ERIC Educational Resources Information Center
Manyuk, Lyubov; Kuchumova, Nataliya
2018-01-01
The US medical schools are characterized by a significant progress in the usage of information and communication technologies for professional purposes and communication skills development. This advance was influenced by a sequence of social, academic, technological and financial conditions, namely: permanent research in the branch of…
Commercialization of Advanced Communications Technology Satellite (ACTS) technology
NASA Astrophysics Data System (ADS)
Plecity, Mark S.; Strickler, Walter M.; Bauer, Robert A.
1996-03-01
In an on-going effort to maintain United States leadership in communication satellite technology, the National Aeronautics and Space Administration (NASA), led the development of the Advanced Communications Technology Satellite (ACTS). NASA's ACTS program provides industry, academia, and government agencies the opportunity to perform both technology and telecommunication service experiments with a leading-edge communication satellite system. Over 80 organizations are using ACTS as a multi server test bed to establish communication technologies and services of the future. ACTS was designed to provide demand assigned multiple access (DAMA) digital communications with a minimum switchable circuit bandwidth of 64 Kbps, and a maximum channel bandwidth of 900 MHZ. It can, therefore, provide service to thin routes as well as connect fiber backbones in supercomputer networks, across oceans, or restore full communications in the event of national or manmade disaster. Service can also be provided to terrestrial and airborne mobile users. Commercial applications of ACTS technologies include: telemedicine; distance education; Department of Defense operations; mobile communications, aeronautical applications, terrestrial applications, and disaster recovery. This paper briefly describes the ACTS system and the enabling technologies employed by ACTS including Ka-band hopping spot beams, on-board routing and switching, and rain fade compensation. When used in conjunction with a time division multiple access (TDMA) architecture, these technologies provide a higher capacity, lower cost satellite system. Furthermore, examples of completed user experiments, future experiments, and plans of organizations to commercialize ACTS technology in their own future offerings will be discussed.
Multilayered microelectronic device package with an integral window
Peterson, Kenneth A.; Watson, Robert D.
2003-01-01
An apparatus for packaging of microelectronic devices is disclosed, wherein the package includes an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can comprise, for example, a cofired ceramic frame or body. The package has an internal stepped structure made of a plurality of plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package, according to some embodiments. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination. The integral window can further include a lens for optically transforming light passing through the window. The package can include an array of binary optic lenslets made integral with the window. The package can include an electrically-switched optical modulator, such as a lithium niobate window attached to the package, for providing a very fast electrically-operated shutter.
Advanced information society(5)
NASA Astrophysics Data System (ADS)
Tanizawa, Ippei
Based on the advancement of information network technology information communication forms informationalized society giving significant impact on business activities and life style in it. The information network has been backed up technologically by development of computer technology and has got great contribution by enhanced computer technology and communication equipments. Information is transferred by digital and analog methods. Technical development which has brought out multifunctioned modems of communication equipments in analog mode, and construction of advanced information communication network which has come out by joint work of computer and communication under digital technique, are described. The trend in institutional matter and standardization of electrical communication is also described showing some examples of value-added network (VAN).
The New Millenium Program: Serving Earth and Space Sciences
NASA Technical Reports Server (NTRS)
Li, Fuk K.
2000-01-01
NASA has exciting plans for space science and Earth observations during the next decade. A broad range of advanced spacecraft and measurement technologies will be needed to support these plans within the existing budget and schedule constraints. Many of these technology needs are common to both NASA's Office of Earth Science (OES) and Office of Space Sciences (OSS). Even though some breakthrough technologies have been identified to address these needs, project managers have traditionally been reluctant to incorporate them into flight programs because their inherent development risk. To accelerate the infusion of new technologies into its OES and OSS missions, NASA established the New Millennium Program (NMP). This program analyzes the capability needs of these enterprises, identifies candidate technologies to address these needs, incorporates advanced technology suites into validation flights, validates them in the relevant space environment, and then proactively infuses the validated technologies into future missions to enhance their capabilities while reducing their life cycle cost. The NMP employs a cross-enterprise Science Working Group, the NASA Enterprise science and technology roadmaps to define the capabilities needed by future Earth and Space science missions. Additional input from the science community is gathered through open workshops and peer-reviewed NASA Research Announcement (NRAs) for advanced measurement concepts. Technology development inputs from the technology organizations within NASA, other government agencies, federally funded research and development centers (FFRDC's), U.S. industry, and academia are sought to identify breakthrough technologies that might address these needs. This approach significantly extends NASA's technology infrastructure. To complement other flight test programs that develop or validate of individual components, the NMP places its highest priority on system-level validations of technology suites in the relevant space environment. This approach is not needed for all technologies, but it is usually essential to validate advanced system architectures or new measurement concepts. The NMP has recently revised its processes for defining candidate validation flights, and selecting technologies for these flights. The NMP now employs integrated project formulation teams, 'Which include scientists, technologists, and mission planners, to incorporate technology suites into candidate validation flights. These teams develop competing concepts, which can be rigorously evaluated prior to selection for flight. The technology providers for each concept are selected through an open, competitive, process during the project formulation phase. If their concept is selected for flight, they are incorporated into the Project Implementation Team, which develops, integrates, tests, launches, and operates the technology validation flight. Throughout the project implementation phase, the Implementation Team will document and disseminate their validation results to facilitate the infusion of their validated technologies into future OSS and OES science missions. The NMP has successfully launched its first two Deep Space flights for the OSS, and is currently implementing its first two Earth Orbiting flights for the OES. The next OSS and OES flights are currently being defined. Even though these flights are focused on specific Space Science and Earth Science themes, they are designed to validate a range of technologies that could benefit both enterprises, including advanced propulsion, communications, autonomous operations and navigation, multifunctional structures, microelectronics, and advanced instruments. Specific examples of these technologies will be provided in our presentation. The processes developed by the NMP also provide benefits across the Space and Earth Science enterprises. In particular, the extensive, nation-wide technology infrastructure developed by the NMP enhances the access to breakthrough technologies for both enterprises.
High-technology augmentative communication for adults with post-stroke aphasia: a systematic review.
Russo, Maria Julieta; Prodan, Valeria; Meda, Natalia Nerina; Carcavallo, Lucila; Muracioli, Anibal; Sabe, Liliana; Bonamico, Lucas; Allegri, Ricardo Francisco; Olmos, Lisandro
2017-05-01
Augmentative and alternative communication (AAC) systems were introduced into clinical practice by therapists to help compensate for persistent language deficits in people with aphasia. Although, there is currently a push towards an increased focus on compensatory approaches in an attempt to maximize communication function for social interaction, available studies including AAC systems, especially technologically advanced communication tools and systems, known as 'high-technology AAC', show key issues and obstacles for these tools to become utilized in mainstream clinical practice. Areas covered: The current review synthesizes communication intervention studies that involved the use of high-technology communication devices to enhance linguistic communication skills for adults with post-stroke aphasia. The review focuses on compensatory approaches that emphasized functional communication. It also summarizes recommendations for the report of studies evaluating high-technology devices that may be potentially relevant for other researchers working with adults with post-stroke aphasia. Expert commentary: Taken together with positive results in heterogeneous studies, high-technology devices represent a compensatory strategy to enhance communicative skills in individuals with post-stroke aphasia. Improvements in the design of studies and reporting of results may lead to better interpretation of the already existing scientific results from aphasia management.
ERIC Educational Resources Information Center
Simonson, Michael, Ed.
2010-01-01
For the thirty-third year, the Research and Theory Division of the Association for Educational Communications and Technology (AECT) is sponsoring the publication of these Proceedings. This is Volume #2 of the 33rd "Annual Proceedings of Selected Papers on the Practice of Educational Communications and Technology." This volume includes…
NASA Astrophysics Data System (ADS)
Kaspar, P.; Jany, C.; Le Liepvre, A.; Accard, A.; Lamponi, M.; Make, D.; Levaufre, G.; Girard, N.; Lelarge, F.; Shen, A.; Charbonnier, P.; Mallecot, F.; Duan, G.-H.; Gentner, J.-.; Fedeli, J.-M.; Olivier, S.; Descos, A.; Ben Bakir, B.; Messaoudene, S.; Bordel, D.; Malhouitre, S.; Kopp, C.; Menezo, S.
2014-05-01
The lack of potent integrated light emitters is one of the bottlenecks that have so far hindered the silicon photonics platform from revolutionizing the communication market. Photonic circuits with integrated light sources have the potential to address a wide range of applications from short-distance data communication to long-haul optical transmission. Notably, the integration of lasers would allow saving large assembly costs and reduce the footprint of optoelectronic products by combining photonic and microelectronic functionalities on a single chip. Since silicon and germanium-based sources are still in their infancy, hybrid approaches using III-V semiconductor materials are currently pursued by several research laboratories in academia as well as in industry. In this paper we review recent developments of hybrid III-V/silicon lasers and discuss the advantages and drawbacks of several integration schemes. The integration approach followed in our laboratory makes use of wafer-bonded III-V material on structured silicon-on-insulator substrates and is based on adiabatic mode transfers between silicon and III-V waveguides. We will highlight some of the most interesting results from devices such as wavelength-tunable lasers and AWG lasers. The good performance demonstrates that an efficient mode transfer can be achieved between III-V and silicon waveguides and encourages further research efforts in this direction.
Aerospace Communications Technologies in Support of NASA Mission
NASA Technical Reports Server (NTRS)
Miranda, Felix A.
2016-01-01
NASA is endeavoring in expanding communications capabilities to enable and enhance robotic and human exploration of space and to advance aero communications here on Earth. This presentation will discuss some of the research and technology development work being performed at the NASA Glenn Research Center in aerospace communications in support of NASAs mission. An overview of the work conducted in-house and in collaboration with academia, industry, and other government agencies (OGA) to advance radio frequency (RF) and optical communications technologies in the areas of antennas, ultra-sensitive receivers, power amplifiers, among others, will be presented. In addition, the role of these and other related RF and optical communications technologies in enabling the NASA next generation aerospace communications architecture will be also discussed.
Printing Peptide arrays with a complementary metal oxide semiconductor chip.
Loeffler, Felix F; Cheng, Yun-Chien; Muenster, Bastian; Striffler, Jakob; Liu, Fanny C; Ralf Bischoff, F; Doersam, Edgar; Breitling, Frank; Nesterov-Mueller, Alexander
2013-01-01
: In this chapter, we discuss the state-of-the-art peptide array technologies, comparing the spot technique, lithographical methods, and microelectronic chip-based approaches. Based on this analysis, we describe a novel peptide array synthesis method with a microelectronic chip printer. By means of a complementary metal oxide semiconductor chip, charged bioparticles can be patterned on its surface. The bioparticles serve as vehicles to transfer molecule monomers to specific synthesis spots. Our chip offers 16,384 pixel electrodes on its surface with a spot-to-spot pitch of 100 μm. By switching the voltage of each pixel between 0 and 100 V separately, it is possible to generate arbitrary particle patterns for combinatorial molecule synthesis. Afterwards, the patterned chip surface serves as a printing head to transfer the particle pattern from its surface to a synthesis substrate. We conducted a series of proof-of-principle experiments to synthesize high-density peptide arrays. Our solid phase synthesis approach is based on the 9-fluorenylmethoxycarbonyl protection group strategy. After melting the particles, embedded monomers diffuse to the surface and participate in the coupling reaction to the surface. The method demonstrated herein can be easily extended to the synthesis of more complicated artificial molecules by using bioparticles with artificial molecular building blocks. The possibility of synthesizing artificial peptides was also shown in an experiment in which we patterned biotin particles in a high-density array format. These results open the road to the development of peptide-based functional modules for diverse applications in biotechnology.
Corti's organ physiology-based cochlear model: a microelectronic prosthetic implant
NASA Astrophysics Data System (ADS)
Rios, Francisco; Fernandez-Ramos, Raquel; Romero-Sanchez, Jorge; Martin, Jose Francisco
2003-04-01
Corti"s Organ is an Electro-Mechanical transducer that allows the energy coupling between acoustical stimuli and auditory nerve. Although the structure and funtionality of this organ are complex, state of the art models have been currently developed and tested. Cochlea model presented in this paper is based on the theories of Bekesy and others and concerns on the behaviour of auditory system on frequency-place domain and mechanisms of lateral inhibition. At the same time, present state of technology will permit us developing a microsystem that reproduce this phenomena applied to hearing aid prosthesis. Corti"s Organ is composed of more than 20.000 cilia excited by mean of travelling waves. These waves produce relative pressures distributed along the cochlea, exciting an specific number of cilia in a local way. Nonlinear mechanisms of local adaptation to the intensity (external cilia cells) and lateral inhibition (internal cilia cells) allow the selection of very few elements excited. These transmit a very precise intensity and frequency information. These signals are the only ones coupled to the auditory nerve. Distribution of pressure waves matches a quasilogaritmic law due to Cochlea morphology. Microsystem presented in this paper takes Bark"s law as an approximation to this behaviour consisting on grouped arbitrary elements composed of a set of selective coupled exciters (bank of filters according to Patterson"s model).These sets apply the intensity adaptation principles and lateral inhibition. Elements excited during the process generate a bioelectric signal in the same way than cilia cell. A microelectronic solution is presented for the development of an implantable prosthesis device.
Moyle, Wendy; Jones, Cindy; Murfield, Jenny; Dwan, Toni; Ownsworth, Tamara
2018-02-01
There has been significant growth in communication technologies. However, it is unknown to what extent RACFs accommodate such technologies. To explore the use and availability of communication technologies for use by residents within RACFs in Queensland, Australia. A descriptive, structured telephone survey. Every 10th alphabetically listed facility from a total sample of n = 462 were telephoned and staff were invited to complete the survey. Forty-one out of a total of 93 RACFs completed the survey. The telephone was by far the primary form of communication used by residents to communicate with family and friends (n = 40; 97.6%). Conversely, the use of web-connection communication software (Skype or similar) was uncommon. The use and availability of communication technologies is limited within RACFs, highlighting a significant lag in the uptake within the sector.
Technology transfer of military space microprocessor developments
NASA Astrophysics Data System (ADS)
Gorden, C.; King, D.; Byington, L.; Lanza, D.
1999-01-01
Over the past 13 years the Air Force Research Laboratory (AFRL) has led the development of microprocessors and computers for USAF space and strategic missile applications. As a result of these Air Force development programs, advanced computer technology is available for use by civil and commercial space customers as well. The Generic VHSIC Spaceborne Computer (GVSC) program began in 1985 at AFRL to fulfill a deficiency in the availability of space-qualified data and control processors. GVSC developed a radiation hardened multi-chip version of the 16-bit, Mil-Std 1750A microprocessor. The follow-on to GVSC, the Advanced Spaceborne Computer Module (ASCM) program, was initiated by AFRL to establish two industrial sources for complete, radiation-hardened 16-bit and 32-bit computers and microelectronic components. Development of the Control Processor Module (CPM), the first of two ASCM contract phases, concluded in 1994 with the availability of two sources for space-qualified, 16-bit Mil-Std-1750A computers, cards, multi-chip modules, and integrated circuits. The second phase of the program, the Advanced Technology Insertion Module (ATIM), was completed in December 1997. ATIM developed two single board computers based on 32-bit reduced instruction set computer (RISC) processors. GVSC, CPM, and ATIM technologies are flying or baselined into the majority of today's DoD, NASA, and commercial satellite systems.