Lambert, J M; Weinbreck, F; Kleerebezem, M
2008-09-24
The interest in efficient intestinal delivery of health-promoting substances is increasing. However, the delivery of vulnerable substances such as enzymes requires specific attention. The transit through the stomach, where the pH is very low, can be detrimental to the enzymatic activity of the protein to be delivered. Here, we describe the microencapsulation of the model enzyme bile salt hydrolase (Bsh) using whey protein-gum arabic microencapsulates for food-grade and targeted enzyme delivery in the proximal region of the small intestine. Furthermore, the efficacy of enteric coating microencapsulates for site-specific enzyme delivery was compared in vitro with living Lactobacillus plantarum WCFS1 bacteria that endogenously produce the Bsh enzyme. Microencapsulates allowed highly effective protection of the enzyme under gastric conditions. Moreover, Bsh release under intestinal conditions appeared to be very efficient, although in the presence of pancreatin, the Bsh activity decreased in time due to proteolytic degradation. In comparison, L. plantarum appeared to be capable to withstand gastric conditions as well as pancreatin challenge. Delivery using encapsulates and live bacteria each have different (dis)advantages that are discussed. In conclusion, live bacteria and food-grade microencapsulates provide alternatives for dedicated enteric delivery of specific enzymes, and the choice of enzyme to be delivered may determine which mode of delivery is most suitable.
Huang, Ju-qing; Qi, Rui-ting; Pang, Mei-rong; Liu, Cong; Li, Guang-yu; Zhang, Ying
2017-01-01
Bamboo shavings, the outer or intermediate layer of bamboo stems, are the bulk of by-products produced in bamboo processing. In this study we investigated the isolation, chemical characterization, and immunostimulatory activity in vitro of the hemicelluloses from bamboo shavings. Shavings were first pretreated by steam explosion. The optimal pretreatment was found to be steam explosion at 2.2 MPa for 1 min. Following this pretreatment, the yield of hemicelluloses reached (2.05±0.22)% (based on the dry dewaxed raw materials), which was 5.7-fold higher than that of untreated samples. Bamboo-shavings hemicellulose (BSH) was then prepared by hot water extraction and ethanol precipitation from the steam-exploded shavings. Purification of BSH by anion-exchange chromatography of diethylaminoethanol (DEAE)-sepharose Fast Flow resulted in a neutral fraction (BSH-1, purity of 95.3%, yield of 1.06%) and an acidic fraction (BSH-2, purity of 92.5%, yield of 0.79%). The weight-average molecular weights (M w) of BSH-1 and BSH-2 were 12 800 and 11 300 g/mol, respectively. Chemical and structural analyses by Fourier transform infrared spectroscopy (FT-IR), 1D (1H and 13C) and 2D (heteronuclear single quantum correlation (HSQC)) nuclear magnetic resonance (NMR) spectra revealed that BSH-1 was O-acetylated-arabinoxylan and BSH-2 was O-acetylated-(4-O-methylglucurono)-arabinoxylan. BSH-1 had a higher content of acetyl groups than BSH-2. For the immunomodulatory activity in vitro, BSH and BSH-2 significantly stimulated mouse splenocyte proliferation while BSH-1 had no effect; BSH, BSH-1, and BSH-2 markedly enhanced the phagocytosis activity and nitric oxide production of the murine macrophage RAW264.7 in a dose-dependent manner. Our results suggest that the water-extractable hemicelluloses from steam-exploded bamboo shavings are naturally acetylated and have immunostimulatory activity. PMID:28124842
Huang, Ju-Qing; Qi, Rui-Ting; Pang, Mei-Rong; Liu, Cong; Li, Guang-Yu; Zhang, Ying
Bamboo shavings, the outer or intermediate layer of bamboo stems, are the bulk of by-products produced in bamboo processing. In this study we investigated the isolation, chemical characterization, and immunostimulatory activity in vitro of the hemicelluloses from bamboo shavings. Shavings were first pretreated by steam explosion. The optimal pretreatment was found to be steam explosion at 2.2 MPa for 1 min. Following this pretreatment, the yield of hemicelluloses reached (2.05±0.22)% (based on the dry dewaxed raw materials), which was 5.7-fold higher than that of untreated samples. Bamboo-shavings hemicellulose (BSH) was then prepared by hot water extraction and ethanol precipitation from the steam-exploded shavings. Purification of BSH by anion-exchange chromatography of diethylaminoethanol (DEAE)-sepharose Fast Flow resulted in a neutral fraction (BSH-1, purity of 95.3%, yield of 1.06%) and an acidic fraction (BSH-2, purity of 92.5%, yield of 0.79%). The weight-average molecular weights (M w ) of BSH-1 and BSH-2 were 12 800 and 11 300 g/mol, respectively. Chemical and structural analyses by Fourier transform infrared spectroscopy (FT-IR), 1D ( 1 H and 13 C) and 2D (heteronuclear single quantum correlation (HSQC)) nuclear magnetic resonance (NMR) spectra revealed that BSH-1 was O-acetylated-arabinoxylan and BSH-2 was O-acetylated-(4-O-methylglucurono)-arabinoxylan. BSH-1 had a higher content of acetyl groups than BSH-2. For the immunomodulatory activity in vitro, BSH and BSH-2 significantly stimulated mouse splenocyte proliferation while BSH-1 had no effect; BSH, BSH-1, and BSH-2 markedly enhanced the phagocytosis activity and nitric oxide production of the murine macrophage RAW264.7 in a dose-dependent manner. Our results suggest that the water-extractable hemicelluloses from steam-exploded bamboo shavings are naturally acetylated and have immunostimulatory activity.
Kumar, Rajesh; Grover, Sunita; Kaushik, Jai K; Batish, Virender Kumar
2014-01-01
Lactobacillus plantarum is a flexible and versatile microorganism that inhabits a variety of niches, and its genome may express up to four bsh genes to maximize its survival in the mammalian gut. However, the ecological significance of multiple bsh genes in L. plantarum is still not clearly understood. Hence, this study demonstrated the disruption of bile salt hydrolase (bsh1) gene due to the insertion of a transposable element in L. plantarum Lp20 - a wild strain of human fecal origin. Surprisingly, L. plantarum strain Lp20 produced a ∼2.0 kb bsh1 amplicon against the normal size (∼1.0 kb) bsh1 amplicon of Bsh(+)L. plantarum Lp21. Strain Lp20 exhibited minimal Bsh activity in spite of having intact bsh2, bsh3 and bsh4 genes in its genome and hence had a Bsh(-) phenotype. Cloning and sequence characterization of Lp20 bsh1 gene predicted four individual open reading frames (ORFs) within this region. BLAST analysis of ORF1 and ORF2 revealed significant sequence similarity to the L. plantarum bsh1 gene while ORF3 and ORF4 showed high sequence homology to IS30-family transposases. Since, IS30-related transposon element was inserted within Lp20 bsh1 gene in reverse orientation (3'-5'), it introduced several stop codons and disrupted the protein reading frames of both Bsh1 and transposase. Inverted terminal repeats (GGCAGATTG) of transposon, mediated its insertion at 255-263 nt and 1301-1309 nt positions of Lp20 bsh1 gene. In conclusion, insertion of IS30 related-transposon within the bsh1 gene sequence of L. plantarum strain Lp20 demolished the integrity and functionality of Bsh1 enzyme. Additionally, this transposon DNA sequence remains active among various Lactobacillus spp. and hence harbors the potential to be explored in the development of efficient insertion mutagenesis system. Copyright © 2013 Elsevier GmbH. All rights reserved.
[Substrate specificities of bile salt hydrolase 1 and its mutants from Lactobacillus salivarius].
Bi, Jie; Fang, Fang; Qiu, Yuying; Yang, Qingli; Chen, Jian
2014-03-01
In order to analyze the correlation between critical residues in the catalytic centre of BSH and the enzyme substrate specificity, seven mutants of Lactobacillus salivarius bile salt hydrolase (BSH1) were constructed by using the Escherichia coli pET-20b(+) gene expression system, rational design and site-directed mutagenesis. These BSH1 mutants exhibited different hydrolytic activities against various conjugated bile salts through substrate specificities comparison. Among the residues being tested, Cys2 and Thr264 were deduced as key sites for BSH1 to catalyze taurocholic acid and glycocholic acid, respectively. Moreover, Cys2 and Thr264 were important for keeping the catalytic activity of BSH1. The high conservative Cys2 was not the only active site, other mutant amino acid sites were possibly involved in substrate binding. These mutant residues might influence the space and shape of the substrate-binding pockets or the channel size for substrate passing through and entering active site of BSH1, thus, the hydrolytic activity of BSH1 was changed to different conjugated bile salt.
Chae, J P; Valeriano, V D; Kim, G-B; Kang, D-K
2013-01-01
To clone, characterize and compare the bile salt hydrolase (BSH) genes of Lactobacillus johnsonii PF01. The BSH genes were amplified by polymerase chain reaction (PCR) using specific oligonucleotide primers, and the products were inserted into the pET21b expression vector. Escherichia coli BLR (DE3) cells were transformed with pET21b vectors containing the BSH genes and induced using 0·1 mmol l(-1) isopropylthiolgalactopyranoside. The overexpressed BSH enzymes were purified using a nickel-nitrilotriacetic acid (Ni(2+) -NTA) agarose column and their activities characterized. BSH A hydrolysed tauro-conjugated bile salts optimally at pH 5·0 and 55°C, whereas BSH C hydrolysed glyco-conjugated bile salts optimally at pH 5·0 and 70°C. The enzymes had no preferential activities towards a specific cholyl moiety. BSH enzymes vary in their substrate specificities and characteristics to broaden its activity. Despite the lack of conservation in their putative substrate-binding sites, these remain functional through motif conservation. This is to our knowledge the first report of isolation of BSH enzymes from a single strain, showing hydrolase activity towards either glyco-conjugated or tauro-conjugated bile salts. Future structural homology studies and site-directed mutagenesis of sites associated with substrate specificity may elucidate specificities of BSH enzymes. © 2012 The Society for Applied Microbiology.
DiMarzio, Michael; Rusconi, Brigida; Yennawar, Neela H.; Eppinger, Mark; Patterson, Andrew D.
2017-01-01
Bile salt hydrolase (BSH) activity against the bile acid tauro-beta-muricholic acid (T-β-MCA) was recently reported to mediate host bile acid, glucose, and lipid homeostasis via the farnesoid X receptor (FXR) signaling pathway. An earlier study correlated decreased Lactobacillus abundance in the cecum with increased concentrations of intestinal T-β-MCA, an FXR antagonist. While several studies have characterized BSHs in lactobacilli, deconjugation of T-β-MCA remains poorly characterized among members of this genus, and therefore it was unclear what strain(s) were responsible for this activity. Here, a strain of L. johnsonii with robust BSH activity against T-β-MCA in vitro was isolated from the cecum of a C57BL/6J mouse. A screening assay performed on a collection of 14 Lactobacillus strains from nine different species identified BSH substrate specificity for T-β-MCA only in two of three L. johnsonii strains. Genomic analysis of the two strains with this BSH activity revealed the presence of three bsh genes that are homologous to bsh genes in the previously sequenced human-associated strain L. johnsonii NCC533. Heterologous expression of several bsh genes in E. coli followed by enzymatic assays revealed broad differences in substrate specificity even among closely related bsh homologs, and suggests that the phylogeny of these enzymes does not closely correlate with substrate specificity. Predictive modeling allowed us to propose a potential mechanism driving differences in BSH activity for T-β-MCA in these homologs. Our data suggests that L. johnsonii regulates T-β-MCA levels in the mouse intestinal environment, and that this species may play a central role in FXR signaling in the mouse. PMID:28910295
DiMarzio, Michael; Rusconi, Brigida; Yennawar, Neela H; Eppinger, Mark; Patterson, Andrew D; Dudley, Edward G
2017-01-01
Bile salt hydrolase (BSH) activity against the bile acid tauro-beta-muricholic acid (T-β-MCA) was recently reported to mediate host bile acid, glucose, and lipid homeostasis via the farnesoid X receptor (FXR) signaling pathway. An earlier study correlated decreased Lactobacillus abundance in the cecum with increased concentrations of intestinal T-β-MCA, an FXR antagonist. While several studies have characterized BSHs in lactobacilli, deconjugation of T-β-MCA remains poorly characterized among members of this genus, and therefore it was unclear what strain(s) were responsible for this activity. Here, a strain of L. johnsonii with robust BSH activity against T-β-MCA in vitro was isolated from the cecum of a C57BL/6J mouse. A screening assay performed on a collection of 14 Lactobacillus strains from nine different species identified BSH substrate specificity for T-β-MCA only in two of three L. johnsonii strains. Genomic analysis of the two strains with this BSH activity revealed the presence of three bsh genes that are homologous to bsh genes in the previously sequenced human-associated strain L. johnsonii NCC533. Heterologous expression of several bsh genes in E. coli followed by enzymatic assays revealed broad differences in substrate specificity even among closely related bsh homologs, and suggests that the phylogeny of these enzymes does not closely correlate with substrate specificity. Predictive modeling allowed us to propose a potential mechanism driving differences in BSH activity for T-β-MCA in these homologs. Our data suggests that L. johnsonii regulates T-β-MCA levels in the mouse intestinal environment, and that this species may play a central role in FXR signaling in the mouse.
Allain, Thibault; Chaouch, Soraya; Thomas, Myriam; Vallée, Isabelle; Buret, André G; Langella, Philippe; Grellier, Philippe; Polack, Bruno; Bermúdez-Humarán, Luis G; Florent, Isabelle
2017-01-01
Giardia duodenalis (syn. G. lamblia, G. intestinalis ) is the protozoan parasite responsible for giardiasis, the most common and widely spread intestinal parasitic disease worldwide, affecting both humans and animals. After cysts ingestion (through either contaminated food or water), Giardia excysts in the upper intestinal tract to release replicating trophozoites that are responsible for the production of symptoms. In the gut, Giardia cohabits with the host's microbiota, and several studies have revealed the importance of this gut ecosystem and/or some probiotic bacteria in providing protection against G. duodenalis infection through mechanisms that remain incompletely understood. Recent findings suggest that Bile-Salt-Hydrolase (BSH)-like activities from the probiotic strain of Lactobacillus johnsonii La1 may contribute to the anti-giardial activity displayed by this strain. Here, we cloned and expressed each of the three bsh genes present in the L. johnsonii La1 genome to study their enzymatic and biological properties. While BSH47 and BSH56 were expressed as recombinant active enzymes, no significant enzymatic activity was detected with BSH12. In vitro assays allowed determining the substrate specificities of both BSH47 and BSH56, which were different. Modeling of these BSHs indicated a strong conservation of their 3-D structures despite low conservation of their primary structures. Both recombinant enzymes were able to mediate anti-giardial biological activity against Giardia trophozoites in vitro . Moreover, BSH47 exerted significant anti-giardial effects when tested in a murine model of giardiasis. These results shed new light on the mechanism, whereby active BSH derived from the probiotic strain Lactobacillus johnsonii La1 may yield anti-giardial effects in vitro and in vivo . These findings pave the way toward novel approaches for the treatment of this widely spread but neglected infectious disease, both in human and in veterinary medicine.
Allain, Thibault; Chaouch, Soraya; Thomas, Myriam; Vallée, Isabelle; Buret, André G.; Langella, Philippe; Grellier, Philippe; Polack, Bruno; Bermúdez-Humarán, Luis G.; Florent, Isabelle
2018-01-01
Giardia duodenalis (syn. G. lamblia, G. intestinalis) is the protozoan parasite responsible for giardiasis, the most common and widely spread intestinal parasitic disease worldwide, affecting both humans and animals. After cysts ingestion (through either contaminated food or water), Giardia excysts in the upper intestinal tract to release replicating trophozoites that are responsible for the production of symptoms. In the gut, Giardia cohabits with the host's microbiota, and several studies have revealed the importance of this gut ecosystem and/or some probiotic bacteria in providing protection against G. duodenalis infection through mechanisms that remain incompletely understood. Recent findings suggest that Bile-Salt-Hydrolase (BSH)-like activities from the probiotic strain of Lactobacillus johnsonii La1 may contribute to the anti-giardial activity displayed by this strain. Here, we cloned and expressed each of the three bsh genes present in the L. johnsonii La1 genome to study their enzymatic and biological properties. While BSH47 and BSH56 were expressed as recombinant active enzymes, no significant enzymatic activity was detected with BSH12. In vitro assays allowed determining the substrate specificities of both BSH47 and BSH56, which were different. Modeling of these BSHs indicated a strong conservation of their 3-D structures despite low conservation of their primary structures. Both recombinant enzymes were able to mediate anti-giardial biological activity against Giardia trophozoites in vitro. Moreover, BSH47 exerted significant anti-giardial effects when tested in a murine model of giardiasis. These results shed new light on the mechanism, whereby active BSH derived from the probiotic strain Lactobacillus johnsonii La1 may yield anti-giardial effects in vitro and in vivo. These findings pave the way toward novel approaches for the treatment of this widely spread but neglected infectious disease, both in human and in veterinary medicine. PMID:29472895
Wang, Zhong; Zeng, Ximin; Mo, Yiming; Smith, Katie; Guo, Yuming; Lin, Jun
2012-12-01
Antibiotic growth promoters (AGPs) have been used as feed additives to improve average body weight gain and feed efficiency in food animals for more than 5 decades. However, there is a worldwide trend to limit AGP use to protect food safety and public health, which raises an urgent need to discover effective alternatives to AGPs. The growth-promoting effect of AGPs has been shown to be highly correlated with the decreased activity of intestinal bile salt hydrolase (BSH), an enzyme that is produced by various gut microflora and involved in host lipid metabolism. Thus, BSH inhibitors are likely promising feed additives to AGPs to improve animal growth performance. In this study, the genome of Lactobacillus salivarius NRRL B-30514, a BSH-producing strain isolated from chicken, was sequenced by a 454 GS FLX sequencer. A BSH gene identified by genome analysis was cloned and expressed in an Escherichia coli expression system for enzymatic analyses. The BSH displayed efficient hydrolysis activity for both glycoconjugated and tauroconjugated bile salts, with slightly higher catalytic efficiencies (k(cat)/K(m)) on glycoconjugated bile salts. The optimal pH and temperature for the BSH activity were 5.5 and 41°C, respectively. Examination of a panel of dietary compounds using the purified BSH identified some potent BSH inhibitors, in which copper and zinc have been recently demonstrated to promote feed digestion and body weight gain in different food animals. In sum, this study identified and characterized a BSH with broad substrate specificity from a chicken L. salivarius strain and established a solid platform for us to discover novel BSH inhibitors, the promising feed additives to replace AGPs for enhancing the productivity and sustainability of food animals.
Crystal structure of bile salt hydrolase from Lactobacillus salivarius.
Xu, Fuzhou; Guo, Fangfang; Hu, Xiao Jian; Lin, Jun
2016-05-01
Bile salt hydrolase (BSH) is a gut-bacterial enzyme that negatively influences host fat digestion and energy harvesting. The BSH enzyme activity functions as a gateway reaction in the small intestine by the deconjugation of glycine-conjugated or taurine-conjugated bile acids. Extensive gut-microbiota studies have suggested that BSH is a key mechanistic microbiome target for the development of novel non-antibiotic food additives to improve animal feed production and for the design of new measures to control obesity in humans. However, research on BSH is still in its infancy, particularly in terms of the structural basis of BSH function, which has hampered the development of BSH-based strategies for improving human and animal health. As an initial step towards the structure-function analysis of BSH, C-terminally His-tagged BSH from Lactobacillus salivarius NRRL B-30514 was crystallized in this study. The 1.90 Å resolution crystal structure of L. salivarius BSH was determined by molecular replacement using the structure of Clostridium perfringens BSH as a starting model. It revealed this BSH to be a member of the N-terminal nucleophile hydrolase superfamily. Crystals of apo BSH belonged to space group P21212, with unit-cell parameters a = 90.79, b = 87.35, c = 86.76 Å (PDB entry 5hke). Two BSH molecules packed perfectly as a dimer in one asymmetric unit. Comparative structural analysis of L. salivarius BSH also identified potential residues that contribute to catalysis and substrate specificity.
Bacillithiol has a role in Fe-S cluster biogenesis in Staphylococcus aureus
Rosario-Cruz, Zuelay; Chahal, Harsimranjit K.; Mike, Laura A.; Skaar, Eric P.; Boyd, Jeffrey M.
2015-01-01
Summary Staphylococcus aureus does not produce the low-molecular-weight (LMW) thiol glutathione, but it does produce the LMW thiol bacillithiol (BSH). To better understand the roles that BSH plays in staphylococcal metabolism we constructed and examined strains lacking BSH. Phenotypic analysis found that the BSH-deficient strains cultured either aerobically or anaerobically had growth defects that were alleviated by the addition of exogenous iron (Fe) or the amino acids leucine and isoleucine. The activity of the iron-sulfur (Fe-S) cluster-dependent enzymes LeuCD and IlvD, which are required for the biosynthesis of leucine and isoleucine, were decreased in strains lacking BSH. The BSH-deficient cells also had decreased aconitase and glutamate synthase activities suggesting a general defect in Fe-S cluster biogenesis. The phenotypes of the BSH-deficient strains were exacerbated in strains lacking the Fe-S cluster carrier Nfu and partially suppressed by multicopy expression of either sufA or nfu suggesting functional overlap between BSH and Fe-S carrier proteins. Biochemical analysis found that SufA bound and transferred Fe-S clusters to apo-aconitase verifying that it serves as an Fe-S cluster carrier. The results presented are consistent with the hypothesis that BSH has roles in Fe homeostasis and the carriage of Fe-S clusters to apo-proteins in S. aureus. PMID:26135358
Bacillithiol has a role in Fe-S cluster biogenesis in Staphylococcus aureus.
Rosario-Cruz, Zuelay; Chahal, Harsimranjit K; Mike, Laura A; Skaar, Eric P; Boyd, Jeffrey M
2015-10-01
Staphylococcus aureus does not produce the low-molecular-weight (LMW) thiol glutathione, but it does produce the LMW thiol bacillithiol (BSH). To better understand the roles that BSH plays in staphylococcal metabolism, we constructed and examined strains lacking BSH. Phenotypic analysis found that the BSH-deficient strains cultured either aerobically or anaerobically had growth defects that were alleviated by the addition of exogenous iron (Fe) or the amino acids leucine and isoleucine. The activities of the iron-sulfur (Fe-S) cluster-dependent enzymes LeuCD and IlvD, which are required for the biosynthesis of leucine and isoleucine, were decreased in strains lacking BSH. The BSH-deficient cells also had decreased aconitase and glutamate synthase activities, suggesting a general defect in Fe-S cluster biogenesis. The phenotypes of the BSH-deficient strains were exacerbated in strains lacking the Fe-S cluster carrier Nfu and partially suppressed by multicopy expression of either sufA or nfu, suggesting functional overlap between BSH and Fe-S carrier proteins. Biochemical analysis found that SufA bound and transferred Fe-S clusters to apo-aconitase, verifying that it serves as an Fe-S cluster carrier. The results presented are consistent with the hypothesis that BSH has roles in Fe homeostasis and the carriage of Fe-S clusters to apo-proteins in S. aureus. © 2015 John Wiley & Sons Ltd.
Structural Insight into Methyl-Coenzyme M Reductase Chemistry using Coenzyme B Analogues†,‡
Cedervall, Peder E.; Dey, Mishtu; Pearson, Arwen R.; Ragsdale, Stephen W.; Wilmot, Carrie M.
2011-01-01
Methyl-coenzyme M reductase (MCR) catalyzes the final and rate-limiting step in methane biogenesis; the reduction of methyl-coenzyme M (methyl-SCoM) by coenzyme B (CoBSH) to methane and a heterodisulfide (CoBS-SCoM). Crystallographic studies show that the active site is deeply buried within the enzyme, and contains a highly reduced nickel-tetrapyrrole, coenzyme F430. Methyl-SCoM must enter the active site prior to CoBSH, as species derived from analogues of methyl-SCoM are always observed bound to the F430 nickel in the deepest part of the 30 Å long substrate channel that leads from the protein surface to the active site. The seven-carbon mercaptoalkanoyl chain of CoBSH binds within a 16 Å predominantly hydrophobic part of the channel close to F430, with the CoBSH thiolate lying closest to the nickel at a distance of 8.8 Å. It has previously been suggested that binding of CoBSH initiates catalysis by inducing a conformational change that moves methyl-SCoM closer to the nickel promoting cleavage of the C-S bond of methyl-SCoM. In order to better understand the structural role of CoBSH early in the MCR mechanism, we have determined crystal structures of MCR in complex with four different CoBSH analogues; pentanoyl-, hexanoyl-, octanoyl- and nonanoyl- derivatives of CoBSH (CoB5SH, CoB6SH, CoB8SH and CoB9SH respectively). The data presented here reveal that the shorter CoB5SH mercaptoalkanoyl chain overlays with that of CoBSH, but terminates two units short of the CoBSH thiolate position. In contrast, the mercaptoalkanoyl chain of CoB6SH adopts a different conformation, such that its thiolate is coincident with the position of the CoBSH thiolate. This is consistent with the observation that CoB6SH is a slow substrate. A labile water in the substrate channel was found to be a sensitive indicator for the presence of CoBSH and HSCoM. The longer CoB8SH and CoB9SH analogues can be accommodated in the active site through exclusion of this water. These analogues react with Ni(III)-methyl; a proposed MCR catalytic intermediate of methanogenesis. The CoB8SH thiolate is 2.6 Å closer to the nickel than that of CoBSH, but the additional carbon of CoB9SH only decreases the nickel thiolate distance a further 0.3 Å. Although the analogues did not induce any structural changes in the substrate channel, the thiolates appeared to preferentially bind at two distinct positions in the channel; one being the previously observed CoBSH thiolate position, and the other being at a hydrophobic annulus of residues that lines the channel proximal to the nickel. PMID:20707311
Michiue, Hiroyuki; Sakurai, Yoshinori; Kondo, Natsuko; Kitamatsu, Mizuki; Bin, Feng; Nakajima, Kiichiro; Hirota, Yuki; Kawabata, Shinji; Nishiki, Tei-ichi; Ohmori, Iori; Tomizawa, Kazuhito; Miyatake, Shin-ichi; Ono, Koji; Matsui, Hideki
2014-03-01
New anti-cancer therapy with boron neutron capture therapy (BNCT) is based on the nuclear reaction of boron-10 with neutron irradiation. The median survival of BNCT patients with glioblastoma was almost twice as long as those receiving standard therapy in a Japanese BNCT clinical trial. In this clinical trial, two boron compounds, BPA (boronophenylalanine) and BSH (sodium borocaptate), were used for BNCT. BPA is taken up into cells through amino acid transporters that are expressed highly in almost all malignant cells, but BSH cannot pass through the cell membrane and remains outside the cell. We simulated the energy transfer against the nucleus at different locations of boron from outside the cell to the nuclear region with neutron irradiation and concluded that there was a marked difference between inside and outside the cell in boron localization. To overcome this disadvantage of BSH in BNCT, we used a cell-penetrating peptide system for transduction of BSH. CPP (cell-membrane penetrating peptide) is very common peptide domains that transduce many physiologically active substances into cells in vitro and in vivo. BSH-fused CPPs can penetrate the cell membrane and localize inside a cell. To increase the boron ratio in one BSH-peptide molecule, 8BSH fused to 11R with a dendritic lysine structure was synthesized and administrated to malignant glioma cells and a brain tumor mouse model. 8BSH-11R localized at the cell nucleus and showed a very high boron value in ICP results. With neutron irradiation, the 8BSH-11R administrated group showed a significant cancer killing effect compared to the 100 times higher concentration of BSH-administrated group. We concluded that BSH-fused CPPs were one of the most improved and potential boron compounds in the next-stage BNCT trial and 8BSH-11R may be applied in the clinical setting. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsonage, Derek; Newton, Gerald L.; Holder, Robert C.
2012-02-21
Bacillithiol (Cys-GlcN-malate, BSH) has recently been identified as a novel low-molecular weight thiol in Bacillus anthracis, Staphylococcus aureus, and several other Gram-positive bacteria lacking glutathione and mycothiol. We have now characterized the first two enzymes for the BSH biosynthetic pathway in B. anthracis, which combine to produce {alpha}-D-glucosaminyl L-malate (GlcN-malate) from UDP-GlcNAc and L-malate. The structure of the GlcNAc-malate intermediate has been determined, as have the kinetic parameters for the BaBshA glycosyltransferase ({yields}GlcNAc-malate) and the BaBshB deacetylase ({yields}GlcN-malate). BSH is one of only two natural products reported to contain a malyl glycoside, and the crystal structure of the BaBshA-UDP-malate ternarymore » complex, determined in this work at 3.3 {angstrom} resolution, identifies several active-site interactions important for the specific recognition of L-malate, but not other {alpha}-hydroxy acids, as the acceptor substrate. In sharp contrast to the structures reported for the GlcNAc-1-D-myo-inositol-3-phosphate synthase (MshA) apo and ternary complex forms, there is no major conformational change observed in the structures of the corresponding BaBshA forms. A mutant strain of B. anthracis deficient in the BshA glycosyltransferase fails to produce BSH, as predicted. This B. anthracis bshA locus (BA1558) has been identified in a transposon-site hybridization study as required for growth, sporulation, or germination [Day, W. A., Jr., Rasmussen, S. L., Carpenter, B. M., Peterson, S. N., and Friedlander, A. M. (2007) J. Bacteriol. 189, 3296-3301], suggesting that the biosynthesis of BSH could represent a target for the development of novel antimicrobials with broad-spectrum activity against Gram-positive pathogens like B. anthracis. The metabolites that function in thiol redox buffering and homeostasis in Bacillus are not well understood, and we present a composite picture based on this and other recent work.« less
Fang, Fang; Li, Yin; Bumann, Mario; Raftis, Emma J.; Casey, Pat G.; Cooney, Jakki C.; Walsh, Martin A.; O'Toole, Paul W.
2009-01-01
Commensal lactobacilli frequently produce bile salt hydrolase (Bsh) enzymes whose roles in intestinal survival are unclear. Twenty-six Lactobacillus salivarius strains from different sources all harbored a bsh1 allele on their respective megaplasmids. This allele was related to the plasmid-borne bsh1 gene of the probiotic strain UCC118. A second locus (bsh2) was found in the chromosomes of two strains that had higher bile resistance levels. Four Bsh1-encoding allele groups were identified, defined by truncations or deletions involving a conserved residue. In vitro analyses showed that this allelic variation was correlated with widely varying bile deconjugation phenotypes. Despite very low activity of the UCC118 Bsh1 enzyme, a mutant lacking this protein had significantly lower bile resistance, both in vitro and during intestinal transit in mice. However, the overall bile resistance phenotype of this and other strains was independent of the bsh1 allele type. Analysis of the L. salivarius transcriptome upon exposure to bile and cholate identified a multiplicity of stress response proteins and putative efflux proteins that appear to broadly compensate for, or mask, the effects of allelic variation of bsh genes. Bsh enzymes with different bile-degrading kinetics, though apparently not the primary determinants of bile resistance in L. salivarius, may have additional biological importance because of varying effects upon bile as a signaling molecule in the host. PMID:19592587
Mukherji, Ruchira; Prabhune, Asmita
2015-05-01
The aim of the present work was to isolate a bile salt hydrolase (BSH) producer from fermented soy curd and explore the ability of the BSH produced to cleave bacterial quorum sensing signals. Bacterial isolates with possible ability to deconjugate bile salts were enriched and isolated on De Man, Rogosa and Sharpe (MRS) medium containing 0.2% bile salts. BSH-producing positive isolate with orange-pink-pigmented colonies was isolated and was identified as a strain of Staphylococcus epidermidis using biochemical and phylogenetic tools. S. epidermidis RM1 was shown to possess both potent BSH and N-acyl homoserine lactone (AHL) cleavage activity. Genetic basis of this dual-enzyme activity was explored by means of specific primers designed using S. epidermidis ATCC 12228 genome as template. It was observed that a single enzyme was not responsible for both the activity. Two different genetic elements corresponding to each of the enzymatic activity were successfully amplified from the genomic DNA of the isolate.
2011-01-01
Background Boron neutron capture therapy (BNCT) is a cell-selective radiation therapy that uses the alpha particles and lithium nuclei produced by the boron neutron capture reaction. BNCT is a relatively safe tool for treating multiple or diffuse malignant tumors with little injury to normal tissue. The success or failure of BNCT depends upon the 10B compound accumulation within tumor cells and the proximity of the tumor cells to the body surface. To extend the therapeutic use of BNCT from surface tumors to visceral tumors will require 10B compounds that accumulate strongly in tumor cells without significant accumulation in normal cells, and an appropriate delivery method for deeper tissues. Hemagglutinating Virus of Japan Envelope (HVJ-E) is used as a vehicle for gene delivery because of its high ability to fuse with cells. However, its strong hemagglutination activity makes HVJ-E unsuitable for systemic administration. In this study, we developed a novel vector for 10B (sodium borocaptate: BSH) delivery using HVJ-E and cationized gelatin for treating multiple liver tumors with BNCT without severe adverse events. Methods We developed cationized gelatin conjugate HVJ-E combined with BSH (CG-HVJ-E-BSH), and evaluated its characteristics (toxicity, affinity for tumor cells, accumulation and retention in tumor cells, boron-carrying capacity to multiple liver tumors in vivo, and bio-distribution) and effectiveness in BNCT therapy in a murine model of multiple liver tumors. Results CG-HVJ-E reduced hemagglutination activity by half and was significantly less toxic in mice than HVJ-E. Higher 10B concentrations in murine osteosarcoma cells (LM8G5) were achieved with CG-HVJ-E-BSH than with BSH. When administered into mice bearing multiple LM8G5 liver tumors, the tumor/normal liver ratios of CG-HVJ-E-BSH were significantly higher than those of BSH for the first 48 hours (p < 0.05). In suppressing the spread of tumor cells in mice, BNCT treatment was as effective with CG-HVJ-E-BSH as with BSH containing a 35-fold higher 10B dose. Furthermore, CG-HVJ-E-BSH significantly increased the survival time of tumor-bearing mice compared to BSH at a comparable dosage of 10B. Conclusion CG-HVJ-E-BSH is a promising strategy for the BNCT treatment of visceral tumors without severe adverse events to surrounding normal tissues. PMID:21247507
Detoxification of toxins by bacillithiol in Staphylococcus aureus
Newton, Gerald L.; Fahey, Robert C.
2012-01-01
Bacillithiol (BSH), an α-anomeric glycoside of l-cysteinyl-d-glucosaminyl-l-malate, is a major low-molecular-mass thiol found in bacteria such as Bacillus sp., Staphylococcus aureus and Deinococcus radiodurans. Like other low-molecular-mass thiols such as glutathione and mycothiol, BSH is likely to be involved in protection against environmental toxins including thiol-reactive antibiotics. We report here a BSH-dependent detoxification mechanism in S. aureus. When S. aureus Newman strain was treated with monobromobimane and monochlorobimane, the cellular BSH was converted to the fluorescent S-conjugate BS-bimane. A bacillithiol conjugate amidase activity acted upon the BS-bimane to produce Cys-bimane, which was then acetylated by an N-acetyltransferase to generate N-acetyl-Cys-bimane, a mercapturic acid. An S. aureus mutant lacking BSH did not produce mercapturic acid when treated with monobromobimane and monochlorobimane, confirming the involvement of bacillithiol. Furthermore, treatment of S. aureus Newman with rifamycin, the parent compound of the first-line anti-tuberculosis drug, rifampicin, indicated that this thiol-reactive antibiotic is also detoxified in a BSH-dependent manner, since mercapturic acids of rifamycin were observed in the culture medium. These data indicate that toxins and thiol-reactive antibiotics are detoxified to less potent mercapturic acids in a BSH-dependent manner and then exported out of the cell in S. aureus. PMID:22262099
Sun, Jian; Ng, Tzi-Bun; Wang, Hexiang; Zhang, Guoqing
2014-01-01
Little was known about bioactive compounds from the hallucinogenic mushroom Boletus speciosus. In the present study, a hemagglutinin (BSH, B. speciosus hemagglutinin) was isolated from its fruiting bodies and enzymatic properties were also tested. The chromatographic procedure utilized comprised anion exchange chromatography on Q-Sepharose, cation exchange chromatography on CM-Cellulose, cation exchange chromatography on SP-Sepharose, and gel filtration by FPLC on Superdex 75. The hemagglutinin was a homodimer which was estimated to be approximately 31 kDa in size. The activity of BSH was stable up to 60°C, while there was a precipitous drop in activity when the temperature was elevated to 70°C. BSH retained 25% hemagglutinating activity when exposed to 100 mM NaOH and 25 mM HCl. The activity was potently inhibited by 1.25 mM Hg(2+) and slightly inhibited by Fe(2+), Ca(2+), and Pb(2+). None of the sugars tested showed inhibition towards BSH. Its hemagglutinating activity towards human erythrocytes type A, type B, and type AB was higher than type O. The hemagglutinin showed antiproliferative activity towards hepatoma Hep G2 cells and mouse lymphocytic leukemia cells (L1210) in vitro, with IC50 of 4.7 μ M and 7.0 μ M, respectively. It also exhibited HIV-1 reverse transcriptase inhibitory activity with an IC50 of 7.1 μ M.
Bacillithiol, a New Player in Bacterial Redox Homeostasis
2011-01-01
Abstract Bacillithiol (BSH), the α-anomeric glycoside of l-cysteinyl-d-glucosamine with l-malic acid, plays a dominant role in the cytosolic thiol redox chemistry of the low guanine and cytosine (GC) Gram-positive bacteria (phylum Firmicutes). BSH is functionally analogous to glutathione (GSH) but differs sufficiently in chemical structure that cells have evolved a distinct set of enzymes that use BSH as cofactor. BSH was discovered in Bacillus subtilis as a mixed disulfide with the redox-sensing repressor OhrR and in B. anthracis by biochemical analysis of pools of labeled thiols. The structure of BSH was determined after purification from Deinococcus radiodurans. Similarities in structure between BSH and mycothiol (MSH) facilitated the identification of biosynthetic genes for BSH in the model organism B. subtilis. Phylogenomic analyses have identified several candidate BSH-using or associated proteins, including a BSH reductase, glutaredoxin-like thiol-dependent oxidoreductases (bacilliredoxins), and a BSH-S-transferase (FosB) involved in resistance to the epoxide antibiotic fosfomycin. Preliminary results implicate BSH in cellular processes to maintain cytosolic redox balance and for adaptation to reactive oxygen, nitrogen, and electrophilic species. BSH also is predicted to chelate metals avidly, in part due to the appended malate moiety, although the implications of BSH for metal ion homeostasis have yet to be explored in detail. Antioxid. Redox Signal. 15, 123–133. PMID:20712413
Bi, Jie; Liu, Song; Du, Guocheng; Chen, Jian
2016-04-01
Changes of bile salt tolerance, morphology and amount of bile acid within cells were studied to evaluate the exact effects of bile salt hydrolase (BSH) on bile salt tolerance of microorganism. The effect of BSHs on the bile salt tolerance of Lactococcus lactis was examined by expressing two BSHs (BSH1 and BSH2). Growth of L. lactis expressing BSH1 or BSH2 was better under bile salt stress compared to wild-type L. lactis. As indicated by transmission electron microscopy, bile acids released by the action of BSH induced the formation of micelles around the membrane surface of cells subject to conjugated bile salt stress. A similar micelle containing bile acid was observed in the cytoplasm by liquid chromatography-mass spectrometry. BSH1 produced fewer bile acid micelles in the cytoplasm and achieved better cell growth of L. lactis compared to BSH2. Expression of BSH improved bile salt tolerance of L. lactis but excessive production by BSH of bile acid micelles in the cytoplasm inhibited cell growth.
Ng, Tzi-Bun; Wang, Hexiang; Zhang, Guoqing
2014-01-01
Little was known about bioactive compounds from the hallucinogenic mushroom Boletus speciosus. In the present study, a hemagglutinin (BSH, B. speciosus hemagglutinin) was isolated from its fruiting bodies and enzymatic properties were also tested. The chromatographic procedure utilized comprised anion exchange chromatography on Q-Sepharose, cation exchange chromatography on CM-Cellulose, cation exchange chromatography on SP-Sepharose, and gel filtration by FPLC on Superdex 75. The hemagglutinin was a homodimer which was estimated to be approximately 31 kDa in size. The activity of BSH was stable up to 60°C, while there was a precipitous drop in activity when the temperature was elevated to 70°C. BSH retained 25% hemagglutinating activity when exposed to 100 mM NaOH and 25 mM HCl. The activity was potently inhibited by 1.25 mM Hg2+ and slightly inhibited by Fe2+, Ca2+, and Pb2+. None of the sugars tested showed inhibition towards BSH. Its hemagglutinating activity towards human erythrocytes type A, type B, and type AB was higher than type O. The hemagglutinin showed antiproliferative activity towards hepatoma Hep G2 cells and mouse lymphocytic leukemia cells (L1210) in vitro, with IC50 of 4.7 μM and 7.0 μM, respectively. It also exhibited HIV-1 reverse transcriptase inhibitory activity with an IC50 of 7.1 μM. PMID:24977148
Futamura, Gen; Kawabata, Shinji; Nonoguchi, Naosuke; Hiramatsu, Ryo; Toho, Taichiro; Tanaka, Hiroki; Masunaga, Shin-Ichiro; Hattori, Yoshihide; Kirihata, Mitsunori; Ono, Koji; Kuroiwa, Toshihiko; Miyatake, Shin-Ichi
2017-01-23
Boron neutron capture therapy (BNCT) is a unique particle radiation therapy based on the nuclear capture reactions in boron-10. We developed a novel boron-10 containing sodium borocaptate (BSH) derivative, 1-amino-3-fluorocyclobutane-1-carboxylic acid (ACBC)-BSH. ACBC is a tumor selective synthetic amino acid. The purpose of this study was to assess the biodistribution of ACBC-BSH and its therapeutic efficacy following Boron Neutron Capture Therapy (BNCT) of the F98 rat glioma. We evaluated the biodistribution of three boron-10 compounds, ACBC-BSH, BSH and boronophenylalanine (BPA), in vitro and in vivo, following intravenous (i.v.) administration and intratumoral (i.t.) convection-enhanced delivery (CED) in F98 rat glioma bearing rats. For BNCT studies, rats were stratified into five groups: untreated controls, neutron-irradiation controls, BNCT with BPA/i.v., BNCT with ACBC-BSH/CED, and BNCT concomitantly using BPA/i.v. and ACBC-BSH/CED. In vitro, ACBC-BSH attained higher cellular uptake F98 rat glioma cells compared with BSH. In vivo biodistribution studies following i.v. administration and i.t. CED of ACBC-BSH attained significantly higher boron concentrations than that of BSH, but much lower than that of BPA. However, following convection enhanced delivery (CED), ACBC-BSH attained significantly higher tumor concentrations than BPA. The i.t. boron-10 concentrations were almost equal between the ACBC-BSH/CED group and BPA/i.v. group of rats. The tumor/brain boron-10 concentration ratio was higher with ACBC-BSH/CED than that of BPA/i.v. group. Based on these data, BNCT studies were carried out in F98 glioma bearing rats using BPA/i.v. and ACBC-BSH/CED as the delivery agents. The corresponding mean survival times were 37.4 ± 2.6d and 44.3 ± 8.0d, respectively, and although modest, these differences were statistically significant. Our findings suggest that further studies are warranted to evaluate ACBC-BSH/CED as a boron delivery agent.
Genady, Afaf R; Ioppolo, Joseph A; Azaam, Mohamed M; El-Zaria, Mohamed E
2015-03-26
A series of mercaptoundecahydrododecaborate (B12H11SH(2-), BSH) bearing mono- and dicarboxyalkyl derivatives was prepared, characterized, and their reactivity towards amidation and esterification in DMF was evaluated. Symmetrical alkylation of BSH was achieved by treatment with primary haloalkyl carboxylic acids in aqueous acetonitrile to produce S,S-bis(carboxyalkyl)sulfonium-undecahydro-closo-dodecaborate tetramethylammonium salts. Unsymmetrically substituted sulfonium salts were obtained through a similar treatment of cyanoethylthioether-undecahydro-closo-dodecaborate tetramethylammonium salt with haloalkyl carboxylic acid. Selective removal of the remaining cyanoethyl group upon treatment with tetramethylammonium hydroxide yielded S-carboxyalkyl-thioether-undecahydro-closo-dodecaborate ditetramethylammonium salts. N,N'-dicyclohexylcarbodiimide (DCC) activated amidation of S,S-bis(carboxyalkyl)sulfonium-undecahydro-closo-dodecaborate or S-carboxyalkyl-thioether-undecahydro-closo-dodecaborate tetramethylammonium salts with propargylamine provided the opportunity to install terminal acetylene groups for further conjugation. These compounds acted as powerful building blocks for the synthesis of a broad range of 1,4-disubstituted 1,2,3-triazole products in high yields, utilizing the Cu(I)-mediated click cycloaddition reaction. The synthesis of BSH-lipid with a two-tailed moiety was also achieved, by esterification of S,S-bis(carboxyethyl)sulfoniumundecahydro-closo-dodecaborate(1-) tetramethylammonium salt with 1,2-O-distearoyl-sn-3-glycerol, which may prove useful in the liposomal boron delivery system. The bio-compatibility of the azide-alkyne click reaction was then utilized by performing this reaction in cell culture. The distribution of BSH in HeLa cells could be visualized by treating the cells first with a BSH-alkyne compound and then with Alexa Fluor 488(®) azide dye. The BSH-dye conjugate, which did not wash out, revealed the distribution of boron in the HeLa cells. Cytotoxicity assays of these BSH derivatives revealed that the synthesized BSH-conjugated triazoles possessed low cytotoxicity in HeLa cancer cells. Of these compounds, BSH conjugated triazole 15 induced a significant increase in the level of boron accumulation in HeLa cells. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Loi, Vu Van; Harms, Manuela; Müller, Marret; Huyen, Nguyen Thi Thu; Hamilton, Chris J; Hochgräfe, Falko; Pané-Farré, Jan; Antelmann, Haike
2017-05-20
Bacillithiol (BSH) is utilized as a major thiol-redox buffer in the human pathogen Staphylococcus aureus. Under oxidative stress, BSH forms mixed disulfides with proteins, termed as S-bacillithiolation, which can be reversed by bacilliredoxins (Brx). In eukaryotes, glutaredoxin-fused roGFP2 biosensors have been applied for dynamic live imaging of the glutathione redox potential. Here, we have constructed a genetically encoded bacilliredoxin-fused redox biosensor (Brx-roGFP2) to monitor dynamic changes in the BSH redox potential in S. aureus. The Brx-roGFP2 biosensor showed a specific and rapid response to low levels of bacillithiol disulfide (BSSB) in vitro that required the active-site Cys of Brx. Dynamic live imaging in two methicillin-resistant S. aureus (MRSA) USA300 and COL strains revealed fast and dynamic responses of the Brx-roGFP2 biosensor under hypochlorite and hydrogen peroxide (H 2 O 2 ) stress and constitutive oxidation of the probe in different BSH-deficient mutants. Furthermore, we found that the Brx-roGFP2 expression level and the dynamic range are higher in S. aureus COL compared with the USA300 strain. In phagocytosis assays with THP-1 macrophages, the biosensor was 87% oxidized in S. aureus COL. However, no changes in the BSH redox potential were measured after treatment with different antibiotics classes, indicating that antibiotics do not cause oxidative stress in S. aureus. Conclusion and Innovation: This Brx-roGFP2 biosensor catalyzes specific equilibration between the BSH and roGFP2 redox couples and can be applied for dynamic live imaging of redox changes in S. aureus and other BSH-producing Firmicutes. Antioxid. Redox Signal. 26, 835-848.
A Nonaqueous Potassium-Based Battery-Supercapacitor Hybrid Device.
Fan, Ling; Lin, Kairui; Wang, Jue; Ma, Ruifang; Lu, Bingan
2018-05-01
A low cost nonaqueous potassium-based battery-supercapacitor hybrid device (BSH) is successfully established for the first time with soft carbon as the anode, commercialized activated carbon as the cathode, and potassium bis(fluoro-slufonyl)imide in dimethyl ether as the electrolyte. This BSH reconciles the advantages of potassium ion batteries and supercapacitors, achieving a high energy density of 120 W h kg -1 , a high power density of 599 W kg -1 , a long cycle life of 1500 cycles, and an ultrafast charge/slow discharge performance (energy density and power density are calculated based on the total mass of active materials in the anode and cathode). This work demonstrates a great potential of applying the nonaqueous BSH for low cost electric energy storage systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Iguchi, Yoshiya; Michiue, Hiroyuki; Kitamatsu, Mizuki; Hayashi, Yuri; Takenaka, Fumiaki; Nishiki, Tei-Ichi; Matsui, Hideki
2015-07-01
Glioblastoma, a malignant brain tumor with poor disease outcomes, is managed in modern medicine by multimodality therapy. Boron neutron capture therapy (BNCT) is an encouraging treatment under clinical investigation. In malignant cells, BNCT consists of two major factors: neutron radiation and boron uptake. To increase boron uptake in cells, we created a mercapto-closo-undecahydrododecaborate ([B12HnSH](2-)2Na(+), BSH) fused with a short arginine peptide (1R, 2R, 3R) and checked cellular uptake in vitro and in vivo. In a mouse brain tumor model, only BSH with at least three arginine domains could penetrate cell membranes of glioma cells in vitro and in vivo. Furthermore, to monitor the pharmacokinetic properties of these agents in vivo, we fused BSH and BSH-3R with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA); DOTA is a metal chelating agent for labeling positron emission tomography (PET) probe with (64)Cu. We administered BSH-DOTA-(64)Cu and BSH-3R-DOTA-(64)Cu to the tumor model through a mouse tail vein and determined the drugs' pharmacokinetics by PET imaging. BSH-3R showed a high uptake in the tumor area on PET imaging. We concluded that BSH-3R is the ideal boron compound for clinical use during BNCT and that in developing this compound for clinical use, the BSH-3R PET probe is essential for pharmacokinetic imaging. Copyright © 2015 Elsevier Ltd. All rights reserved.
Elkins, Christopher A.; Savage, Dwayne C.
1998-01-01
Cytosolic extracts of Lactobacillus johnsonii 100-100 (previously reported as Lactobacillus sp. strain 100-100) contain four heterotrimeric isozymes composed of two peptides, α and β, with conjugated bile salt hydrolase (BSH) activity. We now report cloning, from the genome of strain 100-100, a 2,977-bp DNA segment that expresses BSH activity in Escherichia coli. The sequencing of this segment showed that it contained one complete and two partial open reading frames (ORFs). The 3′ partial ORF (927 nucleotides) was predicted by BLAST and confirmed with 5′ and 3′ deletions to be a BSH gene. Thermal asymmetric interlaced PCR was used to extend and complete the 948-nucleotide sequence of the BSH gene 3′ of the cloned segment. The predicted amino acid sequence of the 5′ partial ORF (651 nucleotides) was about 80% similar to the C-terminal half of the largest, complete ORF (1,353 nucleotides), and these two putative proteins were similar to several amine, multidrug resistance, and sugar transport proteins of the major facilitator superfamily. E. coli DH5α cells transformed with a construct containing these ORFs, in concert with an extracellular factor produced by strain 100-100, demonstrated levels of uptake of [14C]taurocholic acid that were increased as much as threefold over control levels. [14C]Cholic acid was taken up in similar amounts by strain DH5α pSportI (control) and DH5α p2000 (transport clones). These findings support a hypothesis that the ORFs are conjugated bile salt transport genes which may be arranged in an operon with BSH genes. PMID:9721268
The Role of Bacillithiol in Gram-Positive Firmicutes
Chandrangsu, Pete; Loi, Vu Van
2018-01-01
Abstract Significance: Since the discovery and structural characterization of bacillithiol (BSH), the biochemical functions of BSH-biosynthesis enzymes (BshA/B/C) and BSH-dependent detoxification enzymes (FosB, Bst, GlxA/B) have been explored in Bacillus and Staphylococcus species. It was shown that BSH plays an important role in detoxification of reactive oxygen and electrophilic species, alkylating agents, toxins, and antibiotics. Recent Advances: More recently, new functions of BSH were discovered in metal homeostasis (Zn buffering, Fe-sulfur cluster, and copper homeostasis) and virulence control in Staphylococcus aureus. Unexpectedly, strains of the S. aureus NCTC8325 lineage were identified as natural BSH-deficient mutants. Modern mass spectrometry-based approaches have revealed the global reach of protein S-bacillithiolation in Firmicutes as an important regulatory redox modification under hypochlorite stress. S-bacillithiolation of OhrR, MetE, and glyceraldehyde-3-phosphate dehydrogenase (Gap) functions, analogous to S-glutathionylation, as both a redox-regulatory device and in thiol protection under oxidative stress. Critical Issues: Although the functions of the bacilliredoxin (Brx) pathways in the reversal of S-bacillithiolations have been recently addressed, significantly more work is needed to establish the complete Brx reduction pathway, including the major enzyme(s), for reduction of oxidized BSH (BSSB) and the targets of Brx action in vivo. Future Directions: Despite the large number of identified S-bacillithiolated proteins, the physiological relevance of this redox modification was shown for only selected targets and should be a subject of future studies. In addition, many more BSH-dependent detoxification enzymes are evident from previous studies, although their roles and biochemical mechanisms require further study. This review of BSH research also pin-points these missing gaps for future research. Antioxid. Redox Signal. 28, 445–462. PMID:28301954
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaHann, T.
ISU`s Center for Toxicology Research has been conducting toxicity testing of borocaptate sodium (BSH) to aid in assessing if proposed human studies of BSH are likely to be acceptably safe. This report describes BSH interactions with other biological agents.
Song, Ah Young; Choi, Ha Young; Lee, Eun Song; Han, Jaejoon; Min, Sea C
2018-04-01
Films containing microencapsulated cinnamon oil (CO) were developed using a large-scale production system to protect against the Indian meal moth (Plodia interpunctella). CO at concentrations of 0%, 0.8%, or 1.7% (w/w ink mixture) was microencapsulated with polyvinyl alcohol. The microencapsulated CO emulsion was mixed with ink (47% or 59%, w/w) and thinner (20% or 25%, w/w) and coated on polypropylene (PP) films. The PP film was then laminated with a low-density polyethylene (LDPE) film on the coated side. The film with microencapsulated CO at 1.7% repelled P. interpunctella most effectively. Microencapsulation did not negatively affect insect repelling activity. The release rate of cinnamaldehyde, an active repellent, was lower when CO was microencapsulated than that in the absence of microencapsulation. Thermogravimetric analysis exhibited that microencapsulation prevented the volatilization of CO. The tensile strength, percentage elongation at break, elastic modulus, and water vapor permeability of the films indicated that microencapsulation did not affect the tensile and moisture barrier properties (P > 0.05). The results of this study suggest that effective films for the prevention of Indian meal moth invasion can be produced by the microencapsulation of CO using a large-scale film production system. Low-density polyethylene-laminated polypropylene films printed with ink incorporating microencapsulated cinnamon oil using a large-scale film production system effectively repelled Indian meal moth larvae. Without altering the tensile and moisture barrier properties of the film, microencapsulation resulted in the release of an active repellent for extended periods with a high thermal stability of cinnamon oil, enabling commercial film production at high temperatures. This anti-insect film system may have applications to other food-packaging films that use the same ink-printing platform. © 2018 Institute of Food Technologists®.
Yokoyama, Kunio; Miyatake, Shin-Ichi; Kajimoto, Yoshinaga; Kawabata, Shinji; Doi, Atsushi; Yoshida, Toshiko; Okabe, Motonori; Kirihata, Mitsunori; Ono, Koji; Kuroiwa, Toshihiko
2007-01-01
The efficiency of boron neutron capture therapy (BNCT) for malignant gliomas depends on the selective and absolute accumulation of (10)B atoms in tumor tissues. Only two boron compounds, BPA and BSH, currently can be used clinically. However, the detailed distributions of these compounds have not been determined. Here we used secondary ion mass spectrometry (SIMS) to determine the histological distribution of (10)B atoms derived from the boron compounds BSH and BPA. C6 tumor-bearing rats were given 500 mg/kg of BPA or 100 mg/kg of BSH intraperitoneally; 2.5 h later, their brains were sectioned and subjected to SIMS. In the main tumor mass, BPA accumulated heterogeneously, while BSH accumulated homogeneously. In the peritumoral area, both BPA and BSH accumulated measurably. Interestingly, in this area, BSH accumulated distinctively in a diffuse manner even 800 microm distant from the interface between the main tumor and normal brain. In the contralateral brain, BPA accumulated measurably, while BSH did not. In conclusion, both BPA and BSH each have advantages and disadvantages. These compounds are considered to be essential as boron delivery agents independently for clinical BNCT. There is some rationale for the simultaneous use of both compounds in clinical BNCT for malignant gliomas.
Shokryazdan, P; Jahromi, M F; Liang, J B; Sieo, C C; Kalavathy, R; Idrus, Z; Ho, Y W
2017-11-01
Twelve previously isolated Lactobacillus strains were investigated for their in vitro bioactivities, including bile salt hydrolase (BSH), cholesterol-reducing and antioxidant activities, cytotoxic effects against cancer cells, enzyme activity, and biogenic amine production. Among them, only 4 strains showed relatively high BSH activity, whereas the rest exhibited low BSH activity. All 12 strains showed cholesterol-reducing and antioxidant activities, especially in their intact cells, which in most of the cases, the isolated strains were stronger in these activities than the tested commercial reference strains. None of the tested strains produced harmful enzymes (β-glucosidase and β-glucuronidase) or biogenic amines. Among the 12 strains, 3 strains were tested for their cytotoxic effects against 3 cancer cell lines, which exhibited strong cytotoxic effects, and they also showed selectivity in killing cancer cells when compared to normal cells. Hence, all 12 Lactobacillus strains could be considered good potential probiotic candidates because of their beneficial functional bioactivities. The Lactobacillus strains tested in this study could be considered good potential probiotic candidates for food/feed industry because of their beneficial functional bioactivities such as good cholesterol-reducing ability, high antioxidant activity, and good and selective cytotoxic effect against cancer cells. © 2017 Institute of Food Technologists®.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.W. Nigg; William Bauer; Various Others
Sodium mercaptoundecahydro-closo-dodecaborate (BSH) is being investigated clinically for BNCT. We examined the biodistribution of BSH and BPA administered jointly in different proportions in the hamster cheek pouch oral cancer model. The 3 assayed protocols were non-toxic, and showed preferential tumor boron uptake versus precancerous and normal tissue and therapeutic tumor boron concentration values (70–85 ppm). All 3 protocols warrant assessment in BNCT studies to contribute to the knowledge of (BSH+BPA)-BNCT radiobiology for head and neck cancer and optimize therapeutic efficacy.
Begley, Máire; Sleator, Roy D.; Gahan, Cormac G. M.; Hill, Colin
2005-01-01
Listeria monocytogenes must resist the deleterious actions of bile in order to infect and subsequently colonize the human gastrointestinal tract. The molecular mechanisms used by the bacterium to resist bile and the influence of bile on pathogenesis are as yet largely unexplored. This study describes the analysis of three genes—bsh, pva, and btlB—previously annotated as bile-associated loci in the sequenced L. monocytogenes EGDe genome (lmo2067, lmo0446, and lmo0754, respectively). Analysis of deletion mutants revealed a role for all three genes in resisting the acute toxicity of bile and bile salts, particularly glycoconjugated bile salts at low pH. Mutants were unaffected in the other stress responses examined (acid, salt, and detergents). Bile hydrolysis assays demonstrate that L. monocytogenes possesses only one bile salt hydrolase gene, namely, bsh. Transcriptional analyses and activity assays revealed that, although it is regulated by both PrfA and σB, the latter appears to play the greater role in modulating bsh expression. In addition to being incapable of bile hydrolysis, a sigB mutant was shown to be exquisitely sensitive to bile salts. Furthermore, increased expression of sigB was detected under anaerobic conditions and during murine infection. A gene previously annotated as a possible penicillin V amidase (pva) or bile salt hydrolase was shown to be required for resistance to penicillin V but not penicillin G but did not demonstrate a role in bile hydrolysis. Finally, animal (murine) studies revealed an important role for both bsh and btlB in the intestinal persistence of L. monocytogenes. PMID:15664931
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
... measuring energy and water consumption. DATES: This Decision and Order is effective June 29, 2011. FOR... and water based on an estimate that at least 50% of homes already have a water softening system. BSH... Conservation Program for Consumer Products; Decision and Order Granting a Waiver to BSH Corporation From the...
Regalado-González, Carlos; Vázquez-Landaverde, Pedro; Guerrero-Legarreta, Isabel; García-Almendárez, Blanca E.
2014-01-01
The effect of solvent polarity (methanol and pentane) on the chemical composition of hydrodistilled essential oils (EO's) of Lippia graveolens H.B.K. (MXO) and Origanum vulgare L. (EUO) was studied by GC-MS. Composition of modified starch microencapsulated EO's was conducted by headspace-solid-phase microextraction (HS-SPME). The antimicrobial activity of free and microencapsulated EO's was evaluated. They were tested against Salmonella sp., Brochothrix thermosphacta, Pseudomonas fragi, Lactobacillus plantarum, and Micrococcus luteus. Thymol and carvacrol were among the main components of EO's and their free and microencapsulated inhibitory activity was tested against M. luteus, showing an additive combined effect. Chemical composition of EO's varied according to the solvent used for GC analysis and to volatile fraction as evaluated by HS-SPME. Thymol (both solvents) was the main component in essential oil of MXO, while carvacrol was the main component of the volatile fraction. EUO showed α-pinene (methanol) and γ-terpinene (pentane) as major constituents, the latter being the main component of the volatile fraction. EO's showed good stability after 3 months storage at 4°C, where antimicrobial activity of microencapsulated EO's remained the same, while free EO's decreased 41% (MXO) and 67% (EUO) from initial activity. Microencapsulation retains most antimicrobial activity and improves stability of EO's from oregano. PMID:25177730
Hernández-Hernández, Elvia; Regalado-González, Carlos; Vázquez-Landaverde, Pedro; Guerrero-Legarreta, Isabel; García-Almendárez, Blanca E
2014-01-01
The effect of solvent polarity (methanol and pentane) on the chemical composition of hydrodistilled essential oils (EO's) of Lippia graveolens H.B.K. (MXO) and Origanum vulgare L. (EUO) was studied by GC-MS. Composition of modified starch microencapsulated EO's was conducted by headspace-solid-phase microextraction (HS-SPME). The antimicrobial activity of free and microencapsulated EO's was evaluated. They were tested against Salmonella sp., Brochothrix thermosphacta, Pseudomonas fragi, Lactobacillus plantarum, and Micrococcus luteus. Thymol and carvacrol were among the main components of EO's and their free and microencapsulated inhibitory activity was tested against M. luteus, showing an additive combined effect. Chemical composition of EO's varied according to the solvent used for GC analysis and to volatile fraction as evaluated by HS-SPME. Thymol (both solvents) was the main component in essential oil of MXO, while carvacrol was the main component of the volatile fraction. EUO showed α-pinene (methanol) and γ-terpinene (pentane) as major constituents, the latter being the main component of the volatile fraction. EO's showed good stability after 3 months storage at 4°C, where antimicrobial activity of microencapsulated EO's remained the same, while free EO's decreased 41% (MXO) and 67% (EUO) from initial activity. Microencapsulation retains most antimicrobial activity and improves stability of EO's from oregano.
Zheng, Shu; Xiao, Zuo-Xiang; Pan, Yue-Long; Han, Ming-Yong; Dong, Qi
2003-01-01
AIM: To explore the anti-tumor immunity against CT26 colon tumor of the microencapsulated cells modified with murine interleukine-12 (mIL-12) gene. METHODS: Mouse fibroblasts (NIH3T3) were stably transfected to express mIL-12 using expression plasmids carrying mIL-12 gene (p35 and p40), and NIH3T3-mIL-12 cells were encapsulated in alginate microcapsules for long-term delivery of mIL-12. mIL-12 released from the microencapsulated NIH3T3-mIL-12 cells was confirmed using ELISA assay. Transplantation of the microencapsulated NIH3T3-mIL-12 cells was performed in the tumor-bearing mice with CT26 cells. The anti-tumor responses and the anti-tumor activities of the microencapsulated NIH3T3-mIL-12 cells were evaluated. RESULTS: Microencapsulated NIH3T3-mIL-12 cells could release mIL-12 continuously and stably for a long time. After the microencapsulated NIH3T3-mIL-12 cells were transplanted subcutaneously into the tumor-bearing mice for 21 d, the serum concentrations of mIL-12, mIL-2 and mIFN-γ, the cytotoxicity of the CTL from the splenocytes and the NK activity in the treatment group were significantly higher than those in the controls. Moreover, mIL-12 released from the microencapsulated NIH3T3-mIL-12 cells resulted in a significant inhibition of tumor proliferation and a prolonged survival of tumor-bearing mice. CONCLUSION: The microencapsulated NIH3T3-mIL-12 cells have a significant therapeutic effect on the experimental colon tumor by activating anti-tumor immune responses in vivo. Microencapsulated and genetically engineered cells may be an extremely versatile tool for tumor gene therapy. PMID:12717836
Yanagie, Hironobu; Higashi, Syushi; Seguchi, Koji; Ikushima, Ichiro; Fujihara, Mituteru; Nonaka, Yasumasa; Oyama, Kazuyuki; Maruyama, Syoji; Hatae, Ryo; Suzuki, Minoru; Masunaga, Shin-ichiro; Kinashi, Tomoko; Sakurai, Yoshinori; Tanaka, Hiroki; Kondo, Natsuko; Narabayashi, Masaru; Kajiyama, Tetsuya; Maruhashi, Akira; Ono, Koji; Nakajima, Jun; Ono, Minoru; Takahashi, Hiroyuki; Eriguchi, Masazumi
2014-06-01
A 63-year-old man with multiple HCC in his left liver lobe was enrolled as the first patient in a pilot study of boron neutron capture therapy (BNCT) involving the selective intra-arterial infusion of a (10)BSH-containing water-in-oil-in-water emulsion ((10)BSH-WOW). The size of the tumorous region remained stable during the 3 months after the BNCT. No adverse effects of the BNCT were observed. The present results show that (10)BSH-WOW can be used as novel intra-arterial boron carriers during BNCT for HCC. Copyright © 2014 Elsevier Ltd. All rights reserved.
An intestinal microbiota-farnesoid X receptor axis modulates metabolic disease
Gonzalez, Frank J.; Jiang, Changtao; Patterson, Andrew D.
2016-01-01
The gut microbiota is associated with metabolic diseases including obesity, insulin resistance and non-alcoholic fatty liver disease (NAFLD), as demonstrated by correlative studies and by transplant of microbiota from obese humans and mice into germ-free mice. Modification of the microbiota by treatment of high-fat diet (HFD)-fed mice with tempol or antibiotics resulted in decreased adverse metabolic phenotypes. This was due to lower levels of the genera Lactobacillus and decreased bile salt hydrolase (BSH) activity. The decreased BSH resulted in increased levels of tauro-β-muricholic acid (T-β-MCA), a substrate of BSH and a potent farnesoid X receptor (FXR) antagonist. Mice lacking expression of FXR in the intestine were resistant to HFD-induced obesity, insulin resistance and NAFLD thus confirming that intestinal FXR is involved in the potentiation of metabolic disease. A potent intestinal FXR antagonist glycine-β-muricholic acid (Gly-MCA) that is resistant to BSH, was developed that when administered to HFD-treated mice, mimics the effect of the altered microbiota on HFD-induced metabolic disease. Gly-MCA had similar effects on genetically obese leptin-deficient mice. The decreased in adverse metabolic phenotype by tempol, antibiotics and Gly-MCA was due to decreased serum ceramides. Mice lacking FXR in intestine also have lower serum ceramides, are metabolic fit and resistant to HFD-induced metabolic disease, and this is reversed by injection of C16:0 ceramide. In mouse ileum, due to the presence of endogenous FXR agonists produced in the liver, FXR target genes involved in ceramide synthesis are activated and when Gly-MCA is administered, they are repressed, which likely accounts for the decrease in serum ceramides. These studies reveal that ceramides produced in the ileum under control of FXR, influence metabolic diseases. PMID:27639801
Imber, Marcel; Huyen, Nguyen Thi Thu; Pietrzyk-Brzezinska, Agnieszka J.; Loi, Vu Van; Hillion, Melanie; Bernhardt, Jörg; Thärichen, Lena; Kolšek, Katra; Saleh, Malek; Hamilton, Chris J.; Adrian, Lorenz; Gräter, Frauke; Wahl, Markus C.
2018-01-01
Abstract Aims: Bacillithiol (BSH) is the major low-molecular-weight thiol of the human pathogen Staphylococcus aureus. In this study, we used OxICAT and Voronoi redox treemaps to quantify hypochlorite-sensitive protein thiols in S. aureus USA300 and analyzed the role of BSH in protein S-bacillithiolation. Results: The OxICAT analyses enabled the quantification of 228 Cys residues in the redox proteome of S. aureus USA300. Hypochlorite stress resulted in >10% increased oxidation of 58 Cys residues (25.4%) in the thiol redox proteome. Among the highly oxidized sodium hypochlorite (NaOCl)-sensitive proteins are five S-bacillithiolated proteins (Gap, AldA, GuaB, RpmJ, and PpaC). The glyceraldehyde-3-phosphate (G3P) dehydrogenase Gap represents the most abundant S-bacillithiolated protein contributing 4% to the total Cys proteome. The active site Cys151 of Gap was very sensitive to overoxidation and irreversible inactivation by hydrogen peroxide (H2O2) or NaOCl in vitro. Treatment with H2O2 or NaOCl in the presence of BSH resulted in reversible Gap inactivation due to S-bacillithiolation, which could be regenerated by the bacilliredoxin Brx (SAUSA300_1321) in vitro. Molecular docking was used to model the S-bacillithiolated Gap active site, suggesting that formation of the BSH mixed disulfide does not require major structural changes. Conclusion and Innovation: Using OxICAT analyses, we identified 58 novel NaOCl-sensitive proteins in the pathogen S. aureus that could play protective roles against the host immune defense and include the glycolytic Gap as major target for S-bacillithiolation. S-bacillithiolation of Gap did not require structural changes, but efficiently functions in redox regulation and protection of the active site against irreversible overoxidation in S. aureus. Antioxid. Redox Signal. 28, 410–430. PMID:27967218
Imber, Marcel; Huyen, Nguyen Thi Thu; Pietrzyk-Brzezinska, Agnieszka J; Loi, Vu Van; Hillion, Melanie; Bernhardt, Jörg; Thärichen, Lena; Kolšek, Katra; Saleh, Malek; Hamilton, Chris J; Adrian, Lorenz; Gräter, Frauke; Wahl, Markus C; Antelmann, Haike
2018-02-20
Bacillithiol (BSH) is the major low-molecular-weight thiol of the human pathogen Staphylococcus aureus. In this study, we used OxICAT and Voronoi redox treemaps to quantify hypochlorite-sensitive protein thiols in S. aureus USA300 and analyzed the role of BSH in protein S-bacillithiolation. The OxICAT analyses enabled the quantification of 228 Cys residues in the redox proteome of S. aureus USA300. Hypochlorite stress resulted in >10% increased oxidation of 58 Cys residues (25.4%) in the thiol redox proteome. Among the highly oxidized sodium hypochlorite (NaOCl)-sensitive proteins are five S-bacillithiolated proteins (Gap, AldA, GuaB, RpmJ, and PpaC). The glyceraldehyde-3-phosphate (G3P) dehydrogenase Gap represents the most abundant S-bacillithiolated protein contributing 4% to the total Cys proteome. The active site Cys151 of Gap was very sensitive to overoxidation and irreversible inactivation by hydrogen peroxide (H 2 O 2 ) or NaOCl in vitro. Treatment with H 2 O 2 or NaOCl in the presence of BSH resulted in reversible Gap inactivation due to S-bacillithiolation, which could be regenerated by the bacilliredoxin Brx (SAUSA300_1321) in vitro. Molecular docking was used to model the S-bacillithiolated Gap active site, suggesting that formation of the BSH mixed disulfide does not require major structural changes. Conclusion and Innovation: Using OxICAT analyses, we identified 58 novel NaOCl-sensitive proteins in the pathogen S. aureus that could play protective roles against the host immune defense and include the glycolytic Gap as major target for S-bacillithiolation. S-bacillithiolation of Gap did not require structural changes, but efficiently functions in redox regulation and protection of the active site against irreversible overoxidation in S. aureus. Antioxid. Redox Signal. 28, 410-430.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweizer, M.
This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.
Morris, G M; Coderre, J A; Hopewell, J W; Micca, P L; Rezvani, M
1994-08-01
The effects of boron neutron capture irradiation employing either BPA or BSH as neutron capture agents has been assessed using the dorsal skin of Fischer 344 rats. Pharmacokinetic studies, using prompt gamma spectrometry, revealed comparable levels of boron-10 (10B) in blood and skin after the intravenous infusion of BSH (100 mg/kg body wt.). The 10B content of blood (12.0 +/- 0.5 micrograms/g) was slightly higher than that of skin (10.0 +/- 0.5 micrograms/g) after oral dosing with BPA. Biphasic skin reactions were observed after irradiation with the thermal neutron beam alone or in combination with BPA or BSH. The time of onset of the first phase of the skin reaction, moist desquamation, was approximately 2 weeks. The time at which the second-wave skin reaction, dermal necrosis, became evident was dose-related and occurred after a latent interval of > or = 24 weeks, well after the acute epithelial reaction had healed. The incidence of both phases of skin damage was also dose-related. The radiation doses required to produce skin damage in 50% of skin sites (ED50 values) were calculated from dose-effect curves and these values were used to determine relative biological effectiveness (RBE) and compound biological effectiveness (CBE) factors for both moist desquamation and dermal necrosis. It was concluded on the basis of these calculations that the microdistribution of the two neutron capture agents had a critical bearing on the overall biological effect after thermal neutron activation. BSH, which was possibly excluded from the cytoplasm of epidermal cells, had a low CBE factor value (0.56 +/- 0.06) while BPA, which may be selectively accumulated in epidermal cells had a very high CBE factor (3.74 +/- 0.7). For the dermal reaction, where vascular endothelial cells represent the likely target cell population, the CBE factor values were comparable, at 0.73 +/- 0.42 and 0.86 +/- 0.08 for BPA ad BSH, respectively.
Battery‐Supercapacitor Hybrid Devices: Recent Progress and Future Prospects
Zuo, Wenhua; Li, Ruizhi; Zhou, Cheng; Xia, Jianlong
2017-01-01
Design and fabrication of electrochemical energy storage systems with both high energy and power densities as well as long cycling life is of great importance. As one of these systems, Battery‐supercapacitor hybrid device (BSH) is typically constructed with a high‐capacity battery‐type electrode and a high‐rate capacitive electrode, which has attracted enormous attention due to its potential applications in future electric vehicles, smart electric grids, and even miniaturized electronic/optoelectronic devices, etc. With proper design, BSH will provide unique advantages such as high performance, cheapness, safety, and environmental friendliness. This review first addresses the fundamental scientific principle, structure, and possible classification of BSHs, and then reviews the recent advances on various existing and emerging BSHs such as Li‐/Na‐ion BSHs, acidic/alkaline BSHs, BSH with redox electrolytes, and BSH with pseudocapacitive electrode, with the focus on materials and electrochemical performances. Furthermore, recent progresses in BSH devices with specific functionalities of flexibility and transparency, etc. will be highlighted. Finally, the future developing trends and directions as well as the challenges will also be discussed; especially, two conceptual BSHs with aqueous high voltage window and integrated 3D electrode/electrolyte architecture will be proposed. PMID:28725528
Design of experiments for microencapsulation applications: A review.
Paulo, Filipa; Santos, Lúcia
2017-08-01
Microencapsulation techniques have been intensively explored by many research sectors such as pharmaceutical and food industries. Microencapsulation allows to protect the active ingredient from the external environment, mask undesired flavours, a possible controlled release of compounds among others. The purpose of this review is to provide a background of design of experiments in microencapsulation research context. Optimization processes are required for an accurate research in these fields and therefore, the right implementation of micro-sized techniques at industrial scale. This article critically reviews the use of the response surface methodologies in pharmaceutical and food microencapsulation research areas. A survey of optimization procedures in the literature, in the last few years is also presented. Copyright © 2017 Elsevier B.V. All rights reserved.
Novel Multiplexed Assay for Identifying SH2 Domain Antagonists of STAT Family Proteins
Takakuma, Kazuyuki; Ogo, Naohisa; Uehara, Yutaka; Takahashi, Susumu; Miyoshi, Nao; Asai, Akira
2013-01-01
Some of the signal transducer and activator of transcription (STAT) family members are constitutively activated in a wide variety of human tumors. The activity of STAT depends on their Src homology 2 (SH2) domain-mediated binding to sequences containing phosphorylated tyrosine. Thus, antagonizing this binding is a feasible approach to inhibiting STAT activation. We have developed a novel multiplexed assay for STAT3- and STAT5b-SH2 binding, based on amplified luminescent proximity homogeneous assay (Alpha) technology. AlphaLISA and AlphaScreen beads were combined in a single-well assay, which allowed the binding of STAT3- and STAT5b-SH2 to phosphotyrosine peptides to be simultaneously monitored. Biotin-labeled recombinant human STAT proteins were obtained as N- and C-terminal deletion mutants. The spacer length of the DIG-labeled peptide, the reaction time, and the concentration of sodium chloride were optimized to establish a HTS system with Z’ values of greater than 0.6 for both STAT3- and STAT5b-SH2 binding. We performed a HTS campaign for chemical libraries using this multiplexed assay and identified hit compounds. A 2-chloro-1,4-naphthalenedione derivative, Compound 1, preferentially inhibited STAT3-SH2 binding in vitro, and the nuclear translocation of STAT3 in HeLa cells. Initial structure activity relationship (SAR) studies using the multiplexed assay showed the 3-substituent effect on both the activity and selectivity of STAT3 and STAT5b inhibition. Therefore, this multiplexed assay is useful for not only searching for potential lead compounds but also obtaining SAR data for developing new STAT3/STAT5b inhibitors. PMID:23977103
Novel multiplexed assay for identifying SH2 domain antagonists of STAT family proteins.
Takakuma, Kazuyuki; Ogo, Naohisa; Uehara, Yutaka; Takahashi, Susumu; Miyoshi, Nao; Asai, Akira
2013-01-01
Some of the signal transducer and activator of transcription (STAT) family members are constitutively activated in a wide variety of human tumors. The activity of STAT depends on their Src homology 2 (SH2) domain-mediated binding to sequences containing phosphorylated tyrosine. Thus, antagonizing this binding is a feasible approach to inhibiting STAT activation. We have developed a novel multiplexed assay for STAT3- and STAT5b-SH2 binding, based on amplified luminescent proximity homogeneous assay (Alpha) technology. AlphaLISA and AlphaScreen beads were combined in a single-well assay, which allowed the binding of STAT3- and STAT5b-SH2 to phosphotyrosine peptides to be simultaneously monitored. Biotin-labeled recombinant human STAT proteins were obtained as N- and C-terminal deletion mutants. The spacer length of the DIG-labeled peptide, the reaction time, and the concentration of sodium chloride were optimized to establish a HTS system with Z' values of greater than 0.6 for both STAT3- and STAT5b-SH2 binding. We performed a HTS campaign for chemical libraries using this multiplexed assay and identified hit compounds. A 2-chloro-1,4-naphthalenedione derivative, Compound 1, preferentially inhibited STAT3-SH2 binding in vitro, and the nuclear translocation of STAT3 in HeLa cells. Initial structure activity relationship (SAR) studies using the multiplexed assay showed the 3-substituent effect on both the activity and selectivity of STAT3 and STAT5b inhibition. Therefore, this multiplexed assay is useful for not only searching for potential lead compounds but also obtaining SAR data for developing new STAT3/STAT5b inhibitors.
Spectromicroscopy of boron in human glioblastomas following administration of Na2B12H11SH.
Gilbert, B; Perfetti, L; Fauchoux, O; Redondo, J; Baudat, P A; Andres, R; Neumann, M; Steen, S; Gabel, D; Mercanti, D; Ciotti, M T; Perfetti, P; Margaritondo, G; De Stasio, G
2000-07-01
Boron neutron capture therapy (BNCT) is an experimental, binary treatment for brain cancer which requires as the first step that tumor tissue is targeted with a boron-10 containing compound. Subsequent exposure to a thermal neutron flux results in destructive, short range nuclear reaction within 10 microm of the boron compound. The success of the therapy requires than the BNCT agents be well localized in tumor, rather than healthy tissue. The MEPHISTO spectromicroscope, which performs microchemical analysis by x-ray absorption near edge structure (XANES) spectroscopy from microscopic areas, has been used to study the distribution of trace quantities of boron in human brain cancer tissues surgically removed from patients first administered with the compound Na2B12H11SH (BSH). The interpretation of XANES spectra is complicated by interference from physiologically present sulfur and phosphorus, which contribute structure in the same energy range as boron. We addressed this problem with the present extensive set of spectra from S, B, and P in relevant compounds. We demonstrate that a linear combination of sulfate, phosphate and BSH XANES can be used to reproduce the spectra acquired on boron-treated human brain tumor tissues. We analyzed human glioblastoma tissue from two patients administered and one not administered with BSH. As well as weak signals attributed to BSH, x-ray absorption spectra acquired from tissue samples detected boron in a reduced chemical state with respect to boron in BSH. This chemical state was characterized by a sharp absorption peak at 188.3 eV. Complementary studies on BSH reference samples were not able to reproduce this chemical state of boron, indicating that it is not an artifact produced during sample preparation or x-ray exposure. These data demonstrate that the chemical state of BSH may be altered by in vivo metabolism.
Castro-Rosas, Javier; Ferreira-Grosso, Carlos Raimundo; Gómez-Aldapa, Carlos Alberto; Rangel-Vargas, Esmeralda; Rodríguez-Marín, María Luisa; Guzmán-Ortiz, Fabiola Araceli; Falfan-Cortes, Reyna Nallely
2017-12-01
Food safety and microbiological quality are major priorities in the food industry. In recent years, there has been an increasing interest in the use of natural antimicrobials in food products. An ongoing challenge with natural antimicrobials is their degradation during food storage and/or processing, which reduces their antimicrobial activity. This creates the necessity for treatments that maintain their stability and/or activity when applied to food. Microencapsulation of natural antimicrobial compounds is a promising alternative once this technique consists of producing microparticles, which protect the encapsulated active substances. In other words, the material to be protected is embedded inside another material or system known as wall material. There are few reports in the literature about microencapsulation of antimicrobial compounds. These published articles report evidence of increased antimicrobial stability and activity when the antimicrobials are microencapsulated when compared to unprotected ones during storage. This review focuses mainly on natural sources of antimicrobial compounds and the methodological approach for encapsulating these natural compounds. Current data on the microencapsulation of antimicrobial compounds and their incorporation into food suggests that 1) encapsulation increases compound stability during storage and 2) encapsulation of antimicrobial compounds reduces their interaction with food components, preventing their inactivation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Martins, Ana; Barros, Lillian; Carvalho, Ana Maria; Santos-Buelga, Celestino; Fernandes, Isabel P; Barreiro, Filomena; Ferreira, Isabel C F R
2014-06-01
Rubus ulmifolius Schott (Rosaceae), known as wild blackberry, is a perennial shrub found in wild and cultivated habitats in Europe, Asia and North Africa. Traditionally, it is used for homemade remedies because of its medicinal properties, including antioxidant activity. In the present work, phenolic extracts of R. ulmifolius flower buds obtained by decoction and hydroalcoholic extraction were chemically and biologically characterized. Several phenolic compounds were identified in both decoction and hydroalcoholic extracts of flowers, ellagitannin derivatives being the most abundant ones, namely the sanguiin H-10 isomer and lambertianin. Additionally, comparing with the decoction form, the hydroalcoholic extract presented both higher phenolic content and antioxidant activity. The hydroalcoholic extract was thereafter microencapsulated in an alginate-based matrix and incorporated into a yogurt to achieve antioxidant benefits. In what concerns the performed incorporation tests, the obtained results pointed out that, among the tested samples, the yoghurt containing the microencapsulated extract presented a slightly higher antioxidant activity, and that both forms (free and microencapsulated extracts) gave rise to products with higher activity than the control. In conclusion, this study demonstrated the antioxidant potential of the R. ulmifolius hydroalcoholic extract and the effectiveness of the microencapsulation technique used for its preservation, thus opening new prospects for the exploitation of these natural phenolic extracts in food applications.
Garabalino, Marcela A; Heber, Elisa M; Monti Hughes, Andrea; González, Sara J; Molinari, Ana J; Pozzi, Emiliano C C; Nievas, Susana; Itoiz, Maria E; Aromando, Romina F; Nigg, David W; Bauer, William; Trivillin, Verónica A; Schwint, Amanda E
2013-08-01
Boron neutron capture therapy (BNCT) is based on selective accumulation of ¹⁰B carriers in tumor followed by neutron irradiation. We previously proved the therapeutic success of BNCT mediated by the boron compounds boronophenylalanine and sodium decahydrodecaborate (GB-10) in the hamster cheek pouch oral cancer model. Based on the clinical relevance of the boron carrier sodium borocaptate (BSH) and the knowledge that the most effective way to optimize BNCT is to improve tumor boron targeting, the specific aim of this study was to perform biodistribution studies of BSH in the hamster cheek pouch oral cancer model and evaluate the feasibility of BNCT mediated by BSH at nuclear reactor RA-3. The general aim of these studies is to contribute to the knowledge of BNCT radiobiology and optimize BNCT for head and neck cancer. Sodium borocaptate (50 mg ¹⁰B/kg) was administered to tumor-bearing hamsters. Groups of 3-5 animals were killed humanely at nine time-points, 3-12 h post-administration. Samples of blood, tumor, precancerous pouch tissue, normal pouch tissue and other clinically relevant normal tissues were processed for boron measurement by optic emission spectroscopy. Tumor boron concentration peaked to therapeutically useful boron concentration values of 24-35 ppm. The boron concentration ratio tumor/normal pouch tissue ranged from 1.1 to 1.8. Pharmacokinetic curves showed that the optimum interval between BSH administration and neutron irradiation was 7-11 h. It is concluded that BNCT mediated by BSH at nuclear reactor RA-3 would be feasible.
Miao, Hongchen; Huan, Qiang; Li, Faxin; Kang, Guozheng
2018-04-24
Focusing the incident wave beam along a given direction is very useful in guided wave based structural health monitoring (SHM), as it will not only save input power but also simplify the interpretation of signals. Although the fundamental shear horizontal (SH 0 ) wave is of practical importance in SHM due to its non-dispersive characteristics so far there have been very limited transducers which can control the radiation patterns of SH 0 wave. In this work, a variable-frequency bidirectional SH 0 wave piezoelectric transducer (BSH-PT) is proposed, which consists of two rectangular face-shear (d 24 ) PZT wafers. The opposite face-shear deformation of the two PZT wafers under applied electric fields makes the BSH-PT capable of exciting SH 0 wave along two opposite directions (0° and 180°). Both finite element simulations and experimental testings are conducted to examine the performance of the proposed BSH-PT. Results show that pure SH 0 wave can be generated by this BSH-PT and its wave beam can be focused bi-directionally. Moreover, the bidirectional characteristics of the BSH-PT can be kept over a wide frequency range from 150 kHz to 250 kHz. As the circumferential SH 0 (CSH 0 ) wave in a thin hollow cylindrical structure is essentially equivalent to the SH 0 wave in a plate, the proposed BSH-PT may also be very useful to develop a CSH 0 -wave-based SHM system for hollow cylindrical structures. Copyright © 2018 Elsevier B.V. All rights reserved.
Aberdein, D; Munday, J S; Dittmer, K E; Heathcott, R W; Lyons, L A
2017-11-01
AIMS To determine the frequency of the FAS-ligand gene (FASLG) variant associated with feline autoimmune lymphoproliferative syndrome (FALPS) and the proportion of carriers of the variant in three British shorthair (BSH) breeding catteries in New Zealand. METHODS Buccal swabs were collected from all cats in two BSH breeding catteries from the South Island and one from the North Island of New Zealand. DNA was extracted and was tested for the presence of the FASLG variant using PCR. Cats with the FASLG variant were identified and the frequency of the FASLG variant allele calculated. Pedigree analysis was performed and inbreeding coefficients were calculated for cats with the FASLG variant. RESULTS Of 32 BSH cats successfully tested for the presence of the FASLG variant, one kitten (3%) was homozygous (FALPS-affected), and seven (22%) cats were heterozygous (carriers) for the FASLG variant allele, and 24 (75%) cats were homozygous for the wild type allele. The overall frequency of the FASLG variant allele in these 32 cats was 0.14. Cats carrying the FASLG variant were from all three breeding catteries sampled, including two catteries that had not previously reported cases of FALPS. Pedigree analysis revealed common ancestry of FALPS-affected and carrier cats within six generations, as well as frequent inbreeding, with inbreeding coefficients >0.12 for five cats with the FASLG variant. CONCLUSIONS AND CLINICAL RELEVANCE There was a high frequency of the FASLG variant allele (0.14) in this small sample of BSH cats, with 22% of healthy cats identified as carriers of the FASLG variant. For an inherited disease, lethal at a young age, in a small population in which inbreeding is common, these results are significant. To prevent future cases of disease and stop further spread of the FASLG variant allele within the BSH population in New Zealand, it is recommended that all BSH and BSH-cross cats be tested for the presence of the FASLG variant before mating. Cats identified as carriers of the variant allele should be desexed and not used for breeding. Results support the need for further investigations of the true frequency of the FASLG variant allele and occurrence of FALPS in the wider population of BSH cats in New Zealand.
Alarcón-Moyano, Jessica K; Bustos, Rubén O; Herrera, María Lidia; Matiacevich, Silvia B
2017-08-01
Active edible films have been proposed as an alternative to extend shelf life of fresh foods. Most essential oils have antimicrobial properties; however, storage conditions could reduce their activity. To avoid this effect the essential oil (EO) can be microencapsulated prior to film casting. The aim of this study was to determine the effects of the type of encapsulating agent (EA), type of EO and storage time on physical properties and antimicrobial activity of alginate-based films against Escherichia coli ATCC 25922. Trehalose (TH), Capsul ® (CAP) and Tween 20 (Tw20) were used as EA. Lemongrass essential oil (LMO) and citral were used as active agents. The results showed that the type of EA affected the stability of the film forming-emulsions as well as the changes in opacity and colour of the films during storage but not the antimicrobial activity of them. Both microencapsulated EOs showed a prolonged release from the alginate films during the 28 days of storage. Trehalose was selected to encapsulate both active compounds because the films made with this microencapsulated EA showed the greatest physical stability and the lowest color variation among all the films studied.
Spacecraft Heat Rejection Methods: Active and Passive Heat Transfer for Electronic Systems.
1986-08-29
Storage in avionics, spacecraft and electronics ,;"ters. Microencapsulated phase change materials (PCMs) in a two-component water SlUrrv- were useo with...capsules was observed in the pumping process. Inaddition, both microencapsulated and pure PCM were used to passively reduce tile tempera- tuo .tremes of...conducted as a Phase I Small Business Innovation Research (SBIR) program to explore the feasibility of using microencapsulated phase change materials (PCM) in
Dewi, Novriana; Higashi, Syushi; Ikushima, Ichiro; Seguchi, Koji; Mizumachi, Ryoji; Murata, Yuji; Morishita, Yasuyuki; Shinohara, Atsuko; Mikado, Shoji; Yasuda, Nakahiro; Fujihara, Mitsuteru; Sakurai, Yuriko; Mouri, Kikue; Yanagawa, Masashi; Iizuka, Tomoya; Suzuki, Minoru; Sakurai, Yoshinori; Masunaga, Shin-ichiro; Tanaka, Hiroki; Matsukawa, Takehisa; Yokoyama, Kazuhito; Fujino, Takashi; Ogura, Koichi; Nonaka, Yasumasa; Sugiyama, Hirotaka; Kajiyama, Tetsuya; Yui, Sho; Nishimura, Ryohei; Ono, Koji; Takamoto, Sinichi; Nakajima, Jun; Ono, Minoru; Eriguchi, Masazumi; Hasumi, Kenichiro; Takahashi, Hiroyuki
2017-01-01
Objective: Boron neutron-capture therapy (BNCT) has been used to inhibit the growth of various types of cancers. In this study, we developed a 10BSH-entrapped water-in-oil-in-water (WOW) emulsion, evaluated it as a selective boron carrier for the possible application of BNCT in hepatocellular carcinoma treatment. Methods: We prepared the 10BSH-entrapped WOW emulsion using double emulsification technique and then evaluated the delivery efficacy by performing biodistribution experiment on VX-2 rabbit hepatic tumour model with comparison to iodized poppy-seed oil mix conventional emulsion. Neutron irradiation was carried out at Kyoto University Research Reactor with an average thermal neutron fluence of 5 × 1012 n cm−2. Morphological and pathological analyses were performed on Day 14 after neutron irradiation. Results: Biodistribution results have revealed that 10B atoms delivery with WOW emulsion was superior compared with those using iodized poppy-seed oil conventional emulsion. There was no dissemination in abdomen or lung metastasis observed after neutron irradiation in the groups treated with 10BSH-entrapped WOW emulsion, whereas many tumour nodules were recognized in the liver, abdominal cavity, peritoneum and bilateral lobes of the lung in the non-injected group. Conclusion: Tumour growth suppression and cancer-cell-killing effect was observed from the morphological and pathological analyses of the 10BSH-entrapped WOW emulsion-injected group, indicating its feasibility to be applied as a novel intra-arterial boron carrier for BNCT. Advances in knowledge: The results of the current study have shown that entrapped 10BSH has the potential to increase the range of therapies available for hepatocellular carcinoma which is considered to be one of the most difficult tumours to cure. PMID:28406315
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-22
... determined for this company continues to be 5.47 percent. Germany: ``BSH Bosch and Siemens Hausgerate GmbH'' has been changed to ``BSH Bosch und Siemens Hausgerate GmbH;'' ``Volkswagon AG'' has been changed to...
Gamma-ray irradiation enhanced boron-10 compound accumulation in murine tumors.
Liu, Yong; Nagata, Kenji; Masunaga, Shin-ichiro; Suzuki, Minoru; Kashino, Genro; Kinashi, Yuko; Tanaka, Hiroki; Sakurai, Yoshinori; Maruhashi, Akira; Ono, Koji
2009-11-01
Previous studies have demonstrated that X-ray irradiation affects angiogenesis in tumors. Here, we studied the effects of gamma-ray irradiation on boron-10 compound accumulation in a murine tumor model. The mouse squamous cell carcinoma was irradiated with gamma-ray before BSH ((10)B-enriched borocaptate sodium) administration. Then, the boron-10 concentrations in tumor and normal muscle tissues were measured by prompt gamma-ray spectrometry (PGA). A tumor blood flow assay was performed, and cell killing effects of neutron irradiation with various combinations of BSH and gamma-rays were also examined. BSH concentrations of tumor tissues were 16.1 +/- 0.6 microg/g, 16.7 +/- 0.5 microg/g and 17.8 +/- 0.5 microg/g at 72 hours after gamma-ray irradiation at doses of 5, 10, and 20 Gy, compared with 13.1 +/- 0.5 microg/g in unirradiated tumor tissues. The enhancing inhibition of colony formation by neutron irradiation with BSH was also found after gamma-ray irradiation. In addition, increasing Hoechst 33342 perfusion was also observed. In this study, we demonstrated that gamma-ray irradiation enhances BSH accumulation in tumors. The present results suggest that the enhancement of (10)B concentration that occurs after gamma-ray irradiation may be due to the changes in the extracellular microenvironment, including in tumor vessels, induced by gamma-ray irradiation.
da Costa, Russany Silva; Teixeira, Camilo Barroso; Gabbay Alves, Taís Vanessa; Ribeiro-Costa, Roseane M; Casazza, Alessandro A; Aliakbarian, Bahar; Converti, Attilio; Silva Júnior, José O C; Perego, Patrizia
2018-04-16
Cupuassu (Theobroma grandiflorum Schum.) is a popular Amazonian fruit because of its intense aroma and nutritional value, whose lipid fraction is alternatively used in cosmetics. To preserve active principles and ensure their controlled release, extract was microencapsulated by spray drying. Influence of spray-drying conditions on microencapsulation of cupuassu seed by-product extract was investigated according to a 3 3 -Box Behnken factorial design, selecting inlet temperature, maltodextrin concentration and feed flowrate as independent variables, and total polyphenol and flavonoid contents, antiradical power, yields of drying and microencapsulation as responses. Fitting the results by second-order equations and modelling by Response Surface Methodology allowed predicting optimum conditions. Epicatechin and glycosylated quercetin were the major microencapsulated flavonoids. Microparticles showed satisfactory antiradical power and stability at 5 °C or under simulated gastrointestinal conditions, thus they may be used to formulate new foods or pharmaceuticals.
Boron microlocalization in oral mucosal tissue: implications for boron neutron capture therapy
Morris, G M; Smith, D R; Patel, H; Chandra, S; Morrison, G H; Hopewell, J W; Rezvani, M; Micca, P L; Coderre, J A
2000-01-01
Clinical studies of the treatment of glioma and cutaneous melanoma using boron neutron capture therapy (BNCT) are currently taking place in the USA, Europe and Japan. New BNCT clinical facilities are under construction in Finland, Sweden, England and California. The observation of transient acute effects in the oral mucosa of a number of glioma patients involved in the American clinical trials, suggests that radiation damage of the oral mucosa could be a potential complication in future BNCT clinical protocols, involving higher doses and larger irradiation field sizes. The present investigation is the first to use a high resolution surface analytical technique to relate the microdistribution of boron-10 (10B) in the oral mucosa to the biological effectiveness of the 10B(n,α)7Li neutron capture reaction in this tissue. The two boron delivery agents used clinically in Europe/Japan and the USA, borocaptate sodium (BSH) and p-boronophenylalanine (BPA), respectively, were evaluated using a rat ventral tongue model. 10B concentrations in various regions of the tongue mucosa were estimated using ion microscopy. In the epithelium, levels of 10B were appreciably lower after the administration of BSH than was the case after BPA. The epithelium:blood 10B partition ratios were 0.2:1 and 1:1 for BSH and BPA respectively. The 10B content of the lamina propria was higher than that measured in the epithelium for both BSH and BPA. The difference was most marked for BSH, where 10B levels were a factor of six higher in the lamina propria than in the epithelium. The concentration of 10B was also measured in blood vessel walls where relatively low levels of accumulation of BSH, as compared with BPA, was demonstrated in blood vessel endothelial cells and muscle. Vessel wall:blood 10B partition ratios were 0.3:1 and 0.9:1 for BSH and BPA respectively. Evaluation of tongue mucosal response (ulceration) to BNC irradiation indicated a considerably reduced radiation sensitivity using BSH as the boron delivery agent relative to BPA. The compound biological effectiveness (CBE) factor for BSH was estimated at 0.29 ± 0.02. This compares with a previously published CBE factor for BPA of 4.87 ± 0.16. It was concluded that variations in the microdistribution profile of 10B, using the two boron delivery agents, had a significant effect on the response of oral mucosa to BNC irradiation. From a clinical perspective, based on the findings of the present study, it is probable that potential radiation-induced oral mucositis will be restricted to BNCT protocols involving BPA. However, a thorough high resolution analysis of 10B microdistribution in human oral mucosal tissue, using a technique such as ion microscopy, is a prerequisite for the use of experimentally derived CBE factors in clinical BNCT. © 2000 Cancer Research Campaign PMID:10839288
Does habituation matter? Emotional processing theory and exposure therapy for acrophobia.
Baker, Aaron; Mystkowski, Jayson; Culver, Najwa; Yi, Rena; Mortazavi, Arezou; Craske, Michelle G
2010-11-01
Clinically, there is wide subscription to emotional processing theory (EPT; Foa & Kozak, 1986) as a model of therapeutic effectiveness of exposure therapy: EPT purports that exposure is maximal when (1) fear is activated (IFA), (2) fear subsides within sessions (WSH), and (3) fear subsides between sessions (BSH). This study examined these assumptions, using in vivo exposure therapy for 44 students scoring high on acrophobia measures. Results indicated that no EPT variables were consistently predictive of treatment outcome. No support was found for IFA or WSH; measures of BSH were predictive of short-term change, but these effects were attenuated at follow-up. Furthermore, EPT variables were not predictive of each other as previously hypothesized, indicating the variables are not functionally related. Copyright © 2010 Elsevier Ltd. All rights reserved.
Del Piano, Mario; Carmagnola, Stefania; Andorno, Silvano; Pagliarulo, Michela; Tari, Roberto; Mogna, Luca; Strozzi, Gian Paolo; Sforza, Filomena; Capurso, Lucio
2010-09-01
Beneficial findings concerning probiotics are increasing day by day. However, one of the most important parameter which affects the probiotic activity of a microorganism is its survival during the gastroduodenal transit. Some microencapsulation techniques could be applied to bacterial cells to improve this parameter. A comparison between the intestinal colonization by microencapsulated bacteria and the same not microencapsulated strains has been conducted in a double blind, randomized, cross-over study. The study (April to July 2005) involved 44 healthy volunteers. In particular, participants were divided into 2 groups: group A (21 participants) received a mix of probiotic strains Lactobacillus plantarum LP01 (LMG P-21021) and Bifidobacterium breve BR03 (DSM 16604) in an uncoated form, group B (23 participants) was given the same strains microencapsulated with a gastroresistant material. The not microencapsulated strains were administered at 5 x 10(9) colony forming units/strain/d for 21 days, whereas the microencapsulated bacteria were given at 1 x 10(9) colony forming units/strain/d for 21 days. At the end of the first period of treatment with probiotics a 3 weeks washout phase has been included in the study protocol. At the end of the washout period the groups were crossed: in detail, group A had the microencapsulated and group B the uncoated bacteria. The administered amounts of each strain were the same as the first treatment. The quantitative evaluation of intestinal colonization by strains microencapsulated or not microencapsulated was made by fecal samples examination at the beginning of the clinical trial, after 10 and 21 days of each treatment period. In particular, fecal heterofermentative Lactobacilli and Bifidobacteria have been counted. A statistically significant increase in the fecal amounts of Lactobacilli and Bifidobacteria was recorded in both groups at the end of each treatment compared with d0 or d42 (P<0.0001 and P<0.0001 at d21, P<0.0001 and P<0.0001 at d63 for Lactobacilli and Bifidobacteria, respectively), confirming the ability of the 2 strains to colonize the human gut, either in a gastroprotected form or not. Participants treated with the microencapsulated bacteria reported a kinetics of intestinal colonization quite similar to participants who received not coated strains. Probiotics are able to exert many different beneficial effects on the human host. These effects are mediated by the number of viable cells which reach the gut. The microencapsulation technique used in this study is a valid strategy to significantly improve gastroresistance of strains, thus enhancing their probiotic activity and allowing the use of a 5 times lower amount.
Sasai, Masao; Nakamura, Hiroyuki; Sougawa, Nagako; Sakurai, Yoshinori; Suzuki, Minoru; Lee, Chun Man
2016-03-01
Malignant pleural mesothelioma (MPM) is a refractory cancer of the pleura caused by asbestos exposure. MPM is difficult to treat because it easily disseminates. Boron neutron capture therapy (BNCT) is a radiotherapy in which cancer cells that selectively take up (10)Boron-containing compounds are destroyed, and normal cells are uninjured. Hyaluronan (HA) is a ligand of cluster of differentiation 44 (CD44), that is expressed on MPM cells. In order to enhance BNCT for MPM tumors, we developed a novel HA-containing (10)B (sodium borocaptate: BSH) formulation (HA-BND-S). We examined the efficacy of HA-BND-S using MPM cells and a mouse MPM model. HA-BND-S preferentially bound MPM cells dose-dependently, and increased the cytotoxicity of BNCT compared to BSH in vitro. HA-BND-S administration significantly increased the survival of MPM tumor-bearing mice compared to BSH at the same (10)B dosage in BNCT. Modifying BSH with HA is a promising strategy for enhancing the efficacy of BNCT for therapy of MPM. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Masunaga, Shin-ichiro; Kimura, Sadaaki; Harada, Tomohiro; Okuda, Kensuke; Sakurai, Yoshinori; Tanaka, Hiroki; Suzuki, Minoru; Kondo, Natsuko; Maruhashi, Akira; Nagasawa, Hideko; Ono, Koji
2012-01-01
Background To evaluate the usefulness of a novel 10B-carrier conjugated with an integrin-binding cyclic RGD peptide (GPU-201) in boron neutron capture therapy (BNCT). Methods GPU-201 was synthesized from integrin-binding Arg-Gly-Asp (RGD) consensus sequence of matrix proteins and a 10B cluster 1, 2-dicarba-closo-dodecaborane-10B. Mercaptododecaborate-10B (BSH) dissolved in physiological saline and BSH and GPU-201 dissolved with cyclodextrin (CD) as a solubilizing and dispersing agent were intraperitoneally administered to SCC VII tumor-bearing mice. Then, the 10B concentrations in the tumors and normal tissues were measured by γ-ray spectrometry. Meanwhile, tumor-bearing mice were continuously given 5-bromo-2’-deoxyuridine (BrdU) to label all proliferating (P) cells in the tumors, then treated with GPU-201, BSH-CD, or BSH. Immediately after reactor neutron beam or γ-ray irradiation, during which intratumor 10B concentrations were kept at levels similar to each other, cells from some tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (= P + Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. Results The 10B from BSH was washed away rapidly in all these tissues and the retention of 10B from BSH-CD and GPU-201 was similar except in blood where the 10B concentration from GPU-201 was higher for longer. GPU-201 showed a significantly stronger radio-sensitizing effect under neutron beam irradiation on both total and Q cell populations than any other 10B-carrier. Conclusion A novel 10B-carrier conjugated with an integrin-binding RGD peptide (GPU-201) that sensitized tumor cells more markedly than conventional 10B-carriers may be a promising candidate for use in BNCT. However, its toxicity needs to be tested further. PMID:29147290
Recent Developments on Microencapsulation for Autonomous Corrosion Protection
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Fitzpatrick, Lilliana; Jolley, Scott T.; Surma, Jan M.; Pearman, Benjamin P.; Zhang, Xuejun
2014-01-01
This work concerns recent progress in the development of a multifunctional smart coating based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of desired corrosion control functionalities, such as early corrosion detection and inhibition through corrosion controlled release of corrosion indicators and inhibitors, as well as self-healing agent release when mechanical damage occurs.While proof-of-concept results have been reported previously, more recent efforts have been concentrated in technical developments to improve coating compatibility, synthesis procedure scalability, as well as fine tuning the release property of encapsulated active agents.
Carvalho, I T; Estevinho, B N; Santos, L
2016-04-01
Nowadays, the consumers around the world are increasingly focused on health and beauty. The renewed consumer interest in natural cosmetic products creates the demand for new products and reformulated others with botanical and functional ingredients. In cosmetic products, essential oils (EOs) play a major role as fragrance ingredients. They can optimize its proprieties and preservation, as well as the marketing image of the final product. Microencapsulation of EOs can protect and prevent the loss of volatile aromatic ingredients and improve the controlled release and stability of this core materials. The importance of EOs for cosmetic industry and its microencapsulation was reviewed in this study. Also a briefly introduction about the preparation of microparticles was presented. Some of the most important and usual microencapsulation techniques of EOs, as well as the conventional encapsulating agents, were discussed. Despite the fact that microencapsulation of EOs is a very promising and extremely attractive application area for cosmetic industry, further basic research needs to be carried out, for a better understanding of the biofunctional activities of microencapsulated EOs and its release modulation, as well as the effects of others cosmetic ingredients and the storage time in the microparticles properties. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Bioactive compounds from orange epicarp to enrich fish burgers.
Spinelli, Sara; Lecce, Lucia; Likyova, Desislava; Del Nobile, Matteo Alessandro; Conte, Amalia
2018-05-01
The orange industry produces considerable amounts of by-products, traditionally used for animal feed or fuel production. Most of these by-products could be used as functional ingredients. To assess the potential food application of orange epicarp, different percentages of micro-encapsulated orange extract were added to fresh fish burgers. Then, an in vitro digestion was also carried out, before and after micro-encapsulation, to measure the bio-accessibility of the active compounds. A significant increase of bio-accessibility of bioactive compounds has been observed in the orange epicarp extract after micro-encapsulation by spray-drying. From the sensory point of view, the fish sample enriched with 50 g kg -1 micro-encapsulated extract was the most comparable to the control burger, even if it showed a higher phenolic, flavonoid and carotenoid bio-accessibility. Orange epicarp may be used as a food additive to enhance the health content of food products. The micro-encapsulation is a valid technique to protect the bioactive compounds and increase their bio-accessibility. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Yang, Lijuan; Yang, Daibin; Yan, Xiaojing; Cui, Li; Wang, Zhenying; Yuan, Huizhu
2016-11-01
Chilling stress during germination often causes severe injury. In the present study, maize seed germination and shoot growth under chilling stress were negatively correlated with the dose of tebuconazole in an exponential manner as predicted by the model Y = A + B × e(-x/k). Microencapsulation was an effective means of eliminating potential phytotoxic risk. The gibberellins (GAs) contents were higher after microencapsulation treatment than after conventional treatment when the dose of tebuconazole was higher than 0.12 g AI (active ingredient) kg-1 seed. Further analysis indicated that microencapsulation can stimulate ent-kaurene oxidase (KO) activity to some extent, whereas GA 3-oxidase (GA3ox) and GA 2-oxidase (GA2ox) activities remained similar to those in the control. Genes encoding GA metabolic enzymes exhibited different expression patterns. Transcript levels of ZmKO1 increased in the microcapsule treatments compared to the control. Even when incorporated into microcapsules, tebuconazole led to the upregulation of ZmGA3ox1 at doses of less than 0.12 g AI kg-1 seed and to the upregulation of ZmGA3ox2 when the dose was higher than 0.12 g AI kg-1 seed. With increasing doses of microencapsulated tebuconazole, the transcript levels of ZmGA2ox4, ZmGA2ox5 and ZmGA2ox6 exhibited upward trends, whereas the transcript levels of ZmGA2ox7 exhibited a downward trend.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, C.; Gavin, P.
This report describes research performed at the WSU College of Veterinary Medicine in which a large animal model was developed and used to study the effects of boron neutron capture therapy (BNCT) on normal and neoplastic canine brain tissue. The studies were performed using borocaptate sodium (BSH) and epithermal neutrons and had two major foci: biodistribution of BSH in animals with spontaneously occurring brain tumors; and effects of BNCT in normal and neoplastic brain tissue.
Masunaga, S; Sakurai, Y; Tanaka, H; Suzuki, M; Liu, Y; Kondo, N; Maruhashi, A; Kinashi, Y; Ono, K
2012-01-01
Objectives To evaluate the effects of employing a 10B-carrier and manipulating intratumour hypoxia on local tumour response and lung metastatic potential in boron neutron capture therapy (BNCT) by measuring the response of intratumour quiescent (Q) cells. Methods B16-BL6 melanoma tumour-bearing C57BL/6 mice were continuously given 5-bromo-2′-deoxyuridine (BrdU) to label all proliferating (P) cells. The tumours received reactor thermal neutron beam irradiation following the administration of a 10B-carrier [L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)] in combination with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH). Immediately after the irradiation, cells from some tumours were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (P+Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumour-bearing mice, macroscopic lung metastases were enumerated 17 days after irradiation. Results BPA-BNCT increased the sensitivity of the total tumour cell population more than BSH-BNCT. However, the sensitivity of Q cells treated with BPA was lower than that of BSH-treated Q cells. With or without a 10B–carrier, MTH enhanced the sensitivity of the Q cell population. Without irradiation, nicotinamide treatment decreased the number of lung metastases. With irradiation, BPA-BNCT, especially in combination with nicotinamide treatment, showed the potential to reduce the number of metastases more than BSH-BNCT. Conclusion BSH-BNCT in combination with MTH improves local tumour control, while BPA-BNCT in combination with nicotinamide may reduce the number of lung metastases. PMID:22391496
Abdelbary, A.; El-gendy, N. A.; Hosny, A.
2012-01-01
Glipizide is an effective antidiabetic agent, however, it suffers from relatively short biological half-life. To solve this encumbrance, it is a prospective candidate for fabricating glipizide extended release microcapsules. Microencapsulation of glipizde with a coat of alginate alone or in combination with chitosan or carbomer 934P was prepared employing ionotropic gelation process. The prepared microcapsules were evaluated in vitro by microscopical examination, determination of the particle size, yield and microencapsulation efficiency. The filled capsules were assessed for content uniformity and drug release characteristics. Stability study of the optimised formulas was carried out at three different temperatures over 12 weeks. In vivo bioavailability study and hypoglycemic activity of C9 microcapsules were done on albino rabbits. All formulas achieved high yield, microencapsulation efficiency and extended t1/2. C9 and C19 microcapsules attained the most optimised results in all tests and complied with the dissolution requirements for extended release dosage forms. These two formulas were selected for stability studies. C9 exhibited longer shelf-life and hence was chosen for in vivo studies. C9 microcapsules showed an improvement in the drug bioavailability and significant hypoglycemic activity compared to immediate release tablets (Minidiab® 5 mg). The optimised microcapsule formulation developed was found to produce extended antidiabetic activity. PMID:23626387
Hone, Michelle; Kent, Robert M; Scotto di Palumbo, Alessandro; Bleiel, Sinead B; De Vito, Giuseppe; Egan, Brendan
2017-07-04
Creatine monohydrate represents one of the largest sports supplement markets. Enhancing creatine (CRE) stability in aqueous solutions, such as with microencapsulation, represents innovation potential. Ten physically active male volunteers were randomly assigned in a double-blind design to either placebo (PLA) (3-g maltodextrin; n = 5) or microencapsulated CRE (3-g creatine monohydrate; n = 5) conditions. Experimental conditions involved ingestion of the samples in a 70-mL ready-to-drink format. CRE was delivered in a novel microencapsulation matrix material consisting entirely of hydrolyzed milk protein. Three hours after ingestion, plasma creatine concentrations were unchanged during PLA, and averaged ∼45 μM. During CRE, plasma creatine concentration peaked after 30 min at 101.6 ± 14.9 μM (p < 0.05), representing a 2.3-fold increase over PLA. Thereafter, plasma creatine concentration gradually trended downwards but remained significantly elevated (∼50% above resting levels) 3 hr after ingestion. These results demonstrate that the microencapsulated form of creatine monohydrate reported herein remains bioavailable when delivered in aqueous conditions, and has potential utility in ready-to-drink formulations for creatine supplementation.
Gabbay Alves, Taís Vanessa; Silva da Costa, Russany; Aliakbarian, Bahar; Casazza, Alessandro Alberto; Perego, Patrizia; Carréra Silva Júnior, José Otávio; Ribeiro Costa, Roseane Maria; Converti, Attilio
2017-03-01
The cocoa extract (Theobroma cacao L.) has a significant amount of polyphenols (TP) with potent antioxidant activity (AA). This study aims to optimise microencapsulation of the extract of cocoa waste using chitosan and maltodextrin. Microencapsulation tests were performed according to a Box-Behnken factorial design, and the results were evaluated by response surface methodology with temperature, maltodextrin concentration (MD) and extract flowrate (EF) as independent variables, and the fraction of encapsulated TP, TP encapsulation yield, AA, yield of drying and solubility index as responses. The optimum conditions were: inlet temperature of 170 °C, MD of 5% and EF of 2.5 mL/min. HPLC analysis identified epicatechin as the major component of both the extract and microparticles. TP release was faster at pH 3.5 than in water. These results as a whole suggest that microencapsulation was successful and the final product can be used as a nutrient source for aquatic animal feed. Highlights Microencapsulation is optimised according to a factorial design of the Box-Behnken type. Epicatechin is the major component of both the extract and microcapsules. The release of polyphenols from microcapsules is faster at pH 3.5 than in water.
Rached, Irada; Barros, Lillian; Fernandes, Isabel P; Santos-Buelga, Celestino; Rodrigues, Alírio E; Ferchichi, Ali; Barreiro, Maria Filomena; Ferreira, Isabel C F R
2016-03-01
Bioactive extracts were obtained from powdered carob pulp through an ultrasound extraction process and then evaluated in terms of antioxidant activity. Ten minutes of ultrasonication at 375 Hz were the optimal conditions leading to an extract with the highest antioxidant effects. After its chemical characterization, which revealed the preponderance of gallotannins, the extract (free and microencapsulated) was incorporated in yogurts. The microspheres were prepared using an extract/sodium alginate ratio of 100/400 (mg mg(-1)) selected after testing different ratios. The yogurts with the free extract exhibited higher antioxidant activity than the samples added with the encapsulated extracts, showing the preserving role of alginate as a coating material. None of the forms significantly altered the yogurt's nutritional value. This study confirmed the efficiency of microencapsulation to stabilize functional ingredients in food matrices maintaining almost the structural integrity of polyphenols extracted from carob pulp and furthermore improving the antioxidant potency of the final product.
NASA Astrophysics Data System (ADS)
Whateley, T. L.; Poncelet, D.
2005-06-01
Microencapsulation by solvent evaporation is a novel technique to enable the controlled delivery of active materials.The controlled release of drugs, for example, is a key challenge in the pharmaceutical industries. Although proposed several decades ago, it remains largely an empirical laboratory process.The Topical Team has considered its critical points and the work required to produce a more effective technology - better control of the process for industrial production, understanding of the interfacial dynamics, determination of the solvent evaporation profile, and establishment of the relation between polymer/microcapsule structures.The Team has also defined how microgravity experiments could help in better understanding microencapsulation by solvent evaporation, and it has proposed a strategy for a collaborative project on the topic.
Inhibition of platelet function by low-dose plain and micro-encapsulated acetylsalicylic acid.
Waldemar, G; Petersen, P; Boysen, G; Knudsen, J B
1988-04-15
The effect of two acetylsalicylic acid (ASA) formulations, plain (Magnyl) and micro-encapsulated (Globentyl), on platelet aggregation, thromboxane formation, and bleeding time was studied in 12 healthy volunteers in a randomized double-blind cross-over study. All subjects were treated with Magnyl and Globentyl (75 mg daily) in periods of 2 weeks, separated by a wash-out period of 2 weeks. Both drugs significantly depressed platelet aggregation and thromboxane formation and prolonged bleeding time without difference in mode of action of the drugs. It is concluded that significant inhibition of platelet activity may be achieved by low-dose ASA treatment with micro-encapsulated as well as with plain formulations.
Mooranian, Armin; Tackechi, Ryu; Jamieson, Emma; Morahan, Grant; Al-Salami, Hani
2017-06-01
Recently we demonstrated that microencapsulation of a murine pancreatic β-cell line using an alginate-ursodeoxycholic acid (UDCA) matrix produced microcapsules with good stability and cell viability. In this study, we investigated if translation of this formulation to microencapsulation of primary β-cells harvested from mature double-transgenic healthy mice would also generate stable microcapsules with good cell viability. Islets of Langerhans were isolated from Ngn3-GFP/RIP-DsRED mice by intraductal collagenase P digestion and density gradient centrifugation, dissociated into single cells and the β-cell population purified by Fluorescence Activated Cell Sorting. β-cells were microencapsulated using either alginate-poly-l-ornithine (F1; control) or alginate-poly-l-ornithine-UDCA (F2; test) formulations. Microcapsules were microscopically examined and microencapsulated cells were analyzed for viability, insulin and cytokine release, 2 days post-microencapsulation. Microcapsules showed good uniformity and morphological characteristics and even cell distribution within microcapsules with or without UDCA. Two days post microencapsulation cell viability, mitochondrial ATP and insulin production were shown to be optimized in the presence of UDCA whilst production of the proinflammatory cytokine IL-1β was reduced. Contradictory to our previous studies, UDCA did not reduce production of any other pro-inflammatory biomarkers. These results suggest that UDCA incorporation improves microcapsules' physical and morphological characteristics and improves the viability and function of encapsulated mature primary pancreatic β-cells.
Schmid, T E; Canella, L; Kudejova, P; Wagner, F M; Röhrmoser, A; Schmid, E
2015-03-01
Provided that a selective accumulation of (10)B-containing compounds is introduced in tumor cells, following irradiation by thermal neutrons produces high-LET alpha-particles ((4)He) and recoiling lithium-7 ((7)Li) nuclei emitted during the capture of thermalized neutrons (0.025 eV) from (10)B. To estimate the biological effectiveness of this boron neutron capture [(10)B(n,α)(7)Li] reaction, the chromosome aberration assay and the flow cytometry apoptosis assay were applied. At the presence of the clinically used compounds BSH (sodium borocaptate) and BPA (p-boronophenylalanine), human lymphocytes were irradiated by sub-thermal neutrons. For analyzing chromosome aberrations, human lymphocytes were exposed to thermally equivalent neutron fluences of 1.82 × 10(11) cm(-2) or 7.30 × 10(11) cm(-2) (corresponding to thermal neutron doses of 0.062 and 0.248 Gy, respectively) in the presence of 0, 10, 20, and 30 ppm of BSH or BPA. Since the kerma coefficient of blood increased by 0.864 × 10(-12) Gy cm(2) per 10 ppm of (10)B, the kerma coefficients in blood increase from 0.34 × 10(-12) cm(2) (blood without BSH or BPA) up to 2.93 × 10(-12) Gy cm(2) in the presence of 30 ppm of (10)B. For the (10)B(n, α)(7)Li reaction, linear dose-response relations for dicentrics with coefficients α = 0.0546 ± 0.0081 Gy(-1) for BSH and α = 0.0654 ± 0.0075 Gy(-1) for BPA were obtained at 0.062 Gy as well as α = 0.0985 ± 0.0284 Gy(-1) for BSH and α = 0.1293 ± 0.0419 Gy(-1) for BPA at 0.248 Gy. At both doses, the corresponding (10)B(n, α)(7)Li reactions from BSH and BPA are not significantly different. A linear dose-response relation for dicentrics also was obtained for the induction of apoptosis by the (10)B(n, α)(7)Li reaction at 0.248 Gy. The linear coefficients α = 0.0249 ± 0.0119 Gy(-1) for BSH and α = 0.0334 ± 0.0064 Gy(-1) for BPA are not significantly different. Independently of the applied thermal neutron doses of 0.062 Gy or 0.248 Gy, the (10)B(n, α)(7)Li reaction from 30 ppm BSH or BPA induced an apparent RBE of about 2.2 for the production of dicentrics as compared to exposure to thermal neutrons alone. Since the apparent RBE value is defined as the product of the RBE of a thermal neutron dose alone times a boron localization factor which depends on the concentration of a (10)B-containing compound, this localization factor determines the biological effectiveness of the (10)B(n, α)(7)Li reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masunaga, Shin-ichiro; Kasaoka, Satoshi; Maruyama, Kazuo
2006-12-01
Purpose: To evaluate GB-10-encapsulating transferrin (TF)-pendant-type polyethyleneglycol (PEG) liposomes as tumor-targeting {sup 1}B-carriers for boron neutron capture therapy. Methods and Materials: A free mercaptoundecahydrododecaborate-{sup 1}B (BSH) or decahydrodecaborate-{sup 1}B (GB-10) solution, bare liposomes, PEG liposomes, or TF-PEG liposomes were injected into SCC VII tumor-bearing mice, and {sup 1}B concentrations in the tumors and normal tissues were measured by {gamma}-ray spectrometry. Meanwhile, tumor-bearing mice were continuously given 5-bromo-2'-deoxyuridine (BrdU) to label all intratumor proliferating cells, then injected with these {sup 1}B-carriers containing BSH or GB-10 in the same manner. Right after thermal neutron irradiation, the response of quiescent (Q) cells wasmore » assessed in terms of the micronucleus frequency using immunofluorescence staining for BrdU. The frequency in the total tumor cells was determined from the BrdU nontreated tumors. Results: Transferrin-PEG liposomes showed a prolonged retention in blood circulation, low uptake by reticuloendothelial system, and the most enhanced accumulation of {sup 1}B in solid tumors. In general, the enhancing effects were significantly greater in total cells than Q cells. In both cells, the enhancing effects of GB-10-containing {sup 1}B-carriers were significantly greater than BSH-containing {sup 1}B-carriers, whether loaded in free solution or liposomes. In both cells, whether BSH or GB-10 was employed, the greatest enhancing effect was observed with TF-PEG liposomes followed in decreasing order by PEG liposomes, bare liposomes, and free BSH or GB-10 solution. In Q cells, the decrease was remarkable between PEG and bare liposomes. Conclusions: In terms of biodistribution characteristics and tumor cell-killing effect as a whole, including Q cells, GB-10 TF-PEG liposomes were regarded as promising {sup 1}B-carriers.« less
Sousdaleff, Mirian; Baesso, Mauro Luciano; Medina Neto, Antonio; Nogueira, Ana Cláudia; Marcolino, Vanessa Aparecida; Matioli, Graciette
2013-01-30
Stability of potassium norbixinate and curcumin by microencapsulation with maltodextrin DE20 and freeze-drying was evaluated as a function of exposition to light, air, different pH, water solubility, and in food applications. The best results were obtained with microencapsulated potassium norbixinate 1:20, which, when vacuum-packed and in the presence of natural light, showed color retention of 78%, while microencapsulated curcumin 1:20 showed color retention of 71%. Differential scanning calorimetry and thermogravimetry provided an indication of interaction between colorants and maltodextrin. Photoacoustic spectroscopy (PAS) showed that free and microencapsulated colorants exhibited high rates of absorption throughout the measured spectral region. This work evidenced that the freeze-drying process is favorable for microencapsulation of curcumin by maltodextrin, providing improved solubility to the microencapsulated colorant. Both microencapsulated colorants showed relevant results for use in a wide range of pH and food applications. The PAS technique was useful for the evaluation of the stability of free and microencapsulated colorants.
Otálora, María Carolina; Carriazo, José Gregorio; Iturriaga, Laura; Nazareno, Mónica Azucena; Osorio, Coralia
2015-11-15
The microencapsulation of betalains from cactus fruit by spray drying was evaluated as a stabilization strategy for these pigments. The betalains used as active agent were extracted from purple fruits of Opuntia ficus-indica (BE) and encapsulated with maltodextrin and cladode mucilage MD-CM and only with MD. The microcapsulates were characterized by scanning electron microscopy (SEM), thermal analysis (TGA-DSC), tristimulus colorimetry, as well as, their humidity, water activity and dietary fiber content were also determined. The active agent content was measured by UV-Vis spectrophotometry and its composition confirmed by HPLC-ESIMS. A pigment storage stability test was performed at 18 °C and different relative humidities. The addition of CM in the formulation increased the encapsulation efficiency, diminished the moisture content, and allowed to obtain more uniform size and spherical particles, with high dietary fiber content. These microencapsulates are promising functional additive to be used as natural colorant in the food industry. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lam, P-L; Gambari, R; Kok, S H-L; Lam, K-H; Tang, J C-O; Bian, Z-X; Lee, K K-H; Chui, C-H
2015-02-01
Aspergillus niger (A. niger) is a common species of Aspergillus molds. Cutaneous aspergillosis usually occurs in skin sites near intravenous injection and approximately 6% of cutaneous aspergillosis cases which do not involve burn or HIV-infected patients are caused by A. niger. Biomaterials and biopharmaceuticals produced from microparticle-based drug delivery systems have received much attention as microencapsulated drugs offer an improvement in therapeutic efficacy due to better human absorption. The frequently used crosslinker, glutaraldehyde, in gelatin-based microencapsulation systems is considered harmful to human beings. In order to tackle the potential risks, agarose has become an alternative polymer to be used with gelatin as wall matrix materials of microcapsules. In the present study, we report the eco-friendly use of an agarose/gelatin-based microencapsulation system to enhance the antifungal activity of gallic acid and reduce its potential cytotoxic effects towards human skin keratinocytes. We used optimal parameter combinations, such as an agarose/gelatin ratio of 1:1, a polymer/oil ratio of 1:60, a surfactant volume of 1% w/w and a stirring speed of 900 rpm. The minimum inhibitory concentration of microencapsulated gallic acid (62.5 µg/ml) was significantly improved when compared with that of the original drug (>750 µg/ml). The anti-A. niger activity of gallic acid -containing microcapsules was much stronger than that of the original drug. Following 48 h of treatment, skin cell survival was approximately 90% with agarose/gelatin microcapsules containing gallic acid, whereas cell viability was only 25-35% with free gallic acid. Our results demonstrate that agarose/gelatin-based microcapsules containing gallic acid may prove to be helpful in the treatment of A. niger-induced skin infections near intravenous injection sites.
Microencapsulation of Drugs in the Microgravity Environment of the United States Space Shuttle.
safety tested, and flew hardware we call the Microencapsulation in Space (MIS) experiment. The MIS experiment flew on Space Shuttle Discovery...of the same composition. From our experience, these improved properties should improve the release properties of microencapsulated drugs and...eliminate unwanted residual process aids. Furthermore, it is likely that microencapsulation in space will let us encapsulate drugs that cannot be microencapsulated on the earth
Spray Dried Extract of Phormidium valderianum as a Promising Source of Natural Antioxidant
Bhattacharjee, Paramita; Satpati, Gour Gopal; Pal, Ruma
2014-01-01
Microencapsulation of antioxidant-rich fraction obtained by supercritical carbon dioxide extraction (at 50°C, 500 bar with extraction time of 90 min, and flow rate of CO2 at 2 L/min) of lyophilized biomass of Phormidium valderianum was carried out in a spray dryer using maltodextrin and gum arabic. Microencapsulation conditions that provided the best combination of phytochemical properties such as antioxidant activity, phenolic content, and reducing power with reasonable powder yield were an inlet temperature of 130°C and wall material composition as maltodextrin: gum arabic = 70 : 30. Toxicological study reported that the Anatoxin-a content of this encapsulated powder was below the limit of detection of HPLC. Storage study established that encapsulation of this antioxidant-rich algal extract resulted in eight times enhancement of half-life (T 1/2) values. The release profile of microencapsulated antioxidant-rich fraction from the encapsulated powder was found to follow first order anomalous transport kinetics. Therefore, this microencapsulated algal extract with minimum toxicity is a source of natural antioxidant and could have promising use as novel dietary supplement. PMID:26904654
Encapsulation of new active ingredients.
Onwulata, C I
2012-01-01
The organic construct consumed as food comes packaged in units that carry the active components and protect the entrapped active materials until delivered to targeted human organs. The packaging and delivery role is mimicked in the microencapsulation tools used to deliver active ingredients in processed foods. Microencapsulation efficiency is balanced against the need to access the entrapped nutrients in bioavailable forms. Encapsulated ingredients boosted with bioactive nutrients are intended for improved health and well-being and to prevent future health problems. Presently, active ingredients are delivered using new techniques, such as hydrogels, nanoemulsions, and nanoparticles. In the future, nutraceuticals and functional foods may be tailored to individual metabolic needs and tied to each person's genetic makeup. Bioactive ingredients provide health-enhancing nutrients and are protected through encapsulation processes that shield the active ingredients from deleterious environments.
Hot-melt extrusion microencapsulation of quercetin for taste-masking.
Khor, Chia Miang; Ng, Wai Kiong; Kanaujia, Parijat; Chan, Kok Ping; Dong, Yuancai
2017-02-01
Besides its poor dissolution rate, the bitterness of quercetin also poses a challenge for further development. Using carnauba wax, shellac or zein as the shell-forming excipient, this work aimed to microencapsulate quercetin by hot-melt extrusion for taste-masking. In comparison with non-encapsulated quercetin, the microencapsulated powders exhibited significantly reduced dissolution in the simulated salivary pH 6.8 medium indicative of their potentially good taste-masking efficiency in the order of zein > carnauba wax > shellac. In vitro bitterness analysis by electronic tongue confirmed the good taste-masking efficiency of the microencapsulated powders. In vitro digestion results showed that carnauba wax and shellac-microencapsulated powders presented comparable dissolution rate with the pure quercetin in pH 1.0 (gastric) and 6.8 (intestine) medium; while zein-microencapsulated powders exhibited a remarkably slower dissolution rate. Crystallinity of quercetin was slightly reduced after microencapsulation while its chemical structure remained unchanged. Hot-melt extrusion microencapsulation could thus be an attractive technique to produce taste-masked bioactive powders.
Jung, Moon Hee; Seong, Pil Nam; Kim, Myung Hwan; Myong, Na-Hye
2013-01-01
The application of polyphenols has attracted great interest in the field of functional foods and nutraceuticals due to their potential health benefits in humans. However, the effectiveness of polyphenols depends on their bioactivity and bioavailability. In the present study, the bioactive component from green tea extract (GTE) was administrated orally (50 mg/kg body weight/day) as free or in a microencapsulated form with maltodextrin in rats fed a high fructose diet. High fructose diet induced features of metabolic syndrome including hypertriglyceridemia, hyperuricemia, increased serum total cholesterol, and retroperitoneal obesity. In addition, myocardial fibrosis was increased. In rats receiving high fructose diet, the lowering of blood triglycerides, total cholesterol, non esterified fatty acid (NEFA) and uric acid, as well as the reduction in final body weight and retroperitoneal fat weight associated with the administration of GTE, led to a reversal of the features of metabolic syndrome (P < 0.05). In particular, the administration of microencapsulated GTE decreased myocardial fibrosis and increased liver catalase activity consistent with a further alleviation of serum NEFA, and hyperuricemia compared to administration of GTE. Taken together, our results suggest that microencapsulation of the bioactive components of GTE might have a protective effect on cardiovasucular system by attenuating the adverse features of myocardial fibrosis, decreasing uric acid levels and increasing hepatic catalase activity effectively by protecting their bioactivities. PMID:24133615
Antioxidative activity of microencapsulated gamma-oryzanol on high cholesterol-fed rats.
Suh, Mun-Hee; Yoo, Sang-Ho; Chang, Pahn-Shick; Lee, Hyeon Gyu
2005-12-14
The effectiveness of microencapsulated gamma-oryzanol (M-gamma-OZ) was evaluated as an antioxidant in Sprague-Dawley rats. Lard containing 100 ppm of gamma-OZ (HCD III) or 100 ppm of M-gamma-OZ (HCD IV) was heated in an oven for 7 days, and the heat-treated lard as an ingredient in a high cholesterol diet (HCD) formulation was tested for analyzing in vivo cholesterol and lipid profiles. The HCDs containing fresh lard (HCD I) and heat-treated lard (HCD II) were fed to the rats for 4 weeks as control groups A and B, respectively, in this experiment. The liver thiobarbituric acid reactive substances values of group C (fed with HCD III) and group D (with HCD IV) were significantly lower (p < 0.05) than that of negative control, group B. One of the cholesterol oxidation products, 7-ketocholesterol, was not detected from group D, indicating that microencapsulation preserved antioxidative activity effectively. The levels of serum total cholesterol and lipoproteins, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein were also affected by heat-induced lipid oxidation.The M-gamma-OZ evidently decreased LDL-cholesterol content and increased HDL-cholesterol in blood samples of tested rats. These results suggested that the M-gamma-OZ was not only effective in inhibiting the hypercholesterolemia of serum and liver but also reduced the oxidation degree of lipids and cholesterol. Therefore, this microencapsulation can be a good potential technique to protect the antioxidant activity of gamma-OZ from heat-induced lipid oxidation.
Active self-healing encapsulation of vaccine antigens in PLGA microspheres
Desai, Kashappa-Goud H.; Schwendeman, Steven P.
2013-01-01
Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer, and d) provide improved in vitro controlled release of antigenic TT. PMID:23103983
Targeting glioma stem cells enhances anti-tumor effect of boron neutron capture therapy
Sun, Ting; Li, Yanyan; Huang, Yulun; Zhang, Zizhu; Yang, Weilian; Du, Ziwei; Zhou, Youxin
2016-01-01
The uptake of (10)boron by tumor cells plays an important role for cell damage in boron neutron capture therapy (BNCT). CD133 is frequently expressed in the membrane of glioma stem cells (GSCs), resistant to radiotherapy and chemotherapy, and represents a potential therapeutic target. To increase (10)boron uptake in GSCs, we created a polyamido amine dendrimer, conjugated CD133 monoclonal antibodies, encapsulating mercaptoundecahydrododecaborate (BSH) in void spaces, and monitored the uptake of the bioconjugate nanoparticles by GSCs in vitro and in vivo. Fluorescence microscopy showed the specific uptake of the bioconjugate nanoparticles by CD133-positive GSCs. Treatment with the biconjugate nanoparticles resulted in a significant lethal effect after neutron radiation due to efficient and CD133-independent cellular targeting and uptake in CD133-expressing GSCs. A significantly longer survival occurred in combination with the biconjugate nanoparticles and BSH compared with BSH alone in human intracranial GBM models employing CD133-positive GSCs xenografts. Our data demonstrated that this bioconjugate nanoparticle targets human CD133-positive GSCs and is a potential boron agent in BNCT. PMID:27191269
Targeting glioma stem cells enhances anti-tumor effect of boron neutron capture therapy.
Sun, Ting; Li, Yanyan; Huang, Yulun; Zhang, Zizhu; Yang, Weilian; Du, Ziwei; Zhou, Youxin
2016-07-12
The uptake of (10)boron by tumor cells plays an important role for cell damage in boron neutron capture therapy (BNCT). CD133 is frequently expressed in the membrane of glioma stem cells (GSCs), resistant to radiotherapy and chemotherapy, and represents a potential therapeutic target. To increase (10)boron uptake in GSCs, we created a polyamido amine dendrimer, conjugated CD133 monoclonal antibodies, encapsulating mercaptoundecahydrododecaborate (BSH) in void spaces, and monitored the uptake of the bioconjugate nanoparticles by GSCs in vitro and in vivo. Fluorescence microscopy showed the specific uptake of the bioconjugate nanoparticles by CD133-positive GSCs. Treatment with the biconjugate nanoparticles resulted in a significant lethal effect after neutron radiation due to efficient and CD133-independent cellular targeting and uptake in CD133-expressing GSCs. A significantly longer survival occurred in combination with the biconjugate nanoparticles and BSH compared with BSH alone in human intracranial GBM models employing CD133-positive GSCs xenografts. Our data demonstrated that this bioconjugate nanoparticle targets human CD133-positive GSCs and is a potential boron agent in BNCT.
The human microbiome and bile acid metabolism: dysbiosis, dysmetabolism, disease and intervention.
Jones, Mitchell L; Martoni, Christopher J; Ganopolsky, Jorge G; Labbé, Alain; Prakash, Satya
2014-04-01
Recent evidence indicates that the human gut microbiome plays a significant role in health and disease. Dysbiosis, defined as a pathological imbalance in a microbial community, is becoming increasingly appreciated as a 'central environmental factor' that is both associated with complex phenotypes and affected by host genetics, diet and antibiotic use. More recently, a link has been established between the dysmetabolism of bile acids (BAs) in the gut to dysbiosis. BAs, which are transformed by the gut microbiota, have been shown to regulate intestinal homeostasis and are recognized as signaling molecules in a wide range of metabolic processes. This review will examine the connection between BA metabolism as it relates to the gut microbiome and its implication in health and disease. A disrupted gut microbiome, including a reduction of bile salt hydrolase (BSH)-active bacteria, can significantly impair the metabolism of BAs and may result in an inability to maintain glucose homeostasis as well as normal cholesterol breakdown and excretion. To better understand the link between dysbiosis, BA dysmetabolism and chronic degenerative disease, large-scale metagenomic sequencing studies, metatranscriptomics, metaproteomics and metabolomics should continue to catalog functional diversity in the gastrointestinal tract of both healthy and diseased populations. Further, BSH-active probiotics should continue to be explored as treatment options to help restore metabolic levels.
Mihalcea, Liliana; Turturică, Mihaela; Barbu, Vasilica; Ioniţă, Elena; Pătraşcu, Livia; Cotârleţ, Mihaela; Dumitraşcu, Loredana; Aprodu, Iuliana; Râpeanu, Gabriela; Stănciuc, Nicoleta
2018-10-01
Sea buckthorn carotenoids extracted using CO 2 supercritical fluids method were encapsulated within whey proteins isolate by transglutaminase (TG) mediated crosslinking reaction, coacervation and freeze drying. The encapsulation efficiency was 36.23 ± 1.58%, with β-carotene the major carotenoid present in the powder. The confocal analysis revealed that TG-ase mediated cross-linking reaction enhanced the complexes stability to such a manner that a double microencapsulation was performed. The powder showed an antioxidant activity of 2.16 ± 0.14 mMol Trolox/g DW and an antifungal activity against Penicillium expansum MIUG M11. Four variants of domestic ice creams were obtained, with a total carotenoids content variation of 1.63 ± 0.03 mg/g D.W. in sample with 2% powder and 6.38 ± 0.04 mg/g D.W. in samples with 4% extract, having satisfactory antioxidant activity. The storage stability test showed a decrease in both total carotenoids content and antioxidant activity in all samples during 21 days at -18 °C. A protective effect of microencapsulation was evidenced. Copyright © 2018 Elsevier Ltd. All rights reserved.
Local Anesthetic Microencapsulation.
1983-03-18
Polylactide Availability 2 2. Microencapsulation of Etidocaine-HCl 2 3. Porosimetry Measurements 2 B. Stability of Stored Microcapsules 8 C. In Vivo... Microencapsulation 3 Table 2 Etidocaine-HCl Microcapsules Size Distribution 4 Table 3 Porosimetry Data on Etidocaine-HCl Microcapsules (70% Drug, 106...rapid releasing etidocaine microcapsules can provide long term anesthesia (e.g., 4mg of microencapsulated etidocaine-HCl provided anesthesia after five
Local Anesthetic Microencapsulation.
1983-11-04
tollowing I.M. injection of microencapsulated lidocaine and etidocaine than following solution injections. Local toxicity of these microcapsule injections...Distribution 41 Table 12 Processing Summary of Lidocaine (Base) 43 Microencapsulation Table 13 Lidocaine (Base) Microcapsule Size 44 Distribution...Table 14 Processing Summary of Et’idocaine-HCl 45 Microencapsulation Table 15 Etidocaine-HCl Microcapsule Size 47 Distribution Table 16 Process Summary
Trace Organic Analysis of Microencapsulated Materials
1989-11-01
chromatography Box-Behnken experimental design Microencapsulated pesticides Sur factants Emulsifiers Polymer shell/walls Microcapsule cores Fiber optic... microencapsulation field is given in Bibliography 10.1, (page 38), including references in microemulsions, microcapsules , polymeric/liposome delivery...CHEMICAL RESEARCH, r-i DEVELOPMENT . ENGINEERING CRDEC-CR-0S8-O CENTER (GC-TR-89-172-001 00 CD TRACE ORGANIC ANALYSIS OF MICROENCAPSULATED MATERIALS
LDRD final report on microencapsulated immunoreagents for development of one-step ELISA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, C.C.; Singh, A.K.
1997-08-01
Microencapsulation of biological macromolecules was investigated as a method for incorporating the necessary immunoreagents into an improved enzyme-linked immunosorbant assay (ELISA) package that would self-develop. This self-contained ELISA package would eliminate the need for a trained technician to perform multiple additions of immunoreagent to the assay. Microencapsulation by insolution drying was selected from the many available microencapsulation methods, and two satisfactory procedures for microencapsulation of proteins were established. The stability and potential for rapid release of protein from these microencapsulates was then evaluated. The results suggest that the chosen method for protein entrapment produces microcapsules with a considerable amount ofmore » protein in the walls making these particular microcapsules unsuitable for their intended use.« less
Lin, Pei-Pei; Hsieh, You-Miin; Zhang, Zi-yi; Wu, Hui-Ching; Huang, Chun-Chih
2014-01-01
This study collected different probiotic isolates from animal and plant sources to evaluate the bile-salt hydrolase activity of probiotics in vitro. The deconjugation potential of bile acid was determined using high-performance liquid chromatography. HepG2 cells were cultured with probiotic strains with high BSH activity. The triglyceride (TG) and apolipoprotein B (apo B) secretion by HepG2 cells were evaluated. Our results show that the BSH activity and bile-acid deconjugation abilities of Pediococcus acidilactici NBHK002, Bifidobacterium adolescentis NBHK006, Lactobacillus rhamnosus NBHK007, and Lactobacillus acidophilus NBHK008 were higher than those of the other probiotic strains. The cholesterol concentration in cholesterol micelles was reduced within 24 h. NBHK007 reduced the TG secretion by 100% after 48 h of incubation. NBHK002, NBHK006, and NBHK007 could reduce apo B secretion by 33%, 38%, and 39%, respectively, after 24 h of incubation. The product PROBIO S-23 produced a greater decrease in the total concentration of cholesterol, low-density lipoprotein, TG, and thiobarbituric acid reactive substance in the serum or livers of hamsters with hypercholesterolemia compared with that of hamsters fed with a high-fat and high-cholesterol diet. These results show that the three probiotic strains of lactic acid bacteria are better candidates for reducing the risk of cardiovascular disease. PMID:25538960
Antitumor effect of boron nitride nanotubes in combination with thermal neutron irradiation on BNCT.
Nakamura, Hiroyuki; Koganei, Hayato; Miyoshi, Tatsuro; Sakurai, Yoshinori; Ono, Koji; Suzuki, Minoru
2015-01-15
The first BNCT antitumor effects of BNNTs toward B16 melanoma cells were demonstrated. The use of DSPE-PEG2000 was effective for preparation of the BNNT-suspended aqueous solution. BNNT-DSPE-PEG2000 accumulated in B16 melanoma cells approximately three times higher than BSH and the higher BNCT antitumor effect was observed in the cells treated with BNNT-DSPE-PEG2000 compared to those treated with BSH, indicating that BNNT-DSPE-PEG2000 would be a possible candidate as a boron delivery vehicle for BNCT. Copyright © 2014 Elsevier Ltd. All rights reserved.
Song, Jiao J; Tian, Wen J; Kwok, Lai-Yu; Wang, Ya L; Shang, Yi N; Menghe, Bilige; Wang, Jun G
2017-10-01
The in vivo effects of administering free and microencapsulated Lactobacillus plantarum LIP-1 cells (2·0×109 colony-forming units/d) were evaluated in high-fat-diet-induced hyperlipidaemic rats. Results from real-time quantitative PCR targeting to LIP-1 cells showed a higher colon colonisation count of LIP-1 in the rats receiving microencapsulated cells compared with free cells (P<0·05). Moreover, the microencapsulated LIP-1 treatment resulted in a more obvious lipid-lowering effect (P<0·05). Meanwhile, their faecal samples had significantly less lipopolysaccharide-producing bacteria (especially Bilophila, Sutterella and Oscillibacter) and mucosa-damaging bacteria (Bilophila and Akkermansia muciniphila), whereas significantly more SCFA-producing bacteria (P<0·05) (namely Lactobacillus, Alloprevotella, Coprococcus, Eubacterium and Ruminococcus) and bacteria that potentially possessed bile salt hydrolase activity (Bacteroides, Clostridium, Eubacterium and Lactobacillus), and other beneficial bacteria (Alistipes and Turicibacter). Further, Spearman's correlation analysis showed significant correlations between some of the modulated gut bacteria and the serum lipid levels. These results together confirm that microcapsulation enhanced the colon colonisation of LIP-1 cells, which subsequently exhibited more pronounced effects in improving the gut microbiota composition of hyperlipidaemic rats and lipid reduction.
Alikhani-Koupaei, Majid; Mazlumzadeh, Meisam; Sharifani, Mohamadmehdi; Adibian, Mohamad
2014-01-01
Fresh button mushrooms (Agaricus bisporus L.) are sensitive to browning, water loss, and microbial attack. The short shelf-life of mushrooms is an impediment to the distribution and marketing of the fresh product. Essential oils outstand as an alternative to chemical preservatives and their use in foods meets the demands of consumers for natural products. To resolve controlled release of oil and increase in antioxidant and antimicrobial activities, the oil was incorporated into microcapsules. Effects of microcapsulated thyme (Thymus vulgaris L.) and rosemary (Rosmarinus officinalis L.) on quality of fresh button mushroom were compared. Physicochemical qualities were evaluated during 15 days of storage at 4 ± 0.5°C. All treatments prevented product weight loss and decrease in polyphenoloxidase and peroxidase activities during storage. Color and firmness, microbiological analysis, and total phenolic content caused the least change. With use of microencapsulated oils, mushrooms were within acceptable limits during 10 days of storage. Microencapsulated rosemary oil produced the highest beneficial effects and has potential to improve quality of button mushrooms and extend shelf-life. PMID:25473510
Francisco, Cristhian R L; Heleno, Sandrina A; Fernandes, Isabel P M; Barreira, João C M; Calhelha, Ricardo C; Barros, Lillian; Gonçalves, Odinei Hess; Ferreira, Isabel C F R; Barreiro, Maria Filomena
2018-04-15
Mushroom extracts contain bioactive compounds potentially useful to functionalize foodstuffs. Herein, alcoholic extracts of Agaricus bisporus were studied for their bioactivity and viability as functional ingredients in a food product with high water content (yogurt). Extracts were microencapsulated (to improve their stability and hydrophilicity) by spray-drying, using maltodextrin crosslinked with citric acid as encapsulating material. The effect of thermal treatment (after atomization) on crosslinking and bioactivity of microspheres was tested. The incorporation of free and thermally untreated forms resulted in yogurts with higher initial antioxidant activity (EC 50 values: 214 and 272 mg.mL -1 ) that decreased after 7 days (EC 50 values: 248 and 314 mg.mL -1 ). Contrarily, thermally treated microencapsulated extracts showed higher antioxidant activity after the same period (EC 50 values, 0 days: 106 mg.mL -1 ; 7 days: 48.7 mg.mL -1 ), in result of an effective protection provided by microencapsulation with crosslinked maltodextrin and citric acid. Functionalized yogurts showed an overall maintenance of nutritional properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
Saha, Shyamali; Malhotra, Meenakshi; Kahouli, Imen; Prakash, Satya
2013-01-01
Microencapsulation is a technology that has shown significant promise in biotherapeutics, and other applications. It has been proven useful in the immobilization of drugs, live mammalian and bacterial cells and other cells, and other biopharmaceutics molecules, as it can provide material structuration, protection of the enclosed product, and controlled release of the encapsulated contents, all of which can ensure efficient and safe therapeutic effects. This paper is a comprehensive review of microencapsulation and its latest developments in the field. It provides a comprehensive overview of the technology and primary goals of microencapsulation and discusses various processes and techniques involved in microencapsulation including physical, chemical, physicochemical, and other methods involved. It also summarizes the state-of-the-art successes of microencapsulation, specifically with regard to the encapsulation of microorganisms, mammalian cells, drugs, and other biopharmaceutics in various diseases. The limitations and future directions of microencapsulation technologies are also discussed. PMID:26555963
Evaluation of Eudragit® Retard Polymers for the Microencapsulation of Alpha-Lipoic Acid.
Pecora, Tiziana M G; Musumeci, Teresa; Musumeci, Lucrezia; Fresta, Massimo; Pignatello, Rosario
2016-01-01
Microencapsulation of natural antioxidants in polymeric systems represents a possible strategy for improving the oral bioavailability of compounds that are otherwise poorly soluble. α-lipoic acid (ALA) was microencapsulated with polymethacrylate polymers (blends at various ratios of Eudragit® RS100 and RL100 resins). Microspheres were produced by solvent displacement of an ethanol cosolution of ALA and polymers; the microsuspensions were then freeze-dried, using trehalose as a cryoprotector. Microspheres were characterized in the solid state for micromeritic properties and drug loading, as well as by infrared spectroscopy, powder X-ray diffractometry and differential scanning calorimetry. The antioxidant activity of free and encapsulated ALA was assessed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. In vitro release studies, performed in simulated gastric (pH 1.2) and intestinal fluid (pH 6.8), showed that, depending on polymer composition and drug-to-polymer ratio, ALA release can be slowed down, compared to the dissolution pattern of the free drug. Solid-state characterization confirmed the chemical stability of ALA in the microspheres, suggesting that ALA did not develop strong interactions with the polymer and was present in an amorphous or a disordered-crystalline state within the polymer network. As indicated by the DPPH assay, the microencapsulation of ALA in Eudragit® Retard matrices did not alter its antioxidant activity. ALA was effectively encapsulated in Eudragit® Retard matrices, showing a chemical stability up to 6 months at room conditions and at 40°C. Moreover, since the drug maintained its antioxidant activity in vitro, the potential application of these microparticulate systems for oral administration would deserve further studies.
Microencapsulation techniques to develop formulations of insulin for oral delivery: a review.
Cárdenas-Bailón, Fernando; Osorio-Revilla, Guillermo; Gallardo-Velázquez, Tzayhrí
2013-01-01
Oral insulin delivery represents one of the most challenging goals for pharmaceutical industry. In general, it is accepted that oral administration of insulin would be more accepted by patients and insulin would be delivered in a more physiological way than the parenteral route. From all strategies to deliverer insulin orally, microencapsulation or nanoencapsulation of insulin are the most promising approaches because these techniques protect insulin from enzymatic degradation in stomach, show a good release profile at intestine pH values, maintain biological activity during formulation and enhance intestinal permeation at certain extent. From different microencapsulation techniques, it seems that complex coacervation, multiple emulsion and internal gelation are the most appropriate techniques to encapsulate insulin due to their relative ease of preparation. Besides that, the use of organic solvents is not required and can be scaled up at low cost; however, relative oral bioavailability still needs to be improved.
Microencapsulation of Biocides for Reduced Copper, Long-life Antifouling Coatings
2007-02-01
together with Microtek produce microencapsulated DCOIT. Laboratory facilities equipped to produce from 100g – 500kg batches of microcapsules . These...FINAL REPORT Microencapsulation of Biocides for Reduced Copper, Long-life Antifouling Coatings ESTCP Project WP-0306 FEBRUARY 2007...octyl-4-isothi azolin-3-one (DCOIT) hns been microencapsulated nnd incorporated into collUllercially relevanl AF coatings. Re•ulls demon•ll’ntt long
Moore, Sarah; Kailasapathy, Kasipathy; Phillips, Michael; Jones, Mark R
2015-07-01
Microencapsulation is proposed to protect probiotic strains from food processing procedures and to maintain probiotic viability. Little research has described the in situ viability of microencapsulated probiotics. This study successfully developed a real-time viability standard curve for microencapsulated bacteria using confocal microscopy, fluorescent dyes and image analysis software. Copyright © 2015 Elsevier B.V. All rights reserved.
1996-10-10
THE MYOTOXIC EFFECTS OF MICROENCAPSULATED NAPROXEN AND CARRIER POLYMER AFTER INTRAMUSCULAR INJECTION IN RATS A Masters Thesis By Kevin J. Bohan... Microencapsulated Naproxen and Carrier Polymer After Intramuscular Injection in Rats" beyond brief excerpts is with the pennission of the copyright...naproxen to be microencapsulated (MEC) for parenteral use. Intramuscular MEC naproxen could provide greater pain relief than ketoralac with a longer
Local Anesthetic Microcapsulation.
1982-06-14
viscosities as disparate as R. S. V. 4.~O~6dl/g. ’ Microencapsulation of lidocaine (base) yielded 212-300 micron microcapsules with 50% in vitro drug...release in 6 hours; 150-212 micron microcapsules released 3-0% i7n-2 hours. Etidocaing and bupivacaine vo> 41’. were microencapsulated in a more...Etidocaine Microencapsulation 9 c. Bupivacaine Microencapsulation 12 3. In Vitro Drug Release from Microcapsules 15 a. Lidocaine (base) Release Studies
Controlled Release of Antigens for One Dose Immunization
1983-01-01
microencapsulation of antigen coated alum or by microencapsulating clusters of smaller ( microns) microcapsules . Microcapsules under 10 microns in... microencapsulation were studied to determine what criteria must be satisfied to provide a protective immune response to hepatitis B surface antigen... microencapsulated in poly (DL-lactide-co- glycolide) in a form that was too large to be phagocytized and had an antigen release profile similar to that achieved with
Repellent effect of microencapsulated essential oil in lotion formulation against mosquito bites.
Misni, Norashiqin; Nor, Zurainee Mohamed; Ahmad, Rohani
2017-01-01
Many essential oils have been reported as natural sources of insect repellents; however, due to high volatility, they present low repellent effect. Formulation technique by using microencapsulation enables to control the volatility of essential oil and thereby extends the duration of repellency. In this study, the effectiveness of microencapsulated essential oils of Alpinia galanga, Citrus grandis and C. aurantifolia in the lotion formulations were evaluated against mosquito bites. Essential oils and N,N-Diethyl-3-methylbenzamide (DEET) were encapsulated by using interfacial pre- cipitation techniques before incorporation into lotion base to form microencapsulated (ME) formulation. The pure essential oil and DEET were also prepared into lotion base to produce non-encapsulated (NE) formulation. All the prepared formulations were assessed for their repellent activity against Culex quinquefasciatus under laboratory condition. Field evaluations also were conducted in three different study sites in Peninsular Malaysia. In addi- tion, Citriodiol® (Mosiquard®) and citronella-based repellents (KAPS®, MozAway® and BioZ Natural®) were also included for comparison. In laboratory conditions, the ME formulations of the essential oils showed no significant difference with regard to the duration of repellent effect compared to the microencapsulated DEET used at the highest con- centration (20%). It exhibited >98% repellent effect for duration of 4 h (p = 0.06). In the field conditions, these formulations demonstrated comparable repellent effect (100% for a duration of 3 h) to Citriodiol® based repellent (Mosiguard®) (p = 0.07). In both test conditions, the ME formulations of the essential oils presented longer duration of 100% repellent effect (between 1 and 2 h) compared to NE formulations. The findings of the study demonstrate that the application of the microencapsulation technique during the preparation of the formulations significantly increases the duration of the repellent effect of the essential oils, suggesting that the ME formulation of essential oils have potential to be commercialized as an alternative plant-based repellent in the market against the mosquitoes.
Sonoporation as an enhancing method for boron neutron capture therapy for squamous cell carcinomas
2013-01-01
Background Boron neutron capture therapy (BNCT) is a selective radiotherapy that is dependent on the accumulation of 10B compound in tumors. Low-intensity ultrasound produces a transient pore on cell membranes, sonoporation, which enables extracellular materials to enter cells. The effect of sonoporation on BNCT was examined in oral squamous cell carcinoma (SCC) xenografts in nude mice. Materials and methods Tumor-bearing mice were administrated boronophenylalanine (BPA) or boronocaptate sodium (BSH) intraperitoneally. Two hours later, tumors were subjected to sonoporation using microbubbles followed by neutron irradiation. Results The 10B concentration was higher in tumors treated with sonoporation than in untreated tumors, although the difference was not significant in BPA. When tumors in mice that received BPA intraperitoneally were treated with sonoporation followed by exposure to thermal neutrons, tumor volume was markedly reduced and the survival rate was prolonged. Such enhancements by sonoporation were not observed in mice treated with BSH-mediated BNCT. Conclusions These results indicate that sonoporation enhances the efficiency of BPA-mediated BNCT for oral SCC. Sonoporation may modulate the microlocalization of BPA and BSH in tumors and increase their intracellular levels. PMID:24295213
Rosas-Flores, Walfred; Ramos-Ramírez, Emma Gloria; Salazar-Montoya, Juan Alfredo
2013-10-15
Sodium alginate (SA) at 2% (w/v) and low acylated gellan gum (LAG) at 0.2% (w/v) were used to microencapsulate Lactobacillus helveticus and Lactobacillus delbrueckii spp lactis by employing the internal ionic gelation technique through water-oil emulsions at three different stirring rates: 480, 800 and 1200 rpm. The flow behavior of the biopolymer dispersions, the activation energy of the emulsion, the microencapsulation efficiency, the size distribution, the microcapsules morphology and the effect of the stirring rate on the culture viability were analyzed. All of the dispersions exhibited a non-Newtonian shear-thinning flow behavior because the apparent viscosity decreased in value when the shear rate was increased. The activation energy was calculated using the Arrhenius-like equation; the value obtained for the emulsion was 32.59 kJ/mol. It was observed that at 400 rpm, the microencapsulation efficiency was 92.83%, whereas at 800 and 1200 rpm, the stirring rates reduced the efficiency to 15.83% and 4.56%, respectively, evidencing the sensitivity of the microorganisms to the shear rate (13.36 and 20.05 s(-1)). Both optical and scanning electron microscopy (SEM) showed spherical microcapsules with irregular topography due to the presence of holes on its surface. The obtained size distribution range was modified when the stirring rate was increased. At 400 rpm, bimodal behavior was observed in the range of 20-420 μm; at 800 and 1200 rpm, the behavior became unimodal and the range was from 20 to 200 μm and 20 to 160 μm, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Microencapsulated PCM slurries for heat transfer and energy storage in spacecraft systems
NASA Astrophysics Data System (ADS)
Colvin, David P.; Mulligan, James C.; Bryant, Yvonne G.; Duncan, John L.; Gravely, Benjamin T.
The technical feasibility for providing significantly enhanced heat transport and storage as well as improved thermal control has been investigated during several Small Business Innovative Research (SBIR) programs for NASA, the United States Air Force (USAF), and the Strategic Defense Initiative Organization (SDIO) using microencapsulated phase change materials (PCMs) in both aqueous and nonaqueous two-component slurries. In the program for SDIO, novel two-component coolant fluids were prepared and successfully tested at both low (300 K) and intermediate temperatures (460 to 700 K). The two-component fluid slurries of microencapsulated PCMs included organic particles in aqueous and nonaqueous liquids, as well as microencapsulated metals that potentially could be carried by liquid metals or used as powdered heat sinks. Simulation and experimental studies showed that such active cooling systems could be designed and operated with enhancements of heat capacity that exceeded 10 times or 1000 percent that for the base fluid along with significant enhancement in the fluid's heat capacity. Furthermore, this enhancement provided essentially isothermal conditions throughout the pumped primary coolant fluid loop. The results suggest that together with much higher fluid thermal capacity, greater uniformity of temperature is achievable with such fluids, and that significant reductions in pumping power, system size, and system mass are also possible.
Masunaga, Shin-Ichiro; Nagasawa, Hideko; Hiraoka, Masamitsu; Sakurai, Yoshinori; Uto, Yoshihiro; Hori, Hitoshi; Nagata, Kenji; Suzuki, Minoru; Maruhashi, Akira; Kinashi, Yuko; Ono, Koji
2004-01-01
It is difficult to deliver a therapeutic amount of 10B from conventional 10B-carriers for boron neutron capture therapy (BNCT) throughout the target tumors, especially into the intratumor hypoxic cells which have low uptake capacities. We evaluated the usefulness of 5 new 10B-compounds (TX-2041, TX-2042, TX-2058, TX-2059 and TX-2060) as 10B-carriers in BNCT. They are 2-nitroimidazole-sodium borocaptate-10B (BSH) conjugates, that is, hybrid compounds that have both a hypoxic tumor cell sensitizing unit under gamma-ray irradiation, 2-nitroimidazoles and a thermal neutron-sensitizing unit, BSH. The 5 new compounds were administered to SCC VII tumor-bearing mice intraperitoneally. As a control, BSH was also administered in the same manner. Then, the 10B concentrations in the tumors and normal tissues were measured by gamma-ray spectrometry. Based on the data of the pharmacokinetics analyses, TX-2060 was chosen for a subsequent tumor-irradiation study. SCC VII tumor-bearing mice were continuously given 5-bromo-2'-deoxyuridine (BrdU) to label all proliferating (P) cells in the tumors, then treated with TX-2060 or BSH in the same manner as in the pharmacokinetics analyses. To obtain similar intratumor 10B concentrations during radiation exposure, irradiation with thermal neutrons or gamma-rays was started from 60 min after administration of the 10B-carrier. Right after irradiation, the tumors were excised, minced and trypsinized. The tumor cell suspensions thus obtained were incubated with cytochalasin-B (a cytokinesis blocker), and the micronucleus (MN) frequency in cells without BrdU-labelling (= quiescent (Q) cells) was determined using immunofluorescence staining for BrdU. Meanwhile, the MN frequency in total (P + Q) tumor cells was determined from the tumors that were not pretreated with BrdU. The clonogenic cell survival was also determined in mice given no BrdU. 10B distribution analyses in tumors, muscles, blood and liver indicated that TX-2060 has the most favorable characteristics for concentrating a sufficient amount of 10B in tumors and maintaining a high enough 10B concentration during irradiation. In addition, TX-2060 had a significantly stronger radio-sensitization effect with reactor thermal neutron beams than BSH on both total and Q cells in solid tumors. Further, TX-2060 clearly exhibited a radio-sensitization effect with gamma-rays, not only on total cells but also on Q and hypoxic tumor cells, which was not achieved by BSH. 10B-carrier, with a gamma-ray-sensitizing effect on tumor cells as well as the potential to keep 10B in tumors and sensitize tumor cells more markedly than conventional 10B-carriers, such as TX-2060, is a promising candidate for use in BNCT.
1996-10-01
TITLE: Microencapsulation of Drugs in the Microgravity Environment of the United States Space Shuttle - Follow-On Experiments PRINCIPAL INVESTIGATOR...REPORT DATE 3. REPORT TYPE AND DATES COVERED October 1996 Final (4 May 92 - 3 Jul 96) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Microencapsulation of...call the Microencapsulation in Space (MIS-B) experiment. The MIS-B experiment flew on Space Shuttle Discovery -- Mission STS-70. Before launch, NASA
Habibi-Moini, S; D'mello, A P
2001-03-14
Microencapsulated phenylalanine ammonia lyase (PAL) exhibits a marked reduction in activity compared to the activity of the free enzyme in pH 8.5 Tris buffer. The purpose of this investigation was to evaluate the contribution of incomplete entrapment, the internal environment of cellulose nitrate membrane microcapsules, the diffusional barrier of the membrane and the microcapsulation process to the low activity of encapsulated PAL. A solution of PAL and 10% w/v hemoglobin was incorporated into cellulose nitrate membrane microcapsules. Hemoglobin incorporation was used as a surrogate marker of PAL entrapment. Using 14C hemoglobin, the encapsulation efficiency was determined to be 70% and suggested that incomplete entrapment might partially account for the low activity of encapsulated PAL. The effect of the internal environment of the microcapsule (10% hemoglobin solution) on PAL activity was evaluated by comparing enzyme activity in 10% w/v hemoglobin solution and pH 8.5 Tris buffer. Similar K(M) and V(max) values of PAL in the two media indicated that the internal environment of the microcapsule did not contribute to the reduction in activity of the encapsulated enzyme. The contribution of a membrane diffusional barrier was determined by breaking the putative barrier and measuring PAL activity in intact and broken microcapsules. Similar activity of PAL in these two conditions is evidence for the lack of a diffusional barrier. The effect of the microencapsulation process on PAL activity was evaluated by comparing K(M) and V(max) of free and encapsulated PAL. Similar K(M) values in these two media suggested that the process did not affect the conformation of PAL. However, encapsulated PAL had a 50% lower V(max) value compared to free PAL, which showed that the microencapsulation process deactivated a substantial proportion of the enzyme.
Tomaro-Duchesneau, Catherine; Saha, Shyamali; Malhotra, Meenakshi; Coussa-Charley, Michael; Kahouli, Imen; Jones, Mitchell L; Labbé, Alain; Prakash, Satya
2012-02-16
Probiotics possess potential therapeutic and preventative effects for various diseases and metabolic disorders. One important limitation for the oral delivery of probiotics is the harsh conditions of the upper gastrointestinal tract (GIT) which challenge bacterial viability and activity. One proposed method to surpass this obstacle is the use of microencapsulation to improve the delivery of bacterial cells to the lower GIT. The aim of this study is to use alginate-poly-L-lysine-alginate (APA) microcapsules to encapsulate Lactobacillus fermentum NCIMB 5221 and characterize its enzymatic activity and viability through a simulated GIT. This specific strain, in previous research, was characterized for its inherent ferulic acid esterase (FAE) activity which could prove beneficial in the development of a therapeutic for the treatment and prevention of cancers and metabolic disorders. Our findings demonstrate that the APA microcapsule does not slow the mass transfer of substrate into and that of the FA product out of the microcapsule, while also not impairing bacterial cell viability. The use of simulated gastrointestinal conditions led to a significant 2.5 log difference in viability between the free (1.10 × 104 ± 1.00 × 103 cfu/mL) and the microencapsulated (5.50 × 106 ± 1.00 × 105 cfu/mL) L. fermentum NCIMB 5221 following exposure. The work presented here suggests that APA microencapsulation can be used as an effective oral delivery method for L. fermentum NCIMB 5221, a FAE-active probiotic strain.
Tomaro-Duchesneau, Catherine; Saha, Shyamali; Malhotra, Meenakshi; Coussa-Charley, Michael; Kahouli, Imen; Jones, Mitchell L.; Labbé, Alain; Prakash, Satya
2012-01-01
Probiotics possess potential therapeutic and preventative effects for various diseases and metabolic disorders. One important limitation for the oral delivery of probiotics is the harsh conditions of the upper gastrointestinal tract (GIT) which challenge bacterial viability and activity. One proposed method to surpass this obstacle is the use of microencapsulation to improve the delivery of bacterial cells to the lower GIT. The aim of this study is to use alginate-poly-L-lysine-alginate (APA) microcapsules to encapsulate Lactobacillus fermentum NCIMB 5221 and characterize its enzymatic activity and viability through a simulated GIT. This specific strain, in previous research, was characterized for its inherent ferulic acid esterase (FAE) activity which could prove beneficial in the development of a therapeutic for the treatment and prevention of cancers and metabolic disorders. Our findings demonstrate that the APA microcapsule does not slow the mass transfer of substrate into and that of the FA product out of the microcapsule, while also not impairing bacterial cell viability. The use of simulated gastrointestinal conditions led to a significant 2.5 log difference in viability between the free (1.10 × 104 ± 1.00 × 103 cfu/mL) and the microencapsulated (5.50 × 106 ± 1.00 × 105 cfu/mL) L. fermentum NCIMB 5221 following exposure. The work presented here suggests that APA microencapsulation can be used as an effective oral delivery method for L. fermentum NCIMB 5221, a FAE-active probiotic strain. PMID:24288090
Microencapsulated Fluorescent Dye Penetrant.
1979-07-01
Microencapsulated fluorescent dye pentrant materials were evaluated for feasibility as a technique to detect cracks on metal surfaces when applied as...a free flowing dry powder. Various flourescent dye solutions in addition to a commercial penetrant (Zyglo ZL-30) were microencapsulated and tested on
Elizondo-Jimenez, Silvia; Moreno-Herrera, Antonio; Reyes-Olivares, Rogelio; Dorantes-Gonzalez, Edith; Nogueda-Torres, Benjamín; Oliveira, Eduardo A Gamosa de; Romeiro, Nelilma C; Lima, Lidia M; Palos, Isidro; Rivera, Gildardo
2017-01-01
Chagas disease is a public health problem caused by Trypanosoma cruzi. Cruzain is a pharmacological target for designing a new drug against this parasite. Hydrazone and Nacylhydrazone derivatives have been traditionally associated as potential Cruzain inhibitors. Additionally, benzenesulfonyl derivatives show trypanocidal activity. Therefore, in this study, the combination of both structures has been taken into account for drug design. Seven benzenesulfonylhydrazone (BS-H) and seven N-propionyl benzenesulfonylhydrazone (BS-NAH) derivatives were synthetized and elucidated by infrared spectroscopy, nuclear magnetic resonance, and elemental analysis. All compounds were evaluated biologically in vitro against two strains of Trypanosoma cruzi (NINOA and INC-5), which are endemic in Mexico, and compared with the reference drugs nifurtimox and benznidazole. In order to gain insight into the putative molecular origin of the trypanocidal properties of these derivatives, docking studies were carried out with Cruzain. Compounds 4 and 6 (BS-H) and 10, 12-14 (BS-NAH) showed the best biological activity against NINOA and INC-5 strains, respectively. Compound 13 was the most potent trypanocidal compound showing a LC50 of 0.06 µM against INC-5 strain. However, compound 4 showed the best activity against both strains (LC50 <30 µM). Theoretical binding modes obtained suggested covalent binding that could explain their biological activity. Benzenesulfonyl and N-propionyl benzenesulfonyl hydrazone derivatives are good options for developing new trypanocidal agents. Particularly, compound 4 could be considered a lead compound. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Huq, Tanzina; Vu, Khanh Dang; Riedl, Bernard; Bouchard, Jean; Lacroix, Monique
2015-04-01
Oregano essential oil (Origanum compactum; 250 μg/ml), cinnamon essential oil (Cinnamomum cassia; 250 μg/ml) and nisin (16 μg/ml) were used alone or in combination to evaluate their efficiency to inhibit the growth of Listeria monocytogenes on RTE ham. Microencapsulation of the antimicrobial formulations was done to verify the potential effect of the polymer to protect the antimicrobial efficiency during storage. Combined treatments of antimicrobial formulation with γ-irradiation were done to verify the synergistic effect against L. monocytogenes. Microencapsulation of essential oils-nisin and γ-irradiation treatment in combination showed synergistic antimicrobial effect during storage on RTE meat products. Microencapsulated cinnamon and nisin in combination with γ-irradiation (at 1.5 kGy) showed 0.03 ln CFU/g/day growth rate of L. monocytogenes whereas the growth rate of non-microencapsulated cinnamon and nisin in combination with γ-irradiation was 0.17 ln CFU/g/day. Microencapsulation significantly (P ≤ 0.05) improved the radiosensitivity of L. monocytogenes. Microencapsulated oregano and cinnamon essential oil in combination with nisin showed the highest bacterial radiosensitization 2.89 and 5, respectively, compared to the control. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evaluation of Microencapsulated Penetrant Inspection.
1980-12-01
AD-A9b 826 GENERAL ELECTRIC CO CINCINNATI OH AIRCRAFT ENGINE GROUP F/6 IA/2ADG EVALUATION OF MICROENCAPSULATED PENETRANT INSPECTION.(U) DEC 80 J M...4156 ADA096826 EVALUATION OF MICROENCAPSULATED PENETRANT INSPECTION i :I J.M. Portaz Aircraft Engine Group General Electric Company Cincinnati, Ohio... Microencapsulated Penetrant 5 7riJF-Iehica17 = Inspection p un May@84 -1 ---- --- ---- 19AMFGK657j7 7. AiJTHOR(s) nVCWRACT OR GRANT m " JO J.M./Portaz
Microencapsulation of Drugs in the Microgravity Environment of the United States Space Shuttle
1994-10-03
Fort Detrick, Frederick, MD 21701-5012. AUTHORITY USAMRMC ltr., 21 Apr 97 THIS PAGE IS UNCLASSIFIED AD-B 192 333 Project 7654-X 0 MICROENCAPSULATION OF...X) Ninth Avenue South Birmingham, Alabama 35205 94 l1 t• 7 4 M_ T ’ INI 3 Oct 94 Midterm •.Jý92 - 1,O]J94 % ’ Microencapsulation of Drugs in dte...2-3 ViI. REFERENCES............................................... 24 MICROENCAPSULATION OF DRUGS IN TIlE MICROGRAVIrY ENVIRONMENT OF TilE
Kim, In-Hah; Song, Ah Young; Han, Jaejoon; Park, Ki Hwan; Min, Sea C
2014-10-01
Insect-resistant laminate films containing microencapsulated cinnamon oil (CO) were developed to protect food products from the Indian meal moth (Plodia interpunctella). CO microencapsulated with polyvinyl alcohol was incorporated with a printing ink and the ink mixture was applied to a low-density polyethylene (LDPE) film as an ink coating. The coated LDPE surface was laminated with a polypropylene film. The laminate film impeded the invasion of moth larvae and repelled the larvae. The periods of time during which cinnamaldehyde level in the film remained above a minimum repelling concentration, predicted from the concentration profile, were 21, 21, and 10 d for cookies, chocolate, and caramel, respectively. Coating with microencapsulated ink did not alter the tensile or barrier properties of the laminate film. Microencapsulation effectively prevented volatilization of CO. The laminate film can be produced by modern film manufacturing lines and applied to protect food from Indian meal moth damage. The LDPE-PP laminate film developed using microencapsulated cinnamon oil was effective to protect the model foods from the invasion of Indian meal moth larvae. The microencapsulated ink coating did not significantly change the tensile and barrier properties of the LDPE-PP laminate film, implying that replacement of the uncoated with coated laminate would not be an issue with current packaging equipment. The films showed the potential to be produced in commercial film production lines that usually involve high temperatures because of the improved thermal stability of cinnamon oil due to microencapsulation. The microencapsulated system may be extended to other food-packaging films for which the same ink-printing platform is used. © 2014 Institute of Food Technologists®
Afornali, Alessandro; Vecchi, Rodrigo de; Stuart, Rodrigo Makowiecky; Dieamant, Gustavo; Oliveira, Luciana Lima de; Brohem, Carla Abdo; Feferman, Israel Henrique Stokfisz; Fabrício, Lincoln Helder Zambaldi; Lorencini, Márcio
2013-01-01
The sum of environmental and genetic factors affects the appearance and function of the skin as it ages. The identification of molecular changes that take place during skin aging provides biomarkers and possible targets for therapeutic intervention. Retinoic acid in different formulations has emerged as an alternative to prevent and repair age-related skin damage. To understand the effects of different retinoid formulations on the expression of genes associated with biological processes that undergo changes during skin aging. Ex-vivo skin samples were treated topically with different retinoid formulations. The modulation of biological processes associated with skin aging was measured by Reverse Transcription quantitative PCR (RT-qPCR). A formulation containing microencapsulated retinol and a blend of active ingredients prepared as a triple nanoemulsion provided the best results for the modulation of biological, process-related genes that are usually affected during skin aging. This association proved to be therapeutically more effective than tretinoin or microencapsulated retinol used singly.
Morales-Medina, R; Tamm, F; Guadix, A M; Guadix, E M; Drusch, S
2016-03-01
The functionality of fish protein hydrolysates (FPH) for the microencapsulation of fish oil was investigated. Muscle protein from sardine (Sardina pilchardus) and horse mackerel (Trachurus mediterraneus) was hydrolysed using Alcalase or trypsin. Physically stable emulsions suitable for spray-drying were obtained when using FPH with a degree of hydrolysis of 5%. Microencapsulation efficiency amounted to 98±0.1% and oxidative stability of the encapsulated oil over a period of twelve weeks was in a similar range as it is reported for other matrix systems. Therefore, the suitability of FPH for use in spray-dried emulsions has been shown for the first time. Since no clear correlation between the antioxidative activity of the FPH and the course of lipid oxidation could be established future research is required to more specifically characterise the molecular structure of the peptides and its impact on protein alteration and role in lipid oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bile Salt Hydrolase Activities: A Novel Target to Screen Anti-Giardia Lactobacilli?
Allain, Thibault; Chaouch, Soraya; Thomas, Myriam; Travers, Marie-Agnès; Valle, Isabelle; Langella, Philippe; Grellier, Philippe; Polack, Bruno; Florent, Isabelle; Bermúdez-Humarán, Luis G.
2018-01-01
Giardia duodenalis is a protozoan parasite responsible for giardiasis, a disease characterized by intestinal malabsorption, diarrhea and abdominal pain in a large number of mammal species. Giardiasis is one of the most common intestinal parasitic diseases in the world and thus a high veterinary, and public health concern. It is well-established that some probiotic bacteria may confer protection against this parasite in vitro and in vivo and we recently documented the implication of bile-salt hydrolase (BSH)-like activities from strain La1 of Lactobacillus johnsonii as mediators of these effects in vitro. We showed that these activities were able to generate deconjugated bile salts that were toxic to the parasite. In the present study, a wide collection of lactobacilli strains from different ecological origins was screened to assay their anti-giardial effects. Our results revealed that the anti-parasitic effects of some of the strains tested were well-correlated with the expression of BSH-like activities. The two most active strains in vitro, La1 and Lactobacillus gasseri CNCM I-4884, were then tested for their capacity to influence G. duodenalis infection in a suckling mice model. Strikingly, only L. gasseri CNCM I-4884 strain was able to significantly antagonize parasite growth with a dramatic reduction of the trophozoites load in the small intestine. Moreover, this strain also significantly reduced the fecal excretion of Giardia cysts after 5 days of treatment, which could contribute to blocking the transmission of the parasite, in contrast of La1 where no effect was observed. This study represents a step toward the development of new prophylactic strategies to combat G. duodenalis infection in both humans and animals. PMID:29472903
Development of Capsular Adhesive Systems and Evaluation of Their Stability.
1985-07-26
Adhesives; Microencapsulation processes, Epoxy resins, Anaerobic systems, Characterization, Microcapsules properties, Stability, Liquid Chromatography...II. TECHNICAL DISCUSSION ................... 5 A. Complementary microencapsulation stu- dies ............................... 5 1...initial phase of this program (1), studies on microencapsulation of adhesive systems were conducted in which the capsule shells are made from the
Encapsulated Multifunction Corrosion Inhibitive Primer.
1983-11-01
Optimization of Microcapsule Preparation ...................... 162 24 Optimized Procedure for Polyurea Microencapsulation ................... 166 25... microcapsules , which suggests that a nearly quantitative yield of microencapsulated inhibitor was achieved. The burst ratio is defined as the conductivity after...effectiveness of the microencapsulation approach in achieving sustained release. 4. Loading Determination of Polyurea Microcapsules In studies relating
Evaluation of Microencapsulated Phosphors.
1979-05-01
microencapsulated phosphors of the same control lot with nominal 0.5, 1.0, and 3.0-micron walls. Light output was normalized with respect to the amount of phosphor...had indicated that microencapsulation enhanced the light output of phosphors. The original results were not confirmed although the same procedures and material lots were used. (Author)
Microencapsulation of Hepatocytes and Mesenchymal Stem Cells for Therapeutic Applications.
Meier, Raphael P H; Montanari, Elisa; Morel, Philippe; Pimenta, Joël; Schuurman, Henk-Jan; Wandrey, Christine; Gerber-Lemaire, Sandrine; Mahou, Redouan; Bühler, Leo H
2017-01-01
Encapsulated hepatocyte transplantation and encapsulated mesenchymal stem cell transplantation are newly developed potential treatments for acute and chronic liver diseases, respectively. Cells are microencapsulated in biocompatible semipermeable alginate-based hydrogels. Microspheres protect cells against antibodies and immune cells, while allowing nutrients, small/medium size proteins and drugs to diffuse inside and outside the polymer matrix. Microencapsulated cells are assessed in vitro and designed for experimental transplantation and for future clinical applications.Here, we describe the protocol for microencapsulation of hepatocytes and mesenchymal stem cells within hybrid poly(ethylene glycol)-alginate hydrogels.
Improvement in the Viability of Cryopreserved Cells by Microencapsulation
NASA Astrophysics Data System (ADS)
Matsumoto, Yoshifumi; Morinaga, Yukihiro; Ujihira, Masanobu; Oka, Kotaro; Tanishita, Kazuo
The advantages of microencapsulated cells over those of suspended cells were evaluated for improving viability in cryopreservation. Rat pheochromocytoma (PC12) cells were selected as the test biological cells and then microencapsulated in alginate-polylysine-alginate membranes. These microencapsulated PC12 cells were frozen by differential scanning calorimetry (DSC) at various cooling rates, from 0.5 to 10°C/min. Their latent heat was measured during freezing from 4 to -80°C. The post-thaw viability was evaluated by dopamine-concentration measurement and by trypan blue exclusion assay. Results showed that at cooling rates of 0.5 and 1°C/min, the latent heat of microencapsulated PC12 cells was lower than that of suspended cells. This lower latent heat is caused by the fact that the extra-microcapsule froze and the intra-capsule remained unfrozen due to the formation of ice crystals in the extra-capsule space. The post-thaw viability of microencapsulated PC12 cells was improved when the cooling rate was 0.5 or 1°C/min, compared with that of suspended cells. Therefore, in microencapsulated PC12 cells, maintaining the intra-microcapsules in an unfrozen state during freezing reduces the solution effect and thus improves the post-thaw viability.
Jaconis, Maryanne; Boyd, Stephen J; Hartung, Cynthia M; McCrea, Sean M; Lefler, Elizabeth K; Canu, Will H
2016-12-01
Although the research is clear that boys with ADHD have higher symptomatology and impairment than girls with ADHD, for adults the research is mixed. Some studies suggest no sex differences, whereas others suggest that women might have higher symptomatology and impairment. The present study examined sex differences in ADHD symptomatology and impairment, and the possible role of claimed and behavioral self-handicapping as an explanation for any differences. Claimed self-handicapping (CSH) involves reports of performance-inhibiting conditions, whereas behavioral self-handicapping (BSH) involves reporting more objective, intentional acts that could undermine performance. College students (N = 699) completed an online study. Sex differences were found for hyperactivity such that women reported higher levels, but not for inattention or impairment. The test of the indirect effect of sex through CSH was significant, suggesting that higher levels of CSH in women were associated with elevated ADHD symptoms and impairment. The test of the indirect effect of sex through BSH was also significant, suggesting that higher levels of BSH in men are associated with elevated symptoms of ADHD and impairment. These data extend the literature by suggesting that self-handicapping might at least partially explain differential self-reporting of ADHD symptoms and impairment in emerging adults across the sexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Rui-Yun; Li, Yun-He; Zhang, Jing-Fei
We constrain the neutrino mass in the scenario of vacuum energy interacting with cold dark matter by using current cosmological observations. To avoid the large-scale instability problem in interacting dark energy models, we employ the parameterized post-Friedmann (PPF) approach to do the calculation of perturbation evolution, for the Q = β H ρ{sub c} and Q = β H ρ{sub Λ} models. The current observational data sets used in this work include Planck (cosmic microwave background), BSH (baryon acoustic oscillations, type Ia supernovae, and Hubble constant), and LSS (redshift space distortions and weak lensing). According to the constraint results, wemore » find that β > 0 at more than 1σ level for the Q = β H ρ{sub c} model, which indicates that cold dark matter decays into vacuum energy; while β = 0 is consistent with the current data at 1σ level for the Q = β H ρ{sub Λ} model. Taking the ΛCDM model as a baseline model, we find that a smaller upper limit, ∑ m {sub ν} < 0.11 eV (2σ), is induced by the latest BAO BOSS DR12 data and the Hubble constant measurement H {sub 0} = 73.00 ± 1.75 km s{sup −1} Mpc{sup −1}. For the Q = β H ρ{sub c} model, we obtain ∑ m {sub ν}<0.20 eV (2σ) from Planck+BSH. For the Q = β H ρ{sub Λ} model, ∑ m {sub ν}<0.10 eV (2σ) and ∑ m {sub ν}<0.14 eV (2σ) are derived from Planck+BSH and Planck+BSH+LSS, respectively. We show that these smaller upper limits on ∑ m {sub ν} are affected more or less by the tension between H {sub 0} and other observational data.« less
Trinh, Nga-Thi-Thanh; Lejmi, Raja; Gharsallaoui, Adem; Dumas, Emilie; Degraeve, Pascal; Thanh, Mai Le; Oulahal, Nadia
2015-01-01
Spray-dried redispersible transcinnamaldehyde (TC)-in-water emulsions were prepared in order to preserve its antibacterial activity; 5% (w/w) TC emulsions were first obtained with a rotor-stator homogeniser in the presence of either soybean lecithin or sodium caseinate as emulsifiers. These emulsions were mixed with a 30% (w/w) maltodextrin solution before feeding a spray-dryer. The antibacterial activity of TC alone, TC emulsions with and without maltodextrin before and after spray-drying were assayed by monitoring the growth at 30 °C of Listeria innocua in their presence and in their absence (control). Whatever the emulsifier used, antilisterial activity of TC was increased following its emulsification. However, reconstituted spray-dried emulsions stabilised by sodium caseinate had a higher antibacterial activity suggesting that they better resisted to spray-drying. This was consistent with observation that microencapsulation efficiencies were 27.6% and 78.7% for emulsions stabilised by lecithin and sodium caseinate, respectively.
Silakhori, Mahyar; Naghavi, Mohammad Sajad; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Mehrali, Mohammad
2013-04-29
Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems.
Silakhori, Mahyar; Naghavi, Mohammad Sajad; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Mehrali, Mohammad
2013-01-01
Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems. PMID:28809232
Phoem, Atchara N; Chanthachum, Suphitchaya; Voravuthikunchai, Supayang P
2015-04-03
Bifidobacterium longum was microencapsulated by extrusion technique and added in fresh milk tofu and pineapple juice. Microencapsulation of B. longum with Eleutherine americana extract, oligosaccharides extract, and commercial fructo-oligosaccharides was assessed for the bacterial survival after sequential exposure to simulated gastric and intestinal juices, and refrigeration storage. Microencapsulated B. longum with the extract and oligosaccharides extract in the food products showed better survival than free cells under adverse conditions. Sensory analysis demonstrated that the products containing co-encapsulated bacterial cells were more acceptable by consumers than free cells. Pineapple juice prepared with co-encapsulated cells had lower values for over acidification, compared with the juice with free cells added. This work suggested that microencapsulated B. longum with E. americana could enhance functional properties of fresh milk tofu and pineapple juice.
Phoem, Atchara N.; Chanthachum, Suphitchaya; Voravuthikunchai, Supayang P.
2015-01-01
Bifidobacterium longum was microencapsulated by extrusion technique and added in fresh milk tofu and pineapple juice. Microencapsulation of B. longum with Eleutherine americana extract, oligosaccharides extract, and commercial fructo-oligosaccharides was assessed for the bacterial survival after sequential exposure to simulated gastric and intestinal juices, and refrigeration storage. Microencapsulated B. longum with the extract and oligosaccharides extract in the food products showed better survival than free cells under adverse conditions. Sensory analysis demonstrated that the products containing co-encapsulated bacterial cells were more acceptable by consumers than free cells. Pineapple juice prepared with co-encapsulated cells had lower values for over acidification, compared with the juice with free cells added. This work suggested that microencapsulated B. longum with E. americana could enhance functional properties of fresh milk tofu and pineapple juice. PMID:25854832
Paula da Silva dos Passos, Ana; Madrona, Grasiele Scaramal; Marcolino, Vanessa Aparecida; Baesso, Mauro Luciano
2015-01-01
Summary Anthocyanins extracted from the pulp of the fruit of juçara palm (Euterpe edulis Mart.) were microencapsulated with maltodextrin in order to stabilise them. Photoacoustic spectroscopy was used to investigate the photostability of the microencapsulated samples. Complementary differential scanning calorimetry and scanning electron microscopy measurements were also performed. Lyophilised extract had 14 340.2 mg/L of total anthocyanins, and the microencapsulation efficiency of 93.6%. Temperature analysis showed that maltodextrin conferred protection up to 70 °C for 120 min. Scanning electron microscopy showed that the microencapsulated particles had a flake-like morphology with a smooth surface, characteristic of lyophilisation processes. In addition, when added to yogurt, a red colourant was predominant in the samples at pH from 1.5 up to 5.0. Thermal analysis showed a weak interaction between the sample and the encapsulating agent, and photoacoustic data indicated the photostability of the matrix when exposed to light. Yogurts containing microencapsulated anthocyanins showed a more intense pink colour than yogurts treated with pure dye, and sensory analysis demonstrated that they can have good acceptance on the market. Microencapsulation enabled the innovative application of anthocyanins from juçara palm fruit, and complementary techniques allied to the photoacoustic spectroscopy were effective tools for its evaluation. PMID:27904373
Paula da Silva Dos Passos, Ana; Madrona, Grasiele Scaramal; Marcolino, Vanessa Aparecida; Baesso, Mauro Luciano; Matioli, Graciette
2015-12-01
Anthocyanins extracted from the pulp of the fruit of juçara palm ( Euterpe edulis Mart.) were microencapsulated with maltodextrin in order to stabilise them. Photoacoustic spectroscopy was used to investigate the photostability of the microencapsulated samples. Complementary differential scanning calorimetry and scanning electron microscopy measurements were also performed. Lyophilised extract had 14 340.2 mg/L of total anthocyanins, and the microencapsulation efficiency of 93.6%. Temperature analysis showed that maltodextrin conferred protection up to 70 °C for 120 min. Scanning electron microscopy showed that the microencapsulated particles had a flake-like morphology with a smooth surface, characteristic of lyophilisation processes. In addition, when added to yogurt, a red colourant was predominant in the samples at pH from 1.5 up to 5.0. Thermal analysis showed a weak interaction between the sample and the encapsulating agent, and photoacoustic data indicated the photostability of the matrix when exposed to light. Yogurts containing microencapsulated anthocyanins showed a more intense pink colour than yogurts treated with pure dye, and sensory analysis demonstrated that they can have good acceptance on the market. Microencapsulation enabled the innovative application of anthocyanins from juçara palm fruit, and complementary techniques allied to the photoacoustic spectroscopy were effective tools for its evaluation.
Soares de Oliveira Carvalho, Anna Paula; Kimi Uehara, Sofia; Nogueria Netto, José Firmino; Rosa, Glorimar
2014-05-01
The metabolic syndrome is related to the increase in cardiovascular diseases. Polyunsaturated fatty acids from fish oil help in reducing cardiovascular risk factors and are natural bindings of PPAR2. To evaluate the impact of hypocaloric diet associated with microencapsulated fish oil supplementation in women with metabolic syndrome. We conducted a randomized, single-blind and placebo-controlled clinical trial with adult women who presented metabolic syndrome (n = 30) for 90 days. The volunteers were divided into two groups: placebo group (n = 15) and microencapsulated fish oil group (n = 15) (3 g/day of microencapsulated fish oil containing 0.41 g/day of eicosapentaenoic acid and decosahexaneoic acid). Anthropometric, body composition, clinical and laboratory parameters were assessed before and after the intervention. Paired t-test was used for comparisons within groups and Student's t-test for comparison between groups. We considered p < 0.05 as significant values. The comparison between groups revealed a significant reduction of blood glucose, insulinemia and the homeostasis model assessment in the microencapsulated fish oil group after 90 days, as opposed to the placebo group. We also observed reduction of the systolic arterial pressure in the microencapsulated fish oil group. A hypocaloric diet associated with the consumption of microencapsulated fish oil was effective in reducing blood glucose, insulinemia and insulin resistance in women with MS. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Mullish, Benjamin H; Pechlivanis, Alexandros; Barker, Grace F; Thursz, Mark R; Marchesi, Julian R; McDonald, Julie A K
2018-04-26
There is an ever-increasing recognition that bile acids are not purely simple surfactant molecules that aid in lipid digestion, but are a family of molecules contributing to a diverse range of key systemic functions in the host. It is now also understood that the specific composition of the bile acid milieu within the host is related to the expression and activity of bacterially-derived enzymes within the gastrointestinal tract, as such creating a direct link between the physiology of the host and the gut microbiota. Coupled to the knowledge that perturbation of the structure and/or function of the gut microbiota may contribute to the pathogenesis of a range of diseases, there is a high level of interest in the potential for manipulation of the gut microbiota-host bile acid axis as a novel approach to therapeutics. Much of the growing understanding of the biology of this area reflects the recent development and refinement of a range of novel techniques; this study applies a number of those techniques to the analysis of human samples, aiming to illustrate their strengths, drawbacks and biological significance at all stages. Specifically, we used microbial profiling (using 16S rRNA gene sequencing), bile acid profiling (using liquid chromatography-mass spectrometry), bsh and baiCD qPCR, and a BSH enzyme activity assay to demonstrate differences in the gut microbiota and bile metabolism in stool samples from healthy and antibiotic-exposed individuals. Copyright © 2018 Elsevier Inc. All rights reserved.
Microencapsulation of canine sperm and its preservation at 4 degrees C.
Shah, S; Nagano, M; Yamashita, Y; Hishinuma, M
2010-03-15
The objective of this study was to develop a preservation method for canine sperm using microencapsulation. Pooled ejaculates from three beagles (Canis familiaris) were extended in egg yolk Tris extender and were encapsulated in gel (alginate only) or polycation (poly-L-lysine membrane bound) microcapsules at 0.75% and 1.0% alginate concentration. In Experiment 1, characteristics of microcapsule and microencapsulated sperm were evaluated during chilling storage for 48 h. Gel microcapsules at 0.75% alginate concentration had a teardrop-like structure with fragility, whereas those at 1.0% alginate had a solid spherical structure. In all groups, diameter of the microcapsules increased with duration of storage (P<0.05). Alginate concentration did not affect the sperm recovery rate from microcapsules. Total average recovery rate of sperm from polycation microcapsules was lower than that of gel microcapsules (P<0.05). Progressive motility of polycation microencapsulated sperm and unencapsulated sperm (control) was higher than that of the gel microencapsulated sperm, both at 0.75% and 1.0% alginate concentration (P<0.05), although viability of sperm was similar among the three groups. In Experiment 2, to evaluate the sperm longevity after chilling storage, sperm were microencapsulated in polycation microcapsules at 1.0% alginate concentration, stored at 4 degrees C for 0, 1, 4, and 7 d, and then cultured at 38.5 degrees C for 0, 6, and 24h. Progressive motility and viability of microencapsulated sperm were higher than those of unencapsulated spermatozoa at 0 to 24h of culture after 4 and 7 d of chilling storage (P<0.05). In conclusion, polycation microencapsulation at 1.0% alginate concentration can be successfully applied for chilling storage of canine sperm by maintaining motility and viability for up to 7 d. Copyright 2010 Elsevier Inc. All rights reserved.
Wang, Baowei; Cheng, Fansheng; Gao, Shun; Ge, Wenhua; Zhang, Mingai
2017-02-15
Iron deficiency anemia (IDA) is the most common nutritional deficiency worldwide. This deficiency could be solved by preparing stable, edible, and absorbable iron food ingredients using environmentally friendly methods. This study investigated enzymatic hydrolysis and microencapsulation process of goose blood. The physicochemical properties, stabilities of the microencapsulated goose blood hydrolysate (MGBH) and a supplement for rats with IDA were also evaluated. The results showed that the synergetic hydrolytic action of neutrase and alkaline protease significantly increased the heme-releasing efficiency. The heme was then microencapsulated using sodium caseinate, maltodextrin and carboxymethyl cellulose (CMC) as the edible wall material, and the encapsulation efficiency of the product reached 98.64%. Meanwhile, favorable thermal, storage and light stabilities were observed for the microencapsulation. It was found that MGBH can significantly improve the body weight and hematological parameters of IDA Wistar rat. Copyright © 2016 Elsevier Ltd. All rights reserved.
Encapsulation of cosmetic active ingredients for topical application--a review.
Casanova, Francisca; Santos, Lúcia
2016-02-01
Microencapsulation is finding increasing applications in cosmetics and personal care markets. This article provides an overall discussion on encapsulation of cosmetically active ingredients and encapsulation techniques for cosmetic and personal care products for topical applications. Some of the challenges are identified and critical aspects and future perspectives are addressed. Many cosmetics and personal care products contain biologically active substances that require encapsulation for increased stability of the active materials. The topical and transdermal delivery of active cosmetic ingredients requires effective, controlled and safe means of reaching the target site within the skin. Preservation of the active ingredients is also essential during formulation, storage and application of the final cosmetic product. Microencapsulation offers an ideal and unique carrier system for cosmetic active ingredients, as it has the potential to respond to all these requirements. The encapsulated agent can be released by several mechanisms, such as mechanical action, heat, diffusion, pH, biodegradation and dissolution. The selection of the encapsulation technique and shell material depends on the final application of the product, considering physical and chemical stability, concentration, required particle size, release mechanism and manufacturing costs.
Shelf-Stable Adhesive for Reduction of Composite Repair Hazardous Waste
2008-09-01
1. Our microencapsulation approach is compatible with commonly used epoxy resins and catalyst accelerants 2. The microcapsules can be...thermally stable barrier to diffusion of accelerant and/or epoxy resin through the capsule’s walls [14]. 3.2 Microencapsulation Microcapsules ... microencapsulation of the catalyst accelerant. Thermal analysis of microcapsules made from carrageenan blends showed that they formed an effective
Controlled Release of Antibiotics from Biodegradable Microcapsules for Wound Infection Control.
1982-06-18
evaporation and phase separation methods were used in formulating the microcapsules .(l1) The microencapsulation process will be described in detail in a...intensity to the antibiotic content. Usi.ng both microencapsulation processes, 14C-labeled ampicillin anhydypte microcapsules were synthesized.(12...excellent technical assistance. .. . . g .SETTERSTROM, TICE, LEWIS, and-MEYERS TABLE 1. IN VIVO AMPICILLIN MICROCAPSULES EVALUATED MICROENCAPSULATION
Improving functional properties of pea protein isolate for microencapsulation of flaxseed oil.
Bajaj, Poonam R; Bhunia, Kanishka; Kleiner, Leslie; Joyner Melito, Helen S; Smith, Denise; Ganjyal, Girish; Sablani, Shyam S
2017-03-01
Unhydrolysed pea protein (UN) forms very viscous emulsions when used at higher concentrations. To overcome this, UN was hydrolysed using enzymes alcalase, flavourzyme, neutrase, alcalase-flavourzyme, and neutrase-flavourzyme at 50 °C for 0 min, 30 min, 60 min, and 120 min to form hydrolysed proteins A, F, N, AF, and NF, respectively. All hydrolysed proteins had lower apparent viscosity and higher solubility than UN. Foaming capacity of A was the highest, followed by NF, N, and AF. Hydrolysed proteins N60, A60, NF60, and AF60 were prepared by hydrolysing UN for 60 min and used further for microencapsulation. At 20% oil loading (on a total solid basis), the encapsulated powder N60 had the highest microencapsulation efficiency (ME = 56.2). A decrease in ME occurred as oil loading increased to 40%. To improve the ME of N60, >90%, UN and maltodextrin were added. Flowability and particle size distribution of microencapsulated powders with >90% microencapsulation efficiency and morphology of all powders were investigated. This study identified a new way to improve pea protein functionality in emulsions, as well as a new application of hydrolysed pea protein as wall material for microencapsulation.
NASA Astrophysics Data System (ADS)
Naufalin, R.; Rukmini, H. S.
2018-01-01
Kecombrang flower (Nicolaia speciosa) contains bioactive components of alkaloids, flavonoids, polyphenols, steroids, saponins, and essential oils as potential antimicrobials. The use of antibacterials in the form of essential oils has constraints; therefore microencapsulation needs to be done to prevent damage to the bioactive components. Microencapsulation can prevent degradation due to radiation or oxygen, easy-mix with foodstuffs and also slow the occurrence of evaporation. This study aimed to determine the effect of types of kecombrang extract, the concentration of microcapsules in food additives (NaCl and sucrose), and concentration of flower extract in the microcapsules. This study used Randomized Block Design (RBD) with 18 treatment combinations and two replications. Factors studied were types of kecombrang flower extract of (semi polar and polar extract), Food Additive types (sucrose and NaCl), the concentration of microcapsules in food additive (0%; 15%; 30% w /v). The results showed that polar and non-polar extract microcapsules produced antibacterial activity of 7.178 mm and 7.145 respectively of Bacillus cereus bacteria, while Escherichia coli was 7.272 mm and 7.289 mm respectively. A 30 percent microcapsule concentration provides antibacterial activity with inhibiting zone of 7, 818 mm for B. cereus and 8,045 for E.coli. Food Additive of sucrose concentrations showed that microcapsules produced tend to be more effective in inhibiting the growth of E.coli and B. cereus bacteria than that of NaCl, with each inhibition zone of 7.499 mm and 7.357 mm
Afornali, Alessandro; de Vecchi, Rodrigo; Stuart, Rodrigo Makowiecky; Dieamant, Gustavo; de Oliveira, Luciana Lima; Brohem, Carla Abdo; Feferman, Israel Henrique Stokfisz; Fabrício, Lincoln Helder Zambaldi; Lorencini, Márcio
2013-01-01
BACKGROUND The sum of environmental and genetic factors affects the appearance and function of the skin as it ages. The identification of molecular changes that take place during skin aging provides biomarkers and possible targets for therapeutic intervention. Retinoic acid in different formulations has emerged as an alternative to prevent and repair age-related skin damage. OBJECTIVES To understand the effects of different retinoid formulations on the expression of genes associated with biological processes that undergo changes during skin aging. METHODS Ex-vivo skin samples were treated topically with different retinoid formulations. The modulation of biological processes associated with skin aging was measured by Reverse Transcription quantitative PCR (RT-qPCR). RESULTS A formulation containing microencapsulated retinol and a blend of active ingredients prepared as a triple nanoemulsion provided the best results for the modulation of biological, process-related genes that are usually affected during skin aging. CONCLUSION This association proved to be therapeutically more effective than tretinoin or microencapsulated retinol used singly. PMID:24474102
Optimization of Microencapsulation of Human Milk Fat Substitute by Response Surface Methodology.
Li, Xue; Cao, Jun; Bai, Xinpeng; Jiang, Zefang; Shen, Xuanri
2018-04-01
Human milk fat substitutes (HMFS) are rich in polyunsaturated fatty acids which upon microencapsulation, can be used as a source of high quality lipids in infant formula. The response surface methodology (RSM) was employed to optimize the microencapsulation condition of HMFS as a functional product. The microencapsulation efficiency (MEE) of microencapsulated HMFS was investigated with respect to four variables including concentration of soy lecithin (A), ratio of demineralized whey powder to malt dextrin (B), HFMS concentration (C), and homogenizing pressure (D). The optimum conditions for efficient microencapsulation of HMFS by the spray drying technique were determined as follows: the amount of soybean lecithin-0.96%, ratio of desalted whey powder to malt dextrin-2.04:1, oil content-17.37% and homogeneous pressure-0.46MPa. Under these conditions, the MEE was 84.72%, and the basic indices of the microcapsules were good. The structure of the microcapsules, as observed by scanning electron microscopy (SEM), revealed spherical, smooth-surfaced capsules with diameters ranging between 10-50 μm. Compared with HFMS, the peroxide value (POV) and acid value (AV) of the microcapsule were significantly lower during storage indicating that the microencapsulation process increases stability and shelf life. Infrared spectroscopic analyses indicated that HFMS had the same characteristic functional groups as the oil extracted from microcapsules. Simulated in vitro digestion revealed that the microcapsules were digested completely within 2h with maximum lipid absorption rate of 64%. Furthermore, these results advocate the embedding process of HFMS by RSM due to its efficacy.
Research and Development in Preventive Dentistry.
1979-12-01
Characterization 16 B. Core Material Preparation 18 C. Microencapsulation 20 D. Characterization of Microcapsules 22 1. Size Distribution 22 2. Assays 22 3... microencapsulated with a biodegradable polymer, poly-L(-)- lactide, using a fluidized bed coating technique. A series of microcapsule batches with different...lbs/hr. Material was less than 15 iim (99%), and most of the lidocaine was in the 1 micron range, * C. MICROENCAPSULATION Lidocaine microcapsules were
Self-healing Microencapsulation of Biomacromolecules without Organic Solvents**
Reinhold, Samuel E.; Desai, Kashappa-Goud H.; Zhang, Li; Olsen, Karl F.
2012-01-01
Microencapsulation of biomacromolecules in PLGA is routinely performed with organic solvent through multiple complex steps deleterious to the biomacromolecule. The new self-healing based PLGA microencapsulation obviates micronization- and organic solvent-induced protein damage, provides very high encapsulation efficiency, exhibit stabilization and slow release of labile tetanus protein antigen, and provides long-term testosterone suppression in rats following a single injection of encapsulated leuprolide. PMID:23011773
Assimilating NOAA SST data into BSH operational circulation model for North and Baltic Seas
NASA Astrophysics Data System (ADS)
Losa, Svetlana; Schroeter, Jens; Nerger, Lars; Janjic, Tijana; Danilov, Sergey; Janssen, Frank
A data assimilation (DA) system is developed for BSH operational circulation model in order to improve forecast of current velocities, sea surface height, temperature and salinity in the North and Baltic Seas. Assimilated data are NOAA sea surface temperature (SST) data for the following period: 01.10.07 -30.09.08. All data assimilation experiments are based on im-plementation of one of the so-called statistical DA methods -Singular Evolutive Interpolated Kalman (SEIK) filter, -with different ways of prescribing assumed model and data errors statis-tics. Results of the experiments will be shown and compared against each other. Hydrographic data from MARNET stations and sea level at series of tide gauges are used as independent information to validate the data assimilation system. Keywords: Operational Oceanography and forecasting
Dianawati, Dianawati; Mishra, Vijay; Shah, Nagendra P
2013-03-01
Protective mechanisms of casein-based microcapsules containing mannitol on Lactobacillus acidophilus and Lactococcus lactis ssp. cremoris, changes in their secondary protein structures, and glass transition of the microcapsules were studied after spray- or freeze-drying and after 10 wk of storage in aluminum foil pouches containing different desiccants (NaOH, LiCl, or silica gel) at 25°C. An in situ Fourier transform infrared analysis was carried out to recognize any changes in fatty acids (FA) of bacterial cell envelopes, interaction between polar site of cell envelopes and microcapsules, and alteration of their secondary protein structures. Differential scanning calorimetry was used to determine glass transition of microcapsules based on glass transition temperature (T(g)) values. Hierarchical cluster analysis based on functional groups of cell envelopes and secondary protein structures was also carried out to classify the microencapsulated bacteria due to the effects of spray- or freeze-drying and storage for 10 wk. The results showed that drying process did not affect FA and secondary protein structures of bacteria; however, those structures were affected during storage depending upon the type of desiccant used. Interaction between exterior of bacterial cell envelopes and microencapsulant occurred after spray- or freeze-drying; however, these structures were maintained after storage in foil pouch containing sodium hydroxide. Method of drying and type of desiccants influenced the level of similarities of microencapsulated bacteria. Desiccants and method of drying affected glass transition, yet no T(g) ≤25°C was detected. This study demonstrated that the changes in FA and secondary structures of the microencapsulated bacteria still occurred during storage at T(g) above room temperature, indicating that the glassy state did not completely prevent chemical activities. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Vervelle, A; Mouhyi, J; Del Corso, M; Hippolyte, M-P; Sammartino, G; Dohan Ehrenfest, D M
2010-06-01
Mouthwash solutions are mainly used for their antiseptic properties. They currently include synthetic agents (chlorhexidine, triclosan, etc.) or essential oils (especially Listerine). Many natural extracts may also be used. These associate both antiseptic effects and direct action on host response, due to their antioxidant, immunoregulatory, analgesic, buffering, or healing properties. The best known are avocado oil, manuka oil, propolis oil, grapefruit seed extract, pycnogenol, aloe vera, Q10 coenzyme, green tea, and megamin. The development of new technologies, such as microencapsulation (GingiNat concept), may allow an in situ slow release of active ingredients during several hours, and open new perspectives for mouthwash solutions. Copyright 2010 Elsevier Masson SAS. All rights reserved.
Jiang, Yujun; Zheng, Zhe; Zhang, Tiehua; Hendricks, Gregory; Guo, Mingruo
2016-09-01
Survivability of probiotics in foods is essential for developing functional food containing probiotics. We investigated polymerized whey protein (PWP)-based microencapsulation process which is developed for protecting probiotics like Lactobacillus acidophilus NCFM and compared with the method using sodium alginate (SA). The entrapment rate was 89.3 ± 4.8% using PWP, while it was 73.2 ± 1.4% for SA. The microencapsulated NCFM by PWP and SA were separately subjected to digestion juices and post-fermentation storage of fermented cows' and goats' milk using the encapsulated culture. The log viable count of NCFM in PWP-based microencapsulation was 4.56, compared with that of 4.26 in SA-based ones and 3.13 for free culture. Compared with using SA as wall material, PWP was more effective in protecting probiotic. Microencapsulation of L. acidophilus NCFM using PWP as wall material can be exploited in the development of fermented dairy products with better survivability of probiotic organism.
Phoem, Atchara N; Chanthachum, Suphitchaya; Voravuthikunchai, Supayang P
2015-01-01
Microencapsulation using extrusion and emulsion techniques was prepared for Bifidobacterium longum protection against sequential exposure to simulated gastric and intestinal juices, refrigeration storage and heat treatment. Eleutherine americana was used as the co-encapsulating agent. Hydrolysis of E. americana by gastric and intestinal juices was also determined. E. americana and its oligosaccharide extract demonstrated their resistance to low pH and partial tolerance to human α-amylase. Microencapsulated B. longum with E. americana and oligosaccharide extract prepared by the extrusion technique survived better than that by the emulsion technique under adverse conditions. Survival of microencapsulated cells after exposure to the juices and refrigeration storage was higher than free cells at Weeks 2 and 4. In addition, the viability of microencapsulated cells was better than free cells at 65 °C for 15 min. This work suggested that microencapsulated B. longum with E. americana offers the effective delivery of probiotics to colon and maintains their survival in food products. PMID:25629556
Enhancement of Antiviral Agents through the Use of Controlled-Release Technology
1988-03-11
Microencapsulated Poly(I*C) 10 B. Comparison of the Subcutaneous and Intraperltoneal Routes of Poly(I*C) Microcapsule Administration 11 C... microencapsulation solvents and techniques in order to improve the core loading and surface morphology of the JE vaccine microcapsules . After...Days 0, 14, and 42, d3.0 mg unencapsulated JE vaccine, 3.0 mg microencapsulated JE vaccine prepared with 50:50 DL-PLG excipient ( microcapsule Batch
Investigations Concerning Hydrolysis and Stabilization of Antiradiation Compounds
1982-01-01
a. HPLC Unit A 3 b. HPLC Unit B 3 c. Solvents 3 d. Reagents 3 B. In Vivo Studies 3 C. Microencapsulation 4 1. Materials 4 a... Microencapsulation 63 VI. CONCLUSIONS 64 VII. RECOMMENDATIONS 65 LITERATURE CITED 66 APPENDU A - IN VIVO PILOT STUDIES 67 APPENDIX B...stomach. One convenient method of applying such a coating is microencapsulation , a process which may subject the drug to elevated temperatures
Applications of Cell Microencapsulation.
Opara, Emmanuel C
2017-01-01
The goal of this chapter is to provide an overview of the different purposes for which the cell microencapsulation technology can be used. These include immunoisolation of non-autologous cells used for cell therapy; immobilization of cells for localized (targeted) delivery of therapeutic products to ablate, repair, or regenerate tissue; simultaneous delivery of multiple therapeutic agents in cell therapy; spatial compartmentalization of cells in complex tissue engineering; expansion of cells in culture; and production of different probiotics and metabolites for industrial applications. For each of these applications, specific examples are provided to illustrate how the microencapsulation technology can be utilized to achieve the purpose. However, successful use of the cell microencapsulation technology for whatever purpose will ultimately depend upon careful consideration for the choice of the encapsulating polymers, the method of fabrication (cross-linking) of the microbeads, which affects the permselectivity, the biocompatibility and the mechanical strength of the microbeads as well as environmental parameters such as temperature, humidity, osmotic pressure, and storage solutions.The various applications discussed in this chapter are illustrated in the different chapters of this book and where appropriate relevant images of the microencapsulation products are provided. It is hoped that this outline of the different applications of cell microencapsulation would provide a good platform for tissue engineers, scientists, and clinicians to design novel tissue constructs and products for therapeutic and industrial applications.
NASA Astrophysics Data System (ADS)
Jatmiko, Yoga Dwi; Howarth, Gordon S.; Barton, Mary D.
2017-11-01
This study aimed to characterize the probiotic properties of lactic acid bacteria from the naturally fermented milk of Indonesia, namely dangke and dadih. Fifty-one representative lactic acid bacteria belonging to the species Lactobacillus Plantarum, Lactococcus lactis subsp. lactis and Enterococcus faecium were evaluated in vitro for potential probiotic properties based on their bile salt resistance, low pH tolerance, antimicrobial activity, antibiotic susceptibility and adherence to Caco-2 colon cancer cells. In addition, bacteriocin related gene (plantaricin A), bile salt hydrolase (bsh) and mannose-specific adhesin (msa) genes in the genome of lactobacilli were also examined. None of the dangke isolates, which belonged to the species L. lactis subsp. lactis tolerated low pH. However, eight of the isolates were able to grow in the presence of bile salts. It was observed that L. plantarum strain S1.30 and SL2.7 from dadih tolerated low pH, survived bile salt concentrations and were resistant to vancomycin. Furthermore, these strains also contained bacteriocin regulating gene (plantaricin A) and msa and bsh genes in their genome. However, only the strain S1.30 exhibited optimal antimicrobial activity against the selected pathogens and was able to adhere to Caco-2 cells by up to 82.24±0.14%. Antagonistic activity of L. lactis subsp. lactis from dadih and dangke was not detected. However, 73.94±1.26% adherence to Caco-2 cells was demonstrated by L. lactis subsp. lactis strain SL3.34 sourced from dangke. These results suggest that Lactobacillus plantarum strain S1.30 associated with dadih fulfilled the in vitro probiotic criteria and could be exploited for further in vivo evaluation. In addition, dadih was an effective probiotic carrier compared to dangke.
Carvalho, Roberta F; Uehara, Sofia K; Rosa, Glorimar
2012-01-01
Animal studies have suggested beneficial effects of conjugated linoleic acid (CLA) in reducing body fat mass and improvement in the serum lipid profile and glycemia. However, these effects are controversial in humans. The purpose of this study was to investigate the effects of microencapsulated CLA supplementation on body composition, body mass index, waist circumference, and blood pressure in sedentary women with metabolic syndrome. This study was a placebo-controlled and randomized clinical trial. Fourteen women diagnosed with metabolic syndrome received light strawberry jam enriched or not with microencapsulated CLA (3 g/day) as a mixture of 38.57% cis-9, trans-11, and 39.76% trans-10, cis-12 CLA isomers associated with a hypocaloric diet for 90 days. The subjects were monitored to assess variables associated with the metabolic syndrome, in addition to assessing adherence with the intervention. There were no significant effects of microencapsulated CLA on the lipid profile or blood pressure. Mean plasma insulin concentrations were significantly lower in women supplemented with microencapsulated CLA (Δ T₉₀ - T₀ = -12.87 ± 4.26 μU/mL, P = 0.02). Microencapsulated CLA supplementation did not alter the waist circumference, but there was a reduction in body fat mass detected after 30 days (Δ = -2.68% ± 0.82%, P = 0.02), which was maintained until the 90-day intervention period (Δ = -3.32% ± 1.41%, P = 0.02) in the microencapsulated CLA group. The placebo group showed this effect only after 90 days (Δ = -1.97% ± 0.60%, P = 0.02), but had a reduced waist circumference (Δ T₉₀ - T₀ = -4.25 ± 1.31 cm, P = 0.03). Supplementation with mixed-isomer microencapsulated CLA may have a favorable effect on glycemic control and body fat mass loss at an earlier time in sedentary women with metabolic syndrome, although there were no effects on lipid profile and blood pressure.
Ydjedd, Siham; Bouriche, Sihem; López-Nicolás, Rubén; Sánchez-Moya, Teresa; Frontela-Saseta, Carmen; Ros-Berruezo, Gaspar; Rezgui, Farouk; Louaileche, Hayette; Kati, Djamel-Edine
2017-02-01
To determine the effect of in vitro gastrointestinal digestion on the release and antioxidant capacity of encapsulated and nonencapsulated phenolics carob pulp extracts, unripe and ripe carob pulp extracts were microencapsulated with polycaprolactone via double emulsion/solvent evaporation technique. Microcapsules' characterization was performed using scanning electron microscopy and Fourier transform infrared spectrometry analysis. Total phenolics and flavonoids content and antioxidant activities (ORAC, DPPH, and FRAP) were evaluated after each digestion step. The release of phenolic acids and flavonoids was measured along the digestion process by HPLC-MS/MS analysis. The most important phenolics and flavonoids content as well as antioxidant activities were observed after gastric and intestinal phases for nonencapsulated and encapsulated extracts, respectively. The microencapsulation of carob polyphenols showed a protective effect against pH changes and enzymatic activities along digestion, thereby promoting a controlled release and targeted delivery of the encapsulated compound, which contributed to an increase in its bioaccessibility in the gut.
2012-01-01
example, probiotics (Kailasapathy, 2002; Rokka and Rantamäki, 2010), folic acid (Madziva et al., 2006) and ascorbic acid (Wijaya et al., 2011...Kailasapathy, K. 2002. Microencapsulation of Probiotic Bacteria: Technology and Potential Applications. Current Issues in Intestinal Microbiology, 3: 39-48...Re´, M. I. 1998. Microencapsulation by spray drying. Drying Technology, 16:1195–1236. Rokka, S., and Rantamäki, P. 2010. Protecting probiotic
Microencapsulation of Polyfunctional Amines for Self-Healing of Epoxy-Based Composites
2008-01-01
MICROENCAPSULATION OF POLYFUNCTIONAL AMINES FOR SELF-HEALING OF EPOXY-BASED COMPOSITES David A. McIlroy*§, Ben J. Blaiszik,¥ Paul V. Braun... microcapsules containing an amine hardener (DEH-52, Dow Chemical) for use as the hardener in a 2-part epoxy healing system consisting of epoxy...microscope. Scanning electron microscopy was performed on a Philips XL30 ESEM-FEG instrument. Microencapsulation Procedure. 10 g of a 2:1 v/v
A Passive Badge Dosimeter for HCL Detection and Measurement - SBIR 90.I (A90-189)
1990-10-02
Microencapsulation ; Toxic gas detection; Combustion Products; RA III; ’i6.PRICECOOE SORR OF____PAGOfABSRAC 17. SECURITY CLASSIFICATION It. SECURITY... microencapsulated samples, all of the sample? changed color when exposed to sufficiently high concentrations of Ha vapor. In general, detector sensitivity...correlted with indicator pKa with the highest sensitivity being noted for indicators with pKa- 7.0. The microencapsulated dye/liquid crystal droplets
Therapeutic uses of microencapsulated genetically engineered cells.
Chang, T M; Prakash, S
1998-05-01
Microencapsulated genetically engineered cells have the potential to treat a wide range of diseases. For example, in experimental animals, implanted microencapsulated cells have been used to secrete growth hormone to treat dwarfism, neurotrophic factors for amyotrophic lateral sclerosis, beta-endorphin to decrease pain, factor XI for hemophilia B, and nerve growth factors to protect axotomized neurons. For some applications, microencapsulated cells can even be given orally. They can be engineered to remove unwanted molecules from the body as they travel through the intestine, and are finally excreted in the stool without being retained in the body. This application has enormous potential for the removal of urea in kidney failure, ammonia in liver failure and amino acids such as phenylalanine in phenylketonuria and other inborn errors of metabolism.
Ruan, Xiang-cai; Wang, Shen-ming; Shi, Han-ping; Li, Xiao-xi; Xia, Feng-geng; Ming, Fei-ping
2009-03-10
To investigate the effects of micro-encapsulated bifidobacteria on gut barrier and bacterial translocation after hemorrhagic shock and resuscitation. Sprague-Dawley rats were divided into 6 groups: PBS+sham shock group fed with PBS for 7 days and then undergoing sham shock, bifidobacteria+sham shock group fed with bifidobacteria (10(9) cfu/d) for 7 days and then undergoing sham shock, micro-encapsulated bifidobacteria+sham shock group, fed with micro-encapsulated bifidobacteria (10(9) cfu/d) for 7 days and then undergoing sham shock, PBS+hemorrhagic shock group fed with PBS for 7 days and then undergoing hemorrhagic shock, bifidobacteria+shock group fed with bifidobacteria for 7 days and then undergoing hemorrhagic shock, and micro-encapsulated bifidobacteria+shock group, fed with micro-encapsulated bifidobacteria for 7 days and then undergoing hemorrhagic shock. Three hours after resuscitation laparotomy was performed, distal cecum was resected to undergo bacteriological analysis of the cecal content, mesenteric lymph nodes (MLNs), a liver lobe, and the middle part of spleen were resected to undergo bacterial culture for bacterial translocation, and the terminal ileum was resected to observe the villous damage. There was no significant difference in the amount of blood loss among the 3 hemorrhagic shock groups. The amounts of aerobes in cecum of the bifidobacteria+shock and micro-encapsulated bifidobacteria+shock groups, especially that of the latter group, were significantly lower than that of the PBS+shock group. The amounts of anaerobes and the amounts of bifidobacteria in cecum of the bifidobacteria+shock group and micro-encapsulated bifidobacteria+shock group, especially those of the latter group, were significantly higher than those of the PBS+shock group. No bacterial translocation to liver was observed in all groups. The magnitudes of total aerobes translocation in spleen of the bifidobacteria+shock and encapsulated bifidobacteria+shock groups were significantly lower than that of the PBS+shock group, however, there were not significant differences in the translocation in the MLN of total aerobes ad bifidobacteria among different groups. The percentage of ileal villous damage of the bifidobacteria+shock and encapsulated bifidobacteria+shock groups were significantly lower than that of the PBS+shock group. Bifidobacteria effectively protects the gut barrier, reduces bacterial translocation from the gut after hemorrhagic shock and resuscitation. And micro-encapsulated Bifidobacteria can enhance those effects further.
Kim, In-Hah; Han, Jaejoon; Na, Ja Hyun; Chang, Pahn-Sik; Chung, Myung Sub; Park, Ki Hwan; Min, Sea C
2013-02-01
Insect-resistant films containing a microencapsulated insect-repelling agent were developed to protect food products from the Indian meal moth (Plodia interpunctella). Cinnamon oil (CO), an insect repelling agent, was encapsulated with gum arabic, whey protein isolate (WPI)/maltodextrin (MD), or poly(vinyl alcohol) (PVA). A low-density polyethylene (LDPE) film was coated with an ink or a polypropylene (PP) solution that incorporated the microcapsules. The encapsulation efficiency values obtained with gum arabic, WPI/MD, and PVA were 90.4%, 94.6%, and 80.7%, respectively. The films containing a microcapsule emulsion of PVA and CO or incorporating a microcapsule powder of WPI/MD and CO were the most effective (P < 0.05) at repelling moth larvae. The release rate of cinnamaldehyde, an active repellent of cinnamaldehyde, in the PP was 23 times lower when cinnamaldehyde was microencapsulated. Coating with the microcapsules did not alter the tensile properties of the films. The invasion of larvae into cookies was prevented by the insect-repellent films, demonstrating potential for the films in insect-resistant packaging for food products. The insect-repelling effect of cinnamon oil incorporated into LDPE films was more effective with microencapsulation. The system developed in this research with LDPE film may also be extended to other food-packaging films where the same coating platform can be used. This platform is interchangeable and easy to use for the delivery of insect-repelling agents. The films can protect a wide variety of food products from invasion by the Indian meal moth. © 2013 Institute of Food Technologists®
Jafari, Seid Mahdi; Ganje, Mohammad; Dehnad, Danial; Ghanbari, Vahid; Hajitabar, Javad
2017-12-01
The shelf life of tomato paste with microencapsulated olive leaf extract was compared with that of samples containing a commercial preservative by accelerated shelf life testing. Based on previous studies showing that olive leaf extract as a rich source of phenolic compounds can have antimicrobial properties, application of its encapsulated form to improve the storage stability of tomato paste is proposed here. Regarding total soluble solids, the control and the sample containing 1000 µg g -1 sodium benzoate had the lowest (Q 10 = 1.63) and highest (Q 10 = 1.88) sensitivity to temperature changes respectively; also, the microencapsulated sample containing 1000 µg g -1 encapsulated olive leaf extract (Q 10 = 1.83) followed the sample containing 1000 µg g -1 sodium benzoate in terms of the highest kinetic rates. In the case of consistency, the lowest and highest activation energies (E a ) corresponded to samples containing 1000 µg g -1 non-encapsulated olive leaf extract and 1000 µg g -1 microencapsulated olive leaf extract respectively. Interestingly, samples containing microencapsulated olive leaf extract could maintain the original quality of the tomato paste very well, while those with non-encapsulated olive leaf extract rated the worst performance (among all specimens) in terms of maintaining their quality indices for a long time period. Overall, the shelf life equation was able to predict the consistency index of all tomato paste samples during long-time storage with high precision. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Artificial Cells, Blood Substitutes, and Immobilization Biotechnology. Volume 22, Number 3, 1994.
1994-05-01
culture, microorganisms, enzymes, drugs, receptors, sorbents, immunosorbents and other biologically active molecules. (2) Artificial cells, microcapsules ...recombinant hemoglobin, and others. Chemistry, methods, in-vitro studies, in-vivo evaluations and clinical results. (4) Microencapsulation and other
Artificial Cells, Blood Substitutes, and Immobilization Biotechnology. Volume 22 Number 2, 1994.
1994-05-01
culture, microorganisms, enzymes, drugs, receptors, sorbents, immunosorbents and other biologically active molecules. (2) Artificial cells, microcapsules ...recombinant hemoglobin, and others. Chemistry, methods, in-vitro studies, in-vivo evaluations and clinical results. (4) Microencapsulation and other
Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, Volume 22 Number 4, 1994.
1994-01-01
culture, microorganisms, enzymes, drugs, receptors, sorbents, immunosorbents and other biologically active molecules. (2) Artificial cells, microcapsules ...recombinant hemoglobin, and others. Chemistry, methods, in-vitro studies, in-vivo evaluations and clinical results. (4) Microencapsulation and other
1993-12-01
Evaluation of Increased Payloads 6 3.2 Microencapsulation Scale-up of Pilot DNBM 10 4 SURFACE TREATMENT OF MICROCAPSULES 11 4.1 Fumed Silica Additions to... Microencapsulated DNBM b. Fumed-Silica Mixed Microcapsules C. Solvent-Extracted Silanized Microcapsules Fig. 8 SEM Photomicrographs of Pilot-DNBM... Microcapsules 18 NAWCADWAR-94128-60 Section 5 FORMULATION AND TEST OF 100% DNBM AND MICROENCAPSULATED DNBM IN EPOXY-POLYAMIDE PRIMER At the start of the
Malpique, Rita; Brito, Catarina; Jensen, Janne; Bjorquist, Petter; Carrondo, Manuel J. T.; Alves, Paula M.
2011-01-01
The successful implementation of human embryonic stem cells (hESCs)-based technologies requires the production of relevant numbers of well-characterized cells and their efficient long-term storage. In this study, cells were microencapsulated in alginate to develop an integrated bioprocess for expansion and cryopreservation of pluripotent hESCs. Different three-dimensional (3D) culture strategies were evaluated and compared, specifically, microencapsulation of hESCs as: i) single cells, ii) aggregates and iii) immobilized on microcarriers. In order to establish a scalable bioprocess, hESC-microcapsules were cultured in stirred tank bioreactors. The combination of microencapsulation and microcarrier technology resulted in a highly efficient protocol for the production and storage of pluripotent hESCs. This strategy ensured high expansion ratios (an approximately twenty-fold increase in cell concentration) and high cell recovery yields (>70%) after cryopreservation. When compared with non-encapsulated cells, cell survival post-thawing demonstrated a three-fold improvement without compromising hESC characteristics. Microencapsulation also improved the culture of hESC aggregates by protecting cells from hydrodynamic shear stress, controlling aggregate size and maintaining cell pluripotency for two weeks. This work establishes that microencapsulation technology may prove a powerful tool for integrating the expansion and cryopreservation of pluripotent hESCs. The 3D culture strategy developed herein represents a significant breakthrough towards the implementation of hESCs in clinical and industrial applications. PMID:21850261
Hundre, Swetank Y; Karthik, P; Anandharamakrishnan, C
2015-05-01
Vanillin flavour is highly volatile in nature and due to that application in food incorporation is limited; hence microencapsulation of vanillin is an ideal technique to increase its stability and functionality. In this study, vanillin was microencapsulated for the first time by non-thermal spray-freeze-drying (SFD) technique and its stability was compared with other conventional techniques such as spray drying (SD) and freeze-drying (FD). Different wall materials like β-cyclodextrin (β-cyd), whey protein isolate (WPI) and combinations of these wall materials (β-cyd + WPI) were used to encapsulate vanillin. SFD microencapsulated vanillin with WPI showed spherical shape with numerous fine pores on the surface, which in turn exhibited good rehydration ability. On the other hand, SD powder depicted spherical shape without pores and FD encapsulated powder yielded larger particle sizes with flaky structure. FTIR analysis confirmed that there was no interaction between vanillin and wall materials. Moreover, spray-freeze-dried vanillin + WPI sample exhibited better thermal stability than spray dried and freeze-dried microencapsulated samples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Potentials and limitations of microorganisms as renal failure biotherapeutics
Jain, Poonam; Shah, Sapna; Coussa, Razek; Prakash, Satya
2009-01-01
Renal insufficiency leads to uremia, a complicated syndrome. It thus becomes vital to reduce waste metabolites and regulate water and electrolytes in kidney failure. The most common treatment of this disease is either dialysis or transplantation. Although these treatments are very effective, they are extremely costly. Recently artificial cells, microencapsulated live bacterial cells, and other cells have been studied to manage renal failure metabolic wastes. The procedure for microencapsulation of biologically active material is well documented and offers many biomedical applications. Microencapsulated bacteria have been documented to efficiently remove urea and several uremic markers such as ammonia, creatinine, uric acid, phosphate, potassium, magnesium, sodium, and chloride. These bacteria also have further potential as biotherapeutic agents because they can be engineered to remove selected unwanted waste. This application has enormous potential for removal of waste metabolites and electrolytes in renal failure as well as other diseases such as liver failure, phenylketonuria, and Crohn’s disease, to name a few. This paper discusses the various options available to date to manage renal failure metabolites and focuses on the potential of using encapsulated live cells as biotherapeutic agents to control renal failure waste metabolites and electrolytes. PMID:19707412
Antitumour Activity of the Microencapsulation of Annona vepretorum Essential Oil.
Bomfim, Larissa M; Menezes, Leociley R A; Rodrigues, Ana Carolina B C; Dias, Rosane B; Rocha, Clarissa A Gurgel; Soares, Milena B P; Neto, Albertino F S; Nascimento, Magaly P; Campos, Adriana F; Silva, Lidércia C R C E; Costa, Emmanoel V; Bezerra, Daniel P
2016-03-01
Annona vepretorum Mart. (Annonaceae), popularly known as 'bruteira', has nutritional and medicinal uses. This study investigated the chemical composition and antitumour potential of the essential oil of A. vepretorum leaf alone and complexed with β-cyclodextrin in a microencapsulation. The essential oil was obtained by hydrodistillation using a Clevenger-type apparatus and analysed using GC-MS and GC-FID. In vitro cytotoxicity of the essential oil and some of its major constituents in tumour cell lines from different histotypes was evaluated using the alamar blue assay. Furthermore, the in vivo efficacy of essential oil was demonstrated in mice inoculated with B16-F10 mouse melanoma. The essential oil included bicyclogermacrene (35.71%), spathulenol (18.89%), (E)-β-ocimene (12.46%), α-phellandrene (8.08%), o-cymene (6.24%), germacrene D (3.27%) and α-pinene (2.18%) as major constituents. The essential oil and spathulenol exhibited promising cytotoxicity. In vivo tumour growth was inhibited by the treatment with the essential oil (inhibition of 34.46%). Importantly, microencapsulation of the essential oil increased in vivo tumour growth inhibition (inhibition of 62.66%). © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Cosmetic textiles with biological benefits: gelatin microcapsules containing vitamin C.
Cheng, Shuk Yan; Yuen, Marcus Chun Wah; Kan, Chi Wai; Cheuk, Kevin Ka Leung; Chui, Chung Hin; Lam, Kim Hung
2009-10-01
In recent years, textile materials with special applications in the cosmetic field have been developed. A new sector of cosmetic textiles is opened up and several cosmetic textile products are currently available in the market. Microencapsulation technology is an effective technique to control the release properties of active ingredients that prolong the functionality of cosmetic textiles. This study discusses the development of cosmetic textiles and addresses microencapsulation technology with respect to its historical background, significant advantages, microencapsulation methods and recent applications in the textile industry. Gelatin microcapsules containing vitamin C were prepared using emulsion hardening technique. Both the optical microscopy and scanning electron microscopy demonstrated that the newly developed microcapsules were in the form of core-shell spheres with relatively smooth surface. The particle size of microcapsules ranged from 5.0 to 44.1 microm with the average particle size being 24.6 microm. The gelatin microcapsules were proved to be non-cytotoxic based on the research findings of the toxicity studies conducted on human liver and breast cell lines as well as primary bone marrow culture obtained from patient with non-malignant haematological disorder. The gelatin microcapsules were successfully grafted into textile materials for the development of cosmetic textiles.
Sugiura, Shinji; Oda, Tatsuya; Aoyagi, Yasuyuki; Matsuo, Ryota; Enomoto, Tsuyoshi; Matsumoto, Kunio; Nakamura, Toshikazu; Satake, Mitsuo; Ochiai, Atsushi; Ohkohchi, Nobuhiro; Nakajima, Mitsutoshi
2007-02-01
Microencapsulation of genetically engineered cells has attracted much attention as an alternative nonviral strategy to gene therapy. Though smaller microcapsules (i.e. less than 300 microm) theoretically have various advantages, technical limitations made it difficult to prove this notion. We have developed a novel microfabricated device, namely a micro-airflow-nozzle (MAN), to produce 100 to 300 microm alginate microcapsules with a narrow size distribution. The MAN is composed of a nozzle with a 60 microm internal diameter for an alginate solution channel and airflow channels next to the nozzle. An alginate solution extruded through the nozzle was sheared by the airflow. The resulting alginate droplets fell directly into a CaCl2 solution, and calcium alginate beads were formed. The device enabled us to successfully encapsulate living cells into 150 microm microcapsules, as well as control microcapsule size by simply changing the airflow rate. The encapsulated cells had a higher growth rate and greater secretion activity of marker protein in 150 microm microcapsules compared to larger microcapsules prepared by conventional methods because of their high diffusion efficiency and effective scaffold surface area. The advantages of smaller microcapsules offer new prospects for the advancement of microencapsulation technology.
Microencapsulation system and method
NASA Technical Reports Server (NTRS)
Morrison, Dennis R. (Inventor)
2006-01-01
A microencapsulation apparatus is provided which is configured to form co-axial multi-lamellar microcapsules from materials discharged from first and second microsphere dispensers of the apparatus. A method of fabricating and processing microcapsules is also provided which includes forming distinct droplets comprising one or more materials and introducing the droplets directly into a solution bath to form a membrane around the droplets such that a plurality of microcapsules are formed. A microencapsulation system is provided which includes a microcapsule production unit, a fluidized passage for washing and harvesting microcapsules dispensed from the microcapsule production unit and a flow sensor for sizing and counting the microcapsules. In some embodiments, the microencapsulation system may further include a controller configured to simultaneously operate the microcapsule production unit, fluidized passage and flow sensor to process the microcapsules in a continuous manner.
Microencapsulation system and method
NASA Technical Reports Server (NTRS)
Morrison, Dennis R. (Inventor)
2009-01-01
A microencapsulation apparatus is provided which is configured to form co-axial multi-lamellar microcapsules from materials discharged from first and second microsphere dispensers of the apparatus. A method of fabricating and processing microcapsules is also provided which includes forming distinct droplets comprising one or more materials and introducing the droplets directly into a solution bath to form a membrane around the droplets such that a plurality of microcapsules are formed. A microencapsulation system is provided which includes a microcapsule production unit, a fluidized passage for washing and harvesting microcapsules dispensed from the microcapsule production unit and a flow sensor for sizing and counting the microcapsules. In some embodiments, the microencapsulation system may further include a controller configured to simultaneously operate the microcapsule production unit, fluidized passage and flow sensor to process the microcapsules in a continuous manner.
Carvalho, Roberta F; Uehara, Sofia K; Rosa, Glorimar
2012-01-01
Background Animal studies have suggested beneficial effects of conjugated linoleic acid (CLA) in reducing body fat mass and improvement in the serum lipid profile and glycemia. However, these effects are controversial in humans. The purpose of this study was to investigate the effects of microencapsulated CLA supplementation on body composition, body mass index, waist circumference, and blood pressure in sedentary women with metabolic syndrome. Methods This study was a placebo-controlled and randomized clinical trial. Fourteen women diagnosed with metabolic syndrome received light strawberry jam enriched or not with microencapsulated CLA (3 g/day) as a mixture of 38.57% cis-9, trans-11, and 39.76% trans-10, cis-12 CLA isomers associated with a hypocaloric diet for 90 days. The subjects were monitored to assess variables associated with the metabolic syndrome, in addition to assessing adherence with the intervention. Results There were no significant effects of microencapsulated CLA on the lipid profile or blood pressure. Mean plasma insulin concentrations were significantly lower in women supplemented with microencapsulated CLA (Δ T90 – T0 = −12.87 ± 4.26 μU/mL, P = 0.02). Microencapsulated CLA supplementation did not alter the waist circumference, but there was a reduction in body fat mass detected after 30 days (Δ = −2.68% ± 0.82%, P = 0.02), which was maintained until the 90-day intervention period (Δ = −3.32% ± 1.41%, P = 0.02) in the microencapsulated CLA group. The placebo group showed this effect only after 90 days (Δ = −1.97% ± 0.60%, P = 0.02), but had a reduced waist circumference (Δ T90 – T0 = −4.25 ± 1.31 cm, P = 0.03). Conclusion Supplementation with mixed-isomer microencapsulated CLA may have a favorable effect on glycemic control and body fat mass loss at an earlier time in sedentary women with metabolic syndrome, although there were no effects on lipid profile and blood pressure. PMID:23271912
Vythilingam, I; Zainal, A R; Hamidah, T
1999-03-01
Two formulations of lambda-cyhalothrin (EC-Emulsion concentrate and MC-Microencapsulated) were impregnated into bednets made of polyethylene and polyester. The nets were treated at a dosage of 15 mg/m2. For bioassay of insecticidal efficacy, female Anopheles maculatus and Aedes aegypti were exposed to the nets for two minutes and mortality was scored 24 hours later. The nets were also tested after repeated washings with water and with soap and water. Microencapsulated (2.5CS) formulation was more effective than emulsion concentrate (2.5EC) formulation on both net materials--polyethylene and polyester. Repeated washing with water and soap reduces the efficacy of all bednet treatment combinations. Microencapsulated formulation on polyethylene gave best results; it could sustain up to five washes with water and two with soap and water.
USDA-ARS?s Scientific Manuscript database
We tested the efficacy of attractive toxic sugar bait (ATSB) with garlic oil microencapsulated in beta-cyclodextrin as active ingredient against Aedes albopictus in suburban Haifa, Israel. Two three-acre gardens with high numbers of Ae. albopictus were chosen for perimeter spray treatment with ATSB ...
NASA Astrophysics Data System (ADS)
Romero-Sanchez, Maria Dolores; Piticescu, Radu-Robert; Motoc, Adrian Mihail; Aran-Ais, Francisca; Tudor, Albert Ioan
2018-06-01
NaNO3 has been selected as phase change material (PCM) due to its convenient melting and crystallization temperatures for thermal energy storage (TES) in solar plants or recovering of waste heat in industrial processes. However, incorporation of PCMs and NaNO3 in particular requires its protection (i.e. encapsulation) into containers or support materials to avoid incompatibility or chemical reaction with the media where incorporated (i.e. corrosion in metal storage tanks). As a novelty, in this study, microencapsulation of an inorganic salt has been carried out also using an inorganic compound (SiO2) instead of the conventional polymeric shells used for organic microencapsulations and not suitable for high temperature applications (i.e. 300-500 °C). Thus, NaNO3 has been microencapsulated by sol-gel technology using SiO2 as shell material. Feasibility of the microparticles synthetized has been demonstrated by different experimental techniques in terms of TES capacity and thermal stability as well as durability through thermal cycles. The effectiveness of microencapsulated NaNO3 as TES material depends on the core:shell ratio used for the synthesis and on the maximum temperature supported by NaNO3 during use.
Cell microencapsulation with synthetic polymers
Olabisi, Ronke M
2015-01-01
The encapsulation of cells into polymeric microspheres or microcapsules has permitted the transplantation of cells into human and animal subjects without the need for immunosuppressants. Cell-based therapies use donor cells to provide sustained release of a therapeutic product, such as insulin, and have shown promise in treating a variety of diseases. Immunoisolation of these cells via microencapsulation is a hotly investigated field, and the preferred material of choice has been alginate, a natural polymer derived from seaweed due to its gelling conditions. Although many natural polymers tend to gel in conditions favorable to mammalian cell encapsulation, there remain challenges such as batch to batch variability and residual components from the original source that can lead to an immune response when implanted into a recipient. Synthetic materials have the potential to avoid these issues; however, historically they have required harsh polymerization conditions that are not favorable to mammalian cells. As research into microencapsulation grows, more investigators are exploring methods to microencapsulate cells into synthetic polymers. This review describes a variety of synthetic polymers used to microencapsulate cells. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 846–859, 2015. PMID:24771675
Microencapsulation of puerarin nanoparticles by poly(l-lactide) in a supercritical CO(2) process.
Chen, Ai-Zheng; Li, Yi; Chau, Foo-Tim; Lau, Tsui-Yan; Hu, Jun-Yan; Zhao, Zheng; Mok, Daniel Kam-Wah
2009-10-01
Puerarin nanoparticles were firstly prepared in the process of solution-enhanced dispersion by supercritical CO(2) (SEDS) and then successfully microencapsulated by poly(l-lactide) (PLLA) in a modified SEDS process. By adding an organic non-solvent, an initial puerarin solution with a higher degree of saturation and lower concentration was obtained and applied in the SEDS process. The resulting puerarin nanoparticles were then suspended in PLLA solution and microencapsulated by PLLA in a modified SEDS process, where an 'injector' was employed in the particle suspension delivery system. The puerarin nanoparticles exhibited a good spherical shape, a smooth surface and a narrow particle size distribution with a mean particle size of 188 nm. After microencapsulation the puerarin-PLLA microparticles had a mean size of 675 nm, a drug load of 23.6% and an encapsulation efficiency of 39.4%; after a burst release at the first stage, the drug was released in a sustained process. Compared with the parallel study of a co-precipitation process, this microencapsulation process is a much more promising technique to prepare a drug-polymer carrier for a drug delivery system, especially for protein drugs.
Eldridge, J H; Staas, J K; Meulbroek, J A; Tice, T R; Gilley, R M
1991-01-01
Microspheres composed of biocompatible, biodegradable poly(DL-lactide-co-glycolide) (DL-PLG) and staphylococcal enterotoxin B (SEB) toxoid were evaluated as a vaccine delivery system when subcutaneously injected into mice. As measured by circulating immunoglobulin G (IgG) antitoxin titers, the delivery of SEB toxoid via DL-PLG microspheres, 1 to 10 microns in diameter, induced an immune response which was approximately 500 times that seen with nonencapsulated toxoid. The kinetics, magnitude, and duration of the antitoxin response induced with microencapsulated toxoid were similar to those obtained when an equal toxoid dose was administered as an emulsion with complete Freund adjuvant. However, the microspheres did not induce the inflammation and granulomata formation seen with complete Freund adjuvant. The adjuvant activity of the microspheres was not dependent on the superantigenicity of SEB toxin and was equally effective at potentiating circulating IgG antitrinitrophenyl levels in response to microencapsulated trinitrophenyl-keyhole limpet hemocyanin. Empty DL-PLG microspheres were not mitogenic, and SEB toxoid injected as a mixture with empty DL-PLG microspheres was no more effective as an immunogen than toxoid alone. Antigen-containing microspheres 1 to 10 microns in diameter exhibited stronger adjuvant activity than those greater than 10 microns, which correlated with the delivery of the 1- to 10-microns, but not the greater than 10-microns, microspheres into the draining lymph nodes within macrophages. The antibody response induced through immunization with microencapsulated SEB toxoid was protective against the weight loss and splenic V beta 8+ T-cell expansion induced by intravenous toxin administration. These results show that DL-PLG microsphere vaccine delivery systems, which are composed of pharmaceutically acceptable components, possess a strong adjuvant activity for their encapsulated antigens. PMID:1879922
Álvarez, Asteria Luzardo; Espinar, Francisco Otero; Méndez, José Blanco
2011-01-01
In the treatment of intracanal and periodontal infections, the local application of antibiotics and other therapeutic agents in the root canal or in periodontal pockets may be a promising approach to achieve sustained drug release, high antimicrobial activity and low systemic side effects. Microparticles made from biodegradable polymers have been reported to be an effective means of delivering antibacterial drugs in endodontic and periodontal therapy. The aim of this review article is to assess recent therapeutic strategies in which biocompatible microparticles are used for effective management of periodontal and endodontic diseases. In vitro and in vivo studies that have investigated the biocompatibility or efficacy of certain microparticle formulations and devices are presented. Future directions in the application of microencapsulation techniques in endodontic and periodontal therapies are discussed. PMID:24310596
Microencapsulation Technology for Corrosion Mitigation by Smart Coatings
NASA Technical Reports Server (NTRS)
Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.
2011-01-01
A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain
Kuck, Luiza Siede; Noreña, Caciano Pelayo Zapata
2016-03-01
Bordo grape skin extract was microencapsulated by spray-drying and freeze-drying, using gum arabic (GA), partially hydrolyzed guar gum (PHGG), and polydextrose (PD) as encapsulating agents. Total phenolics and total monomeric anthocyanin, antioxidant activity, color, moisture, water activity (aw), solubility, hygroscopicity, glass transition temperature (Tg), particle size, and microstructure of the powders were evaluated. The retention of phenolics and anthocyanins ranged from 81.4% to 95.3%, and 80.8% to 99.6%, respectively, while the retention of antioxidant activity ranged from 45.4% to 83.7%. Treatments subjected to spray-drying had lower moisture, aw, and particle size, and greater solubility, while the freeze-dried samples were less hygroscopic. Tg values ranged from 10.1 to 52.2°C, and the highest values corresponded to the spray-dried microparticles. The spray-dried particles had spherical shape, while the freeze-dried powders showed irregular structures. The spray drying technique and the use of 5% PHGG and 5% PD has proven to be the best treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-02
... the Secretary of Energy to prescribe test procedures that are reasonably designed to produce results... one or more design characteristics that prevents testing of the basic model according to the...
Masunaga, S; Ono, K; Suzuki, M; Sakurai, Y; Kobayashi, T; Takagaki, M; Kinashi, Y; Akaboshi, M
2000-02-01
Changes in the sensitivity of intratumor quiescent (Q) and total cells to gamma-rays following thermal neutron irradiation with or without 10B-compound were examined. 5-Bromo-2'-deoxyuridine (BrdU) was injected to SCC VII tumor-bearing mice intraperitoneally 10 times to label all the proliferating (P) tumor cells. As priming irradiation, thermal neutrons alone or thermal neutrons with 10B-labeled sodium borocaptate (BSH) or dl-p-boronophenylalanine (BPA) were administered. The tumor-bearing mice then received a series of gamma-ray radiation doses, 0 through 24 h after the priming irradiation. During this period, no BrdU was administered. Immediately after the second irradiation, the tumors were excised, minced, and trypsinized. Following incubation of tumor cells with cytokinesis blocker, the micronucleus (MN) frequency in cells without BrdU labeling (= Q cells at the time of priming irradiation) was determined using immunofluorescence staining for BrdU. The MN frequency in the total (P + Q) tumor cells was determined from the tumors that were not pretreated with BrdU before the priming irradiation. To determine the BrdU-labeled cell ratios in the tumors at the time of the second irradiation, each group also included mice that were continuously administered BrdU until just before the second irradiation using mini-osmotic pumps which had been implanted subcutaneously 5 days before the priming irradiation. In total cells, during the interval between the two irradiations, the tumor sensitivity to gamma-rays relative to that immediately after priming irradiation decreased with the priming irradiation ranking in the following order: thermal neutrons only > thermal neutrons with BSH > thermal neutrons with BPA. In contrast, in Q cells, during that time the sensitivity increased in the following order: thermal neutrons only < thermal neutrons with BSH < thermal neutrons with BPA. The longer the interval between the two irradiations, the higher was the BrdU-labeled cell ratio at the second irradiation. The labeled cell ratio at the same time point after each priming irradiation increased in the following order: thermal neutrons only < thermal neutrons with BSH < thermal neutrons with BPA. These findings indicated that the use of 10B-compound, especially BPA, in thermal neutron irradiation causes the recruitment from the Q to P population.
Stem Cell Microencapsulation for Phenotypic Control, Bioprocessing, and Transplantation
Wilson, Jenna L.
2014-01-01
Cell microencapsulation has been utilized for decades as a means to shield cells from the external environment while simultaneously permitting transport of oxygen, nutrients, and secretory molecules. In designing cell therapies, donor primary cells are often difficult to obtain and expand to appropriate numbers, rendering stem cells an attractive alternative due to their capacities for self-renewal, differentiation, and trophic factor secretion. Microencapsulation of stem cells offers several benefits, namely the creation of a defined microenvironment which can be designed to modulate stem cell phenotype, protection from hydrodynamic forces and prevention of agglomeration during expansion in suspension bioreactors, and a means to transplant cells behind a semi-permeable barrier, allowing for molecular secretion while avoiding immune reaction. This review will provide an overview of relevant microencapsulation processes and characterization in the context of maintaining stem cell potency, directing differentiation, investigating scalable production methods, and transplanting stem cells for clinically relevant disorders. PMID:23239279
Tiani, Kendra A; Yeung, Timothy W; McClements, D Julian; Sela, David A
2018-03-01
To investigate whether microencapsulation of Lactobacillus in alginate microbeads will lead to increased longevity during refrigerated storage or simulated digestion. Microscopy was used to confirm that Lactobacillus plantarum ATCC BAA-793 and Lactobacillus johnsonii ATCC 33200 were immobilised within the microbeads and laser scattering analysis was used to determine the mean diameter of the microbeads. The number of viable cells were enumerated throughout refrigerated storage and simulated digestion experiments. Microencapsulation was shown to have differing effects on viability depending on the species, but led to extended viability during refrigerated storage and simulated digestion in L. johnsonii and L. plantarum respectively. Fermented functional foods contain microbes beneficial to human health. However, extended shelf storage and the harsh environment of the GI tract significantly reduces the number of viable microbes reaching the consumer. Microencapsulation allows beneficial microbes to reach the gut of the consumer in higher numbers, and thus confer greater health benefits.
Alikhani, Majid
2014-05-01
Mango pulp is very perishable and so has a short shelf life, which both marketers and consumers would like to be longer. Manually sliced mango was treated by coating opuntia mucilage-rosemary oil (Mu + RO), 2 g rosemary oil microencapsul (ROM), and 2 g (ROM) plus (Mu + RO); the treated mango pieces were placed in plastic trays, and overwrapped with PVDC film and then stored at 6°C. Changes in the quality parameters and activity of peroxidase (POD) enzyme were evaluated for 9 days of storage period. These treatments retarded loss of ascorbic acid and the drop in sensory acceptability, fewer changes in color, decreasing activity POD enzyme. These also inhibited the decay incidence and slowed microbial growth. The (Mu + RO) treatment was more effective in controlling postharvest quality as compared to the (ROM) treatment, but the data reveal that applying the compound treatment effectively prolongs the quality attributes and extends the storage life of sliced mango fruit.
Using complexation for the microencapsulation of nisin in biopolymer matrices by spray-drying.
Ben Amara, Chedia; Kim, Lanhee; Oulahal, Nadia; Degraeve, Pascal; Gharsallaoui, Adem
2017-12-01
The aim of this study is to investigate the potential of complexation to encapsulate nisin (5g/L concentration) using spray-drying technique and to evaluate how complexation with pectin or alginate (2g/L concentration) can preserve nisin structure and antimicrobial activity. Spray-drying of nisin-low methoxyl pectin or nisin-alginate electrostatic complexes has led to the microencapsulation of the peptide in different networks that were highly influenced by the polysaccharide type. Turbidity and particle size measurements indicated that while spray-drying promoted the aggregation of nisin-pectin complexes, it favored the dissociation of nisin-alginate aggregates to form individual complexes. Structural changes of nisin induced by complexation with pectin or alginate and spray-drying were studied by using UV-Vis absorption and fluorescence spectroscopy. The results showed that complexation with pectin or alginate preserved nisin structure as well as its antimicrobial activity during spray-drying. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alikhani, Majid
2014-01-01
Mango pulp is very perishable and so has a short shelf life, which both marketers and consumers would like to be longer. Manually sliced mango was treated by coating opuntia mucilage-rosemary oil (Mu + RO), 2 g rosemary oil microencapsul (ROM), and 2 g (ROM) plus (Mu + RO); the treated mango pieces were placed in plastic trays, and overwrapped with PVDC film and then stored at 6°C. Changes in the quality parameters and activity of peroxidase (POD) enzyme were evaluated for 9 days of storage period. These treatments retarded loss of ascorbic acid and the drop in sensory acceptability, fewer changes in color, decreasing activity POD enzyme. These also inhibited the decay incidence and slowed microbial growth. The (Mu + RO) treatment was more effective in controlling postharvest quality as compared to the (ROM) treatment, but the data reveal that applying the compound treatment effectively prolongs the quality attributes and extends the storage life of sliced mango fruit. PMID:24936290
INEL BNCT Research Program, March/April 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venhuizen, J.R.
1992-09-01
This report presents summaries for two months of current research for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murino screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor call culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronopheoylalanine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, andmore » noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.« less
Microencapsulation by spray drying of nitrogen-fixing bacteria associated with lupin nodules.
Campos, Daniela C; Acevedo, Francisca; Morales, Eduardo; Aravena, Javiera; Amiard, Véronique; Jorquera, Milko A; Inostroza, Nitza G; Rubilar, Mónica
2014-09-01
Plant growth promoting bacteria and nitrogen-fixing bacteria (NFB) used for crop inoculation have important biotechnological potential as a sustainable fertilization tool. However, the main limitation of this technology is the low inoculum survival rate under field conditions. Microencapsulation of bacterial cells in polymer matrices provides a controlled release and greater protection against environmental conditions. In this context, the aim of this study was to isolate and characterize putative NFB associated with lupin nodules and to evaluate their microencapsulation by spray drying. For this purpose, 21 putative NFB were isolated from lupin nodules and characterized (16S rRNA genes). Microencapsulation of bacterial cells by spray drying was studied using a mixture of sodium alginate:maltodextrin at different ratios (0:15, 1:14, 2:13) and concentrations (15 and 30% solids) as the wall material. The microcapsules were observed under scanning electron microscopy to verify their suitable morphology. Results showed the association between lupin nodules of diverse known NFB and nodule-forming bacteria belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Bacteroidetes. In microencapsulation assays, the 1:14 ratio of sodium alginate:maltodextrin (15% solids) showed the highest cell survival rate (79%), with a microcapsule yield of 27% and spherical microcapsules of 5-50 µm in diameter. In conclusion, diverse putative NFB genera and nodule-forming bacteria are associated with the nodules of lupine plants grown in soils in southern Chile, and their microencapsulation by spray drying using sodium alginate:maltodextrin represents a scalable process to generate a biofertilizer as an alternative to traditional nitrogen fertilization.
Champagne, Claude P; Moineau, Sylvain; Lafleur, Sonia; Savard, Tony
2017-05-01
Starter cultures are increasingly being used for the production of sauerkraut, kimchi and other fermented vegetables. The goal of this study was to determine whether the microencapsulation of a bacterial culture can prevent phage infection during vegetable fermentation. Lactobacillus plantarum HER1325 was microencapsulated in alginate beads. Some beads were used without further processing, while others were freeze-dried prior to testing. Fresh beads (diameter of 2 mm) and dried cultures of the lactobacilli (particle size of 53-1000 μm) were added to a vegetable juice medium (VJM) at 1 × 10 7 CFU/mL. The virulent phage HER325 was added at an initial titer of 1 × 10 4 PFU/mL. In the absence of phages, the pH of the vegetable juice dropped to 4.2 after 40 h of fermentation at 19 °C. In the presence of phage HER325, acidification by both the non-microencapsulated and microencapsulated starter cultures stopped after 24 h. In all assays, the alginate particles dissolved during the 40 h of VJM fermentation. When 15 g/L of calcium chloride was added to the VJM, the alginate beads did not dissolve and significant phage protection was observed. The results suggest that phage-protected microencapsulated starter cultures can be used for vegetable fermentation if means are taken to prevent them from dissolving during acidification. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Aijaz, Ayesha; Faulknor, Renea; Berthiaume, François; Olabisi, Ronke M
2015-11-01
Wound healing is a hierarchical process of intracellular and intercellular signaling. Insulin is a potent chemoattractant and mitogen for cells involved in wound healing. Insulin's potential to promote keratinocyte growth and stimulate collagen synthesis in fibroblasts is well described. However, there currently lacks an appropriate delivery mechanism capable of consistently supplying a wound environment with insulin; current approaches require repeated applications of insulin, which increase the chances of infecting the wound. In this study, we present a novel cell-based therapy that delivers insulin to the wound area in a constant or glucose-dependent manner by encapsulating insulin-secreting cells in nonimmunogenic poly(ethylene glycol) diacrylate (PEGDA) hydrogel microspheres. We evaluated cell viability and insulin secretory characteristics of microencapsulated cells. Glucose stimulation studies verified free diffusion of glucose and insulin through the microspheres, while no statistical difference in insulin secretion was observed between cells in microspheres and cells in monolayers. Scratch assays demonstrated accelerated keratinocyte migration in vitro when treated with microencapsulated cells. In excisional wounds on the dorsa of diabetic mice, microencapsulated RIN-m cells accelerated wound closure by postoperative day 7; a statistically significant increase over AtT-20ins-treated and control groups. Histological results indicated significantly greater epidermal thickness in both microencapsulated RIN-m and AtT-20ins-treated wounds. The results suggest that microencapsulation enables insulin-secreting cells to persist long enough at the wound site for a therapeutic effect and thereby functions as an effective delivery vehicle to accelerate wound healing.
Paul, Arghya; Shao, Wei; Abbasi, Sana; Shum-Tim, Dominique; Prakash, Satya
2012-09-04
The present study aims to develop a new stem cell based gene delivery system consisting of human adipose tissue derived stem cells (hASCs) genetically modified with self-assembled nanocomplex of recombinant baculovirus and PAMAM dendrimer (Bac-PAMAM) to overexpress the vascular endothelial growth factor (VEGF). Cells were enveloped into branched PEG surface functionalized polymeric microcapsules for efficient transplantation. In vitro analysis confirmed efficient transduction of hASCs expressing 7.65 ± 0.86 ng functionally active VEGF per 10(6) microencapsulated hASCs (ASC-VEGF). To determine the potential of the developed system, chronically infarcted rat hearts were treated with either empty microcapsules (MC), microencapsulated hASCs expressing MGFP reporter protein (MC+ASC-MGFP), or MC+ASC-VEGF, and analyzed for 10 weeks. Post-transplantation data confirmed higher myocardial VEGF expressions with significantly enhanced neovasculature in the MC+ASC-VEGF group. In addition, the cardiac performance, as measured by percentage ejection fraction, also improved significantly in the MC+ASC-VEGF group (48.6 ± 6.1%) compared to that in MC+ASC-MGFP (38.8 ± 5.3%) and MC groups (31.5 ± 3.3%). Collectively, these data demonstrate the feasibility of this system for improved stem cell therapy applications.
Elvin, Stephen J; Eyles, James E; Howard, Kenneth A; Ravichandran, Easwaran; Somavarappu, Satyanarayan; Alpar, H Oya; Williamson, E Diane
2006-05-15
Protection against virulent plague challenge by the parenteral and aerosol routes was afforded by a single administration of microencapsulated Caf1 and LcrV antigens from Yersinia pestis in BALB/c mice. Recombinant Caf1 and LcrV were individually encapsulated in polymeric microspheres, to the surface of which additional antigen was adsorbed. The microspheres containing either Caf1 or LcrV were blended and used to immunise mice on a single occasion, by either the intra-nasal or intra-muscular route. Both routes of immunisation induced systemic and local immune responses, with high levels of serum IgG being developed in response to both vaccine antigens. In Elispot assays, secretion of cytokines by spleen and draining lymph node cells was demonstrated, revealing activation of both Th1 and Th2 associated cytokines; and spleen cells from animals immunised by either route were found to proliferate in vitro in response to both vaccine antigens. Virulent challenge experiments demonstrated that non-invasive immunisation by intra-nasal instillation can provide strong systemic and local immune responses and protect against high level challenge. Microencapsulation of these vaccine antigens has the added advantage that controlled release of the antigens occurs in vivo, so that protective immunity can be induced after only a single immunising dose.
Bashir, Oumar; Claverie, Jerome P; Lemoyne, Pierre; Vincent, Charles
2016-01-01
Bacillus thuringiensis ( B. t. ) based formulations have been widely used to control lepidopteran pests in agriculture and forestry. One of their weaknesses is their short residual activity when sprayed in the field. Using Pickering emulsions, mixtures of spores and crystals from three B. t. serovars were successfully encapsulated in colloïdosomal microparticles (50 μm) using innocuous chemicals (acrylic particles, sunflower oil, iron oxide nanoparticles, ethanol and water). A pH trigger mechanism was incorporated within the particles so that B. t. release occurred only at pH > 8.5 which corresponds to the midgut pH of the target pests. Laboratory assays performed on Trichoplusia ni ( T. ni ) larvae demonstrated that the microencapsulation process did not impair B. t. bioactivity. The best formulations were field-tested on three key lepidopteran pests that attack Brassica crops, i.e., the imported cabbageworm, the cabbage looper and the diamondback moth. After 12 days, the mean number of larvae was significantly lower in microencapsulated formulations than in a commercial B. t. formulation, and the effect of microencapsulated formulations was comparable to a chemical pesticide (lambda-cyhalothrin). Therefore, colloïdosomal microcapsule formulations successfully extend the bioactivity of B. t. for the management of lepidopteran pests of Brassica crops.
Sharafi, Hakimeh; Alidost, Leila; Lababpour, Abdolmajid; Shahbani Zahiri, Hossein; Abbasi, Habib; Vali, Hojatollah; Akbari Noghabi, Kambiz
2013-06-01
One hundred and sixty lactic acid bacteria, isolated from Iranian traditional dairy products, were screened for antibacterial potential. Among them, an isolate showing remarkable antibacterial activity against both Staphylococcus aureus (PTCC 1112) and Escherichia coli (PTCC 1338) was selected based on minimum inhibitory concentration (AU/mL). The morphological and biochemical characteristics of the isolate matched the literature description about genus Lactobacillus. Partial sequencing of 16S rRNA gene and its alignment with other Lactobacillus strains revealed that the isolate was closely related to the Lactobacillus plantarum. The isolate also exhibited the highest similarity (>99 %) to L. plantarum. We thus tentatively classified the bacterial isolate as L. plantarum HK01. The antibacterial active compound from HK01 strain remained stable for 45 min at 121 °C, and it reached a maximum activity at the end of log phase and the early part of stationary phase. The antibacterial activity of the test isolate, its probiotic properties and production efficacy through addition of some divalent metal cations and food additives were studied as well. The study of bile salt hydrolase (BSH) activity as a function of growth revealed that HK01 strain hydrolysing up to 5 % of sodium salt of glycodeoxycholic acid, correlated with the presence of bsh gene in the isolate. HK01 strain showed high resistance to lysozyme, good adaptation to simulated gastric juice and a moderate bile tolerance. Results obtained from simulated gastric juice conditions showed no significant difference occured during the 70 min. HK01 strain was classified as a strain with low hydrophobicity (34.2 %). Addition of trisodium citrate dehydrates as a food-grade chelator of divalent cations restored antibacterial compound production in MRS broth. Antibacterial compounds of L. plantarum HK01 endured treatment with 10 g/L of SDS, Tween 20, Tween 80 and urea. Concerning food additives, the results demonstrated that antibacterial compound production by L. plantarum HK01 was influenced by the presence of surfactants, EDTA, KCl and sodium citrate.
Encapsulation of Bacterial Spores in Nanoorganized Polyelectrolyte Shells (Postprint)
2009-05-27
Nanoorganized polyelectrolyte shells have already found applica- tions in drug microencapsulation as a result of the tunable properties of the...polyelectrolyte shell.19 The same LbL technology allowed the introduction of enzymatic activity onto yeast cell shells in order to promote the conversion of
Pulse-Flow Microencapsulation System
NASA Technical Reports Server (NTRS)
Morrison, Dennis R.
2006-01-01
The pulse-flow microencapsulation system (PFMS) is an automated system that continuously produces a stream of liquid-filled microcapsules for delivery of therapeutic agents to target tissues. Prior microencapsulation systems have relied on batch processes that involve transfer of batches between different apparatuses for different stages of production followed by sampling for acquisition of quality-control data, including measurements of size. In contrast, the PFMS is a single, microprocessor-controlled system that performs all processing steps, including acquisition of quality-control data. The quality-control data can be used as real-time feedback to ensure the production of large quantities of uniform microcapsules.
Food matrix effects on in vitro digestion of microencapsulated tuna oil powder.
Shen, Zhiping; Apriani, Christina; Weerakkody, Rangika; Sanguansri, Luz; Augustin, Mary Ann
2011-08-10
Tuna oil, containing 53 mg of eicosapentaenoic acid (EPA) and 241 mg of docosahexaenoic acid (DHA) per gram of oil, delivered as a neat microencapsulated tuna oil powder (25% oil loading) or in food matrices (orange juice, yogurt, or cereal bar) fortified with microencapsulated tuna oil powder was digested in simulated gastric fluid or sequentially in simulated gastric fluid and simulated intestinal fluid. The level of fortification was equivalent to 1 g of tuna oil per recommended serving size (i.e., per 200 g of orange juice or yogurt or 60 g of cereal bar). The changes in particle size of oil droplets during digestion were influenced by the method of delivery of the microencapsulated tuna oil powder. Lipolysis in simulated gastric fluid was low, with only 4.4-6.1% EPA and ≤1.5% DHA released after digestion (as a % of total fatty acids present). After sequential exposure to simulated gastric and intestinal fluids, much higher extents of lipolysis of both glycerol-bound EPA and DHA were obtained (73.2-78.6% for the neat powder, fortified orange juice, and yogurt; 60.3-64.0% for the fortified cereal bar). This research demonstrates that the choice of food matrix may influence the lipolysis of microencapsulated tuna oil.
Combined immunotherapy and antiangiogenic therapy of cancer with microencapsulated cells.
Cirone, Pasquale; Bourgeois, Jacqueline M; Shen, Feng; Chang, Patricia L
2004-10-01
An alternative form of gene therapy involves immunoisolation of a nonautologous cell line engineered to secrete a therapeutic product. Encapsulation of these cells in a biocompatible polymer serves to protect these allogeneic cells from host-versus-graft rejection while recombinant products and nutrients are able to pass by diffusion. This strategy was applied to the treatment of cancer with some success by delivering either interleukin 2 or angiostatin. However, as cancer is a complex, multifactorial disease, a multipronged approach is now being developed to attack tumorigenesis via multiple pathways in order to improve treatment efficacy. A combination of immunotherapy with angiostatic therapy was investigated by treating B16-F0/neu melanoma-bearing mice with intraperitoneally implanted, microencapsulated mouse myoblasts (C2C12) genetically modified to deliver angiostatin and an interleukin 2 fusion protein (sFvIL-2). The combination treatment resulted in improved survival, delayed tumor growth, and increased histological indices of antitumor activity (apoptosis and necrosis). In addition to improved efficacy, the combination treatment also ameliorated some of the undesirable side effects from the individual treatments that have led to the previous failure of the single treatments, for example, inflammatory response to IL-2 or vascular mimicry due to angiostatin. In conclusion, the combination of immuno- and antiangiogenic therapies delivered by immunoisolated cells was superior to individual treatments for antitumorigenesis activity, not only because of their known mechanisms of action but also because of unexpected protection against the adverse side effects of the single treatments. Thus, the concept of a "cocktail" strategy, with microencapsulation delivering multiple antitumor recombinant molecules to improve efficacy, is validated.
Duary, Raj Kumar; Batish, Virender Kumar; Grover, Sunita
2012-03-01
Probiotic bacteria must overcome the toxicity of bile salts secreted in the gut and adhere to the epithelial cells to enable their better colonization with extended transit time. Expression of bile salt hydrolase and other proteins on the surface of probiotic bacteria can help in better survivability and optimal functionality in the gut. Two putative Lactobacillus plantarum isolates i.e., Lp9 and Lp91 along with standard strain CSCC5276 were used. A battery of six housekeeping genes viz. gapB, dnaG, gyrA, ldhD, rpoD and 16S rRNA were evaluated by using geNorm 3.4 excel based application for normalizing the expression of bile salt hydrolase (bsh), mucus-binding protein (mub), mucus adhesion promoting protein (mapA), and elongation factor thermo unstable (EF-Tu) in Lp9 and Lp91. The maximal level of relative bsh gene expression was recorded in Lp91 with 2.89 ± 0.14, 4.57 ± 0.37 and 6.38 ± 0.19 fold increase at 2% bile salt concentration after 1, 2 and 3 h, respectively. Similarly, mub and mapA genes were maximally expressed in Lp9 at the level of 20.07 ± 1.28 and 30.92 ± 1.51 fold, when MRS was supplemented with 0.05% mucin and 1% each of bile and pancreatin (pH 6.5). However, in case of EF-Tu, the maximal expression of 42.84 ± 5.64 fold was recorded in Lp91 in the presence of mucin alone (0.05%). Hence, the expression of bsh, mub, mapA and EF-Tu could be considered as prospective biomarkers for screening of novel probiotic lactobacillus strains for optimal functionality in the gut.
Hui, Jianfeng; Li, Tao; Du, Zhi; Song, Jichang
2011-12-01
This study was to investigate the relationship of dose-effect and time-effect of Alginate-Polylysine-Alginate (APA) microencapsulated bovine chromaffin cells on the treatment of pain model rats. Using a rat model of painful peripheral neuropathy, the antinociceptive effects of APA microencapsulated bovine cells transplanted into the subarachnoid space was evaluated by cold allodynia test and hot hyperalgesia test. Compared with control group, the withdrawal difference with cell number 50 thousands groups, 100 thousands groups and 200 thousands groups was reduced (P < 0.05), and the difference decreased with the cells increases, indicating a significant analgesic effect. There was no significant difference between 400 thousands groups and 200 thousands groups. This analgesic effect maintained longer than 12 weeks. There was a positive correlation between the analgesic effect and the quantity of APA microencapsulated bovine chromaffin cells which were transplanted to treat pain model rats, and the effective antinociception remained longer than 12 weeks.
Ko, Wen-Ching; Chang, Chao-Kai; Wang, Hsiu-Ju; Wang, Shian-Jen; Hsieh, Chang-Wei
2015-04-01
The aim of this study was to develop an optimal microencapsulation method for an oil-soluble component (curcumin) using γ-PGA. The results show that Span80 significantly enhances the encapsulation efficiency (EE) of γ-Na(+)-PGA microcapsules. Therefore, the effects of γ-Na(+)-PGA, curcumin and Span80 concentration on EE of γ-Na(+)-PGA microcapsules were studied by means of response surface methodology (RSM). It was found that the optimal microencapsulation process is achieved by using γ-Na(+)-PGA 6.05%, curcumin 15.97% and Span80 0.61% with a high EE% (74.47 ± 0.20%). Furthermore, the models explain 98% of the variability in the responses. γ-Na(+)-PGA seems to be a good carrier for the encapsulation of curcumin. In conclusion, this simple and versatile approach can potentially be applied to the microencapsulation of various oil-soluble components for food applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tudor, Albert Ioan; Motoc, Adrian Mihail; Ciobota, Cristina Florentina; Ciobota, Dan. Nastase; Piticescu, Radu Robert; Romero-Sanchez, Maria Dolores
2018-05-01
Thermal energy storage systems using phase change materials (PCMs) as latent heat storage are one of the main challenges at European level in improving the performances and efficiency of concentrated solar power energy generation due to their high energy density. PCM with high working temperatures in the temperature range 300-500 °C are required for these purposes. However their use is still limited due to the problems raised by the corrosion of the majority of high temperature PCMs and lower thermal transfer properties. Micro-encapsulation was proposed as one method to overcome these problems. Different micro-encapsulation methods proposed in the literature are presented and discussed. An original process for the micro-encapsulation of potassium nitrate as PCM in inorganic zinc oxide shells based on a solvothermal method followed by spray drying to produce microcapsules with controlled phase composition and distribution is proposed and their transformation temperatures and enthalpies measured by differential scanning calorimetry are presented.
Microencapsulation Technologies for Corrosion Protective Coating Applications
NASA Technical Reports Server (NTRS)
Li, Wenyan; Buhrow, Jerry; Jolley, Scott; Calle, Luz; Pearman, Benjamin; Zhang, Xuejun
2015-01-01
Microencapsulation technologies for functional smart Coatings for autonomous corrosion control have been a research area of strong emphasis during the last decade. This work concerns the development of pH sensitive micro-containers (microparticles and microcapsules) for autonomous corrosion control. This paper presents an overview of the state-of-the-art in the field of microencapsulation for corrosion control applications, as well as the technical details of the pH sensitive microcontainer approach, such as selection criteria for corrosion indicators and corrosion inhibitors; the development and optimization of encapsulation methods; function evaluation before and after incorporation of the microcontainers into coatings; and further optimization to improve coating compatibility and performance.
Mitigation of Quantum Dot Cytotoxicity by Microencapsulation
Romoser, Amelia; Ritter, Dustin; Majitha, Ravish; Meissner, Kenith E.; McShane, Michael; Sayes, Christie M.
2011-01-01
When CdSe/ZnS-polyethyleneimine (PEI) quantum dots (QDs) are microencapsulated in polymeric microcapsules, human fibroblasts are protected from acute cytotoxic effects. Differences in cellular morphology, uptake, and viability were assessed after treatment with either microencapsulated or unencapsulated dots. Specifically, QDs contained in microcapsules terminated with polyethylene glycol (PEG) mitigate contact with and uptake by cells, thus providing a tool to retain particle luminescence for applications such as extracellular sensing and imaging. The microcapsule serves as the “first line of defense” for containing the QDs. This enables the individual QD coating to be designed primarily to enhance the function of the biosensor. PMID:21814567
Pearson, Anthony C
2017-07-01
Localized thickening of the basal portion of the ventricular septum or basal septal hypertrophy (BSH) has been identified both at autopsy and by imaging studies for decades; despite numerous investigations, there is no consensus on the significance of this finding and a remarkable lack of consistency in terminology. This paper summarizes the scientific literature on the topic, focusing on recent echocardiographic findings. A case description illustrating some of the complex issues involved in measurement and diagnosis and differentiation from sigmoidal hypertrophic cardiomyopathy (HCM) is presented. Criteria are proposed for diagnosing pathologic BSH which include the following: (1) Exertional symptoms compatible with left ventricular outflow tract obstruction (LVOTO) such as dyspnea, near-syncope, and chest discomfort; (2) Documented LVOTO gradient demonstrated at peak bicycle or post-treadmill exercise >30 mm Hg; and (3) Symptomatic improvement with β-blocker (or other negative inotropic) therapy (preferably accompanied by documentation of reduction of exercise-induced LVOT). © 2017, Wiley Periodicals, Inc.
Chen, Ai-Zheng; Wang, Guang-Ya; Wang, Shi-Bin; Li, Li; Liu, Yuan-Gang; Zhao, Chen
2012-01-01
Background The aim of this study was to improve the drug loading, encapsulation efficiency, and sustained-release properties of supercritical CO2-based drug-loaded polymer carriers via a process of suspension-enhanced dispersion by supercritical CO2 (SpEDS), which is an advanced version of solution-enhanced dispersion by supercritical CO2 (SEDS). Methods Methotrexate nanoparticles were successfully microencapsulated into poly (L-lactide)-poly(ethylene glycol)-poly(L-lactide) (PLLA-PEG-PLLA) by SpEDS. Methotrexate nanoparticles were first prepared by SEDS, then suspended in PLLA-PEG-PLLA solution, and finally microencapsulated into PLLA-PEG-PLLA via SpEDS, where an “injector” was utilized in the suspension delivery system. Results After microencapsulation, the composite methotrexate (MTX)-PLLA-PEG-PLLA microspheres obtained had a mean particle size of 545 nm, drug loading of 13.7%, and an encapsulation efficiency of 39.2%. After an initial burst release, with around 65% of the total methotrexate being released in the first 3 hours, the MTX-PLLA-PEG-PLLA microspheres released methotrexate in a sustained manner, with 85% of the total methotrexate dose released within 23 hours and nearly 100% within 144 hours. Conclusion Compared with a parallel study of the coprecipitation process, microencapsulation using SpEDS offered greater potential to manufacture drug-loaded polymer microspheres for a drug delivery system. PMID:22787397
Massounga Bora, Awa Fanny; Ma, Shaojie; Li, Xiaodong; Liu, Lu
2018-03-01
Green tea has been associated with the prevention and reduction of a wide range of severe health conditions such as cancer, immune, and cardiovascular diseases. The health benefits associated with green tea consumption have been predominantly attributed to green tea polyphenols. The functional properties of green tea polyphenols are mainly anti-oxidative, antimutagenic, anticarcinogenic, anti-microbial, etc. These excellent properties have recently gained considerable attention in the food industry. However, their application is limited by their sensitivity to factors like temperature, light, pH, oxygen, etc. More, studies have reported the occurrence of unpleasant taste and color transfer during food processing. Lastly, the production of functional food requires to maintain the stability, bioactivity, and bioavailability of the active compounds. To tackle these obstacles, technological approaches like microencapsulation have been developed and applied for the formulation of green tea-enriched food products. The present review discusses the novelty in microencapsulation techniques for the safe delivery of green tea polyphenols in food matrices. After a literature on the green tea polyphenols composition, and their health attributes, the encapsulation methods and the coating materials are presented. The application of green tea encapsulates in food matrices as well as their effect on food functional and sensory properties are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wyspiańska, Dorota; Kucharska, Alicja Z; Sokół-Łętowska, Anna; Kolniak-Ostek, Joanna
2017-01-01
Procyanidins from the bark of hawthorn (Crataegus monogyna Jacq.) were isolated and purified. Qualitative and quantitative composition was compared with that of the extract of hawthorn fruit (Crataegus monogyna Jacq.). Stability and antioxidant and anti-inflammatory properties of procyanidins before and after micro-encapsulation were estimated. The effects of the carrier type (inulin and maltodextrin) and procyanidins:carrier ratio (1:1, 1:3) and the influence of storage temperature (20 °C, -20 °C, -80 °C) on the content of procyanidins were evaluated. Samples before and after micro-encapsulation contained from 651 to 751 mg of procyanidins in 1 g. Among the procyanidins, (-)-epicatechin, dimer B2, and trimer C1 dominated. The use of inulin during spray drying resulted in greater efficiency of micro-encapsulation than the use of maltodextrin. During storage of the samples at 20 °C degradation of procyanidins was observed, whereas at -20 °C and -80 °C concentrations of them increased. The microcapsules with procyanidins from the bark of hawthorn, as well as the extract of procyanidins, have valuable biological activity, and strong antioxidant and anti-inflammatory properties. It is better to prepare microcapsules with a greater amount of carrier, with the procyanidin/carrier ratio 1:3. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Effect of blueberry extract from blueberry pomace on the microencapsulated fish oil
USDA-ARS?s Scientific Manuscript database
The effect of the addition of blueberry extract (BE) obtained from blueberry pomace on lipid oxidation of pollock liver oil (PO) during microencapsulation was evaluated. An emulsion containing PO and BE (EBE) was prepared and spray dried in a pilot scale spray dryer. Thiobarbituric acids (TBARS) of ...
Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha
2015-01-01
Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits. PMID:26322304
Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha
2015-01-01
Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits.
Surface-modified Mg{sub 2}Ni-type negative electrode materials for Ni-MH battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, N.; Luan, B.; Bradhurst, D.
1997-12-01
In order to further improve the electrode performance of Mg{sub 1.9}Y{sub 0.1}Ni{sub 0.9}Al{sub 0.1} alloy at ambient temperature, its surface was modified by an ultrasound pretreatment in the alkaline solution and microencapsulation with Ni-P coating. The effects of various surface modifications on the microstructure and electrochemical performance of the alloy electrodes were investigated and compared in this paper. It was found that the modification with ultrasound pretreatment significantly improved the electrocatalytic activity of the negative electrode and then reduced the overpotential of charging/discharging, resulting in a remarkable increase of electrode capacity and high-rate discharge capability but having little influence onmore » the cycle life. However, the electrode fabricated from the microencapsulated alloy powder showed a higher discharge capacity, better high-rate discharge capability and longer cycle life as well.« less
Barlow, Jacob; Gozzi, Kevin; Kelley, Chase P; Geilich, Benjamin M; Webster, Thomas J; Chai, Yunrong; Sridhar, Srinivas; van de Ven, Anne L
2017-01-01
Encapsulating bacteria within constrained microenvironments can promote the manifestation of specialized behaviors. Using double-emulsion droplet-generating microfluidic synthesis, live Bacillus subtilis bacteria were encapsulated in a semi-permeable membrane composed of poly(ethylene glycol)-b-poly(D,L-lactic acid) (mPEG-PDLLA). This polymer membrane was sufficiently permeable to permit exponential bacterial growth, metabolite-induced gene expression, and rapid biofilm growth. The biodegradable microparticles retained structural integrity for several days and could be successfully degraded with time or sustained bacterial activity. Microencapsulated B. subtilis successfully captured and contained sodium selenite added outside the polymersomes, converting the selenite into elemental selenium nanoparticles that were selectively retained inside the polymer membrane. This remediation of selenium using polymersomes has high potential for reducing the toxicity of environmental selenium contamination, as well as allowing selenium to be harvested from areas not amenable to conventional waste or water treatment.
Kalušević, Ana; Lević, Steva; Čalija, Bojan; Pantić, Milena; Belović, Miona; Pavlović, Vladimir; Bugarski, Branko; Milić, Jela; Žilić, Slađana; Nedović, Viktor
2017-08-01
Black soybean coat is insufficiently valorised food production waste rich in anthocyanins. The goal of the study was to examine physicochemical properties of spray dried extract of black soybean coat in regard to carrier materials: maltodextrin, gum Arabic, and skimmed milk powder. Maltodextrin and gum Arabic-based microparticles were spherical and non-porous while skimmed milk powder-based were irregularly shaped. Low water activity of microparticles (0.31-0.33), good powders characteristics, high solubility (80.3-94.3%) and encapsulation yields (63.7-77.0%) were determined. All microparticles exhibited significant antioxidant capacity (243-386 μmolTE/g), good colour stability after three months of storage and antimicrobial activity. High content of total anthocyanins, with cyanidin-3-glucoside as predominant, were achieved. In vitro release of anthocyanins from microparticles was sustained, particularly from gum Arabic-based. These findings suggest that proposed simple eco-friendly extraction and microencapsulation procedures could serve as valuable tools for valorisation and conversion of black soybean coat into highly functional and stable food colourant.
NASA Technical Reports Server (NTRS)
Morrison, Dennis R.; Haddad, Ruwaida S.
2003-01-01
Experiments on the ISS include encapsulation of several different anti-cancer drugs, magnetic triggering particles, and encapsulation of genetically engineered DNA. Eight experiments, using the MEPS-II apparatus, were conducted to study the limitations of the fluid shear and g-dependent forces. These studies included: 1) formation of anti-tumor microcapsules containing drugs for "Chemoembolization" of vascularized tumors, 2) formation of microcapsules containing a photo-activated drug which can be used for Photo Dynamic Therapy of solid tumors by activation with near infrared light (630 nm), 3) coencapsulation of magnetic trigger particles and anti-tumor drugs, and 4) encapsulation of plasmid DNA. The Microencapsulation Electrostatic Processing System (MEPS-II) is an automated apparatus modified for use in the ISS Express Rack. The process brings together two immiscible liquids, restricting fluid shear to permitting surface tension forces to predominate at the interface of the fluids. Microcapsules were recovered from all 8 experiments and are currently being analyzed for size distribution and drug content. Six NASA Patents have issued from the space research and several more are pending. The preliminary results from the Increment 5 - UF-2 experiments have provided new insight into the best formulations and conditions required to produce microcapsules of different drugs, esp. special capsules containing diagnostic imaging materials and triggered release particles. Co-encapsulation of multiple drugs and Photodynamic Therapy (PDT) drugs has enabled new engineering strategies for production of microcapsules on Earth designed for direct delivery into cancer tissues. Other microcapsules have now been made for treatment of deep tissue infections, clotting disorders, and to provide delivery of genetic engineered materials for potential gene therapy approaches. The MEPS-II apparatus remains in the ISS awaiting microencapsulation experiments to be conducted in micro-g, and returned to Earth for analysis.
Chen, He; Song, Yajuan; Liu, Nina; Wan, Hongchang; Shu, Guowei; Liao, Na
2015-01-01
Lactobacillus acidophilus has become increasingly popular because of their beneficial effects on health of their host, and are called proboscis. In order to exert beneficial effects for probiotics, they must be able to tolerate the acidic conditions of the stomach environment and the bile in the small intestine. Microencapsulated form has received reasonable attention, since it can protect probiotic organisms against an unfavourable environment, and to allow their release in a viable and metabolically active state in the intestine. The aim of this study was to investigate some factores, such as chitosan solution pH and concentration, xanthan concentration, cell suspension-xanthan ratio, mixed bacteria glue liquid-chitosan ratio, which impacted the process of microencapsulation of L. acidophilus. In this study, L. acidophilus was immobilized with xanthan⁄chitosan gel using extrusion method. The viable counts and encapsulation yield of L. acidophilus encapsulated in different chitosan solution pH (4.5, 5, 5.5 and 6), in different chitosan concentration (0.5%, 0.7%, 0.9% and 1.1%), in different xanthan concentration (0.5%, 0.7%, 0.9% and 1.1%), in different cell suspension-xanthan ratios (1:5, 1:10, 1:15 and 1:20), in different mixed bacteria glue liquid-chitosan ratios (1:3, 1:4, 1:5 and 1:6), have been investigated by single factor experiment method. The optimum conditions of microencapsulated L. acidophilus have been observed. The optimum chitosan solution pH for L. acidophilus was 5.5; the optimum chitosan concentration was 0.9%; the optimum xanthan concentration was 0.7%; the optimum cell suspension-xanthan ratio was 1:10; the optimum mixed bacteria glue liquid-chitosan ratio was 1:3. These results will be helpful to further optimize the process of L. acidophilus microencapsulation, and provide reference for obtaining higher viable counts and entrapped yield of L. acidophilus microcapsules.
Functional Properties of Lactobacillus mucosae Strains Isolated from Brazilian Goat Milk.
de Moraes, Georgia Maciel Dias; de Abreu, Louricélia Rodrigues; do Egito, Antônio Silvio; Salles, Hévila Oliveira; da Silva, Liana Maria Ferreira; Nero, Luís Augusto; Todorov, Svetoslav Dimitrov; Dos Santos, Karina Maria Olbrich
2017-09-01
The search for probiotic candidates among lactic acid bacteria (LAB) isolated from food may uncover new strains with promising health and technological properties. Lactobacillus mucosae strains attracted recent research attention due to their ability to adhere to intestinal mucus and to inhibit pathogens in the gastrointestinal tract, both related to a probiotic potential. Properties of interest and safety aspects of three Lb. mucosae strains (CNPC006, CNPC007, and CNPC009) isolated from goat milk were investigated employing in vitro tests. The presence of genetic factors related to bile salt hydrolase production (bsh), intestinal adhesion properties (msa, map, mub, and ef-tu), virulence, and biogenic amine production were also verified. All strains exhibited the target map, mub, and ef-tu sequences; the msa gene was detected in CNPC006 and CNPC007 strains. Some of the searched sequences for virulence factors were detected, especially in the CNPC009 strain; all strains carried the hyl gene, related to the production of hyaluronidase. Lb. mucosae CNPC007 exhibited a high survival rate in simulated gastric and enteric conditions. Besides, all strains exhibited the bsh sequence, and CNPC006 and CNPC007 were able to deconjugate salts of glycodeoxycholic acid (GDC). Regarding technological properties for dairy product applications, a relatively higher milk acidification and clotting capacity, diacetyl production, and proteolytic activity were registered for CNPC007 in comparison to the other strains. Collectively, the results aim at Lb. mucosae CNPC007 as a promising probiotic candidate for application in dairy products, deserving further studies to confirm and explore its potential.
Adaptation of ammonia-oxidizing microorganisms to environment shift of paddy field soil.
Ke, Xiubin; Lu, Yahai
2012-04-01
Adaptation of microorganisms to the environment is a central theme in microbial ecology. The objective of this study was to investigate the response of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) to a soil medium shift. We employed two rice field soils collected from Beijing and Hangzhou, China. These soils contained distinct AOB communities dominated by Nitrosomonas in Beijing rice soil and Nitrosospira in Hangzhou rice soil. Three mixtures were generated by mixing equal quantities of Beijing soil and Hangzhou soil (BH), Beijing soil with sterilized Hangzhou soil (BSH), and Hangzhou soil with sterilized Beijing soil (HSB). Pure and mixed soils were permanently flooded, and the surface-layer soil where ammonia oxidation occurred was collected to determine the response of AOB and AOA to the soil medium shift. AOB populations increased during the incubation, and the rates were initially faster in Beijing soil than in Hangzhou soil. Nitrosospira (cluster 3a) and Nitrosomonas (communis cluster) increased with time in correspondence with ammonia oxidation in the Hangzhou and Beijing soils, respectively. The 'BH' mixture exhibited a shift from Nitrosomonas at day 0 to Nitrosospira at days 21 and 60 when ammonia oxidation became most active. In 'HSB' and 'BSH' mixtures, Nitrosospira showed greater stimulation than Nitrosomonas, both with and without N amendment. These results suggest that Nitrosospira spp. were better adapted to soil environment shifts than Nitrosomonas. Analysis of the AOA community revealed that the composition of AOA community was not responsive to the soil environment shifts or to nitrogen amendment. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Physical properties of microencapsulated gamma-3 salmon oil with egg white powder
USDA-ARS?s Scientific Manuscript database
Microencapsulated salmon oil with egg white powders are a good source of high quality protein and amino acids including leucine and omega-3 fatty acids, which may be beneficial for athletes. The study demonstrated that egg white powders containing omega-3 salmon oil can be effectively produced by sp...
Nancy E. Gillette; John D. Stein; Donald R. Owen; Jeffrey N. Webster; Sylvia R. Mori
2006-01-01
Two aerial applications of microencapsulated pheromone were conducted on five 20.2 ha plots to disrupt western pine shoot borer (Eucosma sonomana Kearfott) and ponderosa pine tip moth (Rhyacionia zowna (Kearfott): Lepidoptera: Tortricidae) orientation to pheromones and oviposition in ponderosa pine plantations in 2002 and 2004...
Composite Materials for Maxillofacial Prostheses.
1983-02-01
the most promise for producing elastomeric-shelled microcapsules containing an inert liquid. While much of the diverse field of microencapsulation is...Processes and Applications, Chicago, 28 August 1973. 11. Gutchko, M. H., Microcapsules and Microencapsulation Techniques. Noyes Data Corporation, Park Ridge...necesaryv and identify by block number) * MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS: MICROCAPSULES : * SOFT FILLERS; ELASTOMER COMPOSITES 2L
Microencapsulation of Drugs in the Microgravity Environment of the United States Space Shuttle.
Space Shuttle. The microcapsules in space (MIS) equipment will replace two space shuttle middeck storage lockers. Design changes have been...Mission STS-53 pending final safety certification by NASA. STS-53 is scheduled for launch on October 15, 1992. RA 2; Microencapsulation ; Controlled-release; Space Shuttle; Antibiotics; Drug development.
Microencapsulation of Islets of Langerhans via selective withdrawal to achieve immunoisolation
NASA Astrophysics Data System (ADS)
Wyman, Jason; Dillmore, Shannon; Murphy, William; Garfinkel, Marc; Mrksich, Milan; Nagel, Sidney
2004-03-01
Cohen phet al. [1] described how the selective-withdrawal geometry may be used to microencapsulate particles in thin coats whose thickness is independent of the size of the encapsulated particle. We have applied a modified version of this geometry to the microencapsulation of Islets of Langerhans for the purpose of immunoisolation. The Islets are initially placed in a polymer-containing aqueous solution which is then drawn up into a selective-withdrawal spout. As that spout breaks up, it leaves the Islets coated with the polymer solution. These coats are then photo-crosslinked leaving the Islets encapsulated in a hydrogel coating. This coating provides a semi-permeable membrane which allows for the diffusion of small molecules such as nutrients, glucose, and insulin, but which excludes larger proteins such as antibodies. If one can successfully microencapsulate 10^6 islets in uniform coats such as these, then one may transplant Islets without immuno-suppression as a treatment for Type-I Diabetes. We will discuss preliminary phin vitro results. [1] I. Cohen, H. Li, J. L. Hougland, M. Mrksich, and S. R. Nagel Science 292, 265-267 (2001).
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
... that are reasonably designed to produce results that measure energy efficiency, energy use, or... more design characteristics that prevent testing according to the prescribed test procedure, or (2... true energy consumption characteristics as to provide materially inaccurate comparative data. 10 CFR...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
... that are reasonably designed to produce results that measure energy efficiency, energy use, or... more design characteristics that prevent testing according to the prescribed test procedure, or (2... true energy consumption characteristics as to provide materially inaccurate comparative data. 10 CFR...
Solomon, B; Sahle, F F; Gebre-Mariam, T; Asres, K; Neubert, R H H
2012-01-01
Citronella oil (CO) has been reported to possess a mosquito-repellent action. However, its application in topical preparations is limited due to its rapid volatility. The objective of this study was therefore to reduce the rate of evaporation of the oil via microencapsulation. Microcapsules (MCs) were prepared using gelatin simple coacervation method and sodium sulfate (20%) as a coacervating agent. The MCs were hardened with a cross-linking agent, formaldehyde (37%). The effects of three variables, stirring rate, oil loading and the amount of cross-linking agent, on encapsulation efficiency (EE, %) were studied. Response surface methodology was employed to optimize the EE (%), and a polynomial regression model equation was generated. The effect of the amount of cross-linker was insignificant on EE (%). The response surface plot constructed for the polynomial equation provided an optimum area. The MCs under the optimized conditions provided EE of 60%. The optimized MCs were observed to have a sustained in vitro release profile (70% of the content was released at the 10th hour of the study) with minimum initial burst effect. Topical formulations of the microencapsulated oil and non-microencapsulated oil were prepared with different bases, white petrolatum, wool wax alcohol, hydrophilic ointment (USP) and PEG ointment (USP). In vitro membrane permeation of CO from the ointments was evaluated in Franz diffusion cells using cellulose acetate membrane at 32 °C, with the receptor compartment containing a water-ethanol solution (50:50). The receptor phase samples were analyzed with GC/MS, using citronellal as a reference standard. The results showed that microencapsulation decreased membrane permeation of the CO by at least 50%. The amount of CO permeated was dependent on the type of ointment base used; PEG base exhibited the highest degree of release. Therefore, microencapsulation reduces membrane permeation of CO while maintaining a constant supply of the oil. Copyright © 2011 Elsevier B.V. All rights reserved.
Han, Yanfu; Tao, Ran; Han, Yanqing; Sun, Tianjun; Chai, Jiake; Xu, Guang; Liu, Jing
2014-02-01
Tissue-engineered dermis (TED) is thought to be the best treatment for skin defect wounds; however, lack of vascular structures in these products can cause slow vascularization or even transplant failure. We assessed the therapeutic potential of microencapsulated human umbilical cord mesenchymal stromal cells (hUCMSCs) expressing vascular endothelial growth factor (VEGF) in vascularization of TED. hUCMSCs were isolated by means of enzymatic digestion and identified by means of testing biological characteristics. hUCMSCs were induced to differentiate into dermal fibroblasts in conditioned induction media. Collagen-chitosan laser drilling acellular dermal matrix (ADM) composite scaffold was prepared by means of the freeze dehydration and dehydrothermal cross-linking method. hUCMSC-derived fibroblasts were implanted on composite scaffolds to construct TED. TED with microencapsulated VEGF gene-modified hUCMSCs was then transplanted into skin defect wounds in pigs. The angiogenesis of TED at 1 week and status of wound healing at 3 weeks were observed. The collagen-chitosan laser ADM composite has a uniform microporous structure. This composite has been used to grow hUCMSC-derived fibroblasts in vitro and to successfully construct stem cell-derived TED. Microencapsulated VEGF gene-modified hUCMSCs were prepared with the use of a sodium alginate-barium chloride one-step encapsulation technology. Seven days after the transplantation of the stem cell-derived TED and microencapsulated VEGF gene-modified hUCMSCs into the skin defect wounds on the backs of miniature pigs, the VEGF expression increased and the TED had a higher degree of vascularization. Re-epithelialization of the wound was completed after 3 weeks. Microencapsulated VEGF gene-modified hUCMSCs can effectively improve the vascularization of TED and consequently the quality of wound healing. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Local Anesthetic Microcapsules.
1981-04-15
III Chemical Structure of Local Anesthetics 12 Table IV Processing Summary of Lidocaine Microencapsulation 15 Table V Lidocaine Microcapsule Size...Distribution 17 Table VI Processing Summary of Etidocaine Microencapsulation 18 Table VII Etidocaine Microcapsule Size Distribution 19 Table VIII Lidocaine...REPORT I PERIOD COVERED Annual Local Anesthetic Microcapsules 1 July 1980-30 March 1981 6. PERFORMING ORG. REPORT NUMBER 2106-1 7. AUTHOR() S
Micro-Encapsulation of Probiotics
NASA Astrophysics Data System (ADS)
Meiners, Jean-Antoine
Micro-encapsulation is defined as the technology for packaging with the help of protective membranes particles of finely ground solids, droplets of liquids or gaseous materials in small capsules that release their contents at controlled rates over prolonged periods of time under the influences of specific conditions (Boh, 2007). The material encapsulating the core is referred to as coating or shell.
Large Area Microencapsulated Reflective Guest-Host Liquid Crystal Displays and Their Applications
NASA Astrophysics Data System (ADS)
Nakai, Yutaka; Tanaka, Masao; Enomoto, Shintaro; Iwanaga, Hiroki; Hotta, Aira; Kobayashi, Hitoshi; Oka, Toshiyuki; Kizaki, Yukio; Kidzu, Yuko; Naito, Katsuyuki
2002-07-01
We have developed reflective liquid crystal displays using microencapsulated guest-host liquid crystals, whose size was sufficiently large for viewing documents. A high-brightness image can be realized because there is no need for polarizers. Easy fabrication processes, consisting of screen-printing of microencapsulated liquid crystal and film adhesion, have enabled the realization of thinner and lighter cell structures. It has been confirmed that the display is tolerant of the pressures to which it would be subject in actual use. The optimization of fabrication processes has enabled the realization of reflectance uniformity in the display area and reduction of the driving voltage. Our developed display is suitable for portable information systems, such as electronic book applications.
Microencapsulation of Corrosion Indicators for Smart Coatings
NASA Technical Reports Server (NTRS)
Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.; Calle, Luz M.; Hanna,Joshua S.; Rawlins, James W.
2011-01-01
A multifunctional smart coating for the autonomous detection, indication, and control of corrosion is been developed based on microencapsulation technology. This paper summarizes the development, optimization, and testing of microcapsules specifically designed for early detection and indication of corrosion when incorporated into a smart coating. Results from experiments designed to test the ability of the microcapsules to detect and indicate corrosion, when blended into several paint systems, show that these experimental coatings generate a color change, indicative of spot specific corrosion events, that can be observed with the naked eye within hours rather than the hundreds of hours or months typical of the standard accelerated corrosion test protocols.. Key words: smart coating, corrosion detection, microencapsulation, microcapsule, pH-sensitive microcapsule, corrosion indicator, corrosion sensing paint
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-06
... comparative data. As discussed above, the BSH condenser clothes dryer contains a design characteristic--lack... test procedures that are reasonably designed to produce results which measure energy efficiency, energy... basic model for which the petition for waiver was submitted contains one or more design characteristics...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-06
... authorizes the Secretary of Energy to prescribe test procedures that are reasonably designed to produce... one or more design characteristics that prevents testing of the basic model according to the... unrepresentative of its true energy consumption characteristics as to provide materially inaccurate comparative...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-07
... B authorizes the Secretary of Energy to prescribe test procedures that are reasonably designed to... was submitted contains one or more design characteristics that prevents testing of the basic model... materially inaccurate comparative data. 10 CFR 430.27(l). Petitioners must include in their petition any...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-30
... test procedures that are reasonably designed to produce results which measure energy efficiency, energy... the petition for waiver was submitted contains one or more design characteristics that prevents... characteristics as to provide materially inaccurate comparative data. 10 CFR 430.27(l). Petitioners must include...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
... authorizes the Secretary of Energy to prescribe test procedures that are reasonably designed to produce... conditions is met: (1) The petitioner's basic model contains one or more design characteristics that prevent..., BSH asserts, design characteristics of these models prevent testing according to the currently...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-25
... test procedures that are reasonably designed to produce results that measure energy efficiency, energy... contains one or more design characteristics that prevent testing according to the prescribed test procedure... Department of Energy Residential Dishwasher Test Procedure AGENCY: Office of Energy Efficiency and Renewable...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-25
... test procedures that are reasonably designed to produce results that measure energy efficiency, energy... contains one or more design characteristics that prevent testing according to the prescribed test procedure... Department of Energy Residential Dishwasher Test Procedure AGENCY: Office of Energy Efficiency and Renewable...
Asano, Ryuji; Nagami, Amon; Fukumoto, Yuki; Miura, Kaori; Yazama, Futoshi; Ito, Hideyuki; Sakata, Isao; Tai, Akihiro
2014-11-01
New disodium mercaptoundecahydro-closo-dodecaborate (BSH)-conjugated chlorin derivatives 11, 12, 16 and 20 as agents for both photodynamic therapy (PDT) and boron neutron capture therapy (BNCT) of cancer were synthesized. The in vivo biodistribution and clearance of 11, 12, 16 and 20 were investigated in tumor-bearing mice. Compounds 12 and 16 showed good tumor-selective accumulation among the four derivatives. The time to maximum accumulation of compound 16 in tumor tissue was one-fourth of that of compound 12, and clearance from normal tissues of compound 16 was similar to that of compound 12. The in vivo therapeutic efficacy of PDT using 16, which has twice as many boron atoms as 12, was evaluated by measuring tumor growth rates in tumor-bearing mice with 660 nm light-emitting diode irradiation at 6h after injection of 16. Tumor growth was significantly inhibited by PDT using 16. These results suggested that 16 is a good candidate for both PDT and BNCT of cancer. Copyright © 2014 Elsevier B.V. All rights reserved.
Microencapsulated bitter compounds (from Gentiana lutea) reduce daily energy intakes in humans.
Mennella, Ilario; Fogliano, Vincenzo; Ferracane, Rosalia; Arlorio, Marco; Pattarino, Franco; Vitaglione, Paola
2016-11-10
Mounting evidence showed that bitter-tasting compounds modulate eating behaviour through bitter taste receptors in the gastrointestinal tract. This study aimed at evaluating the influence of microencapsulated bitter compounds on human appetite and energy intakes. A microencapsulated bitter ingredient (EBI) with a core of bitter Gentiana lutea root extract and a coating of ethylcellulose-stearate was developed and included in a vanilla microencapsulated bitter ingredient-enriched pudding (EBIP). The coating masked bitterness in the mouth, allowing the release of bitter secoiridoids in the gastrointestinal tract. A cross-over randomised study was performed: twenty healthy subjects consumed at breakfast EBIP (providing 100 mg of secoiridoids) or the control pudding (CP) on two different occasions. Blood samples, glycaemia and appetite ratings were collected at baseline and 30, 60, 120 and 180 min after breakfast. Gastrointestinal peptides, endocannabinoids (EC) and N-acylethanolamines (NAE) were measured in plasma samples. Energy intakes were measured at an ad libitum lunch 3 h after breakfast and over the rest of the day (post lunch) through food diaries. No significant difference in postprandial plasma responses of gastrointestinal hormones, glucose, EC and NAE and of appetite between EBIP and CP was found. However, a trend for a higher response of glucagon-like peptide-1 after EBIP than after CP was observed. EBIP determined a significant 30 % lower energy intake over the post-lunch period compared with CP. These findings were consistent with the tailored release of bitter-tasting compounds from EBIP along the gastrointestinal tract. This study demonstrated that microencapsulated bitter secoiridoids were effective in reducing daily energy intake in humans.
USDA-ARS?s Scientific Manuscript database
We evaluated whether the efficacy of various insecticides for codling moth, Cydia pomonella (L.), could be improved with the addition of a microencapsulated formulation of pear ester, ethyl (2E, 4Z)-2,4-decadienoate (PE-MEC, 5% AI), in field trials from 2005 to 2009. The addition of PE-MEC (< 3.0 g ...
High Energy Explosive Yield Enhancer Using Microencapsulation.
The invention consists of a class of high energy explosive yield enhancers created through the use of microencapsulation techniques. The... microcapsules consist of combinations of highly reactive oxidizers that are encapsulated in either passivated inorganic fuels or inert materials and inorganic...fuels. Depending on the application, the availability of the various oxidizers and fuels within the microcapsules can be customized to increase the
Freitas, Sergio; Merkle, Hans P; Gander, Bruno
2005-02-02
The therapeutic benefit of microencapsulated drugs and vaccines brought forth the need to prepare such particles in larger quantities and in sufficient quality suitable for clinical trials and commercialisation. Very commonly, microencapsulation processes are based on the principle of so-called "solvent extraction/evaporation". While initial lab-scale experiments are frequently performed in simple beaker/stirrer setups, clinical trials and market introduction require more sophisticated technologies, allowing for economic, robust, well-controllable and aseptic production of microspheres. To this aim, various technologies have been examined for microsphere preparation, among them are static mixing, extrusion through needles, membranes and microfabricated microchannel devices, dripping using electrostatic forces and ultrasonic jet excitation. This article reviews the current state of the art in solvent extraction/evaporation-based microencapsulation technologies. Its focus is on process-related aspects, as described in the scientific and patent literature. Our findings will be outlined according to the four major substeps of microsphere preparation by solvent extraction/evaporation, namely, (i) incorporation of the bioactive compound, (ii) formation of the microdroplets, (iii) solvent removal and (iv) harvesting and drying the particles. Both, well-established and more advanced technologies will be reviewed.
Patten, Glen S; Sanguansri, Luz; Augustin, Mary Ann; Abeywardena, Mahinda Y; Bird, Anthony R; Patch, Craig S; Belobrajdic, Damien P
2017-03-01
Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) may be more bioavailable from krill oil compared to fish oil due to their phospholipid structure. We tested whether a microencapsulated krill and tuna oil blend (ME-TOKO) provided greater LC n-3 PUFA bioavailability, improved blood lipid profiles and increased intestinal contractility compared to microencapsulated tuna oil (ME-TO). Rats were divided into three groups to receive isocaloric diets containing ME-TO, ME-TOKO and microencapsulated olive oil (ME-OO) at 0.3 or 2 g/100 g for 4 weeks. Final body and organ weights, feed intake and waste output were similar. ME-TOKO rats had higher plasma total LC n-3 PUFA levels compared to ME-TO, but liver LC n-3 PUFA levels and plasma triglyceride and cholesterol levels were similar in non-fasted rats. Diets containing 2% ME-TO and ME-TOKO also showed similar increases in ileal contractility. In summary, ME-TO bioavailability of LC n-3 PUFA was similar to ME-TOKO.
Microencapsulation of Garcinia fruit extract by spray drying and its effect on bread quality.
Ezhilarasi, Perumal Natarajan; Indrani, Dasappa; Jena, Bhabani Sankar; Anandharamakrishnan, Chinnaswamy
2014-04-01
(-)-Hydroxycitric acid (HCA) is the major acid present in the fruit rinds of certain species of Garcinia. HCA has been reported to have several health benefits. As HCA is highly hygroscopic in nature and thermally sensitive, it is difficult to incorporate in foodstuffs. Hence, Garcinia cowa fruit extract was microencapsulated using three different wall materials such as whey protein isolate (WPI), maltodextrin (MD) and a combination of whey protein isolate and maltodextrin (WPI + MD) by spray drying. Further, these microencapsulated powders were evaluated for their impact on bread quality and HCA retention. Maltodextrin (MD) encapsulates had higher free (86%) and net HCA (90%) recovery. Microencapsulates incorporated breads had enhanced qualitative characteristics and higher HCA content than water extract incorporated bread due to efficient encapsulation during bread baking. Comparatively, bread with MD encapsulates showed softer crumb texture, desirable sensory attributes with considerable volume and higher HCA content. The higher HCA contents of encapsulate incorporated breads were sufficient to claim for functionality of HCA in bread. Comparatively, MD had efficiently encapsulated Garcinia fruit extract during spray drying and bread baking. Spray drying proved to be an excellent encapsulation technique for incorporation into the food system. © 2013 Society of Chemical Industry.
Chen, Wuxi; Wang, Haijun; Zhang, Ke; Gao, Feng; Chen, Shulin; Li, Demao
2016-08-01
This study aimed to evaluate the physicochemical properties and storage stability of microencapsulated DHA-rich oil spray dried with different wall materials: model 1 (modified starch, gum arabic, and maltodextrin), model 2 (soy protein isolate, gum arabic, and maltodextrin), and model 3 (casein, glucose, and lactose). The results indicated that model 3 exhibited the highest microencapsulation efficiency (98.66 %) and emulsion stability (>99 %), with a moisture content and mean particle size of 1.663 % and 14.173 μm, respectively. Differential scanning calorimetry analysis indicated that the Tm of DHA-rich oil microcapsules was high, suggesting that the entire structure of the microcapsules remained stable during thermal processing. A thermogravimetric analysis curve showed that the product lost 5 % of its weight at 172 °C and the wall material started to degrade at 236 °C. The peroxide value of microencapsulated DHA-rich oil remained at one ninth after accelerated oxidation at 45 °C for 8 weeks to that of the unencapsulated DHA-rich oil, thus revealing the promising oxidation stability of DHA-rich oil in microcapsules.
MASUNAGA, SHIN-ICHIRO; SAKURAI, YOSHINORI; TANO, KEIZO; TANAKA, HIROKI; SUZUKI, MINORU; KONDO, NATSUKO; NARABAYASHI, MASARU; WATANABE, TSUBASA; NAKAGAWA, YOSUKE; MARUHASHI, AKIRA; ONO, KOJI
2014-01-01
The aim of the present study was to evaluate the effect of bevacizumab on local tumor response and lung metastatic potential during boron neutron capture therapy (BNCT) and in particular, the response of intratumor quiescent (Q) cells. B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously administered bromodeoxyuridine (BrdU) to label all proliferating (P) tumor cells. The tumors were irradiated with thermal neutron beams following the administration of a 10B-carrier [L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)], with or without the administration of bevacizumab. This was further combined with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH, 40°C for 60 min). Immediately following the irradiation, cells from certain tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q cells and the total (P+Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days following irradiation, lung metastases were enumerated. Three days following bevacizumab administration, the sensitivity of the total tumor cell population following BPA-BNCT had increased more than that following BSH-BNCT. The combination with MTH, but not with nicotinamide, further enhanced total tumor cell population sensitivity. Regardless of the presence of a 10B-carrier, MTH enhanced the sensitivity of the Q cell population. Regardless of irradiation, the administration of bevacizumab, as well as nicotinamide treatment, demonstrated certain potential in reducing the number of lung metastases especially in BPA-BNCT compared with BSH-BNCT. Thus, the current study revealed that BNCT combined with bevacizumab has the potential to sensitize total tumor cells and cause a reduction in the number of lung metastases to a similar level as nicotinamide. PMID:24944637
An analysis of the structure of the compound biological effectiveness factor.
Ono, Koji
2016-08-01
This report is an analysis of the structure of the compound biological effectiveness (CBE) factor. The value of the CBE factor previously reported was revalued for the central nervous system, skin and lung. To describe the structure, the following terms are introduced: the vascular CBE (v-CBE), intraluminal CBE (il-CBE), extraluminal CBE (el-CBE) and non-vascular CBE (nv-CBE) factors and the geometric biological factor (GBF), i.e. the contributions that are derived from the total dose to the vasculature, each dose to vasculature from the intraluminal side and the extraluminal side, the dose to the non-vascular tissue and the factor to calculate el-CBE from il-CBE, respectively. The el-CBE factor element was also introduced to relate il-CBE to el-CBE factors. A CBE factor of 0.36 for disodium mercaptoundecahydrododecaborate (BSH) for the CNS was independent of the (10)B level in the blood; however, that for p-Boron-L-phenylalanine (BPA) increased with the (10)B level ratio of the normal tissue to the blood (N/B). The CBE factor was expressed as follows: factor = 0.32 + N/B × 1.65. The factor of 0.32 at 0 of N/B was close to the CBE factor for BSH. GBFs had similar values, between BSH and BPA, 1.39 and 1.52, respectively. The structure of the CBE factor for BPA to the lung was also elucidated based on this idea. The factor is described as follows: CBE factor = 0.32 + N/B × 1.80. By this elucidation of the structure of the CBE factor, it is expected that basic and clinical research into boron neutron capture therapy will progress. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Li, Xiao; Li, Guoqi; Wu, Shaoling; Zhang, Baiyu; Wan, Qing; Yu, Ding; Zhou, Ruijun; Ma, Chao
2014-07-08
Human pheochromocytoma cells, which are demonstrated to contain and release met-enkephalin and norepinephrine, may be a promising resource for cell therapy in cancer-induced intractable pain. Intrathecal injection of alginate-poly (l) lysine-alginate (APA) microencapsulated human pheochromocytoma cells leads to antinociceptive effect in a rat model of bone cancer pain, and this effect was blocked by opioid antagonist naloxone and alpha 2-adrenergic antagonist rauwolscine. Neurochemical changes of cerebrospinal fluid are in accordance with the analgesic responses. Taken together, these data support that human pheochromocytoma cell implant-induced antinociception was mediated by met-enkephalin and norepinephrine secreted from the cell implants and acting at spinal receptors. Spinal implantation of microencapsulated human pheochromocytoma cells may provide an alternative approach for the therapy of chronic intractable pain.
Preparation of Fragrant Microencapsules and Coating on Textiles
NASA Astrophysics Data System (ADS)
Shah Jafari, M. H.; Parvinzadeh, M.; Najafi, F.
2007-08-01
A microcapsule is a small sphere with a uniform wall around it. Microcapsules range in diameter from 1 to 1000 μm. The move by the more developed countries into textiles with new properties and added value, into medical and technical textiles, has encouraged the industry to use microencapsulation process as a means of imparting finishes and properties on textiles which were not possible or cost-effective using other technology. Numerous attempts have been made at adding fragrances directly to fiber and fabrics but all fail to survive after one or two wash cycle. Only through microencapsulation, fragrances are able to remain on a garment during a significant part of its lifetime. This research has tried to prepare microcapsules with poly methyl methacrylate (PMMA) as wall and Rose fragrance as core.
Baldin, Juliana Cristina; Michelin, Euder Cesar; Polizer, Yana Jorge; Rodrigues, Isabela; de Godoy, Silvia Helena Seraphin; Fregonesi, Raul Pereira; Pires, Manoela Alves; Carvalho, Larissa Tátero; Fávaro-Trindade, Carmen Silvia; de Lima, César Gonçalves; Fernandes, Andrezza Maria; Trindade, Marco Antonio
2016-08-01
The aim was to evaluate the addition of microencapsulated jabuticaba extract (MJE) to fresh sausage as natural dye with antioxidant and antimicrobial activity. Fresh sausages without dye, with cochineal carmine and with addition of 2% and 4% MJE were evaluated for chemical, microbiological and sensory properties during 15days of refrigerated storage. TBARS values were lower (P<0.05) throughout the storage period in sausages with 2% and 4% MJE (below 0.1mg of malondialdehyde/kg sample) than in control and carmine treatments (from 0.3 to 0.6mg of malondialdehyde/kg sample). T2% and T4% also showed lower microbial counts on storage days 4 and 15 for APCs. The addition of 4% MJE negatively influenced (P<0.05) sensory color, texture and overall acceptance attributes. On the other hand, T2% presented similar (P>0.05) sensory acceptance to control and carmine treatments in most of the attributes evaluated except for a decrease in color. Thus, addition of 2% MJE to fresh sausage can be considered as a natural pigment ingredient. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cyclone Xaver seen by SARAL/AltiKa
NASA Astrophysics Data System (ADS)
Scharroo, Remko; Fenoglio, Luciana; Annunziato, Alessandro
2014-05-01
During the first week of December 2013, Cyclone Xaver pounded the coasts and the North Sea. On 6 December, all along the Wadden Sea, the barrier islands along the north of the Netherlands and the northwest of Germany experienced record storm surges. We show a comparison of the storm surge measured by the radar altimeter AltiKa on-board the SARAL satellite and various types of in-situ data and models. Two tide gauges along the German North Sea coast, one in the southern harbour of the island of Helgoland and one on an offshore lighthouse Alte Weser, confirmed that the storm drove sea level to about three meters above the normal tide level. Loading effects during the storm are also detected by the GPS measurements at several tide gauge stations. The altimeter in the mean time shows that the storm surge was noticeable as far as 400 km from the coast. The altimeter measured wind speeds of 20 m/s nearly monotonically throughout the North Sea. An offshore anemometer near the island of Borkum corroborated this value. A buoy near the FINO1 offshore platform measured wave heights of 8 m, matching quite well the measurements from the altimeter, ranging from 6 m near the German coast to 12 m further out into the North Sea. Furthermore we compare the altimeter-derived and in-situ sea level, wave height and wind speed products with outputs from the Operation Circulation and Forecast model of the Bundesamt für Seeschifffahrt und Hydrographie (BSH) and with a global storm surge forecast and inundation model of the Joint Research Centre (JRC) of the European Commission. The Operational circulation model of BSH (BSHcmod) and its component, the surge model (BSHsmod), perform daily predictions for the next 72 hours based on the meteorological model of the Deutsche Wetterdienst (DWD). The JRC Storm Surge Calculation System is a new development that has been established at the JRC in the framework of the Global Disasters Alerts and Coordination System (GDACS). The system uses meteorological forecasts produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) to estimate (with a 2-day lead time) potential storm surges due to cyclone or general storm events. Departure between model and altimeter-derived values, in particularly wind, are investigated and discussed. The qualitative agreement is satisfactory; the maximum storm surge peak is correctly estimated by BSH but underestimated by JRC due to insufficient wind forcing. The wind speed of SARAL/AltiKa agrees well with the ECMWF model wind speed but is lower than the DWD model estimate. The authors acknowledge the kind support from the BSH, the Bundesumweltministerium (BMU), Projectträger Jülich (PTJ), and the Wasser- und Schifffahrtsverwaltung des Bundes (WSV).
Microencapsulated citronella oil for mosquito repellent finishing of cotton textiles.
Specos, M M Miró; García, J J; Tornesello, J; Marino, P; Vecchia, M Della; Tesoriero, M V Defain; Hermida, L G
2010-10-01
Microcapsules containing citronella essential oil were prepared by complex coacervation and applied to cotton textiles in order to study the repellent efficacy of the obtained fabrics. Citronella released from treated textiles was indirectly monitored by the extractable content of its main components. Repellent activity was assessed by exposure of a human hand and arm covered with the treated textiles to Aedes aegypti mosquitoes. Fabrics treated with microencapsulated citronella presented a higher and longer lasting protection from insects compared to fabrics sprayed with an ethanol solution of the essential oil, assuring a repellent effect higher than 90% for three weeks. Complex coacervation is a simple, low cost, scalable and reproducible method of obtaining encapsulated essential oils for textile application. Repellent textiles were achieved by padding cotton fabrics with microcapsules slurries using a conventional pad-dry method. This methodology requires no additional investment for textile finishing industries, which is a desirable factor in developing countries. Copyright © 2010 Royal Society of Tropical Medicine and Hygiene.
Cashew gum and inulin: New alternative for ginger essential oil microencapsulation.
Fernandes, Regiane Victória de Barros; Botrel, Diego Alvarenga; Silva, Eric Keven; Borges, Soraia Vilela; Oliveira, Cassiano Rodrigues de; Yoshida, Maria Irene; Feitosa, Judith Pessoa de Andrade; de Paula, Regina Célia Monteiro
2016-11-20
This study aimed to evaluate the effect of partial replacement of cashew gum by inulin used as wall materials, on the characteristics of ginger essential oil microencapsulated by spray drying with ultrasound assisted emulsions. The characterization of particles was evaluated as encapsulation efficiency and particle size. In addition, the properties of the microcapsules were studied through FTIR analysis, adsorption isotherms, thermal gravimetric analysis, X-ray and scanning electron microscopy. It was found that the solubility of the treatments was affected by the composition of the wall material and reached higher values (89.80%) when higher inulin concentrations were applied. The encapsulation efficiency (15.8%) was lower at the highest inulin concentration. The particles presented amorphous characteristics and treatment with cashew gum as encapsulant exhibited the highest water absorption at high water activity. The cashew gum and inulin matrix (3:1(w/w) ratio) showed the best characteristics regarding the encapsulation efficiency and morphology, showing no cracks in the structure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tolve, Roberta; Condelli, Nicola; Caruso, Marisa Carmela; Barletta, Diego; Favati, Fabio; Galgano, Fernanda
2018-02-21
Chocolate is one of the most consumed delicacies in the world. Nowadays high-cocoa polyphenol-rich chocolates, probiotic chocolates, and prebiotic chocolates are getting more attention. In light of this, dark chocolate containing microencapsulated phytosterols (MPs) has been developed to reduce cholesterol in individuals. In particular, different dark chocolates containing 64, 72 and 85% of cocoa, fortified with 0, 5, 10 and 15% MP have been produced. The obtained chocolates were characterized by a particle size distribution lower than 30 μm and were stable from a chemical point of view. Specifically, peroxide values were always lower than 2 meq O 2 per kg of fat, also after three months of storage. The bioaccessibility of phytosterols was comparable with literature values and the antioxidant activity reached a value of 92 μg trolox per g chocolate for samples obtained from 85% of cocoa. Moreover, sensory evaluation demonstrated a positive effect on the acceptability of the functional chocolate produced and a significant effect of the information on the final sample acceptability.
Autonomic Healing of Low-Velocity Impact Damage in Fiber-Reinforced Composites
2010-01-01
formaldehyde) microencapsulation using the method described by Brown et al. [37]. Two different size ranges of microcapsules were employed to promote even...agent. The components for self-healing, urea–formaldehyde microcapsules containing dicyclopentadiene (DCPD) liquid healing agent and paraffin wax...impact damage is the employment of self-healing materials. In particular, the strat- egy using microencapsulated healing agent, demonstrated by White
Propellant Charge with Reduced Muzzle Smoke and Flash Characteristics.
a conventional double base extruded propellant as well as more energetic nitramine composition and a microencapsulated oxamide coolant additive for...cooling the gases exiting the weapons barrel. In the preferred embodiment, the oxamide is encapsulated with a gelatin and the resulting microcapsules ...of this invention to provide a novel microencapsulated propellant additive which will pass through the propellant flame zone intact and decompose
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-29
... Secretary of Energy to prescribe test procedures that are reasonably designed to produce results which... conditions is met: (1) The petitioner's basic model contains one or more design characteristics that prevent... to provide materially inaccurate comparative data. (10 CFR 430.27(a)(1)) Petitioners must include in...
Beam Steering Analysis in Optically Phased Vertical Cavity Surface Emitting Laser Array
NASA Astrophysics Data System (ADS)
Xun, Meng; Sun, Yun; Xu, Chen; Xie, Yi-Yang; Jin, Zhi; Zhou, Jing-Tao; Liu, Xin-Yu; Wu, De-Xin
2018-03-01
Not Available Supported by the ‘Supporting First Action’ Joint Foundation for Outstanding Postdoctoral Program under Grant Nos Y7YBSH0001 and Y7BSH14001, the National Natural Science Foundation of China under Grant No 61434006, and the National Key Basic Research Program of China under Grant No 2017YFB0102302.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
... the petition for waiver was submitted contains one or more design characteristics that prevents....23, or of any appendix to this subpart, upon grounds that the basic model contains one or more design... contains one or more design characteristics which either prevent testing of the basic model according to...
Burbank, Brant D; Slater, Michael; Kava, Alyssa; Doyle, James; McHale, William A; Latta, Mark A; Gross, Stephen M
2016-02-01
Dental materials capable of releasing calcium, phosphate and fluoride are of great interest for remineralization. Microencapsulated aqueous solutions of these ions in orthodontic cement demonstrate slow, sustained release by passive diffusion through a permeable membrane without the need for dissolution or etching of fillers. The potential to charge a dental material formulated with microencapsulated water with fluoride by toothbrushing with over the counter toothpaste and the effect of microcapsules on cement adhesion to enamel was determined. Orthodontic cements that contained microcapsules with water and controls without microcapsules were brushed with over-the-counter toothpaste and fluoride release was measured. Adhesion measurements were performed loading orthodontic brackets to failure. Cements that contained microencapsulated solutions of 5.0M Ca(NO3)2, 0.8M NaF, 6.0MK2HPO4 or a mixture of all three were prepared. Ion release profiles were measured as a function of time. A greater fluoride charge and re-release from toothbrushing was demonstrated compared to a control with no microcapsules. Adhesion of an orthodontic cement that contained microencapsulated remineralizing agents was 8.5±2.5MPa compared to the control without microcapsules which was of 8.3±1.7MPa. Sustained release of fluoride, calcium and phosphate ions from cement formulated with microencapsulated remineralizing agents was demonstrated. Orthodontic cements with microcapsules show a release of bioavailable fluoride, calcium, and phosphate ions near the tooth surface while having the ability to charge with fluoride and not effect the adhesion of the material to enamel. Incorporation of microcapsules in dental materials is promising for promoting remineralization. Copyright © 2015 Elsevier Ltd. All rights reserved.
Clinical application of microencapsulated islets: actual prospectives on progress and challenges.
Calafiore, Riccardo; Basta, Giuseppe
2014-04-01
After 25 years of intense pre-clinical work on microencapsulated intraperitoneal islet grafts into non-immunosuppressed diabetic recipients, the application of this procedure to patients with type 1 diabetes mellitus has been a significant step forward. This result, achieved in a few centers worldwide, underlies the safety of biopolymers used for microencapsulation. Without this advance, no permission for human application of microcapsules would have ever been obtained after years of purification technologies applied to the raw alginates. To improve safety of the encapsulated islet graft system, renewed efforts on the capsules' bioengineering, as well as on insulin-producing cells within the capsular membranes, are in progress. It is hoped that advances in these two critical aspects of the cell encapsulation technology will result in wider human application of this system. Copyright © 2013 Elsevier B.V. All rights reserved.
1992-03-31
C-0113 TITLE: BIODEGRADABLE VACCINE MICROCAPSULES FOR SYSTEMIC AND MUCOSAL IMMUNIZATION AGAINST RVF and VEE Viruses PRINCIPAL INVESTIGATOR: John H...approximately 0.8% by weight VEE vaccine. As measured by ELISA, immunization of mice with from 3 to 100 I.tg of microencapsulated vaccine potentiated the plasma...PAGESuzodegradable microspheres, VEE vaccine, RVF vaccine, vaccines RA I, BD, Lab Animals, Mice, Microencapsulation 16. PRICE COOJE 17, SECURITY
1983-02-01
discussed their seudies on microencapsulation of plasma cells for monoclonal antibodies production including methodology. A.M. Sun, from Islet & Hormone...implantation of microencapsulated islet cells in diabetic rats, demonstrating that this can control blood glucose for up to three months. D. Terman...as drug and enzyme carriers. Microcapsules and Microspheres in Experimental Therapy/M Poznansky, -:/ Sssion Chairman D.L. Gardner, from Battelle
Research and Development of Wound Dressing in Maxillofacial Trauma.
1984-11-16
distribution of the microcapsules is shown in Table 6. b. Microencapsulation of Antibiotic Drugs Recently a small microencapsulation unit was designed...TRACT (Coutou a reverawe. fi If nece~uzy amt Identify by block number) ’Three basic formulations, non-woven fabrics, powders, and microcapsules , of...fabrics with powders .and microcapsules . 1473 E~t1O~oINOSSI~BSOETEunclassified SECUmRY CLASSIFICATION OF THIS PAGE fWhen Dauta Enweved)’ unclassified
NASA Astrophysics Data System (ADS)
Dewi, E. N.; Kurniasih, R. A.; Purnamayati, L.
2018-02-01
Phycocyanin is a blue color pigment which can be extracted from Spirulina sp. makes it potential to use as an alternative natural dye in the food product. The aim of this research was to determine the application of microencapsulated phycocyanin processed using spray dried method to the jelly candy. As a natural blue colorant, phycocyanin was expected to be safe for the consumer. The jelly candy was evaluated on the characteristics of its moisture, ash, Aw, pH, color appearance, and phycocyanin spectra with FTIR. The phycocyanin was microencapsulated using maltodextrin and Na-alginate as the coating materials (maltodextrin and Na-alginate in ratio 9:1.0 w/w). The spray drying process was operated with an inlet temperature of 80°C. The various concentrations of microencapsulated phycocyanin were added to the jelly candy such as 0%, 1%, 3%, 5% and jelly candy with brilliant blue used as comparison, each called PC, PS, PT, PL, and PB. The results showed that the various concentrations of phycocyanin added on the jelly product had significantly different on moisture content, Aw, and blue color. The FTIR spectra indicated that phycocyanin still persisted on the jelly candy. PL was the best jelly candy with the bluest color under PB.
NASA Astrophysics Data System (ADS)
Łapka, P.; Jaworski, M.
2017-10-01
In this paper thermal energy storage (TES) unit in a form of a ceiling panel made of gypsum-microencapsulated PCM composite with internal U-shaped channels was considered and optimal characteristics of the microencapsulated PCM were determined. This panel may be easily incorporated into, e.g., an office or residential ventilation system in order to reduce daily variations of air temperature during the summer without additional costs related to the consumption of energy for preparing air parameters to the desired level. For the purpose of the analysis of heat transfer in the panel, a novel numerical simulator was developed. The numerical model consists of two coupled parts, i.e., the 1D which deals with the air flowing through the U-shaped channel and the 3D which deals with heat transfer in the body of the panel. The computational tool was validated based on the experimental study performed on the special set-up. Using this tool an optimization of parameters of the gypsum-microencapsulated PCM composite was performed in order to determine its most appropriate properties for the application under study. The analyses were performed for averaged local summer conditions in Warsaw, Poland.
Jones, Mitchell L; Martoni, Christopher J; Tamber, Sandeep; Parent, Mathieu; Prakash, Satya
2012-06-01
Probiotic organisms have shown promise in treating diseases. Previously, we have reported on the efficacy of microencapsulated Lactobacillus reuteri NCIMB 30242 in a yogurt formulation at lowering serum cholesterol levels in otherwise healthy hypercholesterolemic adults. This study investigates the safety and toxicology of oral ingestion of microencapsulated L. reuteri NCIMB 30242 in a yogurt formulation. A randomized group of 120 subjects received a dose of 5 × 10(10) CFU microencapsulated L. reuteri NCIMB 30242 in yogurt (n=59) or placebo yogurt (n=61) twice/day for 6 weeks. Clinical chemistry and hematological parameters of safety were analyzed. Fecal samples were collected at these time points for the analysis of deconjugated bile acids. The frequency, duration and intensity of adverse events (AEs) and clinical significance of safety parameters were recorded for both groups. No clinically significant differences between the probiotic yogurt and placebo yogurt treated groups were detected in either the blood clinical chemistry or hematology results and there was no significant increase in fecal deconjugated bile acids (P>0.05) between treated and control groups. The frequency and intensity of AEs was similar in the two groups. These results demonstrate the safe use of this formulation in food. Copyright © 2012 Elsevier Ltd. All rights reserved.
New method for antibiotic release from bone cement (polymethylmethacrylate): Redefining boundaries.
Carbó-Laso, E; Sanz-Ruiz, P; Del Real-Romero, J C; Ballesteros-Iglesias, Y; Paz-Jiménez, E; Arán-Ais, F; Sánchez-Navarro, M; Pérez-Limiñana, M A; López-Torres, I; Vaquero-Martín, J
The increasing antimicrobial resistance is promoting the addition of antibiotics with high antistaphylococcal activity to polymethylmethacrylate (PMMA), for use in cement spacers in periprosthetic joint infection. Linezolid and levofloxacin have already been used in in-vitro studies, however, rifampicin has been shown to have a deleterious effect on the mechanical properties of PMMA, because it inhibits PMMA polymerization. The objective of our study was to isolate the rifampicin during the polymerization process using microencapsulation techniques, in order to obtain a PMMA suitable for manufacturing bone cement spacers. Microcapsules of rifampicin were synthesized with alginate and PHBV, using Rifaldin ® . The concentration levels of rifampicin were studied by UV-visible spectrophotometry. Compression, hardness and setting time tests were performed with CMW ® 1 cement samples alone, with non-encapsulated rifampicin and with alginate or PHBV microcapsules. The production yield, efficiency and microencapsulation yield were greater with alginate (P = .0001). The cement with microcapsules demonstrated greater resistance to compression than the cement with rifampicin (91.26±5.13, 91.35±6.29 and 74.04±3.57 MPa in alginate, PHBV and rifampicin, respectively) (P = .0001). The setting time reduced, and the hardness curve of the cement with alginate microcapsules was similar to that of the control. Microencapsulation with alginate is an appropriate technique for introducing rifampicin into PMMA, preserving compression properties and setting time. This could allow intraoperative manufacturing of bone cement spacers that release rifampicin for the treatment of periprosthetic joint infection. Copyright © 2017 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.
Polymer Claw: Instant Underwater Adhesive
2012-03-23
technology is the use of pressure sensitive microcapsules , which release reactive amine crosslinkers into an adhesive putty when pressed against the...PROIECT GOALS AND OBIECTIVES 2 2 KEY ACCOMPLISHMENTS 2 3.1 KICKOFF MEETING 3 3.2 AMINE MICROENCAPSULATION 3 3.3 CAUSTIC CLEANING AGENT 5 3.4...caustic, and the abrasive brush. We successfully synthesized amine-filled microcapsules and a dry mixture of caustic ingredients that only activate when
Zhang, Jiguang; Zhu, Yunfeng; Lin, Huaijun; Liu, Yana; Zhang, Yao; Li, Shenyang; Ma, Zhongliang; Li, Liquan
2017-06-01
Metal hydrides (MHs) have recently been designed for hydrogen sensors, switchable mirrors, rechargeable batteries, and other energy-storage and conversion-related applications. The demands of MHs, particular fast hydrogen absorption/desorption kinetics, have brought their sizes to nanoscale. However, the nanostructured MHs generally suffer from surface passivation and low aggregation-resisting structural stability upon absorption/desorption. This study reports a novel strategy named microencapsulated nanoconfinement to realize local synthesis of nano-MHs, which possess ultrahigh structural stability and superior desorption kinetics. Monodispersed Mg 2 NiH 4 single crystal nanoparticles (NPs) are in situ encapsulated on the surface of graphene sheets (GS) through facile gas-solid reactions. This well-defined MgO coating layer with a thickness of ≈3 nm efficiently separates the NPs from each other to prevent aggregation during hydrogen absorption/desorption cycles, leading to excellent thermal and mechanical stability. More interestingly, the MgO layer shows superior gas-selective permeability to prevent further oxidation of Mg 2 NiH 4 meanwhile accessible for hydrogen absorption/desorption. As a result, an extremely low activation energy (31.2 kJ mol -1 ) for the dehydrogenation reaction is achieved. This study provides alternative insights into designing nanosized MHs with both excellent hydrogen storage activity and thermal/mechanical stability exempting surface modification by agents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polyfibroblast: A Self-Healing and Galvanic Protection Additive
2009-01-29
microencapsulated MCPU would have a limited shelf life. The shelf-life is expected to improve even further once the zinc outer shell is added and the microcapsules ...MEMBRANE 4 3.3 PREPARATION OF POLYURETHANE MICROCAPSULES 5 3.4 ELECTROLESS ZINC DEPOSITION 7 4 NEXT STEPS 4.1 ELECTROCHEMICAL ROUTE 7 4.2...Plating conditions must be adjusted to form thicker walls, however. We were also successful in microencapsulating uncured polyurethane resin in a hard
Iontophoresis of minoxidil sulphate loaded microparticles, a strategy for follicular drug targeting?
Gelfuso, Guilherme M; Barros, M Angélica de Oliveira; Delgado-Charro, M Begoña; Guy, Richard H; Lopez, Renata F V
2015-10-01
The feasibility of targeting drugs to hair follicles by a combination of microencapsulation and iontophoresis has been evaluated. Minoxidil sulphate (MXS), which is used in the treatment of alopecia, was selected as a relevant drug with respect to follicular penetration. The skin permeation and disposition of MXS encapsulated in chitosan microparticles (MXS-MP) was evaluated in vitro after passive and iontophoretic delivery. Uptake of MXS was quantified at different exposure times in the stratum corneum (SC) and hair follicles. Microencapsulation resulted in increased (6-fold) drug accumulation in the hair follicles relative to delivery from a simple MXS solution. Application of iontophoresis enhanced follicular delivery for both the solution and the microparticle formulations. It appears, therefore, that microencapsulation and iontophoresis can act synergistically to enhance topical drug targeting to hair follicles. Copyright © 2015 Elsevier B.V. All rights reserved.
Qi, Meirigeng
2014-01-01
Encapsulation of pancreatic islets has been proposed and investigated for over three decades to improve islet transplantation outcomes and to eliminate the side effects of immunosuppressive medications. Of the numerous encapsulation systems developed in the past, microencapsulation have been studied most extensively so far. A wide variety of materials has been tested for microencapsulation in various animal models (including nonhuman primates or NHPs) and some materials were shown to induce immunoprotection to islet grafts without the need for chronic immunosuppression. Despite the initial success of microcapsules in NHP models, the combined use of islet transplantation (allograft) and microencapsulation has not yet been successful in clinical trials. This review consists of three sections: introduction to islet transplantation, transplantation of encapsulated pancreatic islets as a treatment for patients with type 1 diabetes mellitus (T1DM), and present challenges and future perspectives. PMID:26556410
Microencapsulation of xylitol by double emulsion followed by complex coacervation.
Santos, Milla G; Bozza, Fernanda T; Thomazini, Marcelo; Favaro-Trindade, Carmen S
2015-03-15
The objective of this study was to produce and characterise xylitol microcapsules for use in foods, in order to prolong the sweetness and cooling effect provided by this ingredient. Complex coacervation was employed as the microencapsulation method. A preliminary double emulsion step was performed due to the hydrophilicity of xylitol. The microcapsules obtained were characterised in terms of particle size and morphology (optical, confocal and scanning electron microscopy), solubility, sorption isotherms, FTIR, encapsulation efficiency and release study. The microcapsules of xylitol showed desirable characteristics for use in foods, such as a particle size below 109 μm, low solubility and complete encapsulation of the core by the wall material. The encapsulation efficiency ranged from 31% to 71%, being higher in treatments with higher concentrations of polymers. Release of over 70% of the microencapsulated xylitol in artificial saliva occurred within 20 min. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zheng, Ming-Hua; Lin, Hai-Long; Qiu, Li-Xin; Cui, Yao-Li; Sun, Qing-Feng; Chen, Yong-Ping
2009-01-01
Hepatocyte transplantation is an alternative to transplantation of the whole liver. Compared with xenogeneic hepatocytes, primary hepatocytes have some advantages, such as a more powerful function and a smaller frequency of rejection caused by the host. Cell microencapsulation prevents direct access of host cells to the graft but cannot impede transfer of transplant-derived peptides, which can cross the physical barrier. Sertoli cells are central to the immune privilege demonstrated in the testis, and their actions have been utilized to protect cell transplants. Co-microencapsulating Sertoli cells with HepG2 cells has proved to be a valuable strategy in hepatocyte transplantation. Thus mixed microcapsules of primary rat hepatocytes and primary Sertoli cells may improve metabolic function in a d-galactosamine and lipopolysaccharide-induced rat model of acute liver failure.
Fully Ceramic Microencapsulated Fuel Development for LWR Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snead, Lance Lewis; Besmann, Theodore M; Terrani, Kurt A
2012-01-01
The concept, fabrication, and key feasibility issues of a new fuel form based on the microencapsulated (TRISO-type) fuel which has been specifically engineered for LWR application and compacted within a SiC matrix will be presented. This fuel, the so-called fully ceramic microencapsulated fuel is currently undergoing development as an accident tolerant fuel for potential UO2 replacement in commercial LWRs. While the ability of this fuel to facilitate normal LWR cycle performance is an ongoing effort within the program, this will not be a focus of this paper. Rather, key feasibility and performance aspects of the fuel will be presented includingmore » the ability to fabricate a LWR-specific TRISO, the need for and route to a high thermal conductivity and fully dense matrix that contains neutron poisons, and the performance of that matrix under irradiation and the interaction of the fuel with commercial zircaloy clad.« less
Recent Developments on Autonomous Corrosion Protection Through Encapsulation
NASA Technical Reports Server (NTRS)
Li, W.; Buhrow, J. W.; Calle, L. M.; Gillis, M.; Blanton, M.; Hanna, J.; Rawlins, J.
2015-01-01
This paper concerns recent progress in the development of a multifunctional smart coating, based on microencapsulation, for the autonomous detection and control of corrosion. Microencapsulation has been validated and optimized to incorporate desired corrosion control functionalities, such as early corrosion detection and inhibition, through corrosion-initiated release of corrosion indicators and inhibitors, as well as self-healing agent release triggered by mechanical damage. While proof-of-concept results have been previously reported, more recent research and development efforts have concentrated on improving coating compatibility and synthesis procedure scalability, with a targeted goal of obtaining easily dispersible pigment-grade type microencapsulated materials. The recent progress has resulted in the development of pH-sensitive microparticles as a corrosion-triggered delivery system for corrosion indicators and inhibitors. The synthesis and early corrosion indication results obtained with coating formulations that incorporate these microparticles are reported. The early corrosion indicating results were obtained with color changing and with fluorescent indicators.
2003-05-06
KENNEDY SPACE CENTER, FLA. - Pictured is one of the microcapsules removed from the Commercial ITA Biomedical Experiments payload recovered during the search for Columbia debris. The drug delivery system and spaceflight hardware was developed jointly by JSC, the Institute for Research Inc. and Instrumentation Technology Associates Inc. to conduct microencapsulation experiments under microgravity conditions. This microcapsule contains an antibiotic for treating deep resistant pulmonary infections. Dr. Dennis Morrison, senior biotech project scientist, is principle investigator on microencapsulation and urokinase crystal growth.
2003-05-06
KENNEDY SPACE CENTER, FLA. - Pictured is one of the microcapsules removed from the Commercial ITA Biomedical Experiments payload recovered during the search for Columbia debris. The drug delivery system and spaceflight hardware was developed jointly by JSC, the Institute for Research Inc. and Instrumentation Technology Associates Inc. to conduct microencapsulation experiments under microgravity conditions. This microcapsule contains an antibiotic for treating deep resistant pulmonary infections. Dr. Dennis Morrison, senior biotech project scientist, is principle investigator on microencapsulation and urokinase crystal growth.
2003-05-06
KENNEDY SPACE CENTER, FLA. - Pictured is one of the microcapsules removed from the Commercial ITA Biomedical Experiments payload recovered during the search for Columbia debris. The drug delivery system and spaceflight hardware was developed jointly by JSC, the Institute for Research Inc. and Instrumentation Technology Associates Inc. to conduct microencapsulation experiments under microgravity conditions. This microcapsule contains an antibiotic for treating deep resistant pulmonary infections. Dr. Dennis Morrison, senior biotech project scientist, is principle investigator on microencapsulation and urokinase crystal growth.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Pictured is one of the microcapsules removed from the Commercial ITA Biomedical Experiments payload recovered during the search for Columbia debris. The drug delivery system and spaceflight hardware was developed jointly by JSC, the Institute for Research Inc. and Instrumentation Technology Associates Inc. to conduct microencapsulation experiments under microgravity conditions. This microcapsule contains an antibiotic for treating deep resistant pulmonary infections. Dr. Dennis Morrison, senior biotech project scientist, is principle investigator on microencapsulation and urokinase crystal growth.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Pictured is one of the microcapsules removed from the Commercial ITA Biomedical Experiments payload recovered during the search for Columbia debris. The drug delivery system and spaceflight hardware was developed jointly by JSC, the Institute for Research Inc. and Instrumentation Technology Associates Inc. to conduct microencapsulation experiments under microgravity conditions. This microcapsule contains an antibiotic for treating deep resistant pulmonary infections. Dr. Dennis Morrison, senior biotech project scientist, is principle investigator on microencapsulation and urokinase crystal growth.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Pictured is one of the microcapsules removed from the Commercial ITA Biomedical Experiments payload recovered during the search for Columbia debris. The drug delivery system and spaceflight hardware was developed jointly by JSC, the Institute for Research Inc. and Instrumentation Technology Associates Inc. to conduct microencapsulation experiments under microgravity conditions. This microcapsule contains an antibiotic for treating deep resistant pulmonary infections. Dr. Dennis Morrison, senior biotech project scientist, is principle investigator on microencapsulation and urokinase crystal growth.
Preparation of Hemoglobin-Containing Microcapsules.
1981-06-01
were suspended in saline for storage in a refrigerator. Although in these microencapsulation experiments, the Hb was not denatured, the microcapsules ... microencapsulated Hb, l.O-ml sample of the microcapsule suspension was diluted with 10 ml 0.9% NaCI. The absorption spectrum was taken immediately after dilution...AD A135 634 PREPARATION OF HEMOGLOBIN CONTA NING MICROCAPSULES (U) I/ ,R 224 AM OS NTERNATIDNAL MENOPARKO CA REYES AUNN8 SRI-2254-1 DAMD17-80-C-01?7
Research and Development of Wound Dressing in Maxillofacial Trauma.
1983-03-14
Lidocaine 7 Table 4 PVP-1 2 (BASF 17/12) Microcapsule Size Distribution 8 Table 5 Processing Summary of PVP-1 2 (BASF 17/12) Microencapsulation 9 Table...benzalkonium chloride (Maquat LC-12S) was also incorporated into fabrics and powders. The povidone iodine (BASF 17/12) was microencapsulated using the... microcapsules con- taining povidone iodine. At 30% polymer, 70% of the product was between :- 212-600 microns. This material gave in vitro release of
Microencapsulation of Natural Anthocyanin from Purple Rosella Calyces by Freeze Drying
NASA Astrophysics Data System (ADS)
Nafiunisa, A.; Aryanti, N.; Wardhani, D. H.; Kumoro, A. C.
2017-11-01
Anthocyanin extract in powder form will improve its use since the powder is easier to store and more applicable. Microencapsulation method is introduced as an efficient way for protecting pigment such as anthocyanin. This research was aimed to characterise anthocyanin encapsulated products prepared from purple Roselle calyces by freeze drying. The liquid anthocyanin extracts from ultrasound-assisted extraction were freeze-dried with and without the addition of 10% w/w maltodextrins as a carrier and coating agents. The quality attributes of the powders were characterised by their colour intensity, water content, and solubility. Analysis of encapsulated material was performed for the powder added by maltodextrin. The stability of the microencapsulated pigment in solution form was determined for 11 days. Total anthocyanin content was observed through pH differential method. The results of the colour intensity analysis confirm that the product with maltodextrin addition has more intense colour with L* value of 29.69 a* value of 54.29 and b* value of 8.39. The result with the addition of maltodextrin has less moisture content and more soluble in water. It is verified that better results were obtained for powder with maltodextrin addition. Anthocyanin in the powder form with maltodextrin addition exhibits higher stability even after 11 days. In conclusion, the microencapsulation of anthocyanin with maltodextrin as a carrier and coating agent presented a potential method to produce anthocyanin powder from purple Roselle.
Microencapsulation of dopamine neurons derived from human induced pluripotent stem cells.
Konagaya, Shuhei; Iwata, Hiroo
2015-01-01
Dopamine neurons derived from induced pluripotent stem cells have been widely studied for the treatment of Parkinson's disease. However, various difficulties remain to be overcome, such as tumor formation, fragility of dopamine neurons, difficulty in handling large numbers of dopamine neurons, and immune reactions. In this study, human induced pluripotent stem cell-derived precursors of dopamine neurons were encapsulated in agarose microbeads. Dopamine neurons in microbeads could be handled without specific protocols, because the microbeads protected the fragile dopamine neurons from mechanical stress. hiPS cells were seeded on a Matrigel-coated dish and cultured to induce differentiation into a dopamine neuronal linage. On day 18 of culture, cells were collected from the culture dishes and seeded into U-bottom 96-well plates to induce cell aggregate formation. After 5 days, cell aggregates were collected from the plates and microencapsulated in agarose microbeads. The microencapsulated aggregates were cultured for an additional 45 days to induce maturation of dopamine neurons. Approximately 60% of all cells differentiated into tyrosine hydroxylase-positive neurons in agarose microbeads. The cells released dopamine for more than 40 days. In addition, microbeads containing cells could be cryopreserved. hiPS cells were successfully differentiated into dopamine neurons in agarose microbeads. Agarose microencapsulation provides a good supporting environment for the preparation and storage of dopamine neurons. Copyright © 2014 Elsevier B.V. All rights reserved.
Effects on bread and oil quality after functionalization with microencapsulated chia oil.
González, Agustín; Martínez, Marcela L; León, Alberto E; Ribotta, Pablo D
2018-03-23
Omega-3 and omega-6 fatty acids-rich oils suffer oxidation reactions that alter their chemical and organoleptic quality. Microencapsulation can be a powerful tool for protection against ambient conditions. In the present study, the addition of microencapsulated chia oil as an ingredient in bread preparations and its effect on the technological and chemical quality of breads was investigated. Microencapsulation of chia oil was carried out by freeze-drying with soy proteins as wall material and oil release was determined under in vitro gastric and intestinal conditions. Encapsulated oil-containing bread showed no differences in specific volume, average cell area, firmness and chewiness with respect to control bread. Unencapsulated oil-containing bread showed a marked increase in hydroperoxide values respect to control, whereas encapsulated oil-containing bread values were not affected by baking and bread storage. The fatty acid profiles showed a decrease of 13% and 16%, respectively, in α-linolenic acid in the encapsulated and unencapsulated oils with respect to bulk chia oil. Sensory analysis showed no significant differences between bread samples. The addition of encapsulated chia oil did not alter the technological quality of breads and prevented the formation of hydroperoxide radicals. A ration of encapsulated oil-containing bread contributes 60% of the recommended dietary intake of omega-3 fatty acids. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Saha, Shyamali; Prakash, Satya
2014-01-01
The gut microbiota is a bacterial bioreactor whose composition is an asset for human health. However, circulating gut microbiota derived endotoxins cause metabolic endotoxemia, promoting metabolic and liver diseases. This study investigates the potential of orally delivered microencapsulated Bifidobacterium infantis ATCC 15697 to modulate the gut microbiota and reduce endotoxemia in F344 rats. The rats were gavaged daily with saline or microencapsulated B. infantis ATCC 15697. Following 38 days of supplementation, the treated rats showed a significant (P < 0.05) increase in fecal Bifidobacteria (4.34 ± 0.46 versus 2.45 ± 0.25% of total) and B. infantis (0.28 ± 0.21 versus 0.52 ± 0.12 % of total) and a significant (P < 0.05) decrease in fecal Enterobacteriaceae (0.80 ± 0.45 versus 2.83 ± 0.63% of total) compared to the saline control. In addition, supplementation with the probiotic formulation reduced fecal (10.52 ± 0.18 versus 11.29 ± 0.16 EU/mg; P = 0.01) and serum (0.33 ± 0.015 versus 0.30 ± 0.015 EU/mL; P = 0.25) endotoxins. Thus, microencapsulated B. infantis ATCC 15697 modulates the gut microbiota and reduces colonic and serum endotoxins. Future preclinical studies should investigate the potential of the novel probiotic formulation in metabolic and liver diseases. PMID:24967382
Mehyar, Ghadeer F; Al-Ismail, Khalid M; Al-Isamil, Khalid M; Al-Ghizzawi, Hana'a M; Holley, Richard A
2014-10-01
The effects of microencapsulating cardamom essential oil (CEO) in whey protein isolate (WPI) alone and combined with guar gum (GG) and carrageen (CG) on microencapsulation efficiency, oil chemical stability, and microcapsule structure were investigated. Freeze-dried microcapsules were prepared from emulsions containing (w/w): 15% and 30% WPI; 0.1% GG, and 0.2% CG as wall materials with CEO (at 10% of polymer concentration) as core material, and physical properties and chemical stability were compared. Bulk density of microcapsules was highest in WPI without GG or CG and in 30% WPI + GG microcapsules, and was more affected by moisture content (r = -0.6) than by mean particle diameter (d43 ; r = -0.2) and span (r = 0.1). Microcapsules containing only WPI had the highest entrapped oil (7.5%) and microencapsulation efficiency (98.5%). The concentrations of 1,8-cineole and d-limonene were used as indicators for microcapsule chemical stability since they were the main components of CEO. Microcapsules retained higher (P ≤ 0.05) concentrations of both components than non-microencapsulated CEO during 16 wk storage at 20 ºC, but higher loss of both components was noted at 35 ºC. Microencapsulated d-limonene was reduced faster than 1,8-cineole regardless of temperature. The 30% WPI and 30% WPI + GG microcapsules retained CEO best throughout storage at both storage temperatures. Scanning electron micrographs revealed that WPI microcapsules had smooth surfaces, were relatively homogenous and regular in shape, whereas GG and CG addition increased visual surface porosity and reduced shape regularity. It was concluded that the best formulation for encapsulating CEO was 30% WPI. Encapsulating cardamom essential oil in whey protein isolate alone or combined with guar gum produced dried powders that effectively retained and chemically stabilized CEO, and therefore enhanced its handling and storability. © 2014 Institute of Food Technologists®
Microencapsulation of rifampicin: A technique to preserve the mechanical properties of bone cement.
Sanz-Ruiz, Pablo; Carbó-Laso, Esther; Del Real-Romero, Juan Carlos; Arán-Ais, Francisca; Ballesteros-Iglesias, Yolanda; Paz-Jiménez, Eva; Sánchez-Navarro, Magdalena; Pérez-Limiñana, María Ángeles; Vaquero-Martín, Javier
2018-01-01
Two-stage exchange with antibiotic-loaded bone cement spacers remains the gold standard for chronic periprosthetic joint infection (PJI). Rifampicin is highly efficient on stationary-phase staphylococci in biofilm; however, its addition to PMMA to manufacture spacers prevents polymerization and reduces mechanical properties. Isolation of rifampicin during polymerization by microencapsulation could allow manufacturing rifampicin-loaded bone cement maintaining elution and mechanical properties. Microcapsules of rifampicin with alginate, polyhydroxybutyratehydroxyvalerate (PHBV), ethylcellulose and stearic acid (SA) were synthesized. Alginate and PHBV microcapsules were added to bone cement and elution, compression, bending, hardness, setting time and microbiological tests were performed. Repeated measures ANOVA and Bonferroni post-hoc test were performed, considering a p < 0.05 as statistical significance. Bone cement specimens containing alginate microcapsules eluted more rifampicin than PHBV microcapsules or non-encapsulated rifampicin over time (p < 0.012). Microencapsulation of rifampicin allowed PMMA to preserve mechanical properties in compression and bending tests. Cement with alginate microcapsules showed similar behavior in hardness tests to control cement over the study period (73 ± 1.68H D ). PMMA with alginate microcapsules exhibited the largest zones of inhibition in microbiological tests. Statistically significant differences in mean diameters of zones of inhibition between PMMA loaded with alginate-rifampicin (p = 0.0001) and alginate-PHBV microcapsules (p = 0.0001) were detected. Rifampicin microencapsulation with alginate is the best choice to introduce rifampicin in PMMA preserving mechanical properties, setting time, elution, and antimicrobial properties. The main applicability of this study is the opportunity for obtaining rifampicin-loaded PMMA by microencapsulation of rifampicin in alginate microparticles, achieving high doses of rifampicin in infected tissues, increasing the successful of PJI treatment. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:459-466, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
Fermentation of dilute sulfuric acid barley straw hydrolyzate (BSH; undiluted/untreated) by Clostridium beijerinckii P260 resulted in the production of 7.09 gL**-1 ABE (acetone butanol ethanol; AB or ABE), an ABE yield of 0.33, and productivity of 0.10 gL**-1h**-1. This level of ABE is much less th...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-19
... collected water into either a drain line or an in-unit container, these products do not use an exhaust port... conventional vented clothes dryer cannot be used, such as high-rise apartments and other buildings where... those dwellers of high-rise apartments and others who in many cases have no way to vent to the outside...
Gregory, K E; Maurer, R R
1991-03-01
Brown Swiss-Hereford (BS-H) reciprocal cross embryos were transferred to BS and H recipient cows and Red Poll-Angus (RP-A) reciprocal cross embryos were transferred to RP and A recipient cows to estimate the relative contributions of ovum cytoplasm and uterine influences to prenatal maternal effects. Calves resulting from embryo transfers (ET) were weaned early (3 to 5 d). Reciprocal cross mating also were made by natural service (NS) between BS and H and between RP and A breeds; part of the offspring were weaned at 3 to 5 d, and the remainder nursed their dams to an age of 150 to 180 d. This was done to estimate breed differences in prenatal and postnatal effects combined and to separate the effects of prenatal maternal influences from postnatal maternal influences of these breeds. Females produced in both ET and NS parts of the experiment were retained to produce three calf crops to an age of about 4.5 yr. The following traits were analyzed: percentage of conception rate; percentage of calf survival; percentage of calves produced per cow exposed; birth and weaning weights of calves produced; and periodic weights, heights, and condition scores of females to an age of 4.5 yr. Neither breed of donor (cytoplasmic influence) nor breed of recipient (uterine influence) had consistently important effects on the traits evaluated. In NS matings, differences between reciprocal crosses were small for most of the traits evaluated. Method of rearing (nursed vs weaned at 3 to 5 d) had no effect on reproductive and maternal traits for RP-A reciprocal cross females, but females that nursed generally were heavier, were taller, and had higher condition scores at most ages than early-weaned females. For the BS-H reciprocal cross, early-weaned females were favored over females reared by their dams in percentage of calves produced per cow exposed, but the method of rearing did not affect other reproductive or maternal traits. BS-H reciprocal cross females that nursed their dams were heavier at 550 d and were heavier and had higher condition scores at an age of 34 mo than early-weaned females.
Droplet size prediction in the production of drug delivery microsystems by ultrasonic atomization
Dalmoro, Annalisa; d’Amore, Matteo; Barba, Anna Angela
Microencapsulation processes of drugs or other functional molecules are of great interest in pharmaceutical production fields. Ultrasonic assisted atomization is a new technique to produce microencapsulated systems by mechanical approach. It seems to offer several advantages (low level of mechanical stress in materials, reduced energy request, reduced apparatuses size) with respect to more conventional techniques. In this paper the groundwork of atomization is briefly introduced and correlations to predict droplet size starting from process parameters and material properties are presented. PMID:24251250
Preparation and Characterization of Inorganic PCM Microcapsules by Fluidized Bed Method
Ushak, Svetlana; Cruz, M. Judith; Cabeza, Luisa F.; Grágeda, Mario
2016-01-01
The literature shows that inorganic phase change materials (PCM) have been very seldom microencapsulated, so this study aims to contribute to filling this research gap. Bischofite, a by-product from the non-metallic industry identified as having good potential to be used as inorganic PCM, was microencapsulated by means of a fluidized bed method with acrylic as polymer and chloroform as solvent, after compatibility studies of both several solvents and several polymers. The formation of bischofite and pure MgCl2·6H2O microcapsules was investigated and analyzed. Results showed an efficiency in microencapsulation of 95% could be achieved when using 2 min of fluidization time and 2 kg/h of atomization flow. The final microcapsules had excellent melting temperatures and enthalpy compared to the original PCM, 104.6 °C and 95 J/g for bischofite, and 95.3 and 118.3 for MgCl2·6H2O. PMID:28787823
Oketič, K; Matijašić, B Bogovič; Obermajer, T; Radulović, Z; Lević, S; Mirković, N; Nedović, V
2015-01-01
The aim of the study was to evaluate real-time PCR coupled with propidium monoazide (PMA) treatment for enumeration of microencapsulated probiotic lactobacilli microencapsulated in calcium alginate beads. Lactobacillus gasseri K7 (CCM 7710) and Lactobacillus delbrueckii subsp. bulgaricus (CCM 7712) were analysed by plate counting and PMA real-time PCR during storage at 4 °C for 90 days. PMA was effective in preventing PCR amplification of the target sequences of DNA released from heat-compromised bacteria. The values obtained by real-time PCR of non-treated samples were in general higher than those obtained by real-time PCR of PMA-treated samples or by plate counting, indicating the presence of sub-lethally injured cells. This study shows that plate count could not be completely replaced by culture independent method PMA real-time PCR for enumeration of probiotics, but may rather complement the well-established plate counting, providing useful information about the ratio of compromised bacteria in the samples.
Novel nanoliposomal encapsulated omega-3 fatty acids and their applications in food.
Rasti, Babak; Erfanian, Arezoo; Selamat, Jinap
2017-09-01
The aim of the present research was to evaluate the application, stability and suitability of ω3 polyunsaturated fatty acids (PUFAs) incorporated nanoliposomes in food enrichment. Nanoliposomal ω3 PUFAs was prepared by Mozafari method, and their application in bread and milk was compared with unencapsulated (fish oil) and microencapsulated ω3 PUFAs. Sensory evaluation was conducted to determine the perceptible sensory difference/similarity between control, unencapsulated, microencapsulated, and nanoliposomal ω3 PUFAs enriched foods. Results showed no significant (p=0.11) detectable difference between control and nanoliposomal ω3 PUFAs enriched samples while, samples enriched with unencapsulated or microencapsulated ω3 PUFAs showed significant (p=0.02) fishy flavor. Moreover, significantly (p<0.01) higher ω3 PUFAs % recovery and lower peroxide and anisidine values were observed in nanoliposomal ω3 PUFAs enriched samples in comparison with other samples. In conclusion, an effective and reproducible method for application of ω3 PUFAs in the food system was developed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gómez-Mascaraque, Laura G; Casagrande Sipoli, Caroline; de La Torre, Lucimara Gaziola; López-Rubio, Amparo
2017-10-15
Novel food-grade hybrid encapsulation structures based on the entrapment of phosphatidylcholine liposomes, within a WPC matrix through electrospraying, were developed and used as delivery vehicles for curcumin. The loading capacity and encapsulation efficiency of the proposed system was studied, and the suitability of the approach to stabilize curcumin and increase its bioaccessibility was assessed. Results showed that the maximum loading capacity of the liposomes was around 1.5% of curcumin, although the loading capacity of the hybrid microencapsulation structures increased with the curcumin content by incorporation of curcumin microcrystals upon electrospraying. Microencapsulation of curcumin within the proposed hybrid structures significantly increased its bioaccessibility (∼1.7-fold) compared to the free compound, and could successfully stabilize it against degradation in PBS (pH=7.4). The proposed approach thus proved to be a promising alternative to produce powder-like functional ingredients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gangurde, Avinash Bhaskar; Sav, Ajay Kumar; Javeer, Sharadchandra Dagadu; Moravkar, Kailas K; Pawar, Jaywant N; Amin, Purnima D
2015-01-01
Choline bitartrate (CBT) is a vital nutrient for fetal brain development and memory function. It is hygroscopic in nature which is associated with stability related problem during storage such as development of fishy odor and discoloration. Microencapsulation method was adopted to resolve the stability problem and for this hydrogenated soya bean oil (HSO) was used as encapsulating agent. Industrially feasible modified extrusion-spheronization technique was selected for microencapsulation. HSO was used as encapsulating agent, hydroxypropyl methyl cellulose E5/E15 as binder and microcrystalline cellulose as spheronization aid. Formulated pellets were evaluated for parameters such as flow property, morphological characteristics, hardness-friability index (HFI), drug content, encapsulation efficiency, and in vitro drug release. The optimized formulations were also characterized for particle size (by laser diffractometry), differential scanning calorimetry, powder X-ray diffractometry (PXRD), Fourier transform infrared spectroscopy, and scanning electron microscopy. The results from the study showed that coating of 90% and 60% CBT was successful with respect to all desired evaluation parameters. Optimized formulation was kept for 6 months stability study as per ICH guidelines, and there was no change in color, moisture content, drug content, and no fishy odor was observed. Microencapsulated pellets of CBT using HSO as encapsulating agent were developed using modified extrusion spheronization technique. Optimized formulations, CBT 90% (F5), and CBT 60% (F10), were found to be stable for 4M and 6M, respectively, at accelerated conditions.
Bosnea, L A; Moschakis, T; Biliaderis, C G
2017-02-22
L. paracasei subsp. paracasei E6 cells were encapsulated by complex coacervation using whey protein isolate (WPI) and gum arabic and introduced in stirred yogurts after fermentation. For comparison purposes, yogurts without addition of L. paracasei and yogurts with free cells of L. paracasei were produced. The survival of free and microencapsulated L. paracasei cells was evaluated during storage of the yogurts for 45 days at 4 °C. In addition, yogurts were exposed to simulated gastric juice and the reduction in viable numbers of L. paracasei cells was assessed. The effect of complex coacervates' addition on the rheological properties of yogurts was also evaluated. Yogurts containing encapsulated L. paracasei cells showed a slightly improved cell survival (≤0.22 log CFU g -1 reduction) during storage when compared to yogurts containing free cells (≤0.64 log CFU g -1 reduction). Moreover, the microencapsulated L. paracasei cells exhibited greater survival compared to free cells upon exposure of the yogurt samples to simulated gastric juice (pH 2.0) for 3 h. Finally, the incorporation of complex coacervates did not significantly affect the rheological properties of yogurts especially when added at concentrations less than 10% w/w. Consequently, the inclusion of microencapsulated bacteria by complex coacervation in yogurts, could become an effective vehicle for successful delivery of probiotics to the gut, and hence contributing to the improvement of the gastrointestinal tract health, without altering the texture of the product.
NASA Astrophysics Data System (ADS)
Sheng, Haibo; Zhang, Yan; Wang, Bibo; Yu, Bin; Shi, Yongqian; Song, Lei; Kundu, Chanchal Kumar; Tao, Youji; Jie, Ganxin; Feng, Hao; Hu, Yuan
2017-04-01
Microencapsulated ammonium polyphosphate (MCAPP) in combination with polyester polyurethane (TPU) was used to flame retardant ethylene-vinyl acetate copolymer (EVA). The EVA composites with different irradiation doses were immersed in hot water (80 °C) to accelerate ageing process. The microencapsulation and irradiation dose ensured positive impacts on the properties of the EVA composites in terms of better dimensional stability and flame retardant performance. The microencapsulation of APP could lower its solubility in water and the higher irradiation dose led to the more MCAPP immobilized in three dimensional crosslinked structure of the EVA matrix which could jointly enhance the flame retardant and electrical insulation properties of the EVA composites. So, the EVA composites with 180 kGy irradiation dose exhibited better dimensional stability than the EVA composites with 120 kGy due to the higher crosslinking degree. Moreover, the higher irradiation dose lead to the more MCAPP immobilizated in crosslinked three-dimensional structure of EVA, enhancing the flame retardancy and electrical insulation properties of the EVA composites. After ageing test in hot water at 80 °C for 2 weeks, the EVA/TPU/MCAPP composite with 180 kGy could still maintain the UL-94 V-0 rating and the limiting oxygen index (LOI) value was as high as 30%. This investigation indicated the flame retardant EVA cable containing MCAPP could achieve stable properties and lower electrical fire hazard risk during long-term hot water ageing test.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-30
...... 5/1/09-4/30/10 Alcatel Vacuum Technology Audi AG AVIAC Avio (formerly known as FiatAvio) Bosch... Audi AG Avio (formerly known as FiatAvio) BAUER Maschinen GmbH Bosch Rexroth AG BSH Bosch und Siemens... Bearings and Parts Thereof, A-475-201.... 5/1/09-4/30/10 Audi AG Avio, S.p.A. (formerly known as FiatAvio...
High Temperature Catalytically Assisted Combustion.
1983-07-31
AUTHOR(S) F.V. Bracco, B.S.H. Royce, C. Bruno, D.A. Santavicca, Y. Stein 16I. SUPPLEMENTARY NOTATION FIELD GROUP - SUB. GR. ’Catalytic Combustion... controlling radial gradients. These functions can be very accurate for fully developed steady flows but require significant adjustments for transient...however, to limit computation costs, the reported solutions were obtained using the quasi -steady gas assumption already employed by T’ien in his one
2003-05-06
KENNEDY SPACE CENTER, FLA. - The apparatus shown was designed to hold microcapsules for research on mission STS-107. It is one over several included in the Commercial ITA Biomedical Experiments payload. The box was recently recovered during the search for Columbia debris. The drug delivery system and spaceflight hardware was developed jointly by JSC, the Institute for Research Inc. and Instrumentation Technology Associates Inc. to conduct microencapsulation experiments under microgravity conditions. This microcapsule contains an antibiotic for treating deep resistant pulmonary infections. Dr. Dennis Morrison, senior biotech project scientist, is principle investigator on microencapsulation and urokinase crystal growth.
Probiotic Encapsulation Technology: From Microencapsulation to Release into the Gut
Gbassi, Gildas K.; Vandamme, Thierry
2012-01-01
Probiotic encapsulation technology (PET) has the potential to protect microorgansisms and to deliver them into the gut. Because of the promising preclinical and clinical results, probiotics have been incorporated into a range of products. However, there are still many challenges to overcome with respect to the microencapsulation process and the conditions prevailing in the gut. This paper reviews the methodological approach of probiotics encapsulation including biomaterials selection, choice of appropriate technology, in vitro release studies of encapsulated probiotics, and highlights the challenges to be overcome in this area. PMID:24300185
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - The apparatus shown was designed to hold microcapsules for research on mission STS-107. It is one over several included in the Commercial ITA Biomedical Experiments payload. The box was recently recovered during the search for Columbia debris. The drug delivery system and spaceflight hardware was developed jointly by JSC, the Institute for Research Inc. and Instrumentation Technology Associates Inc. to conduct microencapsulation experiments under microgravity conditions. This microcapsule contains an antibiotic for treating deep resistant pulmonary infections. Dr. Dennis Morrison, senior biotech project scientist, is principle investigator on microencapsulation and urokinase crystal growth.
Enhancement of Antiviral Agents Through the Use of Controlled-Release Technology.
DL-lactide-co-glycolide) to be used as the polymeric excipients in the microencapsulation work. In addition, we have actively pursued development and testing of poly(I.C) and Je vaccine microcapsule formulations....of this research program are a) To develop a programmed-release delivery system ( microcapsule system) designed to enhance the immunogenic potential of...release microcapsule delivery systems that will enhance the effects of the following immune modulators and antiviral agents: muramyl tripeptide (MTP
Hernández-Hernández, Elvia; Lira-Moreno, César Y; Guerrero-Legarreta, Isabel; Wild-Padua, Graciela; Di Pierro, Prospero; García-Almendárez, Blanca E; Regalado-González, Carlos
2017-06-01
Fresh meat is a highly perishable food. This work aimed to evaluate the influence of Mexican oregano (Lippia graveolens Kunth) incorporated into active coatings (ACs) spread on fresh pork meat as free (FEO), nanoemulsified (NEO), and microencapsulated (MEO) essential oil (EO), on its microbiological, physicochemical and sensory properties during 15 d at 4 ± 1 °C. Thymol and γ-terpinene were identified in the EO. In vitro effect of 2.85 mg EO/cm 2 was tested against Brochothrix thermosphacta, Micrococcus luteus, Lactobacillus plantarum, Pseudomonas fragi, and Salmonella Infantis. FEO antioxidant capacity (DPPH assay) was significantly higher than that of thymol, NEO and MEO (93.53%, 89.92%, 77.79%, and 78.50% inhibition, respectively), and similar to BHA (96.03%) and gallic acid (95.57%). FEO, NEO, and MEO ACs on meat caused growth inhibition of lactic acid bacteria (5 log population reduction) and Pseudomonas spp. (4 log reduction), whereas ≤1.5 log population reduction was observed for B. thermosphacta and Salmonella Infantis. Meat microbiota was more efficiently controlled by MEO than by FEO or NEO. ACs delayed lipid and oxymyoglobin oxidation of fresh pork meat. After 15 d of cold storage meat added with EO coatings was desirable for panelists, whereas untreated (UT) samples were undesirable. Active coatings are a significant alternative method for fresh meat preservation. © 2017 Institute of Food Technologists®.
Use of yeast spores for microencapsulation of enzymes.
Shi, Libing; Li, Zijie; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki
2014-08-01
Here, we report a novel method to produce microencapsulated enzymes using Saccharomyces cerevisiae spores. In sporulating cells, soluble secreted proteins are transported to the spore wall. Previous work has shown that the spore wall is capable of retaining soluble proteins because its outer layers work as a diffusion barrier. Accordingly, a red fluorescent protein (RFP) fusion of the α-galactosidase, Mel1, expressed in spores was observed in the spore wall even after spores were subjected to a high-salt wash in the presence of detergent. In vegetative cells, however, the cell wall cannot retain the RFP fusion. Although the spore wall prevents diffusion of proteins, it is likely that smaller molecules, such as sugars, pass through it. In fact, spores can contain much higher α-galactosidase activity to digest melibiose than vegetative cells. When present in the spore wall, the enzyme acquires resistance to environmental stresses including enzymatic digestion and high temperatures. The outer layers of the spore wall are required to retain enzymes but also decrease accessibility of the substrates. However, mutants with mild spore wall defects can retain and stabilize the enzyme while still permitting access to the substrate. In addition to Mel1, we also show that spores can retain the invertase. Interestingly the encapsulated invertase has significantly lower activity toward raffinose than toward sucrose.This suggests that substrate selectivity could be altered by the encapsulation.
Ryan, Paul M; London, Lis E E; Bjorndahl, Trent C; Mandal, Rupasri; Murphy, Kiera; Fitzgerald, Gerald F; Shanahan, Fergus; Ross, R Paul; Wishart, David S; Caplice, Noel M; Stanton, Catherine
2017-03-13
There is strong evidence indicating that gut microbiota have the potential to modify, or be modified by the drugs and nutritional interventions that we rely upon. This study aims to characterize the compositional and functional effects of several nutritional, neutraceutical, and pharmaceutical cardiovascular disease interventions on the gut microbiome, through metagenomic and metabolomic approaches. Apolipoprotein-E-deficient mice were fed for 24 weeks either high-fat/cholesterol diet alone (control, HFC) or high-fat/cholesterol in conjunction with one of three dietary interventions, as follows: plant sterol ester (PSE), oat β-glucan (OBG) and bile salt hydrolase-active Lactobacillus reuteri APC 2587 (BSH), or the drug atorvastatin (STAT). The gut microbiome composition was then investigated, in addition to the host fecal and serum metabolome. We observed major shifts in the composition of the gut microbiome of PSE mice, while OBG and BSH mice displayed more modest fluctuations, and STAT showed relatively few alterations. Interestingly, these compositional effects imparted by PSE were coupled with an increase in acetate and reduction in isovalerate (p < 0.05), while OBG promoted n-butyrate synthesis (p < 0.01). In addition, PSE significantly dampened the microbial production of the proatherogenic precursor compound, trimethylamine (p < 0.05), attenuated cholesterol accumulation, and nearly abolished atherogenesis in the model (p < 0.05). However, PSE supplementation produced the heaviest mice with the greatest degree of adiposity (p < 0.05). Finally, PSE, OBG, and STAT all appeared to have considerable impact on the host serum metabolome, including alterations in several acylcarnitines previously associated with a state of metabolic dysfunction (p < 0.05). We observed functional alterations in microbial and host-derived metabolites, which may have important implications for systemic metabolic health, suggesting that cardiovascular disease interventions may have a significant impact on the microbiome composition and functionality. This study indicates that the gut microbiome-modifying effects of novel therapeutics should be considered, in addition to the direct host effects.
Chi, Bui Khanh; Gronau, Katrin; Mäder, Ulrike; Hessling, Bernd; Becher, Dörte; Antelmann, Haike
2011-01-01
Protein S-thiolation is a post-translational thiol-modification that controls redox-sensing transcription factors and protects active site cysteine residues against irreversible oxidation. In Bacillus subtilis the MarR-type repressor OhrR was shown to sense organic hydroperoxides via formation of mixed disulfides with the redox buffer bacillithiol (Cys-GlcN-Malate, BSH), termed as S-bacillithiolation. Here we have studied changes in the transcriptome and redox proteome caused by the strong oxidant hypochloric acid in B. subtilis. The expression profile of NaOCl stress is indicative of disulfide stress as shown by the induction of the thiol- and oxidative stress-specific Spx, CtsR, and PerR regulons. Thiol redox proteomics identified only few cytoplasmic proteins with reversible thiol-oxidations in response to NaOCl stress that include GapA and MetE. Shotgun-liquid chromatography-tandem MS analyses revealed that GapA, Spx, and PerR are oxidized to intramolecular disulfides by NaOCl stress. Furthermore, we identified six S-bacillithiolated proteins in NaOCl-treated cells, including the OhrR repressor, two methionine synthases MetE and YxjG, the inorganic pyrophosphatase PpaC, the 3-d-phosphoglycerate dehydrogenase SerA, and the putative bacilliredoxin YphP. S-bacillithiolation of the OhrR repressor leads to up-regulation of the OhrA peroxiredoxin that confers together with BSH specific protection against NaOCl. S-bacillithiolation of MetE, YxjG, PpaC and SerA causes hypochlorite-induced methionine starvation as supported by the induction of the S-box regulon. The mechanism of S-glutathionylation of MetE has been described in Escherichia coli also leading to enzyme inactivation and methionine auxotrophy. In summary, our studies discover an important role of the bacillithiol redox buffer in protection against hypochloric acid by S-bacillithiolation of the redox-sensing regulator OhrR and of four enzymes of the methionine biosynthesis pathway. PMID:21749987
Gangurde, Avinash Bhaskar; Sav, Ajay Kumar; Javeer, Sharadchandra Dagadu; Moravkar, Kailas K; Pawar, Jaywant N; Amin, Purnima D
2015-01-01
Introduction: Choline bitartrate (CBT) is a vital nutrient for fetal brain development and memory function. It is hygroscopic in nature which is associated with stability related problem during storage such as development of fishy odor and discoloration. Aim: Microencapsulation method was adopted to resolve the stability problem and for this hydrogenated soya bean oil (HSO) was used as encapsulating agent. Materials and Methods: Industrially feasible modified extrusion-spheronization technique was selected for microencapsulation. HSO was used as encapsulating agent, hydroxypropyl methyl cellulose E5/E15 as binder and microcrystalline cellulose as spheronization aid. Formulated pellets were evaluated for parameters such as flow property, morphological characteristics, hardness-friability index (HFI), drug content, encapsulation efficiency, and in vitro drug release. The optimized formulations were also characterized for particle size (by laser diffractometry), differential scanning calorimetry, powder X-ray diffractometry (PXRD), Fourier transform infrared spectroscopy, and scanning electron microscopy. Results and Discussions: The results from the study showed that coating of 90% and 60% CBT was successful with respect to all desired evaluation parameters. Optimized formulation was kept for 6 months stability study as per ICH guidelines, and there was no change in color, moisture content, drug content, and no fishy odor was observed. Conclusion: Microencapsulated pellets of CBT using HSO as encapsulating agent were developed using modified extrusion spheronization technique. Optimized formulations, CBT 90% (F5), and CBT 60% (F10), were found to be stable for 4M and 6M, respectively, at accelerated conditions. PMID:26682198
Jiménez-Salcedo, Marta; Tena, María Teresa
2017-03-03
Specific blends of essential oils (BEOs) are promising substitutes for antibiotics to promote livestock performance and to reduce the incidence of intestinal disorders. Microencapsulation of BEOs has shown to improve their stability, bioavailability and to control their release rate once they are added to the feedstuff. The development and validation of a method for determining essential oil components such as carvacrol, thymol and cinnamaldehyde in a microencapsulated material used as feed additive is presented. Analytes were extracted from feed additives and feedstuff by pressurized liquid extraction (PLE) with methanol at 50°C for 5min. Methanol provided good recovery values and cleaner extracts than other polar organic solvents tested. However, for certain kind of composite additives ethyl acetate showed to be a better option because trans-cinnamaldehyde undergoes chemical reaction in methanol. Then PLE extracts were analysed by gas chromatography coupled to ion trap mass spectrometry in selected ion storage (SIS) mode. The analyte stability and the absence of analyte losses during the PLE process was checked by a recovery study. Also, the matrix effect was studied to assess accuracy. Recovery values were between 85 and 115% in most cases. Intra- and inter-day relative standard deviation values were less than 4 and 14%, respectively. Finally, the developed method was applied to the analysis of a microencapsulated feed additive, several composite feed additive samples containing microencapsulated BEOs and a spiked feedstuff, for quality control and in stability studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Effective stabilization of CLA by microencapsulation in pea protein.
Costa, A M M; Nunes, J C; Lima, B N B; Pedrosa, C; Calado, V; Torres, A G; Pierucci, A P T R
2015-02-01
CLA was microencapsulated by spray drying in ten varied wall systems (WS) consisting of pea protein isolate or pea protein concentrate (PPC) alone at varied core:WS ratios (1:2; 1:3 and 1:4), or blended with maltodextrin (M) and carboxymethylcellulose at a pea protein:carbohydrate ratio of 3:1. The physical-chemical properties of the CLA microparticles were characterised by core retention, microencapsulation efficiency (ME), particle size and moisture. CLA:M:PPC (1:1:3) showed the most promising results, thus we evaluated the effect of M addition in the WS on other physical-chemical characteristics and oxidative stability (CLA isomer profile, quantification of CLA and volatile compounds by SPME coupled with CG-MS) during two months of storage at room temperature, CLA:PPC (1:4) was selected for comparisons. CLA:M:PPC (1:1:3) microparticles demonstrated better morphology, solubility, dispersibility and higher glass-transition temperature values. M addition did not influence the oxidative stability of CLA, however its presence improved physical-chemical characteristics necessary for food applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
2017-01-01
Summary This article presents a novel formulation for preparation of Lactobacillus casei 01 encapsulated in soy protein isolate and alginate microparticles using spray drying method. A response surface methodology was used to optimise the formulation and the central composite face-centered design was applied to study the effects of critical material attributes and process parameters on viability of the probiotic after microencapsulation and in simulated gastrointestinal conditions. Spherical microparticles were produced in high yield (64%), narrow size distribution (d50=9.7 µm, span=0.47) and favourable mucoadhesive properties, with viability of the probiotic of 11.67, 10.05, 9.47 and 9.20 log CFU/g after microencapsulation, 3 h in simulated gastric and intestinal conditions and four-month cold storage, respectively. Fourier-transform infrared spectroscopy confirmed the probiotic stability after microencapsulation, while differential scanning calorimetry and thermogravimetry pointed to high thermal stability of the soy protein isolate-alginate microparticles with encapsulated probiotic. These favourable properties of the probiotic microparticles make them suitable for incorporation into functional food or pharmaceutical products. PMID:28867947
Zhang, Guoqing; Meng, Fanyue; Guo, Zhen; Guo, Tao; Peng, Hui; Xiao, Jian; Liu, Botao; Singh, Vikaramjeet; Gui, Shuangying; York, Peter; Qian, Wei; Wu, Li; Zhang, Jiwen
2018-04-24
γ-Cyclodextrin metal-organic frameworks (γ-CD-MOFs) are highly porous and bio-friendly novel materials formed by γ-CD as an organic ligand and potassium ion as an inorganic metal centre. The aim of this study was to enhance the stability of vitamin A palmitate (VAP) using γ-CD-MOFs as the carrier. Herein, γ-CD-MOFs displayed VAP microencapsulating capacity of 9.77 ± 0.24% with molar ratio as n MOFs :n VAP = 3.2:1.0. It was important to find that the improved stability of VAP microencapsulated by γ-CD-MOFs without addition of any antioxidant(s) was better than that of the best available reference product in the market, with 1.6-fold elongated half-life. The protecting mechanism of γ-CD-MOFs for VAP contributed that VAP molecules preferentially curled inside the cavities of dual γ-CD pairs in γ-CD-MOFs. It was proved that γ-CD-MOFs were an efficient new carrier to deliver and protect VAP for food and pharmaceutical applications.
Zheng, Zhaoliang; Chang, Zhuo; Xu, Guang-Kui; McBride, Fiona; Ho, Alexandra; Zhuola, Zhuola; Michailidis, Marios; Li, Wei; Raval, Rasmita; Akhtar, Riaz; Shchukin, Dmitry
2017-01-24
The performance of solar-thermal conversion systems can be improved by incorporation of nanocarbon-stabilized microencapsulated phase change materials (MPCMs). The geometry of MPCMs in the microcapsules plays an important role for improving their heating efficiency and reliability. Yet few efforts have been made to critically examine the formation mechanism of different geometries and their effect on MPCMs-shell interaction. Herein, through changing the cooling rate of original emulsions, we acquire MPCMs within the nanocarbon microcapsules with a hollow structure of MPCMs (h-MPCMs) or solid PCM core particles (s-MPCMs). X-ray photoelectron spectroscopy and atomic force microscopy reveals that the capsule shell of the h-MPCMs is enriched with nanocarbons and has a greater MPCMs-shell interaction compared to s-MPCMs. This results in the h-MPCMs being more stable and having greater heat diffusivity within and above the phase transition range than the s-MPCMs do. The geometry-dependent heating efficiency and system stability may have important and general implications for the fundamental understanding of microencapsulation and wider breadth of heating generating systems.
Gurkov, Anton; Sadovoy, Anton; Shchapova, Ekaterina; Teh, Cathleen; Meglinski, Igor; Timofeyev, Maxim
2017-01-01
In vivo physiological measurement is a major challenge in modern science and technology, as is environment conservation at the global scale. Proper toxicological testing of widely produced mixtures of chemicals is a necessary step in the development of new products, allowing us to minimize the human impact on aquatic ecosystems. However, currently available bioassay-based techniques utilizing small aquatic organisms such as fish embryos for toxicity testing do not allow assessing in time the changes in physiological parameters in the same individual. In this study, we introduce microencapsulated fluorescent probes as a promising tool for in vivo monitoring of internal pH variation in zebrafish embryos. The pH alteration identified under stress conditions demonstrates the applicability of the microencapsulated fluorescent probes for the repeated analysis of the embryo's physiological state. The proposed approach has strong potential to simultaneously measure a range of physiological characteristics using a set of specific fluorescent probes and to finally bring toxicological bioassays and related research fields to a new level of effectiveness and sensitivity.
Rodsamran, Pattrathip; Sothornvit, Rungsinee
2018-03-01
Microencapsulation was investigated to enhance the stability of Thai rice grass extract. Microencapsulated powder (MP) was formed using total solid of extract solution and maltodextrin ratios of 1:4 (MP 1:4) and 1:9 (MP 1:9). The absence of an endothermic peak for both MPs confirmed all extract solutions were coated with maltodextrin. MP 1:9 had a lower total phenolic content (TPC) but was higher in antioxidant capacity than MP 1:4. Moreover, the TPC of the MPs slightly decreased (70.02-93.04%) during storage at 10, 30 and 70°C for 30d. Comparatively, the TPC of the extract solution significantly decreased from 100% down to 20.8%, 11.2% and 8.6% at 10, 30 and 70°C, respectively. Therefore, MP 1:9 incorporated with blended carboxymethyl cellulose film increased the water barrier and the TPC. This film can serve as a bioactive biodegradable packaging material to reduce plastic packaging in the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tsai, Wen-Chyan; Rizvi, Syed S H
2017-09-01
Organic solvent residues are always a concern with the liposomes produced by traditional techniques. Our objectives were to encapsulate hydrophilic and lipophilic compounds in liposomes using a newly designed supercritical fluid process coupled with vacuum-driven cargo loading. Supercritical carbon dioxide was chosen as the phospholipid-dissolving medium and an ecofriendly substitute for organic solvents. Liposomal microencapsulation was conducted via a 1000-μm expansion nozzle at 12.41MPa, 90°C, and aqueous cargo loading rate of 0.25ml/s. Vitamins C and E were selected as model hydrophilic and lipophilic compounds encapsulated in the integrated liposomes. The average vesicle size was 951.02nm with a zeta potential of -51.87mV. The encapsulation efficiency attained was 32.97% for vitamin C and 99.32% for vitamin E. Good emulsion stability was maintained during storage at 4°C for 20days. Simultaneous microencapsulation in the liposomes was successfully achieved with this supercritical fluid process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Microencapsulation of soybean oil by spray drying using oleosomes
NASA Astrophysics Data System (ADS)
Maurer, S.; Ghebremedhin, M.; Zielbauer, B. I.; Knorr, D.; Vilgis, T. A.
2016-02-01
The food industry has discovered that oleosomes are beneficial as carriers of bioactive ingredients. Oleosomes are subcellular oil droplets typically found in plant seeds. Within seeds, they exist as pre-emulsified oil high in unsaturated fatty acids, stabilised by a monolayer of phospholipids and proteins, called oleosins. Oleosins are anchored into the oil core with a hydrophobic domain, while the hydrophilic domains remain on the oleosome surface. To preserve the nutritional value of the oil and the function of oleosomes, microencapsulation by means of spray drying is a promising technique. For the microencapsulation of oleosomes, maltodextrin was used. To achieve a high oil encapsulation efficiency, optimal process parameters needed to be established. In order to better understand the mechanisms of drying behind powder formation and the associated powder properties, the findings obtained using different microscopic and spectroscopic measurements were correlated with each other. By doing this, it was found that spray drying of pure oleosome emulsions resulted in excessive component segregation and thus in a poor encapsulation efficiency. With the addition of maltodextrin, the oil encapsulation efficiency was significantly improved.
The influence of immune system stimulation on encapsulated islet graft survival.
Orłowski, Tadeusz M; Godlewska, Ewa; Tarchalska, Magda; Kinasiewicz, Joanna; Antosiak, Magda; Sabat, Marek
2005-01-01
The aim of this study was to determine the influence activating of the recipient immune system on the function of microencapsulated islet xenografts. The skin of WAG or Fisher rats and WAG free or encapsulated (APA) Langerhans islets were transplanted to healthy or to streptozotocin diabetic BALB/c mice. Skin grafts were performed following the method of Billingham and Medawar. Rat islets were isolated from pancreas by the Lacy and Kostianovsy method and encapsulated with calcium alginate-poly-L-lysine-alginate according to the 3-step coating method of Sun. The transplantation of encapsulated WAG islets, despite activation of the host immune system, restored euglycemia for over 180 +/-100 days. A subsequent skin graft taken from the same donor was rejected in the second set mode, but euglycemia persisted. In diabetic recipients, impaired immune response was corrected by successful encapsulated islet transplantation. In diabetic mice, strong stimulation with 2-fold skin transplantation induced primary non-function of grafted islets despite their encapsulation. The survival of an islet xenograft depends on the level of activation of the recipient immune system. The immune response of diabetic mice was impaired, but increased after post-transplant restitution of euglycemia. Microencapsulation sufficiently protected grafted islets, and remission of diabetes was preserved. However, after strong specific or non-specific stimulation of the host immune system, non-function of xenografted islets developed despite their encapsulation. Therefore, islet graft recipients should avoid procedures which could stimulate their immune systems. If absolutely necessary, the graft should be protected by exogenous insulin therapy at that time.
2003-05-06
KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., works on an experiment found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
2003-05-06
KENNEDY SPACE CENTER, FLA. - Valerie Cassanto is one of the scientists recovering experiments found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
Review on the preparation and modified technologies of microencapsulated red phosphorus
NASA Astrophysics Data System (ADS)
Cheng, Chen; Du, Shiguo; Yan, Jun
2017-10-01
Coated by a compact shell structure, pristine red phosphorus transforms into microcapsule red phosphorus (MCRP) with lower PH3 emission and improved compatibility with polymer matrix. Diverse kinds of microcapsule red phosphorus are classified by shell material, i.e.organic shell material MCRP, inorganic shell material MCRP and composite shell material MCRP. Furthermore, the modified technology to make up deficiencies of MCRP is also introduced in the lecture. Aiming at the existing microencapsulation craft, a more harmless and high-efficiency process should be presented, and ultrafine MCRP is also urgent to be prepared.
Enhanced heat transport in environmental systems using microencapsulated phase change materials
NASA Technical Reports Server (NTRS)
Colvin, D. P.; Mulligan, J. C.; Bryant, Y. G.
1992-01-01
A methodology for enhanced heat transport and storage that uses a new two-component fluid mixture consisting of a microencapsulated phase change material (microPCM) for enhanced latent heat transport is outlined. SBIR investigations for NASA, USAF, SDIO, and NSF since 1983 have demonstrated the ability of the two-component microPCM coolants to provide enhancements in heat transport up to 40 times over that of the carrier fluid alone, enhancements of 50 to 100 percent in the heat transfer coefficient, practically isothermal operation when the coolant flow is circulated in an optimal manner, and significant reductions in pump work.
Bioavailability of long-chain n-3 fatty acids from enriched meals and from microencapsulated powder.
Hinriksdottir, H H; Jonsdottir, V L; Sveinsdottir, K; Martinsdottir, E; Ramel, A
2015-03-01
Despite the potential benefits of long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), intake is often low because of low consumption of oily seafood. Microencapsulated fish oil powder can improve tolerance and acceptance of LC n-3 PUFAs. Bioavailability is important to achieve efficacy. We investigated the bioavailability of LC n-3 PUFAs from microencapsulated powder in comparison with meals enriched with liquid fish oil. Participants (N=99, age⩾50 years) of this 4-week double-blinded dietary intervention were randomized into three groups. Group 1 (n=38) received 1.5 g/d eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) as ready-to-eat meals enriched with liquid fish oil; group 2 (n=30) received the same amount of these LC n-3 PUFAs as microencapsulated fish oil powder and regular meals; and group 3 (n=31) was the control group, which received placebo powder and regular meals. Blood samples were taken from fingertips at baseline and at the end point. Seventy-seven subjects (77.8%) completed the study. The amount of EPA in blood doubled in both groups that received LC n-3 PUFAs (P<0.05), but it did not change in the control group. The changes in DHA were less but still significant in both intervention groups. According to multivariate analysis, both intervention groups had higher end-point LC n-3 PUFA concentrations compared with placebo, but differences between intervention groups were not significant. Bioavailability of LC n-3 PUFAs in encapsulated powder is very similar to the bioavailability of LC n-3 PUFAs in ready-to-eat meals enriched with liquid fish oil. Thus, encapsulated powder can be considered useful to increase LC n-3 PUFA concentrations in blood.
Zlotkin, Stanley; Antwi, Kojo Yeboah; Schauer, Claudia; Yeung, George
2003-01-01
OBJECTIVE: To compare the effectiveness of microencapsulated iron(II) fumarate sprinkles (with and without vitamin A), iron(II) sulfate drops, and placebo sprinkles in preventing recurrence of anaemia and to determine the long-term haematological outcomes in children at high risk of recurrence of anaemia 12 months after the end of supplementation. METHODS: A prospective, randomized, placebo-controlled design was used to study 437 Ghanaian children aged 8-20 months who were not anaemic (haemoglobin > or = 100 g/l). Four groups were given microencapsulated iron(II) fumarate sprinkles, microencapsulated iron(II) fumarate sprinkles with vitamin A, iron(II) sulfate drops or placebo sprinkles daily for six months. Primary outcome measures were change in haemoglobin and anaemic status at baseline and study end. Non-anaemic children at the end of the supplementation period were reassessed 12 months after supplementation ended. FINDINGS: Overall, 324 children completed the supplementation period. Among the four groups, no significant changes were seen in mean haemoglobin, ferritin or serum retinol values from baseline to the end of the supplementation period. During the trial, 82.4% (267/324) of children maintained their non-anaemic status. Sprinkles were well accepted without complications. At 12 months post-supplementation, 77.1% (162/210) of children with no intervention remained non-anaemic. This proportion was similar for children among the four groups. CONCLUSION: In most children previously treated for anaemia, further supplementation was not needed to maintain their non-anaemic status. These results may have important implications for community intervention programmes in which initial high-dose treatment is needed because of a high prevalence of anaemia. PMID:12756979
Microencapsulation of pancreatic islets with canine ear cartilage for immunoisolation.
Lee, J I; Kim, H W; Kim, J Y; Bae, S J; Joo, D J; Huh, K H; Fang, Y H; Jeong, J H; Kim, M S; Kim, Y S
2012-05-01
Improving human islet transplantation is often limited by the shortage of donors and the side effects of immunosuppressive agents. If immunoisolation is properly used, it can overcome these obstacles. Because artificial materials are adopted in this technique, however, there are still multiple issues with biocompatibility and foreign body reactions. We developed a chondrocyte microencapsulated immunoisolated islet (CMI-islet) that allows living cells to act as the immunoisolating material. To manufacture CMI-islets for xenotransplantation, isolated rat pancreatic islets were placed on low cell-binding culture dishes. Subsequently, expanded canine auricular cartiage primary cells were seeded on these dishes at a high density and maintained in a suspended state via a shaking culture system. Morphological evaluations showed good islet viability and a clear progression of the islet- encapsulation events. When the cells were challenged with glucose, they were able to secrete sufficient insulin according to glucose concentrations. The CMI-islets responded better to the glucose challenge than did nude pancreatic islets and created better glucose-insulin feedback regulation. Moreover, insulin secretion into the culture medium was confirmed over a period of 100 days, showing the survival and secretory capacity of the CMI-islet cells. By microencapsulating pancreatic islets with recipient ear cartilage cells, long-term insulin secretion can be maintained and the response to glucose challenges improved. This new immunodelusion technology differs from other immunoisolation techniques in that the donor tissue is enclosed with the recipient's tissue, thus allowing the transplanted cells to be recognized as recipient cells. This microencapsulation method may lead to developing viable xenotransplantation techniques that do not use immunosuppressive drugs. Copyright © 2012 Elsevier Inc. All rights reserved.
Adzmi, Fariz; Meon, Sariah; Musa, Mohamed Hanafi; Yusuf, Nor Azah
2012-01-01
Microencapsulation is a process by which tiny parcels of an active ingredient are packaged within a second material for the purpose of shielding the active ingredient from the surrounding environment. This study aims to determine the ability of the microencapsulation technique to improve the viability of Trichoderma harzianum UPM40 originally isolated from healthy groundnut roots as effective biological control agents (BCAs). Alginate was used as the carrier for controlled release, and montmorillonite clay (MMT) served as the filler. The encapsulated Ca-alginate-MMT beads were characterised using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The FTIR results showed the interaction between the functional groups of alginate and MMT in the Ca-alginate-MMT beads. Peaks at 1595, 1420 and 1020 cm(-1) characterised alginate, and peaks at 1028 and 453 cm(-1) characterised MMT; both sets of peaks appeared in the Ca-alginate-MMT FTIR spectrum. The TGA analysis showed an improvement in the thermal stability of the Ca-alginate-MMT beads compared with the alginate beads alone. SEM analysis revealed a homogeneous distribution of the MMT particles throughout the alginate matrix. T. harzianum UPM40 was successfully encapsulated in the Ca-alginate-MMT beads. Storage analysis of the encapsulated T. harzianum UPM40 showed that the low storage temperature of 5°C resulted in significantly (p < 0.05) better storage compared with room temperature (30°C).
Analysis of Size Correlations for Microdroplets Produced by Ultrasonic Atomization
Barba, Anna Angela; d'Amore, Matteo
2013-01-01
Microencapsulation techniques are widely applied in the field of pharmaceutical production to control drugs release in time and in physiological environments. Ultrasonic-assisted atomization is a new technique to produce microencapsulated systems by a mechanical approach. Interest in this technique is due to the advantages evidenceable (low level of mechanical stress in materials, reduced energy request, reduced apparatuses size) when comparing it to more conventional techniques. In this paper, the groundwork of atomization is introduced, the role of relevant parameters in ultrasonic atomization mechanism is discussed, and correlations to predict droplets size starting from process parameters and material properties are presented and tested. PMID:24501580
Chitprasert, Pakamon; Sudsai, Polin; Rodklongtan, Akkaratch
2012-09-01
This research aimed to enhance the survival of Lactobacillus reuteri KUB-AC5 from heat conditioning by using microencapsulation with aluminum carboxymethyl cellulose-rice bran (AlCMC-RB) composites of different weight ratios of 1:0, 1:1, and 1:1.5. The cell/polymer suspension was crosslinked with aluminum chloride at different agitation speeds of 1200, 1500, and 2100 rpm. The AlCMC microcapsules had significantly higher encapsulation efficiency, but lower microcapsule yield than the AlCMC-RB microcapsules (p≤0.05). Scanning electron microscopy revealed the complexation between AlCMC and RB. Fourier transform infrared spectroscopy showed hydrogen bondings between AlCMC, RB, and cells. The AlCMC-RB microcapsules had significantly lower aluminum ion and moisture contents than the AlCMC ones. After heat exposure, the viability of non-encapsulated and microencapsulated cells in the AlCMC matrix dramatically declined, while that of microencapsulated cells in the AlCMC-RB matrix was about 8 log CFU/g. The results showed the promising potential of the AlCMC-RB composite microcapsules for the protection of probiotics against heat. Copyright © 2012 Elsevier Ltd. All rights reserved.
Microencapsulation of ethanol extract propolis by maltodextrin and freeze-dried preparation
NASA Astrophysics Data System (ADS)
Mangiring, Getta Austin; Pratami, Diah Kartika; Hermansyah, Heri; Wijanarko, Anondho; Rohmatin, Etin; Sahlan, Muhamad
2018-02-01
Propolis has been known to have many benefits for human health, such as anti-cancer, anti-tumor, anti-oxidant, anti-bacterial, and anti-inflammatory. Currently in Indonesia there are quite a lot of propolis-based products, such as soap, toothpaste, skin cream, or health products in liquid form. However, there is still no propolis product in powder form. In this research, microencapsulation of propolis using maltodextrin coating with freeze drying method will be done. Propolis powder has been tested for polyphenols and it was found that crude propolis (175 ml : 75 gr) had the highest polyphenols content in powder form, 434,438 µg /mL. Soft propolis (125 ml : 125 gr) has 4.533% of moisture content, which was the lowest result in these study. And also, the soft propolis (125 ml : 125 gr) has the highest solubility in water with 69% as the result. Propolis powder that has the highest solubility can be seen morphology using Scanning Electron Mocroscope (SEM). The result of the SEM test showed that the propolised powder form did not alter the morphology of maltodextrin. This indicates the success of microencapsulation, because the form of the coating agent maltodextrin was also not uniform.
Solvent exchange method: a novel microencapsulation technique using dual microdispensers.
Yeo, Yoon; Chen, Alvin U; Basaran, Osman A; Park, Kinam
2004-08-01
A new microencapsulation method called the "solvent exchange method" was developed using a dual microdispenser system. The objective of this research is to demonstrate the new method and understand how the microcapsule size is controlled by different instrumental parameters. The solvent exchange method was carried out using a dual microdispenser system consisting of two ink-jet nozzles. Reservoir-type microcapsules were generated by collision of microdrops of an aqueous and a polymer solution and subsequent formation of polymer films at the interface between the two solutions. The prepared microcapsules were characterized by microscopic methods. The ink-jet nozzles produced drops of different sizes with high accuracy according to orifice size of a nozzle, flow rate of the jetted solutions, and forcing frequency of the piezoelectric transducers. In an individual microcapsule, an aqueous core was surrounded by a thin polymer membrane; thus, the size of the collected microcapsules was equivalent to that of single drops. The solvent exchange method based on a dual microdispenser system produces reservoir-type microcapsules in a homogeneous and predictable manner. Given the unique geometry of the microcapsules and mildness of the encapsulation process, this method is expected to provide a useful alternative to existing techniques in protein microencapsulation.
Taguchi, Yoshinari; Ono, Fumiyasu; Tanaka, Masato
2013-01-01
We have tried to microencapsulate β-carotene with curdlan of a thermogelation type polysaccharide. Microcapsules were prepared by utilizing reverse dispersion, in which salada oil was the continuous phase (O’) and the curdlan water slurry (W) was the dispersed phase. β-carotene (O) as a core material was broken into fine oil droplets in the dispersed phase to form the (O/W) dispersion. The (O/W) dispersion was poured in the continuous phase (O’) and stirred to form the (O/W)/O’ dispersion at room temperature and then, temperature of the dispersion was raised to 80 °C to prepare curdlan-microcapusles containing β-carotene. In this microencapsulation process, the concentrations of curdlan and oil soluble surfactant and the impeller speed to form the (O/W)/O’ dispersion were mainly changed stepwise. We were able to prepare microcapsules by the microencapsulation method adopted here. The content of core material was increased with the curdlan concentration and decreased with the impeller speed and the oil soluble surfactant concentration. With the curdlan concentration, the drying rate of microcapsules was decreased and the retention ability for water was increased due to the stable preservation of β-carotene. PMID:24300565
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worley, C.M.
The objective of this research was to: (1) determine the nature of a thin coating on an explosive material which was applied using a starved addition microencapsulation technique, (2) understand the coating/crystal bond, and (3) investigate the wettability/adhesion of plastic/solvent combinations using the coating process. The coating used in this work was a Firestone Plastic Company copolymer (FPC-461) of vinylchloride/trifluorochloroethylene in a 1.5/1.0 weight ratio. The energetic explosive examined was pentaerythritoltetranitrate (PETN). The coating process used was starved addition followed by a solvent evaporation technique. Surface analytical studies, completed for characterization of the coating process, show (1) evidence that themore » polymer coating is present, but not continuous, over the surface of PETN; (2) the average thickness of the polymer coating is between 16-32 A and greater than 44 A, respectively, for 0.5 and 20 wt % coated PETN; (3) no changes in surface chemistry of the polymer or the explosive material following microencapsulation; and (4) the presence of explosive material on the surface of 0.5 wt % FPC-461 coated explosives. 5 refs., 15 figs., 6 tabs.« less
Phytoextraction of Pb and Cu contaminated soil with maize and microencapsulated EDTA.
Xie, Zhiyi; Wu, Longhua; Chen, Nengchang; Liu, Chengshuai; Zheng, Yuji; Xu, Shengguang; Li, Fangbai; Xu, Yanling
2012-09-01
Chelate-assisted phytoextraction using agricultural crops has been widely investigated as a remediation technique for soils contaminated with low mobility potentially toxic elements. Here, we report the use of a controlled-release microencapsulated EDTA (Cap-EDTA) by emulsion solvent evaporation to phytoremediate soil contaminated with Pb and Cu. Incubation experiments were carried out to assess the effect of Cap- and non-microencapsulated EDTA (Ncap-EDTA) on the mobility of soil metals. Results showed EDTA effectively increased the mobility of Pb and Cu in the soil solution and Cap-EDTA application provided lower and more constant water-soluble concentrations of Pb and Cu in comparison with. Phytotoxicity may be alleviated and plant uptake of Pb and Cu may be increased after the incorporation of Cap-EDTA. In addition phytoextraction efficiencies of maize after Cap- and Ncap-EDTA application were tested in a pot experiment. Maize shoot concentrations of Pb and Cu were lower with Cap-EDTA application than with Ncap-EDTA. However, shoot dry weight was significantly higher with Cap-EDTA application. Consequently, the Pb and Cu phytoextraction potential of maize significantly increased with Cap-EDTA application compared with the control and Ncap-EDTA application.
Lau, Hooi Hong; Murney, Regan; Yakovlev, Nikolai L; Novoselova, Marina V; Lim, Su Hui; Roy, Nicole; Singh, Harjinder; Sukhorukov, Gleb B; Haigh, Brendan; Kiryukhin, Maxim V
2017-11-01
The benefits of various functional foods are often negated by stomach digestion and poor targeting to the lower gastrointestinal tract. Layer-by-Layer assembled protein-tannic acid (TA) films are suggested as a prospective material for microencapsulation of food-derived bioactive compounds. Bovine serum albumin (BSA)-TA and pepsin-TA films demonstrate linear growth of 2.8±0.1 and 4.2±0.1nm per bi-layer, correspondingly, as shown by ellipsometry. Both multilayer films are stable in simulated gastric fluid but degrade in simulated intestinal fluid. Their corresponding degradation constants are 0.026±0.006 and 0.347±0.005nm -1 min -1 . Milk proteins possessing enhanced adhesion to human intestinal surface, Immunoglobulin G (IgG) and β-Lactoglobulin (BLG), are explored to tailor targeting function to BSA-TA multilayer film. BLG does not adsorb onto the multilayer while IgG is successfully incorporated. Microcapsules prepared from the multilayer demonstrate 2.7 and 6.3 times higher adhesion to Caco-2 cells when IgG is introduced as an intermediate and the terminal layer, correspondingly. This developed material has a great potential for oral delivery of numerous active food-derived ingredients. Copyright © 2017 Elsevier Inc. All rights reserved.
Saikia, Sangeeta; Mahnot, Nikhil Kumar; Mahanta, Charu Lata
2015-03-15
Optimised of the extraction of polyphenol from star fruit (Averrhoa carambola) pomace using response surface methodology was carried out. Two variables viz. temperature (°C) and ethanol concentration (%) with 5 levels (-1.414, -1, 0, +1 and +1.414) were used to design the optimisation model using central composite rotatable design where, -1.414 and +1.414 refer to axial values, -1 and +1 mean factorial points and 0 refers to centre point of the design. The two variables, temperature of 40°C and ethanol concentration of 65% were the optimised conditions for the response variables of total phenolic content, ferric reducing antioxidant capacity and 2,2-diphenyl-1-picrylhydrazyl scavenging activity. The reverse phase-high pressure liquid chromatography chromatogram of the polyphenol extract showed eight phenolic acids and ascorbic acid. The extract was then encapsulated with maltodextrin (⩽ DE 20) by spray and freeze drying methods at three different concentrations. Highest encapsulating efficiency was obtained in freeze dried encapsulates (78-97%). The obtained optimised model could be used for polyphenol extraction from star fruit pomace and microencapsulates can be incorporated in different food systems to enhance their antioxidant property. Copyright © 2014 Elsevier Ltd. All rights reserved.
2003-05-06
KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., works on an experiment found during the search for Columbia debris. Mike Casasanto, also with ITA, looks on. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
Micro-Encapsulation of non-aqueous solvents for energy-efficient carbon capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolaroff, Joshua K; Ye, Congwang; Oakdale, James
Here, we demonstrate micro-encapsulation of several promising designer solvents: an IL, PCIL, and CO2BOL. We develop custom polymers that cure by UV light in the presence of each solvent while maintaining high CO2 permeability. We use several new process strategies to accommodate the viscosity and phase changes. We then measure and compare the CO2 absorption rate and capacity as well as the multi-cycle performance of the encapsulated solvents. These results are compared with previous work on encapsulated sodium carbonate solution. The prospects for designer solvents to reduce the cost of post-combustion capture and the implications for process design with encapsulatedmore » solvents are discussed.« less
Natural polymers for the microencapsulation of cells
Gasperini, Luca; Mano, João F.; Reis, Rui L.
2014-01-01
The encapsulation of living mammalian cells within a semi-permeable hydrogel matrix is an attractive procedure for many biomedical and biotechnological applications, such as xenotransplantation, maintenance of stem cell phenotype and bioprinting of three-dimensional scaffolds for tissue engineering and regenerative medicine. In this review, we focus on naturally derived polymers that can form hydrogels under mild conditions and that are thus capable of entrapping cells within controlled volumes. Our emphasis will be on polysaccharides and proteins, including agarose, alginate, carrageenan, chitosan, gellan gum, hyaluronic acid, collagen, elastin, gelatin, fibrin and silk fibroin. We also discuss the technologies commonly employed to encapsulate cells in these hydrogels, with particular attention on microencapsulation. PMID:25232055
Appraisal of Space Words and Allocation of Emotion Words in Bodily Space
Marmolejo-Ramos, Fernando; Elosúa, María Rosa; Yamada, Yuki; Hamm, Nicholas Francis; Noguchi, Kimihiro
2013-01-01
The body-specificity hypothesis (BSH) predicts that right-handers and left-handers allocate positive and negative concepts differently on the horizontal plane, i.e., while left-handers allocate negative concepts on the right-hand side of their bodily space, right-handers allocate such concepts to the left-hand side. Similar research shows that people, in general, tend to allocate positive and negative concepts in upper and lower areas, respectively, in relation to the vertical plane. Further research shows a higher salience of the vertical plane over the horizontal plane in the performance of sensorimotor tasks. The aim of the paper is to examine whether there should be a dominance of the vertical plane over the horizontal plane, not only at a sensorimotor level but also at a conceptual level. In Experiment 1, various participants from diverse linguistic backgrounds were asked to rate the words “up”, “down”, “left”, and “right”. In Experiment 2, right-handed participants from two linguistic backgrounds were asked to allocate emotion words into a square grid divided into four boxes of equal areas. Results suggest that the vertical plane is more salient than the horizontal plane regarding the allocation of emotion words and positively-valenced words were placed in upper locations whereas negatively-valenced words were placed in lower locations. Together, the results lend support to the BSH while also suggesting a higher saliency of the vertical plane over the horizontal plane in the allocation of valenced words. PMID:24349112
NASA Astrophysics Data System (ADS)
Losa, Svetlana; Danilov, Sergey; Schröter, Jens; Nerger, Lars; Maßmann, Silvia; Janssen, Frank
2014-05-01
In order to improve the hydrography forecast of the North and Baltic Seas, the operational circulation model of the German Federal Maritime and Hydrographic Agency (BSH) has been augmented by a data assimilation (DA) system. The DA system has been developed based on the Singular Evolution Interpolated Kalman (SEIK) filter algorithm (Pham, 1998) coded within the Parallel Data Assimilation Framework (Nerger et al., 2004, Nerger and Hiller, 2012). Previously the only data assimilated were sea surface temperature (SST) measurements obtained with the Advanced Very High Resolution Radiometer (AVHRR) aboard NOAA's polar orbiting satellites. While the quality of the forecast has been significantly improved by assimilating the satellite data (Losa et al., 2012, Losa et al., 2014), assimilation of in situ observational temperature (T) and salinity (S) profiles has allowed for further improvement. Assimilating MARNET time series and CTD and Scanfish measurements, however, required a careful calibration of the DA system with respect to local analysis. The study addresses the problem of the local SEIK analysis accounting for the data within a certain radius. The localisation radius is considered spatially variable and dependent on the system local dynamics. As such, we define the radius of the data influence based on the energy ratio of the baroclinic and barotropic flows. D. T. Pham, J. Verron, L. Gourdeau, 1998. Singular evolutive Kalman filters for data assimilation in oceanography, C. R. Acad. Sci. Paris, Earth and Planetary Sciences, 326, 255-260. L. Nerger, W. Hiller, J. Schröter, 2004. PDAF - The Parallel Data Assimilation Framework: Experiences with Kalman Filtering, In: Zwieflhofer, W., Mozdzynski, G. (Eds.), Use of high performance computing in meteorology: proceedings of the Eleventh ECMWF Workshop on the Use of High Performance Computing in Meteorology. Singapore: World Scientific, Reading, UK, 63-83. L. Nerger, W. Hiller, 2012. Software for Ensemble-based Data Assimilation Systems —Implementation Strategies and Scalability, Computers and Geosciences, 55, 110-118. S. N. Losa, S. Danilov, J. Schröter, L. Nerger, S. Maßmann, F. Janssen, 2012. Assimilating NOAA SST data into the BSH operational circulation model for the North and Baltic Seas: Inference about the data. Journal of Marine Systems, 105-108, 152-162. S. N. Losa, S. Danilov, J. Schröter, L. Nerger, S. Maßmann, F. Janssen, 2014. Assimilating NOAA SST data into the BSH operational circulation model for the North and Baltic Seas: Part.2 Sensitivity of the forecast's skill to the prior model error statistics. Journal of Marine Systems, 129, 259-270.
NASA Astrophysics Data System (ADS)
Gurkov, Anton; Shchapova, Ekaterina; Bedulina, Daria; Baduev, Boris; Borvinskaya, Ekaterina; Meglinski, Igor; Timofeyev, Maxim
2016-11-01
Remote in vivo scanning of physiological parameters is a major trend in the development of new tools for the fields of medicine and animal physiology. For this purpose, a variety of implantable optical micro- and nanosensors have been designed for potential medical applications. At the same time, the important area of environmental sciences has been neglected in the development of techniques for remote physiological measurements. In the field of environmental monitoring and related research, there is a constant demand for new effective and quick techniques for the stress assessment of aquatic animals, and the development of proper methods for remote physiological measurements in vivo may significantly increase the precision and throughput of analyses in this field. In the present study, we apply pH-sensitive microencapsulated biomarkers to remotely monitor the pH of haemolymph in vivo in endemic amphipods from Lake Baikal, and we compare the suitability of this technique for stress assessment with that of common biochemical methods. For the first time, we demonstrate the possibility of remotely detecting a change in a physiological parameter in an aquatic organism under ecologically relevant stressful conditions and show the applicability of techniques using microencapsulated biomarkers for remote physiological measurements in environmental monitoring.
Yao, T-T; Wang, L-K; Cheng, J-L; Hu, Y-Z; Zhao, J-H; Zhu, G-N
2015-03-01
A new approach employing a combination of pyrethroid and repellent is proposed to improve the protective efficacy of conventional pyrethroid-treated fabrics against mosquito vectors. In this context, the insecticidal and repellent efficacies of commonly used pyrethroids and repellents were evaluated by cone tests and arm-in-cage tests against Stegomyia albopicta (=Aedes albopictus) (Diptera: Culicidae). At concentrations of LD50 (estimated for pyrethroid) or ED50 (estimated for repellent), respectively, the knock-down effects of the pyrethroids or repellents were further compared. The results obtained indicated that deltamethrin and DEET were relatively more effective and thus these were selected for further study. Synergistic interaction was observed between deltamethrin and DEET at the ratios of 5 : 1, 2 : 1, 1 : 1 and 1 : 2 (but not 1 : 5). An optimal mixing ratio of 7 : 5 was then microencapsulated and adhered to fabrics using a fixing agent. Fabrics impregnated by microencapsulated mixtures gained extended washing durability compared with those treated with a conventional dipping method. Results indicated that this approach represents a promising method for the future impregnation of bednet, curtain and combat uniform materials. © 2014 The Royal Entomological Society.
Release and Degradation of Microencapsulated Spinosad and Emamectin Benzoate.
Huang, Bin Bin; Zhang, Shao Fei; Chen, Peng Hao; Wu, Gang
2017-09-07
The dynamics of release and degradation of the microencapsulation formulation containing spinosad (SP) and emamectin benzoate (EM) were evaluated in the present study. SP and EM were microencapsulated using biodegradable poly-lactic acid (PLA) as the wall material. Their release from and degradation within the prepared SP and EM microspheres (SP-EM-microspheres) were studied. It was found that the encapsulation significantly prolonged the insecticide release. The release could be further extended if the external aqueous phase was pre-saturated with the insecticides and the microspheres were additionally coated with gelatin. On the other hand, increasing the water content of the emulsion or the hydrophilic polycaprolactone (PCL) content in the PLA/PCL mixture accelerated the release. Due to the photolysis and hydrolysis of SP and EM by sunlight, the toxicity of the non-encapsulated insecticides in water declined continuously from 0 through the 9 th day (d), and dissipated in 13 d. In contrast, an aqueous suspension containing 5% SP-EM-microspheres maintained a mostly constant toxicity to Plutella xylostella for 17 d. The biodegradable SP-EM-microspheres showed significantly higher long-term toxicity to P. xylostella due to lower release, reduced photolysis and hydrolysis of the encapsulated insecticides, which were affected by the varied preparation conditions.
Wang, Yichao; Li, Puwang; Truong-Dinh Tran, Thao; Zhang, Juan; Kong, Lingxue
2016-01-01
The evolution of polymer based nanoparticles as a drug delivery carrier via pharmaceutical nano/microencapsulation has greatly promoted the development of nano- and micro-medicine in the past few decades. Poly(lactide-co-glycolide) (PLGA) and chitosan, which are biodegradable and biocompatible polymers, have been approved by both the Food & Drug Administration (FDA) and European Medicine Agency (EMA), making them ideal biomaterials that can be advanced from laboratory development to clinical oral and parental administrations. PLGA and chitosan encapsulated nanoparticles (NPs) have successfully been developed as new oral drug delivery systems with demonstrated high efficacy. This review aims to provide a comprehensive overview of the fabrication of PLGA and chitosan particulate systems using nano/microencapsulation methods, the current progress and the future outlooks of the nanoparticulate drug delivery systems. Especially, we focus on the formulations and nano/micro-encapsulation techniques using top-down techniques. It also addresses how the different phases including the organic and aqueous ones in the emulsion system interact with each other and subsequently influence the properties of the drug delivery system. Besides, surface modification strategies which can effectively engineer intrinsic physicochemical properties are summarised. Finally, future perspectives and potential directions of PLGA and chitosan nano/microencapsulated drug systems are outlined. PMID:28344283
Carotenoids microencapsulation by spray drying method and supercritical micronization.
Janiszewska-Turak, Emilia
2017-09-01
Carotenoids are used as natural food colourants in the food industry. As unstable natural pigments they need protection. This protection can involve the microencapsulation process. There are numerous techniques that can be used for carotenoid protection, but two of them -spray drying and supercritical micronization - are currently the most commonly used. The objective of this paper is to describe these two techniques for carotenoid microencapsulation. In this review information from articles from the last five years was taken into consideration. Pigments described in the review are all carotenoids. Short summary of carotenoids sources was presented. For the spray drying technique, a review of carrier material and process conditions was made. Moreover, a short description of some of the most suitable processes involving supercritical fluids for carotenoids (astaxanthin, β-carotene, lutein and lycopene) encapsulation was given. These include the Supercritical Antisolvent process (SAS), Particles from Gas-Saturated Solutions (PGSS), Supercritical Fluid Extraction From an Emulsion (SFEE) and Solution Enhanced Dispersion by Supercritical fluids (SEDS). In most cases the studies, independently of the described method, were conducted on the laboratory scale. In some a scale-up was also tested. In the review a critical assessment of the used methods was made. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shin, Soojeong; Shin, Jeong Eun; Yoo, Young Je
2013-01-01
Although transplantation of microencapsulated islets has been proposed as a therapy for the treatment of diabetes mellitus, limited retrievability of the cells has impeded its medical usage. To achieve retrieval of microencapsulated islets, capsules were attached to polydimethylsiloxane (PDMS) with a biocompatible adhesive. Because the hydrophobic nature of the PDMS surface prevents attachment, surface modification is essential. Alginate microcapsules were attached to modified PDMS sheets, and the mechanical stability of the resulting constructs was determined. Acrylic acid (AA) and acrylamide (AM) mixtures were grafted on the surfaces of PDMS sheets using a two-step oxygen plasma treatment (TSPT). TSPT-PDMS was characterized according to water contact angle and zeta-potential measurements. The contact angle was altered by changing the ratio of AM to AA to generate hydrophilic surface. Evaluation of the surface charge at pH 2, 7, and 12 confirmed the presence of polar groups on the modified surface. Microcapsules were attached to TSPT-PDMS using Histoacryl® and shown to be in a monolayered and half-exposed state. The shear stress resistance of alginate capsules attached to the PDMS sheet indicates the possibility of transplantation of encapsulated cells without scattering in vivo. This method is applicable to retrieve microencapsulated porcine islets when required. © 2013 International Union of Biochemistry and Molecular Biology, Inc.
Huang, Haishui; Choi, Jung Kyu; Rao, Wei; Zhao, Shuting; Agarwal, Pranay; Zhao, Gang
2015-01-01
Cryopreservation of stem cells is important to meet their ever-increasing demand by the burgeoning cell-based medicine. The conventional slow freezing for stem cell cryopreservation suffers from inevitable cell injury associated with ice formation and the vitrification (i.e., no visible ice formation) approach is emerging as a new strategy for cell cryopreservation. A major challenge to cell vitrification is intracellular ice formation (IIF, a lethal event to cells) induced by devitrification (i.e., formation of visible ice in previously vitrified solution) during warming the vitrified cells at cryogenic temperature back to super-zero temperatures. Consequently, high and toxic concentrations of penetrating cryoprotectants (i.e., high CPAs, up to ~8 M) and/or limited sample volumes (up to ~2.5 μl) have been used to minimize IIF during vitrification. We reveal that alginate hydrogel microencapsulation can effectively inhibit devitrification during warming. Our data show that if ice formation were minimized during cooling, IIF is negligible in alginate hydrogel-microencapsulated cells during the entire cooling and warming procedure of vitrification. This enables vitrification of pluripotent and multipotent stem cells with up to ~4 times lower concentration of penetrating CPAs (up to 2 M, low CPA) in up to ~100 times larger sample volume (up to ~250 μl, large volume). PMID:26640426
Huang, Haishui; Choi, Jung Kyu; Rao, Wei; Zhao, Shuting; Agarwal, Pranay; Zhao, Gang; He, Xiaoming
2015-11-25
Cryopreservation of stem cells is important to meet their ever-increasing demand by the burgeoning cell-based medicine. The conventional slow freezing for stem cell cryopreservation suffers from inevitable cell injury associated with ice formation and the vitrification ( i.e. , no visible ice formation) approach is emerging as a new strategy for cell cryopreservation. A major challenge to cell vitrification is intracellular ice formation (IIF, a lethal event to cells) induced by devitrification ( i.e. , formation of visible ice in previously vitrified solution) during warming the vitrified cells at cryogenic temperature back to super-zero temperatures. Consequently, high and toxic concentrations of penetrating cryoprotectants ( i.e. , high CPAs, up to ~8 M) and/or limited sample volumes (up to ~2.5 μl) have been used to minimize IIF during vitrification. We reveal that alginate hydrogel microencapsulation can effectively inhibit devitrification during warming. Our data show that if ice formation were minimized during cooling, IIF is negligible in alginate hydrogel-microencapsulated cells during the entire cooling and warming procedure of vitrification. This enables vitrification of pluripotent and multipotent stem cells with up to ~4 times lower concentration of penetrating CPAs (up to 2 M, low CPA) in up to ~100 times larger sample volume (up to ~250 μl, large volume).
Nagachinta, Supakana; Akoh, Casimir C
2013-10-01
Human milk fat (HMF) analogs are structured lipids (SLs) modified to have palmitic acid content at the sn-2 position of the triacylglycerol (TAG) and fatty acid composition comparable to HMF. Some of these SLs are also designed to incorporate long-chain polyunsaturated fatty acids (LCPUFAs) because of their important role in infant development. In this study, Maillard reaction products (MRPs), obtained from heated whey protein isolates and corn syrup solids (CSS) solution, were used as encapsulants for microencapsulation of 2 enzymatically synthesized SLs for infant formula applications. The encapsulated SL powders were obtained through spray-drying and evaluated in terms of their microencapsulation efficiency, chemical and physical properties, oxidative stability, and dispersibility. The microencapsulation efficiency of the SLs was 90%. Dispersibility test using particle size measurement demonstrated that these powders dispersed quickly into a homogeneous suspension. The encapsulated SL powders had low peroxide and thiobarbituric acid-reactive substances values. Lower oxidative stability was obtained in the powder containing SL with a higher degree of unsaturation and a lower concentration of tocopherols. The results demonstrated that the degree of fatty acid unsaturation and concentration of endogenous antioxidant in starting oils influenced the oxidative stability of the encapsulated SLs. © 2013 Institute of Food Technologists®
Gansau, Jennifer; Kelly, Lara; Buckley, Conor
2018-06-11
Cell delivery and leakage during injection remains a challenge for cell-based intervertebral disc regeneration strategies. Cellular microencapsulation may offer a promising approach to overcome these limitations by providing a protective niche during intradiscal injection. Electrohydrodynamic spraying (EHDS) is a versatile one-step approach for microencapsulation of cells using a high voltage electric field. The primary objective of this work was to characterise key processing parameters such as applied voltage (0, 5, 10 or 15kV), emitter needle gauge (21, 26 or 30G), alginate concentration (1, 2 or 3%) and flow rate (50, 100, 250 or 500 µl/min) to regulate the morphology of alginate microcapsules and subsequent cell viability when altering these parameters. The effect of initial cell seeding density (5, 10 and 20x10<sup>6</sup> cells/ml) on subsequent matrix accumulation of microencapsulated articular chondrocytes was also evaluated. Results showed that increasing alginate concentration and thus viscosity increased overall microcapsule size but also affected the geometry towards ellipsoidal-shaped gels. Altering the electric field strength and needle diameter regulated microcapsule size towards a smaller diameter with increasing voltage and smaller needle diameter. Needle size did not appear to affect cell viability when operating with lower alginate concentrations (1% and 2%), although higher concentrations (3%) and thus higher viscosity hydrogels resulted in diminished viability with decreasing needle diameter. Increasing cell density resulted in decreased cell viability and a concomitant decrease in DNA content, perhaps due to competing nutrient demands as a result of more closely packed cells. However, higher cell densities resulted in increased levels of extracellular matrix accumulated. Overall, this work highlights the potential of EHDS as a controllable and versatile approach to fabricate microcapsules for injectable delivery which can be used in a variety of applications such as drug development or cell therapies. . © 2018 IOP Publishing Ltd.
Process and Material Design for Micro-Encapsulated Ionic Liquids in Post-Combustion CO 2 Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Bo; Brennecke, Joan F; McCready, Mark
Aprotic Heterocyclic Anion (AHA) Ionic Liquids (ILs) have been identified as promising new solvents for post-combustion carbon capture due to their high CO 2 uptake and the high tenability 1,2 of their binding energy with CO 2. Some of these compounds change phase (solid to liquid) on absorption of CO 2; these Phase Change ILs (PCILs)3 offer the additional advantage that part of the heat needed to desorb the CO2 from the absorbent is provided by the heat of fusion as the PCIL solidifies upon release of CO 2. However, the relatively high viscosity of AHA ILs and the occurrencemore » of a phase change in PCILs present challenges for conventional absorption equipment. To overcome these challenges we are pursuing the use of new technology to micro-encapsulate the AHA ILs and PCILs. Our partners at Lawrence Livermore National Laboratory have successfully demonstrated this technology in the application of post-combustion carbon capture with sodium and potassium carbonate solutions,4 and have recently shown the feasibility of micro-encapsulation of an AHA IL for carbon capture.5 The large effective surface area and high CO 2 permeability of the micro-capsules is expected to offset the drawback of the high IL viscosity and to provide for a more efficient and cost-effective mass transfer operation involving AHA ILs and PCILs. These opportunities, however, present us with both process and materials design questions. For example, what is the target CO 2 absorption strength (enthalpy of chemical absorption) for the tunable AHA IL? What is the target for micro-capsule diameter in order to obtain a high mass transfer rate and good fluidization performance? What are the appropriate temperatures and pressures for the absorber and stripper? In order to address these and other questions, we have developed a rate-based model of a post-combustion CO 2 capture process using micro-encapsulated ILs. As a performance baseline, we have also developed a rate-based model of a standard packed bed absorber using an un-encapsulated AHA IL absorbent. Using such models we can determine optimal CO 2 capture performance and investigate the sensitivity of the optimum with respect to the key thermo-physical and transport properties of the IL (e.g., CO 2 binding energy, viscosity, etc.) and the micro-capsules (e.g. diameter, CO 2 permeability, etc.). Results of these process and material design studies will be presented, and the performance of this novel micro-encapsulation technology will be assessed.« less
Qualls, Whitney A; Scott-Fiorenzano, Jodi; Müller, Gunter C; Arheart, Kristopher L; Beier, John C; Xue, Rui-De
2016-12-01
The project goal was to determine how a new vector control strategy that targets the sugar-feeding behavior of mosquitoes, attractive toxic sugar baits (ATSBs), can be used to more effectively control West Nile virus (WNV) vectors in the Coachella Valley, California. Three laboratory studies were conducted to determine the utility of this method for control against Culex quinquefasciatus and Culex tarsalis : 1) efficacy evaluations of 2 formulations of ATSB, microencapsulated garlic oil, and a combination of microencapsulated garlic oil and 1% boric acid; 2) choice assays to determine the attractiveness of ATSB with the microencapsulated garlic oil against attractive sugar baits (ASB; the attractant alone; without toxin) and a 10% sucrose solution; and 3) vegetation efficacy tests on 3 common plant species in the Coachella Valley, Atriplex lentiformis, Tamarix ramosissima , and Pluchea sericea. At 48 h the average mortality for Cx. quinquefasciatus was 91% after exposure to ATSB with microencapsulated garlic oil and 99% on ATSB garlic + 1% boric acid solution. Culex tarsalis averaged 86% and 91% mortality following the ATSB microencapsulated garlic oil solution and the ATSB garlic + 1% boric acid solution, respectively. Choice assays indicated that the there were differences in preferences between the solutions and between species. Both Cx. quinquefasciatus and Cx. tarsalis were found to prefer the ASB and ATSB solutions to the 10% sucrose solution. However, when comparing the ASB to ATSB, Cx. quinquefasciatus significantly preferred the ASB solution (t = 3.6, df = 25, P = 0.0008). There were no significant differences in the preference of Cx. tarsalis to feed on the ASB or ATSB solutions as indicated in the choice assays (t = 1.9, df = 25, P = 0.07). Assays indicated that applications of ATSB to the 3 common plants in the Coachella Valley resulted in high mortality in both Cx. quinquefasciatus and Cx. tarsalis. There were significant differences in the treatments compared to the control (F = 40.15, df 1,2 = 4,72, P < 0.001) but no significant differences among the different plants and ATSB treatments (F = 1.06, df 1,2 = 4,72, P = 0.38). Laboratory findings suggest that ATSB is effective for use against WNV vectors in California. Further evaluations are needed in the field to determine how the environment may impact ATSB applications to influence mosquito mortality and nontarget organisms in arid environments in the United States.
NASA Astrophysics Data System (ADS)
Liu, Ai-Ping; Liu, Min; Yu, Jian-Can; Qian, Guo-Dong; Tang, Wei-Hua
2015-05-01
Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51272237, 51272231, and 51010002) and the China Postdoctoral Science Foundation (Grant Nos. 2012M520063, 2013T60587, and Bsh1201016).
Del Guerra, S; Bracci, C; Nilsson, K; Belcourt, A; Kessler, L; Lupi, R; Marselli, L; De Vos, P; Marchetti, P
2001-12-20
Immunoprotection of pancreatic islets for successful allo- or xenotransplantation without chronic immunosuppression is an attractive, but still elusive, approach for curing type 1 diabetes. It was recently shown that, even in the absence of fibrotic overgrowth, other factors, mainly insufficient nutrition to the core of the islets, represent a major barrier for long-term survival of intraperitoneal microencapsulated islet grafts. The use of dispersed cells might contribute to solve this problem due to the conceivably easier nutritional support to the cells. In the present study, purified bovine islets, prepared by collagenase digestion and density gradient purification, and dispersed bovine islet cells, obtained by trypsin and DNAsi (viability > 90%), were entrapped into either 2% (w/v) sodium alginate (commonly used for encapsulation purposes) or (dispersed islet cells only) macroporous gelatin microcarriers (CulthiSpher-S, commonly used for the production of biologicals by animal cells). Insulin release studies in response to glucose were performed within 1 week and after 1 month from preparation of the varying systems and showed no capability of dispersed bovine islet cells within sodium alginate microcapsules to sense glucose concentration changes. On the contrary, bovine islet cells entrapped in CulthiSpher-S microcarriers showed maintained capacity of increasing insulin secretion upon enhanced glucose concentration challenge. In this case, insulin release was approximately 60% of that from intact bovine islets within sodium alginate microcapsules. MTT and hematoxylineosin staining of islet cell-containing microcarriers showed the presence of viable and metabolically active cells throughout the study period. This encouraging functional data prompted us to test whether the microcarriers could be immunoisolated for potential use in transplantation. The microcarriers were embedded within 3% sodium alginate, which was then covered with a poly-L-lysine layer and a final outer alginate layer. Maintained insulin secretion function of this system was observed, which raises the possibility of using microencapsulated CulthiSpher-S microcarriers, containing dispersed pancreatic islet cells, in experimental transplantation studies. Copyright 2001 John Wiley & Sons, Inc.
2003-05-07
KENNEDY SPACE CENTER, FLA. - Dr. Dennis Morrison, NASA Johnson Space Center, processes one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
2003-05-07
KENNEDY SPACE CENTER, FLA. - The crystals visible in this laboratory dish were part of an experiment carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
2003-05-06
KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., and Bob McLean, from the Southwest Texas State University, work on an experiment found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
2003-05-07
KENNEDY SPACE CENTER, FLA. - Valerie Cassanto (foreground), Instrumentation Technology Associates, Inc., examines one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
2003-05-07
KENNEDY SPACE CENTER, FLA. - Dr. Dennis Morrison, NASA Johnson Space Center, works with one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
Kadam, A. U.; Sakarkar, D. M.; Kawtikwar, P. S.
2008-01-01
An oral controlled release suspension of chlorpheniramine maleate was prepared using ion-exchange resin technology. A strong cation exchange resin Indion 244 was utilized for the sorption of the drug and the drug resinates was evaluated for various physical and chemical parameters. The drug-resinate complex was microencapsulated with a polymer Eudragit RS 100 to further retard the release characteristics. Both the drug-resinate complex and microencapsulated drug resinate were suspended in a palatable aqueous suspension base and were evaluated for controlled release characteristic. Stability study indicated that elevated temperature did not alter the sustained release nature of the dosage form indicating that polymer membrane surrounding the core material remained intact throughout the storage period. PMID:20046790
UN TRISO Compaction in SiC for FCM Fuel Irradiations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrani, Kurt A.; Trammell, Michael P.; Kiggans, James O.
2016-11-01
The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC) is conducting research and development to elevate the technology readiness level of Fully Ceramic Microencapsulated (FCM) fuels, a candidate nuclear fuel with potentially enhanced accident tolerance due to very high fission product retention. One of the early activities in FY17 was to demonstrate production of FCM pellets with uranium nitride TRISO particles. This was carried out in preparation of the larger pellet production campaign in support of the upcoming irradiation testing of this fuel form at INL’s Advanced Test Reactor.
NASA Technical Reports Server (NTRS)
1995-01-01
The seventh day of the STS-70 Space Shuttle Discovery mission is featured on this video. The astronauts obtained a successful alignment of the Hercules geo-locating camera and evaluated the manual setup procedures for the rotating wall Bioreactor. Specialist Don Thomas activated and deactivated the Microencapsulation in Space experiment, using a device that produces a timed-release of an antibiotic medication in a weightlessness environment. The Discovery crew begins to wrap up their experiments after a week of gathering data, ranging from observations of Earth's surface and atmosphere to biological studies. There are several minutes of Shuttle observations of Earth included.
Baldin, Juliana C; Munekata, Paulo E S; Michelin, Euder C; Polizer, Yana J; Silva, Poliana M; Canan, Thais M; Pires, Manoela A; Godoy, Silvia H S; Fávaro-Trindade, Carmen S; Lima, Cesar G; Fernandes, Andrezza M; Trindade, Marco A
2018-06-01
The aim of the present study was to add microencapsulated Jabuticaba aqueous extract (MJE) to mortadella as a natural dye and to evaluate its possible antioxidant and antimicrobial activity during refrigeration. Anthocyanins in the extract were quantified and identified. Three treatments of mortadella were prepared: without dye (Control), with cochineal carmine (Carmine) and with the addition of 2% MJE. We determined the chemical composition of mortadella, along with pH, instrumental color, lipid oxidation, microbiological characteristics (Escherichia coli, Staphylococcus aureus, Salmonella, sulphite-reducing Clostridium, aerobic mesophiles, aerobic psychrotrophics and lactic acid bacteria) and sensory acceptance during storage at 4 °C for 56 days. MJE showed high content of anthocyanins, with prevalence of cyanidin-3-glucoside. MJE improved sensory acceptance of texture and flavor of mortadella (P < 0.05), but we observed a slight decrease in color and aroma attributes (P < 0.05). Lipid oxidation of mortadella was not influenced by MJE or cochineal carmine. MJE also displayed a minor effect on physicochemical and microbiological characteristics during storage. As MJE did not alter most of mortadella sausage's evaluated characteristics, it could be used as a natural dye in order to make better use of agro industry waste and to create a meat product enriched with natural antioxidants. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kamperman, Tom; Henke, Sieger; Visser, Claas Willem; Karperien, Marcel; Leijten, Jeroen
2017-06-01
Single-cell-laden microgels support physiological 3D culture conditions while enabling straightforward handling and high-resolution readouts of individual cells. However, their widespread adoption for long-term cultures is limited by cell escape. In this work, it is demonstrated that cell escape is predisposed to off-center encapsulated cells. High-speed microscopy reveals that cells are positioned at the microgel precursor droplets' oil/water interface within milliseconds after droplet formation. In conventional microencapsulation strategies, the droplets are typically gelled immediately after emulsification, which traps cells in this off-center position. By delaying crosslinking, driving cells toward the centers of microgels is succeeded. The centering of cells in enzymatically crosslinked microgels prevents their escape during at least 28 d. It thereby uniquely enables the long-term culture of individual cells within <5-µm-thick 3D uniform hydrogel coatings. Single cell analysis of mesenchymal stem cells in enzymatically crosslinked microgels reveals unprecedented high cell viability (>90%), maintained metabolic activity (>70%), and multilineage differentiation capacity (>60%) over a period of 28 d. The facile nature of this microfluidic cell-centering method enables its straightforward integration into many microencapsulation strategies and significantly enhances control, reproducibility, and reliability of 3D single cell cultures. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rogers, John A.; Bao, Zhenan; Baldwin, Kirk; Dodabalapur, Ananth; Crone, Brian; Raju, V. R.; Kuck, Valerie; Katz, Howard; Amundson, Karl; Ewing, Jay; Drzaic, Paul
2001-01-01
Electronic systems that use rugged lightweight plastics potentially offer attractive characteristics (low-cost processing, mechanical flexibility, large area coverage, etc.) that are not easily achieved with established silicon technologies. This paper summarizes work that demonstrates many of these characteristics in a realistic system: organic active matrix backplane circuits (256 transistors) for large (≈5 × 5-inch) mechanically flexible sheets of electronic paper, an emerging type of display. The success of this effort relies on new or improved processing techniques and materials for plastic electronics, including methods for (i) rubber stamping (microcontact printing) high-resolution (≈1 μm) circuits with low levels of defects and good registration over large areas, (ii) achieving low leakage with thin dielectrics deposited onto surfaces with relief, (iii) constructing high-performance organic transistors with bottom contact geometries, (iv) encapsulating these transistors, (v) depositing, in a repeatable way, organic semiconductors with uniform electrical characteristics over large areas, and (vi) low-temperature (≈100°C) annealing to increase the on/off ratios of the transistors and to improve the uniformity of their characteristics. The sophistication and flexibility of the patterning procedures, high level of integration on plastic substrates, large area coverage, and good performance of the transistors are all important features of this work. We successfully integrate these circuits with microencapsulated electrophoretic “inks” to form sheets of electronic paper. PMID:11320233
Sah, H
1999-01-01
The objective of this study was to investigate the behavior of three proteins at an organic solvent/water interface. To simulate the first microencapsulation step of a water-in-oil-in-water emulsion technique, a water-in-oil emulsion was prepared by emulsifying an aqueous protein solution in either methylene chloride or ethyl acetate. Phase separation was then followed to collect protein samples from the aqueous phase and the organic solvent/water interface. Their properties were assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size exclusion-HPLC. Bovine serum albumin was relatively unharmed during emulsification, compared to other proteins such as ovalbumin and lysozyme. In particular, the methylene chloride treatment on ovalbumin led to the formation of a large quantity of water-insoluble, solid-like aggregates and changes in the composition of monomeric and dimeric ovalbumin species. With regard to the question of ovalbumin recovery, only 9.74 approximately 37.72% of the used ovalbumin was present in the aqueous phases after emulsification. Similar penchant was noted with lysozyme. Water-insoluble aggregates brought with by emulsification were found to be covalently bound. Interestingly, less emulsification-induced denaturing effects were observed with ethyl acetate. Our study clearly demonstrated the emulsification-induced adverse events that were detrimental to the integrity of proteins and the importance of preserving protein stability toward microencapsulation.
Estrada, Marta F; Rebelo, Sofia P; Davies, Emma J; Pinto, Marta T; Pereira, Hugo; Santo, Vítor E; Smalley, Matthew J; Barry, Simon T; Gualda, Emilio J; Alves, Paula M; Anderson, Elizabeth; Brito, Catarina
2016-02-01
3D cell tumour models are generated mainly in non-scalable culture systems, using bioactive scaffolds. Many of these models fail to reflect the complex tumour microenvironment and do not allow long-term monitoring of tumour progression. To overcome these limitations, we have combined alginate microencapsulation with agitation-based culture systems, to recapitulate and monitor key aspects of the tumour microenvironment and disease progression. Aggregates of MCF-7 breast cancer cells were microencapsulated in alginate, either alone or in combination with human fibroblasts, then cultured for 15 days. In co-cultures, the fibroblasts arranged themselves around the tumour aggregates creating distinct epithelial and stromal compartments. The presence of fibroblasts resulted in secretion of pro-inflammatory cytokines and deposition of collagen in the stromal compartment. Tumour cells established cell-cell contacts and polarised around small lumina in the interior of the aggregates. Over the culture period, there was a reduction in oestrogen receptor and membranous E-cadherin alongside loss of cell polarity, increased collective cell migration and enhanced angiogenic potential in co-cultures. These phenotypic alterations, typical of advanced stages of cancer, were not observed in the mono-cultures of MCF-7 cells. The proposed model system constitutes a new tool to study tumour-stroma crosstalk, disease progression and drug resistance mechanisms. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sunderland, Tara; Kelly, John G; Ramtoola, Zebunnissa
2015-04-01
The aim of this study was to evaluate a novel 3-fluid concentric nozzle (3-N) spray drying process for the microencapsulation of omeprazole sodium (OME) using Eudragit L100 (EL100). Feed solutions containing OME and/or EL100 in ethanol were assessed visually for OME stability. Addition of OME solution to EL100 solution resulted in precipitation of OME followed by degradation of OME reflected by a colour change from colourless to purple and brown. This was related to the low pH of 2.8 of the EL100 solution at which OME is unstable. Precipitation and progressive discoloration of the 2-fluid nozzle (2-N) feed solution was observed over the spray drying time course. In contrast, 3-N solutions of EL100 or OME in ethanol were stable over the spray drying period. Microparticles prepared using either nozzle showed similar characteristics and outer morphology however the internal morphology was different. DSC showed a homogenous matrix of drug and polymer for 2-N microparticles while 3-N microparticles had defined drug and polymer regions distributed as core and coat. The results of this study demonstrate that the novel 3-N spray drying process can allow the microencapsulation of a drug using an incompatible polymer and maintain the drug and polymer in separate regions of the microparticles.
A Multifunctional Coating for Autonomous Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.
2011-01-01
Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.
Mooranian, Armin; Negrulj, Rebecca; Al-Salami, Hani
2016-05-01
The encapsulation of pancreatic β-cells in biocompatible matrix has generated great interest in diabetes treatment. Our work has shown improved microcapsules when incorporating the bile acid ursodeoxycholic acid (UDCA), in terms of morphology and cell viability although cell survival remained low. Thus, the study aimed at incorporating the polyelectrolytes polyallylamine (PAA) and poly-l-ornithine (PLO), with the polymer sodium alginate (SA) and the hydrogel ultrasonic gel (USG) with UDCA and examined cell viability and functionality post microencapsulation. Microcapsules without (control) and with UDCA (test) were produced using 1% PLO, 2.5% PAA, 1.8% SA and 4.5% USG. Pancreatic β-cells were microencapsulated and the microcapsules' morphology, surface components, cellular and bile acid distribution, osmotic and mechanical stability as well as biocompatibilities, insulin production, bioenergetics and the inflammatory response were tested. Incorporation of UDCA at 4% into a PLO-PAA-SA formulation system increased cell survival (p < 0.01), insulin production (p < 0.01), reduced the inflammatory profile (TNF-α, IFN-ϒ, IL-6 and IL-1β; p < 0.01) and improved the microcapsule physical and mechanical strength (p < 0.01). β-cell microencapsulation using 1% PLO, 2.5% PAA, 1.8% SA, 4.5% USG and the bile acid UDCA (4%) has good potential in cell transplantation and diabetes treatment.
Budryn, G; Zaczyńska, D; Żyżelewicz, D; Grzelczyk, J; Zduńczyk, Z; Juśkiewicz, J
2017-06-01
Green coffee is one of health-promoting supplements of the diet, applied in the form of either preparations or enriched food products. Its positive impact is manifested by mitigation of the development of certain tumors, e.g., in the colon and liver, and type 2 diabetes. Many studies proved that chlorogenic acids are the main active substances in green coffee. The bioavailability of these compounds depends among others on their interactions with other components of the diet, mainly proteins. When they are used as food ingredients, their bioavailability is additionally decreased because of the decomposition or interactions with other ingredients during food processing. The undesirable changes may be limited among others by microencapsulation, for example with β-cyclodextrin. In this study, rats were fed the pro-oxidative high fat diet, which was supplemented with chlorogenic acids from green coffee that were used in four forms such as: a purified extract, complexes of chlorogenic acids and β-cyclodextrin, and bread supplemented with either the extract or the β-cyclodextrin inclusion complex. Chlorogenic acids added to bread because of the reduced absorption from the crumb in the small intestine and increased passage to the colon, contributed to the beneficial modification of enzymatic activities of intestinal microbiota. When added directly to the diet, they contributed to the improved antioxidant status in the liver and kidneys, lowered glucose level and increased HDL level. A high ratio of reduced to oxidized glutathione in the liver and a high concentration of antioxidants in the blood serum were observed after administration of chlorogenic acids in the form of inclusion complexes with β-cyclodextrin, indicating that microencapsulation increased their bioaccessibility due to the limited interactions with other components of the diet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lloyd-George, I.; Chang, T.M.S.
1995-12-20
The whole cell tyrosine phenol-lyase activity of Erwinia herbicola was microencapsulated. The authors studied the use of this for the conversion of ammonia and pyruvate along with phenol or catechol, respectively, into L-tyrosine or dihydroxyphenyl-L-alanine (L-dopa). The reactions are relevant to the development of new methods for the production of L-tyrosine and L-dopa. The growth of E. herbicola at temperatures from 22 C to 32 C is stable, since at these temperatures the cells grow up to the stationary phase and remain there for at least 10 h. At 37 C the cells grow rapidly, but they also enter themore » death phase rapidly. There is only limited growth of E. herbicola at 42 C. Whole cells of E. herbicola were encapsulated within alginate-polylysine-alginate microcapsules (916 {+-} 100 {micro}m, mean {+-} std. dev.). The TPL activity of the cells catalyzed the production of L-tyrosine or dihydroxyphenol-L-alanine (L-dopa) from ammonia, pyruvate, and phenol or catechol, respectively. In the production of tyrosine, an integrated equation based on an ordered ter-uni rapid equilibrium mechanism can be used to find the kinetic parameters of TPL. In an adequately stirred system, the apparent values of the kinetic parameters of whole cell TPL are equal whether the cells are free or encapsulated. The apparent K{sub M} of tyrosine varies with the amount of whole cells in the system, ranging from 0.2 to 0.3 mM. The apparent K{sub M} for phenol is 0.5 mM. The apparent K{sub M} values for pyruvate and ammonia are an order of magnitude greater for whole cells than they are for the cell free enzyme.« less
Díaz, Dafne I; Beristain, Cesar I; Azuara, Ebner; Luna, Guadalupe; Jimenez, Maribel
2015-01-01
Blackberry (Rubus fruticosus) juice possesses compounds with antioxidant activity, which can be protected by different biopolymers used in the microencapsulation. Therefore, the effects of cell wall material including maltodextrin (MD), Arabic gum (GA) and whey protein concentrate (WPC) were evaluated on the physicochemical and antioxidant properties of encapsulated blackberries using a spray-drying technique. Anthocyanin concentration, polymeric colour, total polyphenols, radical scavenging activity of the 1,1-diphenyl-2-picrilhydrazil radical, reducing power and the stability at different storage conditions were evaluated. GA and MD conferred a similar protection to the antioxidant compounds when the microcapsules were stored at low water activities (aw < 0.515) in contrast to at a high moisture content (aw > 0.902), whereas WPC presented a high protection. Therefore, the selection of the best wall material for blackberry juice encapsulation depends of the conditions of storage of the powder.
2003-05-06
KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., examines closely the container containing one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
2003-05-06
KENNEDY SPACE CENTER, FLA. - The apparatus shown was designed to hold microcapsules for research on mission STS-107. It is one over several included in the Commercial ITA Biomedical Experiments payload. The box was recently recovered during the search for Columbia debris. The drug delivery system and spaceflight hardware was developed jointly by JSC, the Institute for Research Inc. and Instrumentation Technology Associates Inc. to conduct microencapsulation experiments under microgravity conditions.
Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection
NASA Technical Reports Server (NTRS)
Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.
2015-01-01
This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.
Ofloxacin induces apoptosis via β1 integrin-EGFR-Rac1-Nox2 pathway in microencapsulated chondrocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Zhi-Guo; Huang, Wei; Liu, Yu-Xiang
2013-02-15
Quinolones (QNs)-induced arthropathy is an important toxic side-effect in immature animals leading to the restriction of their therapeutic use in pediatrics. Ofloxacin, a typical QN, was found to induce the chondrocytes apoptosis in the early phase (12–48 h) of arthropathy in our previous study. However, the exact mechanism(s) is unclear. Microencapsulated juvenile rabbit joint chondrocytes, a three-dimensional culture system, is utilized to perform the present study. Ofloxacin, at a therapeutically relevant concentration (10 μg/ml), disturbs the interaction between β1 integrin and activated intracellular signaling proteins at 12 h, which is inhibited when supplementing Mg{sup 2+}. Intracellular reactive oxygen species (ROS)more » significantly increases in a time-dependent manner after exposure to ofloxacin for 12–48 h. Furthermore, ofloxacin markedly enhances the level of activated Rac1 and epidermal growth factor receptor (EGFR) phosphorylation, and its inhibition in turn reduces the ROS production, apoptosis and Rac1 activation. Silencing Nox2, Rac1 or supplementing Mg{sup 2+} inhibits ROS accumulation, apoptosis occurrence and EGFR phosphorylation induced by ofloxacin. However, depletion of Nox2, Rac1 and inhibition of EGFR do not affect ofloxacin-mediated loss of interaction between β1 integrin and activated intracellular signaling proteins. In addition, ofloxacin also induces Vav2 phosphorylation, which is markedly suppressed after inactivating EGFR or supplementing Mg{sup 2+}. These results suggest that ofloxacin causes Nox2-mediated intracellular ROS production by disrupting the β1 integrin function and then activating the EGFR-Vav2-Rac1 pathway, finally resulting in apoptosis within 12–48 h exposure. The present study provides a novel insight regarding the potential role of Nox-driven ROS in QNs-induced arthropathy. - Highlights: ► Ofloxacin induces Nox2-driven ROS in encapsulated chondrocyte at 12–48 h. ► Ofloxacin stimulates ROS production via the β1 integrin-EGFR-Vav2-Rac1 pathway. ► Ofloxacin induces ROS-dependent apoptosis in encapsulated chondrocyte at 12–48 h.« less
Probiotic Potential of Lactobacillus Strains with Antifungal Activity Isolated from Animal Manure.
Ilavenil, Soundharrajan; Park, Hyung Soo; Vijayakumar, Mayakrishnan; Arasu, Mariadhas Valan; Kim, Da Hye; Ravikumar, Sivanesan; Choi, Ki Choon
2015-01-01
The aim of the study was to isolate and characterize the lactic acid bacteria (LAB) from animal manure. Among the thirty LAB strains, four strains, namely, KCC-25, KCC-26, KCC-27, and KCC-28, showed good cell growth and antifungal activity and were selected for further characterization. Biochemical and physiology properties of strains confirmed that the strains are related to the Lactobacillus sp.; further, the 16S rRNA sequencing confirmed 99.99% sequence similarity towards Lactobacillus plantarum. The strains exhibited susceptibility against commonly used antibiotics with negative hemolytic property. Strains KCC-25, KCC-26, KCC-27, and KCC-28 showed strong antifungal activity against Aspergillus fumigatus, Penicillium chrysogenum, Penicillium roqueforti, Botrytis elliptica, and Fusarium oxysporum, respectively. Fermentation studies noted that the strains were able to produce significant amount of lactic, acetic, and succinic acids. Further, the production of extracellular proteolytic and glycolytic enzymes, survival under low pH, bile salts, and gastric juice together with positive bile salt hydrolase (Bsh) activity, cholesterol lowering, cell surface hydrophobicity, and aggregation properties were the strains advantages. Thus, KCC-25, KCC-26, KCC-27, and KCC-28 could have the survival ability in the harsh condition of the digestive system in the gastrointestinal tract. In conclusion, novel L. plantarum KCC-25, KCC-26, KCC-27, and KCC-28 could be considered as potential antimicrobial probiotic strains.
Junnila, Amy; Revay, Edita E.; Müller, Gunter C.; Kravchenko, Vasiliy; Qualls, Whitney A.; Xue, Rui-de; Allen, Sandra A.; Beier, John C.; Schlein, Yosef
2016-01-01
We tested the efficacy of attractive toxic sugar bait (ATSB) with garlic oil microencapsulated in beta-cyclodextrin as active ingredient against Aedes albopictus in suburban Haifa, Israel. Two three-acre gardens with high numbers of Ae. albopictus were selected for perimeter spray treatment with ATSB and ASB (bait containing no active ingredient). Baits were colored with food dye to verify feeding of the mosquitoes. The mosquito population was monitored by human landing catches and sweep net catches in the surrounding vegetation. Experiments lasted for 44 days. Treatment occurred on day 13. The mosquito population collapsed about 4 days after treatment and continued to drop steadily for 27 days until the end of the study. At the experimental site the average pre-treatment landing rate was 17.2 per 5 mins. Two days post-treatment, the landing rate dropped to 11.4, and continued to drop to an average of 2.6 during the following 26 days. During the same period, the control population was stable. Few sugar fed females (8–10%) approached a human bait and anthrone tests showed relatively small amounts of sugar within their crop/gut. Around 60–70 % of males caught near our human bait were sugar positive which may indicate that the males were feeding on sugar for mating related behavior. From the vegetation treated with the toxic bait, we recovered significantly fewer (about 10–14%) males and females stained by ATSB than at the ASB-treated control. This may indicate that the toxic baits alter the resting behavior of the poisoned mosquitoes within the vegetation. Almost no Ae. albopictus females (5.2 ± 1.4) approached human bait after treatment with ATSB. It therefore appears that microencapsulated garlic oil is an effective pesticide against Ae. albopictus when used in an ATSB system. PMID:26403337
Technical product bulletin: aka OIL SOLUTIONS POWDER, SPILL GREEN LS, this miscellaneous oil spill control agent used in cleanups initially behaves like a synthetic sorbent, then as a solidifier as the molecular microencapsulating process occurs.
2003-05-07
KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, Instrumentation Technology Associates, Inc., studies one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.
2003-05-07
KENNEDY SPACE CENTER, FLA. - From left, Bob McLean, Southwest Texas State University, and Valerie Cassanto, Instrumentation Technology Associates, Inc., study one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
2003-05-07
KENNEDY SPACE CENTER, FLA. - From left, Valerie Cassanto, Instrumentation Technology Associates, Inc., and Dr. Dennis Morrison, NASA Johnson Space Center, analyze one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
Microencapsulation of gallium-indium (Ga-In) liquid metal for self-healing applications.
Blaiszik, B J; Jones, A R; Sottos, N R; White, S R
2014-01-01
Microcapsules containing a liquid metal alloy core of gallium-indium (Ga-In) are prepared via in situ urea-formaldehyde (UF) microencapsulation. The capsule size, shape, thermal properties, and shell wall thickness are investigated. We prepare ellipsoidal capsules with major and minor diameter aspect ratios ranging from 1.64 to 1.08 and with major diameters ranging from 245 µm to 3 µm. We observe that as the capsule major diameter decreases, the aspect ratio approaches 1. The thermal properties of the prepared microcapsules are investigated by thermogravimetric (TGA) and differential scanning calorimetry (DSC). Microcapsules are shown to survive incorporation into an epoxy matrix and to trigger via mechanical damage to the cured matrix. Microcapsules containing liquid metal cores may have diverse applications ranging from self-healing to contrast enhancement or the demonstration of mechano-adaptive circuitry.
Research Advances of Microencapsulation and Its Prospects in the Petroleum Industry
Hu, Miaomiao; Guo, Jintang; Yu, Yongjin; Cao, Lei; Xu, Yang
2017-01-01
Additives in the petroleum industry have helped form an efficient system in the past few decades. Nowadays, the development of oil and gas has been facing more adverse conditions, and smart response microcapsules with the abilities of self-healing, and delayed and targeted release are introduced to eliminate obstacles for further exploration in the petroleum industry. However, limited information is available, only that of field measurement data, and not mechanism theory and structural innovation data. Thus we propose that the basic type, preparation, as well as mechanism of microcapsules partly depend on other mature fields. In this review, we explore the latest advancements in evaluating microcapsules, such as X-ray computed tomography (XCT), simulation, and modeling. Finally, some novel microencapsulated additives with unparalleled advantages, such as flexibility, efficiency, and energy-conservation are described. PMID:28772728
Challenges and solutions to incorporation of nutraceuticals in foods.
Augustin, Mary Ann; Sanguansri, Luz
2015-01-01
Manufacturers often cannot simply add a nutraceutical to a food when formulating functional foods that have acceptable sensory appeal as well as the desired health benefits. The appropriate application of microencapsulation for stabilizing nutraceuticals enables their effective delivery through food. Careful design of the delivery system helps protect sensitive nutraceuticals from the environment and processing stresses encountered during food manufacture, and prevents undesirable interactions of the nutraceutical with components in the food matrix. Microencapsulation technologies overcome hurdles associated with the successful delivery of nutraceuticals in healthy foods if due consideration is given to challenges at all stages throughout the supply chain. This encompasses stabilizing and protecting nutraceuticals from degradation in ingredient formats, during processing, in the final food product, and during intestinal transit until they are released at the desired site in the gastrointestinal tract to impart their targeted health effects.
Dirksen, A; Rasmussen, S N; Manthorpe, R
1982-01-01
In an investigator-blind crossover study, fecal blood loss determined by 51Cr-labelled red cells was measured in 17 male patients with rheumatoid arthritis and one with anchylosing spondylitis. In two periods, each of one week's duration and separated by a 3-week wash-out period, the patients received microencapsulated acetylsalicylic acid (ASA) 3 g daily--either iwht time-dependent (Acetard) or with pH-depeendent release (Reumyl). With the exception of one patient, who suffered clinically significant bleeding, both preparations produced only moderate bleeding. The bleeding provoked by ASA with pH-dependent release (median blood loss in ml/day: first period 1.6; last period 2.6) was less than with time-dependent release (first period 1.8; last period 3.5).
Thermodynamic assessment of microencapsulated sodium carbonate slurry for carbon capture
Stolaroff, Joshuah K.; Bourcier, William L.
2014-01-01
Micro-encapsulated Carbon Sorbents (MECS) are a new class of carbon capture materials consisting of a CO₂- absorbing liquid solvent contained within solid, CO₂-permeable, polymer shells. MECS enhance the rate of CO₂ absorption for solvents with slow kinetics and prevent solid precipitates from scaling and fouling equipment, two factors that have previously limited the use of sodium carbonate solution for carbon capture. Here, we examine the thermodynamics of sodium carbonate slurries for carbon capture. We model the vapour-liquid-solid equilibria of sodium carbonate and find several features that can contribute to an energy-efficient capture process: very high CO₂ pressures in stripping conditions,more » relatively low water vapour pressures in stripping conditions, and good swing capacity. The potential energy savings compared with an MEA system are discussed.« less
Double-blind randomized controlled trial of rolls fortified with microencapsulated iron.
Barbosa, Teresa Negreira Navarro; Taddei, José Augusto de Aguiar Carrazedo; Palma, Domingos; Ancona-Lopez, Fábio; Braga, Josefina Aparecida Pellegrini
2012-01-01
To evaluate the impact of the fortification of rolls with microencapsulated iron sulfate with sodium alginate on the hemoglobin levels in preschoolers as compared to controls. Double-blind randomized controlled trial comprised of children aged 2 to 6 years with initial hemoglobin exceeding 9 g/dL from four not-for-profit daycares randomly selected in the city of São Paulo - Brazil. Children of 2 daycares (n = 88) received rolls with fortified wheat flour as the exposed group (EC) and children of 2 daycares (n = 85) received rolls without fortification as the control group (CG) over a 24-week period. Rolls with 4 mg iron each were offered once a day, five days a week. Hemoglobin concentrations were determined in capillary blood by HemoCue® at three moments of trial: baseline (Ml), after 12 and 24 weeks of intervention (M2, M3). Hemoglobin concentration presented significant increase up to M3 in EG (11.7-12.5-12.6 g/dL) and in CG (11.1-12.4-12.3 g/dL) with higher elevations in children initially with anemia. There was significant reduction in the occurrence of anemia from 22% to 9% in EG and from 47% to 8.2% in CG at M3. Rolls fortified with microencapsulated iron sulfate were well tolerated, increased hemoglobin levels and reduced the occurrence of anemia, but with no difference compared to the control group.
Continuous API-crystal coating via coacervation in a tubular reactor.
Besenhard, M O; Thurnberger, A; Hohl, R; Faulhammer, E; Rattenberger, J; Khinast, J G
2014-11-20
We present a proof-of-concept study of a continuous coating process of single API crystals in a tubular reactor using coacervation as a microencapsulation technique. Continuous API crystal coating can have several advantages, as in a single step (following crystallization) individual crystals can be prepared with a functional coating, either to change the release behavior, to protect the API from gastric juice or to modify the surface energetics of the API (i.e., to tailor the hydrophobic/hydrophilic characteristics, flowability or agglomeration tendency, etc.). The coating process was developed for the microencapsulation of a lipophilic core material (ibuprofen crystals of 20 μm- to 100 μm-size), with either hypromellose phthalate (HPMCP) or Eudragit L100-55. The core material was suspended in an aqueous solution containing one of these enteric polymers, fed into the tubing and mixed continuously with a sodium sulfate solution as an antisolvent to induce coacervation. A subsequent temperature treatment was applied to optimize the microencapsulation of crystals via the polymer-rich coacervate phase. Cross-linking of the coating shell was achieved by mixing the processed material with an acidic solution (pH<3). Flow rates, temperature profiles and polymer-to-antisolvent ratios had to be tightly controlled to avoid excessive aggregation, leading to pipe plugging. This work demonstrates the potential of a tubular reactor design for continuous coating applications and is the basis for future work, combining continuous crystallization and coating. Copyright © 2014 Elsevier B.V. All rights reserved.
Gupta, G; Khan, A A; Rao, D N
2010-03-01
Yersinia pestis, a Gram-negative bacterium, is the etiological agent of pneumonic and bubonic plague and still active in various regions of the world. Because plague is highly infectious and can readily spread by aerosolization, it poses a bioterrorism threat. The effective induction of mucosal as well as systemic immunity is an important attribute of an improved vaccine for plague. An alternative approach described here is the use of protective epitopes derived from immunodominant antigens (F1 and V) of Yersinia pestis. As T-cell immunity is also a major contributor of protection, microencapsulated B-T constructs of F1 and V antigen were used to immunize outbred and inbred mice through intranasal route, and lympho-proliferative response and cytokine profile of both Th(1) and Th(2) arms were measured in spleen, lamina propria and Peyer's patches. Three B-T constructs of F1 antigen and seven of V antigen showed significantly high T-cell response in terms of inducing systemic as well as mucosal response when compared to constituent peptides. These ten conjugates showed Th(1) cytokine profile whereas rest of the conjugates showed mixed Th(1)/Th(2) response. Four conjugates of V antigen showed high level of IL-10 production. In present study, microencapsulated B-T constructs after intranasal immunization generated systemic as well as mucosal immune response in all three sites, which offers an alternative approach for plague vaccine.
NASA Astrophysics Data System (ADS)
Kim, Wihan; Zebrowski, Erin; Lopez, Hazel C.; Applegate, Brian E.; Charoenphol, Phapanin; Jo, Javier A.
2016-03-01
Molecular contrast imaging can target specific molecules or receptors to provide detailed information on the local biochemistry and yield enhanced visualization of pathological and physiological processes. When paired with Optical Coherence Tomography (OCT) it can simultaneously supply the morphological context for the molecular information. We recently demonstrated in vivo molecular contrast imaging of methylene blue (MB) using a 663 nm diode laser as a pump in a Pump-Probe OCT (PPOCT) system. The simple addition of a dichroic mirror in the sample arm enabled PPOCT imaging with a typical 830-nm band spectral-domain OCT system. Here we report on the development of a microencapsulated MB contrast agent. The poly lactic-co-glycolic acid (PLGA) microspheres loaded with MB offer several advantages over bare MB. The microsphere encapsulation improves the PPOCT signal both by enhancing the scattering and preventing the reduction of MB to leucomethylene blue. The surface of the microsphere can readily be functionalized to enable active targeting of the contrast agent without modifying the excited state dynamics of MB that enable PPOCT imaging. Both MB and PLGA are used clinically. PLGA is FDA approved and used in drug delivery and tissue engineering applications. 2.5 μm diameter microspheres were synthesized with an inner core containing 0.01% (w/v) aqueous MB. As an initial demonstration the MB microspheres were imaged in a 100 μm diameter capillary tube submerged in a 1% intralipid emulsion.
Tangena, Julie-Anne A; Adiamoh, Majidah; D'Alessandro, Umberto; Jarju, Lamin; Jawara, Musa; Jeffries, David; Malik, Naiela; Nwakanma, Davis; Kaur, Harparkash; Takken, Willem; Lindsay, Steve W; Pinder, Margaret
2013-01-01
Malaria vector control is threatened by resistance to pyrethroids, the only class of insecticides used for treating bed nets. The second major vector control method is indoor residual spraying with pyrethroids or the organochloride DDT. However, resistance to pyrethroids frequently confers resistance to DDT. Therefore, alternative insecticides are urgently needed. Insecticide resistance and the efficacy of indoor residual spraying with different insecticides was determined in a Gambian village. Resistance of local vectors to pyrethroids and DDT was high (31% and 46% mortality, respectively) while resistance to bendiocarb and pirimiphos methyl was low (88% and 100% mortality, respectively). The vectors were predominantly Anopheles gambiae s.s. with 94% of them having the putative resistant genotype kdr 1014F. Four groups of eight residential compounds were each sprayed with either (1) bendiocarb, a carbamate, (2) DDT, an organochlorine, (3) microencapsulated pirimiphos methyl, an organophosphate, or (4) left unsprayed. All insecticides tested showed high residual activity up to five months after application. Mosquito house entry, estimated by light traps, was similar in all houses with metal roofs, but was significantly less in IRS houses with thatched roofs (p=0.02). Residents participating in focus group discussions indicated that IRS was considered a necessary nuisance and also may decrease the use of long-lasting insecticidal nets. Bendiocarb and microencapsulated pirimiphos methyl are viable alternatives for indoor residual spraying where resistance to pyrethroids and DDT is high and may assist in the management of pyrethroid resistance.
Stout, D M; Leidy, R B
2000-07-01
Methods have been developed to monitor the translocation of microencapsulated cyfluthrin following perimeter applications to residential dwellings. A pilot study was implemented to determine both the potential for application spray to drift away from dwellings and the intrusion of residues into homes following perimeter treatments. Residential monitoring included measuring spray drift using cellulose filter paper and the collection of soil samples from within the spray zone. In addition, interior air was monitored using fiberglass filter paper as a sorbent medium and cotton ball swabs were used to collect surface wipes. Fortification of matrixes resulted in recoveries of > 90%. Spray drift was highest at the point of application and declined to low but measurable levels 9.1 m from the foundations of dwellings. Soil residues declined to low, but measurable levels by 45 days post-application. No cyfluthrin was measured from indoor air; however, some interior surfaces had detectable levels of cyfluthrin until three days post-application. Findings indicate that spray drift resulting from perimeter applications might contaminate non-target surfaces outside the spray zone. Soil borne residues may serve as persistent sources for human exposure and potentially intrude into dwellings through the activities of occupants and pets. Residues do not appreciably translocate through air and consequently inhalation is not a likely route for human exposure. Surface residues detected indoors suggest that the physical movement of residues from the exterior to the interior might be a viable route of movement of residues following this type of application.
Enright, Elaine F; Joyce, Susan A; Gahan, Cormac G M; Griffin, Brendan T
2017-04-03
In recent years, the gut microbiome has gained increasing appreciation as a determinant of the health status of the human host. Bile salts that are secreted into the intestine may be biotransformed by enzymes produced by the gut bacteria. To date, bile acid research at the host-microbe interface has primarily been directed toward effects on host metabolism. The aim of this work was to investigate the effect of changes in gut microbial bile acid metabolism on the solubilization capacity of bile salt micelles and consequently intraluminal drug solubility. First, the impact of bile acid metabolism, mediated in vivo by the microbial enzymes bile salt hydrolase (BSH) and 7α-dehydroxylase, on drug solubility was assessed by comparing the solubilization capacity of (a) conjugated vs deconjugated and (b) primary vs secondary bile salts. A series of poorly water-soluble drugs (PWSDs) were selected as model solutes on the basis of an increased tendency to associate with bile micelles. Subsequently, PWSD solubility and dissolution was evaluated in conventional biorelevant simulated intestinal fluid containing host-derived bile acids, as well as in media modified to contain microbial bile acid metabolites. The findings suggest that deconjugation of the bile acid steroidal core, as dictated by BSH activity, influences micellar solubilization capacity for some PWSDs; however, these differences appear to be relatively minor. In contrast, the extent of bile acid hydroxylation, regulated by microbial 7α-dehydroxylase, was found to significantly affect the solubilization capacity of bile salt micelles for all nine drugs studied (p < 0.05). Subsequent investigations in biorelevant media containing either the trihydroxy bile salt sodium taurocholate (TCA) or the dihydroxy bile salt sodium taurodeoxycholate (TDCA) revealed altered drug solubility and dissolution. Observed differences in biorelevant media appeared to be both drug- and amphiphile (bile salt/lecithin) concentration-dependent. Our studies herein indicate that bile acid modifications occurring at the host-microbe interface could lead to alterations in the capacity of intestinal bile salt micelles to solubilize drugs, providing impetus to consider the gut microbiota in the drug absorption process. In the clinical setting, disruption of the gut microbial ecosystem, through disease or antibiotic treatment, could transform the bile acid pool with potential implications for drug absorption and bioavailability.
Jarocki, Piotr; Podleśny, Marcin; Glibowski, Paweł; Targoński, Zdzisław
2014-01-01
This study analyzes the occurrence of bile salt hydrolase in fourteen strains belonging to the genus Bifidobacterium. Deconjugation activity was detected using a plate test, two-step enzymatic reaction and activity staining on a native polyacrylamide gel. Subsequently, bile salt hydrolases from B. pseudocatenulatum and B. longum subsp. suis were purified using a two-step chromatographic procedure. Biochemical characterization of the bile salt hydrolases showed that the purified enzymes hydrolyzed all of the six major human bile salts under the pH and temperature conditions commonly found in the human gastrointestinal tract. Next, the dynamic rheometry was applied to monitor the gelation process of deoxycholic acid under different conditions. The results showed that bile acids displayed aqueous media gelating properties. Finally, gel-forming abilities of bifidobacteria exhibiting bile salt hydrolase activity were analyzed. Our investigations have demonstrated that the release of deconjugated bile acids led to the gelation phenomenon of the enzymatic reaction solution containing purified BSH. The presented results suggest that bile salt hydrolase activity commonly found among intestinal microbiota increases hydrogel-forming abilities of certain bile salts. To our knowledge, this is the first report showing that bile salt hydrolase activity among Bifidobacterium is directly connected with the gelation process of bile salts. In our opinion, if such a phenomenon occurs in physiological conditions of human gut, it may improve bacterial ability to colonize the gastrointestinal tract and their survival in this specific ecological niche.
Printing of polymer microcapsules for enzyme immobilization on paper substrate.
Savolainen, Anne; Zhang, Yufen; Rochefort, Dominic; Holopainen, Ulla; Erho, Tomi; Virtanen, Jouko; Smolander, Maria
2011-06-13
Poly(ethyleneimine) (PEI) microcapsules containing laccase from Trametes hirsuta (ThL) and Trametes versicolor (TvL) were printed onto paper substrate by three different methods: screen printing, rod coating, and flexo printing. Microcapsules were fabricated via interfacial polycondensation of PEI with the cross-linker sebacoyl chloride, incorporated into an ink, and printed or coated on the paper substrate. The same ink components were used for three printing methods, and it was found that laccase microcapsules were compatible with the ink. Enzymatic activity of microencapsulated TvL was maintained constant in polymer-based ink for at least eight weeks. Thick layers with high enzymatic activity were obtained when laccase-containing microcapsules were screen printed on paper substrate. Flexo printed bioactive paper showed very low activity, since by using this printing method the paper surface was not fully covered by enzyme microcapsules. Finally, screen printing provided a bioactive paper with high water-resistance and the highest enzyme lifetime.
Soe, Cho Zin; Telfer, Thomas J; Levina, Aviva; Lay, Peter A; Codd, Rachel
2016-09-01
Cultures of Shewanella putrefaciens grown in medium containing 10mM 1,4-diamino-2-butanone (DBO) as an inhibitor of ornithine decarboxylase and 10mM 1,5-diaminopentane (cadaverine) showed the simultaneous biosynthesis of the macrocyclic dihydroxamic acids: putrebactin (pbH 2 ), avaroferrin (avH 2 ) and bisucaberin (bsH 2 ). The level of DBO did not completely repress the production of endogenous 1,4-diaminobutane (putrescine) as the native diamine substrate of pbH 2 . The relative concentration of pbH 2 :avH 2 :bsH 2 was 1:2:1, which correlated with the substrate selection of putrescine:cadaverine in a ratio of 1:1. The macrocycles were characterised using LC-MS as free ligands and as 1:1 complexes with Fe(III) of the form [Fe(pb)] + , [Fe(av)] + or [Fe(bs)] + , with labile ancillary ligands in six-coordinate complexes displaced during ESI-MS acquisition; or with Mo(VI) of the form [Mo(O) 2 (pb)], [Mo(O) 2 (av)] or [Mo(O) 2 (bs)]. Chromium(V) complexes of the form [CrO(pb)] + were detected from solutions of Cr(VI) and pbH 2 in DMF using X-band EPR spectroscopy. Supplementation of S. putrefaciens medium with DBO and 1,3-diaminopropane, 1,6-diaminohexane or 1,4-diamino-2(Z)-butene (Z-DBE) resulted only in the biosynthesis of pbH 2 . The work has identified a native system for the simultaneous biosynthesis of a suite of three macrocyclic dihydroxamic acid siderophores and highlights both the utility of precursor-directed biosynthesis for expanding the structural diversity of siderophores, and the breadth of their coordination chemistry. Copyright © 2015 Elsevier Inc. All rights reserved.
Lu, Wen-Chien; Huang, Da-Wei; Wang, Chiun-C R; Yeh, Ching-Hua; Tsai, Jen-Chieh; Huang, Yu-Ting; Li, Po-Hsien
2018-01-01
Citral is a typical essential oil used in the food, cosmetic, and drug industries and has shown antimicrobial activity against microorganisms. Citral is unstable and hydrophobic under normal storage conditions, so it can easily lose its bactericide activity. Nanoemulsion technology is an excellent way to hydrophilize, microencapsulate, and protect this compound. In our studies, we used a mixed surfactant to form citral-in-water nanoemulsions, and attempted to optimize the formula for preparing nanoemulsions. Citral-in-water nanoemulsions formed at S o 0.4 to 0.6 and ultrasonic power of 18 W for 120 seconds resulted in a droplet size of < 100 nm for nanoemulsions. The observed antimicrobial activities were significantly affected by the formulation of the nanoemulsions. The observed relationship between the formulation and activity can lead to the rational design of nanoemulsion-based delivery systems for essential oils, based on the desired function of antimicrobials in the food, cosmetics, and agrochemical industries. Copyright © 2017. Published by Elsevier B.V.
ENGINEERING BULLETIN: SOLIDIFICATION/STABILIZATION OF ORGANICS AND INORGANICS
Solidification refers to techniques that encapsulate hazardous waste into a solid material of high structural integrity. Encapsulation involves either fine waste particles (microencapsulation) or a large block or container of wastes (macroencapsulation). Stabilization refe...
1985-12-31
nuts, chestnuts, f ilberts, hazelnuts, pecans , walnuts (all nuts, in %hells). In other countries, the appropriate government regulatory agencies...75012 Paris, France, 10 Rue Villiot .. ...... . . . . . . 347.87-45 NEAR EAST 20124 Milan, Italy , Via Rosellini 12 ... ...... ...... 688.4563 Hemel
Microencapsulation of methylglyoxal and two derivatives
NASA Technical Reports Server (NTRS)
Nozawa, Y.; Fox, S. W.
1981-01-01
Microcapsules of methylglyoxal, methylglyoxal bis(guanylhydrazone), and methylglyoxal-ascorbic acid condensation complex were prepared and release curves were determined. The effect of various concentrations of hydrochloric acid on the decomposition of the ascorbic acid complex was investigated.
Probiotic Properties of Lactobacillus plantarum RYPR1 from an Indigenous Fermented Beverage Raabadi
Yadav, Ruby; Puniya, Anil K.; Shukla, Pratyoosh
2016-01-01
Present study documents the potential probiotic Lactobacillus isolated from indigenous fermented beverage Raabadi, consumed during summers in Haryana and Rajasthan regions of India. A total of five Raabadi samples were collected aseptically and 54 isolates were purified using MRS medium. All the isolates were assessed for tolerance to low pH and bile salts. It was observed that out of 54 only 24 isolates could survive the simulated gastric conditions. These isolates were further evaluated in vitro for cell surface hydrophobicity, cell surface hydrophobicity, hypocholesteramic activity, anti-oxidative potential, BSH activity, antagonistic activity, and antibiotic resistance profile. In addition, the confirmation of phenol resistance was also done. On the basis of results obtained, the survival rate of isolates was noted and six isolates were finally selected for further studies. Among them Lactobacillus plantarum RYPR1 and RYPC7 showed good survival at pH 2 which shows good acid tolerance. Moreover, L. plantarum RYPR1 showed the highest hydrophobicity (79.13%) and represented the deconjugation of bile salts, which help in their adhesion to epithelial cells and colonization. Furthermore, RYPR1 also exhibited highest cholesterol reduction (59%) and subsequent analysis of results revealed that the above mentioned isolates further exhibit a good hypocholesterolemic effect and could be possibly used to prevent hypercholesterolemia. The present study divulges that L. plantarum RYPR1 has an excellent probiotic potential. PMID:27818658
Non-Toxic, Self Cleaning Silicone Fouling Release Coatings
1997-10-07
Attempts to microencapsulate silicone oils for enhanced fouling release coatings with thermoset wall structures were unsuccessful: Microcapsule ...filled coatings failed abrasion resistance tests and had mediocre fouling release properties, despite having controlled release rates. Microcapsules with
Luca, Giovanni; Calvitti, Mario; Mancuso, Francesca; Falabella, Giulia; Arato, Iva; Bellucci, Catia; List, Edward O; Bellezza, Enrico; Angeli, Giovanni; Lilli, Cinzia; Bodo, Maria; Becchetti, Ennio; Kopchick, John J; Cameron, Don F; Baroni, Tiziano; Calafiore, Riccardo
2013-01-10
Recombinant human IGF-1 currently represents the only available treatment option for the Laron Syndrome, a rare human disorder caused by defects in the gene encoding growth hormone receptor, resulting in irreversibly retarded growth. Unfortunately, this treatment therapy, poorly impacts longitudinal growth (13% in females and 19% in males), while burdening the patients with severe side effects, including hypoglycemia, in association with the unfair chore of taking multiple daily injections that cause local intense pain. In this study, we have demonstrated that a single intraperitoneal graft of microencapsulated pig Sertoli cells, producing pig insulin-like growth factor-1, successfully promoted significant proportional growth in the Laron mouse, a unique animal model of the human Laron Syndrome. These findings indicate a novel, simply, safe and successful method for the cell therapy-based cure of the Laron Syndrome, potentially applicable to humans. Copyright © 2012 Elsevier B.V. All rights reserved.
Probiotics, prebiotics, and microencapsulation: A review.
Sarao, Loveleen Kaur; Arora, M
2017-01-22
The development of a suitable technology for the production of probiotics is a key research for industrial production, which should take into account the viability and the stability of the organisms involved. Microbial criteria, stress tolerance during processing, and storage of the product constitute the basis for the production of probiotics. Generally, the bacteria belonging to the genera Lactobacillus and Bifidobacterium have been used as probiotics. Based on their positive qualities, probiotic bacteria are widely used in the production of food. Interest in the incorporation of the probiotic bacteria into other products apart from dairy products has been increasing and represents a great challenge. The recognition of dose delivery systems for probiotic bacteria has also resulted in research efforts aimed at developing probiotic food outside the dairy sector. Producing probiotic juices has been considered more in the recent years, due to an increased concern in personal health of consumers. This review focuses on probiotics, prebiotics, and the microencapsulation of living cells.
Thermal Response Of An Aerated Concrete Wall With Micro-Encapsulated Phase Change Material
NASA Astrophysics Data System (ADS)
Halúzová, Dušana
2015-06-01
For many years Phase Change Materials (PCM) have attracted attention due to their ability to store large amounts of thermal energy. This property makes them a candidate for the use of passive heat storage. In many applications, they are used to avoid the overheating of the temperature of an indoor environment. This paper describes the behavior of phase change materials that are inbuilt in aerated concrete blocks. Two building samples of an aerated concrete wall were measured in laboratory equipment called "twin-boxes". The first box consists of a traditional aerated concrete wall; the second one has additional PCM micro-encapsulated in the wall. The heat flux through the wall was measured and compared to simulation results modeled in the ESP-r program. This experimental measurement provides a foundation for a model that can be used to analyze further building constructions.
García-Saldaña, Jesús S; Campas-Baypoli, Olga N; López-Cervantes, Jaime; Sánchez-Machado, Dalia I; Cantú-Soto, Ernesto U; Rodríguez-Ramírez, Roberto
2016-06-15
Sulforaphane is a phytochemical that has received attention in recent years due to its chemopreventive properties. However, the uses and applications of this compound are very limited, because is an unstable molecule that is degraded mainly by changes in temperature and pH. In this research, the use of food grade polymers for microencapsulation of sulforaphane was studied by a complex coacervation method using the interaction of oppositely charged polymers as gelatin/gum arabic and gelatin/pectin. The polymers used were previously characterized in moisture content, ash and nitrogen. The encapsulation yield was over 80%. The gelatin/pectin complex had highest encapsulation efficiency with 17.91%. The presence of sulforaphane in the complexes was confirmed by FTIR and UV/visible spectroscopy. The materials used in this work could be a new and attractive option for the protection of sulforaphane. Copyright © 2016 Elsevier Ltd. All rights reserved.
2003-05-07
KENNEDY SPACE CENTER, FLA. - Barry Perlman, Pembroke Pines Charter Middle School in Florida, prepares a computer to receive data from an experiment carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.
2003-05-07
KENNEDY SPACE CENTER, FLA. - From left, Bob McLean, Southwest Texas State University; Valerie Cassanto, Instrumentation Technology Associates, Inc.; and Dennis Morrison, NASA Johnson Space Center, process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
2003-05-06
KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., and Bob McLean, from the Southwest Texas State University, transfer to a new container material from one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
Study on the effects of microencapsulated Lactobacillus delbrueckii on the mouse intestinal flora.
Sun, Qingshen; Shi, Yue; Wang, Fuying; Han, Dequan; Lei, Hong; Zhao, Yao; Sun, Quan
2015-01-01
To evaluate the protective effects of microencapsulation on Lactobacillus delbrueckii by random, parallel experimental design. Lincomycin hydrochloride-induced intestinal malfunction mouse model was successfully established; then the L. delbrueckii microcapsule was given to the mouse. The clinical behaviour, number of intestinal flora, mucous IgA content in small intestine, IgG and IL-2 level in peripheral blood were monitored. The histological sections were also prepared. The L. delbrueckii microcapsule could have more probiotic effects as indicated by higher bifidobacterium number in cecal contents. The sIgA content in microcapsule treated group was significantly higher than that in non-encapsulated L. delbrueckii treated group (p < 0.05). Intestine pathological damage of the L. delbrueckii microcapsule-treated group showed obvious restoration. The L. delbrueckii microcapsules could relieve the intestinal tissue pathological damage and play an important role in curing antibiotic-induced intestinal flora dysfunction.
Microencapsulated cells as hormone delivery systems.
Sun, A M; Goosen, M F; O'Shea, G
1987-01-01
Transplantation of pancreatic islets of Langerhans has been shown to prevent the development of many of the complications associated with diabetes. Transplanted islets, however, are readily rejected by the immune system. The use of artificial membranes to isolate the transplanted islets from the immune system of the host prolongs islet allografts in experimental animals. We have developed a method for encapsulating islets in semipermeable membranes composed of alginate and polylysine. The same technique can be applied to other endocrine cell types. The capsules are 700 to 800 micron in diameter with a hydrogel membrane approximately 4 micron thick. Intraperitoneal allografts of 5 x 10(3) encapsulated islets reversed diabetes in rats for up to 21 months and intact capsules with viable beta cells could be recovered from the recipients. Microencapsulation of endocrine cells for transplantation could potentially be used in the clinical treatment of hormone deficiency diseases.
Selective Osmotic Shock (SOS)-Based Islet Isolation for Microencapsulation.
Enck, Kevin; McQuilling, John Patrick; Orlando, Giuseppe; Tamburrini, Riccardo; Sivanandane, Sittadjody; Opara, Emmanuel C
2017-01-01
Islet transplantation (IT) has recently been shown to be a promising alternative to pancreas transplantation for reversing diabetes. IT requires the isolation of the islets from the pancreas, and these islets can be used to fabricate a bio-artificial pancreas. Enzymatic digestion is the current gold standard procedure for islet isolation but has lingering concerns. One such concern is that it has been shown to damage the islets due to nonselective tissue digestion. This chapter provides a detailed description of a nonenzymatic method that we are exploring in our lab as an alternative to current enzymatic digestion procedures for islet isolation from human and nonhuman pancreatic tissues. This method is based on selective destruction and protection of specific cell types and has been shown to leave the extracellular matrix (ECM) of islets intact, which may thus enhance islet viability and functionality. We also show that these SOS-isolated islets can be microencapsulated for transplantation.
Solanki, Himanshu K.; Pawar, Dipak D.; Shah, Dushyant A.; Prajapati, Vipul D.; Jani, Girish K.; Mulla, Akil M.; Thakar, Prachi M.
2013-01-01
The administration of probiotic bacteria for health benefit has rapidly expanded in recent years, with a global market worth $32.6 billion predicted by 2014. The oral administration of most of the probiotics results in the lack of ability to survive in a high proportion of the harsh conditions of acidity and bile concentration commonly encountered in the gastrointestinal tract of humans. Providing probiotic living cells with a physical barrier against adverse environmental conditions is therefore an approach currently receiving considerable interest. Probiotic encapsulation technology has the potential to protect microorganisms and to deliver them into the gut. However, there are still many challenges to overcome with respect to the microencapsulation process and the conditions prevailing in the gut. This review focuses mainly on the methodological approach of probiotic encapsulation including biomaterials selection and choice of appropriate technology in detailed manner. PMID:24027760
NASA Technical Reports Server (NTRS)
1998-01-01
On this forth day of the STS-95 mission, the flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn, are seen performing an evaluation of bone cell activity under microgravity conditions. Glenn then provides blood samples as part of the Protein Turnover Experiment, which is looking at the balance between the building and breakdown of muscle. He also works with the Advanced Organic Separations (ADSEP) experiment, to provides the capability to separate and purify biological materials in microgravity; and with the Microencapsulation Electrostatic Processing System (MEPS), that studies the formation of anti-tumor capsules containing two kinds of drugs.
Pereira-Caro, Gema; Oliver, Christine M; Weerakkody, Rangika; Singh, Tanoj; Conlon, Michael; Borges, Gina; Sanguansri, Luz; Lockett, Trevor; Roberts, Susan A; Crozier, Alan; Augustin, Mary Ann
2015-07-01
Orange juice (OJ) flavanones are bioactive polyphenols that are absorbed principally in the large intestine. Ingestion of probiotics has been associated with favorable changes in the colonic microflora. The present study examined the acute and chronic effects of orally administered Bifidobacterium longum R0175 on the colonic microflora and bioavailability of OJ flavanones in healthy volunteers. In an acute study volunteers drank OJ with and without the microencapsulated probiotic, whereas the chronic effects were examined when OJ was consumed after daily supplementation with the probiotic over 4 weeks. Bioavailability, assessed by 0-24h urinary excretion, was similar when OJ was consumed with and without acute probiotic intake. Hesperetin-O-glucuronides, naringenin-O-glucuronides, and hesperetin-3'-O-sulfate were the main urinary flavanone metabolites. The overall urinary excretion of these metabolites after OJ ingestion and acute probiotic intake corresponded to 22% of intake, whereas excretion of key colon-derived phenolic and aromatic acids was equivalent to 21% of the ingested OJ (poly)phenols. Acute OJ consumption after chronic probiotic intake over 4 weeks resulted in the excretion of 27% of flavanone intake, and excretion of selected phenolic acids also increased significantly to 43% of (poly)phenol intake, corresponding to an overall bioavailability of 70%. Neither the probiotic bacterial profiles of stools nor the stool moisture, weight, pH, or levels of short-chain fatty acids and phenols differed significantly between treatments. These findings highlight the positive effect of chronic, but not acute, intake of microencapsulated B. longum R0175 on the bioavailability of OJ flavanones. Copyright © 2015 Elsevier Inc. All rights reserved.
Biodistribution study of free and microencapsulated 6-methylcoumarin in Wistar rats by HPLC.
Hernández, Aura Rocío; Ospina, Luis Fernando; Aragón, Diana Marcela
2015-02-01
A sensitive, specific and reproducible HPLC method has been developed and validated for the quantitative determination of 6-methylcoumarin (6MC) in plasma and other tissues in Wistar rats. A C18 column was used with UV detection at 321 nm and a gradient system consisting of methanol-deionized water was used as mobile phase. The retention time for 6MC was 14.921 min and no interfering peaks were observed for any of the matrices. Linear relationships (r(2) > 0.997) were obtained between the peak height ratios and the corresponding biological sample concentrations over the range 0.4-12.8 µg/mL. Precision and accuracy were evaluated; the coefficient of variation and the relative error for all of the organs were <2 and 7%, respectively. The limit of quantitation was 0.20 µg/mL for the heart and 0.30 µg/mL for the other tissues evaluated. This HPLC method was successfully used in the determination of 6MC in the biodistribution study after administration of 200 mg/kg of both 6MC-free and 6MC-loaded polymeric microparticles. In this study, extensive 6MC was found, in both free and microencapsulated forms, in all the organs tested. The 6MC-free showed a range of between 1.7 and 11.5 µg/g, while the microencapsulated 6MC showed concentrations of between 6.35 and 17.7 µg/g, suggesting that 6MC improved absorption rate. Copyright © 2014 John Wiley & Sons, Ltd.
Microencapsulation of nanoemulsions: novel Trojan particles for bioactive lipid molecule delivery
Li, Xiang; Anton, Nicolas; Ta, Thi Minh Chau; Zhao, Minjie; Messaddeq, Nadia; Vandamme, Thierry F
2011-01-01
Background Nanoemulsions consist of very stable nanodroplets of oil dispersed in an aqueous phase, typically below 300 nm in size. They can be used to obtain a very fine, homogeneous dispersion of lipophilic compounds in water, thus facilitating their handling and use in nanomedicine. However, the drawback is that they are suspended in an aqueous media. This study proposes a novel technique for drying lipid nanoemulsion suspensions to create so-called Trojan particles, ie, polymer microparticles (around 2 μm) which very homogeneously “entrap” the nano-oil droplets (around 150 nm) in their core. Methods Microencapsulation of the nanoemulsions was performed using a spray-drying process and resulted in a dried powder of microparticles. By using a low-energy nanoemulsification method and relatively gentle spray-drying, the process was well suited to sensitive molecules. The model lipophilic molecule tested was vitamin E acetate, encapsulated at around 20% in dried powder. Results We showed that the presence of nanoemulsions in solution before spray-drying had a significant impact on microparticle size, distribution, and morphology. However, the process itself did not destroy the oil nanodroplets, which could easily be redispersed when the powder was put back in contact with water. High-performance liquid chromatography follow-up of the integrity of the vitamin E acetate showed that the molecules were intact throughout the process, as well as when conserved in their dried form. Conclusion This study proposes a novel technique using a spray-drying process to microencapsulate nanoemulsions. The multiscale object formed, so-called Trojan microparticles, were shown to successfully encapsulate, protect, and release the lipid nanodroplets. PMID:21760727
Sealing of cracks in cement using microencapsulated sodium silicate
NASA Astrophysics Data System (ADS)
Giannaros, P.; Kanellopoulos, A.; Al-Tabbaa, A.
2016-08-01
Cement-based materials possess an inherent autogenous self-healing capability allowing them to seal, and potentially heal, microcracks. This can be improved through the addition of microencapsulated healing agents for autonomic self-healing. The fundamental principle of this self-healing mechanism is that when cracks propagate in the cementitious matrix, they rupture the dispersed capsules and their content (cargo material) is released into the crack volume. Various healing agents have been explored in the literature for their efficacy to recover mechanical and durability properties in cementitious materials. In these materials, the healing agents are most commonly encapsulated in macrocontainers (e.g. glass tubes or capsules) and placed into the material. In this work, microencapsulated sodium silicate in both liquid and solid form was added to cement specimens. Sodium silicate reacts with the calcium hydroxide in hydrated cement paste to form calcium-silicate-hydrate gel that fills cracks. The effect of microcapsule addition on rheological and mechanical properties of cement is reported. It is observed that the microcapsule addition inhibits compressive strength development in cement and this is observed through a plateau in strength between 28 and 56 days. The improvement in crack-sealing for microcapsule-containing specimens is quantified through sorptivity measurements over a 28 day healing period. After just seven days, the addition of 4% microcapsules resulted in a reduction in sorptivity of up to 45% when compared to specimens without any microcapsule addition. A qualitative description of the reaction between the cargo material and the cementitious matrix is also provided using x-ray diffraction analysis.
Yoo, Youngman; Martinez, Carlos; Youngblood, Jeffrey P
2017-09-20
The main objective of this study is to develop microencapsulation technology for thermal energy storage incorporating a phase change material (PCM) in a composite wall shell, which can be used to create a stable environment and allow the PCM to undergo phase change without any outside influence. Surface modification of cellulose nanocrystals (CNCs) was conducted by grafting poly(lactic acid) oligomers and oleic acid to improve the dispersion of nanoparticles in a polymeric shell. A microencapsulated phase change material (methyl laurate) with poly(urea-urethane) (PU) composite shells containing the hydrophobized cellulose nanocrystals (hCNCs) was fabricated using an in situ emulsion interfacial polymerization process. The encapsulation process of the PCMs with subsequent interfacial hCNC-PU to form composite microcapsules as well as their morphology, composition, thermal properties, and release rates was examined in this study. Oil soluble Sudan II dye solution in methyl laurate was used as a model hydrophobic fill, representing other latent fills with low partition coefficients, and their encapsulation efficiency as well as dye release rates were measured spectroscopically in a water medium. The influence of polyol content in the PU polymer matrix of microcapsules was investigated. An increase in polyol contents leads to an increase in the mean size of microcapsules but a decrease in the gel content (degree of cross-linking density) and permeability of their shell structure. The encapsulated PCMs for thermal energy storage demonstrated here exhibited promising performance for possible use in building or paving materials in terms of released heat, desired phase transformation temperature, chemical and physical stability, and concrete durability during placement.
Microencapsulation of nanoemulsions: novel Trojan particles for bioactive lipid molecule delivery.
Li, Xiang; Anton, Nicolas; Ta, Thi Minh Chau; Zhao, Minjie; Messaddeq, Nadia; Vandamme, Thierry F
2011-01-01
Nanoemulsions consist of very stable nanodroplets of oil dispersed in an aqueous phase, typically below 300 nm in size. They can be used to obtain a very fine, homogeneous dispersion of lipophilic compounds in water, thus facilitating their handling and use in nanomedicine. However, the drawback is that they are suspended in an aqueous media. This study proposes a novel technique for drying lipid nanoemulsion suspensions to create so-called Trojan particles, ie, polymer microparticles (around 2 μm) which very homogeneously "entrap" the nano-oil droplets (around 150 nm) in their core. Microencapsulation of the nanoemulsions was performed using a spray-drying process and resulted in a dried powder of microparticles. By using a low-energy nanoemulsification method and relatively gentle spray-drying, the process was well suited to sensitive molecules. The model lipophilic molecule tested was vitamin E acetate, encapsulated at around 20% in dried powder. We showed that the presence of nanoemulsions in solution before spray-drying had a significant impact on microparticle size, distribution, and morphology. However, the process itself did not destroy the oil nanodroplets, which could easily be redispersed when the powder was put back in contact with water. High-performance liquid chromatography follow-up of the integrity of the vitamin E acetate showed that the molecules were intact throughout the process, as well as when conserved in their dried form. This study proposes a novel technique using a spray-drying process to microencapsulate nanoemulsions. The multiscale object formed, so-called Trojan microparticles, were shown to successfully encapsulate, protect, and release the lipid nanodroplets.
Checa-Casalengua, Patricia; Jiang, Caihui; Bravo-Osuna, Irene; Tucker, Budd A; Molina-Martínez, Irene T; Young, Michael J; Herrero-Vanrell, Rocío
2011-11-30
The present experimental work describes the use of a novel protein encapsulation method to achieve protection of the biological factor during the microencapsulation procedure. With this aim, the protein is included in poly(lactic-co-glycolic acid) (PLGA) microspheres without any preliminary manipulation, in contrast to the traditional S/O/W (solid-in-oil-in-water) method where the bioactive substance is first dissolved and then freeze-dried in the presence of lyoprotectors. Furthermore, the presented technique involves the use of an oily additive, vitamin E (Vit E), useful from a technological point of view, by promoting additional protein protection and also from a pharmacological point of view, because of its antioxidant and antiproliferative properties. Application of this microencapsulation technique has been performed for GDNF (glial cell line-derived neurotrophic factor) designed for the treatment of optic nerve degenerative diseases, such as glaucoma, the second leading cause of blindness in the western world. The protein was released in vitro in its bioactive form for more than three months, demonstrated by the survival of their potential target cells (photoreceptors and retinal ganglion cells (RGC)). Moreover, the intravitreal injection of GDNF/Vit E PLGA microspheres in an experimental animal model of glaucoma significantly increased RGC survival compared with GDNF, Vit E or blank microspheres (p<0.01). This effect was present for at least eleven weeks, which suggests that the formulation prepared may be clinically useful as a neuroprotective tool in the treatment of glaucomatous optic neuropathy. Copyright © 2011 Elsevier B.V. All rights reserved.
Use of Vitelline Protein B as a Microencapsulating Additive
NASA Technical Reports Server (NTRS)
Ficht, Allison R. (Inventor); Carson, Ken (Inventor); Waite, John Herbert (Inventor); Sheffield, Cynthia (Inventor)
2017-01-01
The present invention includes compositions and methods for the use of an encapsulation additive having between about 0.1 to about 30 percent isolated and purified vitelline protein B to provide for mixed and extended release formulations.
Tangena, Julie-Anne A.; Adiamoh, Majidah; D’Alessandro, Umberto; Jarju, Lamin; Jawara, Musa; Jeffries, David; Malik, Naiela; Nwakanma, Davis; Kaur, Harparkash; Takken, Willem; Lindsay, Steve W.; Pinder, Margaret
2013-01-01
Background Malaria vector control is threatened by resistance to pyrethroids, the only class of insecticides used for treating bed nets. The second major vector control method is indoor residual spraying with pyrethroids or the organochloride DDT. However, resistance to pyrethroids frequently confers resistance to DDT. Therefore, alternative insecticides are urgently needed. Methodology/Principal Findings Insecticide resistance and the efficacy of indoor residual spraying with different insecticides was determined in a Gambian village. Resistance of local vectors to pyrethroids and DDT was high (31% and 46% mortality, respectively) while resistance to bendiocarb and pirimiphos methyl was low (88% and 100% mortality, respectively). The vectors were predominantly Anopheles gambiae s.s. with 94% of them having the putative resistant genotype kdr 1014F. Four groups of eight residential compounds were each sprayed with either (1) bendiocarb, a carbamate, (2) DDT, an organochlorine, (3) microencapsulated pirimiphos methyl, an organophosphate, or (4) left unsprayed. All insecticides tested showed high residual activity up to five months after application. Mosquito house entry, estimated by light traps, was similar in all houses with metal roofs, but was significantly less in IRS houses with thatched roofs (p=0.02). Residents participating in focus group discussions indicated that IRS was considered a necessary nuisance and also may decrease the use of long-lasting insecticidal nets. Conclusion/Significance Bendiocarb and microencapsulated pirimiphos methyl are viable alternatives for indoor residual spraying where resistance to pyrethroids and DDT is high and may assist in the management of pyrethroid resistance. PMID:24058551
A Technical Approach to Marking Explosives, Propellants, and Precursor Chemicals
1998-08-01
polymerase chain reaction (PCR) methods whereby small strands are cut and analyzed under specified temperature mediated enzymatic /molecular reactions (4...such as these are often overlooked. Several other companies have been investigating other methods including immunoassay techniques, microencapsulated
Direct feeding of microencapsulated bacteriophages to reduce Salmonella colonization in pigs
USDA-ARS?s Scientific Manuscript database
Salmonella shedding often increases in pigs following pre-slaughter transportation and/or lairage. We previously showed that administering anti-Salmonella bacteriophages to pigs by gavage significantly reduced Salmonella colonization when the pigs were exposed to a Salmonella-contaminated pen. In ...
2003-05-06
KENNEDY SPACE CENTER, FLA. - Dennis Morrison, senior biotech program scientist, talks to a reporter about an experiment recovered during the search for Columbia debris. He is the principle investigator on microencapsulation and urokinase crystal growth included in the Commercial ITA Biomedical Experiments payload on mission STS-107.
2003-05-06
KENNEDY SPACE CENTER, FLA. - Dennis Morrison, senior biotech program scientist, talks to the media about an experiment recovered during the search for Columbia debris. He is the principle investigator on microencapsulation and urokinase crystal growth included in the Commercial ITA Biomedical Experiments payload on mission STS-107.
2003-05-06
KENNEDY SPACE CENTER, FLA. - Dennis Morrison, senior biotech program scientist, talks to a reporter about an experiment recovered during the search for Columbia debris. He is the principle investigator on microencapsulation and urokinase crystal growth included in the Commercial ITA Biomedical Experiments payload on mission STS-107.
Microencapsulation and functional bioactive foods
USDA-ARS?s Scientific Manuscript database
Food, the essential unit of human nutrition has been both wholesome and safe through human history ensuring the continuity of the human race. Functionalized foods are the rediscovery of the need to provide all nutrients through foods without adulteration. The functional components of foods include...
Sveinsdottir, Kolbrun; Martinsdottir, Emilia; Ramel, Alfons
2016-12-01
Diet plays an important role in the etiology of hypertension. Blood pressure (BP)-lowering properties of long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) are promising. The aim was to investigate whether different formulations of fish oil differently affect blood pressure in community-dwelling adults. The hypothesis was that fish oil formulations would improve BP in comparison with a placebo. In this 4-week randomized, placebo-controlled, doubly-blinded dietary intervention study, participants (N = 99, >50 years) from the capital area of Iceland were randomized into three groups. Group 1 (n = 38) received 6 meals/week fortified with a liquid fish oil and placebo powder. Group 2 (n = 30) received conventional (unfortified) meals and microencapsulated powder. Group 3 (n = 31) was the control group which received conventional meals and placebo powder. Calculated on a weekly basis, the amount of EPA + DHA provided was 1.5 g/d. Systolic (SBP) and diastolic BP (DBP) were measured before and after the intervention period. Seventy-seven subjects finished the study (77.8%). Drop-out rates were not different between groups. According to multivariate statistics, endpoint SBP was lower in Group 1 (-7.0 mmHg, p = 0.037) and in Group 2 (-7.2 mmHg, p = 0.037) as compared with Group 3. There was no significant difference in DBP between the groups. Our study shows that LC n-3 PUFA from microencapsulated powder are equally effective to meaningfully reduce SBP as LC n-3 PUFA from meals enriched with liquid fish oil in comparison with a control group.
Oster, C G; Kissel, T
2005-05-01
Recently, several research groups have shown the potential of microencapsulated DNA as adjuvant for DNA immunization and in tissue engineering approaches. Among techniques generally used for microencapsulation of hydrophilic drug substances into hydrophobic polymers, modified WOW double emulsion method and spray drying of water-in-oil dispersions take a prominent position. The key parameters for optimized microspheres are particle size, encapsulation efficiency, continuous DNA release and stabilization of DNA against enzymatic and mechanical degradation. This study investigates the possibility to encapsulate DNA avoiding shear forces which readily degrade DNA during this microencapsulation. DNA microparticles were prepared with polyethylenimine (PEI) as a complexation agent for DNA. Polycations are capable of stabilizing DNA against enzymatic, as well as mechanical degradation. Further, complexation was hypothesized to facilitate the encapsulation by reducing the size of the macromolecule. This study additionally evaluated the possibility of encapsulating lyophilized DNA and lyophilized DNA/PEI complexes. For this purpose, the spray drying and double emulsion techniques were compared. The size of the microparticles was characterized by laser diffractometry and the particles were visualized by scanning electron microscopy (SEM). DNA encapsulation efficiencies were investigated photometrically after complete hydrolysis of the particles. Finally, the DNA release characteristics from the particles were studied. Particles with a size of <10 microm which represent the threshold for phagocytic uptake could be prepared with these techniques. The encapsulation efficiency ranged from 100-35% for low theoretical DNA loadings. DNA complexation with PEI 25?kDa prior to the encapsulation process reduced the initial burst release of DNA for all techniques used. Spray-dried particles without PEI exhibited high burst releases, whereas double emulsion techniques showed continuous release rates.
Iqbal, Rabia; Zahoor, Tahir; Huma, Nuzhat; Jamil, Amer; Ünlü, Gülhan
2018-03-12
Longevity of probiotic is the main concern for getting maximum benefits when added in food product. Bifidobacterium, a probiotic, tends to lose its viability during gastrointestinal track (GIT) transit and storage of food. Their viability can be enhanced through microencapsulation technology. In this study, Bifidobacterium bifidum (B. bifidum) ATCC 35914 was encapsulated by using two experimental plans. In the first plan, chitosan (CH) at 0.6, 0.8, and 1.0% and sodium alginate (SA) at 4, 5, and 6% were used. Based on encapsulation efficiency, 6% sodium alginate and 0.8% chitosan were selected for single coating of the bacteria, and the resulting micro beads were double coated with different concentrations (5, 7.5, and 10%) of whey protein concentrate (WPC) in the second plan. Encapsulation efficiency and GIT tolerance were determined by incubating the micro beads in simulated gastrointestinal juices (SIJ) at variable pH and exposure times, and their release (liberation of bacterial cells) profile was also observed in SIJ. The microencapsulated bacterial cells showed significantly (P < 0.01) higher viability as compared to the unencapsulated (free) cells during GIT assay. The double-coated micro beads SA 6%-WPC 5% and CH 0.8%-WPC 5% were proven to have the higher survival at pH 3.0 after 90 min of incubation time and at pH 7.0 after 3-h exposure in comparison to free cells in simulated conditions of the stomach and intestine, respectively. Moreover, double coating with whey protein concentrate played a significant role in the targeted (10 6-9 CFU/mL) delivery under simulated intestinal conditions.
R-Index Measure of Microencapsulated Tributyrin in Gamma-Cyclodextrin Influenced by Drying Method.
Donovan, Joseph D; Lee, Soo-Yeun; Lee, Youngsoo
2016-09-01
Microencapsulation is commonly used in the food industry for a variety of purposes including added ingredient functionally and taste-masking for those ingredients with negative sensory qualities. Tributyrin (TB), a source intestinally-essential butyric acid, possesses negative aroma (cheesy, fecal) and taste (bitter) qualities. This has significantly limited its use in food applications for the potential improvement of intestinal health. Utilizing spray drying and low-temperature oven drying, microcapsules containing TB were produced using whey (WPI), WPI and inulin, and gamma-cyclodextrin (GCD). To determine how microcapsule formulation and drying method affected the perception of TB relative to a control, microencapsulated and free TB were added to an infant formula system and evaluated using the rating method to determine R-index measures. Pooled R-index measures (α = 0.01, 2-tailed, and n = 170) indicated that the only microcapsule not significantly different from the control (R-index below 57.95%) was the GCD and TB oven dried (GCT OD) microcapsule. All other WPI, WPI-inulin, and GCD and TB spray-dried (GCT SD) microcapsules were all significantly different from the control. Average individual R-index results indicated that all microcapsules in infant formula, except for GCT OD, were significantly different (P < 0.01) from the control formula but not from free TB. Spray drying may create microcapsules with surface TB and disturb the GCD-TB complex, allowing free, and surface TB to be perceived by the panelists. The GCT OD microcapsule has the potential to be used for the potential oral treatment of intestinal disorders in functional food applications without the negative sensory qualities of TB. © 2016 Institute of Food Technologists®
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, F.; Wessol, D.; Atkinson, C.
During the past few years, murine and large animal research, as well as human studies have provided data to the point where human clinical trials have been initiated at the BMRR using BPA-F for gliomas and at the Massachusetts Institute of Technology Reactor (MITR) using BPA for melanomas of the extremeties. It is expected that glioma trials using BSH will proceed soon at the Petten High Flux Reactor (HFR) in the Netherlands. The first human glioma epithermal boron neutron capture therapy application was performed at the BMRR in the fall of 1994. This was a collaborative effort by BNL, Bethmore » Israel Manhattan hospital, and INEL. The INEL planning system was chosen to perform dose predictions for this application.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amaro, C.R.
This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performedmore » as a preparatory step to the commencement of human clinical trials in progress at the BMRR.« less
Thomas checks the condition of the MIS-B middeck locker experiment
1995-07-28
STS070-329-022 (13-22 JULY 1995)--- Astronaut Donald A. Thomas, mission specialist, prepares to activate the Microcapsules in Space (MIS-B) experiment on the space shuttle Discovery?s middeck. MIS-B is an Army project to improve the understanding of microencapsulated drug technology and demonstrate the feasibility of producing pharmaceutical microcapsules in the weightlessness of space. This is the second flight of the experiment, which originally flew on STS-53 in 1992. Microcapsules are tiny spheres about 50 to 100 micrometers in diameter (about the thickness of a strand of human hair). They are used to develop high-performance chemical products and innovative pharmaceuticals such as time-release prescriptions. The drug used in the MIS experiments was ampicillin.
Akanbi, Taiwo Olusesan; Barrow, Colin James
2018-01-29
In this study, several lipophilic hydroxytyrosyl esters were prepared enzymatically using immobilized lipase from Candida antarctica B. Oxidation tests showed that these conjugates are excellent antioxidants in lipid-based matrices, with hydroxytyrosyl eicosapentaenoate showing the highest antioxidant activity. Hydroxytyrosyl eicosapentaenoate effectively stabilized bulk fish oil, fish-oil-in-water emulsions and microencapsulated fish oil. The stabilizing effect of this antioxidant may either be because it orients itself with the omega-3 fatty acids in the oil, thereby protecting them against oxidation, or because this unstable fatty acid can preferentially oxidise, thus providing an additional mechanism of antioxidant protection. Hydroxytyrosyl eicosapentaenoate itself was stable for one year when stored at -20 °C.
Microencapsulation and storage stability of polyphenols from Vitis vinifera grape wastes.
Aizpurua-Olaizola, Oier; Navarro, Patricia; Vallejo, Asier; Olivares, Maitane; Etxebarria, Nestor; Usobiaga, Aresatz
2016-01-01
Wine production wastes are an interesting source of natural polyphenols. In this work, wine wastes extracts were encapsulated through vibration nozzle microencapsulation using sodium alginate as polymer and calcium chloride as hardening reagent. An experimental design approach was used to obtain calcium-alginate microbeads with high polyphenol content and good morphological features. In this way, the effect of pressure, frequency, voltage and the distance to the gelling bath were optimized for two nozzles of 150 and 300 μm. Long-term stability of the microbeads was studied for 6 months taking into account different storage conditions: temperatures (4 °C and room temperature), in darkness and in presence of light, and the addition of chitosan to the gelling bath. Encapsulated polyphenols were found to be much more stable compared to free polyphenols regardless the encapsulation procedure and storage conditions. Moreover, slightly lower degradation rates were obtained when chitosan was added to the gelling bath. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biscuits fortified with micro-encapsulated shrimp oil: characteristics and storage stability.
Takeungwongtrakul, Sirima; Benjakul, Soottawat
2017-04-01
Characteristics and storage stability of biscuits fortified with micro-encapsulated shrimp oil (MSO) were determined. The addition of MSO increased spread ratio, whilst decreased the thickness of biscuit. The highest hardness of biscuit was obtained with addition of 9 or 12% MSO. Biscuit surface showed higher redness and yellowness when MSO was incorporated ( p < 0.05). The addition of MSO up to 6% had no adverse effect on biscuit quality and acceptability. When biscuits added with 6% MSO were stored under different illumination conditions (light and dark), lipid oxidation in all samples increased throughout the storage of 12 days. Light accelerated lipid oxidation of biscuits as evidenced by the increases in both peroxide values and abundance of volatile compounds. No marked change in EPA, DHA and astaxanthin contents were noticeable in biscuit fortified with MSO after 12 days of storage. Therefore, the biscuit could be fortified with MSO up to 6% and must be stored in dark to assure its oxidative stability.
2003-05-07
KENNEDY SPACE CENTER, FLA. - From left, Barry Perlman, Pembroke Pines Charter Middle School in Florida, and Valerie Cassanto, Instrumentation Technology Associates, Inc., analyze one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.
2003-05-07
KENNEDY SPACE CENTER, FLA. - From left, Barry Perlman, Pembroke Pines Charter Middle School in Florida, and Valerie Cassanto, Instrumentation Technology Associates, Inc., process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.
2003-05-07
KENNEDY SPACE CENTER, FLA. - Barry Perlman, Pembroke Pines Charter Middle School in Florida, examines one of the experiments carried on mission STS-107 as Bob McLean, Southwest Texas State University, looks on. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.
Rocha-Selmi, Glaucia A; Bozza, Fernanda T; Thomazini, Marcelo; Bolini, Helena M A; Fávaro-Trindade, Carmen S
2013-08-15
The objective of this work was to microencapsulate aspartame by double emulsion followed by complex coacervation, aiming to protect it and control its release. Six treatments were prepared using sunflower oil to prepare the primary emulsion and gelatin and gum Arabic as the wall materials. The microcapsules were evaluated structurally with respect to their sorption isotherms and release into water (36°C and 80°C). The microcapsules were multinucleated, not very water-soluble or hygroscopic and showed reduced rates of equilibrium moisture content and release at both temperatures. FTIR confirmed complexation between the wall materials and the intact nature of aspartame. The results indicated it was possible to encapsulate aspartame with the techniques employed and that these protected the sweetener even at 80°C. The reduced solubility and low release rates indicated the enormous potential of the vehicle developed in controlling the release of the aspartame into the food, thus prolonging its sweetness. Copyright © 2013 Elsevier Ltd. All rights reserved.
Binsi, P K; Nayak, Natasha; Sarkar, P C; Jeyakumari, A; Muhamed Ashraf, P; Ninan, George; Ravishankar, C N
2017-03-15
The synergistic efficacy of gum arabic and sage polyphenols in stabilising capsule wall and protecting fish oil encapsulates from heat induced disruption and oxidative deterioration during spray drying was assessed. The emulsions prepared with sodium caseinate as wall polymer, gum arabic as wall co-polymer and sage extract as wall stabiliser was spray dried using a single fluid nozzle. Fish oil encapsulates stabilised with gum arabic and sage extract (SOE) exhibited significantly higher encapsulation efficiency compared to encapsulates containing gum arabic alone (FOE). Scanning electron microscopic and atomic force microscopic images revealed uniform encapsulates with good sphericity and smooth surface for SOE, compared to FOE powder. In vitro oil release of microencapsulates indicated negligible oil release in buffered saline whereas more than 80% of the oil loaded in encapsulates were released in simulated GI fluids. The encapsulates containing sage extract showed a lower rate of lipid oxidation during storage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Santana, Audirene A; Cano-Higuita, Diana M; de Oliveira, Rafael A; Telis, Vânia R N
2016-12-01
The objective of this work was to study the spray drying of jussara pulp using ternary mixtures of gum Arabic (GA) and modified starch (MS) together with either whey protein concentrate (WPC) or soy protein isolate (SPI), as the carrier agents. Two experimental mixture designs and triangular response surfaces were used to evaluate the effects of the mixtures on the responses for powders formulated with GA:MS:WPC and GA:MS:SPI, respectively. The spray drying process was selected for each carrier agent mixture, aiming to maximum the process yield (PY), solubility (S), retention of total anthocyanins (RTA) and encapsulation efficiency (EE). It was shown that the ternary formulations showed higher PY, S and RTA than the pure and binary formulations, as well as good results for EE and a low moisture content, showing that the use of GA and MS together with either WPC or SPI provide better microencapsulation of the jussara pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tsai, Wen-Chyan; Rizvi, Syed S H
2017-06-01
A new technique of liposomal microencapsulation, consisting of supercritical fluid extraction followed by rapid expansion of the supercritical solution and vacuum-driven cargo loading, was successfully developed. It is a continuous flow-through process without usage of any toxic organic solvent. For use as a coating material, the solubility of soy phospholipids in supercritical carbon dioxide was first determined using a dynamic equilibrium system and the data was correlated with the Chrastil model with good agreement. Liposomes were made with D-(+)-glucose as a cargo and their properties were characterized as functions of expansion pressure, temperature, and cargo loading rates. The highest encapsulation efficiency attained was 31.7% at the middle expansion pressure of 12.41MPa, highest expansion temperature of 90°C, and lowest cargo loading rate of 0.25mL/s. The large unilamellar vesicles and multivesicular vesicles were observed to be a majority of the liposomes produced using this eco-friendly process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Coghetto, Chaline Caren; Brinques, Graziela Brusch; Ayub, Marco Antônio Záchia
2016-12-01
Probiotic products are dietary supplements containing live microorganisms producing beneficial health effects on the host by improving intestinal balance and nutrient absorption. Among probiotic microorganisms, those classified as lactic acid bacteria are of major importance to the food and feed industries. Probiotic cells can be produced using alternative carbon and nitrogen sources, such as agroindustrial residues, at the same time contributing to reduce process costs. On the other hand, the survival of probiotic cells in formulated food products, as well as in the host gut, is an essential nutritional aspect concerning health benefits. Therefore, several cell microencapsulation techniques have been investigated as a way to improve cell viability and survival under adverse environmental conditions, such as the gastrointestinal milieu of hosts. In this review, different aspects of probiotic cells and technologies of their related products are discussed, including formulation of culture media, and aspects of cell microencapsulation techniques required to improve their survival in the host.
Sudha, M L; Chetana, R; Reddy, S Yella
2014-12-01
The effect of microencapsulated fat powders on the rheological characteristics and quality of biscuits were studied and compared with the control native fat normally used in the biscuit industry. Commercial bakery fat was encapsulated using sodium caseinate or skimmed milk powder (SMP) and the fat content in the powders was in the range of 73 - 78 % for sodium caseinate, whereas it ranged between 57.5 and 61 % with SMP and the sugar content was in the range of 9.8 - 17.5 %. The rheological characteristics indicated that with high sodium caseinate and SMP, the doughs were more elastic. The TPA analysis showed that with increasing the casein content in the fat powder, the dough hardness increased, and the doughs were less cohesive. The quality of biscuits was comparable with lower amount of encapsulating agents. Powders with lower amount of agents had comparable benefits on the rheological characteristics of the dough and biscuit quality.
Microencapsulation of metal-based phase change material for high-temperature thermal energy storage.
Nomura, Takahiro; Zhu, Chunyu; Sheng, Nan; Saito, Genki; Akiyama, Tomohiro
2015-03-13
Latent heat storage using alloys as phase change materials (PCMs) is an attractive option for high-temperature thermal energy storage. Encapsulation of these PCMs is essential for their successful use. However, so far, technology for producing microencapsulated PCMs (MEPCMs) that can be used above 500°C has not been established. Therefore, in this study, we developed Al-Si alloy microsphere MEPCMs covered by α-Al2O3 shells. The MEPCM was prepared in two steps: (1) the formation of an AlOOH shell on the PCM particles using a boehmite treatment, and (2) heat-oxidation treatment in an O2 atmosphere to form a stable α-Al2O3 shell. The MEPCM presented a melting point of 573°C and latent heat of 247 J g(-1). The cycling performance showed good durability. These results indicated the possibility of using MEPCM at high temperatures. The MEPCM developed in this study has great promise in future energy and chemical processes, such as exergy recuperation and process intensification.
Encapsulation of vegetable oils as source of omega-3 fatty acids for enriched functional foods.
Ruiz Ruiz, Jorge Carlos; Ortiz Vazquez, Elizabeth De La Luz; Segura Campos, Maira Rubi
2017-05-03
Polyunsaturated omega-3 fatty acids (PUFAs), a functional component present in vegetable oils, are generally recognized as being beneficial to health. Omega-3 PUFAs are rich in double bonds and unsaturated in nature; this attribute makes them highly susceptible to lipid oxidation and unfit for incorporation into long shelf life foods. The microencapsulation of oils in a polymeric matrix (mainly polysaccharides) offers the possibility of controlled release of the lipophilic functional ingredient and can be useful for the supplementation of foods with PUFAs. The present paper provides a literature review of different vegetable sources of omega-3 fatty acids, the functional effects of omega-3 fatty acids, different microencapsulation methods that can possibly be used for the encapsulation of oils, the properties of vegetable oil microcapsules, the effect of encapsulation on oxidation stability and fatty acid composition of vegetable oils, and the incorporation of long-chain omega-3 polyunsaturated fatty acids in foods.
Microencapsulation of Metal-based Phase Change Material for High-temperature Thermal Energy Storage
NASA Astrophysics Data System (ADS)
Nomura, Takahiro; Zhu, Chunyu; Sheng, Nan; Saito, Genki; Akiyama, Tomohiro
2015-03-01
Latent heat storage using alloys as phase change materials (PCMs) is an attractive option for high-temperature thermal energy storage. Encapsulation of these PCMs is essential for their successful use. However, so far, technology for producing microencapsulated PCMs (MEPCMs) that can be used above 500°C has not been established. Therefore, in this study, we developed Al-Si alloy microsphere MEPCMs covered by α-Al2O3 shells. The MEPCM was prepared in two steps: (1) the formation of an AlOOH shell on the PCM particles using a boehmite treatment, and (2) heat-oxidation treatment in an O2 atmosphere to form a stable α-Al2O3 shell. The MEPCM presented a melting point of 573°C and latent heat of 247 J g-1. The cycling performance showed good durability. These results indicated the possibility of using MEPCM at high temperatures. The MEPCM developed in this study has great promise in future energy and chemical processes, such as exergy recuperation and process intensification.
Terada, Takatoshi; Tagami, Manabu; Ohtsubo, Toshiro; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru
2016-07-25
In this report, a new solventless microencapsulation method by synthesizing polyurethane (PU) from polyol and isocyanate during an agglomeration process in a high-speed mixing apparatus was developed. Clothianidin (CTD), which is a neonicotinoid insecticide and highly effective against a wide variety of insect pests, was used as the model compound. The microencapsulated samples covered with PU (CTD microspheres) had a median diameter of <75μm and sustained-release properties. The CTD microspheres were analyzed by synchrotron X-ray computed tomography measurements. Multiple cores of CTD and other solid excipient were dispersed in PU. Although voids appeared in the CTD microspheres after CTD release, the spherical shape of the microspheres remained stable and no change in its framework was observed. The experimental release data were highly consistent with the Baker-Lonsdale model derived from drug release of spherical monolithic dispersions and consistent with the computed tomography measurements. Copyright © 2016 Elsevier B.V. All rights reserved.
Duchmann, R; Kaiser, I; Hermann, E; Mayet, W; Ewe, K; Meyer zum Büschenfelde, K H
1995-12-01
Hyporesponsiveness to a universe of bacterial and dietary antigens from the gut lumen is a hallmark of the intestinal immune system. Since hyperresponsiveness against these antigens might be associated with inflammation, we studied the immune response to the indigenous intestinal microflora in peripheral blood, inflamed and non-inflamed human intestine. Lamina propria monocuclear cells (LPMC) isolated from inflamed intestine but not peripheral blood mononuclear cells (PBMC) of IBD patients with active inflammatory disease strongly proliferated after co-culture with sonicates of bacteria from autologous intestine (BsA). Proliferation was inhibitable by anti-MHC class II MoAb, suggesting that it was driven by antigen. LPMC from adjacent non-inflamed intestinal areas of the same IBD patients and PBMC or LPMC isolated from non-inflamed intestine of controls and patients with IBD in remission, in contrast, did not proliferate. PBMC or LPMC which had been tolerant to bacteria from autologous intestine, however, strongly proliferated after co-culture with bacterial sonicates from heterologous intestine (BsH). This proliferation was associated with an expansion of CD8+ T cells, increased expression of activation markers on both CD4+ and CD8+ lymphocyte subsets, and production of IL-12, interferon-gamma (IFN-gamma), and IL-10 protein. These results show that tolerance selectively exists to intestinal flora from autologous but not heterologous intestine, and that tolerance is broken in intestinal inflammation. This may be an important mechanism for the perpetuation of chronic IBD.
Rohawi, Nur Syakila; Ramasamy, Kalavathy; Agatonovic-Kustrin, Snezana; Lim, Siong Meng
2018-06-05
A quantitative assay using high-performance thin-layer chromatography (HPTLC) was developed to investigate bile salt hydrolase (BSH) activity in Pediococcus pentosaceus LAB6 and Lactobacillus plantarum LAB12 probiotic bacteria isolated from Malaysian fermented food. Lactic acid bacteria (LAB) were cultured in de Man Rogosa and Sharpe (MRS) broth containing 1 mmol/L of sodium-based glyco- and tauro-conjugated bile salts for 24 h. The cultures were centrifuged and the resultant cell free supernatant was subjected to chromatographic separation on a HPTLC plate. Conjugated bile salts were quantified by densitometric scans at 550 nm and results were compared to digital image analysis of chromatographic plates after derivatisation with anisaldehyde/sulfuric acid. Standard curves for bile salts determination with both methods show good linearity with high coefficient of determination (R 2 ) between 0.97 and 0.99. Method validation indicates good sensitivity with low relative standard deviation (RSD) (<10%), low limits of detection (LOD) of 0.4 versus 0.2 μg and limit of quantification (LOQ) of 1.4 versus 0.7 μg, for densitometric vs digital image analysis method, respectively. The bile salt hydrolase activity was found to be higher against glyco- than tauro-conjugated bile salts (LAB6; 100% vs >38%: LAB12; 100% vs >75%). The present findings strongly show that quantitative analysis via digitally-enhanced HPTLC offers a rapid quantitative analysis for deconjugation of bile salts by probiotics. Copyright © 2018. Published by Elsevier B.V.
Duchmann, R; Kaiser, I; Hermann, E; Mayet, W; Ewe, K; Meyer zum Büschenfelde, K H
1995-01-01
Hyporesponsiveness to a universe of bacterial and dietary antigens from the gut lumen is a hallmark of the intestinal immune system. Since hyperresponsiveness against these antigens might be associated with inflammation, we studied the immune response to the indigenous intestinal microflora in peripheral blood, inflamed and non-inflamed human intestine. Lamina propria monocuclear cells (LPMC) isolated from inflamed intestine but not peripheral blood mononuclear cells (PBMC) of IBD patients with active inflammatory disease strongly proliferated after co-culture with sonicates of bacteria from autologous intestine (BsA). Proliferation was inhibitable by anti-MHC class II MoAb, suggesting that it was driven by antigen. LPMC from adjacent non-inflamed intestinal areas of the same IBD patients and PBMC or LPMC isolated from non-inflamed intestine of controls and patients with IBD in remission, in contrast, did not proliferate. PBMC or LPMC which had been tolerant to bacteria from autologous intestine, however, strongly proliferated after co-culture with bacterial sonicates from heterologous intestine (BsH). This proliferation was associated with an expansion of CD8+ T cells, increased expression of activation markers on both CD4+ and CD8+ lymphocyte subsets, and production of IL-12, interferon-gamma (IFN-gamma), and IL-10 protein. These results show that tolerance selectively exists to intestinal flora from autologous but not heterologous intestine, and that tolerance is broken in intestinal inflammation. This may be an important mechanism for the perpetuation of chronic IBD. PMID:8536356
Halogenation of microcapsule walls
NASA Technical Reports Server (NTRS)
Davis, T. R.; Schaab, C. K.; Scott, J. C.
1972-01-01
Procedure for halogenation of confining walls of both gelatin and gelatin-phenolic resin capsules is similar to that used for microencapsulation. Ten percent halogen content renders capsule wall nonburning; any higher content enhances flame-retardant properties of selected internal phase material. Halogenation decreases permeability of wall material to encapsulated materials.
Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses.
Zago, Miriam; Fornasari, Maria Emanuela; Carminati, Domenico; Burns, Patricia; Suàrez, Viviana; Vinderola, Gabriel; Reinheimer, Jorge; Giraffa, Giorgio
2011-08-01
Ninety-eight Lactobacillus plantarum strains isolated from Italian and Argentinean cheeses were evaluated for probiotic potential. After a preliminary subtractive screening based on the presence of msa and bsh genes, 27 strains were characterized. In general, the selected strains showed high resistance to lysozyme, good adaptation to simulated gastric juice, and a moderate to low bile tolerance. The capacity to agglutinate yeast cells in a mannose-specific manner, as well as the cell surface hydrophobicity was found to be variable among strains. Very high β-galactosidase activity was shown by a considerable number of the tested strains, whereas variable prebiotic utilization ability was observed. Only tetracycline resistance was observed in two highly resistant strains which harbored the tetM gene, whereas none of the strains showed β-glucuronidase activity or was capable of inhibiting pathogens. Three strains (Lp790, Lp813, and Lp998) were tested by in vivo trials. A considerable heterogeneity was found among a number of L. plantarum strains screened in this study, leading to the design of multiple cultures to cooperatively link strains showing the widest range of useful traits. Among the selected strains, Lp790, Lp813, and Lp998 showed the best probiotic potential and would be promising candidates for inclusion as starter cultures for the manufacture of probiotic fermented foods. Copyright © 2011 Elsevier Ltd. All rights reserved.
Oral Sulforaphane increases Phase II antioxidant enzymes in the human upper airway
Riedl, Marc A.; Saxon, Andrew; Diaz-Sanchez, David
2009-01-01
Background Cellular oxidative stress is an important factor in asthma and is thought to be the principle mechanism by which oxidant pollutants such as ozone and particulates mediate their pro-inflammatory effects. Endogenous Phase II enzymes abrogate oxidative stress through the scavenging of reactive oxygen species and metabolism of reactive chemicals. Objective We conducted a placebo-controlled dose escalation trial to investigate the in vivo effects of sulforaphane, a naturally occurring potent inducer of Phase II enzymes, on the expression of glutathione-s-transferase M1 (GSTM1), glutathione-s-transferase P1 (GSTP1), NADPH quinone oxidoreductase (NQO1), and hemoxygenase-1 (HO-1) in the upper airway of human subjects. Methods Study subjects consumed oral sulforaphane doses contained in a standardized broccoli sprout homogenate (BSH). RNA expression for selected Phase II enzymes was measured in nasal lavage cells by RT-PCR before and after sulforaphane dosing. Results All subjects tolerated oral sulforaphane dosing without significant adverse events. Increased Phase II enzyme expression in nasal lavage cells occurred in a dose-dependent manner with maximal enzyme induction observed at the highest dose of 200 grams broccoli sprouts prepared as BSH. Significant increases were seen in all sentinel Phase II enzymes RNA expression compared to baseline. Phase II enzyme induction was not seen with ingestion of non-sulforaphane containing alfalfa sprouts. Conclusion Oral sulforaphane safely and effectively induces mucosal Phase II enzyme expression in the upper airway of human subjects. This study demonstrates the potential of antioxidant Phase II enzymes induction in the human airway as a strategy to reduce the inflammatory effects of oxidative stress. Clinical Implications This study demonstrates the potential of enhancement of Phase II enzyme expression as a novel therapeutic strategy for oxidant induced airway disease. Capsule Summary A placebo-controlled dose escalation trial demonstrated that naturally occurring sulforaphane from broccoli sprouts can induce a potent increase in antioxidant Phase II enzymes in airway cells. PMID:19028145
Rieu, A; Guzzo, J; Piveteau, P
2010-02-01
To investigate how the survival of Listeria monocytogenes on parsley leaves may affect its ability to sustain process-related harsh conditions and its virulence. Parsley seedlings were spot inoculated with stationary phase cells of L. monocytogenes EGD-e and incubated for 15 days. Each day, bacterial cells were harvested and enumerated, and their ability to survive acetic acid challenge (90 min, pH 4.0), to colonize abiotic surfaces and to grow as biofilms was assessed. After a 3-log decrease over the first 48 h, the population stabilized to about 10(6) CFU g(-1) until the sixth day. After the sixth day, L. monocytogenes was no longer detected, even after specific enrichment. Incubation on parsley leaves affected the ability of L. monocytogenes to survive acetic acid challenge (90 min, pH 4.0) and to adhere to stainless steel although the ability to grow as biofilm was preserved. To further investigate these physiological alterations, the mRNA levels of six target genes (bsh, clpC, groEL, inlA, opuC, prfA) was quantified using reverse transcription qPCR after 5 h of incubation on parsley leaves. A decrease was observed in all but one (bsh) target, including groEL and clpC which are involved in resistance to salt and acid. Moreover, the decrease in the levels of inlA, prfA and opuC transcripts after incubation on parsley suggested a repression of some genes involved in pathogenicity. In vitro assessment of mammalian cell adherence and invasion using Caco-2 cells confirmed the repression of the virulence factor InlA; however, the virulence potential in vivo in the chick embryo model was not affected. Listeria monocytogenes did undergo rapid changes to adapt its physiology to the phyllosphere. This study highlights the physiological changes undergone by L. monocytogenes during/after survival on parsley leaves.
Prolonged nerve block by microencapsulated bupivacaine prevents acute postoperative pain in rats.
Ohri, Rachit; Blaskovich, Phillip; Wang, Jeffrey Chi-Fei; Pham, Lan; Nichols, Gary; Hildebrand, William; Costa, Daniel; Scarborough, Nelson; Herman, Clifford; Strichartz, Gary
2012-01-01
To minimize acute postoperative pain, a new formulation of slowly released bupivacaine was developed. Bupivacaine was microencapsulated at 60% (wt/wt) in poly-lactide-co-glycolide polymers and characterized for physicochemical properties and bupivacaine release kinetics. This formulation was injected around the rat sciatic nerve to produce an antinociceptive effect to toe pinch. Mechanical hyperalgesia following lateral plantar paw incision in rats was assessed for 7 to 14 days when the bupivacaine slow-release formulation was placed at the ipsilateral sciatic nerve and compared with the hyperalgesia that developed with various controls. Bupivacaine was released in vitro at a relatively constant rate over a period of ≈ 72 to 96 hours. Complete antinociception, shown as no response to toe pinch, lasted for 23 ± 7 hours, with a half-recovery time of 42 ± 8 hours after sciatic nerve injection of 0.4 mL of the microspheres delivering 34 mg of bupivacaine. Solutions of 0.5% (wt/vol) bupivacaine-HCl (0.1 mL) produced complete antinociception for less than 2 hours and recovery half-times of 2 hours. Postincisional mechanical hyperalgesia, shown by increased withdrawal responses to von Frey filaments, was absent for 24 hours and was lower than control for 96 hours, when the sciatic nerve was blocked by bupivacaine microspheres, whereas the 0.5% bupivacaine solution reduced postincisional pain for only 4 hours. Corresponding to its far greater functional blocking time, the microsphere-bupivacaine formulation was able to significantly reduce postoperative pain below control levels for up to 4 days. These findings of several days of postoperative pain relief, for an injectable formulation containing a single active agent, present an improved and potentially promising therapy to prevent acute pain after surgery.
NASA Astrophysics Data System (ADS)
Kim, Jae Gon
2017-04-01
Oxidation of sulfides produces acid rock drainage (ARD) upon their exposure to oxidation environment by construction and mining activities. The ARD causes the acidification and metal contamination of soil, surface water and groundwater, the damage of plant, the deterioration of landscape and the reduction of slope stability. The revegetation of slope surface is one of commonly adopted strategies to reduce erosion and to increase slope stability. However, the revegetation of the ARD producing slope surface is frequently failed due to its high acidity and toxic metal content. We developed a revegetation method consisting of microencapsualtion and artificial soil in the laboratory. The revegetation method was applied on the ARD producing slope on which the revegetation using soil coverage and seeding was failed and monitored the plant growth for one year. The phosphate solution was applied on sulfide containing rock to form stable Fe-phosphate mineral on the surface of sulfide, which worked as a physical barrier to prevent contacting oxidants such as oxygen and Fe3+ ion to the sulfide surface. After the microencapsulation, two artificial soil layers were constructed. The first layer containing organic matter, dolomite powder and soil was constructed at 2 cm thickness to neutralize the rising acidic capillary water from the subsurface and to remove the dissolved oxygen from the percolating rain water. Finally, the second layer containing seeds, organic matter, nutrients and soil was constructed at 3 cm thickness on the top. After application of the method, the pH of the soil below the artificial soil layer increased and the ARD production from the rock fragments reduced. The plant growth showed an ordinary state while the plant died two month after germination for the previous revegetation trial. No soil erosion occurred from the slope during the one year field test.
Controlled release of Pantoea agglomerans E325 for biocontrol of fire blight
USDA-ARS?s Scientific Manuscript database
Microencapsulation and controlled release of Pantoea agglomerans strain E325 (E325), which is an antagonist to bacterial pathogen (Erwinia amylovora) of fire blight, a devastating disease of apple and pear, have been investigated. Uniform core-shell alginate microcapsules (AMCs), 60-300 µm in diamet...
USDA-ARS?s Scientific Manuscript database
Prenatal calcium and iron supplements are recommended in settings of low dietary calcium intake and high prevalence of anemia. However, calcium administration may inhibit iron absorption. To overcome calcium-iron interactions, we developed a multi-micronutrient powder containing iron (60 mg), folic ...
Developing a strawberry yogurt fortified with marine fish oil
USDA-ARS?s Scientific Manuscript database
Fortified dairy products appeal to a wide variety of consumers and have the potential to increase sales in the yogurt industry and contribute to boost the intake of omega-3 fatty acids. The objectives of this study were to develop a strawberry yogurt containing microencapsulated salmon oil (2% w/v) ...
USDA-ARS?s Scientific Manuscript database
Trichoderma conidia are mostly produced by solid fermentation systems. Inoculum is produced by liquid culturing, and then transferred to solid substrate for aerial conidial production. Aerial conidia of T. harzianum are hydrophilic in nature, and it is difficult to separate them from the solid subst...
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Valerie Cassanto is one of the scientists recovering experiments found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., works on an experiment found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
Prime Contract Awards Over $25,000 by Major System, Contractor and State. Part 2. (BSH-SMR)
1989-01-01
tI CI 4) 0 w- - 4~4 C -*. nowO )-4o -040 0 OL*l (M m 100m-1-1v-qmm 00L -t(M- 04-X 4nII W- --4Ww .nw -. 4-.M -- 4WC W-4LA -4 0QW U C W 40Ř 0-* W...L AL 0 0. J 2W -4~ 00 00L37 00 00 0U 00: 0v a0 0 04 0A < ) - 347 =N- -440 C’ ) .rN- . )-4 ~4 -4l C) M - 0 0(I) -IL.I0 Lb f 0UC0 C’ 03 U7-t0U -4N U
Transesterification of oil mixtures catalyzed by microencapsulated cutinase in reversed micelles.
Badenes, Sara M; Lemos, Francisco; Cabral, Joaquim M S
2010-03-01
Recombinant cutinase from Fusarium solani pisi was used to catalyze the transesterification reaction between a mixture of triglycerides (oils) and methanol in reversed micelles of bis(2-ethylhexyl) sodium sulfosuccinate (AOT) in isooctane for the purposes of producing biodiesel. The use of a bi-phase lipase-catalyzed system brings advantages in terms of catalyst re-use and the control of water activity in the medium and around the enzyme micro-environment. Small-scale batch studies were performed to study the influence of the initial enzyme and alcohol concentrations, and the substrates molar ratio. Conversions in excess of 75 were obtained with reaction times under 24 h, which makes this enzymatic process highly competitive when compared to similar lipase catalyzed reactions for biodiesel production using methanol.
Youan, Bi-Botti Célestin
2003-01-01
The aim of this work was to encapsulate superoxide dismutase (SOD) in poly(epsilon-caprolactone) (PCL) microparticles by reverse micelle solvent evaporation. The concentration of PCL, the hydrophile-lipophile balance (HLB), and concentration of the sucrose ester used as surfactant in the organic phase were investigated as formulation variables. Relatively higher encapsulation efficiency (approximately 48%) and retained enzymatic activity (>90%) were obtained with microparticle formulation made from the 20% (w/v) PCL and 0.05% (w/v) sucrose ester of HLB = 6. This formulation allowed the in vitro release of SOD for at least 72 hr. These results showed that reverse micelle solvent evaporation can be used to efficiently encapsulate SOD in PCL microparticles. Such formulations may improve the bioavailability of SOD.
Combined Sprays of Sex Pheromone and Insecticides to Attract and Kill Codling Moth
USDA-ARS?s Scientific Manuscript database
Field trials were conducted to evaluate the potential of an "attract-and-kill" approach for control of codling moth by adding half-rates of microencapsulated (MEC) lambda-cyhalothrin or acetamiprid to a sex pheromone formulation in Turkey and the USA in 2006. Two apple orchards were divided into six...