Sample records for microextraction technique based

  1. A comparison of various modes of liquid-liquid based microextraction techniques: determination of picric acid.

    PubMed

    Burdel, Martin; Šandrejová, Jana; Balogh, Ioseph S; Vishnikin, Andriy; Andruch, Vasil

    2013-03-01

    Three modes of liquid-liquid based microextraction techniques--namely auxiliary solvent-assisted dispersive liquid-liquid microextraction, auxiliary solvent-assisted dispersive liquid-liquid microextraction with low-solvent consumption, and ultrasound-assisted emulsification microextraction--were compared. Picric acid was used as the model analyte. The determination is based on the reaction of picric acid with Astra Phloxine reagent to produce an ion associate easily extractable by various organic solvents, followed by spectrophotometric detection at 558 nm. Each of the compared procedures has both advantages and disadvantages. The main benefit of ultrasound-assisted emulsification microextraction is that no hazardous chlorinated extraction solvents and no dispersive solvent are necessary. Therefore, this procedure was selected for validation. Under optimized experimental conditions (pH 3, 7 × 10(-5) mol/L of Astra Phloxine, and 100 μL of toluene), the calibration plot was linear in the range of 0.02-0.14 mg/L and the LOD was 7 μg/L of picric acid. The developed procedure was applied to the analysis of spiked water samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.

    PubMed

    An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L

    2017-06-02

    The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Application of ionic liquid in liquid phase microextraction technology.

    PubMed

    Han, Dandan; Tang, Baokun; Lee, Yu Ri; Row, Kyung Ho

    2012-11-01

    Ionic liquids (ILs) are novel nonmolecular solvents. Their unique properties, such as high thermal stability, tunable viscosity, negligible vapor pressure, nonflammability, and good solubility for inorganic and organic compounds, make them excellent candidates as extraction media for a range of microextraction techniques. Many physical properties of ILs can be varied, and the structural design can be tuned to impart the desired functionality and enhance the analyte extraction selectivity, efficiency, and sensitivity. This paper provides an overview of the applications of ILs in liquid phase microextraction technology, such as single-drop microextraction, hollow fiber based liquid phase microextraction, and dispersive liquid-liquid microextraction. The sensitivity, linear calibration range, and detection limits for a range of target analytes in the methods were analyzed to determine the advantages of ILs in liquid phase microextraction. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Microextraction techniques for the determination of volatile and semivolatile organic compounds from plants: a review.

    PubMed

    Yang, Cui; Wang, Juan; Li, Donghao

    2013-10-17

    Vegetables and fruits are necessary for human health, and traditional Chinese medicine that uses plant materials can cure diseases. Thus, understanding the composition of plant matrix has gained increased attention in recent years. Since plant matrix is very complex, the extraction, separation and quantitation of these chemicals are challenging. In this review we focus on the microextraction techniques used in the determination of volatile and semivolatile organic compounds (such as esters, alcohols, aldehydes, hydrocarbons, ketones, terpenes, sesquiterpene, phenols, acids, plant secondary metabolites and pesticides) from plants (e.g., fruits, vegetables, medicinal plants, tree leaves, etc.). These microextraction techniques include: solid phase microextraction (SPME), stir-bar sorptive extraction (SBSE), single drop microextraction (SDME), hollow fiber liquid phase microextraction (HF-LPME), dispersive liquid liquid microextraction (DLLME), and gas purge microsyringe extraction (GP-MSE). We have taken into consideration papers published from 2008 to the end of January 2013, and provided critical and interpretative review on these techniques, and formulated future trends in microextraction for the determination of volatile and semivolatile compounds from plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Evaluation of needle trap micro-extraction and solid-phase micro-extraction: Obtaining comprehensive information on volatile emissions from in vitro cultures.

    PubMed

    Oertel, Peter; Bergmann, Andreas; Fischer, Sina; Trefz, Phillip; Küntzel, Anne; Reinhold, Petra; Köhler, Heike; Schubert, Jochen K; Miekisch, Wolfram

    2018-05-14

    Volatile organic compounds (VOCs) emitted from in vitro cultures may reveal information on species and metabolism. Owing to low nmol L -1 concentration ranges, pre-concentration techniques are required for gas chromatography-mass spectrometry (GC-MS) based analyses. This study was intended to compare the efficiency of established micro-extraction techniques - solid-phase micro-extraction (SPME) and needle-trap micro-extraction (NTME) - for the analysis of complex VOC patterns. For SPME, a 75 μm Carboxen®/polydimethylsiloxane fiber was used. The NTME needle was packed with divinylbenzene, Carbopack X and Carboxen 1000. The headspace was sampled bi-directionally. Seventy-two VOCs were calibrated by reference standard mixtures in the range of 0.041-62.24 nmol L -1 by means of GC-MS. Both pre-concentration methods were applied to profile VOCs from cultures of Mycobacterium avium ssp. paratuberculosis. Limits of detection ranged from 0.004 to 3.93 nmol L -1 (median = 0.030 nmol L -1 ) for NTME and from 0.001 to 5.684 nmol L -1 (median = 0.043 nmol L -1 ) for SPME. NTME showed advantages in assessing polar compounds such as alcohols. SPME showed advantages in reproducibility but disadvantages in sensitivity for N-containing compounds. Micro-extraction techniques such as SPME and NTME are well suited for trace VOC profiling over cultures if the limitations of each technique is taken into account. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Comparison of two novel in-syringe dispersive liquid-liquid microextraction techniques for the determination of iodide in water samples using spectrophotometry.

    PubMed

    Kaykhaii, Massoud; Sargazi, Mona

    2014-01-01

    Two new, rapid methodologies have been developed and applied successfully for the determination of trace levels of iodide in real water samples. Both techniques are based on a combination of in-syringe dispersive liquid-liquid microextraction (IS-DLLME) and micro-volume UV-Vis spectrophotometry. In the first technique, iodide is oxidized with nitrous acid to the colorless anion of ICl2(-) at high concentration of hydrochloric acid. Rhodamine B is added and by means of one step IS-DLLME, the ion-pair formed was extracted into toluene and measured spectrophotometrically. Acetone is used as dispersive solvent. The second method is based on the IS-DLLME microextraction of iodide as iodide/1, 10-phenanthroline-iron((II)) chelate cation ion-pair (colored) into nitrobenzene. Methanol was selected as dispersive solvent. Optimal conditions for iodide extraction were determined for both approaches. Methods are compared in terms of analytical parameters such as precision, accuracy, speed and limit of detection. Both methods were successfully applied to determining iodide in tap and river water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Solid Phase Microextraction and Related Techniques for Drugs in Biological Samples

    PubMed Central

    Moein, Mohammad Mahdi; Said, Rana; Bassyouni, Fatma

    2014-01-01

    In drug discovery and development, the quantification of drugs in biological samples is an important task for the determination of the physiological performance of the investigated drugs. After sampling, the next step in the analytical process is sample preparation. Because of the low concentration levels of drug in plasma and the variety of the metabolites, the selected extraction technique should be virtually exhaustive. Recent developments of sample handling techniques are directed, from one side, toward automatization and online coupling of sample preparation units. The primary objective of this review is to present the recent developments in microextraction sample preparation methods for analysis of drugs in biological fluids. Microextraction techniques allow for less consumption of solvent, reagents, and packing materials, and small sample volumes can be used. In this review the use of solid phase microextraction (SPME), microextraction in packed sorbent (MEPS), and stir-bar sorbtive extraction (SBSE) in drug analysis will be discussed. In addition, the use of new sorbents such as monoliths and molecularly imprinted polymers will be presented. PMID:24688797

  8. Gas flow headspace liquid phase microextraction.

    PubMed

    Yang, Cui; Qiu, Jinxue; Ren, Chunyan; Piao, Xiangfan; Li, Xifeng; Wu, Xue; Li, Donghao

    2009-11-06

    There is a trend towards the use of enrichment techniques such as microextraction in the analysis of trace chemicals. Based on the theory of ideal gases, theory of gas chromatography and the original headspace liquid phase microextraction (HS-LPME) technique, a simple gas flow headspace liquid phase microextraction (GF-HS-LPME) technique has been developed, where the extracting gas phase volume is increased using a gas flow. The system is an open system, where an inert gas containing the target compounds flows continuously through a special gas outlet channel (D=1.8mm), and the target compounds are trapped on a solvent microdrop (2.4 microL) hanging on the microsyringe tip, as a result, a high enrichment factor is obtained. The parameters affecting the enrichment factor, such as the gas flow rate, the position of the microdrop, the diameter of the gas outlet channel, the temperatures of the extracting solvent and of the sample, and the extraction time, were systematically optimized for four types of polycyclic aromatic hydrocarbons. The results were compared with results obtained from HS-LPME. Under the optimized conditions (where the extraction time and the volume of the extracting sample vial were fixed at 20min and 10mL, respectively), detection limits (S/N=3) were approximately a factor of 4 lower than those for the original HS-LPME technique. The method was validated by comparison of the GF-HS-LPME and HS-LPME techniques using data for PAHs from environmental sediment samples.

  9. Green aspects, developments and perspectives of liquid phase microextraction techniques.

    PubMed

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2014-02-01

    Determination of analytes at trace levels in complex samples (e.g. biological or contaminated water or soils) are often required for the environmental assessment and monitoring as well as for scientific research in the field of environmental pollution. A limited number of analytical techniques are sensitive enough for the direct determination of trace components in samples and, because of that, a preliminary step of the analyte isolation/enrichment prior to analysis is required in many cases. In this work the newest trends and innovations in liquid phase microextraction, like: single-drop microextraction (SDME), hollow fiber liquid-phase microextraction (HF-LPME), and dispersive liquid-liquid microextraction (DLLME) have been discussed, including their critical evaluation and possible application in analytical practice. The described modifications of extraction techniques deal with system miniaturization and/or automation, the use of ultrasound and physical agitation, and electrochemical methods. Particular attention was given to pro-ecological aspects therefore the possible use of novel, non-toxic extracting agents, inter alia, ionic liquids, coacervates, surfactant solutions and reverse micelles in the liquid phase microextraction techniques has been evaluated in depth. Also, new methodological solutions and the related instruments and devices for the efficient liquid phase micoextraction of analytes, which have found application at the stage of procedure prior to chromatographic determination, are presented. © 2013 Published by Elsevier B.V.

  10. Solventless and solvent-minimized sample preparation techniques for determining currently used pesticides in water samples: a review.

    PubMed

    Tankiewicz, Maciej; Fenik, Jolanta; Biziuk, Marek

    2011-10-30

    The intensification of agriculture means that increasing amounts of toxic organic and inorganic compounds are entering the environment. The pesticides generally applied nowadays are regarded as some of the most dangerous contaminants of the environment. Their presence in the environment, especially in water, is hazardous because they cause human beings to become more susceptible to disease. For these reasons, it is essential to monitor pesticide residues in the environment with the aid of all accessible analytical methods. The analysis of samples for the presence of pesticides is problematic, because of the laborious and time-consuming operations involved in preparing samples for analysis, which themselves may be a source of additional contaminations and errors. To date, it has been standard practice to use large quantities of organic solvents in the sample preparation process; but as these solvents are themselves hazardous, solventless and solvent-minimized techniques are coming into use. This paper discusses the most commonly used over the last 15 years sample preparation techniques for monitoring organophosphorus and organonitrogen pesticides residue in water samples. Furthermore, a significant trend in sample preparation, in accordance with the principles of 'Green Chemistry' is the simplification, miniaturization and automation of analytical techniques. In view of this aspect, several novel techniques are being developed in order to reduce the analysis step, increase the sample throughput and to improve the quality and the sensitivity of analytical methods. The paper describes extraction techniques requiring the use of solvents - liquid-liquid extraction (LLE) and its modifications, membrane extraction techniques, hollow fibre-protected two-phase solvent microextraction, liquid phase microextraction based on the solidification of a floating organic drop (LPME-SFO), solid-phase extraction (SPE) and single-drop microextraction (SDME) - as well as solvent-free techniques - solid phase microextraction (SPME) and stir bar sorptive extraction (SBSE). The advantages and drawbacks of these techniques are also discussed, and some solutions to their limitations are proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Analysis of Whiskey by Dispersive Liquid-Liquid Microextraction Coupled with Gas Chromatography/Mass Spectrometry: An Upper Division Analytical Chemistry Experiment Guided by Green Chemistry

    ERIC Educational Resources Information Center

    Owens, Janel E.; Zimmerman, Laura B.; Gardner, Michael A.; Lowe, Luis E.

    2016-01-01

    Analysis of whiskey samples prepared by a green microextraction technique, dispersive liquid-liquid microextraction (DLLME), before analysis by a qualitative gas chromatography-mass spectrometry (GC/MS) method, is described as a laboratory experiment for an upper division instrumental methods of analysis laboratory course. Here, aroma compounds in…

  12. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    PubMed

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2013-12-20

    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Using Single Drop Microextraction for Headspace Analysis with Gas Chromatography

    ERIC Educational Resources Information Center

    Riccio, Daniel; Wood, Derrick C.; Miller, James M.

    2008-01-01

    Headspace (HS) gas chromatography (GC) is commonly used to analyze samples that contain non-volatiles. In 1996, a new sampling technique called single drop microextraction, SDME, was introduced, and in 2001 it was applied to HS analysis. It is a simple technique that uses equipment normally found in the undergraduate laboratory, making it ideal…

  14. An evaporation-assisted dispersive liquid-liquid microextraction technique as a simple tool for high performance liquid chromatography tandem-mass spectrometry determination of insecticides in wine.

    PubMed

    Timofeeva, Irina; Kanashina, Daria; Moskvin, Leonid; Bulatov, Andrey

    2017-08-25

    A sample pre-treatment technique based on evaporation-assisted dispersive liquid-liquid microextraction (EVA-DLLME), followed by HPLC-MS/MS has been developed for the determination of organophosphate insecticides (malathion, diazinon, phosalone) in wine samples. The procedure includes the addition of mixture of organic solvents (with density higher than water), consisting of the extraction (low density) and volatile (high density) solvents, to aqueous sample followed by heating of the mixture obtained, what promotes the volatile solvent evaporation and moving extraction solvent droplets from down to top of the aqueous sample and, as a consequence, microextraction of target analytes. To initiate the evaporation process an initiator is required. It was established that hexanol (extraction solvent) and dichloromethane (volatile solvent) mixture (1:1, v/v) provides effective microextraction of the insecticides from wine samples with recovery from 92 to 103%. The conditions of insecticides' microextraction such as selection of extraction solvent, ratio of hexanol/dichloromethane and hexanol/sample, type and concentration of initiator, and effect of ethanol as one of the main components of wine have been studied. Under optimal experimental conditions the linear detection ranges were found to be 10 -7 -10 -3 gL -1 for malathion, 10 -9 -10 -4 gL -1 for diazinon, and 10 -6 -10 -2 gL -1 for phosalone. The LODs, calculated from a blank test, based on 3σ, found to be 3×10 -8 gL -1 for malathion, 3×10 -10 gL -1 for diazinon and 3×10 -7 gL -1 for phosalone. The advantages of EVA-DLLME are the rapidity, simplicity, high sample throughput and low cost. As an outcome, the analytical results agreed fairly well with the results obtained by a reference GC-MS method. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Determination of metal ions in tea samples using task-specific ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction coupled to liquid chromatography with ultraviolet detection.

    PubMed

    Werner, Justyna

    2016-04-01

    Task-specific ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction was used for the preconcentration of cadmium(II), cobalt(II), and lead(II) ions in tea samples, which were subsequently analyzed by liquid chromatography with UV detection. The proposed method of preconcentration is free of volatile organic compounds, which are often used as extractants and dispersing solvents in classic techniques of microextraction. A task-specific ionic liquid trioctylmethylammonium thiosalicylate was used as an extractant and a chelating agent. Ultrasound was used to disperse the ionic liquid. After microextraction, the phases were separated by centrifugation, and the ionic liquid phase was solubilized in methanol and directly injected into the liquid chromatograph. Selected microextraction parameters, such as the volume of ionic liquid, the pH of the sample, the duration of ultrasound treatment, the speed and time of centrifugation, and the effect of ionic strength, were optimized. Under optimal conditions an enrichment factor of 200 was obtained for each analyte. The limits of detection were 0.002 mg/kg for Cd(II), 0.009 mg/kg for Co(II), and 0.013 mg/kg for Pb(II). The accuracy of the proposed method was evaluated by an analysis of the Certified Reference Materials (INCT-TL-1, INCT-MPH-2) with the recovery values in the range of 90-104%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Using Single Drop Microextraction for Headspace Analysis with Gas Chromatography

    NASA Astrophysics Data System (ADS)

    Riccio, Daniel; Wood, Derrick C.; Miller, James M.

    2008-07-01

    Headspace (HS) gas chromatography (GC) is commonly used to analyze samples that contain non-volatiles. In 1996, a new sampling technique called single drop microextraction, SDME, was introduced, and in 2001 it was applied to HS analysis. It is a simple technique that uses equipment normally found in the undergraduate laboratory, making it ideal for instructional use, especially to illustrate HS analysis or as an alternative to solid-phase microextraction (SPME) to which it is very similar. The basic principles and practice of HS-GC using SDME are described, including a complete review of the literature. Some possible experiments are suggested using water and N -methylpyrrolidone (NMP) as solvents.

  17. Simultaneous sampling and analysis of indoor air infested with Cimex lectularius L. (Hemiptera: Cimicidae) by solid phase microextraction, thin film microextraction and needle trap device.

    PubMed

    Eom, In-Yong; Risticevic, Sanja; Pawliszyn, Janusz

    2012-02-24

    Air in a room infested by Cimex lectularius L. (Hemiptera: Cimicidae) was sampled simultaneously by three different sampling devices including solid phase microextraction (SPME) fiber coatings, thin film microextraction (TFME) devices, and needle trap devices (NTDs) and then analyzed by gas chromatography-mass spectrometry (GC-MS). The main focus of this study was to fully characterize indoor air by identifying compounds extracted by three different microextraction formats and, therefore, perform both the device comparison and more complete characterization of C. lectularius pheromone. The NTD technique was capable of extracting both (E)-2-hexenal and (E)-2-octenal, which were previously identified as alarm pheromones of bedbugs, and superior NTD recoveries for these two components allowed reliable identification based on mass spectral library searching and linear temperature programmed retention index (LTPRI) technique. While the use of DVB/CAR/PDMS SPME fiber coatings provided complementary sample fingerprinting and profiling results, TFME sampling devices provided discriminative extraction coverage toward highly volatile analytes. In addition to two alarm pheromones, relative abundances of all other analytes were recorded for all three devices and aligned across all examined samples, namely, highly infested area, less infested area, and control samples which were characterized by different bedbug populations. The results presented in the current study illustrate comprehensive characterization of infested indoor air samples through the use of three different non-invasive SPME formats and identification of novel components comprising C. lectularius pheromone, therefore, promising future alternatives for use of potential synthetic pheromones for detection of infestations. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Magnetic ionic liquid-based dispersive liquid-liquid microextraction technique for preconcentration and ultra-trace determination of Cd in honey.

    PubMed

    Fiorentini, Emiliano F; Escudero, Leticia B; Wuilloud, Rodolfo G

    2018-04-19

    A simple, highly efficient, batch, and centrifuge-less dispersive liquid-liquid microextraction method based on a magnetic ionic liquid (MIL-DLLME) and electrothermal atomic absorption spectrometry (ETAAS) detection was developed for ultra-trace Cd determination in honey. Initially, Cd(II) was chelated with ammonium diethyldithiophosphate (DDTP) at pH 0.5 followed by its extraction with the MIL trihexyl(tetradecyl)phosphonium tetrachloroferrate(III) ([P 6,6,6,14 ]FeCl 4 ) and acetonitrile as dispersant. The MIL phase containing the analyte was separated from the aqueous phase using only a magnet. A back-extraction procedure was applied to recover Cd from the MIL phase using diluted HNO 3 and this solution was directly injected into the graphite furnace of ETAAS instrument. An extraction efficiency of 93% and a sensitivity enhancement factor of 112 were obtained under optimal experimental conditions. The detection limit (LOD) was 0.4 ng L -1 Cd, while the relative standard deviation (RSD) was 3.8% (at 2 μg L -1 Cd and n = 10), calculated from the peak height of absorbance signals. This work reports the first application of the MIL [P 6,6,6,14 ]FeCl 4 along with the DLLME technique for the successful determination of Cd at trace levels in different honey samples. Graphical abstract Preconcentration of ultratraces of Cd in honey using a magnetic ionic liquid and dispersive liquid-liquid microextraction technique.

  19. Evaluation of two membrane-based microextraction techniques for the determination of endocrine disruptors in aqueous samples by HPLC with diode array detection.

    PubMed

    Luiz Oenning, Anderson; Lopes, Daniela; Neves Dias, Adriana; Merib, Josias; Carasek, Eduardo

    2017-11-01

    In this study, the viability of two membrane-based microextraction techniques for the determination of endocrine disruptors by high-performance liquid chromatography with diode array detection was evaluated: hollow fiber microporous membrane liquid-liquid extraction and hollow-fiber-supported dispersive liquid-liquid microextraction. The extraction efficiencies obtained for methylparaben, ethylparaben, bisphenol A, benzophenone, and 2-ethylhexyl-4-methoxycinnamate from aqueous matrices obtained using both approaches were compared and showed that hollow fiber microporous membrane liquid-liquid extraction exhibited higher extraction efficiency for most of the compounds studied. Therefore, a detailed optimization of the extraction procedure was carried out with this technique. The optimization of the extraction conditions and liquid desorption were performed by univariate analysis. The optimal conditions for the method were supported liquid membrane with 1-octanol for 10 s, sample pH 7, addition of 15% w/v of NaCl, extraction time of 30 min, and liquid desorption in 150 μL of acetonitrile/methanol (50:50 v/v) for 5 min. The linear correlation coefficients were higher than 0.9936. The limits of detection were 0.5-4.6 μg/L and the limits of quantification were 2-16 μg/L. The analyte relative recoveries were 67-116%, and the relative standard deviations were less than 15.5%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A rapid space-resolved solid-phase microextraction method as a powerful tool to determine contaminants in wine based on their volatility.

    PubMed

    Liu, Min; Peng, Qing-Qing; Chen, Yu-Feng; Tang, Qian; Feng, Qing

    2015-06-01

    A novel space-resolved solid phase microextraction (SR-SPME) technique was developed to facilitate simultaneously analyte monitoring within heterogeneous samples. Graphene (G) and graphene oxide (GO) were coated separately to the segmented fibers which were successfully used for the solid-phase microextraction of two contaminants with dramatically different volatility: 2,4,6-trichloroanisole (TCA) and dibutyl phthalate (DBP). The space-resolved fiber showed good precision (5.4%, 6.8%), low detection limits (0.3ng/L, 0.3ng/L), and wide linearity (1.0-250.0ng/L, 1.0-250.0ng/L) under the optimized conditions for TCA and DBP, respectively. The method was applied to simultaneous analysis of the two contaminates with satisfactory recoveries, which were 96.96% and 98.20% for wine samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Microextraction by Packed Sorbent (MEPS) and Solid-Phase Microextraction (SPME) as Sample Preparation Procedures for the Metabolomic Profiling of Urine

    PubMed Central

    Silva, Catarina; Cavaco, Carina; Perestrelo, Rosa; Pereira, Jorge; Câmara, José S.

    2014-01-01

    For a long time, sample preparation was unrecognized as a critical issue in the analytical methodology, thus limiting the performance that could be achieved. However, the improvement of microextraction techniques, particularly microextraction by packed sorbent (MEPS) and solid-phase microextraction (SPME), completely modified this scenario by introducing unprecedented control over this process. Urine is a biological fluid that is very interesting for metabolomics studies, allowing human health and disease characterization in a minimally invasive form. In this manuscript, we will critically review the most relevant and promising works in this field, highlighting how the metabolomic profiling of urine can be an extremely valuable tool for the early diagnosis of highly prevalent diseases, such as cardiovascular, oncologic and neurodegenerative ones. PMID:24958388

  2. Novel strategies for sample preparation in forensic toxicology.

    PubMed

    Samanidou, Victoria; Kovatsi, Leda; Fragou, Domniki; Rentifis, Konstantinos

    2011-09-01

    This paper provides a review of novel strategies for sample preparation in forensic toxicology. The review initially outlines the principle of each technique, followed by sections addressing each class of abused drugs separately. The novel strategies currently reviewed focus on the preparation of various biological samples for the subsequent determination of opiates, benzodiazepines, amphetamines, cocaine, hallucinogens, tricyclic antidepressants, antipsychotics and cannabinoids. According to our experience, these analytes are the most frequently responsible for intoxications in Greece. The applications of techniques such as disposable pipette extraction, microextraction by packed sorbent, matrix solid-phase dispersion, solid-phase microextraction, polymer monolith microextraction, stir bar sorptive extraction and others, which are rapidly gaining acceptance in the field of toxicology, are currently reviewed.

  3. Determination of fluoroquinolone antibiotics via ionic-liquid-based, salt-induced, dual microextraction in swine feed.

    PubMed

    Wang, Huili; Gao, Ming; Gao, Jiajia; Yu, Nana; Huang, Hong; Yu, Qing; Wang, Xuedong

    2016-09-01

    In conventional microextraction procedures, the disperser (organic solvent or ionic liquid) is left in the aqueous phase and discarded after finishing the microextraction process. Because the disperser is water-soluble, it results in low extraction recovery for polar compounds. In this investigation, an ionic-liquid-based microextraction (ILBME) was integrated with salting-out assisted liquid-liquid microextraction (SALLME) to build an ionic-liquid-based, salt-induced, dual microextraction (ILSDME) for isolation of five fluoroquinolone antibiotics (FQs) with high polarity (log P, -1.0 to 1.0). The proposed ILSDME method incorporates a dual microextraction by converting the disperser in the ILBME to the extractor in the SALLME. Optimization of key factors was conducted by integrating single-factor experiments and central composite design. The optimized experimental parameters were 80 μL [C8MIM][PF6] as extractor, 505 μL acetone as disperser, pH = 2.0, 4.1 min extraction time, and 4.2 g of Na2SO4. Under optimized conditions, high ERs (90.6-103.2 %) and low LODs (0.07-0.61 μg kg(-1)) were determined for five FQs in swine feed. Experimental precision based on RSDs was 1.4-5.2 % for intra-day and 2.4-6.9 % for inter-day analyses. The combination of ILBME with SALLME increased FQ recoveries by 15-20 % as compared with SALLME, demonstrating that the ILSDME method can enhance extraction efficiency for polar compounds compared to single-step microextraction. Therefore, the ILSDME method developed in this study has wide application for pretreatment of moderately to highly polar pollutants in complex matrices. Graphical Abstract A dual microextraction was developed by integrating ionic-liquid-based microextraction with salting-out assisted liquid-liquid microextraction for isolation of five fluoroquinolone antibiotics (FQs) with high polarity (log P = -1.0 to 1.0). The principle of dual microextraction is based on converting the remaining disperser from the first microextraction into an extractor in the second microextraction. Single-factor experiment and central composite design were applied for optimizing operational parameters using 3D response surfaces and contour lines. Under optimized conditions, the method provided high extraction recoveries and low LODs for five FQs in swine feed. The prominent advantage of the dual microextraction is rapid and highly efficient extraction of moderately to highly polar fluoroquinolones from complex matrices.

  4. Development of a New Microextraction Fiber Combined to On-Line Sample Stacking Capillary Electrophoresis UV Detection for Acidic Drugs Determination in Real Water Samples.

    PubMed

    Espina-Benitez, Maria; Araujo, Lilia; Prieto, Avismelsi; Navalón, Alberto; Vílchez, José Luis; Valera, Paola; Zambrano, Ana; Dugas, Vincent

    2017-07-07

    A new analytical method coupling a (off-line) solid-phase microextraction with an on-line capillary electrophoresis (CE) sample enrichment technique was developed for the analysis of ketoprofen, naproxen and clofibric acid from water samples, which are known as contaminants of emerging concern in aquatic environments. New solid-phase microextraction fibers based on physical coupling of chromatographic supports onto epoxy glue coated needle were studied for the off-line preconcentration of these micropollutants. Identification and quantification of such acidic drugs were done by capillary zone electrophoresis (CZE) using ultraviolet diode array detection (DAD). Further enhancement of concentration sensitivity detection was achieved by on-line CE "acetonitrile stacking" preconcentration technique. Among the eight chromatographic supports investigated, Porapak Q sorbent showed higher extraction and preconcentration capacities. The screening of parameters that influence the microextraction process was carried out using a two-level fractional factorial. Optimization of the most relevant parameters was then done through a surface response three-factor Box-Behnken design. The limits of detection and limits of quantification for the three drugs ranged between 0.96 and 1.27 µg∙L -1 and 2.91 and 3.86 µg∙L -1 , respectively. Recovery yields of approximately 95 to 104% were measured. The developed method is simple, precise, accurate, and allows quantification of residues of these micropollutants in Genil River water samples using inexpensive fibers.

  5. Development of a New Microextraction Fiber Combined to On-Line Sample Stacking Capillary Electrophoresis UV Detection for Acidic Drugs Determination in Real Water Samples

    PubMed Central

    Araujo, Lilia; Prieto, Avismelsi; Navalón, Alberto; Vílchez, José Luis; Valera, Paola; Zambrano, Ana; Dugas, Vincent

    2017-01-01

    A new analytical method coupling a (off-line) solid-phase microextraction with an on-line capillary electrophoresis (CE) sample enrichment technique was developed for the analysis of ketoprofen, naproxen and clofibric acid from water samples, which are known as contaminants of emerging concern in aquatic environments. New solid-phase microextraction fibers based on physical coupling of chromatographic supports onto epoxy glue coated needle were studied for the off-line preconcentration of these micropollutants. Identification and quantification of such acidic drugs were done by capillary zone electrophoresis (CZE) using ultraviolet diode array detection (DAD). Further enhancement of concentration sensitivity detection was achieved by on-line CE “acetonitrile stacking” preconcentration technique. Among the eight chromatographic supports investigated, Porapak Q sorbent showed higher extraction and preconcentration capacities. The screening of parameters that influence the microextraction process was carried out using a two-level fractional factorial. Optimization of the most relevant parameters was then done through a surface response three-factor Box-Behnken design. The limits of detection and limits of quantification for the three drugs ranged between 0.96 and 1.27 µg∙L−1 and 2.91 and 3.86 µg∙L−1, respectively. Recovery yields of approximately 95 to 104% were measured. The developed method is simple, precise, accurate, and allows quantification of residues of these micropollutants in Genil River water samples using inexpensive fibers. PMID:28686186

  6. Sample preparation techniques for the determination of trace residues and contaminants in foods.

    PubMed

    Ridgway, Kathy; Lalljie, Sam P D; Smith, Roger M

    2007-06-15

    The determination of trace residues and contaminants in complex matrices, such as food, often requires extensive sample extraction and preparation prior to instrumental analysis. Sample preparation is often the bottleneck in analysis and there is a need to minimise the number of steps to reduce both time and sources of error. There is also a move towards more environmentally friendly techniques, which use less solvent and smaller sample sizes. Smaller sample size becomes important when dealing with real life problems, such as consumer complaints and alleged chemical contamination. Optimal sample preparation can reduce analysis time, sources of error, enhance sensitivity and enable unequivocal identification, confirmation and quantification. This review considers all aspects of sample preparation, covering general extraction techniques, such as Soxhlet and pressurised liquid extraction, microextraction techniques such as liquid phase microextraction (LPME) and more selective techniques, such as solid phase extraction (SPE), solid phase microextraction (SPME) and stir bar sorptive extraction (SBSE). The applicability of each technique in food analysis, particularly for the determination of trace organic contaminants in foods is discussed.

  7. Bio-dispersive liquid liquid microextraction based on nano rhaminolipid aggregates combined with magnetic solid phase extraction using Fe3O4@PPy magnetic nanoparticles for the determination of methamphetamine in human urine.

    PubMed

    Haeri, Seyed Ammar; Abbasi, Shahryar; Sajjadifar, Sami

    2017-09-15

    In the present investigation, extraction and preconcentration of methamphetamine in human urine samples was carried out using a novel bio-dispersive liquid liquid microextraction (Bio-DLLME) technique coupled with magnetic solid phase extraction (MSPE). Bio-DLLME is a kind of microextraction technique based nano-materials which have potential capabilities in many application fields. Bio-DLLME is based on the use of a binary part system consisting of methanol and nano rhaminolipid biosurfactant. Use of this binary mixture is ecologically accepted due to their specificity, biocompatibility and biodegradable nature. The potential of nano rhaminolipid biosurfactant as a biological agent in the extraction of organic compounds has been investigated in recent years. They are able to partition at the oil/water interfaces and reduce the interfacial tension in order to increase solubility of hydrocarbons. The properties of the prepared Fe 3 O 4 @PPy magnetic nanoparticles were characterized using Fourier transform infrared spectroscopy and X-ray diffraction methods The influences of the experimental parameters on the quantitative recovery of analyte were investigated. Under optimized conditions, the enrichment factor was 310, the calibration graph was linear in the methamphetamine concentration range from 1 to 60μgL -1 , with a correlation coefficient of 0.9998. The relative standard deviations for six replicate measurements was 5.2%. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Development of garlic bioactive compounds analytical methodology based on liquid phase microextraction using response surface design. Implications for dual analysis: Cooked and biological fluids samples.

    PubMed

    Ramirez, Daniela Andrea; Locatelli, Daniela Ana; Torres-Palazzolo, Carolina Andrea; Altamirano, Jorgelina Cecilia; Camargo, Alejandra Beatriz

    2017-01-15

    Organosulphur compounds (OSCs) present in garlic (Allium sativum L.) are responsible of several biological properties. Functional foods researches indicate the importance of quantifying these compounds in food matrices and biological fluids. For this purpose, this paper introduces a novel methodology based on dispersive liquid-liquid microextraction (DLLME) coupled to high performance liquid chromatography with ultraviolet detector (HPLC-UV) for the extraction and determination of organosulphur compounds in different matrices. The target analytes were allicin, (E)- and (Z)-ajoene, 2-vinyl-4H-1,2-dithiin (2-VD), diallyl sulphide (DAS) and diallyl disulphide (DADS). The microextraction technique was optimized using an experimental design, and the analytical performance was evaluated under optimum conditions. The desirability function presented an optimal value for 600μL of chloroform as extraction solvent using acetonitrile as dispersant. The method proved to be reliable, precise and accurate. It was successfully applied to determine OSCs in cooked garlic samples as well as blood plasma and digestive fluids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Ceria nanocubic-ultrasonication assisted dispersive liquid-liquid microextraction coupled with matrix assisted laser desorption/ionization mass spectrometry for pathogenic bacteria analysis.

    PubMed

    Abdelhamid, Hani Nasser; Bhaisare, Mukesh L; Wu, Hui-Fen

    2014-03-01

    A new ceria (CeO2) nanocubic modified surfactant is used as the basis of a novel nano-based microextraction technique for highly sensitive detection of pathogenic bacteria (Pseudomonas aeruginosa and Staphylococcus aureus). The technique uses ultrasound enhanced surfactant-assisted dispersive liquid-liquid microextraction (UESA-DLLME) with and without ceria (CeO2) followed by matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). In order to achieve high separation efficiency, we investigated the influential parameters, including extraction time of ultrasonication, type and volume of the extraction solvent and surfactant. Among various surfactants, the cationic surfactants can selectively offer better extraction efficiency on bacteria analysis than that of the anionic surfactants due to the negative charges of bacteria cell membranes. Extractions of the bacteria lysate from aqueous samples via UESA-DLLME-MALDI-MS were successfully achieved by using cetyltrimethyl ammonium bromide (CTAB, 10.0 µL, 1.0×10(-3) M) as surfactants in chlorobenzene (10.0 µL) and chloroform (10.0 µL) as the optimal extracting solvent for P. aeruginosa and S. aureus, respectively. Ceria nanocubic was synthesized, and functionalized with CTAB (CeO2@CTAB) and then characterized using transmission electron microscopy (TEM) and optical spectroscopy (UV and FTIR). CeO2@CTAB demonstrates high extraction efficiency, improve peaks ionization, and enhance resolution. The prime reasons for these improvements are due to the large surface area of nanoparticles, and its absorption that coincides with the wavelength of MALDI laser (337 nm, N2 laser). CeO2@CTAB-based microextraction offers lowest detectable concentrations tenfold lower than that of without nanoceria. The present approach has been successfully applied to detect pathogenic bacteria at low concentrations of 10(4)-10(5) cfu/mL (without ceria) and at 10(3)-10(4) cfu/mL (with ceria) from bacteria suspensions. Finally, the current approach was applied for analyzing the pathogenic bacteria in biological samples (blood and serum). Ceria assist surfactant (CeO2@CTAB) liquid-liquid microextraction (LLME) offers better extraction efficiency than that of using the surfactant in LLME alone. © 2013 Elsevier B.V. All rights reserved.

  10. Microextraction by packed sorbent: an emerging, selective and high-throughput extraction technique in bioanalysis.

    PubMed

    Pereira, Jorge; Câmara, José S; Colmsjö, Anders; Abdel-Rehim, Mohamed

    2014-06-01

    Sample preparation is an important analytical step regarding the isolation and concentration of desired components from complex matrices and greatly influences their reliable and accurate analysis and data quality. It is the most labor-intensive and error-prone process in analytical methodology and, therefore, may influence the analytical performance of the target analytes quantification. Many conventional sample preparation methods are relatively complicated, involving time-consuming procedures and requiring large volumes of organic solvents. Recent trends in sample preparation include miniaturization, automation, high-throughput performance, on-line coupling with analytical instruments and low-cost operation through extremely low volume or no solvent consumption. Micro-extraction techniques, such as micro-extraction by packed sorbent (MEPS), have these advantages over the traditional techniques. This paper gives an overview of MEPS technique, including the role of sample preparation in bioanalysis, the MEPS description namely MEPS formats (on- and off-line), sorbents, experimental and protocols, factors that affect the MEPS performance, and the major advantages and limitations of MEPS compared with other sample preparation techniques. We also summarize MEPS recent applications in bioanalysis. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Determination of Plant Volatiles Using Solid Phase Microextraction GC-MS

    ERIC Educational Resources Information Center

    Van Bramer, Scott; Goodrich, Katherine R.

    2015-01-01

    This experiment combines analytical techniques of solid phase microextraction and gas chromatography-mass spectrometry with easily relatable and accessible plant volatile chemistry (floral and vegetative scents of local/available plants). The biosynthesis and structure of these chemicals are of interest in the areas of organic chemistry,…

  12. [Developments in preparation and experimental method of solid phase microextraction fibers].

    PubMed

    Yi, Xu; Fu, Yujie

    2004-09-01

    Solid phase microextraction (SPME) is a simple and effective adsorption and desorption technique, which concentrates volatile or nonvolatile compounds from liquid samples or headspace of samples. SPME is compatible with analyte separation and detection by gas chromatography, high performance liquid chromatography, and other instrumental methods. It can provide many advantages, such as wide linear scale, low solvent and sample consumption, short analytical times, low detection limits, simple apparatus, and so on. The theory of SPME is introduced, which includes equilibrium theory and non-equilibrium theory. The novel development of fiber preparation methods and relative experimental techniques are discussed. In addition to commercial fiber preparation, different newly developed fabrication techniques, such as sol-gel, electronic deposition, carbon-base adsorption, high-temperature epoxy immobilization, are presented. Effects of extraction modes, selection of fiber coating, optimization of operating conditions, method sensitivity and precision, and systematical automation, are taken into considerations in the analytical process of SPME. A simple perspective of SPME is proposed at last.

  13. Ionic-liquid-based dispersive liquid-liquid microextraction combined with magnetic solid-phase extraction for the determination of aflatoxins B1 , B2 , G1 , and G2 in animal feeds by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Zhao, Jiao; Zhu, Yan; Jiao, Yang; Ning, Jinyan; Yang, Yaling

    2016-10-01

    A novel two-step extraction technique combining ionic-liquid-based dispersive liquid-liquid microextraction with magnetic solid-phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high-performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid-liquid microextraction, and hydrophobic pelargonic acid modified Fe 3 O 4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins-containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid-liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid-liquid microextraction and magnetic solid-phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3-103.7% with relative standard deviations of 3.2-6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B 1 , B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Comparison of mass spectrometry-based electronic nose and solid phase microextraction gas chromatography-mass spectrometry technique to assess infant formula oxidation.

    PubMed

    Fenaille, François; Visani, Piero; Fumeaux, René; Milo, Christian; Guy, Philippe A

    2003-04-23

    Two headspace techniques based on mass spectrometry detection (MS), electronic nose, and solid phase microextraction coupled to gas chromatography-mass spectrometry (SPME-GC/MS) were evaluated for their ability to differentiate various infant formula powders based on changes of their volatiles upon storage. The electronic nose gave unresolved MS fingerprints of the samples gas phases that were further submitted to principal component analysis (PCA). Such direct MS recording combined to multivariate treatment enabled a rapid differentiation of the infant formulas over a 4 week storage test. Although MS-based electronic nose advantages are its easy-to-use aspect and its meaningful data interpretation obtained with a high throughput (100 samples per 24 h), its greatest disadvantage is that the present compounds could not be identified and quantified. For these reasons, a SPME-GC/MS measurement was also investigated. This technique allowed the identification of saturated aldehydes as the main volatiles present in the headspace of infant milk powders. An isotope dilution assay was further developed to quantitate hexanal as a potential indicator of infant milk powder oxidation. Thus, hexanal content was found to vary from roughly 500 and 3500 microg/kg for relatively non-oxidized and oxidized infant formulas, respectively.

  15. Sensitive spectrophotometric determination of Co(II) using dispersive liquid-liquid micro-extraction method in soil samples.

    PubMed

    Hasanpour, Foroozan; Hadadzadeh, Hassan; Taei, Masoumeh; Nekouei, Mohsen; Mozafari, Elmira

    2016-05-01

    Analytical performance of conventional spectrophotometer was developed by coupling of effective dispersive liquid-liquid micro-extraction method with spectrophotometric determination for ultra-trace determination of cobalt. The method was based on the formation of Co(II)-alpha-benzoin oxime complex and its extraction using a dispersive liquid-liquid micro-extraction technique. During the present work, several important variables such as pH, ligand concentration, amount and type of dispersive, and extracting solvent were optimized. It was found that the crucial factor for the Co(II)-alpha benzoin oxime complex formation is the pH of the alkaline alcoholic medium. Under the optimized condition, the calibration graph was linear in the ranges of 1.0-110 μg L(-1) with the detection limit (S/N = 3) of 0.5 μg L(-1). The preconcentration operation of 25 mL of sample gave enhancement factor of 75. The proposed method was applied for determination of Co(II) in soil samples.

  16. Separation of cucurbitane triterpenoids from bitter melon drinks and determination of partition coefficients using vortex-assisted dispersive liquid-phase microextraction followed by UHPLC analysis

    USDA-ARS?s Scientific Manuscript database

    A rapid, effective technique applying vortex-assisted liquid–liquid microextraction (VALLME) prior to ultra high performance liquid chromatography-evaporating light scattering detectection/ mass spectroscopy (UHPLC-ELSD/MS) determination was developed for the analysis of four cucurbitane triterpenoi...

  17. Use of magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction to extract fungicides from environmental waters with the aid of experimental design methodology.

    PubMed

    Yang, Miyi; Wu, Xiaoling; Jia, Yuhan; Xi, Xuefei; Yang, Xiaoling; Lu, Runhua; Zhang, Sanbing; Gao, Haixiang; Zhou, Wenfeng

    2016-02-04

    In this work, a novel effervescence-assisted microextraction technique was proposed for the detection of four fungicides. This method combines ionic liquid-based dispersive liquid-liquid microextraction with the magnetic retrieval of the extractant. A magnetic effervescent tablet composed of Fe3O4 magnetic nanoparticles, sodium carbonate, sodium dihydrogen phosphate and 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonimide) was used for extractant dispersion and retrieval. The main factors affecting the extraction efficiency were screened by a Plackett-Burman design and optimized by a central composite design. Under the optimum conditions, good linearity was obtained for all analytes in pure water model and real water samples. Just for the pure water, the recoveries were between 84.6% and 112.8%, the limits of detection were between 0.02 and 0.10 μg L(-1) and the intra-day precision and inter-day precision both are lower than 4.9%. This optimized method was successfully applied in the analysis of four fungicides (azoxystrobin, triazolone, cyprodinil, trifloxystrobin) in environmental water samples and the recoveries ranged between 70.7% and 105%. The procedure promising to be a time-saving, environmentally friendly, and efficient field sampling technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Automated hollow-fiber liquid-phase microextraction followed by liquid chromatography with mass spectrometry for the determination of benzodiazepine drugs in biological samples.

    PubMed

    Nazaripour, Ali; Yamini, Yadollah; Ebrahimpour, Behnam; Fasihi, Javad

    2016-07-01

    In this study, two-phase hollow-fiber liquid-phase microextraction and three-phase hollow-fiber liquid-phase microextraction based on two immiscible organic solvents were compared for extraction of oxazepam and Lorazepam. Separations were performed on a liquid chromatography with mass spectrometry instrument. Under optimal conditions, three-phase hollow-fiber liquid-phase microextraction based on two immiscible organic solvents has a better extraction efficiency. In a urine sample, for three-phase hollow fiber liquid-phase microextraction based on two immiscible organic solvents, the calibration curves were found to be linear in the range of 0.6-200 and 0.9-200 μg L(-1) and the limits of detection were 0.2 and 0.3 μg L(-1) for oxazepam and lorazepam, respectively. For two-phase hollow fiber liquid-phase microextraction, the calibration curves were found to be linear in the range of 1-200 and 1.5-200 μg L(-1) and the limits of detection were 0.3 and 0.5 μg L(-1) for oxazepam and lorazepam, respectively. In a urine sample, for three-phase hollow-fiber-based liquid-phase microextraction based on two immiscible organic solvents, relative standard deviations in the range of 4.2-4.5% and preconcentration factors in the range of 70-180 were obtained for oxazepam and lorazepam, respectively. Also for the two-phase hollow-fiber liquid-phase microextraction, preconcentration factors in the range of 101-257 were obtained for oxazepam and lorazepam, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ion pair-based dispersive liquid-liquid microextraction followed by high performance liquid chromatography as a new method for determining five folate derivatives in foodstuffs.

    PubMed

    Nojavan, Yones; Kamankesh, Marzieh; Shahraz, Farzaneh; Hashemi, Maryam; Mohammadi, Abdorreza

    2015-05-01

    A novel technique for simultaneous determination of five folate derivatives in various food matrices was developed by ion pair-based dispersive liquid-liquid microextraction (IP-DLLME) combined with high-performance liquid chromatography (HPLC). In the proposed method, N-methyl-N,N-dioctyloctan-1-ammonium chloride (aliquat-336) was used as an ion-pair reagent. Effective variables of microextraction process were optimized. Under optimum conditions, the method yielded a linear calibration curve ranging from 1-200 ng g(-1) with correlation coefficients (r(2)) higher than 0.98. The relative standard deviation for the seven analyses was 5.2-7.4%. Enrichment factors for the five folates ranged between 108-135. Limits of detection were 2-4.1 ng g(-1). A comparison of this method with other methods described that the new proposed method is rapid and accurate, and gives very good enrichment factors and detection limits for determining five folate derivatives. The newly developed method was successfully applied for the determination of five folate derivatives in wheat flour, egg yolk and orange juice samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effects of push/pull perfusion and ultrasonication on the extraction efficiencies of phthalate esters in sports drink samples using on-line hollow-fiber liquid-phase microextraction.

    PubMed

    Chao, Yu-Ying; Lee, Chien-Hung; Chien, Tzu-Yang; Shih, Yu-Hsuan; Lu, Yin-An; Kuo, Ting-Hsuan; Huang, Yeou-Lih

    2013-08-28

    In previous studies, we developed a process, on-line ultrasound-assisted push/pull perfusion hollow-fiber liquid-phase microextraction (UA-PPP-HF-LPME), combining the techniques of push/pull perfusion (PPP) and ultrasonication with hollow-fiber liquid-phase microextraction (HF-LPME), to achieve rapid extraction of acidic phenols from water samples. In this present study, we further evaluated three more-advanced and novel effects of PPP and ultrasonication on the extraction efficiencies of neutral high-molecular-weight phthalate esters (HPAEs) in sports drinks. First, we found that inner-fiber fluid leakage occurs only in push-only perfusion-based and pull-only perfusion-based HF-LPME, but not in the PPP mode. Second, we identified a significant negative interaction between ultrasonication and temperature. Third, we found that the extraction time of the newly proposed system could be shortened by more than 93%. From an investigation of the factors affecting UA-PPP-HF-LPME, we established optimal extraction conditions and achieved acceptable on-line enrichment factors of 92-146 for HPAEs with a sampling time of just 2 min.

  1. Microextraction techniques combined with capillary electrophoresis in bioanalysis.

    PubMed

    Kohler, Isabelle; Schappler, Julie; Rudaz, Serge

    2013-01-01

    Over the past two decades, many environmentally sustainable sample-preparation techniques have been proposed, with the objective of reducing the use of toxic organic solvents or substituting these with environmentally friendly alternatives. Microextraction techniques (MEs), in which only a small amount of organic solvent is used, have several advantages, including reduced sample volume, analysis time, and operating costs. Thus, MEs are well adapted in bioanalysis, in which sample preparation is mandatory because of the complexity of a sample that is available in small quantities (mL or even μL only). Capillary electrophoresis (CE) is a powerful and efficient separation technique in which no organic solvents are required for analysis. Combination of CE with MEs is regarded as a very attractive environmentally sustainable analytical tool, and numerous applications have been reported over the last few decades for bioanalysis of low-molecular-weight compounds or for peptide analysis. In this paper we review the use of MEs combined with CE in bioanalysis. The review is divided into two sections: liquid and solid-based MEs. A brief practical and theoretical description of each ME is given, and the techniques are illustrated by relevant applications.

  2. One-calibrant kinetic calibration for on-site water sampling with solid-phase microextraction.

    PubMed

    Ouyang, Gangfeng; Cui, Shufen; Qin, Zhipei; Pawliszyn, Janusz

    2009-07-15

    The existing solid-phase microextraction (SPME) kinetic calibration technique, using the desorption of the preloaded standards to calibrate the extraction of the analytes, requires that the physicochemical properties of the standard should be similar to those of the analyte, which limited the application of the technique. In this study, a new method, termed the one-calibrant kinetic calibration technique, which can use the desorption of a single standard to calibrate all extracted analytes, was proposed. The theoretical considerations were validated by passive water sampling in laboratory and rapid water sampling in the field. To mimic the variety of the environment, such as temperature, turbulence, and the concentration of the analytes, the flow-through system for the generation of standard aqueous polycyclic aromatic hydrocarbons (PAHs) solution was modified. The experimental results of the passive samplings in the flow-through system illustrated that the effect of the environmental variables was successfully compensated with the kinetic calibration technique, and all extracted analytes can be calibrated through the desorption of a single calibrant. On-site water sampling with rotated SPME fibers also illustrated the feasibility of the new technique for rapid on-site sampling of hydrophobic organic pollutants in water. This technique will accelerate the application of the kinetic calibration method and also will be useful for other microextraction techniques.

  3. Fabrication of a novel nanocomposite based on sol-gel process for hollow fiber-solid phase microextraction of aflatoxins: B1 and B2, in cereals combined with high performane liquid chromatography-diode array detection.

    PubMed

    Es'haghi, Zarrin; Sorayaei, Hoda; Samadi, Fateme; Masrournia, Mahboubeh; Bakherad, Zohreh

    2011-10-15

    The new pre-concentration technique, hollow fiber-solid phase microextraction based on carbon nanotube reinforced sol-gel and liquid chromatography-photodiode array detection was applied to determination of aflatoxins B(1), B(2) (AFB(1), AFB(2)) in rice, peanut and wheat samples. This research provides an overview of trends related to synthesis of solid phase microextraction (SPME) sorbnents that improves the assay of aflatoxins as the semi-polar compounds in several real samples. It mainly includes summary and a list of the results for a simple carbon nanotube reinforced sol-gel in-fiber device. This device was used for extraction, pre-concentration and determination of aflatoxins B1, B2 in real samples. In this technique carbon nanotube reinforced sol was prepared by the sol-gel method via the reaction of phenyl trimethoxysilane (PTMS) with a basic catalyst (tris hydroxymethyl aminomethan). The influences of microextraction parameters such as pH, ageing time, carbon nanotube contents, desorption conditions, desorption solvent and agitation speed were investigated. Optimal HPLC conditions were: C(18) reversed phase column for separation, water-acetonitril-methanol (35:10:55) as the mobile phase and maximum wavelength for detection was 370 nm. The method was evaluated statistically and under optimized conditions, the detection limits for the analytes were 0.074 and 0.061 ng/mL for B1 and B2 respectively. Limit of quantification for B1 and B2 was 0.1 ng/mL too (n=7). The precisions were in the range of 2.829-2.976% (n=3), and linear ranges were within 0.1 and 400 ng/mL. The method was successfully applied to the analysis of cereals (peanut, wheat, rice) with the relative recoveries from 47.43% to 106.83%. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. HIGH LEVELS OF MONOAROMATIC COMPOUNDS LIMIT THE USE OF SOLID-PHASE MICROEXTRACTION OF METHYL TERTIARY BUTYL ETHER AND TERTIARY BUTYL ALCOHOL

    EPA Science Inventory

    Recently, two papers reported the use of solid-phase microextraction (SPME) with polydimethylsiloxane(PDMS)/Carboxen fibers to determine trace levels of methyl tertiary butyl ether (MTBE) and tertiary butyl alcohol (tBA) in water. Attempts were made to apply this technique to th...

  5. A new supramolecular based liquid solid microextraction method for preconcentration and determination of trace bismuth in human blood serum and hair samples by electrothermal atomic absorption spectrometry.

    PubMed

    Kahe, Hadi; Chamsaz, Mahmoud

    2016-11-01

    A simple and reliable supramolecule-aggregated liquid solid microextraction method is described for preconcentration and determination of trace amounts of bismuth in water as well as human blood serum and hair samples. Catanionic microstructures of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) surfactants, dissolved in deionized water/propanol, are used as a green solvent to extract bismuth (III)-diethyldithiocarbamate complexes by dispersive microextraction methodology. The extracted solid phase is easily removed and dissolved in 50 μL propanol for subsequent measurement by electrothermal atomic absorption spectrometry (ET-AAS). The procedure benefits the merits of supramolecule aggregates' properties and dispersive microextraction technique using water as the main component of disperser solvent, leading to direct interaction with analyte. Phase separation behavior of extraction solvent and different parameters influencing the extraction efficiency of bismuth ion such as salt concentration, pH, centrifugation time, amount of chelating agent, SDS:CTAB mole ratio, and solvent amounts were thoroughly optimized. Under the optimal experimental conditions, the calibration curve was linear in the range of 0.3-6 μg L -1 Bi (III) with a limit of detection (LOD) of 0.16 μg L -1 (S/N = 3). The relative standard deviations (RSD) of determination were obtained to be 5.1 and 6.2 % for 1 and 3 μg L -1 of Bi (III), respectively. The developed method was successfully applied as a sensitive and accurate technique for determination of bismuth ion in human blood serum, hair samples, and a certified reference material.

  6. Ionic liquids in solid-phase microextraction: a review.

    PubMed

    Ho, Tien D; Canestraro, Anthony J; Anderson, Jared L

    2011-06-10

    Solid-phase microextraction (SPME) has undergone a surge in popularity within the field of analytical chemistry in the past two decades since its introduction. Owing to its nature of extraction, SPME has become widely known as a quick and cost-effective sample preparation technique. Although SPME has demonstrated extraordinary versatility in sampling capabilities, the technique continues to experience a tremendous growth in innovation. Presently, increasing efforts have been directed towards the engineering of novel sorbent material in order to expand the applicability of SPME for a wider range of analytes and matrices. This review highlights the application of ionic liquids (ILs) and polymeric ionic liquids (PILs) as innovative sorbent materials for SPME. Characterized by their unique physico-chemical properties, these compounds can be structurally-designed to selectively extract target analytes based on unique molecular interactions. To examine the advantages of IL and PIL-based sorbent coatings in SPME, the field is reviewed by gathering available experimental data and exploring the sensitivity, linear calibration range, as well as detection limits for a variety of target analytes in the methods that have been developed. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Determination of parabens using two microextraction methods coupled with capillary liquid chromatography-UV detection.

    PubMed

    Chen, Chen-Wen; Hsu, Wen-Chan; Lu, Ya-Chen; Weng, Jing-Ru; Feng, Chia-Hsien

    2018-02-15

    Parabens are common preservatives and environmental hormones. As such, possible detrimental health effects could be amplified through their widespread use in foods, cosmetics, and pharmaceutical products. Thus, the determination of parabens in such products is of particular importance. This study explored vortex-assisted dispersive liquid-liquid microextraction techniques based on the solidification of a floating organic drop (VA-DLLME-SFO) and salt-assisted cloud point extraction (SA-CPE) for paraben extraction. Microanalysis was performed using a capillary liquid chromatography-ultraviolet detection system. These techniques were modified successfully to determine four parabens in 19 commercial products. The regression equations of these parabens exhibited good linearity (r 2 =0.998, 0.1-10μg/mL), good precision (RSD<5%) and accuracy (RE<5%), reduced reagent consumption and reaction times (<6min), and excellent sample versatility. VA-DLLME-SFO was also particularly convenient due to the use of a solidified extract. Thus, the VA-DLLME-SFO technique was better suited to the extraction of parabens from complex matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Bubbles in solvent microextraction: the influence of intentionally introduced bubbles on extraction efficiency.

    PubMed

    Williams, D Bradley G; George, Mosotho J; Meyer, Riaan; Marjanovic, Ljiljana

    2011-09-01

    Significant improvements to microdrop extractions of triazine pesticides are realized by the intentional incorporation of an air bubble into the solvent microdroplet used in this microextraction technique. The increase is attributed partly to greater droplet surface area resulting from the air bubble being incorporated into the solvent droplet as opposed to it sitting thereon and partly to thin film phenomena. The method is useful at nanogram/liter levels (LOD 0.002-0.012 μg/L, LOQ 0.007-0.039 μg/L), is precise (7-12% at 10 μg/L concentration level), and is validated against certified reference materials containing 0.5 and 5.0 μg/L analyte. It tolerates water and fruit juice as matrixes without serious matrix effects. This new development brings a simple, inexpensive, and efficient preconcentration technique to bear which rivals solid phase microextraction methods.

  9. Comparison of characteristic flavor and aroma volatiles in melons and standards using solid phase microextraction (SPME) and Stir Bar Sorptive Extraction (SBSE) with GC-MS.

    USDA-ARS?s Scientific Manuscript database

    Stir bar sorptive extraction (SBSE) is a technique for extraction and analysis of organic compounds in aqueous matrices, similar in theory to solid phase microextraction (SPME). SBSE has been successfully used to analyze several organic compounds, including food matrices. When compared with SPME, ...

  10. Determination of arsenic and selenium by hydride generation and headspace solid phase microextraction coupled with optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Tyburska, Anna; Jankowski, Krzysztof; Rodzik, Agnieszka

    2011-07-01

    A hydride generation headspace solid phase microextraction technique has been developed in combination with optical emission spectrometry for determination of total arsenic and selenium. Hydrides were generated in a 10 mL volume septum-sealed vial and subsequently collected onto a polydimethylsiloxane/Carboxen solid phase microextraction fiber from the headspace of sample solution. After completion of the sorption, the fiber was transferred into a thermal desorption unit and the analytes were vaporized and directly introduced into argon inductively coupled plasma or helium microwave induced plasma radiation source. Experimental conditions of hydride formation reaction as well as sorption and desorption of analytes have been optimized showing the significant effect of the type of the solid phase microextraction fiber coating, the sorption time and hydrochloric acid concentration of the sample solution on analytical characteristics of the method developed. The limits of detection of arsenic and selenium were 0.1 and 0.8 ng mL - 1 , respectively. The limit of detection of selenium could be improved further using biosorption with baker's yeast Saccharomyces cerevisiae for analyte preconcentration. The technique was applied for the determination of total As and Se in real samples.

  11. In situ ionic liquid dispersive liquid-liquid microextraction and direct microvial insert thermal desorption for gas chromatographic determination of bisphenol compounds.

    PubMed

    Cacho, Juan Ignacio; Campillo, Natalia; Viñas, Pilar; Hernández-Córdoba, Manuel

    2016-01-01

    A new procedure based on direct insert microvial thermal desorption injection allows the direct analysis of ionic liquid extracts by gas chromatography and mass spectrometry (GC-MS). For this purpose, an in situ ionic liquid dispersive liquid-liquid microextraction (in situ IL DLLME) has been developed for the quantification of bisphenol A (BPA), bisphenol Z (BPZ) and bisphenol F (BPF). Different parameters affecting the extraction efficiency of the microextraction technique and the thermal desorption step were studied. The optimized procedure, determining the analytes as acetyl derivatives, provided detection limits of 26, 18 and 19 ng L(-1) for BPA, BPZ and BPF, respectively. The release of the three analytes from plastic containers was monitored using this newly developed analytical method. Analysis of the migration test solutions for 15 different plastic containers in daily use identified the presence of the analytes at concentrations ranging between 0.07 and 37 μg L(-1) in six of the samples studied, BPA being the most commonly found and at higher concentrations than the other analytes.

  12. Rapid determination of the volatile components in tobacco by ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction with gas chromatography-mass spectrometry.

    PubMed

    Yang, Yanqin; Chu, Guohai; Zhou, Guojun; Jiang, Jian; Yuan, Kailong; Pan, Yuanjiang; Song, Zhiyu; Li, Zuguang; Xia, Qian; Lu, Xinbo; Xiao, Weiqiang

    2016-03-01

    An ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction was first employed to determine the volatile components in tobacco samples. The method combined the advantages of ultrasound, microwave, and headspace solid-phase microextraction. The extraction, separation, and enrichment were performed in a single step, which could greatly simplify the operation and reduce the whole pretreatment time. In the developed method, several experimental parameters, such as fiber type, ultrasound power, and irradiation time, were optimized to improve sampling efficiency. Under the optimal conditions, there were 37, 36, 34, and 36 components identified in tobacco from Guizhou, Hunan, Yunnan, and Zimbabwe, respectively, including esters, heterocycles, alkanes, ketones, terpenoids, acids, phenols, and alcohols. The compound types were roughly the same while the contents were varied from different origins due to the disparity of their growing conditions, such as soil, water, and climate. In addition, the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method was compared with the microwave-assisted extraction coupled to headspace solid-phase microextraction and headspace solid-phase microextraction methods. More types of volatile components were obtained by using the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method, moreover, the contents were high. The results indicated that the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction technique was a simple, time-saving and highly efficient approach, which was especially suitable for analysis of the volatile components in tobacco. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Novel capsule phase microextraction in combination with liquid chromatography-tandem mass spectrometry for determining personal care products in environmental water.

    PubMed

    Lakade, Sameer S; Borrull, Francesc; Furton, Kenneth G; Kabir, Abuzar; Marcé, Rosa Maria; Fontanals, Núria

    2018-05-01

    A novel sample preparation technique named capsule phase microextraction (CPME) is presented here. The technique utilizes a miniaturized microextraction capsule (MEC) as the extraction medium. The MEC consists of two conjoined porous tubular polypropylene membranes, one of which encapsulates the sorbent through sol-gel technology, while the other encapsulates a magnetic metal rod. As such, MEC integrates both the extraction and stirring mechanisms into a single device. The aim of this article is to demonstrate the application potential of CPME as sample preparation technique for the extraction of a group of personal care products (PCPs) from water matrices. Among the different sol-gel sorbent materials (UCON ® , poly(caprolactone-dimethylsiloxane-caprolactone) (PCAP-DMS-CAP) and Carbowax 20M (CW-20M)) evaluated, CW-20M MEC demonstrated the best extraction performance for the selected PCPs. The extraction conditions for sol-gel CW-20M MEC were optimized, including sample pH, stirring speed, addition of salt, extraction time, sample volume, liquid desorption solvent, and time. Under the optimal conditions, sol-gel CW-20M MEC provided recoveries, ranging between 47 and 90% for all analytes, except for ethylparaben, which showed a recovery of 26%. The method based on CPME with sol-gel CW-20M followed by liquid chromatography-tandem mass spectrometry was developed and validated for the extraction of PCPs from river water and effluent wastewater samples. When analyzing different environmental samples, some analytes such as 2,4-dihydroxybenzophenone, 2,2-dihydroxy-4-4 methoxybenzophenone and 3-benzophenone were found at low ng L -1 .

  14. Introducing a new and rapid microextraction approach based on magnetic ionic liquids: Stir bar dispersive liquid microextraction.

    PubMed

    Chisvert, Alberto; Benedé, Juan L; Anderson, Jared L; Pierson, Stephen A; Salvador, Amparo

    2017-08-29

    With the aim of contributing to the development and improvement of microextraction techniques, a novel approach combining the principles and advantages of stir bar sorptive extraction (SBSE) and dispersive liquid-liquid microextraction (DLLME) is presented. This new approach, termed stir bar dispersive liquid microextraction (SBDLME), involves the addition of a magnetic ionic liquid (MIL) and a neodymium-core magnetic stir bar into the sample allowing the MIL coat the stir bar due to physical forces (i.e., magnetism). As long as the stirring rate is maintained at low speed, the MIL resists rotational (centrifugal) forces and remains on the stir bar surface in a manner closely resembling SBSE. By increasing the stirring rate, the rotational forces surpass the magnetic field and the MIL disperses into the sample solution in a similar manner to DLLME. After extraction, the stirring is stopped and the MIL returns to the stir bar without the requirement of an additional external magnetic field. The MIL-coated stir bar containing the preconcentrated analytes is thermally desorbed directly into a gas chromatographic system coupled to a mass spectrometric detector (TD-GC-MS). This novel approach opens new insights into the microextraction field, by using the benefits provided by SBSE and DLLME simultaneously, such as automated thermal desorption and high surface contact area, respectively, but most importantly, it enables the use of tailor-made solvents (i.e., MILs). To prove its utility, SBDLME has been used in the extraction of lipophilic organic UV filters from environmental water samples as model analytical application with excellent analytical features in terms of linearity, enrichment factors (67-791), limits of detection (low ng L -1 ), intra- and inter-day repeatability (RSD<15%) and relative recoveries (87-113%, 91-117% and 89-115% for river, sea and swimming pool water samples, respectively). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Rapid detection of atrazine and metolachlor in farm soils: gas chromatography-mass spectrometry-based analysis using the bubble-in-drop single drop microextraction enrichment method.

    PubMed

    Williams, D Bradley G; George, Mosotho J; Marjanovic, Ljiljana

    2014-08-06

    Tracking of metolachlor and atrazine herbicides in agricultural soils, from spraying through to harvest, was conducted using our recently reported "bubble-in-drop single-drop microextraction" method. The method showed good linearity (R(2) = 0.999 and 0.999) in the concentration range of 0.01-1.0 ng/mL with LOD values of 0.01 and 0.02 ng/mL for atrazine and metolachlor, respectively. Sonication methods were poor at releasing these herbicides from the soil matrixes, while hot water extraction readily liberated them, providing an efficient accessible alternative to sonication techniques. Good recoveries of 97% and 105% were shown for atrazine and metolachlor, respectively, from the soil. The spiking protocol was also investigated, resulting in a traceless spiking method. We demonstrate a very sensitive technique by which to assess, for example, the length of residence of pesticides in given soils and thus risk of exposure.

  16. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 1: Approaches based on extractant drop-, plug-, film- and microflow-formation.

    PubMed

    Alexovič, Michal; Horstkotte, Burkhard; Solich, Petr; Sabo, Ján

    2016-02-04

    Simplicity, effectiveness, swiftness, and environmental friendliness - these are the typical requirements for the state of the art development of green analytical techniques. Liquid phase microextraction (LPME) stands for a family of elegant sample pretreatment and analyte preconcentration techniques preserving these principles in numerous applications. By using only fractions of solvent and sample compared to classical liquid-liquid extraction, the extraction kinetics, the preconcentration factor, and the cost efficiency can be increased. Moreover, significant improvements can be made by automation, which is still a hot topic in analytical chemistry. This review surveys comprehensively and in two parts the developments of automation of non-dispersive LPME methodologies performed in static and dynamic modes. Their advantages and limitations and the reported analytical performances are discussed and put into perspective with the corresponding manual procedures. The automation strategies, techniques, and their operation advantages as well as their potentials are further described and discussed. In this first part, an introduction to LPME and their static and dynamic operation modes as well as their automation methodologies is given. The LPME techniques are classified according to the different approaches of protection of the extraction solvent using either a tip-like (needle/tube/rod) support (drop-based approaches), a wall support (film-based approaches), or microfluidic devices. In the second part, the LPME techniques based on porous supports for the extraction solvent such as membranes and porous media are overviewed. An outlook on future demands and perspectives in this promising area of analytical chemistry is finally given. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Screen-printed electrode-based electrochemical detector coupled with in-situ ionic-liquid-assisted dispersive liquid-liquid microextraction for determination of 2,4,6-trinitrotoluene.

    PubMed

    Fernández, Elena; Vidal, Lorena; Iniesta, Jesús; Metters, Jonathan P; Banks, Craig E; Canals, Antonio

    2014-03-01

    A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid-liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett-Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L(-1) and 9 μg L(-1), respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L(-1)), and coefficients of variation of 7 % and 5 % (n = 5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.

  18. Ultrasound-assisted magnetic dispersive solid-phase microextraction: A novel approach for the rapid and efficient microextraction of naproxen and ibuprofen employing experimental design with high-performance liquid chromatography.

    PubMed

    Ghorbani, Mahdi; Chamsaz, Mahmoud; Rounaghi, Gholam Hossein

    2016-03-01

    A simple, rapid, and sensitive method for the determination of naproxen and ibuprofen in complex biological and water matrices (cow milk, human urine, river, and well water samples) has been developed using ultrasound-assisted magnetic dispersive solid-phase microextraction. Magnetic ethylendiamine-functionalized graphene oxide nanocomposite was synthesized and used as a novel adsorbent for the microextraction process and showed great adsorptive ability toward these analytes. Different parameters affecting the microextraction were optimized with the aid of the experimental design approach. A Plackett-Burman screening design was used to study the main variables affecting the microextraction process, and the Box-Behnken optimization design was used to optimize the previously selected variables for extraction of naproxen and ibuprofen. The optimized technique provides good repeatability (relative standard deviations of the intraday precision 3.1 and 3.3, interday precision of 5.6 and 6.1%), linearity (0.1-500 and 0.3-650 ng/mL), low limits of detection (0.03 and 0.1 ng/mL), and a high enrichment factor (168 and 146) for naproxen and ibuprofen, respectively. The proposed method can be successfully applied in routine analysis for determination of naproxen and ibuprofen in cow milk, human urine, and real water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Role of microextraction sampling procedures in forensic toxicology.

    PubMed

    Barroso, Mário; Moreno, Ivo; da Fonseca, Beatriz; Queiroz, João António; Gallardo, Eugenia

    2012-07-01

    The last two decades have provided analysts with more sensitive technology, enabling scientists from all analytical fields to see what they were not able to see just a few years ago. This increased sensitivity has allowed drug detection at very low concentrations and testing in unconventional samples (e.g., hair, oral fluid and sweat), where despite having low analyte concentrations has also led to a reduction in sample size. Along with this reduction, and as a result of the use of excessive amounts of potentially toxic organic solvents (with the subsequent environmental pollution and costs associated with their proper disposal), there has been a growing tendency to use miniaturized sampling techniques. Those sampling procedures allow reducing organic solvent consumption to a minimum and at the same time provide a rapid, simple and cost-effective approach. In addition, it is possible to get at least some degree of automation when using these techniques, which will enhance sample throughput. Those miniaturized sample preparation techniques may be roughly categorized in solid-phase and liquid-phase microextraction, depending on the nature of the analyte. This paper reviews recently published literature on the use of microextraction sampling procedures, with a special focus on the field of forensic toxicology.

  20. Displacement-dispersive liquid-liquid microextraction based on solidification of floating organic drop of trace amounts of palladium in water and road dust samples prior to graphite furnace atomic absorption spectrometry determination.

    PubMed

    Ghanbarian, Maryam; Afzali, Daryoush; Mostafavi, Ali; Fathirad, Fariba

    2013-01-01

    A new displacement-dispersive liquid-liquid microextraction method based on the solidification of floating organic drop was developed for separation and preconcentration of Pd(ll) in road dust and aqueous samples. This method involves two steps of dispersive liquid-liquid microextraction based on solidification. In Step 1, Cu ions react with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which is extracted by dispersive liquid-liquid microextraction based on a solidification procedure using 1-undecanol (extraction solvent) and ethanol (dispersive solvent). In Step 2, the extracted complex is first dispersed using ethanol in a sample solution containing Pd ions, then a dispersive liquid-liquid microextraction based on a solidification procedure is performed creating an organic drop. In this step, Pd(ll) replaces Cu(ll) from the pre-extracted Cu-DDTC complex and goes into the extraction solvent phase. Finally, the Pd(ll)-containing drop is introduced into a graphite furnace using a microsyringe, and Pd(ll) is determined using atomic absorption spectrometry. Several factors that influence the extraction efficiency of Pd and its subsequent determination, such as extraction and dispersive solvent type and volume, pH of sample solution, centrifugation time, and concentration of DDTC, are optimized.

  1. Solid-Phase Microextraction Coupled to Capillary Atmospheric Pressure Photoionization-Mass Spectrometry for Direct Analysis of Polar and Nonpolar Compounds.

    PubMed

    Mirabelli, Mario F; Zenobi, Renato

    2018-04-17

    A novel capillary ionization source based on atmospheric pressure photoionization (cAPPI) was developed and used for the direct interfacing between solid-phase microextraction (SPME) and mass spectrometry (MS). The efficiency of the source was evaluated for direct and dopant-assisted photoionization, analyzing both polar (e.g., triazines and organophosphorus pesticides) and nonpolar (polycyclic aromatic hydrocarbons, PAHs) compounds. The results show that the range of compound polarity, which can be addressed by direct SPME-MS can be substantially extended by using cAPPI, compared to other sensitive techniques like direct analysis in real time (DART) and dielectric barrier discharge ionization (DBDI). The new source delivers a very high sensitivity, down to sub parts-per-trillion (ppt), making it a viable alternative when compared to previously reported and less comprehensive direct approaches.

  2. In situ ionic liquid dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry for the determination of organophosphorus pesticides.

    PubMed

    Cacho, J I; Campillo, N; Viñas, P; Hernández-Córdoba, M

    2018-07-20

    Nine organophosphorus pesticides (OPPs) were determined in environmental waters from different origins using in situ ionic liquid dispersive liquid microextraction (IL-DLLME). This preconcentration technique was coupled to gas chromatography-mass spectrometry (GC-MS) using microvial insert thermal desorption, an approach that uses a thermal desorption injector as sample introduction system. The parameters affecting both the microextraction and sample injection steps were optimized. The proposed method showed good precision, with RSD values ranging from 4.1 to 9.7%, accuracy with recoveries in the 85-118% range, and sensitivity with DLs ranging from 5 to 16 ng L -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Chromatographic analysis of methylglyoxal and other α-dicarbonyls using gas-diffusion microextraction.

    PubMed

    Santos, Christiane M; Valente, Inês M; Gonçalves, Luís M; Rodrigues, José A

    2013-12-07

    Many α-dicarbonyl compounds such as methylglyoxal, diacetyl and pentane-2,3-dione are important quality markers of processed foods. They are produced by enzymatic and chemical processes, the Maillard reaction is the most known chemical route for α-dicarbonyl formation. In the case of methylglyoxal, there are obstacles to be overcome when analysing this compound due to its high reactivity, low volatility and low concentration. The use of extraction techniques based on the volatilization of methylglyoxal (like solid-phase microextraction) showed to be ineffective for the methylglyoxal extraction from aqueous solutions. Therefore, derivatization is typically applied to increase analyte's volatility. In this work a new methodology for the extraction and analysis of methylglyoxal and also diacetyl and pentane-2,3-dione from selected food matrices is presented. It is based on a gas-diffusion microextraction step followed by high performance liquid chromatographic analysis. It was successfully applied to port wines, black tea and soy sauce. Methylglyoxal, diacetyl and pentane-2,3-dione were quantified in the following concentration ranges: 0.24-1.74 mg L(-1), 0.1-1.85 mg L(-1) and 0.023-0.15 mg L(-1), respectively. The main advantages over existing methodologies are its simplicity in terms of sample handling, not requiring any chemical modification of the α-dicarbonyls prior to the extraction, low reagent consumption and short time of analysis.

  4. Gas-Purged Headspace Liquid Phase Microextraction System for Determination of Volatile and Semivolatile Analytes

    PubMed Central

    Zhang, Meihua; Bi, Jinhu; Yang, Cui; Li, Donghao; Piao, Xiangfan

    2012-01-01

    In order to achieve rapid, automatic, and efficient extraction for trace chemicals from samples, a system of gas-purged headspace liquid phase microextraction (GP-HS-LPME) has been researched and developed based on the original HS-LPME technique. In this system, semiconductor condenser and heater, whose refrigerating and heating temperatures were controlled by microcontroller, were designed to cool the extraction solvent and to heat the sample, respectively. Besides, inert gas, whose gas flow rate was adjusted by mass flow controller, was continuously introduced into and discharged from the system. Under optimized parameters, extraction experiments were performed, respectively, using GP-HS-LPME system and original HS-LPME technique for enriching volatile and semivolatile target compounds from the same kind of sample of 15 PAHs standard mixture. GC-MS analysis results for the two experiments indicated that a higher enrichment factor was obtained from GP-HS-LPME. The enrichment results demonstrate that GP-HS-LPME system is potential in determination of volatile and semivolatile analytes from various kinds of samples. PMID:22448341

  5. Vortex-assisted magnetic β-cyclodextrin/attapulgite-linked ionic liquid dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the fast determination of four fungicides in water samples.

    PubMed

    Yang, Miyi; Xi, Xuefei; Wu, Xiaoling; Lu, Runhua; Zhou, Wenfeng; Zhang, Sanbing; Gao, Haixiang

    2015-02-13

    A novel microextraction technique combining magnetic solid-phase microextraction (MSPME) with ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) to determine four fungicides is presented in this work for the first time. The main factors affecting the extraction efficiency were optimized by the one-factor-at-a-time approach and the impacts of these factors were studied by an orthogonal design. Without tedious clean-up procedure, analytes were extracted from the sample to the adsorbent and organic solvent and then desorbed in acetonitrile prior to chromatographic analysis. Under the optimum conditions, good linearity and high enrichment factors were obtained for all analytes, with correlation coefficients ranging from 0.9998 to 1.0000 and enrichment factors ranging 135 and 159 folds. The recoveries for proposed approach were between 98% and 115%, the limits of detection were between 0.02 and 0.04 μg L(-1) and the RSDs changed from 2.96 to 4.16. The method was successfully applied in the analysis of four fungicides (azoxystrobin, chlorothalonil, cyprodinil and trifloxystrobin) in environmental water samples. The recoveries for the real water samples ranged between 81% and 109%. The procedure proved to be a time-saving, environmentally friendly, and efficient analytical technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Characterization of aroma compounds in apple cider using solvent-assisted flavor evaporation and headspace solid-phase microextraction.

    PubMed

    Xu, Yan; Fan, Wenlai; Qian, Michael C

    2007-04-18

    The aroma-active compounds in two apple ciders were identified using gas chromatography-olfactometry (GC-O) and GC-mass spectrometry (MS) techniques. The volatile compounds were extracted using solvent-assisted flavor evaporation (SAFE) and headspace solid-phase microextraction (HS-SPME). On the basis of odor intensity, the most important aroma compounds in the two apple cider samples were 2-phenylethanol, butanoic acid, octanoic acid, 2-methylbutanoic acid, 2-phenylethyl acetate, ethyl 2-methylbutanoate, ethyl butanoate, ethyl hexanoate, 4-ethylguaiacol, eugenol, and 4-vinylphenol. Sulfur-containing compounds, terpene derivatives, and lactones were also detected in ciders. Although most of the aroma compounds were common in both ciders, the aroma intensities were different. Comparison of extraction techniques showed that the SAFE technique had a higher recovery for acids and hydroxy-containing compounds, whereas the HS-SPME technique had a higher recovery for esters and highly volatile compounds.

  7. Application of hollow fiber-supported liquid-phase microextraction coupled with HPLC for the determination of guaifenesin enantiomer-protein binding.

    PubMed

    Hatami, Mehdi; Farhadi, Khalil

    2012-07-01

    A hollow fiber liquid-phase microextraction technique coupled with high-performance liquid chromatography with fluorescence detection was employed for determination and evaluation of the binding characteristics of drugs to bovine serum albumin (BSA). Enantiomers of guaifenesin (an expectorant drug) were investigated as a model system. After optimization of some influencing parameters on microextraction, the proposed method was used for calculation of the target drug distribution coefficient between n-octanol and the buffer solution as well as study of drug-BSA binding in physiological conditions. The developed method shows a new, improved and simple procedure for determination of free drug concentration in biological fluids and the extent of drug-protein binding. Copyright © 2011 John Wiley & Sons, Ltd.

  8. The current role of on-line extraction approaches in clinical and forensic toxicology.

    PubMed

    Mueller, Daniel M

    2014-08-01

    In today's clinical and forensic toxicological laboratories, automation is of interest because of its ability to optimize processes, to reduce manual workload and handling errors and to minimize exposition to potentially infectious samples. Extraction is usually the most time-consuming step; therefore, automation of this step is reasonable. Currently, from the field of clinical and forensic toxicology, methods using the following on-line extraction techniques have been published: on-line solid-phase extraction, turbulent flow chromatography, solid-phase microextraction, microextraction by packed sorbent, single-drop microextraction and on-line desorption of dried blood spots. Most of these published methods are either single-analyte or multicomponent procedures; methods intended for systematic toxicological analysis are relatively scarce. However, the use of on-line extraction will certainly increase in the near future.

  9. Analysis of volatile components from Melipona beecheii geopropolis from Southeast Mexico by headspace solid-phase microextraction.

    PubMed

    Torres-González, Ahira; López-Rivera, Paulina; Duarte-Lisci, Georgina; López-Ramírez, Ángel; Correa-Benítez, Adriana; Rivero-Cruz, J Fausto

    2016-01-01

    A head space solid-phase microextraction method combined with gas chromatography-mass spectrometry was developed and optimised to extract and analyse volatile compounds of Melipona beecheii geopropolis. Seventy-three constituents were identified using this technique in the sample of geopropolis collected. The main compounds detected include β-fenchene (14.53-15.45%), styrene (8.72-9.98%), benzaldehyde (7.44-7.82%) and the most relevant volatile components presents at high level in the geopropolis were terpenoids (58.17%).

  10. Overcoming the challenges of conventional dispersive liquid-liquid microextraction: analysis of THMs in chlorinated swimming pools.

    PubMed

    Faraji, Hakim; Helalizadeh, Masoumeh; Kordi, Mohammad Reza

    2018-01-01

    A rapid, simple, and sensitive approach to the analysis of trihalomethanes (THMs) in swimming pool water samples has been developed. The main goal of this study was to overcome or to improve the shortcomings of conventional dispersive liquid-liquid microextraction (DLLME) and to maximize the realization of green analytical chemistry principles. The method involves a simple vortex-assisted microextraction step, in the absence of the dispersive solvent, followed by salting-out effect for the elimination of the centrifugation step. A bell-shaped device and a solidifiable solvent were used to simplify the extraction solvent collection after phase separation. Optimization of the independent variables was performed by using chemometric methods in three steps. The method was statistically validated based on authentic guidance documents. The completion time for extraction was less than 8 min, and the limits of detection were in the range between 4 and 72 ng L -1 . Using this method, good linearity and precision were achieved. The results of THMs determination in different real samples showed that in some cases the concentration of total THMs was more than threshold values of THMs determined by accredited healthcare organizations. This method indicated satisfactory analytical figures of merit. Graphical Abstract A novel green microextraction technique for overcoming the challenges of conventional DLLME. The proposed procedure complies with the principles of green/sustainable analytical chemistry, comprising decreasing the sample size, making easy automation of the process, reducing organic waste, diminishing energy consumption, replacing toxic reagents with safer reagents, and enhancing operator safety.

  11. Highly porous nanostructured copper foam fiber impregnated with an organic solvent for headspace liquid-phase microextraction.

    PubMed

    Saraji, Mohammad; Ghani, Milad; Rezaei, Behzad; Mokhtarianpour, Maryam

    2016-10-21

    A new headspace liquid-phase microextraction technique based on using a copper foam nanostructure substrate followed by gas chromatography-flame ionization detection was developed for the determination of volatile organic compounds in water and wastewater samples. The copper foam with highly porous nanostructured walls was fabricated on the surface of a copper wire by a rapid and facile electrochemical process and used as the extractant solvent holder. Propyl benzoate was immobilized in the pores of the copper foam coating and used for the microextraction of benzene, toluene, ethylbenzene and xylenes. The experimental parameters such as the type of organic solvent, desorption temperature, desorption time, salt concentration, sample temperature, equilibrium time and extraction time, were investigated and optimized. Under the optimum conditions, the method detection limit was between 0.06 and 0.25μgL -1 . The relative standard deviation of the method for the analytes at 4-8μgL -1 concentration level ranged from 7.9 to 11%. The fiber-to-fiber reproducibility for three fibers prepared under the same condition was 9.3-12%. The enrichment factor was in the range of 615-744. Different water samples were analyzed for the evaluation of the method in real sample analysis. Relative recoveries for spiked tap, river and wastewater samples were in the range of 85-94%. Finally, the extraction efficiency of the method was compared with those of headspace single drop microextraction and headspace SPME with the commercial fibers. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Application of non-ionic surfactant as a developed method for the enhancement of two-phase solvent bar microextraction for the simultaneous determination of three phthalate esters from water samples.

    PubMed

    Bandforuzi, Samereh Ranjbar; Hadjmohammadi, Mohammad Reza

    2018-08-03

    The extraction of phthalate esters (PEs) from aqueous matrices using two-phase solvent bar microextraction by organic micellar phase was investigated. A short hollow fiber immobilized with reverse micelles of Brij 35 surfactant in 1-octanol was served as the solvent bar for microextraction. Experimental results show that the extraction efficiency were much higher using two-phase solvent bar microextraction based on non-ionic surfactant than conventional two-phase solvent bar microextraction because of a positive effect of surfactant-containing extraction phase in promoting the partition process by non-ionic intermolecular forces such as polar and hydrophobicity interactions. The nature of the extraction solvent, type and concentration of non-ionic surfactant, extraction time, sample pH, temperature, stirring rate and ionic strength were the effecting parameters which optimized to obtain the highest extraction recovery. Analysis of recovered analytes was carried out with high performance liquid chromatography coupled with ultraviolet detection (HPLC-UV). Under the optimum conditions, linearity was observed in the range of 1-800 ng mL -1 for dimethylphthalate (DMP) and 0.5-800 ng mL -1 for diethylphthalate (DEP) and di-n-butyl phthalate (DBP) with correlation determination values above 0.99 for them. The limits of detection and quantification were ranged from 0.012 to 0.03 ng mL -1 and 0.04-0.1 ng mL -1 , respectively. The ranges of intra-day and inter-day RSD (n = 3) at 20 ng mL -1 of PEs were 1.8-2.1% and 2.1-2.6%, respectively. Results showed that developed method can be a very powerful, innovative and promising sample preparation technique in PEs analysis from environmental and drinking water samples. Copyright © 2018. Published by Elsevier B.V.

  13. Solid-phase microextraction coupled with high performance liquid chromatography: a complementary technique to solid-phase microextraction-gas chromatography for the analysis of pesticide residues in strawberries.

    PubMed

    Wang, Z; Hennion, B; Urruty, L; Montury, M

    2000-11-01

    Solid-phase microextraction coupled with high performance liquid chromatography has been studied for the analysis of methiocarb, napropamide, fenoxycarb and bupirimate in strawberries. The strawberries were blended and centrifuged. Then, an aliquot of the resulting extracting solution was subjected to solid-phase microextraction (SPME) on a 60 microns polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre for 45 min at room temperature. The extracted pesticides on the SPME fibre were desorbed into SPME/high performance liquid chromatography (HPLC) interface for HPLC analysis with diode-array detection (DAD). The method is organic solvent-free for the whole extraction process and is simple and easy to manipulate. The detection limits were shown to be at low microgram kg-1 level and the linear response covered the range from 0.05 to 2 mg kg-1 of pesticides in strawberries with a regression coefficient larger than 0.99. A good repeatability with RSDs between 2.92 and 9.25% was obtained, depending on compounds.

  14. Electro-assisted solid-phase microextraction based on poly(3,4-ethylenedioxythiophen) combined with GC for the quantification of tricyclic antidepressants.

    PubMed

    Davarani, Saied Saeed Hosseiny; Nojavan, Saeed; Asadi, Roghayeh; Banitaba, Mohammad Hossein

    2013-07-01

    In this study, a platinum wire coated with poly(3,4-ethylenedioxythiophen) was used as an electro-assisted solid-phase microextraction fiber for the quantification of tricyclic antidepressant drugs in biological samples by coupling to GC employing a flame ionization detector. In this study, an electric field increased the extraction rate and recovery. The fiber used as a solid phase was synthesized by the electropolymerization of 3,4-ethylenedioxythiophen monomers onto a platinum wire. The ability of this fiber to extract imipramine, desipramine, and clomipramine by using the electro-assisted solid-phase microextraction technique was evaluated. The effect of various parameters that influence the extraction efficiency, which include solution temperature, extraction time, stirring rate, ionic strength, time and temperature of desorption, and thickness of the fiber, was optimized. Under optimized conditions, the linear ranges and regression coefficients of calibration curves were in the range of 0.5-250 and 0.990-0.998 ng/mL, respectively. Detection limits were in the range of 0.15-0.45 ng/mL. Finally, this method was applied to the determination of drugs in urine and wastewater samples and recoveries were 4.8-108.9%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A sol-gel based solid phase microextraction fiber for the analysis of aliphatic alcohols in apple juices.

    PubMed

    Farhadi, Khalil; Maleki, Ramin; Tahmasebi, Raheleh

    2010-01-01

    A new fiber based on titania-chitin sol-gel coated on a silver wire for the headspace solid phase microextraction of aliphatic alcohols from apple juice samples was developed. The influences of fiber coating composition and microextraction conditions (extraction temperature, extraction time, and ionic strength of the sample matrix) on the fiber performance were investigated. Also, the influence of temperature and time on desorption of analytes from fiber were studied. Under the optimized conditions, a porous fiber with a high extraction capacity and good thermal stability (up to 250 degrees C) was obtained. The proposed headspace solid-phase microextraction-GC method was successfully used for the analysis of aliphatic alcohols in apple juice and concentrate samples. The recovery values were from 92.8 to 98.6%. The RSD (n=5) for all analytes were below 7.8%.

  16. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review.

    PubMed

    de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Coupling of solvent-based de-emulsification dispersive liquid-liquid microextraction with high performance liquid chromatography for simultaneous simple and rapid trace monitoring of 2,4-dichlorophenoxyacetic acid and 2-methyl-4-chlorophenoxyacetic acid.

    PubMed

    Behbahani, Mohammad; Najafi, Fatemeh; Bagheri, Saman; Bojdi, Majid Kalate; Hassanlou, Parmoon Ghareh; Bagheri, Akbar

    2014-04-01

    A simple, rapid, and efficient sample pretreatment technique, based on solvent-based de-emulsification dispersive liquid-liquid microextraction (SD-DLLME), followed by high performance liquid chromatography (HPLC) has been developed for simultaneous preconcentration and trace detection of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) in water and urine samples. Some parameters such as acidity of solution, the amount of salt, type, and volume of extraction solvents, type of disperser/de-emulsifier solvent, and its volume were investigated and optimized. Under optimum extraction conditions, the limits of detections (LODs) of this method for MCPA and 2,4-D were 0.2 and 0.6 μg L(-1) (based on 3S(b)/m) in water and 0.4 and 1.6 μg L(-1) in urine, respectively. Furthermore, dynamic linear range of this method for MCPA and 2,4-D was 1-300 and 2-400 μg L(-1), repectively. Finally, the applicability of the proposed method was evaluated by extraction and determination of the herbicides in urine and different water samples.

  18. Analytical methods for the assessment of endocrine disrupting chemical exposure during human fetal and lactation stages: a review.

    PubMed

    Jiménez-Díaz, I; Vela-Soria, F; Rodríguez-Gómez, R; Zafra-Gómez, A; Ballesteros, O; Navalón, A

    2015-09-10

    In the present work, a review of the analytical methods developed in the last 15 years for the determination of endocrine disrupting chemicals (EDCs) in human samples related with children, including placenta, cord blood, amniotic fluid, maternal blood, maternal urine and breast milk, is proposed. Children are highly vulnerable to toxic chemicals in the environment. Among these environmental contaminants to which children are at risk of exposure are EDCs -substances able to alter the normal hormone function of wildlife and humans-. The work focuses mainly on sample preparation and instrumental techniques used for the detection and quantification of the analytes. The sample preparation techniques include, not only liquid-liquid extraction (LLE) and solid-phase extraction (SPE), but also modern microextraction techniques such as extraction with molecular imprinted polymers (MIPs), stir-bar sorptive extraction (SBSE), hollow-fiber liquid-phase microextraction (HF-LPME), dispersive liquid-liquid microextraction (DLLME), matrix solid phase dispersion (MSPD) or ultrasound-assisted extraction (UAE), which are becoming alternatives in the analysis of human samples. Most studies focus on minimizing the number of steps and using the lowest solvent amounts in the sample treatment. The usual instrumental techniques employed include liquid chromatography (LC), gas chromatography (GC) mainly coupled to tandem mass spectrometry. Multiresidue methods are being developed for the determination of several families of EDCs with one extraction step and limited sample preparation. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Accelerated solvent extraction combined with dispersive liquid-liquid microextraction before gas chromatography with mass spectrometry for the sensitive determination of phenols in soil samples.

    PubMed

    Xing, Han-Zhu; Wang, Xia; Chen, Xiang-Feng; Wang, Ming-Lin; Zhao, Ru-Song

    2015-05-01

    A method combining accelerated solvent extraction with dispersive liquid-liquid microextraction was developed for the first time as a sample pretreatment for the rapid analysis of phenols (including phenol, m-cresol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol) in soil samples. In the accelerated solvent extraction procedure, water was used as an extraction solvent, and phenols were extracted from soil samples into water. The dispersive liquid-liquid microextraction technique was then performed on the obtained aqueous solution. Important accelerated solvent extraction and dispersive liquid-liquid microextraction parameters were investigated and optimized. Under optimized conditions, the new method provided wide linearity (6.1-3080 ng/g), low limits of detection (0.06-1.83 ng/g), and excellent reproducibility (<10%) for phenols. Four real soil samples were analyzed by the proposed method to assess its applicability. Experimental results showed that the soil samples were free of our target compounds, and average recoveries were in the range of 87.9-110%. These findings indicate that accelerated solvent extraction with dispersive liquid-liquid microextraction as a sample pretreatment procedure coupled with gas chromatography and mass spectrometry is an excellent method for the rapid analysis of trace levels of phenols in environmental soil samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ultrasound-assisted emulsification microextraction for determination of 2,4,6-trichloroanisole in wine samples by gas chromatography tandem mass spectrometry.

    PubMed

    Fontana, Ariel R; Patil, Sangram H; Banerjee, Kaushik; Altamirano, Jorgelina C

    2010-04-28

    A fast and effective microextraction technique is proposed for preconcentration of 2,4,6-trichloroanisole (2,4,6-TCA) from wine samples prior gas chromatography tandem mass spectrometric (GC-MS/MS) analysis. The proposed technique is based on ultrasonication (US) for favoring the emulsification phenomenon during the extraction stage. Several variables influencing the relative response of the target analyte were studied and optimized. Under optimal experimental conditions, 2,4,6-TCA was quantitatively extracted achieving enhancement factors (EF) > or = 400 and limits of detection (LODs) 0.6-0.7 ng L(-1) with relative standard deviations (RSDs) < or = 11.3%, when 10 ng L(-1) 2,4,6-TCA standard-wine sample blend was analyzed. The calibration graphs for white and red wine were linear within the range of 5-1000 ng L(-1), and estimation coefficients (r(2)) were > or = 0.9995. Validation of the methodology was carried out by standard addition method at two concentrations (10 and 50 ng L(-1)) achieving recoveries >80% indicating satisfactory robustness of the method. The methodology was successfully applied for determination of 2,4,6-TCA in different wine samples.

  1. Microextraction techniques at the analytical laboratory: an efficient way for determining low amounts of residual insecticides in soils

    NASA Astrophysics Data System (ADS)

    Viñas, Pilar; Navarro, Tania; Campillo, Natalia; Fenoll, Jose; Garrido, Isabel; Cava, Juana; Hernandez-Cordoba, Manuel

    2017-04-01

    Microextraction techniques allow sensitive measurements of pollutants to be carried out by means of instrumentation commonly available at the analytical laboratory. This communication reports our studies focused to the determination of pyrethroid insecticides in polluted soils. These chemicals are synthetic analogues of pyrethrum widely used for pest control in agricultural and household applications. Because of their properties, pyrethroids tend to strongly absorb to soil particles and organic matter. Although they are considered as pesticides with a low toxicity for humans, long times exposure to them may cause damage in immune system and in the neurological system. The procedure here studied is based on dispersive liquid-liquid microextraction (DLLME), and permits the determination of fifteen pyrethroid compounds (allethrin, resmethrin, tetramethrin, bifenthrin, fenpropathrin, cyhalothrin, acrinathrin, permethrin, λ-cyfluthrin, cypermethrin, flucythrinate, fenvalerate, esfenvalerate, τ-fluvalinate, and deltamethrin) in soil samples using gas chromatography with mass spectrometry (GC-MS). The analytes were first extracted from the soil samples (4 g) by treatment with 2 mL of acetonitrile, 2 mL of water and 0.5 g of NaCl. The enriched organic phase (approximately 0.8 mL) was separated by centrifugation, and this solution used as the dispersant in a DLLME process. The analytes did not need to be derivatized before their injection into the chromatographic system, due to their volatility and thermal stability. The identification of the different pyrethroids was carried out based on their retention times and mass spectra, considering the m/z values of the different fragments and their relative abundances. The detection limits were in the 0.2-23 ng g-1 range, depending on the analyte and the sample under analysis. The authors are grateful to the Comunidad Autonóma de la Región de Murcia, Spain (Fundación Séneca, 19888/GERM/15) and to the Spanish MINECO (Project CTQ2015-68049-R) for financial support

  2. Binary Solvents Dispersive Liquid-Liquid Microextraction (BS-DLLME) Method for Determination of Tramadol in Urine Using High-Performance Liquid Chromatography.

    PubMed

    Kiarostami, Vahid; Rouini, Mohamad-Reza; Mohammadian, Razieh; Lavasani, Hoda; Ghazaghi, Mehri

    2014-02-03

    Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase. Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 - 99.6%. Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories.

  3. Binary Solvents Dispersive Liquid—Liquid Microextraction (BS-DLLME) Method for Determination of Tramadol in Urine Using High-Performance Liquid Chromatography

    PubMed Central

    2014-01-01

    Background Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase. Results Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 – 99.6%. Conclusions Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories. PMID:24495475

  4. Ionic liquid-based air-assisted liquid-liquid microextraction followed by high performance liquid chromatography for the determination of five fungicides in juice samples.

    PubMed

    You, Xiangwei; Chen, Xiaochu; Liu, Fengmao; Hou, Fan; Li, Yiqiang

    2018-01-15

    A novel and simple ionic liquid-based air-assisted liquid-liquid microextraction technique combined with high performance liquid chromatography was developed to analyze five fungicides in juice samples. In this method, ionic liquid was used instead of a volatile organic solvent as the extraction solvent. The emulsion was formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent repeatedly using a 10mL glass syringe. No organic dispersive solvent was required. Under the optimized conditions, the limits of detection (LODs) were 0.4-1.8μgL -1 at a signal-to-noise ratio of 3. The limits of quantification (LOQs) set as the lowest spiking levels with acceptable recovery in juices were 10μgL -1 , except for fludioxonil whose LOQ was 20μgL -1 . The proposed method was applied to determine the target fungicides in juice samples, and acceptable recoveries ranging from 74.9% to 115.4% were achieved. Copyright © 2017. Published by Elsevier Ltd.

  5. Application of Microextraction Techniques Including SPME and MESI to the Thermal Degradation of Polymers: A Review.

    PubMed

    Kaykhaii, Massoud; Linford, Matthew R

    2017-03-04

    Here, we discuss the newly developed micro and solventless sample preparation techniques SPME (Solid Phase Microextraction) and MESI (Membrane Extraction with a Sorbent Interface) as applied to the qualitative and quantitative analysis of thermal oxidative degradation products of polymers and their stabilizers. The coupling of these systems to analytical instruments is also described. Our comprehensive literature search revealed that there is no previously published review article on this topic. It is shown that these extraction techniques are valuable sample preparation tools for identifying complex series of degradation products in polymers. In general, the number of products identified by traditional headspace (HS-GC-MS) is much lower than with SPME-GC-MS. MESI is particularly well suited for the detection of non-polar compounds, therefore number of products identified by this technique is not also to the same degree of SPME. Its main advantage, however, is its ability of (semi-) continuous monitoring, but it is more expensive and not yet commercialized.

  6. [The progress in speciation analysis of trace elements by atomic spectrometry].

    PubMed

    Wang, Zeng-Huan; Wang, Xu-Nuo; Ke, Chang-Liang; Lin, Qin

    2013-12-01

    The main purpose of the present work is to review the different non-chromatographic methods for the speciation analysis of trace elements in geological, environmental, biological and medical areas. In this paper, the sample processing methods in speciation analysis were summarized, and the main strategies for non-chromatographic technique were evaluated. The basic principles of the liquid extractions proposed in the published literatures recently and their advantages and disadvantages were discussed, such as conventional solvent extraction, cloud point extraction, single droplet microextraction, and dispersive liquid-liquid microextraction. Solid phase extraction, as a non-chromatographic technique for speciation analysis, can be used in batch or in flow detection, and especially suitable for the online connection to atomic spectrometric detector. The developments and applications of sorbent materials filled in the columns of solid phase extraction were reviewed. The sorbents include chelating resins, nanometer materials, molecular and ion imprinted materials, and bio-sorbents. Other techniques, e. g. hydride generation technique and coprecipitation, were also reviewed together with their main applications.

  7. Ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction for the determination of 4 designer benzodiazepines in urine samples by gas chromatography-triple quadrupole mass spectrometry.

    PubMed

    Meng, Liang; Zhu, Binling; Zheng, Kefang; Fu, Shanlin

    2017-05-15

    A novel microextraction technique based on ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction (UA-LDS-DLLME) had been applied for the determination of 4 designer benzodiazepines (phenazepam, diclazepam, flubromazepam and etizolam) in urine samples by gas chromatography- triple quadrupole mass spectrometry (GC-QQQ-MS). Ethyl acetate (168μL) was added into the urine samples after adjusting pH to 11.3. The samples were sonicated in an ultrasonic bath for 5.5min to form a cloudy suspension. After centrifugation at 10000rpm for 3min, the supernatant extractant was withdrawn and injected into the GC-QQQ-MS for analysis. Parameters affecting the extraction efficiency have been investigated and optimized by means of single factor experiment and response surface methodology (Box-Behnken design). Under the optimum extraction conditions, a recovery of 73.8-85.5% were obtained for all analytes. The analytical method was linear for all analytes in the range from 0.003 to 10μg/mL with the correlation coefficient ranging from 0.9978 to 0.9990. The LODs were estimated to be 1-3ng/mL. The accuracy (expressed as mean relative error MRE) was within ±5.8% and the precision (expressed as relative standard error RSD) was less than 5.9%. UA-LDS-DLLME technique has the advantages of shorter extraction time and is suitable for simultaneous pretreatment of samples in batches. The combination of UA-LDS-DLLME with GC-QQQ-MS offers an alternative analytical approach for the sensitive detection of these designer benzodiazepines in urine matrix for clinical and medico-legal purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. New-generation bar adsorptive microextraction (BAμE) devices for a better eco-user-friendly analytical approach-Application for the determination of antidepressant pharmaceuticals in biological fluids.

    PubMed

    Ide, A H; Nogueira, J M F

    2018-05-10

    The present contribution aims to design new-generation bar adsorptive microextraction (BAμE) devices that promote an innovative and much better user-friendly analytical approach. The novel BAμE devices were lab-made prepared having smaller dimensions by using flexible nylon-based supports (7.5 × 1.0 mm) coated with convenient sorbents (≈ 0.5 mg). This novel advance allows effective microextraction and back-extraction ('only single liquid desorption step') stages as well as interfacing enhancement with the instrumental systems dedicated for routine analysis. To evaluate the achievements of these improvements, four antidepressant agents (bupropion, citalopram, amitriptyline and trazodone) were used as model compounds in aqueous media combined with liquid chromatography (LC) systems. By using an N-vinylpyrrolidone based-polymer phase good selectivity and efficiency were obtained. Assays performed on 25 mL spiked aqueous samples, yielded average recoveries in between 67.8 ± 12.4% (bupropion) and 88.3 ± 12.1% (citalopram), under optimized experimental conditions. The analytical performance also showed convenient precision (RSD < 12%) and detection limits (50 ng L -1 ), as well as linear dynamic ranges (160-2000 ng L -1 ) with suitable determination coefficients (r 2  > 0.9820). The application of the proposed analytical approach on biological fluids showed negligible matrix effects by using the standard addition methodology. From the data obtained, the new-generation BAμE devices presented herein provide an innovative and robust analytical cycle, are simple to prepare, cost-effective, user-friendly and compatible with the current LC autosampler systems. Furthermore, the novel devices were designed to be disposable and used together with negligible amounts of organic solvents (100 μL) during back-extraction, in compliance with the green analytical chemistry principles. In short, the new-generation BAμE devices showed to be an eco-user-friendly approach for trace analysis of priority compounds in biological fluids and a versatile alternative over other well-stablished sorption-based microextraction techniques. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Nanometer-sized ceria-coated silica-iron oxide for the reagentless microextraction/preconcentration of heavy metals in environmental and biological samples followed by slurry introduction to ICP-OES.

    PubMed

    Dados, A; Paparizou, E; Eleftheriou, P; Papastephanou, C; Stalikas, C D

    2014-04-01

    A slurry suspension sampling technique is developed and optimized for the rapid microextraction of heavy metals and analysis using nanometer-sized ceria-coated silica-iron oxide particles and inductively coupled plasma optical emission spectrometry (ICP-OES). Magnetic-silica material is synthesized by a co-precipitation and sol-gel method followed by ceria coating through a precipitation. The large particles are removed using a sedimentation-fractionation procedure and a magnetic homogeneous colloidal suspension of ceria-modified iron oxide-silica is produced for microextraction. The nanometer-sized particles are separated from the sample solution magnetically and analyzed with ICP-OES using a slurry suspension sampling approach. The ceria-modified iron oxide-silica does not contain any organic matter and this probably justifies the absence of matrix effect on plasma atomization capacity, when increased concentrations of slurries are aspirated. The As, Be, Mo, Cr, Cu, Pb, Hg, Sb, Se and V can be preconcentrated by the proposed method at pH 6.0 while Mn, Cd, Co and Ni require a pH ≥ 8.0. Satisfactory values are obtained for the relative standard deviations (2-6%), recoveries (88-102%), enrichment factors (14-19) and regression correlation coefficients as well as detectability, at sub-μg L(-1) levels. The applicability of magnetic ceria for the microextraction of metal ions in combination with the slurry introduction technique using ICP is substantiated by the analysis of environmental water and urine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Hollow-Fibre-Supported Dispersive Liquid-Liquid Microextraction for Determination of Atrazine and Triclosan in Aqueous Samples

    PubMed Central

    Letseka, Thabiso

    2017-01-01

    We report the application of the dispersive liquid-liquid microextraction coupled to hollow-fibre membrane-assisted liquid-phase microextraction and its application for extraction of atrazine and triclosan. Under optimum conditions, namely, 25 μL of a 1 : 4 chlorobenzene : ethyl acetate mixture dispersed in 1 mL of aqueous sample, 10% (m/v) NaCl, a magnetic stirrer speed at 600 rpm, and 10 minutes' extraction time with toluene-filled fibre as the acceptor phase, the method demonstrates sufficient figures of merit. These include linearity (R2 ≥ 0.9975), intravial precision (%RSD ≤ 7.6), enrichment factors (127 and 142), limits of detection (0.0081 and 0.0169 µg/mL), and recovery from river water and sewerage (96–101%). The relatively high detection limits are attributed to the flame ionization detector which is less preferred than a mass spectrometer in trace analyses. This is the first report of a homogenous mixture of the dispersed organic solvent in aqueous solutions and its employment in extraction of organic compounds from aqueous solutions. It therefore adds yet another candidate in the pool of miniaturised solvent microextraction techniques. PMID:29158736

  11. Current trends in sample preparation for cosmetic analysis.

    PubMed

    Zhong, Zhixiong; Li, Gongke

    2017-01-01

    The widespread applications of cosmetics in modern life make their analysis particularly important from a safety point of view. There is a wide variety of restricted ingredients and prohibited substances that primarily influence the safety of cosmetics. Sample preparation for cosmetic analysis is a crucial step as the complex matrices may seriously interfere with the determination of target analytes. In this review, some new developments (2010-2016) in sample preparation techniques for cosmetic analysis, including liquid-phase microextraction, solid-phase microextraction, matrix solid-phase dispersion, pressurized liquid extraction, cloud point extraction, ultrasound-assisted extraction, and microwave digestion, are presented. Furthermore, the research and progress in sample preparation techniques and their applications in the separation and purification of allowed ingredients and prohibited substances are reviewed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The Recent Developments in Sample Preparation for Mass Spectrometry-Based Metabolomics.

    PubMed

    Gong, Zhi-Gang; Hu, Jing; Wu, Xi; Xu, Yong-Jiang

    2017-07-04

    Metabolomics is a critical member in systems biology. Although great progress has been achieved in metabolomics, there are still some problems in sample preparation, data processing and data interpretation. In this review, we intend to explore the roles, challenges and trends in sample preparation for mass spectrometry- (MS-) based metabolomics. The newly emerged sample preparation methods were also critically examined, including laser microdissection, in vivo sampling, dried blood spot, microwave, ultrasound and enzyme-assisted extraction, as well as microextraction techniques. Finally, we provide some conclusions and perspectives for sample preparation in MS-based metabolomics.

  13. Multivariate analysis of the volatile components in tobacco based on infrared-assisted extraction coupled to headspace solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Yang, Yanqin; Pan, Yuanjiang; Zhou, Guojun; Chu, Guohai; Jiang, Jian; Yuan, Kailong; Xia, Qian; Cheng, Changhe

    2016-11-01

    A novel infrared-assisted extraction coupled to headspace solid-phase microextraction followed by gas chromatography with mass spectrometry method has been developed for the rapid determination of the volatile components in tobacco. The optimal extraction conditions for maximizing the extraction efficiency were as follows: 65 μm polydimethylsiloxane-divinylbenzene fiber, extraction time of 20 min, infrared power of 175 W, and distance between the infrared lamp and the headspace vial of 2 cm. Under the optimum conditions, 50 components were found to exist in all ten tobacco samples from different geographical origins. Compared with conventional water-bath heating and nonheating extraction methods, the extraction efficiency of infrared-assisted extraction was greatly improved. Furthermore, multivariate analysis including principal component analysis, hierarchical cluster analysis, and similarity analysis were performed to evaluate the chemical information of these samples and divided them into three classifications, including rich, moderate, and fresh flavors. The above-mentioned classification results were consistent with the sensory evaluation, which was pivotal and meaningful for tobacco discrimination. As a simple, fast, cost-effective, and highly efficient method, the infrared-assisted extraction coupled to headspace solid-phase microextraction technique is powerful and promising for distinguishing the geographical origins of the tobacco samples coupled to suitable chemometrics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Headspace and direct immersion solid phase microextraction procedures for selenite determination in urine, saliva and milk by gas chromatography mass spectrometry.

    PubMed

    Kapsimali, D C; Zachariadis, G A

    2009-10-01

    Two solid phase microextraction modes were investigated and compared for their performance on the determination of selenites in various biological liquids like human urine and saliva and various types of milk. Using sodium tetraethylborate (NaBEt(4)) as ethylating reagent, selenites are converted in situ to volatile diethylselenides (DESe) in aqueous medium. The derivative is collected in situ by solid phase microextraction (SPME) using a silica fiber coated with poly(dimethylsiloxane) (PDMS) either from the headspace (HS-SPME) or directly from the liquid phase (LP-SPME) and finally determined by capillary GC/MS. Under optimum conditions of SPME, the GC separation was also optimized. Between the two examined microextraction techniques, direct immersion of the PDMS fiber in the liquid phase was proved less satisfactory. In contrast, the headspace procedure appears to be more efficient. The quantification of selenites was achieved in SIM mode with good analytical performance. A non-fat milk powder certified reference material was analyzed to evaluate the accuracy of the method. The overall precision of the method was ranged between 6.2% and 9.7%. Detection limits achieved were 0.05microgL(-1) for human urine, 0.08microgL(-1) for saliva and 0.03-0.06microgL(-1) in various milk matrices.

  15. Simultaneous determination of six synthetic phenolic antioxidants in edible oils using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography with diode array detection.

    PubMed

    Xu, Shuangjiao; Liu, Liangliang; Wang, Yanqin; Zhou, Dayun; Kuang, Meng; Fang, Dan; Yang, Weihua; Wei, Shoujun; Xiao, Aiping; Ma, Lei

    2016-08-01

    A simple, rapid, organic-solvent- and sample-saving pretreatment technique, called dispersive liquid-liquid microextraction, was developed for the determination of six synthetic phenolic antioxidants from edible oils before high-performance liquid chromatography with diode array detection. The entire procedure was composed of a two-step microextraction and a centrifugal process and could be finished in about 5 min, only consuming only 25 mg of sample and 1 mL of the organic solvent for each extraction. The influences of several important parameters on the microextraction efficiency were thoroughly investigated. Recovery assays for oil samples were spiked at three concentration levels, 50, 100 and 200 mg/kg, and provided recoveries in the 86.3-102.5% range with a relative standard deviation below 3.5%. The intra-day and inter-day precisions for the analysis were less than 3.8%. The proposed method was successfully applied for the determination of synthetic phenolic antioxidants in different oil samples, and satisfactory results were obtained. Thus, the developed method represents a viable alternative for the quality control of synthetic phenolic antioxidant concentrations in edible oils. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: Approaches based on impregnated membranes and porous supports.

    PubMed

    Alexovič, Michal; Horstkotte, Burkhard; Solich, Petr; Sabo, Ján

    2016-02-11

    A critical overview on automation of modern liquid phase microextraction (LPME) approaches based on the liquid impregnation of porous sorbents and membranes is presented. It is the continuation of part 1, in which non-dispersive LPME techniques based on the use of the extraction phase (EP) in the form of drop, plug, film, or microflow have been surveyed. Compared to the approaches described in part 1, porous materials provide an improved support for the EP. Simultaneously they allow to enlarge its contact surface and to reduce the risk of loss by incident flow or by components of surrounding matrix. Solvent-impregnated membranes or hollow fibres are further ideally suited for analyte extraction with simultaneous or subsequent back-extraction. Their use can therefore improve the procedure robustness and reproducibility as well as it "opens the door" to the new operation modes and fields of application. However, additional work and time are required for membrane replacement and renewed impregnation. Automation of porous support-based and membrane-based approaches plays an important role in the achievement of better reliability, rapidness, and reproducibility compared to manual assays. Automated renewal of the extraction solvent and coupling of sample pretreatment with the detection instrumentation can be named as examples. The different LPME methodologies using impregnated membranes and porous supports for the extraction phase and the different strategies of their automation, and their analytical applications are comprehensively described and discussed in this part. Finally, an outlook on future demands and perspectives of LPME techniques from both parts as a promising area in the field of sample pretreatment is given. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Rapid ionic liquid-based ultrasound assisted dual magnetic microextraction to preconcentrate and separate cadmium-4-(2-thiazolylazo)-resorcinol complex from environmental and biological samples.

    PubMed

    Khan, Sumaira; Kazi, Tasneem Gul; Soylak, Mustafa

    2014-04-05

    A rapid and innovative microextraction technique named as, ionic liquid-based ultrasound-assisted dual magnetic microextraction (IL-UA-DMME) was developed for the preconcentration and extraction of trace cadmium from environmental and biological samples, prior to analyzed by flame atomic absorption spectrometry (FAAS). The proposed method has many obvious advantages, including evading the use of organic solvents and achieved high extraction yields by the combination of dispersive liquid-liquid microextraction (DLLME) and magnetic mediated-solid phase extraction (MM-SPE). In this approach ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] play an important role to extract the cadmium-4-(2-thiazolylazo)-resorcinol (Cd-TAR) complex from acid digested sample solutions and ultrasonic irradiation was applied to assist emulsification. After then, dispersed small amount of Fe3O4 magnetic nanoparticles (MNPs) in sample solutions to salvaged the IL and complete phase separation was attained. Some analytical parameters that influencing the efficiency of proposed (IL-UA-DMME) method, such as pH, volume of IL, ligand concentration, ultra-sonication time, amount of Fe3O4 MNPs, sample volume and matrix effect were optimized. Limit of detection (LOD) and enrichment factor (EF) of the method under optimal experimental conditions were found to be 0.40μgL(-1) and 100, respectively. The relative standard deviation (RSD) of 50μgL(-1) Cd was 4.29%. The validity and accuracy of proposed method, was assessed to analyzed certified reference materials of fortified lake water TMDA-54.4, SPS-WW2 waste water, spinach leaves 1570a and also checked by standard addition method. The obtained values showed good agreement with the certified values and sufficiently high recovery were found in the range of 98.1-101% for Cd. The proposed method was facile, rapid and successfully applied for the determination of Cd in environmental and different biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Ultrasensitive Speciation Analysis of Mercury in Rice by Headspace Solid Phase Microextraction Using Porous Carbons and Gas Chromatography-Dielectric Barrier Discharge Optical Emission Spectrometry.

    PubMed

    Lin, Yao; Yang, Yuan; Li, Yuxuan; Yang, Lu; Hou, Xiandeng; Feng, Xinbin; Zheng, Chengbin

    2016-03-01

    Rice consumption is a primary pathway for human methylmercury (MeHg) exposure in inland mercury mining areas of Asia. In addition, the use of iodomethane, a common fumigant that significantly accelerates the methylation of mercury in soil under sunlight, could increase the MeHg exposure from rice. Conventional hyphenated techniques used for mercury speciation analysis are usually too costly for most developing countries. Consequently, there is an increased interest in the development of sensitive and inexpensive methods for the speciation of mercury in rice. In this work, gas chromatography (GC) coupled to dielectric barrier discharge optical emission spectrometry (DBD-OES) was developed for the speciation analysis of mercury in rice. Prior to GC-DBD-OES analysis, mercury species were derivatized to their volatile species with NaBPh4 and preconcentrated by headspace solid phase microextraction using porous carbons. Limits of detection of 0.5 μg kg(-1) (0.16 ng), 0.75 μg kg(-1) (0.24 ng), and 1.0 μg kg(-1) (0.34 ng) were obtained for Hg(2+), CH3Hg(+), and CH3CH2Hg(+), respectively, with relative standard deviations (RSDs) better than 5.2% and 6.8% for one fiber or fiber-to-fiber mode, respectively. Recoveries of 90-105% were obtained for the rice samples, demonstrating the applicability of the proposed technique. Owing to the small size, low power, and low gas consumption of DBD-OES as well as efficient extraction of mercury species by porous carbons headspace solid phase micro-extraction, the proposed technique provides several advantages including compactness, cost-effectiveness, and potential to couple with miniature GC to accomplish the field speciation of mercury in rice compared to conventional hyphenated techniques.

  19. The measurement of ecstasy in human hair by triple phase directly suspended droplet microextraction prior to HPLC-DAD analysis.

    PubMed

    Es'haghi, Zarrin; Mohtaji, Maryam; Hasanzade-Meidani, Mahin; Masrournia, Mahboubeh

    2010-04-01

    New pre-concentration technique, triple phase suspended droplet microextraction (SD-LPME) and liquid chromatography-photodiode array detection was applied to determine ecstasy, MDMA (3,4-methylendioxy-N-methylamphetamine) in hair samples. In this research MDMA in hair was digested and after treatment extracted. The effective parameters were investigated and method was evaluated. Under the optimal conditions, the MDMA was enriched by factor 98.11. Linearity (r=0.9921), was obtained in the range of 10-15,000 ng mL(-1) and detection limit was 0.1 ng mL(-1). 2010 Elsevier B.V. All rights reserved.

  20. Development of an ionic-liquid-based dispersive liquid-liquid microextraction method for the determination of antichagasic drugs in human breast milk: Optimization by central composite design.

    PubMed

    Padró, Juan M; Pellegrino Vidal, Rocío B; Echevarria, Romina N; Califano, Alicia N; Reta, Mario R

    2015-05-01

    Chagas disease constitutes a major public health problem in Latin America. Human breast milk is a biological sample of great importance for the analysis of therapeutic drugs, as unwanted exposure through breast milk could result in pharmacological effects in the nursing infant. Thus, the goal of breast milk drug analysis is to inquire to which extent a neonate may be exposed to a drug during lactation. In this work, we developed an analytical technique to quantify benznidazole and nifurtimox (the two antichagasic drugs currently available for medical treatment) in human breast milk, with a simple sample pretreatment followed by an ionic-liquid-based dispersive liquid-liquid microextraction combined with high-performance liquid chromatography and UV detection. For this technique, the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate has been used as the "extraction solvent." A central composite design was used to find the optimum values for the significant variables affecting the extraction process: volume of ionic liquid, volume of dispersant solvent, ionic strength, and pH. At the optimum working conditions, the average recoveries were 77.5 and 89.7%, the limits of detection were 0.06 and 0.09 μg/mL and the interday reproducibilities were 6.25 and 5.77% for benznidazole and nifurtimox, respectively. The proposed methodology can be considered sensitive, simple, robust, accurate, and green. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Graphene oxide based sol-gel stainless steel fiber for the headspace solid-phase microextraction of organophosphate ester flame retardants in water samples.

    PubMed

    Jin, Tingting; Cheng, Jing; Cai, Cuicui; Cheng, Min; Wu, Shiju; Zhou, Hongbin

    2016-07-29

    In this paper, graphene oxide was coated onto a stainless steel wire through sol-gel technique and it was used as a solid phase microextraction (SPME) fiber. The prepared fiber was characterized by scanning electron microscopy (SEM), which displayed that the fiber had crinkled surface and porous structure The application of the fiber was evaluated through the headspace SPME of nine organophosphate ester flame retardants (OPFRs) with different characteristics in water samples followed by gas chromatography and nitrogen-phosphorous detector (GC/NPD). The major factors influencing the extraction efficiency, including the extraction and desorption conditions, were studied and optimized. Under the optimum conditions, the proposed method was evaluated, and applied to the analysis of organophosphate ester flame retardants in real environmental water samples. The results demonstrated the HS-SPME method based on GO sol-gel fiber had good linearity (R>0.9928), and limits of detection (1.4-135.6ngL(-1)), high repeatability (RSD<9.8%) and good recovery (76.4-112.4%). The GO based sol-gel fiber displayed bigger extraction capability than the commercial PDMS fiber and the pure sol-gel fiber for both polar and apolar organophosphate esters, especially for the OPFRs containing benzene rings. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Molecularly imprinted sol-gel nanofibers based solid phase microextraction coupled on-line with high performance liquid chromatography for selective determination of acesulfame.

    PubMed

    Moein, Mohammad Mahdi; Javanbakht, Mehran; Karimi, Mohammad; Akbari-Adergani, Behrouz

    2015-03-01

    Sol-gel based molecularly imprinted polymer (MIP) nanofiber was successfully fabricated by electrospinning technique on the surface of a stainless steel bar. The manufactured tool was applied for on-line selective solid phase microextraction (SPME) and determination of acesulfame (ACF) as an artificial sweetener with high performance liquid chromatography (HPLC). The selective ability of method for the extraction of ACF was investigated in the presence of some selected sweeteners such as saccharine (SCH), aspartame (ASP) and caffeine (CAF). Electrospinning of MIP sol-gel solution on the stainless steel bar provided an unbreakable sorbent with high thermal, mechanical, and chemical stability. Moreover, application of the MIP-SPME tool revealed a unique approach for the selective microextraction of the analyte in beverage samples. In this work, 3-(triethoxysilyl)-propylamine (TMSPA) was chosen as a precursor due to its ability to imprint the analyte by hydrogen bonding, Van der Walls, and dipole-dipole interactions. Nylon 6 was also added as a backbone and support for the precursor in which sol could greatly growth during the sol-gel process and makes the solution electrospinable. Various effective parameters in the extraction efficiency of the MIP-SPME tool such as loading time, flow rate, desorption time, selectivity, and the sample volume were evaluated. The linearity for the ACF in beverage sample was in the range of 0.78-100.5 ng mL(-1). Limit of detection (LOD) and quantification (LOQ) were 0.23 and 0.78 ng mL(-1) respectively. The RSD values (n=5) were all below 3.5%at the 20 ng mL(-1) level. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Ultrasound-assisted surfactant-enhanced emulsification microextraction based on the solidification of a floating organic droplet used for the simultaneous determination of six fungicide residues in juices and red wine.

    PubMed

    You, Xiangwei; Wang, Suli; Liu, Fengmao; Shi, Kaiwei

    2013-07-26

    A novel ultrasound-assisted surfactant-enhanced emulsification microextraction technique based on the solidification of a floating organic droplet followed by high performance liquid chromatography with diode array detection was developed for simultaneous determination of six fungicide residues in juices and red wine samples. The low-toxicity solvent, 1-dodecanol, was used as an extraction solvent. For its low density and proper melting point near room temperature, the extractant droplet was collected easily by solidifying it at a low temperature. The surfactant, Tween 80, was used as an emulsifier to enhance the dispersion of the water-immiscible extraction solvent into an aqueous phase, which hastened the mass-transfer of the analytes. Organic dispersive solvent typically required in common dispersive liquid-liquid microextraction methods was not used in the proposed method. Some parameters (e.g., the type and volume of extraction solvent, the type and concentration of surfactant, ultrasound extraction time, salt addition, and volume of samples) that affect the extraction efficiency were optimized. The proposed method showed a good linearity within the range of 5μgL(-1)-1000μgL(-1), with the correlation coefficients (γ) higher than 0.9969. The limits of detection for the method ranged from 0.4μgL(-1) to 1.4μgL(-1). Further, this simple, practical, sensitive, and environmentally friendly method was successfully applied to determine the target fungicides in juice and red wine samples. The recoveries of the target fungicides in red wine and fruit juice samples were 79.5%-113.4%, with relative standard deviations that ranged from 0.4% to 12.3%. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Simultaneous speciation and preconcentration of ultra traces of inorganic tellurium and selenium in environmental samples by hollow fiber liquid phase microextraction prior to electrothermal atomic absorption spectroscopy determination.

    PubMed

    Ghasemi, Ensieh; Najafi, Nahid Mashkouri; Raofie, Farhad; Ghassempour, Alireza

    2010-09-15

    A simple and effective speciation and preconcentration method based on hollow fiber liquid phase microextraction (HF-LPME) was developed for simultaneous separation of trace inorganic tellurium and selenium in environmental samples prior to electrothermal atomic absorption spectroscopy (ETAAS) determination. The method involves the selective extraction of the Te (IV) and Se (IV) species by HF-LPME with the use of ammonium pyrrolidinecarbodithioate (APDC) as the chelating agent. The complex compounds were extracted into 10 microL of toluene and the solutions were injected into a graphite furnace for the determination of Te (IV) and Se (IV). To determine the total tellurium and selenium in the samples, first Te (VI) and Se (VI) were reduced to Te (IV) and Se (IV), and then the microextraction method was performed. The experimental parameters of HF-LPME were optimized using a central composite design after a 2(n-1) fractional factorial experimental design. Under optimum conditions, enrichment factors of up to 520 and 480 were achieved for Te (IV) and Se (IV), respectively. The detection limits were 4 ng L(-1) with 3.5% RSD (n=5, c=2.0 microg L(-1)) for Te (IV) and 5 ng L(-1) with 3.1% RSD for Se (IV). The applicability of the developed technique was evaluated by application to spiked, environmental water and soil samples. Copyright 2010 Elsevier B.V. All rights reserved.

  5. An on-line push/pull perfusion-based hollow-fiber liquid-phase microextraction system for high-performance liquid chromatographic determination of alkylphenols in water samples.

    PubMed

    Chao, Yu-Ying; Jian, Zhi-Xuan; Tu, Yi-Ming; Wang, Hsaio-Wen; Huang, Yeou-Lih

    2013-06-07

    In this study, we employed a novel on-line method, push/pull perfusion hollow-fiber liquid-phase microextraction (PPP-HF-LPME), to extract 4-tert-butylphenol, 2,4-di-tert-butylphenol, 4-n-nonylphenol, and 4-n-octylphenol from river and tap water samples; we then separated and quantified the extracted analytes through high-performance liquid chromatography (HPLC). Using this approach, we overcame the problem of fluid loss across the porous HF membrane to the donor phase, permitting on-line coupling of HF-LPME to HPLC. In our PPP-HF-LPME system, we used a push/pull syringe pump as the driving source to perfuse the acceptor phase, while employing a heating mantle and an ultrasonic probe to accelerate mass transfer. We optimized the experimental conditions such as the nature of the HF supported intermediary phase and the acceptor phase, the composition of the donor and acceptor phases, the sample temperature, and the sonication conditions. Our proposed method provided relative standard deviations of 3.1-6.2%, coefficients of determination (r(2)) of 0.9989-0.9998, and limits of detection of 0.03-0.2 ng mL(-1) for the analytes under the optimized conditions. When we applied this method to analyses of river and tap water samples, our results confirmed that this microextraction technique allows reliable monitoring of alkylphenols in water samples.

  6. PARTITION INFRARED METHOD FOR TOTAL GASOLINE RANGE ORGANICS IN WATER BASED ON SOLID PHASE MICROEXTRACTION. (R825343)

    EPA Science Inventory

    A new method is described for determining total gasoline-range organics
    (TGRO) in water that combines solid-phase microextraction (SPME) and infrared
    (IR) spectroscopy. In this method, the organic compounds are extracted from
    250-mL of water into a small square (3....

  7. SCREENING METHOD FOR NITROAROMATIC COMPOUNDS IN WATER BASED ON SOLID-PHASE MICROEXTRACTION AND INFRARED SPECTROSCOPY. (R825343)

    EPA Science Inventory

    A new method is described for determining nitroaromatic compounds in water
    that combines solid-phase microextraction (SPME) and infrared (IR) spectroscopy. In this method, the compounds are extracted from a 250-mL volume of water into a small square (3.2 cm ? 3.2 cm ? 61.2...

  8. A highly selective and sensitive ultrasonic assisted dispersive liquid phase microextraction based on deep eutectic solvent for determination of cadmium in food and water samples prior to electrothermal atomic absorption spectrometry.

    PubMed

    Zounr, Rizwan Ali; Tuzen, Mustafa; Deligonul, Nihal; Khuhawar, Muhammad Yar

    2018-07-01

    A simple, fast, green, sensitive and selective ultrasonic assisted deep eutectic solvent liquid-phase microextraction technique was used for preconcentration and extraction of cadmium (Cd) in water and food samples by electrothermal atomic absorption spectrometry (ETAAS). In this technique, a synthesized reagent (Z)-N-(3,5-diphenyl-1H-pyrrol-2-yl)-3,5-diphenyl-2H-pyrrol-2-imine (Azo) was used as a complexing agent for Cd. The main factors effecting the pre-concentration and extraction of Cd such as effect of pH, type and composition of deep eutectic solvent (DES), volume of DES, volume of complexing agent, volume of tetrahydrofuran (THF) and ultrasonication time have been examined in detail. At optimum conditions the value of pH and molar ratio of DES were found to be 6.0 and 1:4 (ChCl:Ph), respectively. The detection limit (LOD), limit of quantification (LOQ), relative standard deviation (RSD) and preconcentration factor (PF) were observed as 0.023 ng L -1 , 0.161 ng L -1 , 3.1% and 100, correspondingly. Validation of the developed technique was observed by extraction of Cd in certified reference materials (CRMs) and observed results were successfully compared with certified values. The developed procedure was practiced to various food, beverage and water samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Advanced analytical techniques for the extraction and characterization of plant-derived essential oils by gas chromatography with mass spectrometry.

    PubMed

    Waseem, Rabia; Low, Kah Hin

    2015-02-01

    In recent years, essential oils have received a growing interest because of the positive health effects of their novel characteristics such as antibacterial, antifungal, and antioxidant activities. For the extraction of plant-derived essential oils, there is the need of advanced analytical techniques and innovative methodologies. An exhaustive study of hydrodistillation, supercritical fluid extraction, ultrasound- and microwave-assisted extraction, solid-phase microextraction, pressurized liquid extraction, pressurized hot water extraction, liquid-liquid extraction, liquid-phase microextraction, matrix solid-phase dispersion, and gas chromatography (one- and two-dimensional) hyphenated with mass spectrometry for the extraction through various plant species and analysis of essential oils has been provided in this review. Essential oils are composed of mainly terpenes and terpenoids with low-molecular-weight aromatic and aliphatic constituents that are particularly important for public health. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Determination of diflubenzuron and chlorbenzuron in fruits by combining acetonitrile-based extraction with dispersive liquid-liquid microextraction followed by high-performance liquid chromatography.

    PubMed

    Ruan, Chunqiang; Zhao, Xiang; Liu, Chenglan

    2015-09-01

    In this study, a simple and low-organic-solvent-consuming method combining an acetonitrile-partitioning extraction procedure followed by "quick, easy, cheap, effective, rugged and safe" cleanup with ionic-liquid-based dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection was developed for the determination of diflubenzuron and chlorbenzuron in grapes and pears. Ionic-liquid-based dispersive liquid-liquid microextraction was performed using the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate as the extractive solvent and acetonitrile extract as the dispersive solvent. The main factors influencing the efficiency of the dispersive liquid-liquid microextraction were evaluated, including the extractive solvent type and volume and the dispersive solvent volume. The validation parameters indicated the suitability of the method for routine analyses of benzoylurea insecticides in a large number of samples. The relative recoveries at three spiked levels ranged between 98.6 and 109.3% with relative standard deviations of less than 5.2%. The limit of detection was 0.005 mg/kg for the two insecticides. The proposed method was successfully used for the rapid determination of diflubenzuron and chlorbenzuron residues in real fruit samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Towards a green analytical laboratory: microextraction techniques as a useful tool for the monitoring of polluted soils

    NASA Astrophysics Data System (ADS)

    Lopez-Garcia, Ignacio; Viñas, Pilar; Campillo, Natalia; Hernandez Cordoba, Manuel; Perez Sirvent, Carmen

    2016-04-01

    Microextraction techniques are a valuable tool at the analytical laboratory since they allow sensitive measurements of pollutants to be carried out by means of easily available instrumentation. There is a large number of such procedures involving miniaturized liquid-liquid or liquid-solid extractions with the common denominator of using very low amounts (only a few microliters) or even none of organic solvents. Since minimal amounts of reagents are involved, and the generation of residues is consequently minimized, the approach falls within the concept of Green Analytical Chemistry. This general methodology is useful both for inorganic and organic pollutants. Thus, low amounts of metallic ions can be measured without the need of using ICP-MS since this instrument can be replaced by a simple AAS spectrometer which is commonly present in any laboratory and involves low acquisition and maintenance costs. When dealing with organic pollutants, the microextracts obtained can be introduced into liquid or gas chromatographs equipped with common detectors and there is no need for the most sophisticated and expensive mass spectrometers. This communication reports an overview of the advantages of such a methodology, and gives examples for the determination of some particular contaminants in soil and water samples The authors are grateful to the Comunidad Autonóma de la Región de Murcia , Spain (Fundación Séneca, 19888/GERM/15) for financial support

  12. Electropolymerized fluorinated aniline-based fiber for headspace solid-phase microextraction and gas chromatographic determination of benzaldehyde in injectable pharmaceutical formulations.

    PubMed

    Mohammadi, Ali; Mohammadi, Somayeh; Bayandori Moghaddam, Abdolmajid; Masoumi, Vahideh; Walker, Roderick B

    2014-10-01

    In this study, a simple method was developed and validated to detect trace levels of benzaldehyde in injectable pharmaceutical formulations by solid-phase microextraction coupled with gas chromatography-flame ionization detector. Polyaniline was electrodeposited on a platinum wire in trifluoroacetic acid solvent by cyclic voltammetry technique. This fiber shows high thermal and mechanical stability and high performance in extraction of benzaldehyde. Extraction and desorption time and temperature, salt effect and gas chromatography parameters were optimized as key parameters. At the optimum conditions, the fiber shows good linearity between peak area ratio of benzaldehyde/3-chlorobenzaldehyde and benzaldehyde concentration in the range of 50-800 ng/mL with percent relative standard deviation values ranging from 0.75 to 8.64% (n = 3). The limits of quantitation and detection were 50 and 16 ng/mL, respectively. The method has the requisite selectivity, sensitivity, accuracy and precision to assay benzaldehyde in injectable pharmaceutical dosage forms. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Hollow fibre-based liquid phase microextraction combined with high-performance liquid chromatography for the analysis of flavonoids in Echinophora platyloba DC. and Mentha piperita.

    PubMed

    Hadjmohammadi, Mohammadreza; Karimiyan, Hanieh; Sharifi, Vahid

    2013-11-15

    A simple, inexpensive and efficient three phase hollow fibre liquid phase microextraction (HF-LPME) technique combined with HPLC was used for the simultaneous determination of flavonoids in Echinophora platyloba DC. and Mentha piperita. Different factors affecting the HF-LPME procedure were investigated and optimised. The optimised extraction conditions were as follows: 1-octanol as an organic solvent, pHdonor=2, pHacceptor=9.75, stirring rate of 1000rpm, extraction time of 80min, without addition of salt. Under these conditions, the enrichment factors ranged between 146 and 311. The values of intra and inter-day relative standard deviations (RSD) were in the range of 3.18-6.00% and 7.25-11.00%, respectively. The limits of detection (LODs) ranged between 0.5 and 7.0ngmL(-1). Among the investigated flavonoids quercetin was found in E. platyloba DC. and luteolin was found in M. piperita. Concentration of quercetin and luteolin was 0.015 and 0.025mgg(-1) respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Classification of bacteria by simultaneous methylation-solid phase microextraction and gas chromatography/mass spectrometry analysis of fatty acid methyl esters.

    PubMed

    Lu, Yao; Harrington, Peter B

    2010-08-01

    Direct methylation and solid-phase microextraction (SPME) were used as a sample preparation technique for classification of bacteria based on fatty acid methyl ester (FAME) profiles. Methanolic tetramethylammonium hydroxide was applied as a dual-function reagent to saponify and derivatize whole-cell bacterial fatty acids into FAMEs in one step, and SPME was used to extract the bacterial FAMEs from the headspace. Compared with traditional alkaline saponification and sample preparation using liquid-liquid extraction, the method presented in this work avoids using comparatively large amounts of inorganic and organic solvents and greatly decreases the sample preparation time as well. Characteristic gas chromatography/mass spectrometry (GC/MS) of FAME profiles was achieved for six bacterial species. The difference between Gram-positive and Gram-negative bacteria was clearly visualized with the application of principal component analysis of the GC/MS data of bacterial FAMEs. A cross-validation study using ten bootstrap Latin partitions and the fuzzy rule building expert system demonstrated 87 +/- 3% correct classification efficiency.

  15. Application of solid-phase microextraction for in vivo laboratory and field sampling of pharmaceuticals in fish.

    PubMed

    Zhou, Simon Ningsun; Oakes, Ken D; Servos, Mark R; Pawliszyn, Janusz

    2008-08-15

    Previous field studies utilizing solid-phase microextraction (SPME) predominantly focused on volatile and semivolatile compounds in air or water. Earlier in vivo sampling studies utilizing SPME were limited to the liquid matrix (blood). The present study has expanded the SPME technique to semisolid tissues under laboratory and field conditions through the investigation of both theoretical and applied experimental approaches. Pre-equilibrium extraction and desorption were performed in vivo in two separate animals. Excellent linearity was found between the amounts extracted by SPME from the muscle of living fish and the waterborne concentrations of pharmaceuticals. A simple SPME method is also described to simultaneously determine free and total analyte concentrations in living tissue. The utility of in vivo SPME sampling was evaluated in wild fish collected from a number of different river locations under varying degrees of influence from municipal wastewater effluents. Diphenhydramine and diltiazem were detected in the muscle of fish downstream of a local wastewater treatment plant. Based on this study, SPME demonstrated several important advantages such as simplicity, sensitivity, and robustness under laboratory and in vivo field sampling conditions.

  16. Ultrasound assisted microextraction-nano material solid phase dispersion for extraction and determination of thymol and carvacrol in pharmaceutical samples: experimental design methodology.

    PubMed

    Roosta, Mostafa; Ghaedi, Mehrorang; Daneshfar, Ali; Sahraei, Reza

    2015-01-15

    In the present study, for the first time, a new extraction method based on "ultrasound assisted microextraction-nanomaterial solid phase dispersion (UAME-NMSPD)" was developed to preconcentrate the low quantity of thymol and carvacrol in pharmaceutical samples prior to their HPLC-UV separation/determination. The analytes were accumulated on nickel sulfide nanomaterial loaded on activated carbon (NiS-NP-AC) that with more detail identified by XRD, FESEM and UV-vis technique. Central composite design (CCD) combined with desirability function (DF) was used to search for optimum operational conditions. Working under optimum conditions specified as: 10 min ultrasonic time, pH 3, 0.011 g of adsorbent and 600 μL extraction solvent) permit achievement of high and reasonable linear range over 0.005-2.0 μg mL(-1) (r(2)>0.9993) with LOD of thymol and carvacrol as 0.23 and 0.21 μg L(-1), respectively. The relative standard deviations (RSDs) were less than 4.93% (n=3). Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Combination of magnetic dispersive micro solid-phase extraction and supramolecular solvent-based microextraction followed by high-performance liquid chromatography for determination of trace amounts of cholesterol-lowering drugs in complicated matrices.

    PubMed

    Arghavani-Beydokhti, Somayeh; Rajabi, Maryam; Asghari, Alireza

    2017-07-01

    A novel, efficient, rapid, simple, sensitive, selective, and environmentally friendly method termed magnetic dispersive micro solid-phase extraction combined with supramolecular solvent-based microextraction (Mdμ-SPE-SSME) followed by high-performance liquid chromatography (HPLC) with UV detection is introduced for the simultaneous microextraction of cholesterol-lowering drugs in complicated matrices. In the first microextraction procedure, using layered double hydroxide (LDH)-coated Fe 3 O 4 magnetic nanoparticles, an efficient sample cleanup is simply and rapidly provided without the need for time-consuming centrifugation and elution steps. In the first step, desorption of the target analytes is easily performed through dissolution of the LDH-coated magnetic nanoparticles containing the target analytes in an acidic solution. In the next step, an emulsification microextraction method based on a supramolecular solvent is used for excellent preconcentration, ultimately resulting in an appropriate determination of the target analytes in real samples. Under the optimal experimental conditions, the Mdμ-SPE-SSME-HPLC-UV detection procedure provides good linearity in the ranges of 1.0-1500 ng mL -1 , 1.5-2000 ng mL -1 , and 2.0-2000 ng mL -1 with coefficients of determination of 0.995 or less, low limits of detection (0.3, 0.5, and 0.5 ng mL -1 ), and good extraction repeatabilities (relative standard deviations below 7.8%, n = 5) in deionized water for rosuvastatin, atorvastatin, and gemfibrozil, respectively. Finally, the proposed method is successfully applied for the determination of the target analytes in complicated matrices. Graphical Abstract Mdμ-SPE-SSME procedure.

  18. Salting-out-enhanced ionic liquid microextraction with a dual-role solvent for simultaneous determination of trace pollutants with a wide polarity range in aqueous samples.

    PubMed

    Gao, Man; Qu, Jingang; Chen, Kai; Jin, Lide; Dahlgren, Randy Alan; Wang, Huili; Tan, Chengxia; Wang, Xuedong

    2017-11-01

    In real aquatic environments, many occupational pollutants with a wide range of polarities coexist at nanogram to milligram per liter levels. Most reported microextraction methods focus on extracting compounds with similar properties (e.g., polarity or specific functional groups). Herein, we developed a salting-out-enhanced ionic liquid microextraction based on a dual-role solvent (SILM-DS) for simultaneous detection of tetracycline, doxycycline, bisphenol A, triclosan, and methyltriclosan, with log K ow ranging from -1.32 to 5.40 in complex milk and environmental water matrices. The disperser in the ionic-liquid-based dispersive liquid-liquid microextraction was converted to the extraction solvent in the subsequent salting-out-assisted microextraction procedures, and thus a single solvent performed a dual role as both extractant and disperser in the SILM-DS process. Acetonitrile was selected as the dual-role solvent because of its strong affinity for both ionic liquids and water, as well as the extractant in the salting-out step. Optimized experimental conditions were 115 μL [C 8 MIM][PF 6 ] as extractor, 1200 μL acetonitrile as dual-role solvent, pH 2.0, 5.0 min ultrasound extraction time, 3.0 g Na 2 SO 4 , and 3.0 min vortex extraction time. Under optimized conditions, the recoveries of the five pollutants ranged from 74.5 to 106.9%, and their LODs were 0.12-0.75 μg kg -1 in milk samples and 0.11-0.79 μg L -1 in environmental waters. Experimental precision based on relative standard deviation was 1.4-6.4% for intraday and 2.3-6.5% for interday analyses. Compared with previous methods, the prominent advantages of the newly developed method are simultaneous determination of pollutants with a wide range of polarities and a substantially reduced workload for ordinary environmental monitoring and food tests. Therefore, the new method has great application potential for simultaneous determination of trace pollutants with strongly contrasting polarities in several analytical fields. Graphical Abstract A salting-out-enhanced ionic liquid microextraction based on a dual-role solvent (SILM-DS) was developed for simultaneous detection of tetracycline, doxycycline, bisphenol A, triclosan and methyltriclosan, with log K ow ranging from -1.32 to 5.40. The novelty of SILM-DS method lies in (1) simultaneous quantification of pollutants with contrasting polarity; (2) microextraction based on a dual-role solvent (as a disperser and extractant); (3) giving high recoveries for analytes with a wide range of polarities; and (4) reducing workload for ordinary environmental monitoring and food tests.

  19. Application of liquid-liquid microextraction for the effective separation and simultaneous determination of 11 pharmaceuticals in wastewater samples using HPLC-MS/MS.

    PubMed

    Diuzheva, Alina; Balogh, József; Jekő, József; Cziáky, Zoltán

    2018-05-17

    A dispersive liquid-liquid microextraction method for the simultaneous determination of 11 pharmaceuticals has been developed. The method is based on a microextraction procedure applied to wastewater samples from different regions of Hungary followed by high performance liquid chromatography with mass spectrometry. The effect of the nature of the extractant, dispersive solvent, different additives and extraction time were examined on the extraction efficiently of the dispersive liquid-liquid microextraction method. Under optimal conditions, the linearity for determining the pharmaceuticals was in the range of 1-500 ng mL -1 , with the correlation coefficients ranging from 0.9922 to 0.9995. The limits of detection and limits of quantification were in the range 0.31-6.65 and 0.93-22.18 ng mL -1 , respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. A highly selective dispersive liquid-liquid microextraction approach based on the unique fluorous affinity for the extraction and detection of per- and polyfluoroalkyl substances coupled with high performance liquid chromatography tandem-mass spectrometry.

    PubMed

    Wang, Juan; Shi, Yali; Cai, Yaqi

    2018-04-06

    In the present study, a highly selective fluorous affinity-based dispersive liquid-liquid microextraction (DLLME) technique was developed for the extraction and analysis of per- and polyfluoroalkyl substances (PFASs) followed by high performance liquid chromatography tandem-mass spectrometry. Perfluoro-tert-butanol with multiple C-F bonds was chosen as the extraction solvent, which was injected into the aqueous samples with a dispersive solvent (acetonitrile) in a 120:800 (μL, v/v) mixture for PFASs enrichment. The fluorous affinity-based extraction mechanism was confirmed by the significantly higher extraction recoveries for PFASs containing multiple fluorine atoms than those for compounds with fewer or no fluorine atoms. The extraction recoveries of medium and long-chain PFASs (CF 2  > 5) exceeded 70%, except perfluoroheptanoic acid, while those of short-chain PFASs were lower than 50%, implying that the proposed DLLME may not be suitable for their extraction due to weak fluorous affinity. This highly fluoroselective DLLME technique can greatly decrease the matrix effect that occurs in mass spectrometry detection when applied to the analysis of urine samples. Under the optimum conditions, the relative recoveries of PFASs with CF 2  > 5 ranged from 80.6-121.4% for tap water, river water and urine samples spiked with concentrations of 10, 50 and 100 ng/L. The method limits of quantification for PFASs in water and urine samples were in the range of 0.6-8.7 ng/L. Furthermore, comparable concentrations of PFASs were obtained via DLLME and solid-phase extraction, confirming that the developed DLLME technique is a promising method for the extraction of PFASs in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Development of a novel naphthoic acid ionic liquid and its application in "no-organic solvent microextraction" for determination of triclosan and methyltriclosan in human fluids and the method optimization by central composite design.

    PubMed

    Wang, Hui; Gao, Jiajia; Yu, Nana; Qu, Jingang; Fang, Fang; Wang, Huili; Wang, Mei; Wang, Xuedong

    2016-07-01

    In traditional ionic liquids (ILs)-based microextraction, the hydrophobic and hydrophilic ILs are often used as extractant and disperser, respectively. However, the functional effects of ILs are not utilized in microextraction procedures. Herein, we introduced 1-naphthoic acid into imidazolium ring to synthesize a novel ionic liquid 1-butyl-3-methylimidazolium naphthoic acid salt ([C4MIM][NPA]), and its structure was characterized by IR, (1)H NMR and MS. On the basis of its acidic property and lower solubility than common [CnMIM][BF4], it was used as a mixing dispersive solvent with [C4MIM][BF4] in "functionalized ionic liquid-based no organic solvent microextraction (FIL-NOSM)". Utilization of [C4MIM][NPA] in FIL-NOSM procedures has two obvious advantages: (1) it promoted the non-polar environment, increased volume of the sedimented phase, and thus could enhance the extraction recoveries of triclosan (TCS) and methyltriclosan (MTCS) by more than 10%; and (2) because of the acidic property, it can act as a pH modifier, avoiding extra pH adjustment step. By combining single factor optimization and central composite design, the main factors in the FIL-NOSM method were optimized. Under the optimal conditions, the relative recoveries of TCS and MTCS reached up to 98.60-106.09%, and the LODs of them were as low as 0.12-0.15µgL(-1) in plasma and urine samples. In total, this [C4MIM][NPA]-based FIL-NOSM method provided high extraction efficiency, and required less pretreatment time and unutilized any organic solvent. To the best of our knowledge, this is the first application of [C4mim][NPA]-based microextraction method for the simultaneous quantification of trace TCS and MTCS in human fluids. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Recent Application of Solid Phase Based Techniques for Extraction and Preconcentration of Cyanotoxins in Environmental Matrices.

    PubMed

    Mashile, Geaneth Pertunia; Nomngongo, Philiswa N

    2017-03-04

    Cyanotoxins are toxic and are found in eutrophic, municipal, and residential water supplies. For this reason, their occurrence in drinking water systems has become a global concern. Therefore, monitoring, control, risk assessment, and prevention of these contaminants in the environmental bodies are important subjects associated with public health. Thus, rapid, sensitive, selective, simple, and accurate analytical methods for the identification and determination of cyanotoxins are required. In this paper, the sampling methodologies and applications of solid phase-based sample preparation methods for the determination of cyanotoxins in environmental matrices are reviewed. The sample preparation techniques mainly include solid phase micro-extraction (SPME), solid phase extraction (SPE), and solid phase adsorption toxin tracking technology (SPATT). In addition, advantages and disadvantages and future prospects of these methods have been discussed.

  3. Development of a novel ultrasound-assisted headspace liquid-phase microextraction and its application to the analysis of chlorophenols in real aqueous samples.

    PubMed

    Xu, Hui; Liao, Ying; Yao, Jinrong

    2007-10-05

    A new sample pretreatment technique, ultrasound-assisted headspace liquid-phase microextraction was developed as mentioned in this paper. In the technique, the volatile analytes were headspace extracted into a small drop of solvent, which suspended on the bottom of a cone-shaped PCR tube instead of the needle tip of a microsyringe. More solvent could be suspended in the PCR tube than microsyringe due to the larger interfacial tension, thus the analysis sensitivity was significantly improved with the increase of the extractant volume. Moreover, ultrasound-assisted extraction and independent controlling temperature of the extractant and the sample were performed to enhance the extraction efficiency. Following the extraction, the solvent-loaded sample was analyzed by high-performance liquid chromatography. Chlorophenols (2-chlorophenol, 2,4-dichlorophenol and 2,6-dichlorophenol) were chosen as model analytes to investigate the feasibility of the method. The experimental conditions related to the extraction efficiency were systematically studied. Under the optimum experimental conditions, the detection limit (S/N=3), intra- and inter-day RSD were 6 ng mL(-1), 4.6%, 3.9% for 2-chlorophenol, 12 ng mL(-1), 2.4%, 8.8% for 2,4-dichlorophenol and 23 ng mL(-1), 3.3%, 5.3% for 2,6-dichlorophenol, respectively. The proposed method was successfully applied to determine chlorophenols in real aqueous samples. Good recoveries ranging from 84.6% to 100.7% were obtained. In addition, the extraction efficiency of our method and the conventional headspace liquid-phase microextraction were compared; the extraction efficiency of the former was about 21 times higher than that of the latter. The results demonstrated that the proposed method is a promising sample pretreatment approach, its advantages over the conventional headspace liquid-phase microextraction include simple setup, ease of operation, rapidness, sensitivity, precision and no cross-contamination. The method is very suitable for the analysis of trace volatile and semivolatile pollutants in real aqueous sample.

  4. Dispersive liquid-liquid microextraction based on solidification of floating organic droplet followed by high-performance liquid chromatography with ultraviolet detection and liquid chromatography-tandem mass spectrometry for the determination of triclosan and 2,4-dichlorophenol in water samples.

    PubMed

    Zheng, Cao; Zhao, Jing; Bao, Peng; Gao, Jin; He, Jin

    2011-06-24

    A novel, simple and efficient dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) technique coupled with high-performance liquid chromatography with ultraviolet detection (HPLC-UV) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the determination of triclosan and its degradation product 2,4-dichlorophenol in real water samples. The extraction solvent used in this work is of low density, low volatility, low toxicity and proper melting point around room temperature. The extractant droplets can be collected easily by solidifying it at a lower temperature. Parameters that affect the extraction efficiency, including type and volume of extraction solvent and dispersive solvent, salt effect, pH and extraction time, were investigated and optimized in a 5 mL sample system by HPLC-UV. Under the optimum conditions (extraction solvent: 12 μL of 1-dodecanol; dispersive solvent: 300 of μL acetonitrile; sample pH: 6.0; extraction time: 1 min), the limits of detection (LODs) of the pretreatment method combined with LC-MS/MS were in the range of 0.002-0.02 μg L(-1) which are lower than or comparable with other reported approaches applied to the determination of the same compounds. Wide linearities, good precisions and satisfactory relative recoveries were also obtained. The proposed technique was successfully applied to determine triclosan and 2,4-dichlorophenol in real water samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Fast determination of octinoxate and oxybenzone uv filters in swimming pool waters by gas chromatography/mass spectrometry after solid-phase microextraction.

    PubMed

    Yılmazcan, Ö; Kanakaki, C; Izgi, B; Rosenberg, E

    2015-07-01

    A fast gas chromatography/mass spectrometry method was developed and validated for the analysis of the potential endocrine disrupters octinoxate and oxybenzone in swimming pool water samples based on the solvent-free solid-phase microextraction technique. The low-pressure gas chromatography/mass spectrometry method used for the fast identification of UV filter substances was compared to a conventional method in terms of sensitivity and speed. The fast method proposed resulted in 2 min runs, leading to an eightfold decrease in the total analysis time and a sevenfold improvement in detection limits. The main parameters affecting the solid-phase microextraction process were also studied in detail and the optimized conditions were as follows: fiber coating, polyacrylate; extraction mode, direct immersion; extraction temperature, 25°C; sample volume, 5 mL; extraction time 45 min; pH 6.5. Under the optimized conditions, a linear response was obtained in the concentration range of 0.5-25 μg/L with correlation coefficients in the range 0.990-0.999. The limits of detection were 0.17-0.29 μg/L, and the recoveries were 80-83%. Combined method uncertainty was assessed and found to be less than 7% for both analytes for concentrations equal to or higher than 5 μg/L. Pool water samples were analyzed to demonstrate the applicability of the proposed method. Neither octinoxate nor oxybenzone were detected in the swimming pool water samples at concentrations above the respective limits of detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Solid-phase microextraction followed by gas chromatography-mass spectrometry for the determination of ink photo-initiators in packed milk.

    PubMed

    Negreira, N; Rodríguez, I; Rubí, E; Cela, R

    2010-06-30

    A novel, single step method for the determination of seven ink photo-initiators in carton packed milk samples is described. Solid-phase microextraction (SPME) and gas chromatography (GC), combined with mass spectrometry (MS), were used as sample preparation and determination techniques, respectively. Parameters affecting the performance of the microextraction process were thoroughly evaluated using uni- and multivariate optimization strategies, based on the use of experimental factorial designs. The coating of the SPME fibre, together with the sampling mode and the temperature were the factors playing a major influence on the efficiency of the extraction. Under final conditions, 1.5 mL of milk and 8.5 mL of ultrapure water were poured in a glass vessel, which was closed and immersed in a water boiling bath. A poly(dimethylsiloxane)-divinylbenzene (PDMS-DVB) coated fibre was exposed directly to the diluted sample for 40 min. After that, the fibre was desorbed in the injector of the GC-MS system for 3 min. The optimized method provided limits of quantification (LOQs) between 0.2 and 1 microg L(-1) and a good linearity in the range between 1 and 250 microg L(-1). The inter-day precision remained below 15% for all compounds in spiked whole milk. The efficiency of the extraction changed for whole, semi-skimmed and skimmed milk; however, no differences were noticed among the relative recoveries achieved for milk samples, from different brands, with the same fat content. Copyright 2010 Elsevier B.V. All rights reserved.

  7. High-efficiency headspace sampling of volatile organic compounds in explosives using capillary microextraction of volatiles (CMV) coupled to gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Fan, Wen; Almirall, José

    2014-03-01

    A novel geometry configuration based on sorbent-coated glass microfibers packed within a glass capillary is used to sample volatile organic compounds, dynamically, in the headspace of an open system or in a partially open system to achieve quantitative extraction of the available volatiles of explosives with negligible breakthrough. Air is sampled through the newly developed sorbent-packed 2 cm long, 2 mm diameter capillary microextraction of volatiles (CMV) and subsequently introduced into a commercially available thermal desorption probe fitted directly into a GC injection port. A sorbent coating surface area of ∼5 × 10(-2) m(2) or 5,000 times greater than that of a single solid-phase microextraction (SPME) fiber allows for fast (30 s), flow-through sampling of relatively large volumes using sampling flow rates of ∼1.5 L/min. A direct comparison of the new CMV extraction to a static (equilibrium) SPME extraction of the same headspace sample yields a 30 times improvement in sensitivity for the CMV when sampling nitroglycerine (NG), 2,4-dinitrotoluene (2,4-DNT), and diphenylamine (DPA) in a mixture containing a total mass of 500 ng of each analyte, when spiked into a liter-volume container. Calibration curves were established for all compounds studied, and the recovery was determined to be ∼1 % or better after only 1 min of sampling time. Quantitative analysis is also possible using this extraction technique when the sampling temperature, flow rate, and time are kept constant between calibration curves and the sample.

  8. A new combined method of stable isotope-labeling derivatization-ultrasound-assisted dispersive liquid-liquid microextraction for the determination of neurotransmitters in rat brain microdialysates by ultra high performance liquid chromatography tandem mass spectrometry.

    PubMed

    Zheng, Longfang; Zhao, Xian-En; Zhu, Shuyun; Tao, Yanduo; Ji, Wenhua; Geng, Yanling; Wang, Xiao; Chen, Guang; You, Jinmao

    2017-06-01

    In this work, for the first time, a new hyphenated technique of stable isotope-labeling derivatization-ultrasound-assisted dispersive liquid-liquid microextraction has been developed for the simultaneous determination of monoamine neurotransmitters (MANTs) and their biosynthesis precursors and metabolites. The developed method was based on ultra high performance liquid chromatography tandem mass spectrometry detection using multiple-reaction monitoring mode. A pair of mass spectrometry sensitizing reagents, d 0 -10-methyl-acridone-2-sulfonyl chloride and d 3 -10-methyl-acridone-2-sulfonyl chloride, as stable isotope probes was utilized to facilely label neurotransmitters, respectively. The heavy labeled MANTs standards were prepared and used as internal standards for quantification to minimize the matrix effects in mass spectrometry analysis. Low toxic bromobenzene (extractant) and acetonitrile (dispersant) were utilized in microextraction procedure. Under the optimized conditions, good linearity was observed with the limits of detection (S/N>3) and limits of quantification (S/N>10) in the range of 0.002-0.010 and 0.015-0.040nmol/L, respectively. Meanwhile, it also brought acceptable precision (4.2-8.8%, peak area RSDs %) and accuracy (recovery, 96.9-104.1%) results. This method was successfully applied to the simultaneous determination of monoamine neurotransmitters and their biosynthesis precursors and metabolites in rat brain microdialysates of Parkinson's disease and normal rats. This provided a new method for the neurotransmitters related studies in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Optimization of multiwalled carbon nanotubes reinforced hollow-fiber solid-liquid-phase microextraction for the determination of polycyclic aromatic hydrocarbons in environmental water samples using experimental design.

    PubMed

    Hamedi, Raheleh; Hadjmohammadi, Mohammad Reza

    2017-09-01

    A novel design of hollow-fiber liquid-phase microextraction containing multiwalled carbon nanotubes as a solid sorbent, which is immobilized in the pore and lumen of hollow fiber by the sol-gel technique, was developed for the pre-concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples. The proposed method utilized both solid- and liquid-phase microextraction media. Parameters that affect the extraction of polycyclic aromatic hydrocarbons were optimized in two successive steps as follows. Firstly, a methodology based on a quarter factorial design was used to choose the significant variables. Then, these significant factors were optimized utilizing central composite design. Under the optimized condition (extraction time = 25 min, amount of multiwalled carbon nanotubes = 78 mg, sample volume = 8 mL, and desorption time = 5 min), the calibration curves showed high linearity (R 2  = 0.99) in the range of 0.01-500 ng/mL and the limits of detection were in the range of 0.007-1.47 ng/mL. The obtained extraction recoveries for 10 ng/mL of polycyclic aromatic hydrocarbons standard solution were in the range of 85-92%. Replicating the experiment under these conditions five times gave relative standard deviations lower than 6%. Finally, the method was successfully applied for pre-concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Dispersive microextraction based on water-coated Fe₃O₄ followed by gas chromatography-mass spectrometry for determination of 3-monochloropropane-1,2-diol in edible oils.

    PubMed

    Zhao, Qin; Wei, Fang; Xiao, Neng; Yu, Qiong-Wei; Yuan, Bi-Feng; Feng, Yu-Qi

    2012-06-01

    In the present work, we developed a novel dispersive microextraction technique by combining the advantages of liquid-phase microextraction (LPME) and magnetic solid-phase extraction (MSPE). In this method, trace amount of water directly absorbed on bare Fe₃O₄ to form water-coated Fe₃O₄ (W-Fe₃O₄) and rapid extraction can be achieved while W-Fe₃O₄ dispersed in the sample solution. The analyte adsorbed W-Fe₃O₄ can be easily collected and isolated from sample solution by application of a magnet. It was worth noting that in the proposed method water was used as extractant and Fe₃O₄ served as the supporter and retriever of water. The performance of the method was evaluated by extraction of 3-monochloropropane-1,2-diol (3-MCPD) from edible oils. The extracted 3-MCPD was then derived by a silylanization reagent (1-trimethylsilylimidazole) before gas chromatography-mass spectrometry (GC-MS) analysis. Several parameters that affected the extraction and derivatization efficiency were investigated. Our results showed that the limit of detection for 3-MCPD was 1.1 ng/g. The recoveries in spiked oil samples were in the range of 70.0-104.9% with the RSDs less than 5.6% (intra-day) and 6.4% (inter-day). Taken together, the simple, rapid and cost-effective method developed in current study, offers a potential application for the extraction and preconcentration of hydrophilic analytes from complex fatty samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. A selective and sensitive optical sensor for dissolved ammonia detection via agglomeration of fluorescent Ag nanoclusters and temperature gradient headspace single drop microextraction.

    PubMed

    Dong, Jiang Xue; Gao, Zhong Feng; Zhang, Ying; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun

    2017-05-15

    In this paper, a simple sensor platform is presented for highly selective and sensitive detection of dissolved ammonia in aqueous solutions without pretreatment based on temperature gradient headspace single drop microextraction (HS-SDME) technique, and fluorescence and UV-vis spectrophotometry are utilized with the Ag nanoclusters (Ag NCs) functioned by citrate and glutathione as the probe. The sensing mechanism is based on the volatility of ammonia gas and the active response of Ag NCs to pH change caused by the introduction of ammonia. High pH can make the Ag NCs agglomerate and lead to the obvious decrease of fluorescence intensity and absorbance of Ag NCs solution. Moreover, the presented method exhibits a remarkably high selectivity toward dissolved ammonia over most of inorganic ions and amino acid, and shows a good linear range of 10-350μM (0.14-4.9mgNL -1 ) with a low detection limit of 336nM (4.70μgNL -1 ) at a signal-to-noise ratio of 3. In addition, the practical applications of the sensor have been successfully demonstrated by detecting dissolved ammonia in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Silica-based ionogels: nanoconfined ionic liquid-rich fibers for headspace solid-phase microextraction coupled with gas chromatography-barrier discharge ionization detection.

    PubMed

    Pena-Pereira, Francisco; Marcinkowski, Lukasz; Kloskowski, Adam; Namieśnik, Jacek

    2014-12-02

    In this work, hybrid silica-based materials with immobilized ionic liquids (ILs) were prepared by sol-gel technology and evaluated as solid-phase microextraction (SPME) fiber coatings. High loadings of the IL 1-methyl-3-butylimidazolium bis(trifluoromethylsulfonyl)imide ([C4MIM][TFSI]) were confined within the hybrid network. Coatings composition and morphology were evaluated using scanning electron microscopy and energy dispersive X-ray spectrometry. The obtained ionogel SPME fibers exhibited high extractability for aromatic volatile compounds, yielding good sensitivity and precision when combined with a gas chromatograph with barrier ionization discharge (GC-BID) detection. A central composite design was used for assessing the effect of experimental parameters on the extraction process. Under optimized conditions, the proposed ionogel SPME fiber coatings enabled the achievement of excellent enrichment factors (up to 7400). The limits of detection (LODs) were found in the range 0.03-1.27 μg L(-1), whereas the repeatability and fiber-to-fiber reproducibility were 5.6% and 12.0% on average, respectively. Water samples were analyzed by the proposed methodology, showing recovery values in the range of 88.7-113.9%. The results obtained in this work suggest that ionogels can be promising coating materials for future applications of SPME and related sample preparation techniques.

  13. Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings? - A review.

    PubMed

    Rocío-Bautista, Priscilla; Pacheco-Fernández, Idaira; Pasán, Jorge; Pino, Verónica

    2016-10-05

    Solid-phase microextraction (SPME) is a powerful technique commonly used in sample preparation for extraction/preconcentration of analytes from a wide variety of samples. Among the trends in improving SPME applications, current investigations are focused on the development of novel coatings able to improve the extraction efficiency, sensitivity, and thermal and mechanical stability, within other properties, of current commercial SPME fibers. Metal-organic frameworks (MOFs) merit to be highlighted as promising sorbent materials in SPME schemes. MOFs are porous hybrid materials composed by metal ions and organic linkers, presenting the highest surface areas known, with ease synthesis and high tuneability, together with adequate chemical and thermal stability. For MOF based-SPME fibers, it results important to pretreat adequately the SPME supports to ensure the correct formation of the MOF onto the fiber or the attachment MOF-support. This, in turn, will increase the final stability of the fiber while generating uniform coatings. This review provides a critical overview of the current state of the use of MOFs as SPME coatings, not only highlighting the advantages of these materials versus commercial SPME coatings in terms of stability, selectivity, and sensitivity; but also insightfully describing the current methods to obtain reproducible MOF-based SPME coatings. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Solid-phase microextraction of methadone in urine samples by electrochemically co-deposited sol-gel/Cu nanocomposite fiber.

    PubMed

    Mohammadiazar, Sirwan; Hasanli, Fateme; Maham, Mehdi; Payami Samarin, Somayeh

    2017-08-01

    Electrochemically co-deposited sol-gel/Cu nanocomposites have been introduced as a novel, simple and single-step technique for preparation of solid-phase microextraction (SPME) coating to extract methadone (MDN) (a synthetic opioid) in urine samples. The porous surface structure of the sol-gel/Cu nanocomposite coating was revealed by scanning electron microscopy. Direct immersion SPME followed by HPLC-UV determination was employed. The factors influencing the SPME procedure, such as the salt content, desorption solvent type, pH and equilibration time, were optimized. The best conditions were obtained with no salt content, acetonitrile as desorption solvent type, pH 9 and 10 min equilibration time. The calibration graphs for urine samples showed good linearity. The detection limit was about 0.2 ng mL -1 . Also, the novel method for preparation of nanocomposite fiber was compared with previously reported techniques for MDN determination. The results show that the novel nanocomposite fiber has relatively high extraction efficiency. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Ionic-liquid-mediated poly(dimethylsiloxane)- grafted carbon nanotube fiber prepared by the sol-gel technique for the head space solid-phase microextraction of methyl tert-butyl ether using GC.

    PubMed

    Vatani, Hossein; Yazdi, Ali Sarafraz

    2014-01-01

    A headspace solid-phase microextraction method was developed for the preconcentration and extraction of methyl tert-butyl ether. An ionic-liquid-mediated multiwalled carbon nanotube-poly(dimethylsiloxane) hybrid coating, which was prepared by covalent functionalization of multiwalled carbon nanotubes with hydroxyl-terminated poly(dimethylsiloxane) using the sol-gel technique, was used as solid-phase microextraction adsorbent. This innovative fiber exhibited a highly porous surface structure, high thermal stability (at least 320°C) and long lifespan (over 210 uses). Potential factors affecting the extraction efficiency were optimized. Under the optimum conditions, the method LOD (S/N = 3) was 0.007 ng/mL and the LOQ (S/N = 10) was 0.03 ng/mL. The calibration curve was linear in the range of 0.03-200 ng/mL. The RSDs for one fiber (repeatability, n = 5) at three different concentrations (0.05, 1, and 150 ng/mL) were 5.1, 4.2, and 4.6% and for the fibers obtained from different batches (reproducibility, n = 3) were 6.5, 5.9, and 6.3%, respectively. The developed method was successfully applied to the determination of methyl tert-butyl ether in different real water samples on three consecutive days. The relative recoveries for the spiked samples with 0.05, 1, and 150 ng/mL were between 94-104%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Evaluation of polyethersulfone performance for the microextraction of polar chlorinated herbicides from environmental water samples.

    PubMed

    Prieto, Ailette; Rodil, Rosario; Quintana, José Benito; Cela, Rafael; Möder, Monika; Rodríguez, Isaac

    2014-05-01

    In this work, the suitability of bulk polyethersulfone (PES) for sorptive microextraction of eight polar, chlorinated phenoxy acids and dicamba from environmental water samples is assessed and the analytical features of the optimized method are compared to those reported for other microextraction techniques. Under optimized conditions, extractions were performed with samples (18 mL) adjusted at pH 2 and containing a 30% (w/v) of sodium chloride, using a tubular PES sorbent (1 cm length × 0.7 mm o.d., sorbent volume 8 µL). Equilibrium conditions were achieved after 3h of direct sampling, with absolute extraction efficiencies ranging from 39 to 66%, depending on the compound. Analytes were recovered soaking the polymer with 0.1 mL of ethyl acetate, derivatized and determined by gas chromatography-mass spectrometry (GC-MS). Achieved quantification limits (LOQs) varied between 0.005 and 0.073 ng mL(-1). After normalization with the internal surrogate (IS), the efficiency of the extraction was only moderately affected by the particular characteristics of different water samples (surface and sewage water); thus, pseudo-external calibration, using spiked ultrapure water solutions, can be used as quantification technique. The reduced cost of the PES polymer allowed considering it as a disposable sorbent, avoiding variations in the performance of the extraction due to cross-contamination problems and/or surface modification with usage. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Extraction and preconcentration of residual solvents in pharmaceuticals using dynamic headspace-liquid phase microextraction and their determination by gas chromatography-flame ionization detection.

    PubMed

    Farajzadeh, Mir Ali; Dehghani, Hamideh; Yadeghari, Adeleh; Khoshmaram, Leila

    2017-02-01

    The present study describes a microextraction and determination method for analyzing residual solvents in pharmaceutical products using dynamic headspace-liquid phase microextraction technique followed by gas chromatography-flame ionization detection. In this method dimethyl sulfoxide (μL level) placed into a GC liner-shaped extraction vessel is used as a collection/extraction solvent. Then the liner is exposed to the headspace of a vial containing the sample solution. The effect of different parameters influencing the microextraction procedure including collection/extraction solvent type and its volume, ionic strength, extraction time, extraction temperature and concentration of NaOH solution used in dissolving the studied pharmaceuticals are investigated and optimized. Under the optimum extraction conditions, the method showed wide linear ranges between 0.5 and 5000 mg L -1 . The other analytical parameters were obtained in the following ranges: enrichment factors 240-327, extraction recoveries 72-98% and limits of detection 0.1-0.8 mg L -1 in solution and 0.6-3.2 μg g -1 in solid. Relative standard deviations for the extraction of 100 mg L -1 of each analyte were obtained in the ranges of 4-7 and 5-8% for intra-day (n = 6) and inter-day (n = 4) respectively. Finally the target analytes were determined in different samples such as erythromycin, azithromycin, cefalexin, amoxicillin and co-amoxiclav by the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Determination of 1,3-dichloro-2-propanol and 3-chloro-1,2-propandiol in soy sauce by headspace derivatization solid-phase microextraction combined with gas chromatography-mass spectrometry.

    PubMed

    Lee, Maw-Rong; Chiu, Tzu-Chun; Dou, Jianpeng

    2007-05-22

    This study proposes a method for identifying 1,3-dichloro-2-propanol and 3-chloro-1,2-propandiol in aqueous matrices by using headspace on-fiber derivatization following solid-phase microextraction combined with gas chromatography-mass spectrometry. The optimized SPME experimental procedures for extracting 1,3-dichloro-2-propanol and 3-chloro-1,2-propandiol in aqueous solutions involved a 85 microm polyacrylate-coated fiber at pH 6, a sodium chloride concentration of 0.36 g mL(-1), extraction at 50 degrees C for 15 min and desorption of analytes at 260 degrees C for 3 min. Headspace derivatization was conducted in a laboratory-made design with N-methyl-N-(trimethylsilyl)-trifluoroacetamide vapor following solid-phase microextraction by using 3 microL N-methyl-N-(trimethylsilyl)-trifluoroacetamide at an oil bath temperature of 230 degrees C for 40 s. This method had good repeatability (R.S.D.s < or = 19%, n = 8) and good linearity (r2 > or = 0.9972) for ultrapure water and soy sauce samples that were spiked with two analytes. Detection limits were obtained at the ng mL(-1). The result demonstrated that headspace on-fiber derivatization following solid-phase microextraction was a simple, fast and accurate technique for identifying trace 1,3-dichloro-2-propanol and 3-chloro-1,2-propandiol in soy sauce.

  19. Application of solid-phase microextraction method to determine bioavailable fraction of PAH in hazardous waste.

    PubMed

    Jefimova, J; Irha, N; Mägi, R; Kirso, U

    2012-10-01

    The solid-phase microextraction (SPME) method was developed to determine PAH free dissolved concentration (C(free)) in field leachates from hazardous waste disposal. SPME technique, involving a 100-μm polydimethylsiloxane (PDMS) fiber coupled to GC-MS was optimized for determination of C(free). The following PAH were found in bioavailable form: acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, with C(free) varying between 2.38 and 62.35 ng/L. Conventional solvent extraction was used for measurement of total concentration (C(total)) in the same samples, and ranging from 1.26 to 77.56 μg/L. Determining C(free) of the hydrophobic toxic pollutants could give useful information for risk assessment of the hazardous waste.

  20. Development and optimization of a naphthoic acid-based ionic liquid as a "non-organic solvent microextraction" for the determination of tetracycline antibiotics in milk and chicken eggs.

    PubMed

    Gao, Jiajia; Wang, Hui; Qu, Jingang; Wang, Huili; Wang, Xuedong

    2017-01-15

    In traditional ionic liquids (ILs)-based microextraction, ILs are often used as extraction and dispersive solvents; however, their functional effects are not fully utilized. Herein, we developed a novel ionic liquid 1-butyl-3-methylimidazolium naphthoic acid salt ([C4MIM][NPA]) with strong acidity. It was used as a mixed dispersive solvent with conventional [C2MIM][BF4] in "functionalized ionic liquid-based non-organic solvent microextraction (FIL-NOSM)" for determination of tetracycline antibiotics (TCs) in milk and eggs. Utilization of [C4MIM][NPA] in FIL-NOSM method increased extraction recoveries (ERs) of TCs by more than 20% and eliminated the pH adjustment step because of its strong acidity. Under optimized conditions based on central composite design, the ERs of four TCs were 94.1-102.1%, and the limitsofdetection were 0.08-1.12μgkg(-1) in milk and egg samples. This proposed method provides high extraction efficiency, less pretreatment time and requires non-organic solvents for determination of trace TC concentrations in complex animal-based food matrices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Ion pair-based liquid-phase microextraction combined with cuvetteless UV-vis micro-spectrophotometry as a miniaturized assay for monitoring ammonia in waters.

    PubMed

    Senra-Ferreiro, Sonia; Pena-Pereira, Francisco; Costas-Mora, Isabel; Romero, Vanesa; Lavilla, Isela; Bendicho, Carlos

    2011-09-15

    A miniaturized method based on liquid-phase microextraction (LPME) in combination with microvolume UV-vis spectrophotometry for monitoring ammonia in waters is proposed. The methodology is based on the extraction of the ion pair formed between the blue indophenol obtained according to the Berthelot reaction and a quaternary ammonium salt into a microvolume of organic solvent. Experimental parameters affecting the LPME performance such as type and concentration of the quaternary ammonium ion salt required to form the ion pair, type and volume of extractant solvent, effect of disperser solvent, ionic strength and extraction time, were optimized. A detection limit of 5.0 μg L(-1) ammonia and an enrichment factor of 30 can be attained after a microextraction time of 4 min. The repeatability, expressed as relative standard deviation, was 7.6% (n=7). The proposed method can be successfully applied to the determination of trace amounts of ammonia in several environmental water samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Hollow-fiber liquid-phase microextraction coupled with miniature capillary electrophoresis for the trace analysis of four aliphatic aldehydes in water samples.

    PubMed

    Li, Ying; Yi, Fan; Zheng, Yiliang; Wang, Yu; Ye, Jiannong; Chu, Qingcui

    2015-08-01

    An environmentally friendly method for the trace analysis of four aliphatic aldehydes as water disinfection byproducts has been developed based on hollow-fiber liquid-phase microextraction followed by miniature capillary electrophoresis with amperometric detection. After derivatization with 2-thiobarbituric acid, four aliphatic aldehydes (formaldehyde, acetaldehyde, propylaldehyde, and butyraldehyde) became detectable by the amperometric detector. Under the optimum conditions, four aliphatic aldehydes can be well separated from the coexisting interferents as well as their homologs (pentanal, glyoxal, and methyl-glyoxal), and the limits of detection (S/N = 3) could reach sub-nanogram-per-milliliter level based on hollow-fiber liquid-phase microextraction. The proposed method has been applied for the analyses of above four aliphatic aldehydes in different water samples such as drinking water, tap water, and river water, and the average recoveries were in the range of 90-113%, providing an alternative to conventional and microchip capillary electrophoresis approaches. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A novel application of carbon dots for colorimetric determination of fenitrothion insecticide based on the microextraction method

    NASA Astrophysics Data System (ADS)

    Larki, A.

    2017-02-01

    In this work, the intrinsic colorimetric property of carbon dots (CDs) was utilized for the determination of fenitrothion by applying dispersive liquid-liquid microextraction (DLLME) method. Label free CDs are extracted into carbon tetrachloride via assistance of trioctylmethylammonium chloride (Aliquat 336), which also acts as a disperser agent in this technique. The enriched CDs show an absorption signal at 365 nm, which increases in the presence of fenitrothion. The absorbance increase of CDs in organic phase was used as an analytical signal for the determination of fenitrothion. The synthesized CDs were characterized by UV-visible, fluorescence, Fourier transform infrared (FT-IR) and transmission electron microscopic (TEM). Under the optimized conditions, beer's law was obeyed in the range of 1.0-250.0 ng mL- 1 of fenitrothion with the limit of detection for fenitrothion was 0.2 ng mL- 1. The relative standard deviation for eight replicate measurements of fenitrothion at concentrations of 25 and 100 ng mL- 1 were calculated to be 1.5 and 3.7%, respectively. The proposed method was successfully applied in the determination of fenitrothion in water samples with satisfactory results.

  4. Method optimization for non-equilibrium solid phase microextraction sampling of HAPs for GC/MS analysis

    NASA Astrophysics Data System (ADS)

    Zawadowicz, M. A.; Del Negro, L. A.

    2010-12-01

    Hazardous air pollutants (HAPs) are usually present in the atmosphere at pptv-level, requiring measurements with high sensitivity and minimal contamination. Commonly used evacuated canister methods require an overhead in space, money and time that often is prohibitive to primarily-undergraduate institutions. This study optimized an analytical method based on solid-phase microextraction (SPME) of ambient gaseous matrix, which is a cost-effective technique of selective VOC extraction, accessible to an unskilled undergraduate. Several approaches to SPME extraction and sample analysis were characterized and several extraction parameters optimized. Extraction time, temperature and laminar air flow velocity around the fiber were optimized to give highest signal and efficiency. Direct, dynamic extraction of benzene from a moving air stream produced better precision (±10%) than sampling of stagnant air collected in a polymeric bag (±24%). Using a low-polarity chromatographic column in place of a standard (5%-Phenyl)-methylpolysiloxane phase decreased the benzene detection limit from 2 ppbv to 100 pptv. The developed method is simple and fast, requiring 15-20 minutes per extraction and analysis. It will be field-validated and used as a field laboratory component of various undergraduate Chemistry and Environmental Studies courses.

  5. Simultaneous determination of several phytohormones in natural coconut juice by hollow fiber-based liquid-liquid-liquid microextraction-high performance liquid chromatography.

    PubMed

    Wu, Yunli; Hu, Bin

    2009-11-06

    A simple, selective, sensitive and inexpensive method of hollow fiber-based liquid-liquid-liquid microextraction (HF-LLLME) combined with high performance liquid chromatography (HPLC)-ultraviolet (UV) detection was developed for the determination of four acidic phytohormones (salicylic acid (SA), indole-3-acetic acid (IAA), (+/-) abscisic acid (ABA) and (+/-) jasmonic acid (JA)) in natural coconut juice. To the best of our knowledge, this is the first report on the use of liquid phase microextraction (LPME) as a sample pretreatment technique for the simultaneous analysis of several phytohormones. Using phenetole to fill the pores of hollow fiber as the organic phase, 0.1molL(-1) NaOH solution in the lumen of hollow fiber as the acceptor phase and 1molL(-1) HCl as the donor phase, a simultaneous preconcentration of four target phytohormones was realized. The acceptor phase was finally withdrawn into the microsyringe and directly injected into HPLC for the separation and quantification of the target phytohormones. The factors affecting the extraction efficiency of four phytohormones by HF-LLLME were optimized with orthogonal design experiment, and the data was analyzed by Statistical Product and Service Solutions (SPSS) software. Under the optimized conditions, the enrichment factors for SA, IAA, ABA and JA were 243, 215, 52 and 48, with the detection limits (S/N=3) of 4.6, 1.3, 0.9ngmL(-1) and 8.8 microg mL(-1), respectively. The relative standard deviations (RSDs, n=7) were 7.9, 4.9, 6.8% at 50ngmL(-1) level for SA, IAA, ABA and 8.4% at 500 microg mL(-1) for JA, respectively. To evaluate the accuracy of the method, the developed method was applied for the simultaneous analysis of several phytohormones in five natural coconut juice samples, and the recoveries for the spiked samples were in the range of 88.3-119.1%.

  6. Comparison between dispersive solid-phase and dispersive liquid-liquid microextraction combined with spectrophotometric determination of malachite green in water samples based on ultrasound-assisted and preconcentration under multi-variable experimental design optimization.

    PubMed

    Alipanahpour Dil, Ebrahim; Ghaedi, Mehrorang; Asfaram, Arash; Zare, Fahimeh; Mehrabi, Fatemeh; Sadeghfar, Fardin

    2017-11-01

    The ultrasound-assisted dispersive solid-phase microextraction (USA-DSPME) and the ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) developed for as an ultra preconcentration and/or technique for the determination of malachite green (MG) in water samples. Central composite design based on analysis of variance and desirability function guide finding best operational conditions and represent dependency of response to variables viz. volume of extraction, eluent and disperser solvent, pH, adsorbent mass and ultrasonication time has significant influence on methods efficiency. Optimum conditions was set for USA-DSPME as: 1mg CNTs/Zn:ZnO@Ni 2 P-NCs; 4min sonication time and 130μL eluent at pH 6.0. Meanwhile optimum point for USA-DLLME conditions were fixed at pH 6.0; 4min sonication time and 130, 650μL and 10mL of extraction solvent (CHCl 3 ), disperser solvent (ethanol) and sample volume, respectively. Under the above specified best operational conditions, the enrichment factors for the USA-DSPME and USA-DLLME were 88.89 and 147.30, respectively. The methods has linear response in the range of 20.0 to 4000.0ngmL -1 with the correlation coefficients (r) between 0.9980 to 0.9995, while its reasonable detection limits viz. 1.386 to 2.348ngmL -1 and good relative standard deviations varied from 1.1% to 2.8% (n=10) candidate this method for successful monitoring of analyte from various media. The relative recoveries of the MG dye from water samples at spiking level of 500ngmL -1 were in the range between 94.50% and 98.86%. The proposed methods has been successfully applied to the analysis of the MG dye in water samples, and a satisfactory result was obtained. Copyright © 2017. Published by Elsevier B.V.

  7. Identification of volatiles from waste larval rearing media that attract gravid screwworm flies to oviposit

    USDA-ARS?s Scientific Manuscript database

    The waste product of the artificial larval rearing media of the primary screwworm, Cochliomyia hominivorax, attracts gravid female screwworm flies to oviposit. The volatile component of this waste product was collected using solid phase microextraction techniques and subjected to gas chromatography-...

  8. Characterization of volatile and polar compounds of Jiaogulan Tea [Gynostemma pentaphyllum (Thunb.) Makino] by hyphenated analytical techniques

    USDA-ARS?s Scientific Manuscript database

    Jiaogulan [Gynostemma pentaphyllum (Thunb.) Makino] is a Chinese medical plant from southern Asia that has rapidly gained popularity and interest for its health-promotive and therapeutic properties. The volatile composition of jiaogulan tea was analyzed by using headspace-solid phase microextraction...

  9. Effectiveness of high-throughput miniaturized sorbent- and solid phase microextraction techniques combined with gas chromatography-mass spectrometry analysis for a rapid screening of volatile and semi-volatile composition of wines--a comparative study.

    PubMed

    Mendes, Berta; Gonçalves, João; Câmara, José S

    2012-01-15

    In this study the feasibility of different extraction procedures was evaluated in order to test their potential for the extraction of the volatile (VOCs) and semi-volatile constituents (SVOCs) from wines. In this sense, and before they could be analysed by gas chromatography-quadrupole first stage masss spectrometry (GC-qMS), three different high-throughput miniaturized (ad)sorptive extraction techniques, based on solid phase extraction (SPE), microextraction by packed sorbents (MEPS) and solid phase microextraction (SPME), were studied for the first time together, for the extraction step. To achieve the most complete volatile and semi-volatile signature, distinct SPE (LiChrolut EN, Poropak Q, Styrene-Divinylbenzene and Amberlite XAD-2) and MEPS (C(2), C(8), C(18), Silica and M1 (mixed C(8)-SCX)) sorbent materials, and different SPME fibre coatings (PA, PDMS, PEG, DVB/CAR/PDMS, PDMS/DVB, and CAR/PDMS), were tested and compared. All the extraction techniques were followed by GC-qMS analysis, which allowed the identification of up to 103 VOCs and SVOCs, distributed by distinct chemical families: higher alcohols, esters, fatty acids, carbonyl compounds and furan compounds. Mass spectra, standard compounds and retention index were used for identification purposes. SPE technique, using LiChrolut EN as sorbent (SPE(LiChrolut EN)), was the most efficient method allowing for the identification of 78 VOCs and SVOCs, 63 and 19 more than MEPS and SPME techniques, respectively. In MEPS technique the best results in terms of number of extractable/identified compounds and total peak areas of volatile and semi-volatile fraction, were obtained by using C(8) resin whereas DVB/CAR/PDMS was revealed the most efficient SPME coating to extract VOCs and SVOCs from Bual wine. Diethyl malate (18.8±3.2%) was the main component found in wine SPE(LiChrolut EN) extracts followed by ethyl succinate (13.5±5.3%), 3-methyl-1-butanol (13.2±1.7%), and 2-phenylethanol (11.2±9.9%), while in SPME(DVB/CAR/PDMS) technique 3-methyl-1-butanol (43.3±0.6%) followed by diethyl succinate (18.9±1.6%), and 2-furfural (10.4±0.4%), are the major compounds. The major VOCs and SVOCs isolated by MEPS(C8) were 3-methyl-1-butanol (26.8±0.6%, from wine total volatile fraction), diethyl succinate (24.9±0.8%), and diethyl malate (16.3±0.9%). Regardless of the extraction technique, the highest extraction efficiency corresponds to esters and higher alcohols and the lowest to fatty acids. Despite some drawbacks associated with the SPE procedure such as the use of organic solvents, the time-consuming and tedious sampling procedure, it was observed that SPE(LiChrolut EN), revealed to be the most effective technique allowing the extraction of a higher number of compounds (78) rather than the other extraction techniques studied. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Determination of atenolol in human plasma using ionic-liquid-based ultrasound-assisted in situ solvent formation microextraction followed by high-performance liquid chromatography.

    PubMed

    Zeeb, Mohsen; Farahani, Hadi; Papan, Mohammad Kazem

    2016-06-01

    An efficient analytical method called ionic-liquid-based ultrasound-assisted in situ solvent formation microextraction followed by high-performance liquid chromatography was developed for the determination of atenolol in human plasma. A hydrophobic ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) was formed by the addition of a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) to a sample solution containing an ion-pairing agent during microextraction. The analyte was extracted into the ionic liquid phase while the microextraction solvent was dispersed throughout the sample by utilizing ultrasound. The sample was then centrifuged, and the extracting phase retracted into the microsyringe and injected to liquid chromatography. After optimization, the calibration curve showed linearity in the range of 2-750 ng/mL with the regression coefficient corresponding to 0.998. The limits of detection (S/N = 3) and quantification (S/N = 10) were 0.5 and 2 ng/mL, respectively. A reasonable relative recovery range of 90-96.7% and satisfactory intra-assay (4.8-5.1%, n = 6) and interassay (5.0-5.6%, n = 9) precision along with a substantial sample clean-up demonstrated good performance of the procedure. It was applied for the determination of atenolol in human plasma after oral administration and some pharmacokinetic data were obtained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Rapid pretreatment and determination of bisphenol A in water samples based on vortex-assisted liquid-liquid microextraction followed by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Yang, Xiao; Diao, Chun-Peng; Sun, Ai-Ling; Liu, Ren-Min

    2014-10-01

    A method for the rapid pretreatment and determination of bisphenol A in water samples based on vortex-assisted liquid-liquid microextraction followed by high-performance liquid chromatography with fluorescence detection was proposed in this paper. A simple apparatus consisting of a test tube and a cut-glass dropper was designed and applied to collect the floating extraction drop in liquid-liquid microextraction when low-density organic solvent was used as the extraction solvent. Solidification and melting steps that were tedious but necessary once the low-density organic solvent used as extraction solvent could be avoided by using this apparatus. Bisphenol A was selected as model pollutant and vortex-assisted liquid-liquid microextraction was employed to investigate the usefulness of the apparatus. High-performance liquid chromatography with fluorescence detection was selected as the analytical tool for the detection of bisphenol A. The linear dynamic range was from 0.10 to 100 μg/L for bisphenol A, with good squared regression coefficient (r(2) = 0.9990). The relative standard deviation (n = 7) was 4.7% and the limit of detection was 0.02 μg/L. The proposed method had been applied to the determination of bisphenol A in natural water samples and was shown to be economical, fast, and convenient. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Solid-phase microextraction with temperature-programmed desorption for the analysis of iodination disinfection byproducts.

    PubMed

    Frazey, P A; Barkley, R M; Sievers, R E

    1998-02-01

    An analytical approach for the determination of chlorination and iodination disinfection byproducts based on solid-phase microextraction (SPME) was developed. Solid-phase microextraction presents a simple, rapid, sensitive, and solvent-free approach to sample preparation in which analytes in either air or water matrixes are extracted into the polymeric coating of an optical fiber. Analytes are subsequently thermally desorbed in the injection port of a gas chromatograph for separation, detection, and quantitation. Thermal degradation of iodoform was observed during desorption from a polyacrylate fiber in initial GC/MS and GC/ECD experiments. Experiments were designed to determine SPME conditions that would allow quantification without significant degradation of analytes. Isothermal and temperature-programmed thermal desorptions were evaluated for efficacy in transferring analytes with wide-ranging volatilities and thermal stabilities into chromatographic analysis columns. A temperature-programmed desorption (TPD) (120-200 degrees C at 5 degrees C/min with an on-column injection port or 150-200 degrees C at 25 degrees C/min with a split/splitless injection port) was able to efficiently remove analytes with wide-ranging volatilities without causing thermal degradation. The SPME-TPD method was linear over 2-3 orders of magnitude with an electron capture detector and detection limits were in the submicrogram per liter range. Precision and detection limits for selected trihalomethanes were comparable to those of EPA method 551. Extraction efficiencies were not affected by the presence of 10 mg/L soap, 15 mg/L sodium iodide, and 6000 mg/L sodium thiosulfate. The SPME-TPD technique was applied to the determination of iodination disinfection byproducts from individual precursor compounds using GC/MS and to the quantitation of iodoform at trace levels in a water recycle system using GC/ECD.

  13. Simultaneous multicomponent spectrophotometric monitoring of methyl and propyl parabens using multivariate statistical methods after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction.

    PubMed

    Khani, Rouhollah; Ghasemi, Jahan B; Shemirani, Farzaneh

    2014-03-25

    A powerful and efficient signal-preprocessing technique that combines local and multiscale properties of the wavelet prism with the global filtering capability of orthogonal signal correction (OSC) is applied for pretreatment of spectroscopic data of parabens as model compounds after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction method (IL-DLLME). In the proposed technique, a mixture of a water-immiscible ionic liquid (as extraction solvent) [Hmim][PF6] and disperser solvent is injected into an aqueous sample solution containing one of the IL's ions, NaPF6, as extraction solvent and common ion source. After preconcentration, the absorbance of the extracted compounds was measured in the wavelength range of 200-700 nm. The wavelet orthogonal signal correction with partial least squares (WOSC-PLS) method was then applied for simultaneous determination of each individual compound. Effective parameters, such as amount of IL, volume of the disperser solvent and amount of NaPF6, were inspected by central composite design to identify the most important parameters and their interactions. The effect of pH on the sensitivity and selectivity was studied according to the net analyte signal (NAS) for each component. Under optimum conditions, enrichment factors of the studied compounds were 75 for methyl paraben (MP) and 71 for propyl paraben (PP). Limits of detection for MP and PP were 4.2 and 4.8 ng mL(-)(1), respectively. The root mean square errors of prediction for MP and PP were 0.1046 and 0.1275 μg mL(-)(1), respectively. The practical applicability of the developed method was examined using hygienic, cosmetic, pharmaceutical and natural water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Combined dispersive solid-phase extraction-dispersive liquid-liquid microextraction-derivatization for gas chromatography-mass spectrometric determination of aliphatic amines on atmospheric fine particles.

    PubMed

    Majedi, Seyed Mohammad; Lee, Hian Kee

    2017-02-24

    Short-chain aliphatic amines are ubiquitous in the atmospheric environment. They play an important role in the formation and growth of atmospheric particles. As such, there is a pressing need to monitor these particle-bound compounds present at trace quantities. The present work describes an efficient, one-step microextraction technique for the preconcentration and detection of trace levels of 10 aliphatic amines on fine particles (particulate matter of 2.5μm or less (PM 2.5 )) in the atmosphere. After extraction of amines from particles in acidified water samples, carbon-based sorbents (in dispersive solid-phase extraction mode), and vortex agitation were utilized for simultaneous derivatization-extraction and dispersive liquid-liquid microextraction. The approach significantly increased the recoveries and enrichment of the amine derivatives. This one-step, combined technique is proposed for the first time. Several influential factors including type and concentration of derivatization reagent (for gas chromatographic separation), type of buffer, sample pH, types and volumes of extraction and disperser solvents, type and amount of sorbent, vortex time and temperature, desorption solvent type and volume, and salt content were investigated and optimized. Under the optimum conditions, high enrichment factors (in the range of between 307 and 382) and good reproducibility (relative standard deviations, below 7.0%, n=5) were achieved. The linearity ranged from 0.1μg/L-100μg/L, and from 0.5μg/L-100μg/L, depending on the analytes. The limits of detection were between 0.02μg/L (corresponding to ∼0.01ng/m 3 in air) and 0.09μg/L (corresponding to ∼0.04ng/m 3 in air). The developed method was successfully applied to the analysis of PM 2.5 samples collected by air sampling through polytetrafluoroethylene filters. The concentration levels of amines ranged from 1.04 to 4.16ng/m 3 in the air sampled. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Head space solid phase microextraction based on nano-structured lead dioxide: application to the speciation of volatile organoselenium in environmental and biological samples.

    PubMed

    Ghasemi, Ensieh; Farahani, Hadi

    2012-10-05

    A novel and efficient speciation method based on the nano-structured lead dioxide as stationary phase of head space solid phase microextraction combined with gas chromatography mass spectrometry (GC-MS) was developed for the determination of volatile organoselenium compounds (dimethylselenide (DMSe) and dimethyldiselenide (DMDSe)) in different biological and environmental samples. PbO(2) particles with a diameter in the range of 50-70 nm have been grown on platinum wire via elechtrochemical deposition. The effect of different variables on the extraction efficiency was studied simultaneously using an experimental design. The variables of interest in the HS-SPME were condition of coating preparation, desorption time, stirring rate, desorption temperature, ionic strength, time and temperature of extraction. A Plackett-Burman design was performed for screening in order to determine the significant variables affecting the extraction efficiency. Then, the significant factors were optimized by a Box-Behnken design (BBD) and the response surface equations were derived. The detection limit and relative standard deviation (RSD) (n=5, c=50 μgL(-1)) for DMSe were 16 ngL(-1) and 4.3%, respectively. They were also obtained for DMDSe as 11ngL(-1) and 4.6%, respectively. The developed technique was found to be applicable to spiked environmental and biological samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Comparison of two microextraction methods based on solidification of floating organic droplet for the determination of multiclass analytes in river water samples by liquid chromatography tandem mass spectrometry using Central Composite Design.

    PubMed

    Asati, Ankita; Satyanarayana, G N V; Patel, Devendra K

    2017-09-01

    Two low density organic solvents based liquid-liquid microextraction methods, namely Vortex assisted liquid-liquid microextraction based on solidification of floating organic droplet (VALLME-SFO) and Dispersive liquid-liquid microextraction based on solidification of floating organic droplet(DLLME-SFO) have been compared for the determination of multiclass analytes (pesticides, plasticizers, pharmaceuticals and personal care products) in river water samples by using liquid chromatography tandem mass spectrometry (LC-MS/MS). The effect of various experimental parameters on the efficiency of the two methods and their optimum values were studied with the aid of Central Composite Design (CCD) and Response Surface Methodology(RSM). Under optimal conditions, VALLME-SFO was validated in terms of limit of detection, limit of quantification, dynamic linearity range, determination of coefficient, enrichment factor and extraction recovery for which the respective values were (0.011-0.219ngmL -1 ), (0.035-0.723ngmL -1 ), (0.050-0.500ngmL -1 ), (R 2 =0.992-0.999), (40-56), (80-106%). However, when the DLLME-SFO method was validated under optimal conditions, the range of values of limit of detection, limit of quantification, dynamic linearity range, determination of coefficient, enrichment factor and extraction recovery were (0.025-0.377ngmL -1 ), (0.083-1.256ngmL -1 ), (0.100-1.000ngmL -1 ), (R 2 =0.990-0.999), (35-49), (69-98%) respectively. Interday and intraday precisions were calculated as percent relative standard deviation (%RSD) and the values were ≤15% for VALLME-SFO and DLLME-SFO methods. Both methods were successfully applied for determining multiclass analytes in river water samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Optimization of headspace solid phase microextraction based on nano-structured ZnO combined with gas chromatography-mass spectrometry for preconcentration and determination of ultra-traces of chlorobenzenes in environmental samples.

    PubMed

    Ghasemi, Ensieh; Sillanpää, Mika

    2014-12-01

    In this study, a simple, novel and efficient preconcentration method for the determination of some chlorobenzenes (monochlorobenzene (MCB), three isomeric forms of dichlorobenzene (diCB), 1,3,5-trichlorobenzene (triCB) and hexachlorobenze (hexaCB)) has been developed using a headspace solid phase microextraction (HS-SPME) based on nano-structured ZnO combined with capillary gas chromatography-mass spectrometry (GC-MS). ZnO nanorods have been grown on fused silica fibers using a hydrothermal process. The diameter of ZnO nanorods was in the range of 50-80 nm. The effect of different variables on the extraction efficiency was studied simultaneously using an experimental design. The variables of interest in the HS-SPME were stirring rate, desorption time and temperature, ionic strength, extraction time and temperature. For this purpose, a multivariate strategy was applied based on an experimental design using a Plackett-Burman design for screening and a Box-Behnken design for optimizing of the significant factors. The detection limit and relative standard deviation (RSD) (n=5) for the target analytes were in the range of 0.01-0.1 ng L(-1) and 4.3-7.6%, respectively. The developed technique was found to be successfully applicable to preconcentration and determination of the target analytes in environmental water and soil samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. A paper-based analytical device for the determination of hydrogen sulfide in fuel oils based on headspace liquid-phase microextraction and cyclic voltammetry.

    PubMed

    Nechaeva, Daria; Shishov, Andrey; Ermakov, Sergey; Bulatov, Andrey

    2018-06-01

    An easily performed miniaturized, cheap, selective and sensitive procedure for the determination of H 2 S in fuel oil samples based on a headspace liquid-phase microextraction followed by a cyclic voltammetry detection using a paper-based analytical device (PAD) was developed. A modified wax dipping method was applied to fabricate the PAD. The PAD included hydrophobic zones of sample and supporting electrolyte connecting by hydrophilic channel. The zones of sample and supporting electrolyte were connected with nickel working, platinum auxiliary and Ag/AgCl reference electrodes. The analytical procedure included separation of H 2 S from fuel oil sample based on the headspace liquid-phase microextraction in alkaline solution. Then, sulfide ions solution obtained and supporting electrolyte were dropped on the zones followed by analyte detection at + 0.45 V. Under the optimized conditions, H 2 S concentration in the range from 2 to 20 mg kg -1 had a good linear relation with the peak current. The limit of detection (3σ) was 0.6 mg kg -1 . The procedure was successfully applied to the analysis of fuel oil samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Silica- and germania-based dual-ligand sol-gel organic-inorganic hybrid sorbents combining superhydrophobicity and π-π interaction. The role of inorganic substrate in sol-gel capillary microextraction.

    PubMed

    Seyyal, Emre; Malik, Abdul

    2017-04-29

    Principles of sol-gel chemistry were utilized to create silica- and germania-based dual-ligand surface-bonded sol-gel coatings providing enhanced performance in capillary microextraction (CME) through a combination of ligand superhydrophobicity and π-π interaction. These organic-inorganic hybrid coatings were prepared using sol-gel precursors with bonded perfluorododecyl (PF-C 12 ) and phenethyl (PhE) ligands. Here, the ability of the PF-C 12 ligand to provide enhanced hydrophobic interaction was advantageously combined with π-π interaction capability of the PhE moiety to attain the desired sorbent performance in CME. The effect of the inorganic sorbent component on microextraction performance of was explored by comparing microextraction characteristics of silica- and germania-based sol-gel sorbents. The germania-based dual-ligand sol-gel sorbent demonstrated superior CME performance compared to its silica-based counterpart. Thermogravimetric analysis (TGA) of the created silica- and germania-based dual-ligand sol-gel sorbents suggested higher carbon loading on the germania-based sorbent. This might be indicative of more effective condensation of the organic ligand-bearing sol-gel-active chemical species to the germania-based sol-gel network (than to its silica-based counterpart) evolving in the sol solution. The type and concentration of the organic ligands were varied in the sol-gel sorbents to fine-tune extraction selectivity toward different classes of analytes. Specific extraction (SE) values were used for an objective comparison of the prepared sol-gel CME sorbents. The sorbents with higher content of PF-C 12 showed remarkable affinity for aliphatic hydrocarbons. Compared to their single-ligand sol-gel counterparts, the dual-ligand sol-gel coatings demonstrated significantly superior CME performance in the extraction of alkylbenzenes, providing up to ∼65.0% higher SE values. The prepared sol-gel CME coatings provided low ng L -1 limit of detections (LOD) (4.2-26.3 ng L -1 ) for environmentally important analytes including polycyclic aromatic hydrocarbons, ketones and aliphatic hydrocarbons. In CME-GC experiments (n = 5), the capillary-to-capillary RSD value was ∼2.1%; such a low RSD value is indicative of excellent reproducibility of the sol-gel method used for the preparation of these CME coatings. The dual-ligand sol-gel coating provided stable performance in capillary microextraction of analytes from saline samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Improved chip design for integrated solid-phase microextraction in on-line proteomic sample preparation.

    PubMed

    Bergkvist, Jonas; Ekström, Simon; Wallman, Lars; Löfgren, Mikael; Marko-Varga, György; Nilsson, Johan; Laurell, Thomas

    2002-04-01

    A recently introduced silicon microextraction chip (SMEC), used for on-line proteomic sample preparation, has proved to facilitate the process of protein identification by sample clean up and enrichment of peptides. It is demonstrated that a novel grid-SMEC design improves the operating characteristics for solid-phase microextraction, by reducing dispersion effects and thereby improving the sample preparation conditions. The structures investigated in this paper are treated both numerically and experimentally. The numerical approach is based on finite element analysis of the microfluidic flow in the microchip. The analysis is accomplished by use of the computational fluid dynamics-module FLOTRAN in the ANSYS software package. The modeling and analysis of the previously reported weir-SMEC design indicates some severe drawbacks, that can be reduced by changing the microextraction chip geometry to the grid-SMEC design. The overall analytical performance was thereby improved and also verified by experimental work. Matrix-assisted laser desorption/ionization mass spectra of model peptides extracted from both the weir-SMEC and the new grid-SMEC support the numerical analysis results. Further use of numerical modeling and analysis of the SMEC structures is also discussed and suggested in this work.

  1. Graphene-sensitized microporous membrane/solvent microextraction for the preconcentration of cinnamic acid derivatives in Rhizoma Typhonii.

    PubMed

    Xing, Rongrong; Hu, Shuang; Chen, Xuan; Bai, Xiaohong

    2014-09-01

    A novel graphene-sensitized microporous membrane/solvent microextraction method named microporous membrane/graphene/solvent synergistic microextraction, coupled with high-performance liquid chromatography and UV detection, was developed and introduced for the extraction and determination of three cinnamic acid derivatives in Rhizoma Typhonii. Several factors affecting performance were investigated and optimized, including the types of graphene and extraction solvent, concentration of graphene dispersed in octanol, sample phase pH, ionic strength, stirring rate, extraction time, extraction temperature, and sample volume. Under optimized conditions, the enrichment factors of cinnamic acid derivatives ranged from 75 to 269. Good linearities were obtained from 0.01 to 10 μg/mL for all analytes with regression coefficients between 0.9927 and 0.9994. The limits of quantification were <1 ng/mL, and satisfactory recoveries (99-104%) and precision (1.1-10.8%) were also achieved. The synergistic microextraction mechanism based on graphene sensitization was analyzed and described. The experimental results showed that the method was simple, sensitive, practical, and effective for the preconcentration and determination of cinnamic acid derivatives in Rhizoma Typhonii. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Vortex-assisted liquid-liquid microextraction for the rapid screening of short-chain chlorinated paraffins in water.

    PubMed

    Chang, Chia-Yu; Chung, Wu-Hsun; Ding, Wang-Hsien

    2016-01-01

    The rapid screening of trace levels of short-chain chlorinated paraffins in various aqueous samples was performed by a simple and reliable procedure based on vortex-assisted liquid-liquid microextraction combined with gas chromatography and electron capture negative ionization mass spectrometry. The optimal vortex-assisted liquid-liquid microextraction conditions for 20 mL water sample were as follows: extractant 400 μL of dichloromethane; vortex extraction time of 1 min at 2500 × g; centrifugation of 3 min at 5000 × g; and no ionic strength adjustment. Under the optimum conditions, the limit of quantitation was 0.05 μg/L. Precision, as indicated by relative standard deviations, was less than 9% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was above 91%. The vortex-assisted liquid-liquid microextraction with gas chromatography and electron capture negative ionization mass spectrometry method was successfully applied to quantitatively extract short-chain chlorinated paraffins from samples of river water and the effluent of a wastewater treatment plant, and the concentrations ranged from 0.8 to 1.6 μg/L. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Development of a rapid screening technique for organochlorine pesticides using solvent microextraction (SME) and fast gas chromatography (GC).

    PubMed

    de Jager, L S; Andrews, A R

    2000-11-01

    A novel, fast screening method for organochlorine pesticides (OCPs) in water samples has been developed. Total analysis time was less than 9 min, allowing 11 samples to be screened per hour. The relatively new technique of solvent microextraction (SME) was used to extract and preconcentrate the pesticides into a single drop of hexane. The use of a conventional carbon dioxide cryotrap was investigated for introduction of the extract onto a micro-bore (0.1 mm) capillary column for fast GC analysis. A pulsed-discharge electron capture detector was used which yielded selective and sensitive measurement of the pesticide peaks. Fast GC conditions were optimised and tested with the previously developed SME procedure. Calibration curves yielded good linearity and concentrations down to 0.25 ng mL-1 were detectable with RSD values ranging from 12.0 to 28% and LOD for most OCPs at 0.25 ng mL-1. Spiked river water samples were tested and using the developed screen we were able to differentiate between spiked samples and samples containing no OCPs.

  4. Comparison of two headspace sampling techniques for the analysis of off-flavour volatiles from oat based products.

    PubMed

    Cognat, Claudine; Shepherd, Tom; Verrall, Susan R; Stewart, Derek

    2012-10-01

    Two different headspace sampling techniques were compared for analysis of aroma volatiles from freshly produced and aged plain oatcakes. Solid phase microextraction (SPME) using a Carboxen-Polydimethylsiloxane (PDMS) fibre and entrainment on Tenax TA within an adsorbent tube were used for collection of volatiles. The effects of variation in the sampling method were also considered using SPME. The data obtained using both techniques were processed by multivariate statistical analysis (PCA). Both techniques showed similar capacities to discriminate between the samples at different ages. Discrimination between fresh and rancid samples could be made on the basis of changes in the relative abundances of 14-15 of the constituents in the volatile profiles. A significant effect on the detection level of volatile compounds was observed when samples were crushed and analysed by SPME-GC-MS, in comparison to undisturbed product. The applicability and cost effectiveness of both methods were considered. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. PEEK tube-based online solid-phase microextraction-high-performance liquid chromatography for the determination of yohimbine in rat plasma and its application in pharmacokinetics study.

    PubMed

    Xiang, Xiaowei; Shang, Bing; Wang, Xiaozheng; Chen, Qinhua

    2017-04-01

    Yohimbine is a novel compound for the treatment of erectile dysfunction derived from natural products, and pharmacokinetic study is important for its further development as a new medicine. In this work, we developed a novel PEEK tube-based solid-phase microextraction (SPME)-HPLC method for analysis of yohimbine in plasma and further for pharmacokinetic study. Poly (AA-EGDMA) was synthesized inside a PEEK tube as the sorbent for microextraction of yohimbine, and parameters that could influence extraction efficiency were systematically investigated. Under optimum conditions, the PEEK tube-based SPME method exhibits excellent enrichment efficiency towards yohimbine. By using berberine as internal standard, an online SPME-HPLC method was developed for analysis of yohimbine in human plasma sample. The method has wide linear range (2-1000 ng/mL) with an R 2 of 0.9962; the limit of detection was determined and was as low as 0.1 ng/mL using UV detection. Finally, a pharmacokinetic study of yohimbine was carried out by the online SPME-HPLC method and the results have been compared with those of reported methods. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Comparison of three different dispersive liquid-liquid microextraction modes performed on their most usual configurations for the extraction of phenolic, neutral aromatic, and amino compounds from waters.

    PubMed

    Saraji, Mohammad; Ghambari, Hoda

    2018-06-21

    In this work we seek clues to select the appropriate dispersive liquid-liquid microextraction mode for extracting three categories of compounds. For this purpose, three common dispersive liquid-liquid microextraction modes were compared under optimized conditions. Traditional dispersive liquid-liquid microextraction, in situ ionic liquid dispersive liquid-liquid microextraction and conventional ionic liquid dispersive liquid-liquid microextraction using chloroform, 1-butyl-3-methylimidazolium tetrafluoroborate, and 1-hexyl-3-methylimidazolium hexafluorophosphate as the extraction solvent, respectively, were considered in this work. Phenolic, neutral aromatic and amino compounds (each category included six members) were studied as analytes. The analytes in the extracts were determined by high-performance liquid chromatography with UV detection. For the analytes with polar functionalities, the in situ ionic liquid dispersive liquid-liquid microextraction mode mostly led to better results. In contrast, for neutral hydrocarbons without polar functionalities, traditional dispersive liquid-liquid microextraction using chloroform produced better results. In this case, where dispersion forces were the dominant interactions in the extraction, the refractive index of solvent and analyte predicted the extraction performance better than the octanol-water partition coefficient. It was also revealed that none of the methods were successful in extracting very hydrophilic analytes (compounds with the log octanol-water partition coefficient < 2). The results of this study could be helpful in selecting a dispersive liquid-liquid microextraction mode for the extraction of various groups of compounds. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Sensitive determination of methadone in human serum and urine by dispersive liquid-liquid microextraction based on the solidification of a floating organic droplet followed by HPLC-UV.

    PubMed

    Taheri, Salman; Jalali, Fahimeh; Fattahi, Nazir; Jalili, Ronak; Bahrami, Gholamreza

    2015-10-01

    Dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the extraction of methadone and determination by high-performance liquid chromatography with UV detection. In this method, no microsyringe or fiber is required to support the organic microdrop due to the usage of an organic solvent with a low density and appropriate melting point. Furthermore, the extractant droplet can be collected easily by solidifying it at low temperature. 1-Undecanol and methanol were chosen as extraction and disperser solvents, respectively. Parameters that influence extraction efficiency, i.e. volumes of extracting and dispersing solvents, pH, and salt effect, were optimized by using response surface methodology. Under optimal conditions, enrichment factor for methadone was 134 and 160 in serum and urine samples, respectively. The limit of detection was 3.34 ng/mmL in serum and 1.67 ng/mL in urine samples. Compared with the traditional dispersive liquid-liquid microextraction, the proposed method obtained lower limit of detection. Moreover, the solidification of floating organic solvent facilitated the phase transfer. And most importantly, it avoided using high-density and toxic solvents of traditional dispersive liquid-liquid microextraction method. The proposed method was successfully applied to the determination of methadone in serum and urine samples of an addicted individual under methadone therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A simple and sensitive vortex-assisted ionic liquid-dispersive microextraction and spectrophotometric determination of selenium in food samples.

    PubMed

    Bağda, Esra; Tüzen, Mustafa

    2017-10-01

    In the present study, a novel and eco-friendly vortex-assisted ionic liquid-based microextraction method was developed for the determination of selenium in food. The microextraction method is based on the liberation of iodine in the presence of selenium; the liberated iodine reacts with I - to form I 3 - . Anionic I 3 - reacts with cationic crystal violet dye, and the product is extracted into 1-hexyl-3-methylimidazolium hexafluorophosphate phase in the presence of Triton X-114. The proposed method is linear in the range of 2.0-70µgL -1 and has a detection limit of 9.8×10 -2 µgL -1 . Relative standard deviations were 3.67% and 2.89% for the five replicate measurements of 14 and 35µgL -1 Se(IV), respectively. The proposed method was successfully applied to different food samples (NIST SRM 2976 mussel tissue, pepper, ginger, wheat flour, red lentil, traditional soup, cornflour, cornstarch, and garlic) after microwave digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A chemometric strategy for optimization of solid-phase microextraction: determination of bisphenol A and 4-nonylphenol with HPLC.

    PubMed

    Liu, Xiaoyan; Zhang, Xiaoyun; Zhang, Haixia; Liu, Mancang

    2008-08-01

    A sensitive method for the analysis of bisphenol A and 4-nonylphenol is developed by means of the optimization of solid-phase microextraction using Uniform Experimental Design methodology followed by high-performance liquid chromatographic analysis with fluorescence detection. The optimal extraction conditions are determined based on the relationship between parameters and the peak area. The curve calibration plots are linear (r2>or=0.9980) over the concentration range of 1.25-125 ng/mL for bisphenol A and 2.59-202.96 ng/mL for 4-nonylphenol, respectively. The detection limits, based on a signal-to-noise ratio of 3, are 0.097 ng/mL for bisphenol A and 0.27 ng/mL for 4-nonylphenol, respectively. The validity of the proposed method is demonstrated by the analysis of the investigated analytes in real water samples and sensitivity of the optimized method is verified by comparing results with those obtained by previous methods using the same commercial solid-phase microextraction fiber.

  10. Ultrasound-assisted dispersive liquid-liquid microextraction based on the solidification of a floating organic droplet followed by gas chromatography for the determination of eight pyrethroid pesticides in tea samples.

    PubMed

    Hou, Xiaohong; Zheng, Xin; Zhang, Conglu; Ma, Xiaowei; Ling, Qiyuan; Zhao, Longshan

    2014-10-15

    A novel ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet method (UA-DLLME-SFO) combined with gas chromatography (GC) was developed for the determination of eight pyrethroid pesticides in tea for the first time. After ultrasound and centrifugation, 1-dodecanol and ethanol was used as the extraction and dispersive solvent, respectively. A series of parameters, including extraction solvent and volume, dispersive solvent and volume, extraction time, pH, and ultrasonic time influencing the microextraction efficiency were systematically investigated. Under the optimal conditions, the enrichment factors (EFs) were from 292 to 883 for the eight analytes. The linear ranges for the analytes were from 5 to 100μg/kg. The method recoveries ranged from 92.1% to 99.6%, with the corresponding RSDs less than 6.0%. The developed method was considered to be simple, fast, and precise to satisfy the requirements of the residual analysis of pyrethroid pesticides. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Fuel spill identification using solid-phase extraction and solid-phase microextraction. 1. Aviation turbine fuels.

    PubMed

    Lavine, B K; Brzozowski, D M; Ritter, J; Moores, A J; Mayfield, H T

    2001-12-01

    The water-soluble fraction of aviation jet fuels is examined using solid-phase extraction and solid-phase microextraction. Gas chromatographic profiles of solid-phase extracts and solid-phase microextracts of the water-soluble fraction of kerosene- and nonkerosene-based jet fuels reveal that each jet fuel possesses a unique profile. Pattern recognition analysis reveals fingerprint patterns within the data characteristic of fuel type. By using a novel genetic algorithm (GA) that emulates human pattern recognition through machine learning, it is possible to identify features characteristic of the chromatographic profile of each fuel class. The pattern recognition GA identifies a set of features that optimize the separation of the fuel classes in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected features is primarily about the differences between the fuel classes.

  12. Development of a solid-phase microextraction-based method for sampling of persistent chlorinated hydrocarbons in an urbanized coastal environment.

    PubMed

    Zeng, Eddy Y; Tsukada, David; Diehl, Dario W

    2004-11-01

    Solid-phase microextraction (SPME) has been used as an in situ sampling technique for a wide range of volatile organic chemicals, but SPME field sampling of nonvolatile organic pollutants has not been reported. This paper describes the development of an SPME-based sampling method employing a poly(dimethylsiloxane) (PDMS)-coated (100-microm thickness) fiber as the sorbent phase. The laboratory-calibrated PDMS-coated fibers were used to construct SPME samplers, and field tests were conducted at three coastal locations off southern California to determine the equilibrium sampling time and compare the efficacy of the SPME samplers with that of an Infiltrex 100 water pumping system (Axys Environmental Systems Ltd., Sidney, British Columbia, Canada). p,p'-DDE and o,p'-DDE were the components consistently detected in the SPME samples among 42 polychlorinated biphenyl congeners and 17 chlorinated pesticidestargeted. SPME samplers deployed attwo locations with moderate and high levels of contamination for 18 and 30 d, respectively, attained statistically identical concentrations of p,p'-DDE and o,p'-DDE. In addition, SPME samplers deployed for 23 and 43 d, respectively, at a location of low contamination also contained statistically identical concentrations of p,p'-DDE. These results indicate that equilibrium could be reached within 18 to 23 d. The concentrations of p,p'-DDE, o,p'-DDE, or p,p'-DDD obtained with the SPME samplers and the Infiltrex 100 system were virtually identical. In particular, two water column concentration profiles of p,p'-DDE and o,p'-DDE acquired by the SPME samplers at a highly contaminated site on the Palos Verdes Shelf overlapped with the profiles obtained by the Infiltrex 100 system in 1997. The field tests not only reveal the advantages of the SPME samplers compared to the Infiltrex 100 system and other integrative passive devices but also indicate the need to improve the sensitivity of the SPME-based sampling technique.

  13. Comparison of two extraction techniques, solid-phase microextraction versus continuous liquid-liquid extraction/solvent-assisted flavor evaporation, for the analysis of flavor compounds in gueuze lambic beer.

    PubMed

    Thompson-Witrick, Katherine A; Rouseff, Russell L; Cadawallader, Keith R; Duncan, Susan E; Eigel, William N; Tanko, James M; O'Keefe, Sean F

    2015-03-01

    Lambic is a beer style that undergoes spontaneous fermentation and is traditionally produced in the Payottenland region of Belgium, a valley on the Senne River west of Brussels. This region appears to have the perfect combination of airborne microorganisms required for lambic's spontaneous fermentation. Gueuze lambic is a substyle of lambic that is made by mixing young (approximately 1 year) and old (approximately 2 to 3 years) lambics with subsequent bottle conditioning. We compared 2 extraction techniques, solid-phase microextraction (SPME) and continuous liquid-liquid extraction/solvent-assisted flavor evaporation (CCLE/SAFE), for the isolation of volatile compounds in commercially produced gueuze lambic beer. Fifty-four volatile compounds were identified and could be divided into acids (14), alcohols (12), aldehydes (3), esters (20), phenols (3), and miscellaneous (2). SPME extracted a total of 40 volatile compounds, whereas CLLE/SAFE extracted 36 volatile compounds. CLLE/SAFE extracted a greater number of acids than SPME, whereas SPME was able to isolate a greater number of esters. Neither extraction technique proved to be clearly superior and both extraction methods can be utilized for the isolation of volatile compounds found in gueuze lambic beer. © 2015 Institute of Food Technologists®

  14. Highly sensitive and selective hyphenated technique (molecularly imprinted polymer solid-phase microextraction-molecularly imprinted polymer sensor) for ultra trace analysis of aspartic acid enantiomers.

    PubMed

    Prasad, Bhim Bali; Srivastava, Amrita; Tiwari, Mahavir Prasad

    2013-03-29

    The present work is related to combination of molecularly imprinted solid-phase microextraction and complementary molecularly imprinted polymer-sensor. The molecularly imprinted polymer grafted on titanium dioxide modified silica fiber was used for microextraction, while the same polymer immobilized on multiwalled carbon nanotubes/titanium dioxide modified pencil graphite electrode served as a detection tool. In both cases, the surface initiated polymerization was found to be advantageous to obtain a nanometer thin imprinted film. The modified silica fiber exhibited high adsorption capacity and enantioselective diffusion of aspartic acid isomers into respective molecular cavities. This combination enabled double preconcentrations of d- and l-aspartic acid that helped sensing both isomers in real samples, without any cross-selectivity and matrix complications. Taking into account 6×10(4)-fold dilution of serum and 2×10(3)-fold dilution of cerebrospinal fluid required by the proposed method, the limit of detection for l-aspartic acid is 0.031ngmL(-1). Also, taking into account 50-fold dilution required by the proposed method, the limit of detection for d-aspartic acid is 0.031ngmL(-1) in cerebrospinal fluid. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Determination of amantadine in biological fluids using simultaneous derivatization and dispersive liquid-liquid microextraction followed by gas chromatography-flame ionization detection.

    PubMed

    Farajzadeh, Mir Ali; Nouri, Nina; Alizadeh Nabil, Ali Akbar

    2013-12-01

    A one-step derivatization and microextraction technique for the determination of amantadine in the human plasma and urine samples is presented. An appropriate mixture of methanol (disperser solvent), 1,2-dibromoethane (extraction solvent), and butylchloroformate (derivatization agent) is rapidly injected into samples. After centrifuging, the sedimented phase is analyzed by gas chromatography-flame ionization detection (GC-FID). The kind of extraction and disperser solvents and their volumes, amount of derivatization agent and reaction/extraction time which are effective in derivatization/dispersive liquid-liquid microextraction (DLLME) procedure are optimized. Under the optimal conditions, the enrichment factor (EF) of the target analyte was obtained to be 408 and 420, and limit of detection (LOD) 4.2 and 2.7ngmL(-1), in plasma and urine respectively. The linear range is 14-5000 and 8.7-5000ng/mL for plasma and urine, respectively (squared correlation coefficient≥0.990). The relative recoveries obtained for the spiked plasma and urine samples are between 72% and 93%. Moreover, the inter- and intra-day precisions are acceptable at all spiked concentrations (relative standard deviation <7%). Finally the method was successfully applied to determine amantadine in biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Surface nanodroplets for highly efficient liquid-liquid microextraction

    NASA Astrophysics Data System (ADS)

    Li, Miaosi; Lu, Ziyang; Yu, Haitao; Zhang, Xuehua

    2016-11-01

    Nanoscale droplets on a substrate are an essential element for a wide range of applications, such as laboratory-on-chip devices, simple and highly efficient miniaturized reactors for concentrating products, high-throughput single-bacteria or single-biomolecular analysis, encapsulation, and high-resolution imaging techniques. The solvent exchange process is a simple bottom-up approach for producing droplets at solid-liquid interfaces that are only several tens to hundreds of nanometers in height, or a few femtoliters in volume Oil nanodroplets can be produced on a substrate by solvent exchange in which a good solvent of oil is displaced by a poor solvent. Our previous work has significantly advanced understanding of the principle of solvent exchange, and the droplet size can be well-controlled by several parameters, including flow rates, flow geometry, gravitational effect and composition of solutions. In this work, we studied the microextraction effect of surface nanodroplets. Oil nanodroplets have been demonstrated to provide highly-efficient liquid-liquid microextraction of hydrophobic solute in a highly diluted solution. This effect proved the feasibility of nanodroplets as a platform for preconcentrating compounds for in situ highly sensitive microanalysis without further separation. Also the long lifetime and temporal stability of surface nanodroplets allow for some long-term extraction process and extraction without addition of stabilisers.

  17. State of the art of environmentally friendly sample preparation approaches for determination of PBDEs and metabolites in environmental and biological samples: A critical review.

    PubMed

    Berton, Paula; Lana, Nerina B; Ríos, Juan M; García-Reyes, Juan F; Altamirano, Jorgelina C

    2016-01-28

    Green chemistry principles for developing methodologies have gained attention in analytical chemistry in recent decades. A growing number of analytical techniques have been proposed for determination of organic persistent pollutants in environmental and biological samples. In this light, the current review aims to present state-of-the-art sample preparation approaches based on green analytical principles proposed for the determination of polybrominated diphenyl ethers (PBDEs) and metabolites (OH-PBDEs and MeO-PBDEs) in environmental and biological samples. Approaches to lower the solvent consumption and accelerate the extraction, such as pressurized liquid extraction, microwave-assisted extraction, and ultrasound-assisted extraction, are discussed in this review. Special attention is paid to miniaturized sample preparation methodologies and strategies proposed to reduce organic solvent consumption. Additionally, extraction techniques based on alternative solvents (surfactants, supercritical fluids, or ionic liquids) are also commented in this work, even though these are scarcely used for determination of PBDEs. In addition to liquid-based extraction techniques, solid-based analytical techniques are also addressed. The development of greener, faster and simpler sample preparation approaches has increased in recent years (2003-2013). Among green extraction techniques, those based on the liquid phase predominate over those based on the solid phase (71% vs. 29%, respectively). For solid samples, solvent assisted extraction techniques are preferred for leaching of PBDEs, and liquid phase microextraction techniques are mostly used for liquid samples. Likewise, green characteristics of the instrumental analysis used after the extraction and clean-up steps are briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Nanocoating cellulose paper based microextraction combined with nanospray mass spectrometry for rapid and facile quantitation of ribonucleosides in human urine.

    PubMed

    Wan, Lingzhong; Zhu, Haijing; Guan, Yafeng; Huang, Guangming

    2017-07-01

    A rapid and facile analytical method for quantification of ribonucleosides in human urine was developed by the combination of nanocoating cellulose paper based microextraction and nanoelectrospray ionization-tandem mass spectrometry (nESI-MS/MS). Cellulose paper used for microextraction was modified by nano-precision deposition of uniform ultrathin zirconia gel film using a sol-gel process. Due to the large surface area of the cellulose paper and the strong affinity between zirconia and the cis-diol compounds, the target analytes were selectively extracted from the complex matrix. Thus, the detection sensitivity was greatly improved. Typically, the nanocoating cellulose paper was immersed into the diluted urine for selective extraction of target analytes, then the extracted analytes were subjected to nESI-MS/MS detection. The whole analytical procedure could be completed within 10min. The method was evaluated by the determination of ribonucleosides (adenosine, cytidine, uridine, guanosine) in urine sample. The signal intensities of the ribonuclesides extracted by the nanocoating cellulose paper were greatly enhanced by 136-459-folds compared with the one of the unmodified cellulose paper based microextraction. The limits of detection (LODs) and the limits of quantification (LOQs) of the four ribonucleosides were in the range of 0.0136-1.258μgL -1 and 0.0454-4.194μgL -1 , respectively. The recoveries of the target nucleosides from spiked human urine were in the range of 75.64-103.49% with the relative standard deviations (RSDs) less than 9.36%. The results demonstrate the potential of the proposed method for rapid and facile determination of endogenous ribonucleosides in urine sample. Copyright © 2017. Published by Elsevier B.V.

  19. Development of a high-throughput method based on thin-film microextraction using a 96-well plate system with a cork coating for the extraction of emerging contaminants in river water samples.

    PubMed

    Morés, Lucas; Dias, Adriana Neves; Carasek, Eduardo

    2018-02-01

    In this study, a new method was developed in which a biosorbent material is used as the extractor phase in conjunction with a recently described sample preparation technique called thin-film microextraction and a 96-well plate system. The method was applied for the determination of emerging contaminants, such as 3-(4-methylbenzylidene) camphor, ethylparaben, triclocarban, and bisphenol A in water samples. The separation and detection of the analytes were performed by high-performance liquid chromatography with diode array detection. These contaminants are considered hazardous to human health and other living beings. Thus, the development of an analytical method to determine these compounds is of great interest. The extraction parameters were evaluated using multivariate and univariate optimization techniques. The optimum conditions for the method were 3 h of extraction time, 20 min of desorption with 300 μL of acetonitrile and methanol (50:50, v/v), and the addition of 5% w/v sodium chloride to the sample. The analytical figures of merit showed good results with linear correlation coefficients higher than 0.99, relative recoveries of 72-125%, interday precision (n = 3) of 4-18%, and intraday precision (n = 9) of 1-21%. The limit of detection was 0.3-5.5 μg/L, and the limit of quantification was 0.8-15 μg/L. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Multi-residue method for determination of 58 pesticides, pharmaceuticals and personal care products in water using solvent demulsification dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry.

    PubMed

    Caldas, Sergiane Souza; Rombaldi, Caroline; Arias, Jean Lucas de Oliveira; Marube, Liziane Cardoso; Primel, Ednei Gilberto

    2016-01-01

    A rapid and efficient sample pretreatment using solvent-based de-emulsification dispersive liquid-liquid microextraction (SD-DLLME) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was studied for the extraction of 58 pharmaceuticals and personal care products (PPCPs) and pesticides from water samples. Type and volume of extraction and disperser solvents, pH, salt addition, amount of salt and type of demulsification solvent were evaluated. Limits of quantification (LOQ) in the range from 0.0125 to 1.25 µg L(-1) were reached, and linearity was in the range from the LOQ of each compound to 25 μg L(-1). Recoveries ranged from 60% to 120% for 84% of the compounds, with relative standard deviations lower than 29%. The proposed method demonstrated, for the first time, that sample preparation by SD-DLLME with determination by LC-MS/MS can be successfully used for the simultaneous extraction of 32 pesticides and 26 PPCPs from water samples. The entire procedure, including the extraction of 58 organic compounds from the aqueous sample solution and the breaking up of the emulsion after extraction with water, rather than with an organic solvent, was environmentally friendly. In addition, this technique was less expensive and faster than traditional techniques. Finally, the analytical method under study was successfully applied to the analysis of all 58 pesticides and PPCPs in surface water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A review on development of solid phase microextraction fibers by sol-gel methods and their applications.

    PubMed

    Kumar, Ashwini; Gaurav; Malik, Ashok Kumar; Tewary, Dhananjay Kumar; Singh, Baldev

    2008-03-03

    Solid phase microextraction (SPME) is an innovative, solvent free technology that is fast, economical and versatile. SPME is a fiber coated with a liquid (polymer), a solid (sorbent) or a combination of both. The fiber coating takes up the compounds from the sample by absorption in the case of liquid coatings or adsorption in the case of solid coatings. The SPME fiber is then transferred with the help of a syringe like device into the analytical instrument for desorption and analysis of the target analytes. The sol-gel process provides a versatile method to prepare size, shape and charge selective materials of high purity and homogeneity by means of preparation techniques different from the traditional ones, for the chemical analysis. This review is on the current state of the art and future trends in the developments of solid phase microextraction (SPME) fibers using sol-gel method. To achieve more selective determination of different compound classes, the variety of different coating material for SPME fibers has increased. Further developments in SPME as a highly efficient extraction technique, will greatly depend on new breakthroughs in the area of new coating material developments for the SPME fibers. In sol-gel approach, appropriate sol-gel precursors and other building blocks can be selected to create a stationary phase with desired structural and surface properties. This approach is efficient in integrating the advantageous properties of organic and inorganic material systems and thereby increasing and improving the extraction selectivity of the produced amalgam organic-inorganic stationary phases. This review is mainly focused on recent advanced developments in the design, synthesis, characterisation, properties and application of sol-gel in preparation of coatings for the SPME fibers.

  2. Development and application of a new solid-phase microextraction fiber by sol-gel technology on titanium wire.

    PubMed

    Es-haghi, Ali; Hosseini, Seyed Maryam; Khoshhesab, Zahra Monsef

    2012-09-12

    Novel solid-phase microextraction fibers were prepared based on sol-gel technique. Commonly used fused silica substrate was replaced by titanium wire which provided high strength and longer fiber life cycle. Titanium isopropoxide was employed as the precursor which provides a sol solution containing Ti-OH groups and shows more tendencies to the molecularly similar group on the substrate. Three different polymers, poly (dimethylsiloxane) (PDMS), poly(ethylenepropyleneglycol)-monobutyl ether (Ucon) and polyethylene glycol (PEG) were employed as coating polymer in preparing three different fibers. The applicability of these fibers was assessed for the headspace SPME (HS-SPME) of benzene, toluene, ethylbenzene and xylenes (BTEX) from water sample followed by gas chromatography-mass spectrometry (GC-MS). Effects of different parameters such as fiber coating type, extraction condition, desorption condition were investigated and optimized. Under the optimized conditions, LODs and LOQs of 0.75-10 μg L(-1) (S/N=3) and 1-20 μg L(-1) (S/N=10) were respectively obtained. The method showed linearity in the range of 10-25,000 μg L(-1) with correlation coefficient of >0.99. The relative standard deviation was less than 8%. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Rapid determination of amino acids in neonatal blood samples based on derivatization with isobutyl chloroformate followed by solid-phase microextraction and gas chromatography/mass spectrometry.

    PubMed

    Deng, Chunhui; Li, Ning; Zhang, Xiangmin

    2004-01-01

    The purpose of this study was to develop a simple, rapid and sensitive analytical method for determination of amino acids in neonatal blood samples. The developed method involves the employment of derivatization and a solid-phase microextraction (SPME) technique together with gas chromatography/mass spectrometry (GC/MS). Amino acids in blood samples were derivatized by a mixture of isobutyl chloroformate, methanol and pyridine, and the N(O,S)-alkoxycarbonyl alkyl esters thus formed were headspace extracted by a SPME fiber. Finally, the extracted analytes on the fiber were desorbed and detected by GC/MS in electron impact (EI) mode. L-Valine, L-leucine, L-isoleucine, L-phenylanaline and L-tyrosine in blood samples were quantitatively analyzed by measurement of the corresponding N(O,S)-alkoxycarbonyl alkyl esters using an external standard method. SPME conditions were optimized, and the method was validated. The method was applied to diagnosis of neonatal phenylkenuria (PKU) and maple syrup urine disease (MSUD) by the analyses of five amino acids in blood samples. The results showed that the proposed method is a potentially powerful tool for simultaneous screening for neonatal PKU and MSUD. Copyright (c) 2004 John Wiley & Sons, Ltd.

  4. Solid-phase microextraction fiber development for sampling and analysis of volatile organohalogen compounds in air.

    PubMed

    Attari, Seyed Ghavameddin; Bahrami, Abdolrahman; Shahna, Farshid Ghorbani; Heidari, Mahmoud

    2014-01-01

    A green, environmental friendly and sensitive method for determination of volatile organohalogen compounds was described in this paper. The method is based on a homemade sol-gel single-walled carbon nanotube/silica composite coated solid-phase microextraction to develop for sampling and analysis of Carbon tetrachloride, Benzotrichloride, Chloromethyl methyl ether and Trichloroethylene in air. Application of this method was investigated under different laboratory conditions. Predetermined concentrations of each analytes were prepared in a home-made standard chamber and the influences of experimental parameters such as temperature, humidity, extraction time, storage time, desorption temperature, desorption time and the sorbent performance were investigated. Under optimal conditions, the use of single-walled carbon nanotube/silica composite fiber showed good performance, high sensitive and fast sampling of volatile organohalogen compounds from air. For linearity test the regression correlation coefficient was more than 98% for analyte of interest and linear dynamic range for the proposed fiber and the applied Gas Chromatography-Flame Ionization Detector technique was from 1 to 100 ngmL(-1). Method detection limits ranged between 0.09 to 0.2 ngmL(-1) and method quantification limits were between 0.25 and 0.7 ngmL(-1). Single-walled carbon nanotube/silica composite fiber was highly reproducible, relative standard deviations were between 4.3 to 11.7 percent.

  5. Dual ultrasonic-assisted dispersive liquid-liquid microextraction coupled with microwave-assisted derivatization for simultaneous determination of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol by ultra high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhao, Xian-En; Lv, Tao; Zhu, Shuyun; Qu, Fei; Chen, Guang; He, Yongrui; Wei, Na; Li, Guoliang; Xia, Lian; Sun, Zhiwei; Zhang, Shijuan; You, Jinmao; Liu, Shu; Liu, Zhiqiang; Sun, Jing; Liu, Shuying

    2016-03-11

    This paper, for the first time, reported a speedy hyphenated technique of low toxic dual ultrasonic-assisted dispersive liquid-liquid microextraction (dual-UADLLME) coupled with microwave-assisted derivatization (MAD) for the simultaneous determination of 20(S)-protopanaxadiol (PPD) and 20(S)-protopanaxatriol (PPT). The developed method was based on ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) detection using multiple-reaction monitoring (MRM) mode. A mass spectrometry sensitizing reagent, 4'-carboxy-substituted rosamine (CSR) with high reaction activity and ionization efficiency was synthesized and firstly used as derivatization reagent. Parameters of dual-UADLLME, MAD and UHPLC-MS/MS conditions were all optimized in detail. Low toxic brominated solvents were used as extractant instead of traditional chlorinated solvents. Satisfactory linearity, recovery, repeatability, accuracy and precision, absence of matrix effect and extremely low limits of detection (LODs, 0.010 and 0.015ng/mL for PPD and PPT, respectively) were achieved. The main advantages were rapid, sensitive and environmentally friendly, and exhibited high selectivity, accuracy and good matrix effect results. The proposed method was successfully applied to pharmacokinetics of PPD and PPT in rat plasma. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Ferrofluid of magnetic clay and menthol based deep eutectic solvent: Application in directly suspended droplet microextraction for enrichment of some emerging contaminant explosives in water and soil samples.

    PubMed

    Zarei, Ali Reza; Nedaei, Maryam; Ghorbanian, Sohrab Ali

    2018-06-08

    In this work, for the first time, ferrofluid of magnetic montmorillonite nanoclay and deep eutectic solvent was prepared and coupled with directly suspended droplet microextraction. Incorporation of ferrofluid in a miniaturized sample preparation technique resulted in achieving high extraction efficiency while developing a green analytical method. The prepared ferrofluid has strong sorbing properties and hydrophobic characteristics. In this method, a micro-droplet of ferrofluid was suspended into the vortex of a stirring aqueous solution and after completing the extraction process, was easily separated from the solution by a magnetic rod without any operational problems. The predominant experimental variables affecting the extraction efficiency of explosives were evaluated. Under optimal conditions, the limits of detection were in the range 0.22-0.91 μg L -1 . The enrichment factors were between 23 and 93 and the relative standard deviations were <10%. The relative recoveries were ranged from 88 to 104%. This method was successfully applied for the extraction and preconcentration of explosives in water and soil samples, followed their determination by high performance liquid chromatography with ultraviolet detection (HPLC-UV). Copyright © 2018 Elsevier B.V. All rights reserved.

  7. 2-Naphthalenthiol derivatization followed by dispersive liquid-liquid microextraction as an efficient and sensitive method for determination of acrylamide in bread and biscuit samples using high-performance liquid chromatography.

    PubMed

    Faraji, Mohammad; Hamdamali, Mohammadrezza; Aryanasab, Fezzeh; Shabanian, Meisam

    2018-07-13

    In this research, an ultrasonic-assisted extraction followed by 2-naphthalenthiol derivatization and dispersive liquid-liquid microextraction of acrylamide (AA) was developed as simple and sensitive sample preparation method for AA in bread and biscuit samples using high performance liquid chromatography. Influence of derivatization and microextraction parameters were evaluated and optimized. Results showed that the derivatization of AA leads to improve its hydrophobicity and chromatographic behavior. Under optimum conditions of derivatization and microextraction, the method yielded a linear calibration curve ranging from 10 to 1000 μg L -1 with a determination coefficient (R 2 ) of 0.9987. Limit of detection (LOD) and limit of quantification (LOQ) were 3.0 and 9.0 μg L -1 , respectively. Intra-day (n = 6) and inter-day (n = 3) precisions based on relative standard deviation percent (RSD%) for extraction and determination of AA at 50 and 500 μg L -1 levels were less than 9.0%. Finally, the performance of proposed method was investigated for determination of AA in some bread and biscuit samples, and satisfactory results were obtained (relative recovery ≥ 90%). Copyright © 2018. Published by Elsevier B.V.

  8. A novel fatty-acid-based in-tube dispersive liquid-liquid microextraction technique for the rapid determination of nonylphenol and 4-tert-octylphenol in aqueous samples using high-performance liquid chromatography-ultraviolet detection.

    PubMed

    Shih, Hou-Kuang; Shu, Ting-Yun; Ponnusamy, Vinoth Kumar; Jen, Jen-Fon

    2015-01-07

    In this study, a novel fatty-acid-based in-tube dispersive liquid-liquid microextraction (FA-IT-DLLME) technique is proposed for the first time and is developed as a simple, rapid and eco-friendly sample extraction method for the determination of alkylphenols in aqueous samples using high-performance liquid chromatography-ultraviolet detection (HPLC-UV). In this extraction method, medium-chain saturated fatty acids were investigated as a pH-dependent phase because they acted as either anionic surfactants or neutral extraction solvents based on the acid-base reaction caused solely by the adjustment of the pH of the solution. A specially designed home-made glass extraction tube with a built-in scaled capillary tube was utilized as the phase-separation device for the FA-IT-DLLME to collect and measure the separated extractant phase for analysis. Nonylphenol (NP) and 4-tert-octylphenol (4-tOP) were chosen as model analytes. The parameters influencing the FA-IT-DLLME were thoroughly investigated and optimized. Under the optimal conditions, the detector responses of NP and 4-tOP were linear in the concentration ranges of 5-4000 μg L(-1), with correlation coefficients of 0.9990 and 0.9996 for NP and 4-tOP, respectively. The limits of detection based on a signal-to-noise ratio of 3 were 0.7 and 0.5 μg L(-1), and the enrichment factors were 195 and 143 for NP and 4-tOP, respectively. The applicability of the developed method was demonstrated for the analysis of alkylphenols in environmental wastewater samples, and the recoveries ranged from 92.9 to 107.1%. The extraction process required less than 4 min and utilized only acids, alkalis, and fatty acids to achieve the extraction. The results demonstrated that the presented FA-IT-DLLME approach is highly cost-effective, simple, rapid and environmentally friendly in its sample preparation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A rapid and simple pretreatment method for benzoylurea insecticides in honey samples using in-syringe dispersive liquid-liquid microextraction based on the direct solidification of ionic liquids.

    PubMed

    Wang, Huazi; Hu, Lu; Li, Wanzhen; Lu, Runhua; Zhang, Sanbing; Zhou, Wenfeng; Gao, Haixiang

    2016-11-04

    A pretreatment method using in-syringe dispersive liquid-liquid microextraction based on the direct solidification of ionic liquids before high performance liquid chromatography analysis was developed for the determination of benzoylurea insecticides (BUs) in honey samples. The hydrophobic ionic liquid [N 4444 ][PF 6 ], formed in situ by the hydrophilic ionic liquid [N 4444 ]Cl and the ion exchange reagent KPF 6 , was used to extract the target analytes. The entire extraction procedure was performed in a syringe. The extractant was solidified at room temperature and collected using a nylon membrane filter. This technique did not require a dispersive solvent, vortex mixer, ultrasound bath, or centrifugation. The parameters affecting the extraction efficiency were investigated through an experimental design. Under the optimal conditions, the limits of detection for the four BUs varied from 0.21 to 0.42μgL -1 in solution (2.1-4.2μgkg -1 in honey). Good linearities were obtained in the range of 2-300μgL -1 , with coefficients of determination greater than 0.999. The recoveries of the four BUs ranged from 80.94% to 84.59%. The intra-day (n=3) and inter-day (n=3) relative standard deviations were less than 5.08%. Finally, the proposed method was applied to the determination of BUs in commercial honey samples with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Extraction and preconcentration of trace Al and Cr from vegetable samples by vortex-assisted ionic liquid-based dispersive liquid-liquid microextraction prior to atomic absorption spectrometric determination.

    PubMed

    Altunay, Nail; Yıldırım, Emre; Gürkan, Ramazan

    2018-04-15

    In the study, a simple, and efficient microextraction approach, which is termed as vortex-assisted ionic liquid-based dispersive liquid-liquid microextraction (VA-IL-DLLME), was developed for flame atomic absorption spectrometric analysis of aluminum (Al) and chromium (Cr) in vegetables. The method is based on the formation of anionic chelate complexes of Al(III) and Cr(VI) with o-hydroxy azo dye, at pH 6.5, and then extraction of the hydrophobic ternary complexes formed in presence of cetyltrimethylammonium bromide (CTAB) into a 125 μL volume of 1-butyl-3-methylimidazolium bis(trifluorosulfonyl)imide [C 4 mim][Tf 2 N]) as extraction solvent. Under optimum conditions, the detection limits were 0.02 µg L -1 in linear working range of 0.07-100 µg L -1 for Al(III), and 0.05 µg L -1 in linear working range of 0.2-80 µg L -1 for Cr(VI). After the validation by analysis of a certified reference material (CRM), the method was successfully applied to the determination of Al and Cr in vegetables using standard addition method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A novel dispersive liquid-liquid microextraction based on solidification of floating organic droplet method for determination of polycyclic aromatic hydrocarbons in aqueous samples.

    PubMed

    Xu, Hui; Ding, Zongqing; Lv, Lili; Song, Dandan; Feng, Yu-Qi

    2009-03-16

    A new dispersive liquid-liquid microextraction based on solidification of floating organic droplet method (DLLME-SFO) was developed for the determination of five kinds of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. In this method, no specific holder, such as the needle tip of microsyringe and the hollow fiber, is required for supporting the organic microdrop due to the using of organic solvent with low density and proper melting point. Furthermore, the extractant droplet can be collected easily by solidifying it in the lower temperature. 1-Dodecanol was chosen as extraction solvent in this work. A series of parameters that influence extraction were investigated systematically. Under optimal conditions, enrichment factors (EFs) for PAHs were in the range of 88-118. The limit of detections (LODs) for naphthalene, diphenyl, acenaphthene, anthracene and fluoranthene were 0.045, 0.86, 0.071, 1.1 and 0.66ngmL(-1), respectively. Good reproducibility and recovery of the method were also obtained. Compared with the traditional liquid-phase microextraction (LPME) and dispersive liquid-liquid microextraction (DLLME) methods, the proposed method obtained about 2 times higher enrichment factor than those in LPME. Moreover, the solidification of floating organic solvent facilitated the phase transfer. And most importantly, it avoided using high-density and toxic solvent in the traditional DLLME method. The proposed method was successfully applied to determinate PAHs in the environmental water samples. The simple and low-cost method provides an alternative method for the analysis of non-polar compounds in complex environmental water.

  12. Headspace solid-phase microextraction (HS-SPME) and liquid-liquid extraction (LLE): comparison of the performance in classification of ecstasy tablets. Part 2.

    PubMed

    Bonadio, Federica; Margot, Pierre; Delémont, Olivier; Esseiva, Pierre

    2008-11-20

    Headspace solid-phase microextraction (HS-SPME) is assessed as an alternative to liquid-liquid extraction (LLE) currently used for 3,4-methylenedioxymethampethamine (MDMA) profiling. Both methods were compared evaluating their performance in discriminating and classifying samples. For this purpose 62 different seizures were analysed using both extraction techniques followed by gas chromatography-mass spectroscopy (GC-MS). A previously validated method provided data for HS-SPME, whereas LLE data were collected applying a harmonized methodology developed and used in the European project CHAMP. After suitable pre-treatment, similarities between sample pairs were studied using the Pearson correlation. Both methods enable to distinguish between samples coming from the same pre-tabletting batches and samples coming from different pre-tabletting batches. This finding emphasizes the use of HS-SPME as an effective alternative to LLE, with additional advantages such as sample preparation and a solvent-free process.

  13. Sol-gel niobia sorbent with a positively charged octadecyl ligand providing enhanced enrichment of nucleotides and organophosphorus pesticides in capillary microextraction for online HPLC analysis.

    PubMed

    Kesani, Sheshanka; Malik, Abdul

    2018-04-01

    A niobia-based sol-gel organic-inorganic hybrid sorbent carrying a positively charged C 18 ligand (Nb 2 O 5 -C 18 (+ve)) was synthesized to achieve enhanced enrichment capability in capillary microextraction of organophosphorus compounds (which include organophosphorus pesticides and nucleotides) before their online analysis by high-performance liquid chromatography. The sorbent was designed to simultaneously provide three different types of molecular level interactions: electrostatic, Lewis acid-base, and van der Waals interactions. To understand relative contributions of various molecular level analyte-sorbent interactions in the extraction process, two other sol-gel niobia sorbents were also created: (a) a purely inorganic sol-gel niobia sorbent (Nb 2 O 5 ) and (b) an organic-inorganic hybrid sol-gel niobia sorbent carrying an electrically neutral-bonded octadecyl ligand (Nb 2 O 5 -C 18 ). The extraction efficiency of the created sol-gel niobia sorbent (Nb 2 O 5 -C 18 (+ve)) was compared with that of analogously designed and synthesized titania-based sol-gel sorbent (TiO 2 -C 18 (+ve)), taking into consideration that titania-based sorbents present state-of-the-art extraction media for organophosphorus compounds. In capillary microextraction with high-performance liquid chromatography analysis, Nb 2 O 5 -C 18 (+ve) had shown 40-50% higher specific extraction values (a measure of extraction efficiency) over that of TiO 2 -C 18 (+ve). Compared to TiO 2 -C 18 (+ve), Nb 2 O 5 -C 18 (+ve) also provided superior analyte desorption efficiency (96 vs. 90%) during the online release of the extracted organophosphorus pesticides from the sorbent coating in the capillary microextraction capillary to the chromatographic column using reversed-phase high-performance liquid chromatography mobile phase. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Application and optimization of microwave-assisted extraction and dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for sensitive determination of polyamines in turkey breast meat samples.

    PubMed

    Bashiry, Moein; Mohammadi, Abdorreza; Hosseini, Hedayat; Kamankesh, Marzieh; Aeenehvand, Saeed; Mohammadi, Zaniar

    2016-01-01

    A novel method based on microwave-assisted extraction and dispersive liquid-liquid microextraction (MAE-DLLME) followed by high-performance liquid chromatography (HPLC) was developed for the determination of three polyamines from turkey breast meat samples. Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the effective factors in DLLME process. The optimum microextraction efficiency was obtained under optimized conditions. The calibration graphs of the proposed method were linear in the range of 20-200 ng g(-1), with the coefficient determination (R(2)) higher than 0.9914. The relative standard deviations were 6.72-7.30% (n = 7). The limits of detection were in the range of 0.8-1.4 ng g(-1). The recoveries of these compounds in spiked turkey breast meat samples were from 95% to 105%. The increased sensitivity in using the MAE-DLLME-HPLC-UV has been demonstrated. Compared with previous methods, the proposed method is an accurate, rapid and reliable sample-pretreatment method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Silicon carbide nanomaterial as a coating for solid-phase microextraction.

    PubMed

    Tian, Yu; Feng, Juanjuan; Wang, Xiuqin; Sun, Min; Luo, Chuannan

    2018-01-26

    Silicon carbide has excellent properties, such as corrosion resistance, high strength, oxidation resistance, high temperature, and so on. Based on these properties, silicon carbide was coated on stainless-steel wire and used as a solid-phase microextraction coating, and polycyclic aromatic hydrocarbons were employed as model analytes. Using gas chromatography, some important factors that affect the extraction efficiency were optimized one by one, and an analytical method was established. The analytical method showed wide linear ranges (0.1-30, 0.03-30, and 0.01-30 μg/L) with satisfactory correlation coefficients (0.9922-0.9966) and low detection limits (0.003-0.03 μg/L). To investigate the practical application of the method, rainwater and cigarette ash aqueous solution were collected as real samples for extraction and detection. The results indicate that silicon carbide has excellent application in the field of solid-phase microextraction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High-throughput countercurrent microextraction in passive mode.

    PubMed

    Xie, Tingliang; Xu, Cong

    2018-05-15

    Although microextraction is much more efficient than conventional macroextraction, its practical application has been limited by low throughputs and difficulties in constructing robust countercurrent microextraction (CCME) systems. In this work, a robust CCME process was established based on a novel passive microextractor with four units without any moving parts. The passive microextractor has internal recirculation and can efficiently mix two immiscible liquids. The hydraulic characteristics as well as the extraction and back-extraction performance of the passive CCME were investigated experimentally. The recovery efficiencies of the passive CCME were 1.43-1.68 times larger than the best values achieved using cocurrent extraction. Furthermore, the total throughput of the passive CCME developed in this work was about one to three orders of magnitude higher than that of other passive CCME systems reported in the literature. Therefore, a robust CCME process with high throughputs has been successfully constructed, which may promote the application of passive CCME in a wide variety of fields.

  17. Solvent-modified solid-phase microextraction for the determination of diazepam in human plasma samples by capillary gas chromatography.

    PubMed

    Krogh, M; Grefslie, H; Rasmussen, K E

    1997-02-21

    This paper describes microextraction and gas chromatographic analysis of diazepam from human plasma. The method was based on immobilisation of 1.5 microliters of 1-octanol on a polyacrylate-coated fiber designed for solid-phase microextraction. The solvent-modified fibre was used to extract diazepam from the samples. The plasma sample was pre-treated to release diazepam from the protein binding. The fibre was inserted into the modified plasma sample, adjusted to pH 5.5 an internal standard was added and the mixture was carefully stirred for 4 min. The fibre with the immobilised solvent and the enriched analytes was injected into the capillary gas chromatograph. The solvent and the extracted analytes were evaporated at 300 degrees C in the split-splitless injection port of the gas chromatograph, separated on a methylsilicon capillary column and detected with a nitrogen-phosphorus detector. The method was shown to be reproducible with a detection limit of 0.10 nmol/ml in human plasma.

  18. Preparation and application of in-fibre internal standardization solid-phase microextraction.

    PubMed

    Zhao, Wennan; Ouyang, Gangfeng; Pawliszyn, Janusz

    2007-03-01

    The in-fibre standardization method is a novel approach that has been developed for field sampling/sample preparation, in which an internal standard is pre-loaded onto a solid-phase microextraction (SPME) fibre for calibration of the extraction of target analytes in field samples. The same method can also be used for in-vial sample analysis. In this study, different techniques to load the standard to a non-porous SPME fibre were investigated. It was found that the appropriateness of the technique depends on the physical properties of the standards that are used for the analysis. Headspace extraction of the standard dissolved in pumping oil works well for volatile compounds. Conversely, headspace extraction of the pure standard is an effective approach for semi-volatile compounds. For compounds with low volatility, a syringe-fibre transfer method and direct extraction of the standard dissolved in a solvent exhibited a good reproducibility (<5% RSD). The main advantage of the approaches investigated in this study is that the standard generation vials can be reused for hundreds of analyses without exhibiting significant loss. Moreover, most of the standard loading processes studied can be performed automatically, which is efficient and precise. Finally, the standard loading technique and in-fibre standardization method were applied to a complex matrix (milk) and the results illustrated that the matrix effect can be effectively compensated for with this approach.

  19. Analysis of wastewater samples by direct combination of thin-film microextraction and desorption electrospray ionization mass spectrometry.

    PubMed

    Strittmatter, Nicole; Düring, Rolf-Alexander; Takáts, Zoltán

    2012-09-07

    An analysis method for aqueous samples by the direct combination of C18/SCX mixed mode thin-film microextraction (TFME) and desorption electrospray ionization mass spectrometry (DESI-MS) was developed. Both techniques make analytical workflow simpler and faster, hence the combination of the two techniques enables considerably shorter analysis time compared to the traditional liquid chromatography mass spectrometry (LC-MS) approach. The method was characterized using carbamazepine and triclosan as typical examples for pharmaceuticals and personal care product (PPCP) components which draw increasing attention as wastewater-derived environmental contaminants. Both model compounds were successfully detected in real wastewater samples and their concentrations determined using external calibration with isotope labeled standards. Effects of temperature, agitation, sample volume, and exposure time were investigated in the case of spiked aqueous samples. Results were compared to those of parallel HPLC-MS determinations and good agreement was found through a three orders of magnitude wide concentration range. Serious matrix effects were observed in treated wastewater, but lower limits of detection were still found to be in the low ng L(-1) range. Using an Orbitrap mass spectrometer, the technique was found to be ideal for screening purposes and led to the detection of various different PPCP components in wastewater treatment plant effluents, including beta-blockers, nonsteroidal anti-inflammatory drugs, and UV filters.

  20. Ultrasonic-energy enhance the ionic liquid-based dual microextraction to preconcentrate the lead in ground and stored rain water samples as compared to conventional shaking method.

    PubMed

    Nizamani, Sooraj; Kazi, Tasneem G; Afridi, Hassan I

    2018-01-01

    An efficient preconcentration technique based on ultrasonic-assisted ionic liquid-based dual microextraction (UA-ILDµE) method has been developed to preconcentrate the lead (Pb +2 ) in ground and stored rain water. In the current proposed method, Pb +2 was complexed with a chelating agent (dithizone), whereas an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) was used for extraction purpose. The ultrasonic irradiation and electrical shaking system were applied to enhance the dispersion and extraction of Pb +2 complex in aqueous samples. For second phase, dual microextraction (DµE phase), the enriched Pb +2 complex in ionic liquid, extracted back into the acidic aqueous solution and finally determined by flame atomic absorption spectrometry. Some major analytical parameters that influenced the extraction efficiency of developed method, such as pH, concentration of ligand, volume of ionic liquid and samples, time of shaking in thermostatic electrical shaker and ultrasonic bath, effect of back extracting HNO 3 volume, matrix effect, centrifugation time and rate were optimized. At the sample volume of 25mL, the calculated preconcentration factor was 62.2. The limit of detection of proposed procedure for Pb +2 ions was found to be 0.54μgL -1 . The validation of developed method was performed by the analysis of certified sample of water SRM 1643e and standard addition method in a real water sample. The extraction recovery of Pb +2 was enhanced≥2% with shaking time of 80s in ultrasonic bath as compared to used thermostatic electrical shaker, where for optimum recovery up to 10min was required. The developed procedure was successfully used for the enrichment of Pb +2 in ground and stored rain water (surface water) samples of an endemic region of Pakistan. The resulted data indicated that the ground water samples were highly contaminated with Pb +2 , while some of the surface water samples were also have higher values of Pb +2 than permissible limit of WHO. The concentration of Pb +2 in surface and ground water samples was found in the range of 17.5-24.5 and 25.6-99.1μgL - 1 respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Direct synthesis of nitrogen-doped graphene on platinum wire as a new fiber coating method for the solid-phase microextraction of BXes in water samples: Comparison of headspace and cold-fiber headspace modes.

    PubMed

    Memarian, Elham; Hosseiny Davarani, Saied Saeed; Nojavan, Saeed; Movahed, Siyavash Kazemi

    2016-09-07

    In this work, a new solid-phase microextraction fiber was prepared based on nitrogen-doped graphene (N-doped G). Moreover, a new strategy was proposed to solve problems dealt in direct coating of N-doped G. For this purpose, first, Graphene oxide (GO) was coated on Pt wire by electrophoretic deposition method. Then, chemical reduction of coated GO to N-doped G was accomplished by hydrazine and NH3. The prepared fiber showed good mechanical and thermal stabilities. The obtained fiber was used in two different modes (conventional headspace solid-phase microextraction and cold-fiber headspace solid-phase microextraction (CF-HS-SPME)). Both modes were optimized and applied for the extraction of benzene and xylenes from different aqueous samples. All effective parameters including extraction time, salt content, stirring rate, and desorption time were optimized. The optimized CF-HS-SPME combined with GC-FID showed good limit of detections (LODs) (0.3-2.3 μg/L), limit of quantifications (LOQs) (1.0-7.0 μg/L) and linear ranges (1.0-5000 μg/L). The developed method was applied for the analysis of benzene and xylenes in rainwater and some wastewater samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Ionic liquid phase microextraction combined with fluorescence spectrometry for preconcentration and quantitation of carvedilol in pharmaceutical preparations and biological media.

    PubMed

    Zeeb, Mohsen; Mirza, Behrooz

    2015-04-30

    Carvedilol belongs to a group of medicines termed non-selective beta-adrenergic blocking agents. In the presented approach, a practical and environmentally friendly microextraction method based on the application of ionic liquids (ILs) was followed by fluorescence spectrometry for trace determination of carvedilol in pharmaceutical and biological media. A rapid and simple ionic liquid phase microextraction was utilized for preconcentration and extraction of carvedilol. A hydrophobic ionic liquid (IL) was applied as a microextraction solvent. In order to disperse the IL through the aqueous media and extract the analyte of interest, IL was injected into the sample solution and a proper temperature was applied and then for aggregating the IL-phase, the sample was cooled in an ice water-bath. The aqueous media was centrifuged and IL-phase collected at the bottom of the test tube was introduced to the micro-cell of spectrofluorimeter, in order to determine the concentration of the enriched analyte. Main parameters affecting the accuracy and precision of the proposed approach were investigated and optimized values were obtained. A linear response range of 10-250 μg I(-1) and a limit of detection (LOD) of 1.7 μg I(-1) were obtained. Finally, the presented method was utilized for trace determination of carvedilol in commercial pharmaceutical preparations and biological media.

  3. Ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction for the separation and determination of estrogens in water samples by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Zhang, Rui; Wang, Chuanliu; Yue, Qiaohong; Zhou, Tiecheng; Li, Na; Zhang, Hanqi; Hao, Xiaoke

    2014-11-01

    An ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction method was proposed for the extraction and concentration of 17-α-estradiol, 17-β-estradiol-benzoate, and quinestrol in environmental water samples by high-performance liquid chromatography with fluorescence detection. 1-Hexyl-3-methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion-pairing and salting-out agent NH4 PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1-hexyl-3-methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid-liquid microextraction was widened. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Preparation of novel alumina nanowire solid-phase microextraction fiber coating for ultra-selective determination of volatile esters and alcohols from complicated food samples.

    PubMed

    Zhang, Zhuomin; Ma, Yunjian; Wang, Qingtang; Chen, An; Pan, Zhuoyan; Li, Gongke

    2013-05-17

    A novel alumina nanowire (ANW) solid-phase microextraction (SPME) fiber coating was prepared by a simple and rapid anodization-chemical etching method for ultra-selective determination of volatile esters and alcohols from complicated food samples. Preparation conditions for ANW SPME fiber coating including corrosion solution concentration and corrosion time were optimized in detail for better surface morphology and higher surface area based on scanning electron microscope (SEM). Under the optimum conditions, homogeneous alumina nanowire structure of ANW SPME fiber coating was achieved with the average thickness of 20 μm around. Compared with most of commercial SPME fiber coatings, ANW SPME fiber coatings achieved the higher extraction capacity and special selectivity for volatile esters and alcohols. Finally, an efficient gas sampling technique based on ANW SPME fiber coating as the core was established and successfully applied for the ultra-selective determination of trace volatile esters and alcohols from complicated banana and fermented glutinous rice samples coupled with gas chromatography/mass spectrometry (GC/MS) detection. It was interesting that 25 esters and 2 alcohols among 30 banana volatile organic compounds (VOCs) identified and 4 esters and 7 alcohols among 13 identified VOCs of fermented glutinous rice were selectively sampled by ANW SPME fiber coatings. Furthermore, new analytical methods for the determination of some typical volatile esters and alcohols from banana and fermented glutinous rice samples at specific storage or brewing phases were developed and validated. Good recoveries for banana and fermented glutinous rice samples were achieved in range of 108-115% with relative standard deviations (RSDs) of 2.6-6.7% and 80.0-91.8% with RSDs of 0.3-1.3% (n=3), respectively. This work proposed a novel and efficient gas sampling technique of ANW SPME which was quite suitable for ultra-selectively sampling trace volatile esters and alcohols from complicated food samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. The development of a high-throughput measurement method of octanol/water distribution coefficient based on hollow fiber membrane solvent microextraction technique.

    PubMed

    Bao, James J; Liu, Xiaojing; Zhang, Yong; Li, Youxin

    2014-09-15

    This paper describes the development of a novel high-throughput hollow fiber membrane solvent microextraction technique for the simultaneous measurement of the octanol/water distribution coefficient (logD) for organic compounds such as drugs. The method is based on a designed system, which consists of a 96-well plate modified with 96 hollow fiber membrane tubes and a matching lid with 96 center holes and 96 side holes distributing in 96 grids. Each center hole was glued with a sealed on one end hollow fiber membrane tube, which is used to separate the aqueous phase from the octanol phase. A needle, such as microsyringe or automatic sampler, can be directly inserted into the membrane tube to deposit octanol as the accepted phase or take out the mixture of the octanol and the drug. Each side hole is filled with aqueous phase and could freely take in/out solvent as the donor phase from the outside of the hollow fiber membranes. The logD can be calculated by measuring the drug concentration in each phase after extraction equilibrium. After a comprehensive comparison, the polytetrafluoroethylene hollow fiber with the thickness of 210 μm, an extraction time of 300 min, a temperature of 25 °C and atmospheric pressure without stirring are selected for the high throughput measurement. The correlation coefficient of the linear fit of the logD values of five drugs determined by our system to reference values is 0.9954, showed a nice accurate. The -8.9% intra-day and -4.4% inter-day precision of logD for metronidazole indicates a good precision. In addition, the logD values of eight drugs were simultaneously and successfully measured, which indicated that the 96 throughput measure method of logD value was accurate, precise, reliable and useful for high throughput screening. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A novel task specific magnetic polymeric ionic liquid for selective preconcentration of potassium in oil samples using centrifuge-less dispersive liquid-liquid microextraction technique and its determination by flame atomic emission spectroscopy.

    PubMed

    Beiraghi, Asadollah; Shokri, Masood

    2018-02-01

    In the present study a new centrifuge-less dispersive liquid-liquid microextraction technique based on application of a new task specific magnetic polymeric ionic liquid (TSMPIL) as a chelating and extraction solvent for selective preconcentration of trace amounts of potassium from oil samples is developed, for the first time. After extraction, the fine droplets of TSMPIL were transferred into an eppendorf tube and diluted to 500µL using distilled water. Then, the enriched analyte was determined by flame atomic emission spectroscopy (FAES). Several important factors affecting both the complexation and extraction efficiency including extraction time, rate of vortex agitator, amount of carbonyl iron powder, pH of sample solution, volume of ionic liquid as well as effects of interfering species were investigated and optimized. Under the optimal conditions, the limits of detection (LOD) and quantification (LOQ) were 0.5 and 1.6µgL -1 respectively with the preconcentration factor of 128. The precision (RSD %) for seven replicate determinations at 10µgL -1 of potassium was better than 3.9%. The relative recoveries for the spiked samples were in the acceptable range of 95-104%. The results demonstrated that no remarkable interferences are created by other various ions in the determination of potassium, so that the tolerance limits (W Ion /W K ) of major cations and anions were in the range of 2500-10,000. The purposed method was successfully applied for the analysis of potassium in some oil samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Development of water-phase derivatization followed by solid-phase microextraction and gas chromatography/mass spectrometry for fast determination of valproic acid in human plasma.

    PubMed

    Deng, Chunhui; Li, Ning; Ji, Jie; Yang, Bei; Duan, Gengli; Zhang, Xiangmin

    2006-01-01

    In this study, a simple, rapid, and sensitive method was developed and validated for the quantification of valproic acid (VPA), an antiepileptic drug, in human plasma, which was based on water-phase derivatization followed by headspace solid-phase microextraction (HS-SPME) and gas chromatography/mass spectrometry (GC/MS). In the proposed method, VPA in plasma was rapidly derivatized with a mixture of isobutyl chloroformate, ethanol and pyridine under mild conditions (room temperature, aqueous medium), and the VPA ethyl ester formed was headspace-extracted and simultaneously concentrated using the SPME technique. Finally, the analyte extracted on SPME fiber was analyzed by GC/MS. The experimental parameters and method validations were studied. The optimal conditions were obtained: PDMS fiber, stirring rate of 1100 rpm, sample temperature of 80 degrees C, extraction time of 20 min, NaCl concentration of 30%. The proposed method had a limit of quantification (0.3 microg/mL), good recovery (89-97%) and precision (RSD value less than 10%). Because the proposed method combined a rapid water-phase derivatization with a fast, simple and solvent-free sample extraction and concentration technique of SPME, the sample preparation time was less than 25 min. This much shortens the whole analysis time of VPA in plasma. The validated method has been successfully used to analyze VPA in human plasma samples for application in pharmacokinetic studies. All these results show that water-phase derivatization followed by HS-SPME and GC/MS is an alternative and powerful method for fast determination of VPA in biological fluids. Copyright 2006 John Wiley & Sons, Ltd.

  8. Organic solvent-free air-assisted liquid-liquid microextraction for optimized extraction of illegal azo-based dyes and their main metabolite from spices, cosmetics and human bio-fluid samples in one step.

    PubMed

    Barfi, Behruz; Asghari, Alireza; Rajabi, Maryam; Sabzalian, Sedigheh

    2015-08-15

    Air-assisted liquid-liquid microextraction (AALLME) has unique capabilities to develop as an organic solvent-free and one-step microextraction method, applying ionic-liquids as extraction solvent and avoiding centrifugation step. Herein, a novel and simple eco-friendly method, termed one-step air-assisted liquid-liquid microextraction (OS-AALLME), was developed to extract some illegal azo-based dyes (including Sudan I to IV, and Orange G) from food and cosmetic products. A series of experiments were investigated to achieve the most favorable conditions (including extraction solvent: 77μL of 1-Hexyl-3-methylimidazolium hexafluorophosphate; sample pH 6.3, without salt addition; and extraction cycles: 25 during 100s of sonication) using a central composite design strategy. Under these conditions, limits of detection, linear dynamic ranges, enrichment factors and consumptive indices were in the range of 3.9-84.8ngmL(-1), 0.013-3.1μgmL(-1), 33-39, and 0.13-0.15, respectively. The results showed that -as well as its simplicity, fastness, and use of no hazardous disperser and extraction solvents- OS-AALLME is an enough sensitive and efficient method for the extraction of these dyes from complex matrices. After optimization and validation, OS-AALLME was applied to estimate the concentration of 1-amino-2-naphthol in human bio-fluids as a main reductive metabolite of selected dyes. Levels of 1-amino-2-naphthol in plasma and urinary excretion suggested that this compound may be used as a new potential biomarker of these dyes in human body. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Liquid-phase microextraction for rapid AP-MALDI and quantitation of nortriptyline in biological matrices.

    PubMed

    Wu, Hui-Fen; Ku, Hsin-Yi; Yen, Jyh-Hao

    2008-07-01

    A liquid-phase microextraction (LPME) method using a micropipette with disposable tips was demonstrated for coupling to atmospheric pressure MALDI-MS (AP-MALDI/MS) as a concentrating probe for rapid analysis and quantitative determination of nortriptyline drug from biological matrices including human urine and human plasma. This technique was named as micropipette extraction (MPE). The best optimized parameters of MPE coupled to AP-MALDI/MS experiments were extraction solvent, toluene; extraction time, 5 min; sample agitation rate, 480 rpm; sample pH, 7; salt concentration, 30%; hole size of micropipette tips, 0.61 mm (id); and matrix concentration, 1000 ppm using alpha-cyano-4-hydroxycinnamic acid (CHCA) as a matrix. Three detection modes of AP-MALDI/MS analysis including full scan, selective ion monitor (SIM), and selective reaction monitor (SRM) of MS/MS were also compared for the MPE performance. The results clearly demonstrated that the MS/MS method provides a wider linear range and lower LODs but poor RSDs than the full scan and SIM methods. The LOD values for the MPE under SIM and MS/MS modes in water, urine, and plasma were 6.26, 47.5, and 94.9 nM, respectively. The enrichment factors (EFs) of this current approach were 36.5-43.0 fold in water. In addition, compared to single drop microextraction (SDME) and LPME using a dual gauge microsyringe with a hollow fiber (LPME-HF) technique, the LODs acquired by the MPE method under MS/MS modes were comparable to those of LPME-HF and SDME but it is more convenient than both methods. The advantages of this novel method are simple, easy to use, low cost, and no contamination between experiments since disposable tips were used for the micropipettes. The MPE has the potential to be widely used in the future because it only requires a simple micropipette to perform all extraction processes. We believe that this technique can be a powerful tool for MALDI/MS analysis of biological samples and clinical applications.

  10. Rapid and sensitive analysis of polychlorinated biphenyls and acrylamide in food samples using ionic liquid-based in situ dispersive liquid-liquid microextraction coupled to headspace gas chromatography.

    PubMed

    Zhang, Cheng; Cagliero, Cecilia; Pierson, Stephen A; Anderson, Jared L

    2017-01-20

    A simple and rapid ionic liquid (IL)-based in situ dispersive liquid-liquid microextraction (DLLME) method was developed and coupled to headspace gas chromatography (HS-GC) employing electron capture (ECD) and mass spectrometry (MS) detection for the analysis of polychlorinated biphenyls (PCBs) and acrylamide at trace levels from milk and coffee samples. The chemical structures of the halide-based ILs were tailored by introducing various functional groups to the cations to evaluate the effect of different structural features on the extraction efficiency of the target analytes. Extraction parameters including the molar ratio of IL to metathesis reagent and IL mass were optimized. The effects of HS oven temperature and the HS sample vial volume on the analyte response were also evaluated. The optimized in situ DLLME method exhibited good analytical precision, good linearity, and provided detection limits down to the low ppt level for PCBs and the low ppb level for acrylamide in aqueous samples. The matrix-compatibility of the developed method was also established by quantifying acrylamide in brewed coffee samples. This method is much simpler and faster compared to previously reported GC-MS methods using solid-phase microextraction (SPME) for the extraction/preconcentration of PCBs and acrylamide from complex food samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A New Microextraction Technique for the Assay of Alkaloids in Chinese Compound Formula-Based Polyether Sulfone Membrane Fiber Decorated by TiO2 Nanoparticles.

    PubMed

    Sun, Xinjie; Wei, Yingqin; Hou, Baojuan; Zhou, Guowei

    2017-03-01

    A new nanocomposite membrane was used to clean up impurities from complex samples and the obvious synergy was obtained in this paper. The nanocomposite membrane was prepared by dispersing TiO2 nanoparticles in chloroform and filled in the pores and lumen of polyether sulfone membrane fiber. The novel microextraction method showed the ideal selective extraction effect for alkaloids in the formulae composed of Rhizoma coptidis and the excellent clean-up efficiency compared with the single membrane method. The optimum extraction conditions were as follows: chloroform as accepted phase; the number of nanocomposite membrane fiber bars, 7; extraction time, 30 min; pH of the sample solution, 10.55; desorption solvent, methanol. The limit of detection for the described alkaloids was estimated at 0.122 μg mL-1. The recovery of the four alkaloids in complex samples ranged from 93.24% to 97.94% with relative standard deviation of <4.99 (n = 5). The validated method had been successfully applied to study the transfer rate of alkaloids in the producing process of Qihuang capsule and the ideal transfer rate of alkaloids was obtained in this paper. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Use of different sample temperatures in a single extraction procedure for the screening of the aroma profile of plant matrices by headspace solid-phase microextraction.

    PubMed

    Martendal, Edmar; de Souza Silveira, Cristine Durante; Nardini, Giuliana Stael; Carasek, Eduardo

    2011-06-17

    This study proposes a new approach to the optimization of the extraction of the volatile fraction of plant matrices using the headspace solid-phase microextraction (HS-SPME) technique. The optimization focused on the extraction time and temperature using a CAR/DVB/PDMS 50/30 μm SPME fiber and 100mg of a mixture of plants as the sample in a 15-mL vial. The extraction time (10-60 min) and temperature (5-60 °C) were optimized by means of a central composite design. The chromatogram was divided into four groups of peaks based on the elution temperature to provide a better understanding of the influence of the extraction parameters on the extraction efficiency considering compounds with different volatilities/polarities. In view of the different optimum extraction time and temperature conditions obtained for each group, a new approach based on the use of two extraction temperatures in the same procedure is proposed. The optimum conditions were achieved by extracting for 30 min with a sample temperature of 60 °C followed by a further 15 min at 5 °C. The proposed method was compared with the optimized conventional method based on a single extraction temperature (45 min of extraction at 50 °C) by submitting five samples to both procedures. The proposed method led to better results in all cases, considering as the response both peak area and the number of identified peaks. The newly proposed optimization approach provided an excellent alternative procedure to extract analytes with quite different volatilities in the same procedure. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Stirring-controlled solidified floating solid-liquid drop microextraction as a new solid phase-enhanced liquid-phase microextraction method by exploiting magnetic carbon nanotube-nickel hybrid.

    PubMed

    Ghazaghi, Mehri; Mousavi, Hassan Zavvar; Shirkhanloo, Hamid; Rashidi, Alimorad

    2017-01-25

    A specific technique is introduced to overcome limitations of classical solidification of floating organic drop microextraction, such as tedious and time-consuming centrifuge step and using disperser solvent, by facile and efficient participation of solid and liquid phases. In this proposed method of stirring-controlled solidified floating solid-liquid drop microextraction (SC-SF-SLDME), magnetic carbon nanotube-nickel hybrid (MNi-CNT) as a solid part of the extractors are dispersed ultrasonically in sample solution, and the procedure followed by dispersion of liquid phase (1-undecanol) through high-rate stirring and easily recollection of MNi-CNT in organic solvent droplets through hydrophobic force. With the reduction in speed of stirring, one solid-liquid drop is formed on top of the solution. MNi-CNT acts as both extractor and the coalescence helper between organic droplets for a facile recollection. MNi-CNT was prepared by spray pyrolysis of nickel oleate/toluene mixture at 1000 °C. Four tyrosine kinase inhibitors were selected as model analytes and the effecting parameters were investigated. The results confirmed that magnetic nanoadsorbent has an important role in the procedure and complete collection of dispersed solvent is not achieved in the absence of the solid phase. Also, short extraction time exhibited success of the proposed method and effect of dispersed solid/liquid phases. The limits of quantification (LOQs) for imatinib, sunitinib, erlotinib, and nilotinib were determined to be as low as 0.7, 1.7, 0.6, and 1.0 μg L -1 , respectively. The intra-day precisions (RSDs) were lower than 4.5%. Method performance was investigated by determination of mentioned tyrosine kinase inhibitors (TKIs) in human serum and cerebrospinal fluid samples with good recoveries in the range of 93-98%. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Bar adsorptive microextraction technique - application for the determination of pharmaceuticals in real matrices.

    PubMed

    Almeida, Carlos; Ahmad, Samir M; Nogueira, José Manuel F

    2017-03-01

    In the present work, bar adsorptive microextraction using miniaturized devices (7.5 × 3.0 mm) coated with suitable sorbent phases, combined with microliquid desorption (100 μL) followed by high-performance liquid chromatography with diode array detection (BAμE-μLD/HPLC-DAD), is proposed for the determination of trace level of six pharmaceuticals (furosemide, mebeverine, ketoprofen, naproxen, diclofenac and mefenamic acid) in environmental water and urine matrices. By comparing ten distinct sorbent materials (five polymeric and five activated carbons), the polymer P5 proved to be the most suitable to achieve the best selectivity and efficiency. The solvent volume minimization in the liquid desorption stage demonstrated remarkable effectiveness, being more environmentally friendly, and simultaneously increased the microextraction enrichment factor two-fold. Assays performed through BAμE(P5, 0.9 mg)-μLD(100 μL)/HPLC-DAD on 25 mL of ultrapure water samples spiked at the 4.0 μg/L level yielded average recoveries ranging from 91.4% (furosemide) to 101.0% (ketoprofen) with good precision (RSD < 10.6%), under optimized experimental conditions. The analytical performance showed convenient detection limits (25.0 - 120.0 ng/L), good linear dynamic ranges (0.1 to 24.0 μg/L), appropriate determination coefficients (r 2 > 0.9983), and excellent repeatability through intraday (RSD < 10.4%)) and interday (RSD < 10.0%) assays. By using the standard addition methodology, the application of the present analytical approach on environmental waters and urine samples revealed the occurrence of trace levels of some pharmaceuticals. The solvent minimization during the back-extraction step associated with the miniaturization of BAμE devices proved to be a very promising analytical technology for static microextraction analysis. Graphical abstract BAμE operating under the floating sampling technology for the determination of pharmaceuticals in aqueous media.

  15. Novel Electrosorption-Enhanced Solid-Phase Microextraction Device for Ultrafast In Vivo Sampling of Ionized Pharmaceuticals in Fish.

    PubMed

    Qiu, Junlang; Wang, Fuxin; Zhang, Tianlang; Chen, Le; Liu, Yuan; Zhu, Fang; Ouyang, Gangfeng

    2018-01-02

    Decreasing the tedious sample preparation duration is one of the most important concerns for the environmental analytical chemistry especially for in vivo experiments. However, due to the slow mass diffusion paths for most of the conventional methods, ultrafast in vivo sampling remains challenging. Herein, for the first time, we report an ultrafast in vivo solid-phase microextraction (SPME) device based on electrosorption enhancement and a novel custom-made CNT@PPY@pNE fiber for in vivo sampling of ionized acidic pharmaceuticals in fish. This sampling device exhibited an excellent robustness, reproducibility, matrix effect-resistant capacity, and quantitative ability. Importantly, the extraction kinetics of the targeted ionized pharmaceuticals were significantly accelerated using the device, which significantly improved the sensitivity of the SPME in vivo sampling method (limits of detection ranged from 0.12 ng·g -1 to 0.25 ng·g -1 ) and shorten the sampling time (only 1 min). The proposed approach was successfully applied to monitor the concentrations of ionized pharmaceuticals in living fish, which demonstrated that the device and fiber were suitable for ultrafast in vivo sampling and continuous monitoring. In addition, the bioconcentration factor (BCF) values of the pharmaceuticals were derived in tilapia (Oreochromis mossambicus) for the first time, based on the data of ultrafast in vivo sampling. Therefore, we developed and validated an effective and ultrafast SPME sampling device for in vivo sampling of ionized analytes in living organisms and this state-of-the-art method provides an alternative technique for future in vivo studies.

  16. Neuro-genetic multioptimization of the determination of polychlorinated biphenyl congeners in human milk by headspace solid phase microextraction coupled to gas chromatography with electron capture detection.

    PubMed

    Kowalski, Cláudia Hoffmann; da Silva, Gilmare Antônia; Poppi, Ronei Jesus; Godoy, Helena Teixeira; Augusto, Fabio

    2007-02-28

    Polychlorinated biphenyls (PCB) can eventually contaminate breast milk, which is a serious issue to the newborn due to their high vulnerability. Solid phase microextraction (SPME) can be a very convenient technique for their isolation and pre-concentration prior chromatographic analysis. Here, a simultaneous multioptimization strategy based on a neuro-genetic approach was applied to a headspace SPME method for determination of 12 PCB in human milk. Gas chromatography with electron capture detection (ECD) was adopted for the separation and detection of the analytes. Experiments according to a Doehlert design were carried out with varied extraction time and temperature, media ionic strength and concentration of the methanol (co-solvent). To find the best model that simultaneously correlate all PCB peak areas and SPME extraction conditions, a multivariate calibration method based on a Bayesian Neural Network (BNN) was applied. The net output from the neural network was used as input in a genetic algorithm (GA) optimization operation (neuro-genetic approach). The GA pointed out that the best values of the overall SPME operational conditions were the saturation of the media with NaCl, extraction temperature of 95 degrees C, extraction time of 60 min and addition of 5% (v/v) methanol to the media. These optimized parameters resulted in the decrease of the detection limits and increase on the sensitivity for all tested analytes, showing that the use of neuro-genetic approach can be a promising way for optimization of SPME methods.

  17. Hydride generation coupled to microfunnel-assisted headspace liquid-phase microextraction for the determination of arsenic with UV-Vis spectrophotometry.

    PubMed

    Hashemniaye-Torshizi, Reihaneh; Ashraf, Narges; Arbab-Zavar, Mohammad Hossein

    2014-12-01

    In this research, a microfunnel-assisted headspace liquid-phase microextraction technique has been used in combination with hydride generation to determine arsenic (As) by UV-Vis spectrophotometry. The method is based on the reduction of As to arsine (AsH3) in acidic media by sodium tetrahydroborate (NaBH4) followed by its subsequent reaction with silver diethyldithiocarbamate (AgDDC) to give an absorbing complex at 510 nm. The complexing reagent (AgDDC) has been dissolved in a 1:1 (by the volume ratio) mixture of chloroform/chlorobenzene microdroplet and exposed to the generated gaseous arsine via a reversed microfunnel in the headspace of the sample solution. Several operating parameters affecting the performance of the method have been examined and optimized. Acetonitrile solvent has been added to the working samples as a sensitivity enhancement agent. Under the optimized operating conditions, the detection limit has been measured to be 0.2 ng mL(-1) (based on 3sb/m criterion, n b = 8), and the calibration curve was linear in the range of 0.5-12 ng mL(-1). The relative standard deviation for eight replicate measurements was 1.9 %. Also, the effects of several potential interferences have been studied. The accuracy of the method was validated through the analysis of JR-1 geological standard reference material. The method has been successfully applied for the determination of arsenic in raw and spiked soft drink and water samples with the recoveries that ranged from 91 to 106 %.

  18. Volatile compounds of dry beans (Phaseolus vulgaris L.).

    PubMed

    Oomah, B Dave; Liang, Lisa S Y; Balasubramanian, Parthiba

    2007-12-01

    Volatile compounds of uncooked dry bean (Phaseolus vulgaris L.) cultivars representing three market classes (black, dark red kidney and pinto) grown in 2005 were isolated with headspace solid phase microextraction (HS-SPME), and analyzed with gas chromatography mass spectrometry (GC-MS). A total of 62 volatiles consisting of aromatic hydrocarbons, aldehydes, alkanes, alcohols and ketones represented on average 62, 38, 21, 12, and 9 x 10(6) total area counts, respectively. Bean cultivars differed in abundance and profile of volatiles. The combination of 18 compounds comprising a common profile explained 79% of the variance among cultivars based on principal component analysis (PCA). The SPME technique proved to be a rapid and effective method for routine evaluation of dry bean volatile profile.

  19. Identification and Quantification of Pesticides in Environmental Waters With Solid Phase Microextraction and Analysis Using Field-Portable Gas Chromatography-Mass Spectrometry

    DTIC Science & Technology

    2004-06-10

    Microextraction and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry Name of Candidate: CPT Michael J. Nack...and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry Beyond brief excerpts is with the permission of the copyright owner, and...Pesticides in Environmental Waters with Solid Phase Microextraction and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry

  20. Solid-phase microfibers based on polyethylene glycol modified single-walled carbon nanotubes for the determination of chlorinated organic carriers in textiles.

    PubMed

    Zhang, Wei-Ya; Sun, Yin; Wang, Cheng-Ming; Wu, Cai-Ying

    2011-09-01

    Based on polyethylene glycol modified single-walled carbon nanotubes, a novel sol-gel fiber coating was prepared and applied to the headspace microextraction of chlorinated organic carriers (COCs) in textiles by gas chromatography-electron capture detection. The preparation of polyethylene glycol modified single-walled carbon nanotubes and the sol-gel fiber coating process was stated and confirmed by infrared spectra, Raman spectroscopy, and scanning electron microscopy. Several parameters affecting headspace microextraction, including extraction temperature, extraction time, salting-out effect, and desorption time, were optimized by detecting 11 COCs in simulative sweat samples. Compared with the commercial solid-phase microextraction fibers, the sol-gel polyethylene glycol modified single-walled carbon nanotubes fiber showed higher extraction efficiency, better thermal stability, and longer life span. The method detection limits for COCs were in the range from 0.02 to 7.5 ng L(-1) (S/N = 3). The linearity of the developed method varied from 0.001 to 50 μg L(-1) for all analytes, with coefficients of correlation greater than 0.974. The developed method was successfully applied to the analysis of trace COCs in textiles, the recoveries of the analytes indicated that the developed method was considerably useful for the determination of COCs in ecological textile samples.

  1. Ultrasound-Assisted Emulsification Microextraction Based on Solidification Floating Organic Drop Trace Amounts of Manganese Prior to Graphite Furnace Atomic Absorption Spectrometry Determination

    PubMed Central

    Mohadesi, Alireza; Falahnejad, Masoumeh

    2012-01-01

    In the present study, an ultrasound-assisted emulsification microextraction based on solidification floating organic drop method is described for preconcentration of trace amounts of Mn (II). 2-(5-Bromo-2-pyridylazo)-5 diethylaminophenol was added to a solution of Mn+2 at ph = 10.0. After this, 1-undecanol was added to the solution as an extraction solvent, and solution was stirred. Several factors influencing the microextraction efficiency, such as pH, the amount of chelating agent, nature and volume of extraction solvent, the volume of sample solution, stirring rate, and extraction time were investigated and optimized. Then sample vial was cooled by inserting into an ice bath, and the solidified was transferred into a suitable vial for immediate melting. Finally the sample was injected into a graphite furnace atomic absorption spectrometry. Under the optimum condition the linear dynamic range was 0.50–10.0 ng mL−1 with a correlation coefficient of 0.9926, and the detection limit of 0.3 ng mL−1 was obtained. The enrichment factor was 160. The proposed method was successfully applied for separation and determination of manganese in sea, rain, tap, and river water samples. PMID:22645504

  2. Integrated Droplet-Based Microextraction with ESI-MS for Removal of Matrix Interference in Single-Cell Analysis.

    PubMed

    Zhang, Xiao-Chao; Wei, Zhen-Wei; Gong, Xiao-Yun; Si, Xing-Yu; Zhao, Yao-Yao; Yang, Cheng-Dui; Zhang, Si-Chun; Zhang, Xin-Rong

    2016-04-29

    Integrating droplet-based microfluidics with mass spectrometry is essential to high-throughput and multiple analysis of single cells. Nevertheless, matrix effects such as the interference of culture medium and intracellular components influence the sensitivity and the accuracy of results in single-cell analysis. To resolve this problem, we developed a method that integrated droplet-based microextraction with single-cell mass spectrometry. Specific extraction solvent was used to selectively obtain intracellular components of interest and remove interference of other components. Using this method, UDP-Glc-NAc, GSH, GSSG, AMP, ADP and ATP were successfully detected in single MCF-7 cells. We also applied the method to study the change of unicellular metabolites in the biological process of dysfunctional oxidative phosphorylation. The method could not only realize matrix-free, selective and sensitive detection of metabolites in single cells, but also have the capability for reliable and high-throughput single-cell analysis.

  3. A twin purification/enrichment procedure based on two versatile solid/liquid extracting agents for efficient uptake of ultra-trace levels of lorazepam and clonazepam from complex bio-matrices.

    PubMed

    Hemmati, Maryam; Rajabi, Maryam; Asghari, Alireza

    2017-11-17

    In this research work, two consecutive dispersive solid/liquid phase microextractions based on efficient extraction media were developed for the influential and clean pre-concentration of clonazepam and lorazepam from complicated bio-samples. The magnetism nature of the proposed nanoadsorbent proceeded the clean-up step conveniently and swiftly (∼5min), pursued by a further enrichment via a highly effective and rapid emulsification microextraction process (∼4min) based on a deep eutectic solvent (DES). Finally, the instrumental analysis step was practicable via high performance liquid chromatography-ultraviolet detection. The solid phase used was an adequate magnetic nanocomposite termed as polythiophene-sodium dodecyl benzene sulfonate/iron oxide (PTh-DBSNa/Fe 3 O 4 ), easily and cost-effectively prepared by the impressive co-precipitation method followed by the efficient in situ sonochemical oxidative polymerization approach. The identification techniques viz. FESEM, XRD, and EDX certified the supreme physico-chemical properties of this effective nanosorbent. Also the powerful liquid extraction agent, DES, based on bio-degradable choline chloride, possessed a high efficiency, tolerable safety, low cost, and facile and mild synthesis route. The parameters involved in this versatile hyphenated procedure, efficiently evaluated via the central composite design (CCD), showed that the best extraction conditions consisted of an initial pH value of 7.2, 17mg of the PTh-DBSNa/Fe 3 O 4 nanocomposite, 20 air-agitation cycles (first step), 245μL of methanol, 250μL of DES, 440μL of THF, and 8 air-agitation cycles (second step). Under the optimal conditions, the understudied drugs could be accurately determined in the wide linear dynamic ranges (LDRs) of 4.0-3000ngmL -1 and 2.0-2000ngmL -1 for clonazepam and lorazepam, respectively, with low limits of detection (LODs) ranged from 0.7 to 1.0ngmL -1 . The enrichment factor (EF) and percentage extraction recovery (%ER) values were found to be 75 and 57% for clonazepam and 56 and 42% for lorazepam at the spiked level of 75.0ngmL -1 , possessing proper repeatabilities (relative standard deviation values (RSDs) below 5.9%, n=3). These valid analytical features provided quite accurate drug analyses at therapeutically low spans and levels below potentially toxic domains, implying a proper purification/enrichment of the proposed microextraction procedure. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Determination of Lactones in Wines by Headspace Solid-Phase Microextraction and Gas Chromatography Coupled with Mass Spectrometry

    PubMed Central

    Pérez-Olivero, S. J.; Pérez-Pont, M. L.; Conde, J. E.; Pérez-Trujillo, J. P.

    2014-01-01

    Application of headspace solid-phase microextraction (HS-SPME) coupled with high-resolution gas chromatographic (HRGC) analysis was studied for determining lactones in wines. Six different SPME fibers were tested, and the influence of different factors such as temperature and time of desorption, ionic strength, time of extraction, content of sugar, ethanol, tannins and anthocyanins, and pH and influence of SO2 were studied. The proposed HS-SPME-GC method is an appropriate technique for the quantitative analysis of γ-butyrolactone, γ-hexalactone, trans-whiskey lactone, γ-octalactone, cis-whiskey lactone, γ-nonalactone, γ-decalactone, δ-decalactone, and γ-undecalactone in wines. Method reproducibility and repeatability ranged between 0.6 and 5.2% for all compounds. Detection limit for γ-butyrolactone was 0.17 mg/L and a few μg/L for the rest of the compounds. The optimized method has been applied to several wine samples. PMID:24782943

  5. A new open tubular capillary microextraction and sweeping for the analysis of super low concentration of hydrophobic compounds.

    PubMed

    Xia, Zhining; Gan, Tingting; Chen, Hua; Lv, Rui; Wei, Weili; Yang, Fengqing

    2010-10-01

    A sample pre-concentration method based on the in-line coupling of in-tube solid-phase microextraction and electrophoretic sweeping was developed for the analysis of hydrophobic compounds. The sample pre-concentration and electrophoretic separation processes were simply and sequentially carried out with a (35%-phenyl)-methylpolysiloxane-coated capillary. The developed method was validated and applied to enrich and separate several pharmaceuticals including loratadine, indomethacin, ibuprofen and doxazosin. Several parameters of microextration were investigated such as temperature, pH and eluant. And the concentration of microemulsion that influences separation efficiency and microextraction efficiency were also studied. Central composite design was applied for the optimization of sampling flow rate and sampling time that interact in a very complex way with each other. The precision, sensitivity and recovery of the method were investigated. Under the optimal conditions, the maximum enrichment factors for loratadine, indomethacin, ibuprofen and doxazosin in aqueous solutions are 1355, 571, 523 and 318, respectively. In addition, the developed method was applied to determine loratadine in rabbit blood sample.

  6. Fully-automated in-syringe dispersive liquid-liquid microextraction for the determination of caffeine in coffee beverages.

    PubMed

    Frizzarin, Rejane M; Maya, Fernando; Estela, José M; Cerdà, Víctor

    2016-12-01

    A novel fully-automated magnetic stirring-assisted lab-in-syringe analytical procedure has been developed for the fast and efficient dispersive liquid-liquid microextraction (DLLME) of caffeine in coffee beverages. The procedure is based on the microextraction of caffeine with a minute amount of dichloromethane, isolating caffeine from the sample matrix with no further sample pretreatment. Selection of the relevant extraction parameters such as the dispersive solvent, proportion of aqueous/organic phase, pH and flow rates have been carefully evaluated. Caffeine quantification was linear from 2 to 75mgL(-1), with detection and quantification limits of 0.46mgL(-1) and 1.54mgL(-1), respectively. A coefficient of variation (n=8; 5mgL(-1)) of a 2.1% and a sampling rate of 16h(-1), were obtained. The procedure was satisfactorily applied to the determination of caffeine in brewed, instant and decaf coffee samples, being the results for the sample analysis validated using high-performance liquid chromatography. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Gas chromatographic determination of polycyclic aromatic hydrocarbons in water and smoked rice samples after solid-phase microextraction using multiwalled carbon nanotube loaded hollow fiber.

    PubMed

    Matin, Amir Abbas; Biparva, Pourya; Gheshlaghi, Mohammad

    2014-12-29

    A novel solid-phase microextraction fiber was prepared based on multiwalled carbon nanotubes (MWCNTs) loaded on hollow fiber membrane pores. Stainless steel wire was used as unbreakable support. The major advantages of the proposed fiber are its (a) high reproducibility due to the uniform structure of the hollow fiber membranes, (b) high extraction capacity related to the porous structure of the hollow fiber and outstanding adsorptive characteristics of MWCNTs. The proposed fiber was applied for the microextraction of five representative polycyclic aromatic hydrocarbons (PAHs) from aqueous media (river and hubble-bubble water) and smoked rice samples followed by gas chromatographic determination. Analytical merits of the method, including high correlation coefficients [(0.9963-0.9992) and (0.9982-0.9999)] and low detection limits [(9.0-13.0ngL(-1)) and (40.0-150.0ngkg(-1))] for water and rice samples, respectively, made the proposed method suitable for the ultra-trace determination of PAHs. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Simultaneous Determination of Food-Related Biogenic Amines and Precursor Amino Acids Using in Situ Derivatization Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction by Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry.

    PubMed

    He, Yongrui; Zhao, Xian-En; Wang, Renjun; Wei, Na; Sun, Jing; Dang, Jun; Chen, Guang; Liu, Zhiqiang; Zhu, Shuyun; You, Jinmao

    2016-11-02

    A simple, rapid, sensitive, selective, and environmentally friendly method, based on in situ derivatization ultrasound-assisted dispersive liquid-liquid microextraction (in situ DUADLLME) coupled with ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) using multiple reaction monitoring (MRM) mode has been developed for the simultaneous determination of food-related biogenic amines and amino acids. A new mass-spectrometry-sensitive derivatization reagent 4'-carbonyl chloride rosamine (CCR) was designed, synthesized, and first reported. Parameters and conditions of in situ DUADLLME and UHPLC-MS/MS were optimized in detail. Under the optimized conditions, the in situ DUADLLME was completed speedily (within 1 min) with high derivatization efficiencies (≥98.5%). With the cleanup and concentration of microextraction step, good analytical performance was obtained for the analytes. The results showed that this method was accurate and practical for quantification of biogenic amines and amino acids in common food samples (red wine, beer, wine, cheese, sausage, and fish).

  9. Development of salt and pH-induced solidified floating organic droplets homogeneous liquid-liquid microextraction for extraction of ten pyrethroid insecticides in fresh fruits and fruit juices followed by gas chromatography-mass spectrometry.

    PubMed

    Torbati, Mohammadali; Farajzadeh, Mir Ali; Torbati, Mostafa; Nabil, Ali Akbar Alizadeh; Mohebbi, Ali; Afshar Mogaddam, Mohammad Reza

    2018-01-01

    A new microextraction method named salt and pH-induced homogeneous liquid-liquid microextraction has been developed in a home-made extraction device for the extraction and preconcentration of some pyrethroid insecticides from different fruit juice samples prior to gas chromatography-mass spectrometry. In the present work, an extraction device made from two parallel glass tubes with different lengths and diameters was used in the microextraction procedure. In this method, a homogeneous solution of a sample solution and an extraction solvent (pivalic acid) was broken by performing an acid-base reaction and the extraction solvent was produced in whole of the solution. The produced droplets of the extraction solvent went up through the solution and solidified using an ice-bath. They were collected without centrifugation step. Under the optimum conditions, limits of detection and quantification were obtained in the ranges of 0.006-0.038, and 0.023-0.134ngmL -1 , respectively. The enrichment factors and extraction recoveries of the selected analytes ranged from 365-460 to 73-92%, respectively. The relative standard deviations were lower than 9% for intra- (n = 6) and inter-day (n = 4) precisions at a concentration of 1ngmL -1 of each analyte. Finally, some fruit juice samples were effectively analyzed by the proposed method. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Determination of benzodiazepines in beverages using green extraction methods and capillary HPLC-UV detection.

    PubMed

    Piergiovanni, Maurizio; Cappiello, Achille; Famiglini, Giorgio; Termopoli, Veronica; Palma, Pierangela

    2018-05-30

    Dispersive liquid-liquid microextraction with and without ultrasound assistance (DLLME, UA-DLLME) and microextraction with packed sorbent (MEPS) methods for the extraction and determination of eight different benzodiazepines (BDZ) (chlordiazepoxide, flurazepam, bromazepam, oxazepam, lorazepam, clobazam, clonazepam, and flunitrazepam) in three commercial non-alcoholic and light alcoholic beverages were optimized and compared. Benzodiazepines are frequently used for their extensive diffusion and strong numbing effect in drug-facilitated crimes (DFC). The tiny small amount of sample required for DLLME and MEPS extraction makes them very suitable for specimens collected at the crime scene of DFCs. Microextraction techniques are of increasing interest thanks to their accordance to green analytical chemistry (GAC) guidelines providing good recovery values. Ultrasound assistance (UA-DLLME) was used to investigate whether this type of energy can improve the recoveries of the analytes. Analyses of the extracts were performed with reverse-phase capillary high-performance liquid chromatography with UV detection (HPLC - UV), thanks to low environmental impact, robustness, diffusion, and affordability. Recovery percentages at three different concentrations in the three beverages were between 14.30% and 103.28% with intraday and interday RSD lower than ±2.78%. The same samples were extracted using a MEPS protocol, and the results were compared with those obtained with DLLME. MEPS gave recoveries between 20.90% and 101.88% for all matrices showing a better performance than DLLME at higher concentrations, though lower recoveries were observed with diluted samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Rapid determination of some psychotropic drugs in complex matrices by tandem dispersive liquid-liquid microextraction followed by high performance liquid chromatography.

    PubMed

    Asghari, Alireza; Fahimi, Ebrahim; Bazregar, Mohammad; Rajabi, Maryam; Boutorabi, Leila

    2017-05-01

    Simple and rapid determinations of some psychotropic drugs in some pharmaceutical wastewater and human plasma samples were successfully accomplished via the tandem dispersive liquid-liquid microextraction combined with high performance liquid chromatography-ultraviolet detection (TDLLME-HPLC-UV). TDLLME of the three psychotropic drugs clozapine, chlorpromazine, and thioridazine was easily performed through two consecutive dispersive liquid-liquid microextractions. By performing this convenient method, proper sample preconcentrations and clean-ups were achieved in just about 7min. In order to achieve the best extraction efficiency, the effective parameters involved were optimized. The optimal experimental conditions consisted of 100μL of CCl 4 (as the extraction organic solvent), and the pH values of 13 and 2 for the donor and acceptor phases, respectively. Under these optimum experimental conditions, the proposed TDLLME-HPLC-UV technique provided a good linearity in the range of 5-3000ngmL -1 for the three psychotropic drugs with the correlation of determinations (R 2 s) higher than 0.996. The limits of quantification (LOQs) and limits of detection (LODs) obtained were 5.0ngmL -1 and 1.0-1.5ngmL -1 , respectively. Also the proper enrichment factors (EFs) of 96, 99, and 88 for clozapine, chlorpromazine, and thioridazine, respectively, and good extraction repeatabilities (relative standard deviations below 9.3%, n=5) were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Dispersive solid-phase extraction followed by vortex-assisted dispersive liquid-liquid microextraction based on the solidification of a floating organic droplet for the determination of benzoylurea insecticides in soil and sewage sludge.

    PubMed

    Peng, Guilong; He, Qiang; Mmereki, Daniel; Lu, Ying; Zhong, Zhihui; Liu, Hanyang; Pan, Weiliang; Zhou, Guangming; Chen, Junhua

    2016-04-01

    A novel dispersive solid-phase extraction combined with vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high-performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean-up of the extract was conducted by dispersive solid-phase extraction using activated carbon as the sorbent. The vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1-undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2-500 ng/g with correlation coefficients (r) of 0.9993-0.9999. The limits of detection were in the range of 0.08-0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ionic liquid-based ultrasound-assisted emulsification microextraction coupled with high performance liquid chromatography for the determination of four fungicides in environmental water samples.

    PubMed

    Liang, Pei; Wang, Fang; Wan, Qin

    2013-02-15

    A highly efficient and environmentally friendly sample preparation method termed ionic liquid-based ultrasound-assisted emulsification microextraction (IL-USAEME) combined with high performance liquid chromatography has been developed for the determination of four fungicides (azoxystrobin, diethofencarb, pyrimethanil and kresoxim-methyl) in water samples. In this novel approach, ionic liquid (IL) was used as extraction solvent in place of the organic solvent used in conventional USAEME assay, and there is no need for using organic dispersive solvent which is typically required in the common dispersive liquid-liquid microextraction method. Various parameters that affect the extraction efficiency, such as the kind and volume of IL, ultrasound emulsification time, extraction temperature and salt addition were investigated and optimized. Under the optimum extraction condition, the linearities of calibration curves were in the range from 3 to 5000 ng mL(-1) for target analytes with the correlation coefficient higher than 0.9992. The enrichment factors and the limits of detection were in the range of 88-137 and 0.73-2.2 ng mL(-1), depending on the analytes. The environmental water samples were successfully analyzed using the proposed method, and the relative recoveries at fortified levels of 50 and 100 ng mL(-1) were in the range of 83.9%-116.2%. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Air-assisted dispersive liquid-liquid microextraction based on a new hydrophobic deep eutectic solvent for the preconcentration of benzophenone-type UV filters from aqueous samples.

    PubMed

    Ge, Dandan; Zhang, Yi; Dai, Yixiu; Yang, Shumin

    2018-04-01

    Deep eutectic solvents are considered as new and green solvents that can be widely used in analytical chemistry such as microextraction. In the present work, a new dl-menthol-based hydrophobic deep eutectic solvent was synthesized and used as extraction solvents in an air-assisted dispersive liquid-liquid microextraction method for preconcentration and extraction of benzophenone-type UV filters from aqueous samples followed by high-performance liquid chromatography with diode array detection. In an experiment, the deep eutectic solvent formed by dl-menthol and decanoic acid was added to an aqueous solution containing the UV filters, and then the mixture was sucked up and injected five times by using a glass syringe, and a cloudy state was achieved. After extraction, the solution was centrifuged and the upper phase was subjected to high-performance liquid chromatography for analysis. Various parameters such as the type and volume of the deep eutectic solvent, number of pulling, and pushing cycles, solution pH and salt concentration were investigated and optimized. Under the optimum conditions, the developed method exhibited low limits of detection and limits of quantitation, good linearity, and precision. Finally, the proposed method was successfully applied to determine the benzophenone-type filters in environmental water samples with relative recoveries of 88.8-105.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Simultaneous grouping and ranking with combination of SOM and TOPSIS for selection of preferable analytical procedure for furan determination in food.

    PubMed

    Jędrkiewicz, Renata; Tsakovski, Stefan; Lavenu, Aurore; Namieśnik, Jacek; Tobiszewski, Marek

    2018-02-01

    Novel methodology for grouping and ranking with application of self-organizing maps and multicriteria decision analysis is presented. The dataset consists of 22 objects that are analytical procedures applied to furan determination in food samples. They are described by 10 variables, referred to their analytical performance, environmental and economic aspects. Multivariate statistics analysis allows to limit the amount of input data for ranking analysis. Assessment results show that the most beneficial procedures are based on microextraction techniques with GC-MS final determination. It is presented how the information obtained from both tools complement each other. The applicability of combination of grouping and ranking is also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Determination of Aromatic Amines Using Solid-Phase Microextraction Based on an Ionic Liquid-Mediated Sol–Gel Technique

    PubMed Central

    Abbasi, Vajihe; Sarafraz-Yazdi, Ali; Amiri, Amirhassan; Vatani, Hossein

    2016-01-01

    A headspace solid-phase microextraction (HS-SPME) method was developed for isolation of monocyclic aromatic amines from water samples followed by gas chromatography–flame ionization detector (GC–FID). In this work, the effect of the presence of ionic liquid (namely, 1-hexyl-3-methyl-imidazolium hexafluorophosphate [C6MIM][PF6]) was investigated in the sol–gel coating solutions on the morphology and extraction behavior of the resulting hybrid organic–inorganic sol–gel sorbents utilized in SPME. Hydroxy-terminated poly(dimethylsiloxane) (PDMS) was used as the sol–gel active organic component for sol–gel hybrid coatings. Two different coated fibers that were prepared are PDMS and PDMS-IL ([C6MIM][PF6]) fibers. Under the optimal conditions, the method detection limits (S/N = 3) with PDMS-IL were in the range of 0.001–0.1 ng/mL and the limits of quantification (S/N = 10) between 0.005 and 0.5 ng/mL. The relative standard deviations for one fiber (n = 5) were obtained from 3.1 up to 8.5% and between fibers or batch to batch (n = 3) in the range of 5.3–10.1%. The developed method was successfully applied to real water and juice fruits samples while the relative recovery percentages obtained for the spiked water samples at 0.1 ng/mL were from 83.3 to 95.0%. PMID:26759488

  17. Lead Quantification in Urine Samples of Athletes by Coupling DLLME with UV-Vis Spectrophotometry.

    PubMed

    Faraji, Hakim; Helalizadeh, Masoumeh

    2017-04-01

    Urine lead level is one of the most employed measures of lead exposure and risk. The urine samples used in this study were obtained from ten healthy male cyclists. Dispersive liquid-liquid microextraction combined with ultraviolet and visible spectrophotometry was utilized for preconcentration, extraction, and determination of lead in urine samples. Optimization of the independent variables was carried out based on chemometric methods in three steps. According to the screening and optimization study, 133 μL of CCl 4 (extracting solvent), 1.34 mL ethanol (dispersing solvent), pH 2.0, 0.00 % of salt, and 0.1 % O,O-diethyl dithiophosphoric (chelating agent) were used as the optimum independent variables for microextraction and determination of lead. Under the optimized conditions, R 2 was 0.9991, and linearity range was 0.01-100 μg L -1 . Precision was evaluated in terms of repeatability and intermediate precision, with relative standard deviations being <9.1 and <15.3 %, respectively. The accuracy was estimated using urine samples of cyclists as real samples and it was confirmed. The relative error of ≤5 % was considered significant in the method specificity study. The lead concentration mean for the cyclists was 3.79 μg L -1 in urine samples. As a result, the proposed method is a robust technique to quantify lead concentrations higher than 11.6 ng L -1 in urine samples.

  18. Simultaneous extraction and determination of trace amounts of diclofenac from whole blood using supported liquid membrane microextraction and fast Fourier transform voltammetry.

    PubMed

    Mofidi, Zahra; Norouzi, Parviz; Sajadian, Masumeh; Ganjali, Mohammad Reza

    2018-04-01

    A novel, simple, and inexpensive analytical technique based on flat sheet supported liquid membrane microextraction coupled with fast Fourier transform stripping cyclic voltammetry on a reduced graphene oxide carbon paste electrode was used for the extraction and online determination of diclofenac in whole blood. First, diclofenac was extracted from blood samples using a polytetrafluoroethylene membrane impregnated with 1-octanol and then into an acceptor solution, subsequently it was oxidized on a carbon paste electrode modified with reduced graphene oxide nanosheets. The optimal values of the key parameters influencing the method were as follows: scan rate, 6 V/s; stripping potential, 200 mV; stripping time, 5 s; pH of the sample solution, 5; pH of the acceptor solution,7; and extraction time, 240 min. The calibration curves were plotted for the whole blood samples and the method was found to have a good linearity within the range of 1-25 μg/mL with a determination coefficient of 0.99. The limits of detection and quantification were 0.1 and 1.0 μg/mL, respectively. Using this coupled method, the extraction and determination were merged into one step. Accordingly, the speed of detection for sensitive determination of diclofenac in complex samples, such as blood, increased considerably. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Rapid analysis of chlorinated anilines in environmental water samples using ultrasound assisted emulsification microextraction with solidification of floating organic droplet followed by HPLC-UV detection.

    PubMed

    Ramkumar, Abilasha; Ponnusamy, Vinoth Kumar; Jen, Jen-Fon

    2012-08-15

    The present study demonstrates a simple, rapid and efficient method for the determination of chlorinated anilines (CAs) in environmental water samples using ultrasonication assisted emulsification microextraction technique based on solidification of floating organic droplet (USAEME-SFO) coupled with high performance liquid chromatography-ultraviolet (HPLC-UV) detection. In this extraction method, 1-dodecanol was used as extraction solvent which is of lower density than water, low toxicity, low volatility, and low melting point (24 °C). After the USAEME, extraction solvent could be collected easily by keeping the extraction tube in ice bath for 2 min and the solidified organic droplet was scooped out using a spatula and transferred to another glass vial and allowed to thaw. Then, 10 μL of extraction solvent was diluted with mobile phase (1:1) and taken for HPLC-UV analysis. Parameters influencing the extraction efficiency, such as the kind and volume of extraction solvent, volume of sample, ultrasonication time, pH and salt concentration were thoroughly examined and optimized. Under the optimal conditions, the method showed good linearity in the concentration range of 0.05-500 ng mL(-1) with correlation coefficients ranging from 0.9948 to 0.9957 for the three target CAs. The limit of detection based on signal to noise ratio of 3 ranged from 0.01 to 0.1 ng mL(-1). The relative standard deviations (RSDs) varied from 2.1 to 6.1% (n=3) and the enrichment factors ranged from 44 to 124. The proposed method has also been successfully applied to analyze real water samples and the relative recoveries of environmental water samples ranged from 81.1 to 116.9%. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Dispersive liquid-liquid microextraction based on the solidification of floating organic drop followed by ICP-MS for the simultaneous determination of heavy metals in wastewaters

    NASA Astrophysics Data System (ADS)

    Li, Yong; Peng, Guilong; He, Qiang; Zhu, Hui; Al-Hamadani, Sulala M. Z. F.

    2015-04-01

    In the present work, a dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for the determination of Pb, Co, Cu, Ni, Zn. The influences of analytical parameters, including pH, extraction solvent volume, disperser solvent volume, concentration of chelating agent on the quantitative recoveries of Pb, Co, Cu, Ni, Zn were investigated. The effect of the interfering ions on the analytes recovery was also investigated. Under the optimized conditions, the limits of detection were 0.97-2.18 ng L-1. The relative standard deviations (RSDs) were 2.62-4.51% (n = 7, C = 20 ng L-1). The proposed method was successfully applied for the analysis of ultra trace metals in wastewater samples.

  1. Evaluation and application of microwave-assisted extraction and dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for the determination of polar heterocyclic aromatic amines in hamburger patties.

    PubMed

    Aeenehvand, Saeed; Toudehrousta, Zahra; Kamankesh, Marzieh; Mashayekh, Morteza; Tavakoli, Hamid Reza; Mohammadi, Abdorreza

    2016-01-01

    This study developed an analytical method based on microwave-assisted extraction and dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for the determination of three polar heterocyclic aromatic amines from hamburger patties. Effective parameters controlling the performance of the microextraction process, such as the type and volume of extraction and disperser solvents, microwave time, nature of alkaline aqueous solution, pH and salt amount, were optimized. The calibration graphs were linear in the range of 1-200 ng g(-1), with a coefficient of determination (R(2)) better than 0.9993. The relative standard deviations (RSD) for seven analyses were between 3.2% and 6.5%. The recoveries of those compounds in hamburger patties were from 90% to 105%. Detection limits were between 0.06 and 0.21 ng g(-1). A comparison of the proposed method with the existing literature demonstrates that it is a simple, rapid, highly selective and sensitive, and it gives good enrichment factors and detection limits for determining HAAs in real hamburger patties samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A novel sorbent based on carbon nanotube/amino-functionalized sol-gel for the headspace solid-phase microextraction of α-bisabolol from medicinal plant samples using experimental design.

    PubMed

    Yarazavi, Mina; Noroozian, Ebrahim

    2018-02-13

    A novel sol-gel coating on a stainless-steel fiber was developed for the first time for the headspace solid-phase microextraction and determination of α-bisabolol with gas chromatography and flame ionization detection. The parameters influencing the efficiency of solid-phase microextraction process, such as extraction time and temperature, pH, and ionic strength, were optimized by the experimental design method. Under optimized conditions, the linear range was between 0.0027 and 100 μg/mL. The relative standard deviations determined at 0.01 and 1.0 μg/mL concentration levels (n = 3), respectively, were as follows: intraday relative standard deviations 3.4 and 3.3%; interday relative standard deviations 5.0 and 4.3%; and fiber-to-fiber relative standard deviations 6.0 and 3.5%. The relative recovery values were 90.3 and 101.4% at 0.01 and 1.0 μg/mL spiking levels, respectively. The proposed method was successfully applied to various real samples containing α-bisabolol. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Alternative solvent-based methyl benzoate vortex-assisted dispersive liquid-liquid microextraction for the high-performance liquid chromatographic determination of benzimidazole fungicides in environmental water samples.

    PubMed

    Santaladchaiyakit, Yanawath; Srijaranai, Supalax

    2014-11-01

    Vortex-assisted dispersive liquid-liquid microextraction using methyl benzoate as an alternative extraction solvent for extracting and preconcentrating three benzimidazole fungicides (i.e., carbendazim, thiabendazole, and fluberidazole) in environmental water samples before high-performance liquid chromatographic analysis has been developed. The selected microextraction conditions were 250 μL of methyl benzoate containing 300 μL of ethanol, 1.0% w/v sodium acetate, and vortex agitation speed of 2100 rpm for 30 s. Under optimum conditions, preconcentration factors were 14.5-39.0 for the target fungicides. Limits of detection were obtained in the range of 0.01-0.05 μg/L. The proposed method was then applied to surface water samples and the recovery evaluations at three spiked concentration levels of 5, 30, and 50 μg/L were obtained in the range of 77.4-110.9% with the relative standard deviation <7.4%. The present method was simple, rapid, low cost, sensitive, environmentally friendly, and suitable for the trace analysis of the studied fungicides in environmental water samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ultrasonication followed by single-drop microextraction combined with GC/MS for rapid determination of organochlorine pesticides from fish.

    PubMed

    Shrivas, Kamlesh; Wu, Hui-Fen

    2008-02-01

    A novel, rapid and simple sample pretreatment technique termed ultrasonication followed by single-drop micro-extraction (U-SDME) has been developed and combined with GC/MS for the determination of organochlorine pesticides (OCPs) in fish. In the present work, the lengthy procedures generally used in the conventional methods like, Soxhlet extraction, supercritical fluid extraction, pressurized liquid extraction and microwave assisted solvent extraction for extraction of OCPs from fish tissues are minimized by the use of two simple extraction procedures. Firstly, OCPs from fish were extracted in organic solvent with ultrasonication and then subsequently preconcentrated by single-drop micro-extraction (SDME). Extraction parameters of ultrasonication and SDME were optimized in spiked sample solution in order to obtain efficient extraction of OCPs from fish tissues. The calibration curves for OCPs were found to be linear between 10-1000 ng/g with correlation of estimations in the range 0.990-0.994. The recoveries obtained in blank fish tissues were ranged from 82.1 to 95.3%. The LOD and RSD for determination of OCPs in fish were 0.5 ng/g and 9.4-10.0%, respectively. The proposed method was applied for the determination of bioconcentration factor in fish after exposure to different concentrations of OCPs in cultured water. The present method avoids the co-extraction of lipids, long extraction steps (>12 h) and large amount of organic solvent for the separation of OCPs. The main advantages of the present method are rapid, selective, sensitive and low cost for the determination of OCPs in fish.

  5. Variables controlling the recovery of ignitable liquid residues from simulated fire debris samples using solid-phase microextraction/gas chromatography

    NASA Astrophysics Data System (ADS)

    Furton, Kenneth G.; Almirall, Jose R.; Wang, Jing

    1999-02-01

    In this paper, we present data comparing a variety of different conditions for extracting ignitable liquid residues from simulated fire debris samples in order to optimize the conditions for using Solid Phase Microextraction. A simulated accelerant mixture containing 30 components, including those from light petroleum distillates, medium petroleum distillates and heavy petroleum distillates were used to study the important variables controlling Solid Phase Microextraction (SPME) recoveries. SPME is an inexpensive, rapid and sensitive method for the analysis of volatile residues from the headspace over solid debris samples in a container or directly from aqueous samples followed by GC. The relative effects of controllable variables, including fiber chemistry, adsorption and desorption temperature, extraction time, and desorption time, have been optimized. The addition of water and ethanol to simulated debris samples in a can was shown to increase the sensitivity when using headspace SPME extraction. The relative enhancement of sensitivity has been compared as a function of the hydrocarbon chain length, sample temperature, time, and added ethanol concentrations. The technique has also been optimized to the extraction of accelerants directly from water added to the fire debris samples. The optimum adsorption time for the low molecular weight components was found to be approximately 25 minutes. The high molecular weight components were found at a higher concentration the longer the fiber was exposed to the headspace (up to 1 hr). The higher molecular weight components were also found in higher concentrations in the headspace when water and/or ethanol was added to the debris.

  6. Application of liquid-liquid-liquid microextraction and high-performance liquid chromatography for the determination of alkylphenols and bisphenol-A in water.

    PubMed

    Lin, Che-Yi; Fuh, Ming-Ren; Huang, Shang-Da

    2011-02-01

    A method termed liquid-liquid-liquid microextraction (LLLME) was utilized to extract 4-t-butylphenol, 4-t-octylphenol, 4-n-nonylphenol, and bisphenol-A from water. The extracted target analytes were separated and quantified by high-performance liquid chromatography using a fluorescence detector. In LLLME, the donor phase (i.e. water sample) was made weakly acidic by adding monobasic potassium phosphate (KH(2) PO(4)); the organic phase adopted was 4-chlorotoluene; the acceptor phase (i.e. enriched extract) was 0.2 M tetraethylammonium hydroxide dissolved in ethylene glycol. This study solves a problem associated with the surface activity of long-chain alkylphenolate ions, permitting LLLME to extract long-chain alkylphenols. Experimental conditions such as acceptor phase composition, organic phase identity, acceptor phase volume, sample agitation, extraction time, and salt addition were optimized. The relative standard deviation (RSD, 2.0-5.8%), coefficient of determination (r(2) 0.9977-0.9999), and detection limit (0.017-0.0048 ng/mL) of the proposed method were achieved under the selected optimized conditions. The method was successfully applied to analyses of lake and tap water samples, and the relative recoveries of target analytes from the spiked lake and tap water samples were 92.8-106.3 and 93.6-105.6%, respectively. The results obtained with the proposed method confirm this microextraction technique to be reliable for the monitoring of alkylphenols and bisphenol-A in water samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Method of making ionic liquid mediated sol-gel sorbents

    DOEpatents

    Malik, Abdul; Shearrow, Anne M.

    2017-01-31

    Ionic liquid (IL)-mediated sol-gel hybrid organic-inorganic materials present enormous potential for effective use in analytical microextraction. One obstacle to materializing this prospect arises from high viscosity of ILs significantly slowing down sol-gel reactions. A method was developed which provides phosphonium-based, pyridinium-based, and imidazolium-based IL-mediated advanced sol-gel organic-inorganic hybrid materials for capillary microextraction. Scanning electron microscopy results demonstrate that ILs can serve as porogenic agents in sol-gel reactions. IL-mediated sol-gel coatings prepared with silanol-terminated polymers provided up to 28 times higher extractions compared to analogous sol-gel coatings prepared without any IL in the sol solution. This study shows that IL-generated porous morphology alone is not enough to provide effective extraction media: careful choice of the organic polymer and the precursor with close sol-gel reactivity must be made to ensure effective chemical bonding of the organic polymer to the created sol-gel material to be able to provide the desired sorbent characteristics.

  8. Assessment of dispersive liquid-liquid microextraction conditions for gas chromatography time-of-flight mass spectrometry identification of organic compounds in honey.

    PubMed

    Moniruzzaman, M; Rodríguez, I; Rodríguez-Cabo, T; Cela, R; Sulaiman, S A; Gan, S H

    2014-11-14

    The suitability of the dispersive liquid-liquid microextraction (DLLME) technique for gas chromatography (GC) characterization of minor organic compounds in honey samples is evaluated. Under optimized conditions, samples were pre-treated by liquid-liquid extraction with acetonitrile followed by DLLME using carbon tetrachloride (CCl4, 0.075 mL) as extractant. The yielded settled phase was analyzed by GC using high resolution time-of-flight (TOF) mass spectrometry (MS). The whole sample preparation process is completed in approximately 10 min, with a total consumption of organic solvents below 4 mL, relative standard deviations lower than 12% and with more than 70 organic compounds, displaying linear retention index in the range from 990 to 2900, identified in the obtained extracts. In comparison with HS SPME extraction, higher peak intensities were attained for most volatile and semi-volatile compounds amenable to both extraction techniques. Furthermore, other species such as highly polar and water soluble benzene acids, long chain fatty acids, esters and flavonoids, which are difficult to concentrate by HS SPME, could be identified in DLLME extracts. Some of the compounds identified in DLLME extracts have been proposed as useful for samples classification and/or they are recognized as markers of honeys from certain geographic areas. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Determination of finasteride and its metabolite in urine by dispersive liquid-liquid microextraction combined with field-enhanced sample stacking and sweeping.

    PubMed

    Chen, Chun-Hsien; Chao, Yu-Ying; Lin, Yi-Hui; Chen, Yen-Ling

    2018-04-27

    The on-line preconcentration technique of field-enhanced sample stacking and sweeping (FESS-sweeping) are combined with dispersive liquid-liquid microextraction (DLLME) to monitor the concentrations of finasteride, which is used in the treatment of androgenetic alopecia, and its metabolite, finasteride carboxylic acid (M3), in urine samples. DLLME is used to concentrate and eliminate the interferences of urine samples and uses chloroform as an extracting solvent and acetonitrile as a disperser solvent. A high conductivity buffer (HCB) was introduced into capillary and then sample plug (90.7% capillary length) was injected into capillary. After applying voltage, the sodium dodecyl sulfate (SDS) swept the analytes from the low conductivity sample solution into HCB. The analytes were concentrated on the field-enhanced sample stacking boundary. The limit of detection for the analytes is 20 ng mL -1 . The sensitivity enrichment of finasteride and M3 are 362-fold and 480-fold, respectively, compared with the conventional MEKC method. The on-line preconcentration technique of field-enhanced sample stacking and sweeping possess good selectivity because the endogenous steroid did not interfere the detection of finasteride and M3. The analytical technique is applied to investigate the concentrations in urine samples from patients who have been administered finasteride for the treatment of androgenetic alopecia; the amount of M3 detected in 12 h was 72.69 ± 4.18 μg. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Headspace solid-phase microextraction for the determination of volatile and semi-volatile pollutants in water and air.

    PubMed

    Llompart, M; Li, K; Fingas, M

    1998-10-16

    In this work we report the use of solid-phase microextraction (SPME) to extract and concentrate water-soluble volatile as well as semi-volatile pollutants. Both methods of exposing the SPME fibre were utilised: immersion in the aqueous solution (SPME) and in the headspace over the solution (HSSPME). The proposed HSSPME procedure was compared to conventional static headspace (HS) analysis for artificially spiked water as well as real water samples, which had been, equilibrated with various oil and petroleum products. Both techniques gave similar results but HSSPME was much more sensitive and exhibited better precision. Detection limits were found to be in the sub-ng/ml level, with precision better than 5% R.S.D. in most cases. To evaluate the suitability of SPME for relatively high contamination level analysis, the proposed HSSPME method was applied to the screening of run-off water samples that had heavy oil suspended in them from a tire fire incident. HSSPME results were compared with liquid--liquid extraction. Library searches were conducted on the resulting GC-MS total ion chromatograms to determine the types of compounds found in such samples. Both techniques found similar composition in the water samples with the exception of alkylnaphthalenes that were detected only by HSSPME. A brief study was carried out to assess using SPME for air monitoring. By sampling and concentrating the volatile organic compounds in the coating of the SPME fibre without any other equipment, this new technique is useful as an alternative to active air monitoring by means of sampling pumps and sorbent tubes.

  11. Determination of endocrine-disrupting chemicals in human milk by dispersive liquid-liquid microextraction.

    PubMed

    Vela-Soria, Fernando; Jiménez-Díaz, Inmaculada; Díaz, Caridad; Pérez, José; Iribarne-Durán, Luz María; Serrano-López, Laura; Arrebola, Juan Pedro; Fernández, Mariana Fátima; Olea, Nicolás

    2016-09-01

    Human populations are widely exposed to numerous so-called endocrine-disrupting chemicals, exogenous compounds able to interfere with the endocrine system. This exposure has been associated with several health disorders. New analytical procedures are needed for biomonitoring these xenobiotics in human matrices. A quick and inexpensive methodological procedure, based on sample treatment by dispersive liquid-liquid microextraction, is proposed for the determination of bisphenols, parabens and benzophenones in samples. LOQs ranged from 0.4 to 0.7 ng ml(-1) and RSDs from 4.3 to 14.8%. This methodology was satisfactorily applied in the simultaneous determination of a wide range of endocrine-disrupting chemicals in human milk samples and is suitable for application in biomonitoring studies.

  12. EVALUATION OF SOLID PHASE MICROEXTRACTION FOR THE ANALYSIS OF HYDROPHILIC COMPOUNDS

    EPA Science Inventory

    Two commercially available solid phase microextractions (SPME) fibers, polyacrylate and carboxem/polydimethylsiloxane (PDMS), were evaluated for their ability to extract hydrophilic compounds from drinking water. Conditions, such as desorption time, desorption temperature, sample...

  13. Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils

    PubMed Central

    Lau, E. V.; Gan, S.; Ng, H. K.

    2010-01-01

    This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs) in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction. PMID:20396670

  14. Aflatoxin B1 in eggs and chicken livers by dispersive liquid-liquid microextraction and HPLC.

    PubMed

    Amirkhizi, Behzad; Arefhosseini, Seyed Rafie; Ansarin, Masoud; Nemati, Mahboob

    2015-01-01

    A rapid, low-cost and simple technique has been developed for the determination of aflatoxin B1 (AFB1) in eggs and livers using high-performance liquid chromatography (HPLC) with UV detection. In this study, the presence of AFB1 was investigated in 150 eggs and 50 chicken livers from the local market of Tabriz, Iran. AFB1 was extracted with a mixture of acetonitrile:water (80:20) and cleaned up by dispersive liquid-liquid microextraction which is a very economical, fast and sensitive method. AFB1 was quantified by HPLC-UV without need for any complex derivatisation in samples to enhance the detection. The results showed that 72% of the liver and 58% of the egg samples were contaminated with AFB1 ranging from 0.30 to 16.36 µg kg (̶1). limit of detection and limit of quantification for AFB1 were 0.08 and 0.28 µg kg (̶ 1), respectively. The proposed method is suitable for fast analysing of AFB1 in egg and liver samples.

  15. Use of Innovative (Micro)Extraction Techniques to Characterise Harpagophytum procumbens Root and its Commercial Food Supplements.

    PubMed

    Diuzheva, Alina; Carradori, Simone; Andruch, Vasil; Locatelli, Marcello; De Luca, Elisa; Tiecco, Matteo; Germani, Raimondo; Menghini, Luigi; Nocentini, Alessio; Gratteri, Paola; Campestre, Cristina

    2018-05-01

    For the determination of harpagoside and the wide phenolic pattern in Harpagophytum procumbens root and its commercial food supplements, dispersive liquid-liquid microextraction (DLLME), ultrasound-assisted DLLME (UA-DLLME), and sugaring-out liquid-liquid extraction (SULLE) were tested and compared. In order to optimise the extraction efficiency, DLLME and UA-DLLME were performed in different solvents (water and aqueous solutions of glucose, β-cyclodextrin, (2-hydroxypropyl)-β-cyclodextrin, sodium chloride, natural deep eutectic solvent, and ionic liquid). The plant material was ground and sieved to obtain a uniform granulometry before extraction. Commercial food supplements, containing H. procumbens are commercially available in Italy. The most effective sodium chloride-aided-DLLME was then optimised and applied for analyses followed by HPLC-PDA. For comparison, microwave-assisted extraction was performed using the same solvents and the best results were obtained using 1% of β-cyclodextrin or 15% of sodium chloride. All commercial samples respected the European Pharmacopoeia monograph for this plant material, showing a harpagoside content ≥ 1.2%. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Analysis of aldehydes in beer by gas-diffusion microextraction: characterization by high-performance liquid chromatography-diode-array detection-atmospheric pressure chemical ionization-mass spectrometry.

    PubMed

    Gonçalves, Luís Moreira; Magalhães, Paulo Jorge; Valente, Inês Maria; Pacheco, João Grosso; Dostálek, Pavel; Sýkora, David; Rodrigues, José António; Barros, Aquiles Araújo

    2010-06-11

    In this work, a recently developed extraction technique for sample preparation aiming the analysis of volatile and semi-volatile compounds named gas-diffusion microextraction (GDME) is applied in the chromatographic analysis of aldehydes in beer. Aldehydes-namely acetaldehyde (AA), methylpropanal (MA) and furfural (FA)-were simultaneously extracted and derivatized with 2,4-dinitrophenylhydrazine (DNPH), then the derivatives were separated and analyzed by high-performance liquid chromatography with spectrophotometric detection (HPLC-UV). The identity of the eluted compounds was confirmed by high-performance liquid chromatography-atmospheric pressure chemical ionization-mass-spectrometry detection in the negative ion mode (HPLC-APCI-MS). The developed methodology showed good repeatability (ca. 5%) and linearity as well as good limits of detection (AA-12.3, FA-1.5 and MA 5.4microgL(-1)) and quantification (AA-41, FA-4.9 and MA 18microgL(-1)); it also appears to be competitive in terms of speed and cost of analysis. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Boron nitride nanotubes as novel sorbent for solid-phase microextraction of polycyclic aromatic hydrocarbons in environmental water samples.

    PubMed

    Fu, Meizhen; Xing, Hanzhu; Chen, Xiangfeng; Zhao, Rusong; Zhi, Chunyi; Wu, Chiman Lawrence

    2014-09-01

    Boron nitride nanotube (BNNT) is a novel material that shows potential ability in capturing organic pollutants. In this study, BNNTs fixed on a stainless steel fiber by a sol-gel technique were used as sorbent for solid-phase microextraction. Five polycyclic aromatic hydrocarbons with different numbers of aromatic rings were selected as target analysts. Gas chromatography coupled with tandem mass spectrometry was used for detection and quantitative determination. Under optimized conditions, the experimental results show a wide range of linearity (1 to 1,000 ng L(-1)), less than 10.1 % repeatability of relative standard deviation, and low detection limits (0.08 to 0.39 ng L(-1)). In addition, the fabricated fiber offered good thermal and chemical stability. The proposed method was successfully applied for the analysis of real water samples, and satisfactory results were obtained with relative recoveries ranging from 80.2 to 116.8 %. The results demonstrated that BNNTs could be used as sorbent for the analysis of environmental pollutants at trace levels.

  18. Direct immersion-solid phase microextraction for the determination of chlorinated pesticide residues in tomatoes by gas chromatography with an electron capture detector.

    PubMed

    Mariani, Maurizio Boccacci; Giannetti, Vanessa; Testani, Elena; Ceccarelli, Valentina

    2013-01-01

    The use of pesticides in agriculture has grown dramatically over the last decades. Environmental exposure of humans to agrochemicals is common and results in both acute and chronic health effects. In this study, direct immersion-solid phase microextraction (SPME) was coupled with electron capture detection for trace determination of 19 chlorinated pesticides in tomato samples, using a 100 pm polydimethylsiloxane fiber. The experimental parameters extraction time, extraction temperature, stirring, and salting out were evaluated and optimized. The LODs ranged from 0.5 to 8 microg/kg, and the LOQs from 5 to 30 microg/kg. A linear response was confirmed by correlation coefficients ranging from 0.97 to 0.9985. The developed method was tested by analyzing real samples purchased within the network of Italian distribution. The samples were found to be free from detectable residues of the studied pesticides. SPME has been shown to be a fast extraction technique that has several advantages such as solvent-free extraction, simplicity, and compatibility with the chromatographic analytical system.

  19. In-line carbon nanofiber reinforced hollow fiber-mediated liquid phase microextraction using a 3D printed extraction platform as a front end to liquid chromatography for automatic sample preparation and analysis: A proof of concept study.

    PubMed

    Worawit, Chanatda; Cocovi-Solberg, David J; Varanusupakul, Pakorn; Miró, Manuel

    2018-08-01

    A novel concept for automation of nanostructured hollow-fiber supported microextraction, combining the principles of liquid-phase microextraction (LPME) and sorbent microextraction synergically, using mesofluidic platforms is proposed herein for the first time, and demonstrated with the determination of acidic drugs (namely, ketoprofen, ibuprofen, diclofenac and naproxen) in urine as a proof-of-concept applicability. Dispersed carbon nanofibers (CNF) are immobilized in the pores of a single-stranded polypropylene hollow fiber (CNF@HF) membrane, which is thereafter accommodated in a stereolithographic 3D-printed extraction chamber without glued components for ease of assembly. The analytical method involves continuous-flow extraction of the acidic drugs from a flowing stream donor (pH 1.7) into an alkaline stagnant acceptor (20 mmol L -1 NaOH) containing 10% MeOH (v/v) across a dihexyl ether impregnated CNF@HF membrane. The flow setup features entire automation of the microextraction process including regeneration of the organic film and on-line injection of the analyte-laden acceptor phase after downstream neutralization into a liquid chromatograph (LC) for reversed-phase core-shell column-based separation. Using a 12-cm long CNF@HF and a sample volume of 6.4 mL, linear dynamic ranges of ketoprofen, naproxen, diclofenac and ibuprofen, taken as models of non-steroidal anti-inflammatory drugs, spanned from ca. 5-15 µg L -1 to 500 µg L -1 with enhancement factors of 43-97 (against a direct injection of 10 µL standards into LC), and limits of detection from 1.6 to 4.3 µg L -1 . Relative recoveries in real urine samples ranged from 97% to 105%, thus demonstrating the reliability of the automatic CNF@HF-LPME method for in-line matrix clean-up and determination of drugs in urine at therapeutically relevant concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Characterization of the leachate in an urban landfill by physicochemical analysis and solid phase microextraction-GC/MS.

    PubMed

    Banar, Müfide; Ozkan, Aysun; Kürkçüoğlu, Mine

    2006-10-01

    The aim of this study is to evaluate extensively the characterization and identification of major pollutant parameters by paying attention to the organic chemical pollution for unregulated dumping site leachate in Eskişehir/Turkey. The study that is first and only one research has been very important data related with before new sanitary landfill site in Eskişehir city. For this purpose, in this study leachate samples were collected in-situ at monthly interval for a period of 8 months. Firstly, thirty three physicochemical parameters were monitored. Secondly, SPME technique was used for identification of organic pollutants. Meteorological data were also recorded for the same sampling period to correlate meteorological data and physicochemical parameters. Mean values are used in the correlation analysis. Correlation is shown only for the relationship between air temperature and NO(3) (-). No correlation has been found between rain and leachate quality parameters since the amount of rain was very low during the sampling period. However, analysis results were generally decreased in winter season when each parameter and each sampling point are examined separately. According to correlation between every parameter, especially solid content and dissolved oxygen concentration of leachate is affecting to other parameters. Also, sodium and potassium are changing proportionally with same parameters (suspended solids, fixed solids, dissolved oxygen) and high correlation between chloride and heavy metal concentration is showing. The results were statistically evaluated by use of SPSS 10.0 program. Second part of the study, the leachate was extracted by Solid Phase Microextraction (SPME) technique and then analyzed. Of the methodologies tested in this study, the best one selected was based on 100 micro m polydimethylsiloxane coated fiber (PDMS), headspace with heating (Delta HS) sampling mode and an extraction time of 15 min. at a temperature of 50 degrees C. Thirty three organic compounds in leachate were identified by GC/MS.

  1. Ultrasound-assisted leaching-dispersive solid-phase extraction followed by liquid-liquid microextraction for the determination of polybrominated diphenyl ethers in sediment samples by gas chromatography-tandem mass spectrometry.

    PubMed

    Fontana, Ariel R; Lana, Nerina B; Martinez, Luis D; Altamirano, Jorgelina C

    2010-06-30

    Ultrasound-assisted leaching-dispersive solid-phase extraction followed by dispersive liquid-liquid microextraction (USAL-DSPE-DLLME) technique has been developed as a new analytical approach for extracting, cleaning up and preconcentrating polybrominated diphenyl ethers (PBDEs) from sediment samples prior gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis. In the first place, PBDEs were leached from sediment samples by using acetone. This extract was cleaned-up by DSPE using activated silica gel as sorbent material. After clean-up, PBDEs were preconcentrated by using DLLME technique. Thus, 1 mL acetone extract (disperser solvent) and 60 microL carbon tetrachloride (extraction solvent) were added to 5 mL ultrapure water and a DLLME technique was applied. Several variables that govern the proposed technique were studied and optimized. Under optimum conditions, the method detection limits (MDLs) of PBDEs calculated as three times the signal-to-noise ratio (S/N) were within the range 0.02-0.06 ng g(-1). The relative standard deviations (RSDs) for five replicates were <9.8%. The calibration graphs were linear within the concentration range of 0.07-1000 ng g(-1) for BDE-47, 0.09-1000 ng g(-1) for BDE-100, 0.10-1000 ng g(-1) for BDE-99 and 0.19-1000 ng g(-1) for BDE-153 and the coefficients of estimation were > or =0.9991. Validation of the methodology was carried out by standard addition method at two concentration levels (0.25 and 1 ng g(-1)) and by comparing with a reference Soxhlet technique. Recovery values were > or =80%, which showed a satisfactory robustness of the analytical methodology for determination of low PBDEs concentration in sediment samples. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Solvent-resistant sol-gel polydimethyldiphenylsiloxane coating for on-line hyphenation of capillary microextraction with high-performance liquid chromatography.

    PubMed

    Segro, Scott S; Malik, Abdul

    2008-09-26

    A sol-gel polydimethyldiphenylsiloxane (PDMDPS) coating was developed for capillary microextraction on-line hyphenated with high-performance liquid chromatography (HPLC). This coating was created using methyltrimethoxysilane (MTMS) as the sol-gel precursor and di-hydroxy-terminated PDMDPS as the sol-gel active polymer. The methyl and phenyl groups on the sol-gel active polymer and the methyl groups on the sol-gel precursor ultimately turned into pendant groups providing the ability to extract non-polar analytes. A 40-cm segment of 0.25 mm I.D. fused silica capillary containing the sol-gel PDMDPS coating was installed as an external sampling loop in an HPLC injection port. Aqueous samples containing polycyclic aromatic hydrocarbons (PAHs), aromatic compounds, ketones, and aldehydes were passed through this capillary wherein the analytes were extracted by the sol-gel coating. The extracted analytes were then transferred to the HPLC column using isocratic or gradient elution with an acetonitrile/water mobile phase. This capillary demonstrated excellent extraction capability for non-polar (e.g., polycyclic aromatic hydrocarbons and aromatic compounds) as well as moderately polar compounds, such as aromatic amines, ketones, and aldehydes. The test results indicate that PDMDPS can be successfully immobilized into a sol-gel network and that the resulting solvent-resistant sol-gel organic-inorganic hybrid coating can be effectively used for on-line hyphenation of capillary microextraction with high-performance liquid chromatography. The test results also indicate that the sol-gel PDMDPS coated capillary is resistant to high-temperature solvents, making it suitable for applications in high-temperature HPLC. To the best of our knowledge, this is the first report on the creation of a silica-based sol-gel PDMDPS coating used in capillary microextraction on-line hyphenated to HPLC.

  3. Multiresidue analysis of sulfonamides in meat by supramolecular solvent microextraction, liquid chromatography and fluorescence detection and method validation according to the 2002/657/EC decision.

    PubMed

    Costi, Esther María; Sicilia, María Dolores; Rubio, Soledad

    2010-10-01

    A multiresidue method was described for determining eight sulfonamides, SAs (sulfadiazine, sulfamerazine, sulfamethoxypyridazine, sulfachloropyridazine, sulfadoxine, sulfamethoxazole, sulfadimethoxine and sulfaquinoxaline) in animal muscle tissues (pork, chicken, turkey, lamb and beef) at concentrations below the maximum residue limit (100 μg kg(-1)) set by the European Commission. The method was based on the microextraction of SAs in 300-mg muscle samples with 1 mL of a supramolecular solvent made up of reverse micelles of decanoic acid (DeA) and posterior determination of SAs in the extract by LC/fluorescence detection, after in situ derivatization with fluorescamine. Recoveries were quantitative (98-109%) and matrix-independent, no concentration of the extracts was required, the microextraction took about 30 min and several samples could be simultaneously treated. Formation of multiple hydrogen bonds between the carboxylic groups of the solvent and the target SAs (hydrogen donor and acceptor sum between 9 and 11) were considered as the major forces driving microextraction. The method was validated according to the European Union regulation 2002/657/EC. Analytical performance in terms of linearity, selectivity, trueness, precision, stability of SAs, decision limit and detection capability were determined. Quantitation limits for the different SAs ranged between 12 μg kg(-1) and 44 μg kg(-1), they being nearly independent of matrix composition. Repeatability and reproducibility, expressed as relative standard deviation, were in the ranges 1.8-3.6% and 3.3-6.1%. The results of the validation process proved that the method is suitable for determining sulfonamide residues in surveillance programs. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Ionic-liquid-based dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the forensic determination of methamphetamine in human urine.

    PubMed

    Wang, Ruifeng; Qi, Xiujuan; Zhao, Lei; Liu, Shimin; Gao, Shuang; Ma, Xiangyuan; Deng, Youquan

    2016-07-01

    Determination of methamphetamine in forensic laboratories is a major issue due to its health and social harm. In this work, a simple, sensitive, and environmentally friendly method based on ionic liquid dispersive liquid-liquid microextraction combined with high-performance liquid chromatography was established for the analysis of methamphetamine in human urine. 1-Octyl-3-methylimidazolium hexafluorophosphate with the help of disperser solvent methanol was selected as the microextraction solvent in this process. Various parameters affecting the extraction efficiency of methamphetamine were investigated systemically, including extraction solvent and its volume, disperser solvent and its volume, sample pH, extraction temperature, and centrifugal time. Under the optimized conditions, a good linearity was obtained in the concentration range of 10-1000 ng/mL with determination coefficient >0.99. The limit of detection calculated at a signal-to-noise ratio of 3 was 1.7 ng/mL and the relative standard deviations for six replicate experiments at three different concentration levels of 100, 500, and 1000 ng/mL were 6.4, 4.5, and 4.7%, respectively. Meanwhile, up to 220-fold enrichment factor of methamphetamine and acceptable extraction recovery (>80.0%) could be achieved. Furthermore, this method has been successfully employed for the sensitive detection of a urine sample from a suspected drug abuser. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. ASTM standards for fire debris analysis: a review.

    PubMed

    Stauffer, Eric; Lentini, John J

    2003-03-12

    The American Society for Testing and Materials (ASTM) recently updated its standards E 1387 and E 1618 for the analysis of fire debris. The changes in the classification of ignitable liquids are presented in this review. Furthermore, a new standard on extraction of fire debris with solid phase microextraction (SPME) was released. Advantages and drawbacks of this technique are presented and discussed. Also, the standard on cleanup by acid stripping has not been reapproved. Fire debris analysts that use the standards should be aware of these changes.

  6. Quantitative Determination of Caffeine in Beverages Using a Combined SPME-GC/MS Method

    NASA Astrophysics Data System (ADS)

    Pawliszyn, Janusz; Yang, Min J.; Orton, Maureen L.

    1997-09-01

    Solid-phase microextraction (SPME) combined with gas chromatography/mass spectrometry (GC/MS) has been applied to the analysis of various caffeinated beverages. Unlike the current methods, this technique is solvent free and requires no pH adjustments. The simplicity of the SPME-GC/MS method lends itself to a good undergraduate laboratory practice. This publication describes the analytical conditions and presents the data for determination of caffeine in coffee, tea, and coke. Quantitation by isotopic dilution is also illustrated.

  7. Determination of formaldehyde in Romanian cosmetic products using coupled GC/MS system after SPME extraction

    NASA Astrophysics Data System (ADS)

    Feher, I.; Schmutzer, G.; Voica, C.; Moldovan, Z.

    2013-11-01

    In this study we have made a quick review of some Romanian cosmetic products (shampoo, conditioner, face wash) in order to determine the formaldehyde content as well as other substances called "formaldehyde releasers". The process was performed based on solid-phase microextraction (SPME) followed by gas chromatography/mass spectrometry technique. Prior to SPME extraction we used a derivation step of formaldehyde using pentafluorophenyl hydrazine. The obtained product was adsorbed on SPME devices, then injected and desorbed into the GC/MS injection port. The concentration of formaldehyde (as derived compound) was calculated using calibration curve, having a regression coefficient of 0.9938. The performance parameters of the method were calculated using samples of standard concentration. The method proved to be sensitive, having a quantification limit (LOQ) of 0.15 μg/g.

  8. Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop.

    PubMed

    Shamsipur, Mojtaba; Fattahi, Nazir; Assadi, Yaghoub; Sadeghi, Marzieh; Sharafi, Kiomars

    2014-12-01

    A solid phase extraction (SPE) coupled with dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) method, using diethyldithiphosphate (DDTP) as a proper chelating agent, has been developed as an ultra preconcentration technique for the determination of inorganic arsenic in water samples prior to graphite furnace atomic absorption spectrometry (GFAAS). Variables affecting the performance of both steps were thoroughly investigated. Under optimized conditions, 100mL of As(ΙΙΙ) solution was first concentrated using a solid phase sorbent. The extract was collected in 2.0 mL of acetone and 60.0 µL of 1-undecanol was added into the collecting solvent. The mixture was then injected rapidly into 5.0 mL of pure water for further DLLME-SFO. Total inorganic As(III, V) was extracted similarly after reduction of As(V) to As(III) with potassium iodide and sodium thiosulfate and As(V) concentration was calculated by difference. A mixture of Pd(NO3)2 and Mg(NO3)2 was used as a chemical modifier in GFAAS. The analytical characteristics of the method were determined. The calibration graph was linear in the rage of 10-100 ng L(-1) with detection limit of 2.5 ng L(-1). Repeatability (intra-day) and reproducibility (inter-day) of method based on seven replicate measurements of 80 ng L(-1) of As(ΙΙΙ) were 6.8% and 7.5%, respectively. The method was successfully applied to speciation of As(III), As(V) and determination of the total amount of As in water samples and in a certified reference material (NIST RSM 1643e). Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Rapid determination of triclosan in personal care products using new in-tube based ultrasound-assisted salt-induced liquid-liquid microextraction coupled with high performance liquid chromatography-ultraviolet detection.

    PubMed

    Chen, Ming-Jen; Liu, Ya-Ting; Lin, Chiao-Wen; Ponnusamy, Vinoth Kumar; Jen, Jen-Fon

    2013-03-12

    This paper describes the development of a novel, simple and efficient in-tube based ultrasound-assisted salt-induced liquid-liquid microextraction (IT-USA-SI-LLME) technique for the rapid determination of triclosan (TCS) in personal care products by high performance liquid chromatography-ultraviolet (HPLC-UV) detection. IT-USA-SI-LLME method is based on the rapid phase separation of water-miscible organic solvent from the aqueous phase in the presence of high concentration of salt (salting-out phenomena) under ultrasonication. In the present work, an indigenously fabricated home-made glass extraction device (8-mL glass tube inbuilt with a self-scaled capillary tip) was utilized as the phase separation device for USA-SI-LLME. After the extraction, the upper extractant layer was narrowed into the self-scaled capillary tip by pushing the plunger plug; thus, the collection and measurement of the upper organic solvent layer was simple and convenient. The effects of various parameters on the extraction efficiency were thoroughly evaluated and optimized. Under optimal conditions, detection was linear in the concentration range of 0.4-100ngmL(-1) with correlation coefficient of 0.9968. The limit of detection was 0.09ngmL(-1) and the relative standard deviations ranged between 0.8 and 5.3% (n=5). The applicability of the developed method was demonstrated for the analysis of TCS in different commercial personal care products and the relative recoveries ranged from 90.4 to 98.5%. The present method was proven to be a simple, sensitive, less organic solvent consuming, inexpensive and rapid procedure for analysis of TCS in a variety of commercially available personal care products or cosmetic preparations. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Emerging Environmental Contaminants and Soled Phase Microextraction: Janusz Pawliszyn's Legacy in the Environmental Arena

    EPA Science Inventory

    Solid phase microextraction (SPME) has revolutionized the way samples are extracted, enabling rapid, automated, and solventless extraction of many different sample types, including air, water, soil, and biological samples. As such, SPME is widely used for environmental, food, fo...

  11. Determination of Aromatic Amines Using Solid-Phase Microextraction Based on an Ionic Liquid-Mediated Sol-Gel Technique.

    PubMed

    Abbasi, Vajihe; Sarafraz-Yazdi, Ali; Amiri, Amirhassan; Vatani, Hossein

    2016-04-01

    A headspace solid-phase microextraction (HS-SPME) method was developed for isolation of monocyclic aromatic amines from water samples followed by gas chromatography-flame ionization detector (GC-FID). In this work, the effect of the presence of ionic liquid (namely, 1-hexyl-3-methyl-imidazolium hexafluorophosphate [C6MIM][PF6]) was investigated in the sol-gel coating solutions on the morphology and extraction behavior of the resulting hybrid organic-inorganic sol-gel sorbents utilized in SPME. Hydroxy-terminated poly(dimethylsiloxane) (PDMS) was used as the sol-gel active organic component for sol-gel hybrid coatings. Two different coated fibers that were prepared are PDMS and PDMS-IL ([C6MIM][PF6]) fibers. Under the optimal conditions, the method detection limits (S/N = 3) with PDMS-IL were in the range of 0.001-0.1 ng/mL and the limits of quantification (S/N = 10) between 0.005 and 0.5 ng/mL. The relative standard deviations for one fiber (n = 5) were obtained from 3.1 up to 8.5% and between fibers or batch to batch (n = 3) in the range of 5.3-10.1%. The developed method was successfully applied to real water and juice fruits samples while the relative recovery percentages obtained for the spiked water samples at 0.1 ng/mL were from 83.3 to 95.0%. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Simultaneous determination of selegiline and desmethylselegiline in human body fluids by headspace solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Kuriki, Ayako; Kumazawa, Takeshi; Lee, Xiao-Pen; Hasegawa, Chika; Kawamura, Mitsuru; Suzuki, Osamu; Sato, Keizo

    2006-12-05

    A method for the simultaneous determination of selegiline and its metabolite, desmethylselegiline, in human whole blood and urine is presented. The method, which combines a fiber-based headspace solid-phase microextraction (SPME) technique with gas chromatography-mass spectrometry (GC-MS), required optimization of various parameters (e.g., salt additives, extraction temperatures, extraction times and the extraction properties of the SPME fiber coatings). Pargyline was used as the internal standard. Extraction efficiencies for both selegiline and desmethylselegiline were 2.0-3.4% for whole blood, and 8.0-13.2% for urine. The regression equations for selegiline and desmethylselegiline extracted from whole blood were linear (r(2)=0.996 and 0.995) within the concentration ranges 0.1-10 and 0.2-20 ng/ml, respectively. For urine, the regression equations for selegiline and desmethylselegiline were linear (r(2)=0.999 and 0.998) within the concentration ranges 0.05-5.0 and 0.1-10 ng/ml, respectively. The limit of detection for selegiline and desmethylselegiline was 0.01-0.05 ng/ml for both samples. The lower and upper limits of quantification for each compound were 0.05-0.2 and 5-20 ng/ml, respectively. Intra- and inter-day coefficients of variation for selegiline and desmethylselegiline in both samples were not greater than 8.7 and 11.7%, respectively. The determination of selegiline and desmethylselegiline concentrations in Parkinson's disease patients undergoing continuous selegiline treatment is presented and is shown to validate the present methodology.

  13. Polypyrrole/montmorillonite nanocomposite as a new solid phase microextraction fiber combined with gas chromatography-corona discharge ion mobility spectrometry for the simultaneous determination of diazinon and fenthion organophosphorus pesticides.

    PubMed

    Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein

    2014-03-03

    A novel solid phase microextraction (SPME) fiber was prepared and coupled with gas chromatography corona discharge ion mobility spectrometry (GC-CD-IMS) based on polypyrrole/montmorillonite nanocomposites for the simultaneous determination of diazinon and fenthion. The nanocomposite polymer was coated using a three-electrode electrochemical system and directly deposited on a Ni-Cr wire by applying a constant potential. The scanning electron microscopy images revealed that the new fiber exhibited a rather porous and homogenous surface. The thermal stability of the fabricated fiber was investigated by thermogravimetric analysis. The effects of different parameters influencing the extraction efficiency such as extraction temperature and time, salt addition, stirring rate, the amount of nanoclay, and desorption temperature were investigated and optimized. The method was exhaustively evaluated in terms of sensitivity, recovery, and reproducibility. The linearity ranges of 0.05-10 and 0.08-10 μg L(-1), and the detection limits of 0.020 and 0.035 μg L(-1) were obtained for diazinon and fenthion, respectively. The relative standard deviation values were calculated to be lower than 5% and 8% for intra-day and inter-day, respectively. Finally, the developed method was applied to determine the diazinon and fenthion (as model compounds) in cucumber, lettuce, apple, tap and river water samples. The satisfactory recoveries revealed the capability of the two-dimensional separation technique (retention time in GC and drift time in IMS) for the analysis of complex matrices extracted by SPME. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Determination of Organophosphorus Pesticides in Soil by Dispersive Liquid–Liquid Microextraction and Gas Chromatography

    PubMed Central

    Yang, Zhonghua; Liu, Yu; Liu, Donghui; Zhou, Zhiqiang

    2012-01-01

    In this article, a rapid and sensitive sample pretreatment technique for the determination of organophosphorus pesticides (OPPs) in soil samples is developed by using dispersive liquid–liquid microextraction (DLLME) combined with gas chromatography–flame photometric detection. Experimental conditions, including the kind of extraction and disperser solvent and their volumes, the extraction time, and the salt addition, are investigated, and the following experiment factors are used: 20 µL chlorobenzene as the extraction solvent; 1.0 mL acetonitrile as the disperser solvent; no addition of salt; and an extraction time of 1 min. Under the optimum conditions, the linearities for the three target OPPs (ethoprophos, chlorpyriphos, and profenofos) are obtained by five points in the concentration range of 2.5–1500 µg/kg, and three replicates are used for each point. Correlation coefficients vary from 0.9987 to 0.9997. The repeatability is tested by spiking soil samples at a concentration level of 5.0 µg/kg. The relative standard deviation (n = 3) varied between 2.0% and 6.6%. The limits of detection, based on a signal-to-noise ratio (S/N) of 3, range from 200 to 500 pg/g. This method is applied to the analysis of the spiked samples S1, S2, and S3, which are collected from the China Agriculture University's orchard, lawn, and garden, respectively. The recoveries for each target analyte are in the range between 87.9% and 108.0%, 87.4% and 108.0%, and 86.7% and 107.2%, respectively. PMID:22291051

  15. Evaluation of needle trap micro-extraction and automatic alveolar sampling for point-of-care breath analysis.

    PubMed

    Trefz, Phillip; Rösner, Lisa; Hein, Dietmar; Schubert, Jochen K; Miekisch, Wolfram

    2013-04-01

    Needle trap devices (NTDs) have shown many advantages such as improved detection limits, reduced sampling time and volume, improved stability, and reproducibility if compared with other techniques used in breath analysis such as solid-phase extraction and solid-phase micro-extraction. Effects of sampling flow (2-30 ml/min) and volume (10-100 ml) were investigated in dry gas standards containing hydrocarbons, aldehydes, and aromatic compounds and in humid breath samples. NTDs contained (single-bed) polymer packing and (triple-bed) combinations of divinylbenzene/Carbopack X/Carboxen 1000. Substances were desorbed from the NTDs by means of thermal expansion and analyzed by gas chromatography-mass spectrometry. An automated CO2-controlled sampling device for direct alveolar sampling at the point-of-care was developed and tested in pilot experiments. Adsorption efficiency for small volatile organic compounds decreased and breakthrough increased when sampling was done with polymer needles from a water-saturated matrix (breath) instead from dry gas. Humidity did not affect analysis with triple-bed NTDs. These NTDs showed only small dependencies on sampling flow and low breakthrough from 1-5 %. The new sampling device was able to control crucial parameters such as sampling flow and volume. With triple-bed NTDs, substance amounts increased linearly with increasing sample volume when alveolar breath was pre-concentrated automatically. When compared with manual sampling, automatic sampling showed comparable or better results. Thorough control of sampling and adequate choice of adsorption material is mandatory for application of needle trap micro-extraction in vivo. The new CO2-controlled sampling device allows direct alveolar sampling at the point-of-care without the need of any additional sampling, storage, or pre-concentration steps.

  16. Novel micro-extraction by packed sorbent procedure for the liquid chromatographic analysis of antiepileptic drugs in human plasma and urine.

    PubMed

    Rani, Susheela; Malik, Ashok K; Singh, Baldev

    2012-02-01

    A method for the simultaneous determination of the antiepileptic drugs, phenobarbital (PHB), phenytoin (PTN), carbamazepine (CBZ), primidone (PRM) and oxcarbazepine (OXC) in human plasma and urine samples by using micro-extraction in a packed syringe as the sample preparation method connected with LC/UV (MEPS/LC/UV) is described. Micro-extraction in a packed syringe (MEPS) is a new miniaturized, solid-phase extraction technique that can be connected online to gas or liquid chromatography without any modifications. In MEPS approximately 1 mg of the solid packing material is inserted into a syringe (100-250 μL) as a plug. Sample preparation takes place on the packed bed. The bed can be coated to provide selective and suitable sampling conditions. The new method is very promising, easy to use, fully automated, inexpensive and quick. The standard curves were obtained within the concentration range 1-500 ng/mL in both plasma and urine samples. The results showed high correlation coefficients (R(2) >0.988) for all of the analytes within the calibration range. The extraction recovery was found to be between 88.56 and 99.38%. The limit of quantification was found to be between 0.132 and 1.956 ng/mL. The precision (RSD) values of quality control samples (QC) had a maximum deviation of 4.9%. A comparison of the detection limits with similar methods indicates high sensitivity of the present method. The method is applied for the analysis of these drugs in real urine and plasma samples of epileptic patients. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Optimization of total vaporization solid-phase microextraction (TV-SPME) for the determination of lipid profiles of Phormia regina, a forensically important blow fly species.

    PubMed

    Kranz, William; Carroll, Clinton; Dixon, Darren; Picard, Christine; Goodpaster, John

    2017-11-01

    A new method has been developed for the determination of fatty acids, sterols, and other lipids which naturally occur within pupae of the blow fly Phormia regina. The method relies upon liquid extraction in non-polar solvent, followed by derivatization using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) w/ 1% trimethylchlorsilane (TMCS) carried out inside the sample vial. The analysis is facilitated by total vaporization solid-phase microextraction (TV-SPME), with gas chromatography-mass spectrometry (GC-MS) serving as the instrumentation for analysis. The TV-SPME delivery technique is approximately a factor of five more sensitive than traditional liquid injection, which may alleviate the need for rotary evaporation, reconstitution, collection of high performance liquid chromatography fractions, and many of the other pre-concentration steps that are commonplace in the current literature. Furthermore, the ability to derivatize the liquid extract in a single easy step while increasing sensitivity represents an improvement over current derivatization methods. The most common lipids identified in fly pupae were various saturated and unsaturated fatty acids ranging from lauric acid (12:0) to arachinoic acid (20:4), as well as cholesterol. The concentrations of myristic acid (14:0), palmitelaidic acid (16:2), and palmitoleic acid (16:1) were the most reliable indicators of the age of the pupae. Graphical abstract Blow fly pupae were extracted prior to emerging as adults. The extracts were analyzed via total vaporization solid-phase microextraction (TV-SPME), revealing a complex mixture of lipids that could be associated with the age of the insect. This information may assist in determining a post-mortum interval (PMI) in a death investigation.

  18. Electromembrane Surrounded Solid Phase Microextraction Followed by Injection Port Derivatization and Gas Chromatography-Flame Ionization Detector Analysis for Determination of Acidic Herbicides in Plant Tissue.

    PubMed

    Rezazadeh, Maryam; Yamini, Yadollah; Seidi, Shahram; Tahmasebi, Elham; Rezaei, Fatemeh

    2014-04-09

    Electromembrane surrounded solid phase microextraction (EM-SPME) of acidic herbicides was studied for the first time. In order to investigate the capability of this new microextraction technique to analyze acidic targets, chlorophenoxy acid (CPA) herbicides were quantified in plant tissue. 1-Octanol, was sustained in the pores of the wall of a hollow fiber and served as supported liquid membrane (SLM). Other EM-SPME related parameters, including extraction time, applied voltage, and pHs of the sample solution and the acceptor phase, were optimized using experimental design. A 20 min time frame was needed to reach the highest extraction efficiency of the analytes from a 24 mL alkaline sample solution across the organic liquid membrane and into the aqueous acceptor phase through a 50 V electrical field, and to their final adsorption on a carbonaceous anode. In addition to high sample cleanup, which made the proposed method appropriate for analysis of acidic compounds in a complicated media (plant tissue), 4.8% of 2-methyl-4-chlorophenoxyacetic acid (MCPA) and 0.6% of 2,4-dichlorophenoxyacetic acid (2,4-D) were adsorbed on the anode, resulting in suitable detection limits (less than 5 ng mL -1 ), and admissible repeatability and reproducibility (intra- and interassay precision were in the ranges of 5.2-8.5% and 8.8-12.0%, respectively). Linearity of the method was scrutinized within the ranges of 1.0-500.0 and 10.0-500.0 ng mL -1 for MCPA and 2,4-D, respectively, and coefficients of determination greater than 0.9958 were obtained. Optimal conditions of EM-SPME of the herbicides were employed for analysis of CPAs in whole wheat tissue.

  19. Vortex- and CO2 -gas-assisted liquid-liquid microextraction with salt addition for the high-performance liquid chromatographic determination of furanic compounds in concentrated juices and dried fruits.

    PubMed

    Abu-Bakar, Nur-Bahiyah; Makahleh, Ahmad; Saad, Bahruddin

    2016-03-01

    A novel microextraction method based on vortex- and CO2 -assisted liquid-liquid microextraction with salt addition for the isolation of furanic compounds (5-hydroxymethyl-2-furaldehyde, 5-methyl-2-furaldehyde, 2-furaldehyde, 3-furaldehyde, 2-furoic and 3-furoic acids) was developed. Purging the sample with CO2 was applied after vortexing to enhance the phase separation and mass transfer of the analytes. The optimum extraction conditions were: extraction solvent (volume), propyl acetate (125 μL); sample pH, 2.4; vortexing time, 45 s; salt concentration, 25% w/v and purging time, 5 min. The analytes were separated using an ODS Hypersil C18 column (250×4.6 mm i.d, 5 μm) under gradient flow. The proposed method showed good linearities (r(2) >0.999), low detection limits (0.08-1.9 μg/L) and good recoveries (80.7-122%). The validated method was successfully applied for the determination of the furanic compounds in concentrated juice (mango, date, orange, pomegranate, roselle, mangosteen and soursop) and dried fruit (prune, date and apricot paste) samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Coumarins as turn on/off fluorescent probes for detection of residual acetone in cosmetics following headspace single-drop microextraction.

    PubMed

    Cabaleiro, N; de la Calle, I; Bendicho, C; Lavilla, I

    2014-11-01

    In this work, a new method based on headspace-single drop microextraction for the determination of residual acetone in cosmetics by microfluorospectrometry is proposed. Acetone causes fluorescence changes in a 2.5 µL-ethanolic drop (40% v/v) containing 3.10(-4) mol L(-1) 7-hydroxy-4-methylcoumarin ('turn off') or 6.10(-6) mol L(-1) 7-diethylamino-4-methylcoumarin ('turn on'). Polarity and ability to form hydrogen bonds of short chain alcohols (polar protic solvents) were crucial in order to observe these changes in the presence of acetone (polar aprotic solvent). Parameters related with the HS-SDME procedure were studied, namely headspace volume, composition, volume and temperature of drop, microextraction time, stirring rate, mass and temperature of sample, as well as the effect of potential interferents (alcohols and fragrances). The high volatility of acetone allows its extraction from an untreated cosmetic sample within 3 min. A detection limit of 0.26 µg g(-1) and repeatability, expressed as relative standard deviation, around 5% were reached. Accuracy of the proposed methodology was evaluated by means of recovery studies. The method was successfully used to analyze different cosmetics. Simplicity and high sample throughput can be highlighted. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Gas chromatographic detection of some nitro explosive compounds in soil samples after solid-phase microextraction with carbon ceramic copper nanoparticle fibers.

    PubMed

    Farhadi, Khalil; Bochani, Shayesteh; Hatami, Mehdi; Molaei, Rahim; Pirkharrati, Hossein

    2014-07-01

    In this research, a new solid-phase microextraction fiber based on carbon ceramic composites with copper nanoparticles followed by gas chromatography with flame ionization detection was applied for the extraction and determination of some nitro explosive compounds in soil samples. The proposed method provides an overview of trends related to synthesis of solid-phase microextraction sorbents and their applications in preconcentration and determination of nitro explosives. The sorbents were prepared by mixing of copper nanoparticles with a ceramic composite produced by mixture of methyltrimethoxysilane, graphite, methanol, and hydrochloric acid. The prepared sorbents were coated on copper wires by dip-coating method. The prepared nanocomposites were evaluated statistically and provided better limits of detection than the pure carbon ceramic. The limit of detection of the proposed method was 0.6 μg/g with a linear response over the concentration range of 2-160 μg/g and square of correlation coefficient >0.992. The new proposed fiber has been demonstrated to be a suitable, inexpensive, and sensitive candidate for extraction of nitro explosive compounds in contaminated soil samples. The constructed fiber can be used more than 100 times without the need for surface generation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Gas chromatography with mass spectrometry for the determination of phthalates preconcentrated by microextraction based on an ionic liquid.

    PubMed

    Cacho, Juan Ignacio; Campillo, Natalia; Viñas, Pilar; Hernández-Córdoba, Manuel

    2017-03-01

    A new procedure is proposed for the analysis of migration test solutions obtained from plastic bottles used in the packaging of edible oils. Ultrasound-assisted emulsification microextraction with ionic liquids was applied for the preconcentration of six phthalate esters: dimethylphthalate, diethylphthalate, di-n-butylphthalate, n-butylbenzylphthalate, di-2-ethylhexylphthalate, and di-n-octylphthalate. The enriched ionic liquid was directly analyzed by gas chromatography and mass spectrometry using direct insert microvial thermal desorption. The different factors affecting the microextraction efficiency, such as volume of the extracting phase (30 μL of the ionic liquid) and ultrasound application time (25 s), and the thermal desorption step, such as desorption temperature and time, and gas flow rate, were studied. Under the selected conditions, detection limits for the analytes were in the 0.012-0.18 μg/L range, while recovery assays provided values ranging from 80 to 112%. The use of butyl benzoate as internal standard increased the reproducibility of the analytical procedure. When the release of the six phthalate esters from the tested plastic bottles to liquid simulants was monitored using the optimized procedure, analyte concentrations of between 1.0 and 273 μg/L were detected. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Bis(trifluoromethanesulfonyl)imide-based ionic liquids grafted on graphene oxide-coated solid-phase microextraction fiber for extraction and enrichment of polycyclic aromatic hydrocarbons in potatoes and phthalate esters in food-wrap.

    PubMed

    Hou, Xiudan; Guo, Yong; Liang, Xiaojing; Wang, Xusheng; Wang, Lei; Wang, Licheng; Liu, Xia

    2016-06-01

    A class of novel, environmental friendly ionic liquids (ILs) were synthesized by on-fiber preparation strategy and modified on graphene oxide (GO)-coated stainless steel wire, which was used as a solid-phase microextraction (SPME) fiber for efficient enrichment of polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs). Surface characteristic of the ILs and polymeric-ILs (PILs) fibers with the wave-structure were inspected by scanning electron microscope. The successfully synthesis of bis(trifluoromethanesulfonyl)imide (NTf2(-))-based ILs were also characterized by energy dispersive spectrometer analysis. Through the chromatograms of the proposed two ILs (1-aminoethyl-3-methylimidazolium bromide (C2NH2MIm(+)Br(-)), C2NH2MIm(+)NTf2(-)) and two PILs (polymeric 1-vinyl-3-hexylimidazolium bromide (poly(VHIm(+)Br(-))), poly(VHIm(+)NTf2(-)))-GO-coated fibers for the extraction of analytes, NTf2(-)-based PIL demonstrated higher extraction capacity for hydrophobic compounds than other as-prepared ILs. Analytical performances of the proposed fibers were investigated under the optimized extraction and desorption conditions coupled with gas chromatography (GC). Compared with the poly(VHIm(+)Br(-))-GO fiber, the poly(VHIm(+)NTf2(-))-GO SPME fiber brought wider linear ranges for analytes with correlation coefficient in the range of 0.9852-0.9989 and lower limits of detection ranging from 0.015-0.025μgL(-1). The obtained results indicated that the newly prepared PILs-GO coating was a feasible, selective and green microextraction medium, which could be suitable for extraction and determination of PAHs and PAEs in potatoes and food-wrap sample, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. SOLID PHASE MICROEXTRACTION FOR TRACE LEVEL ANALYSIS OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    This presentation focuses on the development of a solid-phase microextraction (SPME)-gas chromatography (GC)/ion trap mass spectrometry (MS) method for the analysis of semivolatile disinfection by-products (DBPs) in drinking water in the low ug/L range. These DBPs were selected ...

  5. High-temperature solid-phase microextraction procedure for the detection of drugs by gas chromatography-mass spectrometry.

    PubMed

    Staerk, U; Külpmann, W R

    2000-08-18

    High-temperature headspace solid-phase microextraction (SPME) with simultaneous ("in situ") derivatisation (acetylation or silylation) is a new sample preparation technique for the screening of illicit drugs in urine and for the confirmation analysis in serum by GC-MS. After extraction of urine with a small portion of an organic solvent mixture (e.g., 2 ml of hexane-ethyl acetate) at pH 9, the organic layer is separated and evaporated to dryness in a small headspace vial. A SPME-fiber (e.g., polyacrylate) doped with acetic anhydride-pyridine (for acetylation) is exposed to the vapour phase for 10 min at 200 degrees C in a blockheater. The SPME fiber is then injected into the GC-MS for thermal desorption and analysis. After addition of perchloric acid and extraction with n-hexane to remove lipids, the serum can be analysed after adjusting to pH 9 as described for urine. Very clean extracts are obtained. The various drugs investigated could be detected and identified in urine by the total ion current technique at the following concentrations: amphetamines (200 microg/l), barbiturates (500 microg/l), benzodiazepines (100 microg/l), benzoylecgonine (150 microg/l), methadone (100 microg/l) and opiates (200 microg/l). In serum all drugs could be detected by the selected ion monitoring technique within their therapeutic range. As compared to liquid-liquid extraction only small amounts of organic solvent are needed and larger amounts of the pertinent analytes could be transferred to the GC column. In contrast to solid-phase extraction (SPE), the SPME-fiber is reusable several times (as there is no contamination by endogenous compounds). The method is time-saving and can be mechanised by the use of a dedicated autosampler.

  6. Headspace single drop microextraction versus dispersive liquid-liquid microextraction using magnetic ionic liquid extraction solvents.

    PubMed

    An, Jiwoo; Rahn, Kira L; Anderson, Jared L

    2017-05-15

    A headspace single drop microextraction (HS-SDME) method and a dispersive liquid-liquid microextraction (DLLME) method were developed using two tetrachloromanganate ([MnCl 4 2- ])-based magnetic ionic liquids (MIL) as extraction solvents for the determination of twelve aromatic compounds, including four polyaromatic hydrocarbons, by reversed phase high-performance liquid chromatography (HPLC). The analytical performance of the developed HS-SDME method was compared to the DLLME approach employing the same MILs. In the HS-SDME approach, the magnetic field generated by the magnet was exploited to suspend the MIL solvent from the tip of a rod magnet. The utilization of MILs in HS-SDME resulted in a highly stable microdroplet under elevated temperatures and long extraction times, overcoming a common challenge encountered in traditional SDME approaches of droplet instability. The low UV absorbance of the [MnCl 4 2- ]-based MILs permitted direct analysis of the analyte enriched extraction solvent by HPLC. In HS-SDME, the effects of ionic strength of the sample solution, temperature of the extraction system, extraction time, stir rate, and headspace volume on extraction efficiencies were examined. Coefficients of determination (R 2 ) ranged from 0.994 to 0.999 and limits of detection (LODs) varied from 0.04 to 1.0μgL -1 with relative recoveries from lake water ranging from 70.2% to 109.6%. For the DLLME method, parameters including disperser solvent type and volume, ionic strength of the sample solution, mass of extraction solvent, and extraction time were studied and optimized. Coefficients of determination for the DLLME method varied from 0.997 to 0.999 with LODs ranging from 0.05 to 1.0μgL -1 . Relative recoveries from lake water samples ranged from 68.7% to 104.5%. Overall, the DLLME approach permitted faster extraction times and higher enrichment factors for analytes with low vapor pressure whereas the HS-SDME approach exhibited better extraction efficiencies for analytes with relatively higher vapor pressure. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Determination of ochratoxin A in fruit juice by high-performance liquid chromatography after vortex-assisted emulsification microextraction based on solidification of floating organic drop.

    PubMed

    Asadi, Mohammad

    2018-03-01

    A rapid, simple, and green vortex-assisted emulsification microextraction method based on solidification of floating organic drop was developed for the extraction and determination of ochratoxin A (OTA) with high-performance liquid chromatography. Some factors influencing the extraction efficiency of OTA such as the type and volume of extraction solvent, sample pH, salt concentration, vortex time, and sample volume were optimized. Under optimized conditions, the calibration curve exhibited linearity in the range of 50.0-500 ng L -1 with a coefficient of determination higher than 0.999. The limit of detection was 15.0 ng L -1 . The inter- and intra-assays relative standard deviations were in a range of 4.7-8.7%. The accuracy of the developed method was investigated through recovery experiments, and it was successfully used for the quantification of OTA in 40 samples of fruit juice.

  8. Ionic liquid-based single-drop microextraction/gas chromatographic/mass spectrometric determination of benzene, toluene, ethylbenzene and xylene isomers in waters.

    PubMed

    Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel

    2008-08-01

    The direct coupling between ionic liquid-based single-drop microextraction and gas chromatography/mass spectrometry is proposed for the rapid and simple determination of benzene, toluene, ethylbenzene and xylenes isomers (BTEX) in water samples. The extraction procedure exploits not only the high affinity of the selected ionic liquid (1-methyl-3-octyl-imidazolium hexaflourophosphate) to these aromatic compounds but also its special properties like viscosity, low vapour pressure and immiscibility with water. All the variables involved in the extraction process have been studied in depth. The developed method allows the determination of these single-ring compounds in water under the reference concentration level fixed by the international legislation. In this case, limits of detection were in the range 20 ng L(-1) (obtained for benzene) and 91 ng L(-1) (for o-xylene). The repeatability of the proposed method, expressed as RSD (n=5), varied between 3.0% (o-xylene) and 5.2% (toluene).

  9. Development of ultrasound-assisted emulsification microextraction based on solidification of a floating organic droplet for determination of organochlorine pesticides in water samples.

    PubMed

    Shu, Bin; Yang, Zhaoguang; Lee, Hsiaowan; Qiu, Bo; Li, Haipu

    2016-02-01

    An ultrasound-assisted emulsification microextraction based on the solidification of a floating organic droplet followed by gas chromatography with electron capture detection was developed for the simultaneous determination of 13 organochlorine pesticides in water samples. In the proposed method, ultrasound was applied to achieve the emulsification without addition of any dispersive solvent. In consequence, the volume of extraction phase remained unaffected by the ion strength of aqueous phase and high extraction recoveries were obtained. It was also found that dilution of the floating phase with acetone was necessary for preventing peak splitting in chromatogram. Under optimal conditions, the proposed method provided good sensitivity (the detection limits of organochlorine pesticides ranged from 1.3 to 3.9 ng/L) and good repeatability of extraction (below 6.5%, n = 5). The recoveries in reservoir and river water samples were between 75.8% and 96.9%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Determination of polychlorinated biphenyls in ocean water and bovine milk using crosslinked polymeric ionic liquid sorbent coatings by solid-phase microextraction.

    PubMed

    Joshi, Manishkumar D; Ho, Tien D; Cole, William T S; Anderson, Jared L

    2014-01-01

    Crosslinked polymeric ionic liquid (PIL)-based sorbent coatings were employed in the extraction of 21 polychlorinated biphenyls (PCBs) from ocean water and bovine milk using solid-phase microextraction (SPME). The extraction temperature, time, and concentration of sodium chloride added to the matrix were optimized in order to determine the best extraction conditions for the extraction of PCBs. The analytical performance of the crosslinked PIL-based SPME fibers was compared with a commercial 7 µm polydimethylsiloxane (PDMS) fiber using gas chromatography (GC) employing an electron capture detector (ECD) and mass spectrometric detection (MS). Higher sensitivities for PCBs were achieved using PIL-based fibers when compared to PDMS fiber due to the incorporation of benzyl moieties into the PIL structures. The limits of detection (LOD) for all PCBs were determined to be in the low ng L(-1) range using the three studied coatings. Recovery studies were performed for PCBs in ocean water and bovine milk to validate the applicability of the current SPME method. © 2013 Published by Elsevier B.V.

  11. Dispersive liquid-liquid microextraction based on the solidification of floating organic droplet for the determination of polychlorinated biphenyls in aqueous samples.

    PubMed

    Dai, Liping; Cheng, Jing; Matsadiq, Guzalnur; Liu, Lu; Li, Jun-Kai

    2010-08-03

    In the proposed method, an extraction solvent with a lower toxicity and density than the solvents typically used in dispersive liquid-liquid microextraction was used to extract seven polychlorinated biphenyls (PCBs) from aqueous samples. Due to the density and melting point of the extraction solvent, the extract which forms a layer on top of aqueous sample can be collected by solidifying it at low temperatures, which form a layer on top of the aqueous sample. Furthermore, the solidified phase can be easily removed from the aqueous phase. Based on preliminary studies, 1-undecanol was selected as the extraction solvent, and a series of parameters that affect the extraction efficiency were systematically investigated. Under the optimized conditions, enrichment factors for PCBs ranged between 494 and 606. Based on a signal-to-noise ratio of 3, the limit of detection for the method ranged between 3.3 and 5.4 ng L(-1). Good linearity, reproducibility and recovery were also obtained. 2010 Elsevier B.V. All rights reserved.

  12. Pattern recognition and genetic algorithms for discrimination of orange juices and reduction of significant components from headspace solid-phase microextraction.

    PubMed

    Rinaldi, Maurizio; Gindro, Roberto; Barbeni, Massimo; Allegrone, Gianna

    2009-01-01

    Orange (Citrus sinensis L.) juice comprises a complex mixture of volatile components that are difficult to identify and quantify. Classification and discrimination of the varieties on the basis of the volatile composition could help to guarantee the quality of a juice and to detect possible adulteration of the product. To provide information on the amounts of volatile constituents in fresh-squeezed juices from four orange cultivars and to establish suitable discrimination rules to differentiate orange juices using new chemometric approaches. Fresh juices of four orange cultivars were analysed by headspace solid-phase microextraction (HS-SPME) coupled with GC-MS. Principal component analysis, linear discriminant analysis and heuristic methods, such as neural networks, allowed clustering of the data from HS-SPME analysis while genetic algorithms addressed the problem of data reduction. To check the quality of the results the chemometric techniques were also evaluated on a sample. Thirty volatile compounds were identified by HS-SPME and GC-MS analyses and their relative amounts calculated. Differences in composition of orange juice volatile components were observed. The chosen orange cultivars could be discriminated using neural networks, genetic relocation algorithms and linear discriminant analysis. Genetic algorithms applied to the data were also able to detect the most significant compounds. SPME is a useful technique to investigate orange juice volatile composition and a flexible chemometric approach is able to correctly separate the juices.

  13. An etched stainless steel wire/ionic liquid-solid phase microextraction technique for the determination of alkylphenols in river water.

    PubMed

    Cui, Meiyu; Qiu, Jinxue; Li, Zhenghua; He, Miao; Jin, Mingshi; Kim, Jiman; Quinto, Maurizio; Li, Donghao

    2015-01-01

    In this study, a stainless steel wire/ionic liquid-solid phase microextraction technique was developed for the direct extraction of APs from water samples. Some parameters were optimised, such as selection of the substrate and ILs, extraction time, extraction temperature, stirring rate and sample pH, etc. The experimental data demonstrated that the etched stainless steel wire was a suitable substrate for IL-coated SPME. The coating was prepared by directly depositing the ILs onto the surface of the etched stainless steel wire, which exhibited a porous structure and a high surface area. The [C8MIM][PF6] IL exhibited maximum efficiency with an extraction time of 30 min, and the aqueous sample was maintained at 40 °C and adjusted to pH 2 under stirring conditions. The enrichment factor of the IL coating for the four APs ranged from 1382 to 4779, the detection limits (LOD, S/N=3) of the four APs ranged from 0.01 to 0.04 ng mL(-1) and the RSD values for purified water spiked with APs ranged from 4.0 to 11.8% (n=3). The calibration graphs were linear in the concentration range from 0.5 to 200 ng mL(-1) (R(2)>0.9569). The optimised method was successfully applied for the analysis of real water samples, and the method was suitable for the extraction of APs from water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Discovering Volatile Chemicals from Window Weatherstripping through Solid-Phase Microextraction/Gas Chromatography-Mass Spectrometry

    ERIC Educational Resources Information Center

    Rosu, Cornelia; Cueto, Rafael; Veillion, Lucas; David, Connie; Laine, Roger A.; Russo, Paul S.

    2017-01-01

    Volatile compounds from polymeric materials such as weatherstripping were identified by solid-phase microextraction (SPME), a solvent-free analytical method, coupled to gas chromatography-mass spectrometry (GC-MS). These compounds, originating from additives and fillers used in weatherstripping processing, were mostly polycyclic aromatic…

  15. Headspace analysis of polar organic compounds in biological matrixes using solid phase microextraction (SPME)

    USDA-ARS?s Scientific Manuscript database

    Analysis of biological fluids and waste material is difficult and tedious given the sample matrix. A rapid automated method for the determination of volatile fatty acids and phenolic and indole compounds was developed using a multipurpose sampler (MPS) with solid phase microextraction (SPME) and GC-...

  16. Rapid screening of oxytetracycline residue in catfish muscle by dispersive liquid-liquid microextraction and europium-sensitized luminescence

    USDA-ARS?s Scientific Manuscript database

    Oxytetracycline (OTC) residue in catfish muscle was screened by dispersive liquid-liquid microextraction (DLLME) and europium-sensitized luminescence (ESL). After extraction in EDTA, HCl, and acetonitrile, cleanup was carried out by DLLME, and ESL was measured at microgram = 385 nm and wavelength = ...

  17. Luminescence screening of enrofloxacin and ciprofloxacin residues in swine liver after dispersive liquid - liquid microextraction cleanup

    USDA-ARS?s Scientific Manuscript database

    A rapid luminescence method was developed to screen residues of enrofloxacin (ENRO) and its metabolite, ciprofloxacin (CIPRO), in swine liver. Target analytes were extracted in acetonitrile-2.5% trifluoroacetic acid-NaCl, cleaned up by dispersive liquid-liquid microextraction (DLLME), and finally de...

  18. A comparison of solid-phase microextraction (SPME) with simultaneous distillation-extraction (SDE) for the analysis of volatile compounds in heated beef and sheep fats.

    PubMed

    Watkins, P J; Rose, G; Warner, R D; Dunshea, F R; Pethick, D W

    2012-06-01

    A comparison has been made on the application of SPME and SDE for the extraction of volatile compounds from heated beef and sheep fats with separation and measurement by gas chromatography-mass spectrometry. As far as we know, this report represents the first time that such a comparison has been made for the measurement of volatile compounds in heated sheep fat. Approximately 100 compounds (in relatively high abundance) were characterised in the volatile profiles of heated beef and sheep fats using both techniques. Differences were observed in the volatile profiles obtained from each technique, independent of compound class. Rather than rate one technique as superior to another, the techniques can be regarded as complementary to each other. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  19. Multiple monolithic fiber solid-phase microextraction based on a polymeric ionic liquid with high-performance liquid chromatography for the determination of steroid sex hormones in water and urine.

    PubMed

    Liao, Keren; Mei, Meng; Li, Haonan; Huang, Xiaojia; Wu, Cuiqin

    2016-02-01

    The development of a simple and sensitive analytical approach that combines multiple monolithic fiber solid-phase microextraction with liquid desorption followed by high-performance liquid chromatography with diode array detection is proposed for the determination of trace levels of seven steroid sex hormones (estriol, 17β-estradiol, testosterone, ethinylestradiol, estrone, progesterone and mestranol) in water and urine matrices. To extract the target analytes effectively, multiple monolithic fiber solid-phase microextraction based on a polymeric ionic liquid was used to concentrate hormones. Several key extraction parameters including desorption solvent, extraction and desorption time, pH value and ionic strength in sample matrix were investigated in detail. Under the optimal experimental conditions, the limits of detection were found to be in the range of 0.027-0.12 μg/L. The linear range was 0.10-200 μg/L for 17β-estradiol, 0.25-200 μg/L estriol, ethinylestradiol and estrone, and 0.50-200 μg/L for the other hormones. Satisfactory linearities were achieved for analytes with the correlation coefficients above 0.99. Acceptable method reproducibility was achieved by evaluating the repeatability and intermediate precision with relative standard deviations of both less than 8%. The enrichment factors ranged from 54- to 74-fold. Finally, the proposed method was successfully applied to the analysis of steroid sex hormones in environmental water samples and human urines with spiking recoveries ranged from 75.6 to 116%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Electrochemical luminescence determination of hyperin using a sol-gel@graphene luminescent composite film modified electrode for solid phase microextraction

    NASA Astrophysics Data System (ADS)

    Zou, Xiaojun; Shang, Fang; Wang, Sui

    2017-02-01

    In this paper, a novel electrochemiluminescence (ECL) sensor of sol-gel@graphene luminescent composite film modified electrode for hyperin determination was prepared using graphene (G) as solid-phase microextraction (SPME) material, based on selective preconcentration of target onto an electrode and followed by luminol ECL detection. Hyperin was firstly extracted from aqueous solution through the modified GCE. Hydrogel, electrogenerated chemiluminescence reagents, pH of working solution, extraction time and temperature and scan rate were discussed. Under the optimum conditions, the change of ECL intensity was in proportion to the concentration of hyperin in the range of 0.02-0.24 μg/mL with a detection limit of 0.01 μg/mL. This method showed good performance in stability, reproducibility and precision for the determination of hyperin.

  1. Solid-phase microextraction method for the determination of hexanal in hazelnuts as an indicator of the interaction of active packaging materials with food aroma compounds.

    PubMed

    Pastorelli, S; Valzacchi, S; Rodriguez, A; Simoneau, C

    2006-11-01

    Fatty foods are susceptible to lipid oxidation resulting in deterioration of product quality due to the generation of off-flavours. Hexanal is a good indicator of rancidity. Therefore, a method based on solid-phase microextraction (SPME) coupled to gas chromatograph with flame ionization detection was developed to determine hexanal formation in hazelnuts during storage. Optimum conditions were as follows: carboxen-polydimethylsiloxane 75 microm fibre, extraction time 10 min, equilibrium time 10 min and equilibrium temperature 60 degrees C. The effect of oxygen scavengers on the oxidation process was also evaluated by measuring hexanal formation in hazelnuts stored with/without oxygen absorber sachets. Oxygen scavengers were shown to reduce oxidation; however, analysis of the sachet revealed that other volatile compounds from the headspace were also absorbed.

  2. Headspace single drop microextraction coupled with microwave extraction of essential oil from plant materials.

    PubMed

    Zhai, Yujuan; Sun, Shuo; Wang, Ziming; Zhang, Yupu; Liu, He; Sun, Ye; Zhang, Hanqi; Yu, Aimin

    2011-05-01

    Headspace single drop microextraction (HS-SDME) coupled with microwave extraction (ME) was developed and applied to the extraction of the essential oil from dried Syzygium aromaticum (L.) Merr. et Perry and Cuminum cyminum L. The operational parameters, such as microdrop volume, microwave absorption medium (MAM), extraction time, and microwave power were optimized. Ten microliters of decane was used as the microextraction solvent. Ionic liquid and carbonyl iron powder were used as MAM. The extraction time was less than 7 min at the microwave power of 440 W. The proposed method was compared with hydrodistillation (HD). There were no obvious differences in the constituents of essential oils obtained by the two methods.

  3. Early detection of fungal growth in bakery products by use of an electronic nose based on mass spectrometry.

    PubMed

    Vinaixa, Maria; Marín, Sonia; Brezmes, Jesús; Llobet, Eduard; Vilanova, Xavier; Correig, Xavier; Ramos, Antonio; Sanchis, Vicent

    2004-10-06

    This paper presents the design, optimization, and evaluation of a mass spectrometry-based electronic nose (MS e-nose) for early detection of unwanted fungal growth in bakery products. Seven fungal species (Aspergillus flavus, Aspergillus niger, Eurotium amstelodami, Eurotium herbariorum, Eurotium rubrum, Eurotium repens, and Penicillium corylophillum) were isolated from bakery products and used for the study. Two sampling headspace techniques were tested: static headspace (SH) and solid-phase microextraction (SPME). Cross-validated models based on principal component analysis (PCA), coupled to discriminant function analysis (DFA) and fuzzy ARTMAP, were used as data treatment. When attempting to discriminate between inoculated and blank control vials or between genera or species of in vitro growing cultures, sampling based on SPME showed better results than those based on static headspace. The SPME-MS-based e-nose was able to predict fungal growth with 88% success after 24 h of inoculation and 98% success after 48 h when changes were monitored in the headspace of fungal cultures growing on bakery product analogues. Prediction of the right fungal genus reached 78% and 88% after 24 and 96 h, respectively.

  4. Solid-phase microextraction coupled to gas chromatography for the determination of 2,3-dimethyl-2,3-dinitrobutane as a marking agent for explosives.

    PubMed

    Li, Xiujuan; Zeng, Zhaorui; Zeng, Yi

    2007-06-15

    This paper investigates the detection of 2,3-dimethyl-2,3-dinitrobutane (DMNB), a marking agent in explosives, by gas chromatography (GC) with electron capture detection using solid-phase microextraction (SPME) as a sample preparation technique. The 25,27-dihydroxy-26,28-oxy (2',7'-dioxo-3',6'-diazaoctyl) oxy-p-tert-butylcalix[4]arene/hydroxy-terminated silicone oil coated fiber was highly sensitive to trap DMNB from ammonium nitrate matrix. The analysis was performed by extracting 2g of explosives for 30s at room temperature and then immediately introducing into the heated GC injector for 1min of thermal desorption. The method showed good linearity in the range from 0.01 to 1.0mug/g. The relative standard deviations for these extractions were <8%. The calculated limit of detection for DMNB (S/N=3) was 4.43x10(-4)mug/g, which illustrates that the proposed systems are suitable for explosive detection at trace level. This is the first report of an SPME-GC system shown to extract marking agent in explosives for subsequent detection in a simple, rapid, sensitive, and inexpensive manner.

  5. Electrically enhanced liquid-phase microextraction of three textile azo dyes from wastewater and plant samples.

    PubMed

    Nojavan, Saeed; Tahmasebi, Zeinab; Bidarmanesh, Tina; Behdad, Hamideh; Nasiri-Aghdam, Mahnaz; Mansori, Sozan; Pourahadi, Ahmad

    2013-10-01

    An electromembrane extraction procedure coupled with HPLC and visible detection was applied for the extraction of three textile azo dyes as organic salts. The extraction parameters such as extraction time, applied voltage, pH range, and concentration of salt added were optimized. A driving force of 60 V was applied to extract the analytes through 2-nitrophenyl octyl ether, used as the supported liquid membrane, into a neutral aqueous solution. This method required 20 min extraction time from a neutral sample solution. The proposed microextraction technique provided good linearity with correlation coefficients from 0.996 to 0.998 over a concentration range of 1.0-1000.0 ng/mL. The LODs of dyes were 0.30-0.75 ng/mL, while the reproducibility ranged from 6.7 to 12.9% (n = 6). Also, enrichment factors of 96-162 that corresponded to the recoveries ranging from 48 to 81% were achieved. Finally, the application of this new method was demonstrated on wastewater samples and some plants grown in contaminated environments. Excellent selectivity was obtained as no interfering peaks were detected. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Quantitative Determining of Ultra-Trace Aluminum Ion in Environmental Samples by Liquid Phase Microextraction Assisted Anodic Stripping Voltammetry.

    PubMed

    Zhang, Liuyang; Luo, Jinju; Shen, Xinyu; Li, Chunya; Wang, Xian; Nie, Bei; Fang, Huaifang

    2018-05-10

    Direct detecting of trace amount Al(III) in aqueous solution by stripping voltammetry is often frustrated by its irreversible reduction, resided at −1.75 V (vs. Ag/AgCl reference), which is in a proximal potential of proton reduction. Here, we described an electroanalytical approach, combined with liquid phase microextraction (LPME) using ionic liquid (IL), to quantitatively assess trace amount aluminum in environmental samples. The Al(III) was caged by 8-hydroxyquinoline, forming a superb hydrophobic metal⁻chelate, which sequentially transfers and concentrates in the bottom layer of IL-phase during LPME. The preconcentrated Al(III) was further analyzed by a square-wave anodic stripping voltammetry (SW-ASV). The resulting Al-deposited electrodes were characterized by scanning electron microscopy and powder X-ray diffraction, showing the intriguing amorphous nanostructures. The method developed provides a linear calibration ranging from 0.1 to 1.2 ng L −1 with a correlation coefficient of 0.9978. The LOD attains as low as 1 pmol L −1 , which reaches the lowest report for Al(III) detection using electroanalytical techniques. The applicable methodology was implemented for monitoring Al(III) in commercial distilled water.

  7. Solid-phase micro-extraction procedure for the determination of 1,3-dichloro-2-propanol in water by on-fibre derivatisation with bis(trimethylsilyl)trifluoroacetamide.

    PubMed

    Carro, Antonia María; González, Paula; Fajar, Noelia; Lorenzo, Rosa Antonia; Cela, Rafael

    2009-06-01

    The headspace solid-phase micro-extraction technique with on-fibre derivatisation followed by gas chromatography-tandem mass spectrometry has been evaluated for the analysis of 1,3-dichloro-2-propanol in water. An asymmetric factorial design has been performed to study the influence of five experimental factors: extraction time and temperature, derivatisation time and temperature and pH. The best extraction performance is achieved in the headspace mode, with 5 mL stirred water samples (pH 4) containing 1.3 g of NaCl, equilibrated for 30 min at 25 degrees C, using divinylbenzene-carboxen-polydimethylsiloxane as the fibre coating. On-fibre derivatisation has been used for the first time with 50 microL of bis(trimethylsilyl)trifluoroacetamide at 25 degrees C during 15 min, leading to effective yields. The proposed method provides high sensitivity, good linearity and repeatability (relative standard deviation of 5.1% for 10 ng mL(-1) and n = 5). The limits of detection and quantification were 0.4 and 1.4 ng mL(-1), respectively. Analytical recoveries obtained for different water samples were approx. 100%.

  8. Flotation/ultrasound-assisted microextraction followed by HPLC for determination of fat-soluble vitamins in multivitamin pharmaceutical preparations.

    PubMed

    Shahdousti, Parvin; Aghamohammadi, Mohammad

    2018-04-01

    Dissolved carbon dioxide flotation-emulsification microextraction technique coupled with high-performance liquid chromatography was developed for separation and determination of fat-soluble vitamins (A, D 3 , E, and K 3 ) in multivitamin pharmaceutical preparations. Dissolved carbon dioxide flotation was used to break up the emulsion of extraction solvent in water and to collect the extraction solvent on the surface of aqueous sample in narrowed capillary part of extraction cell. Carbon dioxide bubbles were generated in situ through the addition of 300 μL of concentrated hydrochloric acid into the alkaline sample solution at pH = 11.5 (1% w/v sodium carbonate), which was sonicated to intensify the carbon dioxide bubble generation. Several factors affecting the extraction process were optimized. Under the optimal conditions, the limits of detection were 0.11, 0.47, 0.20 and 0.35 μg/L for A, E, D 3 , and K 3 vitamins in water samples, respectively. The inter-day and intra-day precision of the proposed method were evaluated in terms of the relative standard deviation and were <10.5%. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A method to detect diphenylamine contamination of apple fruit and storages using headspace solid phase micro-extraction and gas chromatography/mass spectroscopy.

    PubMed

    Song, Jun; Forney, Charles F; Jordan, Michael A

    2014-10-01

    Analysis of headspace concentrations of diphenylamine using solid phase micro-extraction (SPME) was examined for its suitability to detect DPA contamination and off-gassing in apple (Malus domestica) fruit, storage rooms and storage materials. Four SPME fibre coatings including polydimethylsiloxane (PDMS, 100 μm), PDMS/divinylbenzene (PDMS/DVB), Polyacrylate (PA) and PDMS 7 μm were evaluated. The average limits of detection and of quantification for head space DPA ranged from 0.13 to 0.72 μg L(-1) and 0.42 to 2.35 μg L(-1), respectively. Polyacrylate was identified to be the most suitable and compatible fibre for DPA analysis in apple samples, because of its high sensitivity to DPA and low fruit volatile interferences. SPME techniques were further applied to study contamination of DPA in apples, storage rooms and packaging materials. DPA was found in the air of storage rooms containing apples that were not treated with DPA. Wood and plastic bin material, bin liners, and foam insulation all adsorbed and off-gassed DPA and could be potential sources of contamination of untreated apples. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  10. Dispersive liquid-liquid microextraction for the determination of nitrophenols in soils by microvial insert large volume injection-gas chromatography-mass spectrometry.

    PubMed

    Cacho, J I; Campillo, N; Viñas, P; Hernández-Córdoba, M

    2016-07-22

    A rapid and sensitive procedure for the determination of six NPs in soils by gas chromatography and mass spectrometry (GC-MS) is proposed. Ultrasound assisted extraction (UAE) is used for NP extraction from soil matrices to an organic solvent, while the environmentally friendly technique dispersive liquid-liquid microextraction (DLLME) is used for the preconcentration of the resulting UAE extracts. NPs were derivatized by applying an "in-situ" acetylation procedure, before being injected into the GC-MS system using microvial insert large volume injection (LVI). Several parameters affecting UAE, DLLME, derivatization and injection steps were investigated. The optimized procedure provided recoveries of 86-111% from spiked samples. Precision values of the procedure (expressed as relative standard deviation, RSD) lower than 12%, and limits of quantification ranging from 1.3 to 2.6ngg(-1), depending on the compound, were obtained. Twenty soil samples, obtained from military, industrial and agricultural areas, were analyzed by the proposed method. Two of the analytes were quantified in two of the samples obtained from industrial areas, at concentrations in the 4.8-9.6ngg(-1) range. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. SIMPLE METHOD FOR ESTIMATING POLYCHLORINATED BIPHENYL CONCENTRATIONS ON SOILS AND SEDIMENTS USING SUBCRITICAL WATER EXTRACTION COUPLED WITH SOLID-PHASE MICROEXTRACTION. (R825368)

    EPA Science Inventory

    A rapid method for estimating polychlorinated biphenyl (PCB) concentrations in contaminated soils and sediments has been developed by coupling static subcritical water extraction with solid-phase microextraction (SPME). Soil, water, and internal standards are placed in a seale...

  12. Dispersive liquid-liquid microextraction combined with microwave-assisted derivatization for determining lipoic acid and its metabolites in human urine.

    PubMed

    Tsai, Chia-Ju; Chen, Yen-Ling; Feng, Chia-Hsien

    2013-10-04

    This study explored dispersive liquid-liquid microextraction for extraction and concentration of lipoic acid in human urine. To improve the detection of lipoic acid by both capillary liquid chromatography (CapLC) with UV detection and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), microwave-assisted derivatization with 4-bromomethyl-6,7-dimethoxycoumarin was performed to render lipoic acid chromophores for UV detection and also high ionization efficiency in MALDI. All parameters that affected lipoic acid extraction and derivatization from urine were investigated and optimized. In the analyses of human urine samples, the two methods had a linear range of 0.1-20 μM with a correlation coefficient of 0.999. The detection limits of CapLC-UV and MALDI-TOF MS were 0.03 and 0.02 μM (S/N ≧ 3), respectively. The major metabolites of lipoic acid, including 6,8-bismethylthio-octanoic acid, 4,6-bismethylthio-hexanoic acid, and 2,4-bismethylthio-butanoic acid were also extracted by dispersive liquid-liquid microextraction and detected by MALDI-TOF MS. The minor metabolites (undetectable by MALDI-TOF MS), bisnorlipoic acid and tetranorlipoic acid were also extracted by dispersive liquid-liquid microextraction and identified with an LTQ Orbitrap mass spectrometer. After dispersive liquid-liquid microextraction and microwave-assisted derivatization, all lipoic acid derivatizations and metabolites were structurally confirmed by LTQ Orbitrap. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Rapid determination of 54 pharmaceutical and personal care products in fish samples using microwave-assisted extraction-Hollow fiber-Liquid/solid phase microextraction.

    PubMed

    Zhang, Yi; Guo, Wen; Yue, Zhenfeng; Lin, Li; Zhao, Fengjuan; Chen, Peijin; Wu, Weidong; Zhu, Hong; Yang, Bo; Kuang, Yanyun; Wang, Jiong

    2017-04-15

    In this paper, a simple, rapid, solvent-less and environmental friendliness microextraction method, microwave-assisted extraction-hollow fiber-liquid/solid phase microextraction (MAE-HF-L/SME), was developed for simultaneous extraction and enrichment of 54 trace hydrophilic/lipophilic pharmaceutical and personal care products (PPCPs) from fish samples. A solid-phase extraction material, solid-phase microextraction (SPME) fiber, was synthesized. The SPME fiber had a homogeneous, loose structure and good mechanical properties, and they exhibited a good adsorption capacity for most PPCPs selected. The material formed the basis for the method of MAE-HF-L/SME. A method of liquid chromatography-high resolution mass spectroscopy (LC-HRMS) for analysis of 54 PPCPs. Under optimal synthesis and extraction conditions, the limits of detection (LODs, n=3) and the limits of quantitation (LOQs, n=10) for the 54 PPCPs were between 0.01-0.50μg·kg -1 and 0.052.00μg·kg -1 , respectively. Percent recoveries and the relative standard deviations (RSDs) in spiked fish samples (n=6) were between 56.3%-119.9% and 0.3%-17.1%, respectively. The microextraction process of 54 PPCPs in MAE-HF-L/SME took approximately 12min. The method has a low matrix interference and high enrichment factor and may be applicable for determination of 54 different PPCPs in fish samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Layered double hydroxide films on nanoporous anodic aluminum oxide/aluminum wire: a new fiber for rapid analysis of Origanum vulgare essential oils.

    PubMed

    Piryaei, Marzieh

    2018-01-01

    Zn/Al layered double hydroxide (LDH) films were fabricated in situ with anodic aluminium oxide aluminium as both the substrate and the sole aluminium source by means of urea hydrolysis. Headspace solid phase microextraction using LDH fibre in combination with capillary GC-MS was utilised as a monitoring technique for the collection and detection of the volatile compounds of Origanum vulgare. Experimental parameters, including the sample weight, microwave power, extraction time and humidity effect, were examined and optimised.

  15. New trends in beer flavour compound analysis.

    PubMed

    Andrés-Iglesias, Cristina; Montero, Olimpio; Sancho, Daniel; Blanco, Carlos A

    2015-06-01

    As the beer market is steadily expanding, it is important for the brewing industry to offer consumers a product with the best organoleptic characteristics, flavour being one of the key characteristics of beer. New trends in instrumental methods of beer flavour analysis are described. In addition to successfully applied methods in beer analysis such as chromatography, spectroscopy, nuclear magnetic resonance, mass spectrometry or electronic nose and tongue techniques, among others, sample extraction and preparation such as derivatization or microextraction methods are also reviewed. © 2014 Society of Chemical Industry.

  16. An unusual and persistent contamination of drinking water by cutting oil.

    PubMed

    Rella, R; Sturaro, A; Parvoli, G; Ferrara, D; Doretti, L

    2003-02-01

    Drinking water contamination by materials, such as cutting oil, used to set up pipelines is an uncommon but possible event. This paper describes the analytical procedures used to identify the components of that contaminant in drinking water. Volatile and semi-volatile chemical species, responsible for an unpleasant taste and odour, were recognised by solid phase microextraction and GC/MS techniques. Among the volatile compounds, the presence of xylenes, bornyl acetate and diphenyl ether was confirmed by certificate standards and quantified in the most contaminated samples.

  17. Porous organic polymers with different pore structures for sensitive solid-phase microextraction of environmental organic pollutants.

    PubMed

    Huang, Zhoubing; Liu, Shuqin; Xu, Jianqiao; Yin, Li; Zheng, Juan; Zhou, Ningbo; Ouyang, Gangfeng

    2017-10-09

    Adsorption capacity is the major sensitivity-limited factor in solid-phase microextraction. Due to its light-weight properties, large specific surface area and high porosity, especially tunable pore structures, the utilization of porous organic polymers as solid-phase microextraction adsorbents has attracting researchers' attentions. However, these works mostly concentrated on the utilization of specific porous organic polymers for preparing high-performance solid-phase microextraction coatings. The relationship between pore structures and adsorption performance of the porous organic polymers still remain unclear. Herein, three porous organic polymers with similar properties but different pore distributions were prepared by condensation polymerization reaction of phloroglucinol and terephthalaldehyde, which were fabricated as solid-phase microextraction coatings subsequently. The adsorption capacity of the porous organic polymers-coated fibers were evaluated by using benzene and its derivatives (i.e.,benzene, toluene, ethylbenzene and m-xylene) and polycyclic aromatic hydrocarbons as the target analytes. The results showed that the different adsorption performance of these porous organic polymers was mainly caused by their different pore volumes instead of their surface areas or pore sizes. Finally, the proposed method by using the mesoporous organic polymer coating was successfully applied to the determination of benzene and its derivatives in environmental water samples. As for analytical performance, high pre-concentration factors (74-2984), satisfactory relative recoveries (94.5 ± 18.5-116.9 ± 12.5%), intraday precision (2.44-5.34%), inter-day precision (4.62-7.02%), low limit of detections (LODs, 0.10-0.29 ng L -1 ) and limit of quantifications (LOQs, 0.33-0.96 ng L -1 ) were achieved under the optimal conditions. This study provides an important idea in the rational design of porous organic polymers for solid-phase microextraction or other adsorption applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. SOLID-PHASE MICROEXTRACTION WITH PH ADJUSTMENT FOR THE DETERMINATION OF AROMATIC ACIDS AND BASES IN WATER. (R825368)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  19. Two-step liquid phase microextraction combined with capillary electrophoresis: a new approach to simultaneous determination of basic and zwitterionic compounds.

    PubMed

    Nojavan, Saeed; Moharami, Arezoo; Fakhari, Ali Reza

    2012-08-01

    In this work, two-step hollow fiber-based liquid-phase microextraction procedure was evaluated for extraction of the zwitterionic cetirizine (CTZ) and basic hydroxyzine (HZ) in human plasma. In the first step of extraction, the pH of sample was adjusted at 5.0 in order to promote liquid-phase microextraction of the zwitterionic CTZ. In the second step, the pH of sample was increased up to 11.0 for extraction of basic HZ. In this procedure, the extraction times for the first and the second steps were 30 and 20 min, respectively. Owing to the high ratio between the volumes of donor phase and acceptor phase, CTZ and HZ were enriched by factors of 280 and 355, respectively. The linearity of the analytical method was investigated for both compounds in the range of 10-500 ng mL(-1) (R(2) > 0.999). Limit of quantification (S/N = 10) for CTZ and HZ was 10 ng mL(-1) , while the limit of detection was 3 ng mL(-1) for both compounds at a signal to noise ratio of 3:1. Intraday and interday relative standard deviations (RSDs, n = 6) were in the range of 6.5-16.2%. This procedure enabled CTZ and HZ to be analyzed simultaneously by capillary electrophoresis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Simultaneous extraction and quantification of lamotrigine, phenobarbital, and phenytoin in human plasma and urine samples using solidified floating organic drop microextraction and high-performance liquid chromatography.

    PubMed

    Asadi, Mohammad; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Abbasi, Bijan

    2015-07-01

    A novel and simple method based on solidified floating organic drop microextraction followed by high-performance liquid chromatography with ultraviolet detection has been developed for simultaneous preconcentration and determination of phenobarbital, lamotrigine, and phenytoin in human plasma and urine samples. Factors affecting microextraction efficiency such as the type and volume of the extraction solvent, sample pH, extraction time, stirring rate, extraction temperature, ionic strength, and sample volume were optimized. Under the optimum conditions (i.e. extraction solvent, 1-undecanol (40 μL); sample pH, 8.0; temperature, 25°C; stirring rate, 500 rpm; sample volume, 7 mL; potassium chloride concentration, 5% and extraction time, 50 min), the limits of detection for phenobarbital, lamotrigine, and phenytoin were 1.0, 0.1, and 0.3 μg/L, respectively. Also, the calibration curves for phenobarbital, lamotrigine, and phenytoin were linear in the concentration range of 2.0-300.0, 0.3-200.0, and 1.0-200.0 μg/L, respectively. The relative standard deviations for six replicate extractions and determinations of phenobarbital, lamotrigine, and phenytoin at 50 μg/L level were less than 4.6%. The method was successfully applied to determine phenobarbital, lamotrigine, and phenytoin in plasma and urine samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comparison of solidification of floating drop and homogenous liquid-liquid microextractions for the extraction of two plasticizers from the water kept in PET-bottles.

    PubMed

    Yamini, Yadollah; Ghambarian, Mahnaz; Khalili-Zanjani, Mohammad Reza; Faraji, Mohammad; Shariati, Shahab

    2009-09-01

    Two approaches based on solidification of floating drop microextraction (SFDME) and homogenous liquid-liquid microextraction (HLLE) were compared for the extraction and preconcentration of di-(2-ethylhexyl) phthalate (DEHP) and di-(2-ethylhexyl) adipate (DEHA) from the mineral water samples. In SFDME, a floated drop of the mixture of acetophenone/1-undecanol (1:8) was exposed on the surface of the aqueous solution and extraction was permitted to occur. In HLLE, a homogenous ternary solvent system was used by water/methanol/chloroform and the phase separation phenomenon occurred by salt addition. Under the optimal conditions, the LODs for the two target plasticizers (DEHA and DEHP), obtained by SFDME-GC-FID and HLLE-GC-FID, were ranged from 0.03 to 0.01 microg/L and 0.02 to 0.01 microg/L, respectively. HLLE provided higher preconcentration factors (472.5- and 551.2-fold) within the shorter extraction time as well as better RSDs (4.5-6.9%). While, in SFDME, high preconcentration factors in the range of 162-198 and good RSDs in the range of 5.2-9.6% were obtained. Both methods were applied for the analysis of two plasticizers in different water samples and two target plasticizers were found in the bottled mineral water after the expiring time and the boiling water was exposed to a polyethylene vial.

  2. Application of a surfactant-assisted dispersive liquid-liquid microextraction method along with central composite design for micro-volume based spectrophotometric determination of low level of Cr(VI) ions in aquatic samples.

    PubMed

    Sobhi, Hamid Reza; Azadikhah, Efat; Behbahani, Mohammad; Esrafili, Ali; Ghambarian, Mahnaz

    2018-05-09

    A fast, simple, low cost surfactant-assisted dispersive liquid-liquid microextraction method along with central composite design for the determination of low level of Cr(VI) ions in several aquatic samples has been developed. Initially, Cr(VI) ions present in the aqueous sample were readily reacted with 1,5‑diphenylcarbazide (DPC) in acidic medium through complexation. Sodium dodecyl sulfate (SDS), as an anionic surfactant, was then employed as an ion-pair agent to convert the cationic complex into the neutral one. Following on, the whole aqueous phase underwent a dispersive liquid-liquid microextraction (DLLME) leading to the transfer of the neutral complex into the fine droplet of organic extraction phase. A micro-volume spectrophotometer was used to determine Cr(VI) concentrations. Under the optimized conditions predicted by the statistical design, the limit of quantification (LOQ) obtained was reported to be 5.0 μg/L, and the calibration curve was linear over the concentration range of 5-100 μg/L. Finally, the method was successfully implemented for the determination of low levels of Cr(VI) ions in various real aquatic samples and the accuracies fell within the range of 83-102%, while the precision varied in the span of 1.7-5.2%. Copyright © 2018. Published by Elsevier B.V.

  3. Characterization of the volatile components in green tea by IRAE-HS-SPME/GC-MS combined with multivariate analysis.

    PubMed

    Yang, Yan-Qin; Yin, Hong-Xu; Yuan, Hai-Bo; Jiang, Yong-Wen; Dong, Chun-Wang; Deng, Yu-Liang

    2018-01-01

    In the present work, a novel infrared-assisted extraction coupled to headspace solid-phase microextraction (IRAE-HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) was developed for rapid determination of the volatile components in green tea. The extraction parameters such as fiber type, sample amount, infrared power, extraction time, and infrared lamp distance were optimized by orthogonal experimental design. Under optimum conditions, a total of 82 volatile compounds in 21 green tea samples from different geographical origins were identified. Compared with classical water-bath heating, the proposed technique has remarkable advantages of considerably reducing the analytical time and high efficiency. In addition, an effective classification of green teas based on their volatile profiles was achieved by partial least square-discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). Furthermore, the application of a dual criterion based on the variable importance in the projection (VIP) values of the PLS-DA models and on the category from one-way univariate analysis (ANOVA) allowed the identification of 12 potential volatile markers, which were considered to make the most important contribution to the discrimination of the samples. The results suggest that IRAE-HS-SPME/GC-MS technique combined with multivariate analysis offers a valuable tool to assess geographical traceability of different tea varieties.

  4. Analysis of Listeria using exogenous volatile organic compound metabolites and their detection by static headspace-multi-capillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS).

    PubMed

    Taylor, Carl; Lough, Fraser; Stanforth, Stephen P; Schwalbe, Edward C; Fowlis, Ian A; Dean, John R

    2017-07-01

    Listeria monocytogenes is a Gram-positive bacterium and an opportunistic food-borne pathogen which poses significant risk to the immune-compromised and pregnant due to the increased likelihood of acquiring infection and potential transmission of infection to the unborn child. Conventional methods of analysis suffer from either long turn-around times or lack the ability to discriminate between Listeria spp. reliably. This paper investigates an alternative method of detecting Listeria spp. using two novel enzyme substrates that liberate exogenous volatile organic compounds in the presence of α-mannosidase and D-alanyl aminopeptidase. The discriminating capabilities of this approach for identifying L. monocytogenes from other species of Listeria are investigated. The liberated volatile organic compounds (VOCs) are detected using an automated analytical technique based on static headspace-multi-capillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS). The results obtained by SHS-MCC-GC-IMS are compared with those obtained by the more conventional analytical technique of headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results found that it was possible to differentiate between L. monocytogenes and L. ivanovii, based on their VOC response from α-mannosidase activity.

  5. Analysis of ecstasy in oral fluid by ion mobility spectrometry and infrared spectroscopy after liquid-liquid extraction.

    PubMed

    Armenta, Sergio; Garrigues, Salvador; de la Guardia, Miguel; Brassier, Judit; Alcalà, Manel; Blanco, Marcelo

    2015-03-06

    We developed and evaluated two different strategies for determining abuse drugs based on (i) the analysis of saliva by ion mobility spectrometry (IMS) after thermal desorption and (ii) the joint use of IMS and infrared (IR) spectroscopy after liquid-liquid microextraction (LLME) to enable the sensitivity-enhanced detection and double confirmation of ecstasy (MDMA) abuse. Both strategies proved effective for the intended purpose. Analysing saliva by IMS after thermal desorption, which provides a limit of detection (LOD) of 160μgL(-1), requires adding 0.2M acetic acid to the sample and using the truncated negative second derivative of the ion mobility spectrum. The joint use of IMS and IR spectroscopy after LLME provides an LOD of 11μgL(-1) with the former technique and 800μgL(-1) with the latter, in addition to a limit of confirmation (LOC) of 1.5mgL(-1). Using IMS after thermal desorption simplifies the operational procedure, and using it jointly with IR spectroscopy after LLME allows double confirmation of MDMA abuse with two techniques based on different principles (viz., IMS drift times and IR spectra). Also, it affords on-site analyses, albeit at a lower throughput. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Characterization of the volatile components in green tea by IRAE-HS-SPME/GC-MS combined with multivariate analysis

    PubMed Central

    Yin, Hong-Xu; Yuan, Hai-Bo; Jiang, Yong-Wen; Dong, Chun-Wang; Deng, Yu-Liang

    2018-01-01

    In the present work, a novel infrared-assisted extraction coupled to headspace solid-phase microextraction (IRAE-HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) was developed for rapid determination of the volatile components in green tea. The extraction parameters such as fiber type, sample amount, infrared power, extraction time, and infrared lamp distance were optimized by orthogonal experimental design. Under optimum conditions, a total of 82 volatile compounds in 21 green tea samples from different geographical origins were identified. Compared with classical water-bath heating, the proposed technique has remarkable advantages of considerably reducing the analytical time and high efficiency. In addition, an effective classification of green teas based on their volatile profiles was achieved by partial least square-discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). Furthermore, the application of a dual criterion based on the variable importance in the projection (VIP) values of the PLS-DA models and on the category from one-way univariate analysis (ANOVA) allowed the identification of 12 potential volatile markers, which were considered to make the most important contribution to the discrimination of the samples. The results suggest that IRAE-HS-SPME/GC-MS technique combined with multivariate analysis offers a valuable tool to assess geographical traceability of different tea varieties. PMID:29494626

  7. Freeze-thaw method improves the detection of volatile compounds in insects using Headspace Solid-Phase Microextraction (HS-SPME)

    USDA-ARS?s Scientific Manuscript database

    Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography–mass spectrometry (GC-MS) is commonly used in analyzing insect volatiles. In order to improve the detection of volatiles in insects, a freeze-thaw method was applied to insect samples before the HS-SPME-GC-MS analysis. ...

  8. Liquid-liquid microextraction of synthetic pigments in beverages using a hydrophobic deep eutectic solvent.

    PubMed

    Zhu, Shuqiang; Zhou, Jia; Jia, Hongfang; Zhang, Haixia

    2018-03-15

    A method was developed for the determination of eight synthetic pigments in beverage samples by liquid-liquid microextraction followed by high performance liquid chromatography. Using hydrophobic deep eutectic solvent (DES) as the microextraction solvent, several key parameters were optimized, including the type and volume of the hydrophobic DES, pH value, vortex time and salt content. Detection limits were in the range 0.016-1.12 ng/mL, recoveries were in the range 74.5-102.5% and relative standard deviations were <5.4%. The method is simple, green and practical, and could be applied to the extraction and determination of synthetic pigments in beverages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Magnetomotive room temperature dicationic ionic liquid: a new concept toward centrifuge-less dispersive liquid-liquid microextraction.

    PubMed

    Beiraghi, Asadollah; Shokri, Masood; Seidi, Shahram; Godajdar, Bijan Mombani

    2015-01-09

    A new centrifuge-less dispersive liquid-liquid microextraction technique based on application of magnetomotive room temperature dicationic ionic liquid followed by electrothermal atomic absorption spectrometry (ETAAS) was developed for preconcentration and determination of trace amount of gold and silver in water and ore samples, for the first time. Magnetic ionic liquids not only have the excellent properties of ionic liquids but also exhibit strong response to an external magnetic field. These properties provide more advantages and potential application prospects for magnetic ionic liquids than conventional ones in the fields of extraction processes. In this work, thio-Michler's ketone (TMK) was used as chelating agent to form Ag/Au-TMK complexes. Several important factors affecting extraction efficiency including extraction time, rate of vortex agitator, pH of sample solution, concentration of the chelating agent, volume of ionic liquid as well as effects of interfering species were investigated and optimized. Under the optimal conditions, the limits of detection (LOD) were 3.2 and 7.3ngL(-1) with the preconcentration factors of 245 and 240 for Au and Ag, respectively. The precision values (RSD%, n=7) were 5.3% and 5.8% at the concentration level of 0.05μgL(-1) for Au and Ag, respectively. The relative recoveries for the spiked samples were in the acceptable range of 96-104.5%. The results demonstrated that except Hg(2+), no remarkable interferences are created by other various ions in the determination of Au and Ag, so that the tolerance limits (WIon/WAu or Ag) of major cations and anions were in the range of 250-1000. The validated method was successfully applied for the analysis of Au and Ag in some water and ore samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Sensitive and simple determination of zwitterionic morphine in human urine based on liquid-liquid micro-extraction coupled with surface-enhanced Raman spectroscopy.

    PubMed

    Yu, Borong; Cao, Chentai; Li, Pan; Mao, Mei; Xie, Qiwen; Yang, Liangbao

    2018-08-15

    Morphine, a kind of illicit drugs, is also one of the main heroin metabolites. In consideration of a noninvasive way to monitor and identify drug abuse during forensic cases, the urine samples are usually detected. Here, colloidal gold nanorods (Au NRs) were introduced to act as active substrate, because of the strong optical extinction and spectral tunability of the longitudinal surface plasmon resonance (SPR). Thus, well surface-enhanced Raman spectra of morphine even at low concentrations could be obtained by portable Raman spectrometer. For the complex matrix environment of urine, liquid-liquid micro-extraction (LLME), a simple and inexpensive pretreatment, was employed to avoid the interferences. And then, the coupled surface-enhanced Raman spectroscopy (SERS) can give full play to the advantages of high sensitivity and unique spectroscopic fingerprint. According to the zwitterionic structure and physicochemical parameters of morphine molecules, the pH value of urine sample was adjusted to about 9 by buffer solution (KOH/NaB 4 O 7 ) and the mixture of chloroform and isopropyl alcohol (V/V=9:1) was chosen as extractant. Moreover, such pretreatment was proved to be appropriate for separation and concentration of morphine from urine. The developed LLME-SERS method could provide a detection limit less than 1 ppm in the human urine environment and the whole process of detection just needed take 5-6 min. What's more, the results of urine samples from heroin users exhibited application value of the proposed technique. The excellent performance makes it promising to become a rapid, reliable, and on-spot analyzer, especially for public safety and healthcare. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Development and optimization of a solid-phase microextraction gas chromatography-tandem mass spectrometry methodology to analyse ultraviolet filters in beach sand.

    PubMed

    Vila, Marlene; Llompart, Maria; Garcia-Jares, Carmen; Homem, Vera; Dagnac, Thierry

    2018-06-06

    A methodology based on solid-phase microextraction (SPME) followed by gas chromatography-tandem mass spectrometry (GC-MS/MS) has been developed for the simultaneous analysis of eleven multiclass ultraviolet (UV) filters in beach sand. To the best of our knowledge, this is the first time that this extraction technique is applied to the analysis of UV filters in sand samples, and in other kind of environmental solid samples. Main extraction parameters such as the fibre coating, the amount of sample, the addition of salt, the volume of water added to the sand, and the temperature were optimized. An experimental design approach was implemented in order to find out the most favourable conditions. The final conditions consisted of adding 1 mL of water to 1 g of sample followed by the headspace SPME for 20 min at 100 °C, using PDMS/DVB as fibre coating. The SPME-GC-MS/MS method was validated in terms of linearity, accuracy, limits of detection and quantification, and precision. Recovery studies were also performed at three concentration levels in real Atlantic and Mediterranean sand samples. The recoveries were generally above 85% and relative standard deviations below 11%. The limits of detection were in the pg g -1 level. The validated methodology was successfully applied to the analysis of real sand samples collected from Atlantic Ocean beaches in the Northwest coast of Spain and Portugal, Canary Islands (Spain), and from Mediterranean Sea beaches in Mallorca Island (Spain). The most frequently found UV filters were ethylhexyl salicylate (EHS), homosalate (HMS), 4-methylbenzylidene camphor (4MBC), 2-ethylhexyl methoxycinnamate (2EHMC) and octocrylene (OCR), with concentrations up to 670 ng g -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Application of derivative and derivative ratio spectrophotometry to simultaneous trace determination of rhodamine B and rhodamine 6G after dispersive liquid-liquid microextraction.

    PubMed

    Xiao, Ni; Deng, Jian; Huang, Kaihui; Ju, Saiqin; Hu, Canhui; Liang, Jun

    2014-07-15

    Two novel methods, first derivative spectrophotometric method ((1)D) and first derivative ratio spectrophotometric method ((1)DR), have been developed for the simultaneous trace determination of rhodamine B (RhB) and rhodamine 6G (Rh6G) in food samples after dispersive liquid-liquid microextraction (DLLME). The combination of derivative spectrophotometric techniques and DLLME procedure endows the presented methods with enhanced sensitivity and selectivity. Under optimum conditions, the linear calibration curves ranged from 5 to 450 ng mL(-1), with the correlation coefficients (r) of 0.9997 for RhB and 0.9977 for Rh6G by (1)D method, and 0.9987 for RhB and 0.9958 for Rh6G by (1)DR method, respectively. The calculated limits of detection (LODs) based on the variability of the blank solutions (S/N = 3 criterion) for 11 measurements were in the range of 0.48-1.93 ng mL(-1). The recoveries ranged from 88.1% to 111.6% (with RSD less than 4.4%) and 91.5-110.5% (with RSD less than 4.7%) for (1)D and (1)DR method, respectively. The influence of interfering substances such as foreign ions and food colorants which might be present in the food samples on the signals of RhB and Rh6G was examined. The developed methods have been successfully applied to the determination of RhB and Rh6G in black tea, red wine and chilli powder samples with the characteristics of simplicity, cost-effectiveness, environmental friendliness, and could be valuable for routine analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Development of a Efficient and Sensitive Dispersive Liquid–Liquid Microextraction Technique for Extraction and Preconcentration of 10 β2-Agonists in Animal Urine

    PubMed Central

    2015-01-01

    Dispersive liquid–liquid microextraction (DLLME) coupled with ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) was developed for the extraction and determination of 10 β2-agonists in animal urine. Some experimental parameters, such as the type and volume of the extraction solvent, the concentration of the dispersant, the salt concentration, the pH value of the sample solution, the extraction time and the speed of centrifugation, were investigated and optimized. Under the optimized conditions, a good enrichment factors (4.8 to 32.3) were obtained for the extraction. The enrichment factor show that the concentration rate of DLLME is significantly higher than other pretreatment methods, and the detection sensitivity has been greatly improved. The calibration curves were linear, the correlation coefficient ranged from 0.9928 to 0.9999 for the concentration range of 0.05 to 50 ngmL-1 and 0.1 to 50 ngmL-1, and the relative standard deviations (RSDs, n = 15, intra and inter-day precision) at a concentration of 5 ngmL-1 were in the range of 1.8 to 14.6%. The limits of detection (LODs) for the 10 β2-agonists, based on a signal-to-noise ratio (S/N) of 3, were in the range of 0.01 to 0.03 ngmL-1. The proposed method was used to identify β2-agonists in three types of animal urine (swine, cattle, sheep), and the relative recoveries from each matrix were in the range of 89.2 to 106.8%, 90.0 to 109.8% and 89.2 to 107.2%, respectively. PMID:26348922

  14. Application of derivative and derivative ratio spectrophotometry to simultaneous trace determination of rhodamine B and rhodamine 6G after dispersive liquid-liquid microextraction

    NASA Astrophysics Data System (ADS)

    Xiao, Ni; Deng, Jian; Huang, Kaihui; Ju, Saiqin; Hu, Canhui; Liang, Jun

    2014-07-01

    Two novel methods, first derivative spectrophotometric method (1D) and first derivative ratio spectrophotometric method (1DR), have been developed for the simultaneous trace determination of rhodamine B (RhB) and rhodamine 6G (Rh6G) in food samples after dispersive liquid-liquid microextraction (DLLME). The combination of derivative spectrophotometric techniques and DLLME procedure endows the presented methods with enhanced sensitivity and selectivity. Under optimum conditions, the linear calibration curves ranged from 5 to 450 ng mL-1, with the correlation coefficients (r) of 0.9997 for RhB and 0.9977 for Rh6G by 1D method, and 0.9987 for RhB and 0.9958 for Rh6G by 1DR method, respectively. The calculated limits of detection (LODs) based on the variability of the blank solutions (S/N = 3 criterion) for 11 measurements were in the range of 0.48-1.93 ng mL-1. The recoveries ranged from 88.1% to 111.6% (with RSD less than 4.4%) and 91.5-110.5% (with RSD less than 4.7%) for 1D and 1DR method, respectively. The influence of interfering substances such as foreign ions and food colorants which might be present in the food samples on the signals of RhB and Rh6G was examined. The developed methods have been successfully applied to the determination of RhB and Rh6G in black tea, red wine and chilli powder samples with the characteristics of simplicity, cost-effectiveness, environmental friendliness, and could be valuable for routine analysis.

  15. Amine-functionalized MIL-53(Al)-coated stainless steel fiber for efficient solid-phase microextraction of synthetic musks and organochlorine pesticides in water samples.

    PubMed

    Xie, Lijun; Liu, Shuqin; Han, Zhubing; Jiang, Ruifen; Zhu, Fang; Xu, Weiqin; Su, Chengyong; Ouyang, Gangfeng

    2017-09-01

    The fiber coating is the key part of the solid-phase microextraction (SPME) technique, and it determines the sensitivity, selectivity, and repeatability of the analytical method. In this work, amine (NH 2 )-functionalized material of Institute Lavoisier (MIL)-53(Al) nanoparticles were successfully synthesized, characterized, and applied as the SPME fiber coating for efficient sample pretreatment owing to their unique structures and excellent adsorption properties. Under optimized conditions, the NH 2 -MIL-53(Al)-coated fiber showed good precision, low limits of detection (LODs) [0.025-0.83 ng L -1 for synthetic musks (SMs) and 0.051-0.97 ng L -1 for organochlorine pesticides (OCPs)], and good linearity. Experimental results showed that the NH 2 -MIL-53(Al) SPME coating was solvent resistant and thermostable. In addition, the extraction efficiencies of the NH 2 -MIL-53(Al) coating for SMs and OCPs were higher than those of commercially available SPME fiber coatings such as polydimethylsiloxane, polydimethylsiloxane-divinylbenzene, and polyacrylate. The reasons may be that the analytes are adsorbed on NH 2 -MIL-53(Al) primarily through π-π interactions, electron donor-electron acceptor interactions, and hydrogen bonds between the analytes and organic linkers of the material. Direct immersion (DI) SPME-gas chromatography-mass spectrometry methods based on NH 2 -MIL-53(Al) were successfully applied for the analysis of tap and river water samples. The recoveries were 80.3-115% for SMs and 77.4-117% for OCPs. These results indicate that the NH 2 -MIL-53(Al) coating may be a promising alternative to SPME coatings for the enrichment of SMs and OCPs.

  16. Field measurements of biogenic volatile organic compounds in the atmosphere using solid-phase microextraction Arrow

    NASA Astrophysics Data System (ADS)

    Feijó Barreira, Luís Miguel; Duporté, Geoffroy; Rönkkö, Tuukka; Parshintsev, Jevgeni; Hartonen, Kari; Hyrsky, Lydia; Heikkinen, Enna; Jussila, Matti; Kulmala, Markku; Riekkola, Marja-Liisa

    2018-02-01

    Biogenic volatile organic compounds (BVOCs) emitted by terrestrial vegetation participate in a diversity of natural processes. These compounds impact both short-range processes, such as on plant protection and communication, and long-range processes, for example by participating in aerosol particle formation and growth. The biodiversity of plant species around the Earth, the vast assortment of emitted BVOCs, and their trace atmospheric concentrations contribute to the substantial remaining uncertainties about the effects of these compounds on atmospheric chemistry and physics, and call for the development of novel collection devices that can offer portability with improved selectivity and capacity. In this study, a novel solid-phase microextraction (SPME) Arrow sampling system was used for the static and dynamic collection of BVOCs from a boreal forest, and samples were subsequently analyzed on site by gas chromatography-mass spectrometry (GC-MS). This system offers higher sampling capacity and improved robustness when compared to traditional equilibrium-based SPME techniques, such as SPME fibers. Field measurements were performed in summer 2017 at the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II) in Hyytiälä, Finland. Complementary laboratory tests were also performed to compare the SPME-based techniques under controlled experimental conditions and to evaluate the effect of temperature and relative humidity on their extraction performance. The most abundant monoterpenes and aldehydes were successfully collected. A significant improvement on sampling capacity was observed with the new SPME Arrow system over SPME fibers, with collected amounts being approximately 2 × higher for monoterpenes and 7-8 × higher for aldehydes. BVOC species exhibited different affinities for the type of sorbent materials used (polydimethylsiloxane (PDMS)-carbon wide range (WR) vs. PDMS-divinylbenzene (DVB)). Higher extraction efficiencies were obtained with dynamic collection prior to equilibrium regime, but this benefit during the field measurements was small, probably due to the natural agitation provided by the wind. An increase in temperature and relative humidity caused a decrease in the amounts of analytes extracted under controlled experimental conditions, even though the effect was more significant for PDMS-carbon WR than for PDMS-DVB. Overall, results demonstrated the benefits and challenges of using SPME Arrow for the sampling of BVOCs in the atmosphere.

  17. Determination of acrylamide in brewed coffee and coffee powder using polymeric ionic liquid-based sorbent coatings in solid-phase microextraction coupled to gas chromatography-mass spectrometry.

    PubMed

    Cagliero, Cecilia; Ho, Tien D; Zhang, Cheng; Bicchi, Carlo; Anderson, Jared L

    2016-06-03

    This study describes a simple and rapid sampling method employing a polymeric ionic liquid (PIL) sorbent coating in direct immersion solid-phase microextraction (SPME) for the trace-level analysis of acrylamide in brewed coffee and coffee powder. The crosslinked PIL sorbent coating demonstrated superior sensitivity in the extraction of acrylamide compared to all commercially available SPME coatings. A spin coating method was developed to evenly distribute the PIL coating on the SPME support and reproducibly produce fibers with a large film thickness. Ninhydrin was employed as a quenching reagent during extraction to inhibit the production of interfering acrylamide. The PIL fiber produced a limit of quantitation for acrylamide of 10μgL(-1) and achieved comparable results to the ISO method in the analysis of six coffee powder samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A novel hybrid metal-organic framework-polymeric monolith for solid-phase microextraction.

    PubMed

    Lin, Chen-Lan; Lirio, Stephen; Chen, Ya-Ting; Lin, Chia-Her; Huang, Hsi-Ya

    2014-03-17

    This study describes the fabrication of a novel hybrid metal-organic framework- organic polymer (MOF-polymer) for use as a stationary phase in fritless solid-phase microextraction (SPME) for validating analytical methods. The MOF-polymer was prepared by using ethylene dimethacrylate (EDMA), butyl methacrylate (BMA), and an imidazolium-based ionic liquid as porogenic solvent followed by microwave-assisted polymerization with the addition of 25 % MOF. This novel hybrid MOF-polymer was used to extract penicillin (penicillin G, penicillin V, oxacillin, cloxacillin, nafcillin, dicloxacillin) under different conditions. Quantitative analysis of the extracted penicillin samples using the MOF-organic polymer for SPME was conducted by using capillary electrochromatography (CEC) coupled with UV analysis. The penicillin recovery was 63-96.2 % with high reproducibility, sensitivity, and reusability. The extraction time with the proposed fabricated SPME was only 34 min. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Low Density Solvent-Based Dispersive Liquid-Liquid Microextraction for the Determination of Synthetic Antioxidants in Beverages by High-Performance Liquid Chromatography

    PubMed Central

    Çabuk, Hasan; Köktürk, Mustafa

    2013-01-01

    A simple and efficient method was established for the determination of synthetic antioxidants in beverages by using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography with ultraviolet detection. Butylated hydroxy toluene, butylated hydroxy anisole, and tert-butylhydroquinone were the antioxidants evaluated. Experimental parameters including extraction solvent, dispersive solvent, pH of sample solution, salt concentration, and extraction time were optimized. Under optimal conditions, the extraction recoveries ranged from 53 to 96%. Good linearity was observed by the square of correlation coefficients ranging from 0.9975 to 0.9997. The relative standard deviations ranged from 1.0 to 5.2% for all of the analytes. Limits of detection ranged from 0.85 to 2.73 ng mL−1. The method was successfully applied for determination of synthetic antioxidants in undiluted beverage samples with satisfactory recoveries. PMID:23853535

  20. Portable Solid Phase Micro-Extraction Coupled with Ion Mobility Spectrometry System for On-Site Analysis of Chemical Warfare Agents and Simulants in Water Samples

    PubMed Central

    Yang, Liu; Han, Qiang; Cao, Shuya; Yang, Jie; Yang, Junchao; Ding, Mingyu

    2014-01-01

    On-site analysis is an efficient approach to facilitate analysis at the location of the system under investigation as it can result in more accurate, more precise and quickly available analytical data. In our work, a novel self-made thermal desorption based interface was fabricated to couple solid-phase microextraction with ion mobility spectrometry for on-site water analysis. The portable interface can be connected with the front-end of an ion mobility spectrometer directly without other modifications. The analytical performance was evaluated via the extraction of chemical warfare agents and simulants in water samples. Several parameters including ionic strength and extraction time have been investigated in detail. The application of the developed method afforded satisfactory recoveries ranging from 72.9% to 114.4% when applied to the analysis of real water samples. PMID:25384006

  1. Determination of cocaine, benzoylecgonine and cocaethylene in human hair by solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    de Toledo, Fernanda Crossi Pereira; Yonamine, Mauricio; de Moraes Moreau, Regina Lucia; Silva, Ovandir Alves

    2003-12-25

    The present work describes a highly precise and sensitive method developed to detect cocaine (COC), benzoylecgonine (BE, its main metabolite) and cocaethylene (CE, transesterification product of the coingestion of COC with ethanol) in human head hair samples. The method was based on an alkylchloroformate derivatization of benzoylecgonine and the extraction of the analytes by solid-phase microextraction (SPME). Gas chromatography-mass spectrometry (GC-MS) was used to identify and quantify the analytes in selected ion monitoring mode (SIM). The limits of quantification and detection (LOQ and LOD) were: 0.1 ng/mg for COC and CE, and 0.5 ng/mg for BE. Good inter- and intra-assay precision was observed. The dynamic range of the assay was 0.1-50 ng/mg. The method is not time consuming and was shown to be easy to perform.

  2. Role of solid-phase microextraction in the identification of highly volatile pheromones of two Rhinoceros beetles Scapanes australis and Strategus aloeus (Coleoptera, Scarabaeidae, Dynastinae).

    PubMed

    Rochat, D; Ramirez-Lucas, P; Malosse, C; Aldana, R; Kakul, T; Morin, J P

    2000-07-14

    Solid-phase microextraction (SPME) samplings from live insects or natural secretion allowed one to identify the aggregation pheromones of the pest beetles Scapanes australis and Strategus aloeus by efficient and rapid isolation of their highly volatile (72 < M(r) < 116) components. S. australis male pheromone was identified as a 84:12:4 (w/w) mixture of 2-butanol [67:33 (R)-(-):(S)-(+) ratio], 3-hydroxy-2-butanone and 2,3-butanediol [43:17:40 (R,R)-(-):(S,S)-(+):meso ratio], and S. aloeus pheromone as a 95.5:4.0:0.5 (w/w) mixture of 2-butanone, 3-pentanone and sec.-butyl acetate by GC-MS using conventional and chiral capillary columns. This is the first report of Scarabaeidae pheromones based on such small and common molecules.

  3. Determination of volatile monophenols in beer using acetylation and headspace solid-phase microextraction in combination with gas chromatography and mass spectrometry.

    PubMed

    Sterckx, Femke L; Saison, Daan; Delvaux, Freddy R

    2010-08-31

    Monophenols are widely spread compounds contributing to the flavour of many foods and beverages. They are most likely present in beer, but so far, little is known about their influence on beer flavour. To quantify these monophenols in beer, we optimised a headspace solid-phase microextraction method coupled to gas chromatography-mass spectrometry. To improve their isolation from the beer matrix and their chromatographic properties, the monophenols were acetylated using acetic anhydride and KHCO(3) as derivatising agent and base catalyst, respectively. Derivatisation conditions were optimised with attention for the pH of the reaction medium. Additionally, different parameters affecting extraction efficiency were optimised, including fibre coating, extraction time and temperature and salt addition. Afterwards, we calibrated and validated the method successfully and applied it for the analysis of monophenols in beer samples. 2010 Elsevier B.V. All rights reserved.

  4. A novel application of three phase hollow fiber based liquid phase microextraction (HF-LPME) for the HPLC determination of two endocrine disrupting compounds (EDCs), n-octylphenol and n-nonylphenol, in environmental waters.

    PubMed

    Villar-Navarro, Mercedes; Ramos-Payán, María; Fernández-Torres, Rut; Callejón-Mochón, Manuel; Bello-López, Miguel Ángel

    2013-01-15

    This work proposes for the first time the use of a three phase hollow fiber liquid phase microextraction (HF-LPME) procedure for the extraction, and the later HPLC determination using fluorescence detection, of two much known endocrine disrupting compounds (EDCs): n-octylphenol (OP) and n-nonylphenol (NP). The extraction was carried out through a dihexyl ether liquid membrane supported on an Accurel® Q3/2 polypropylene hollow fiber. Optimum pH for donor and acceptor phases and extraction time were established. Enrichment (preconcentration) factors of 50 were obtained that allows detection limits of 0.54 and 0.52 ng mL(-1) for OP and NP, respectively. The method was successfully applied to the determination of these EDCs in environmental water samples, including urban wastewaters. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Development of a multi-preservative method based on solid-phase microextraction-gas chromatography-tandem mass spectrometry for cosmetic analysis.

    PubMed

    Alvarez-Rivera, Gerardo; Vila, Marlene; Lores, Marta; Garcia-Jares, Carmen; Llompart, Maria

    2014-04-25

    A simple methodology based on solid-phase microextraction (SPME) followed by gas chromatography-tandem mass spectrometry (GC-MS/MS) has been developed for the simultaneous analysis of different classes of preservatives including benzoates, bronidox, 2-phenoxyethanol, parabens, BHA, BHT and triclosan in cosmetic products. In situ acetylation and subsequent organic modifier addition have been successfully implemented in the SPME process as an effective extractive strategy for matrix effect compensation and chromatographic performance improvement. Main factors affecting SPME procedure such as fiber coating, sampling mode, extraction temperature and salt addition (NaCl) were evaluated by means of a 3×2(3-1) factorial experimental design. The optimal experimental conditions were established as follows: direct solid-phase microextraction (SPME) at 40°C and addition of NaCl (20%, w/v), using a DVB/CAR/PDMS fiber coating. Due to the complexity of the studied matrices, method performance was evaluated in a representative variety of both rinse-off and leave-on samples, demonstrating to have a broad linear range (R(2)>0.9964). In general, quantitative recoveries (>85% in most cases) and satisfactory precision (RSD<13% for most of compounds) were obtained, with limits of detection (LODs) well below the maximum authorized concentrations established by the European legislation. One of the most important achievements of this work was the use of external calibration with cosmetic-matched standards to accurately quantify the target analytes. The validated methodology was successfully applied to the analysis of different types of cosmetic formulations including body milks, moisturizing creams, deodorants, sunscreen, bath gel, dental cream and make-up products amongst others, demonstrating to be a reliable multi-preservative methododology for routine control. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Comparison of micellar extraction combined with ionic liquid based vortex-assisted liquid-liquid microextraction and modified quick, easy, cheap, effective, rugged, and safe method for the determination of difenoconazole in cowpea.

    PubMed

    Chen, Xiaochu; Bian, Yanli; Liu, Fengmao; Teng, Peipei; Sun, Pan

    2017-10-06

    Two simple sample pretreatment for the determination of difenoconazole in cowpea was developed including micellar extraction combined with ionic liquid based vortex-assisted liquid-liquid microextraction (ME-IL-VALLME) prior to high performance liquid chromatography (HPLC), and modified quick, easy, cheap, effective, rugged, and safe method (QuEChERS) coupled with HPLC-MS/MS. In ME-IL-VALLME method, the target analyte was extracted by surfactant Tween 20 micellar solution, then the supernatant was diluted with 3mL water to decrease the solubility of micellar solution. Subsequently, the vortex-assisted liquid-liquid microextraction (VALLME) procedure was performed in the diluted extraction solution by using the ionic liquid of 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM]PF 6 ) as the extraction solvent and Tween 20 as an emulsifier to enhance the dispersion of the water-immiscible ionic liquid into the aqueous phase. Parameters that affect the extraction have been investigated in both methods Under the optimum conditions, the limits of quantitation were 0.10 and 0.05mgkg -1 , respectively. And good linearity was achieved with the correlation coefficient higher than 0.9941. The relative recoveries ranged from 78.6 to 94.8% and 92.0 to 118.0% with the relative standard deviations (RSD) of 7.9-9.6% and 1.2-3.2%, respectively. Both methods were quick, simple and inexpensive. However, the ME-IL-VALLME method provides higher enrichment factor compared with conventional QuEChERS method. The ME-IL-VALLME method has a strong potential for the determination of difenoconazole in complex vegetable matrices with HPLC. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Enantioselective determination of representative profens in wastewater by a single-step sample treatment and chiral liquid chromatography-tandem mass spectrometry.

    PubMed

    Caballo, C; Sicilia, M D; Rubio, S

    2015-03-01

    This manuscript describes, for the first time, the simultaneous enantioselective determination of ibuprofen, naproxen and ketoprofen in wastewater based on liquid chromatography tandem mass spectrometry (LC-MS/MS). The method uses a single-step sample treatment based on microextraction with a supramolecular solvent made up of hexagonal inverted aggregates of decanoic acid, formed in situ in the wastewater sample through a spontaneous self-assembly process. Microextraction of profens was optimized and the analytical method validated. Isotopically labeled internal standards were used to compensate for both matrix interferences and recoveries. Apparent recoveries for the six enantiomers in influent and effluent wastewater samples were in the interval 97-103%. Low method detection limits (MDLs) were obtained (0.5-1.2 ng L(-1)) as a result of the high concentration factors achieved in the microextraction process (i.e. actual concentration factors 469-736). No analyte derivatization or evaporation of extracts, as it is required with GC-MS, was necessary. Relative standard deviations for enantiomers in wastewater were always below 8%. The method was applied to the determination of the concentrations and enantiomeric fractions of the targeted analytes in influents and effluents from three wastewater treatment plants. All the values found for profen enantiomers were consistent with those previously reported and confirmed again the suitability of using the enantiomeric fraction of ibuprofen as an indicator of the discharge of untreated or poorly treated wastewaters. Both the analytical and operational features of this method make it applicable to the assessment of the enantiomeric fate of profens in the environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Simultaneous determination of atorvastatin and valsartan in human plasma by solid-based disperser liquid-liquid microextraction followed by high-performance liquid chromatography-diode array detection.

    PubMed

    Farajzadeh, Mir Ali; Khorram, Parisa; Pazhohan, Azar

    2016-04-01

    A simple, sensitive, and efficient method has been developed for simultaneous estimation of valsartan and atorvastatin in human plasma by combination of solid-based dispersive liquid-liquid microextraction and high performance liquid chromatography-diode array detection. In the proposed method, 1,2-dibromoethane (extraction solvent) is added on a sugar cube (as a solid disperser) and it is introduced into plasma sample containing the analytes. After manual shaking and centrifugation, the resultant sedimented phase is subjected to back extraction into a small volume of sodium hydrogen carbonate solution using air-assisted liquid-liquid microextraction. Then the cloudy solution is centrifuged and the obtained aqueous phase is transferred into a microtube and analyzed by the separation system. Under the optimal conditions, extraction recoveries are obtained in the range of 81-90%. Calibration curves plotted in drug-free plasma sample are linear in the ranges of 5-5000μgL(-1) for valsartan and 10-5000μgL(-1) for atorvastatin with the coefficients of determination higher than 0.997. Limits of detection and quantification of the studied analytes in plasma sample are 0.30-2.6 and 1.0-8.2μgL(-1), respectively. Intra-day (n=6) and inter-days (n=4) precisions of the method are satisfactory with relative standard deviations less than 7.4% (at three levels of 10, 500, and 2000μgL(-1), each analyte). These data suggest that the method can be successfully applied to determine trace amounts of valsartan and atorvastatin in human plasma samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Simultaneous determination of polycyclic aromatic hydrocarbons and their chlorination by-products in drinking water and the coatings of water pipes by automated solid-phase microextraction followed by gas chromatography-mass spectrometry.

    PubMed

    Tillner, Jocelyn; Hollard, Caroline; Bach, Cristina; Rosin, Christophe; Munoz, Jean-François; Dauchy, Xavier

    2013-11-08

    In this study, an automated method for the simultaneous determination of polycyclic aromatic hydrocarbons (PAHs) and their chlorination by-products in drinking water was developed based on online solid-phase microextraction-gas chromatography-mass spectrometry. The main focus was the optimisation of the solid-phase microextraction step. The influence of the agitation rate, type of fibre, desorption time, extraction time, extraction temperature, desorption temperature, and solvent addition was examined. The method was developed and validated using a mixture of 17 PAHs, 11 potential chlorination by-products (chlorinated and oxidised PAHs) and 6 deuterated standards. The limit of quantification was 10 ng/L for all target compounds. The validated method was used to analyse drinking water samples from three different drinking water distribution networks and the presumably coal tar-based pipe coatings of two pipe sections. A number of PAHs were detected in all three networks although individual compositions varied. Several PAH chlorination by-products (anthraquinone, fluorenone, cyclopenta[d,e,f]phenanthrenone, 3-chlorofluoranthene, and 1-chloropyrene) were also found, their presence correlating closely with that of their respective parent compounds. Their concentrations were always below 100 ng/L. In the coatings, all PAHs targeted were detected although concentrations varied between the two coatings (76-12,635 mg/kg and 12-6295 mg/kg, respectively). A number of chlorination by-products (anthraquinone, fluorenone, cyclopenta[d,e,f]phenanthrenone, 3-chlorofluoranthene, and 1-chloropyrene) were also detected (from 40 to 985 mg/kg), suggesting that the reaction of PAHs with disinfectant agents takes place in the coatings and not in the water phase after migration. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Dynamic ultrasonic nebulisation extraction coupled with headspace ionic liquid-based single-drop microextraction for the analysis of the essential oil in Forsythia suspensa.

    PubMed

    Yang, Jinjuan; Wei, Hongmin; Teng, Xiane; Zhang, Hanqi; Shi, Yuhua

    2014-01-01

    Ionic liquids have attracted much attention as an extraction solvent instead of traditional organic solvent in single-drop microextraction. However, non-volatile ionic liquids are difficult to couple with gas chromatography. Thus, the following injection system for the determination of organic compounds is described. To establish an environmentally friendly, simple, and effective extraction method for preparation and analysis of the essential oil from aromatic plants. The dynamic ultrasonic nebulisation extraction was coupled with headspace ionic liquid-based single-drop microextraction(UNE-HS/IL/SDME)for the extraction of essential oils from Forsythia suspense fruits. After 13 min of extraction for 50 mg sample, the extracts in ionic liquid were evaporated rapidly in the gas chromatography injector through a thermal desorption unit (5 s). The traditional extraction method was carried out for comparative study. The optimum conditions were: 3 μL of 1-methyl-3-octylimidazolium hexafluorophosphate was selected as the extraction solvent, the sample amount was 50 mg, the flow rate of purging gas was 200 mL/min, the extraction time was 13 min, the injection volume was 2 μL, and the thermal desorption temperature and time were 240 °C and 5 s respectively. Comparing with hydrodistillation (HD), the proposed method was environment friendly and efficient. The proposed method is environmentally friendly, time saving, with high efficiency and low consumption. It would extend the application range of the HS/SDME and would be useful especially for aromatic plants analysis. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Development of dispersive liquid-liquid microextraction technique using ternary solvents mixture followed by heating for the rapid and sensitive analysis of phthalate esters and di(2-ethylhexyl) adipate.

    PubMed

    Farajzadeh, Mir Ali; Khoshmaram, Leila

    2015-01-30

    In this study, for the first time, a dispersive liquid-liquid microextraction technique using a ternary solvent mixture is reported. In order to extract five phthalate esters and di(2-ethylhexyl) adipate with different polarities from aqueous samples, a simplex centroid experimental design method was used to select an optimal mixture of ternary solvents prior to gas chromatographyflame ionization detection. In this work, dimethyl formamide as a disperser solvent containing dichloromethane, chloroform, and carbon tetrachloride as a ternary extraction solvent mixture is injected into sample solution and a cloudy solution is formed. After centrifuging, 250μL of the obtained sedimented phase was transferred into another tube and 5μL DMF was added to it. Then, the tube was heated in a water bath at 75°C for 5min in order to evaporate the main portion of the extraction solvents. Finally, 2μL of the remained phase is injected into the separation system. Under the optimum extraction conditions, the method shows wide linear ranges and low limits of detection and quantification between 0.03-0.15 and 0.09-0.55μgL(-1), respectively. Enrichment factors and extraction recoveries are in the ranges of 980-4500 and 20-90%, respectively. The method is successfully applied in the determination of the target analytes in mineral water, soda, lemon juice, vinegar, dough, and yogurt packed in plastic packages. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Solid-phase microextraction based on polyaniline doped with perfluorooctanesulfonic acid coupled to HPLC for the quantitative determination of chlorophenols in water samples.

    PubMed

    He, Huan; Zhuang, Yuan; Peng, Ying; Gao, Zhanqi; Yang, Shaogui; Sun, Cheng

    2014-02-01

    A porous and highly efficient polyaniline-based solid-phase microextraction (SPME) coating was successfully prepared by the electrochemical deposition method. A method based on headspace SPME followed by HPLC was established to rapidly determine trace chlorophenols in water samples. Influential parameters for the SPME, including extraction mode, extraction temperature and time, pH and ionic strength procedures, were investigated intensively. Under the optimized conditions, the proposed method was linear in the range of 0.5-200 μg/L for 4-chlorophenol and 2,4,6-trichlorophenol, 0.2-200 μg/L for 2,4-dichlorophenol and 2-200 μg/L for 2,3,4,6-tetrachlorophenol and pentachlorophenol, with satisfactory correlation coefficients (>0.99). RSDs were <15% (n = 5) and LODs were relatively low (0.10-0.50 μg/L). Compared to commercial 85 μm polyacrylate and 60 μm polydimethylsiloxane/divinylbenzene fibers, the homemade polyaniline fiber showed a higher extraction efficiency. The proposed method has been successfully applied to the determination of chlorophenols in water samples with satisfactory recoveries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Chip-based magnetic solid phase microextraction coupled with ICP-MS for the determination of Cd and Se in HepG2 cells incubated with CdSe quantum dots.

    PubMed

    Yu, Xiaoxiao; Chen, Beibei; He, Man; Wang, Han; Hu, Bin

    2018-03-01

    The quantification of trace Cd and Se in cells incubated with CdSe quantum dots (QDs) is critical to investigate the cytotoxicity of CdSe QDs. In this work, a miniaturized platform, namely chip-based magnetic solid phase microextraction (MSPME) packing with sulfhydryl group functionalized magnetic nanoparticles, was fabricated and combined with inductively coupled plasma mass spectrometry (ICP-MS) for the determination of trace Cd and Se in cells. Under the optimized conditions, the limits of detection (LOD) of the developed chip-based MSPME-ICP-MS system are 2.2 and 21ngL -1 for Cd and Se, respectively. The proposed method is applied successfully to the analysis of total and released small molecular fraction of Cd and Se in Human hepatocellular carcinoma cells (HepG2 cells) incubated with CdSe QDs, and the recoveries for the spiked samples are in the range of 86.0-109%. This method shows great promise to analyze cell samples and the obtained results are instructive to explore the cytotoxicity mechanism of CdSe QDs in cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Separation/preconcentration and determination of vanadium with dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) and electrothermal atomic absorption spectrometry.

    PubMed

    Asadollahi, Tahereh; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji

    2010-06-30

    A novel dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for separation/preconcentration of ultra trace amount of vanadium and its determination with the electrothermal atomic absorption spectrometry (ETAAS) was developed. The DLLME-SFO behavior of vanadium (V) using N-benzoyl-N-phenylhydroxylamine (BPHA) as complexing agent was systematically investigated. The factors influencing the complex formation and extraction by DLLME-SFO method were optimized. Under the optimized conditions: 100 microL, 200 microL and 25 mL of extraction solvent (1-undecanol), disperser solvent (acetone) and sample volume, respectively, an enrichment factor of 184, a detection limit (based on 3S(b)/m) of 7 ng L(-1) and a relative standard deviation of 4.6% (at 500 ng L(-1)) were obtained. The calibration graph using the preconcentration system for vanadium was linear from 20 to 1000 ng L(-1) with a correlation coefficient of 0.9996. The method was successfully applied for the determination of vanadium in water and parsley. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Speciation of AsIII and AsV in fruit juices by dispersive liquid–liquid microextraction and hydride generation-atomic fluorescence spectrometry

    USDA-ARS?s Scientific Manuscript database

    A new procedure was developed to speciate and quantify As(III) and As(V) in fruit juices. At pH 3.0, As(III) and ammonium pyrrolidine dithiocarbamate (APDC) formed a complex, which was extracted into carbon tetrachloride by dispersive liquid–liquid microextraction (DLLME) and subsequently quantified...

  16. Rapid Analysis of Chemical Warfare Agents and Their Hydrolysis Products by Desorption Electrospray Ionization Mass Spectrometry (DESI-MS)

    DTIC Science & Technology

    2009-10-01

    of chemical warfare agents in natural water samples by solid-phase microextraction. Anal. Chem., 69, 1866-72. [36] Sng , M.T. and Ng ,W.F. (1999). In...liquid phase microextraction of alkylphosphonic acids from water. J. Chromatogr. A., 1141, 151-157. [43] Lee, H.S.N., Sng , M.T., Basheer, C., and Lee

  17. Optimization of an accelerated solvent extraction dispersive liquid-liquid microextraction method for the separation and determination of essential oil from Ligusticum chuanxiong Hort by gas chromatography with mass spectrometry.

    PubMed

    Yang, Guang; Sun, Qiushi; Hu, Zhiyan; Liu, Hua; Zhou, Tingting; Fan, Guorong

    2015-10-01

    In this study, an accelerated solvent extraction dispersive liquid-liquid microextraction coupled with gas chromatography and mass spectrometry was established and employed for the extraction, concentration and analysis of essential oil constituents from Ligusticum chuanxiong Hort. Response surface methodology was performed to optimize the key parameters in accelerated solvent extraction on the extraction efficiency, and key parameters in dispersive liquid-liquid microextraction were discussed as well. Two representative constituents in Ligusticum chuanxiong Hort, (Z)-ligustilide and n-butylphthalide, were quantitatively analyzed. It was shown that the qualitative result of the accelerated solvent extraction dispersive liquid-liquid microextraction approach was in good agreement with that of hydro-distillation, whereas the proposed approach took far less extraction time (30 min), consumed less plant material (usually <1 g, 0.01 g for this study) and solvent (<20 mL) than the conventional system. To sum up, the proposed method could be recommended as a new approach in the extraction and analysis of essential oil. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Solid phase microextraction for active or passive sampling of methyl bromide during fumigations

    USDA-ARS?s Scientific Manuscript database

    The high diffusivity and volatility of methyl bromide make it an ideal compound for Solid Phase Micro Extraction (SPME)-based sampling of air prior to gas-chromatographic quantifications. SPME fibers can be used as active methyl bromide samplers, with high capacities and an equilibrium time of 1-2 m...

  19. UV-vis spectrophotometric determination of trinitrotoluene (TNT) with trioctylmethylammonium chloride as ion pair assisted and disperser agent after dispersive liquid-liquid microextraction.

    PubMed

    Larki, Arash; Nasrabadi, Mehdi Rahimi; Pourreza, Nahid

    2015-06-01

    In the present study, a simple, fast and inexpensive method based on dispersive liquid-liquid microextraction (DLLME) prior to microvolume UV-vis spectrophotometry was developed for the preconcentration and determination of trinitrotoluene (TNT). The procedure is based on the color reaction of TNT in alkaline medium and extraction into CCl4 as an ion pair assisted by trioctylmethylammonium chloride, which also acts as a disperser agent. Experimental parameters affecting the DLLME method such as pH, concentration of sodium hydroxide, amount of trioctylmethylammonium chloride, type and volume of extraction solvent were investigated and optimized. Under the optimum conditions, the limit of detection (LOD) was 0.9ng/mL and the calibration curve was linear in the range of 3-200ng/mL. The relative standard deviation for 25 and 100ng/mL of TNT were 3.7% and 1.5% (n=6), respectively. The developed DLLME method was applied for the determination of TNT in different water and soil samples. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. An innovative method for analysis of Pb (II) in rice, milk and water samples based on TiO2 reinforced caprylic acid hollow fiber solid/liquid phase microextraction.

    PubMed

    Bahar, Shahriyar; Es'haghi, Zarrin; Nezhadali, Azizollah; Banaei, Alireza; Bohlooli, Shahab

    2017-04-15

    In the present study, nano-sized titanium oxides were applied for preconcentration and determination of Pb(II) in aqueous samples using hollow fiber based solid-liquid phase microextraction (HF-SLPME) combined with flame atomic absorption spectrometry (FAAS). In this work, the nanoparticles dispersed in caprylic acid as an extraction solvent was placed into a polypropylene porous hollow fiber segment supported by capillary forces and sonification. This membrane was in direct contact with solutions containing Pb (II). The effect of experimental conditions on the extraction, such as pH, stirring rate, sample volume, and extraction time were optimized. Under the optimal conditions, the performance of the proposed method was investigated for the determination of Pb (II) in food and water samples. The method was linear in the range of 0.6-3000μgmL -1 . The relative standard deviations and relative recovery of Pb (II) was 4.9% and 99.3%, respectively (n=5). Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Determination of supplemental feeding needs for astaxanthin and canthaxanthin in salmonids by supramolecular solvent-based microextraction and liquid chromatography-UV/VIS spectroscopy.

    PubMed

    Caballo, Carmen; Costi, Esther María; Sicilia, María Dolores; Rubio, Soledad

    2012-09-15

    Development of simple and rapid analytical methods for predicting supplemental feeding requirements in aquaculture is a need to reduce production costs. In this article, a supramolecular solvent (SUPRAS) made up of decanoic acid (DeA) assemblies was proposed to simplify sample treatment in the total and individual determination of carotenoids (red-pink pigments) in farmed salmonids. The analytes were quantitatively extracted in a single step that spends a few minutes using a small volume of SUPRAS (i.e. 800 μL) and directly determined in extracts without the interference from fats or other matrix components. The methods based on the combination of microextraction with SUPRAS and photometry or HPLC-UV/VIS spectroscopy were developed for the determination of total and individual carotenoids, respectively. The applicability of the methods was demonstrated by analysing non-fortified and fortified samples of farmed Atlantic salmons and rainbow trouts. Recoveries obtained by photometry and HPLC-UV/VIS spectroscopy were within the intervals 98-104% and 94-106%, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Vortex-assisted surfactant-enhanced emulsification microextraction combined with LC-MS/MS for the determination of glucocorticoids in water with the aid of experimental design.

    PubMed

    Asati, Ankita; Satyanarayana, G N V; Patel, Devendra K

    2017-04-01

    An efficient and inexpensive method using vortex-assisted surfactant-enhanced emulsification microextraction (VASEME) based on solidification of floating organic droplet coupled with ultraperformance liquid chromatography-tandem mass spectrometry is proposed for the analysis of glucocorticoids in water samples (river water and hospital wastewater). VASEME was optimized by the experimental validation of Plackett-Burman design and central composite design, which has been co-related to experimental design. Plackett-Burman design showed that factors such as vortex time, surfactant concentration, and pH significantly affect the extraction efficiency of the method. Method validation was characterized by an acceptable calibration range of 1-1000 ng L -1 , and the limit of detection was in the range from 2.20 to 8.12 ng L -1 for glucocorticoids. The proposed method was applied to determine glucocorticoids in river water and hospital wastewater in Lucknow, India. It is reliable and rapid and has potential application for analysis of glucocorticoids in environmental aqueous samples. Graphical Abstract Low density based extraction of gluococorticoids by using design of experiment.

  3. Assessment of strobilurin fungicides' content in soya-based drinks by liquid micro-extraction and liquid chromatography with tandem mass spectrometry.

    PubMed

    Campillo, Natalia; Iniesta, María Jesús; Viñas, Pilar; Hernández-Córdoba, Manuel

    2015-01-01

    Seven strobilurin fungicides were pre-concentrated from soya-based drinks using dispersive liquid-liquid micro-extraction (DLLME) with a prior protein precipitation step in acid medium. The enriched phase was analysed by liquid chromatography (LC) with dual detection, using diode array detection (DAD) and electrospray-ion trap tandem mass spectrometry (ESI-IT-MS/MS). After selecting 1-undecanol and methanol as the extractant and disperser solvents, respectively, for DLLME, the Taguchi experimental method, an orthogonal array design, was applied to select the optimal solvent volumes and salt concentration in the aqueous phase. The matrix effect was evaluated and quantification was carried out using external aqueous calibration for DAD and matrix-matched calibration method for MS/MS. Detection limits in the 4-130 and 0.8-4.5 ng g(-1) ranges were obtained for DAD and MS/MS, respectively. The DLLME-LC-DAD-MS method was applied to the analysis of 10 different samples, none of which was found to contain residues of the studied fungicides.

  4. Centrifugeless dispersive liquid-liquid microextraction based on salting-out phenomenon followed by high performance liquid chromatography for determination of Sudan dyes in different species.

    PubMed

    Bazregar, Mohammad; Rajabi, Maryam; Yamini, Yadollah; Arghavani-Beydokhti, Somayeh; Asghari, Alireza

    2018-04-01

    In this work, a novel method, namely centrifugeless dispersive liquid-liquid microextraction, is introduced for the efficient extraction of banned Sudan dyes from foodstuff and water samples. In this method, which is based upon the salting-out phenomenon, in order to accelerate the extraction process, the extraction solvent (1-undecanol, 75 μL) is dispersed into the sample solution. Then the mixture is passed through a small column filled with 5 g sodium chloride, used as a separating reagent. In this condition, fine droplets of the extraction solvent are floated on the mixture, and the phase separation is simply achieved. This method is environmentally friendly, simple, and very fast, so that the overall extraction time is only 7 min. Under the optimal experimental conditions, the preconcentration factors in the range of 90-121 were obtained for the analytes. Also good linearities were obtained in the range of 2.5-1200 ng mL -1 (r 2  ≥ 0.993). Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Polymeric ionic liquid bucky gels as sorbent coatings for solid-phase microextraction.

    PubMed

    Zhang, Cheng; Anderson, Jared L

    2014-05-30

    Novel cross-linked polymeric ionic liquid (PIL) bucky gels were formed by free-radical polymerization of polymerizable ionic liquids gelled with multi-walled carbon nanotubes (MWCNT) and used as sorbent coatings for solid-phase microextraction (SPME). The combination of PIL with MWCNTs significantly enhanced the π-π interaction between the sorbent coatings and the aromatic analytes. Compared to the neat PIL-based sorbent coating, the PIL bucky gel sorbent coatings demonstrated higher extraction efficiency for the extraction of polycyclic aromatic hydrocarbons (PAHs). A partitioning extraction mechanism was observed for the PIL/MWCNT-based sorbent coatings indicating that the addition of MWCNTs did not seem to affect the extraction mechanism of the sorbent coating. The analyte-to-coating partition coefficients (logKfs) were estimated and the limits of detection (LOD) for selected PIL bucky gel sorbent coating were determined to be in the range of 1-2.5 ng L(-1). Recovery studies were also performed for PAHs in river and tap water to validate the applicability of the developed method. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Preconcentration of valsartan by dispersive liquid-liquid microextraction based on solidification of floating organic drop and its determination in urine sample: Central composite design.

    PubMed

    Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayesteh; Talebianpoor, Mohammad Sharif; Khodadoust, Saeid

    2016-05-01

    In this work, a fast, easy, and efficient dispersive liquid-liquid microextraction method based on solidification of floating organic drop followed by high-performance liquid chromatography with UV detection was developed for the separation/preconcentration and determination of the drug valsartan. Experimental design was applied for the optimization of the effective variables (such as volume of extracting and dispersing solvents, ionic strength, and pH) on the extraction efficiency of valsartan from urine samples. The optimized values were 250.0 μL ethanol, 65.0 μL 1-dodecanol, 4.0% w/v NaCl, pH 3.8, 1.0 min extraction time, and 4.0 min centrifugation at 4000 rpm min(-1) . The linear response (r(2) = 0.997) was obtained in the range of 0.013-10.0 μg mL(-1) with a limit of detection of 4.0 ng mL(-1) and relative standard deviations of less than 5.0 % (n = 6). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Quantitative Analysis of Bisphenol A Leached from Household Plastics by Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry (SPME-GC-MS)

    ERIC Educational Resources Information Center

    Johnson, Bettie Obi; Burke, Fernanda M.; Harrison, Rebecca; Burdette, Samantha

    2012-01-01

    The measurement of trace levels of bisphenol A (BPA) leached out of household plastics using solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) is reported here. BPA is an endocrine-disrupting compound used in the industrial manufacture of polycarbonate plastic bottles and epoxy resin can liners. This experiment…

  8. Solid-phase microextraction of hydrocarbons from water in a centrifuge

    NASA Astrophysics Data System (ADS)

    Ryabov, A. Yu.; Chuikin, A. V.; Velikov, A. A.

    2016-06-01

    The results of our study of solid-phase microextraction of substances using a centrifuge for determining the microquantities of hydrocarbon impurities in water are presented. The cartridge diameter, sorbent mass, and solvent volume were shown to affect the percent extraction of substances and the analytical signal intensity. The relationship between the cartridge geometry, the sorbent mass, and the solvent volume was considered.

  9. Improvements on bar adsorptive microextraction (BAμE) technique--application for the determination of insecticide repellents in environmental water matrices.

    PubMed

    Almeida, C; Strzelczyk, Rafał; Nogueira, J M F

    2014-03-01

    Bar adsorptive microextraction combined with micro-liquid desorption followed by large volume injection-gas chromatography-mass spectrometry operating in the selected-ion monitoring acquisition mode (BAµE-µLD/LVI-GC-MS(SIM)), is proposed for the determination of trace levels of three insecticide repellents (N,N-diethyl-meta-toluamide (DEET), cis and trans permethrin (PERM)) in environmental water matrices. By comparing different sorbent coatings (five activated carbons and six polymers) through BAµE, an activated carbon (AC2) proved to be the best compromise between selectivity and efficiency, even against polydimethylsiloxane through stir bar sorptive extraction. The novel improvement proposed on the back-extraction stage performed in a single step, by reducing the desorption solvent volume at the microliter level, demonstrated remarkable performance turning possible to save time, making easier the practical manipulation and more environmentally friendly. Assays performed by BAµE(AC2)-µLD/LVI-GC-MS(SIM) on 25 mL of ultrapure water samples spiked at the 1.0 μg/L level, yielded recoveries ranging from 73.8±8.8% (trans-PERM) to 96.4±9.9% (DEET), under optimised experimental conditions. The analytical performance showed convenient detection limits (8-20 ng/L) and good linear dynamic ranges (0.04-4.0 µg/L) with suitable determination coefficients (r(2)>0.9963, DEET). Excellent repeatability were also achieved through intraday (RSD<14.9%) and interday (RSD<11.9%) experiments. The novel improvement on downsizing the BAµE device to half-size proved to be either a promising option in forthcoming to reduce still more the desorption solvent volume without losing microextraction efficiency. By using the standard addition methodology, the application of the present analytical approach on tap, ground, river, swimming-pool and estuary water samples revealed good sensitivity at trace level and absence of matrix effects. © 2013 Elsevier B.V. All rights reserved.

  10. Fast, sensitive and reliable multi-residue method for routine determination of 34 pesticides from various chemical groups in water samples by using dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry.

    PubMed

    Tankiewicz, Maciej; Biziuk, Marek

    2018-02-01

    A simple and efficient dispersive liquid-liquid microextraction technique (DLLME) was developed by using a mixture of two solvents: 40 μL of tetrachlorethylene (extraction solvent) and 1.0 mL of methanol (disperser solvent), which was rapidly injected with a syringe into 10 mL of water sample. Some important parameters affecting the extraction efficiency, such as type and volume of solvents, water sample volume, extraction time, temperature, pH adjustment and salt addition effect were investigated. Simultaneous determination of 34 commonly used pesticides was performed by using gas chromatography coupled with mass spectrometry (GC-MS). The procedure has been validated in order to obtain the highest efficiency at the lowest concentration levels of analytes to fulfill the requirements of regulations on maximum residue limits. Under the optimum conditions, the linearity range was within 0.0096-100 μg L -1 . The limits of detection (LODs) of the developed DLLME-GC-MS methodology for all investigated pesticides were in the range of 0.0032 (endrin)-0.0174 (diazinon) μg L -1 and limits of quantification (LOQs) from 0.0096 to 0.052 μg L -1 . At lower concentration of 1 μg L -1 for each pesticide, recoveries ranged between 84% (tebufenpyrad) and 108% (deltamethrin) with relative standard deviations (RSDs) (n = 7) from 1.1% (metconazole) to 11% (parathion-mehtyl). This methodology was successfully applied to check contamination of environmental samples. The procedure has proved to be selective, sensitive and precise for the simultaneous determination of various pesticides. The optimized analytical method is very simple and rapid (less than 5 min). Graphical abstract Analytical procedure for testing water samples consists of dispersive liquid-liquid microextraction (DLLME) and gas chromatography coupled with mass spectrometry (GC-MS).

  11. Transient Method for Determining Indoor Chemical Concentrations Based on SPME: Model Development and Calibration.

    PubMed

    Cao, Jianping; Xiong, Jianyin; Wang, Lixin; Xu, Ying; Zhang, Yinping

    2016-09-06

    Solid-phase microextraction (SPME) is regarded as a nonexhaustive sampling technique with a smaller extraction volume and a shorter extraction time than traditional sampling techniques and is hence widely used. The SPME sampling process is affected by the convection or diffusion effect along the coating surface, but this factor has seldom been studied. This paper derives an analytical model to characterize SPME sampling for semivolatile organic compounds (SVOCs) as well as for volatile organic compounds (VOCs) by considering the surface mass transfer process. Using this model, the chemical concentrations in a sample matrix can be conveniently calculated. In addition, the model can be used to determine the characteristic parameters (partition coefficient and diffusion coefficient) for typical SPME chemical samplings (SPME calibration). Experiments using SPME samplings of two typical SVOCs, dibutyl phthalate (DBP) in sealed chamber and di(2-ethylhexyl) phthalate (DEHP) in ventilated chamber, were performed to measure the two characteristic parameters. The experimental results demonstrated the effectiveness of the model and calibration method. Experimental data from the literature (VOCs sampled by SPME) were used to further validate the model. This study should prove useful for relatively rapid quantification of concentrations of different chemicals in various circumstances with SPME.

  12. Dispersive liquid-liquid microextraction combined with online preconcentration MEKC for the determination of some phenoxyacetic acids in drinking water.

    PubMed

    Zhang, Yaohai; Jiao, Bining

    2013-09-01

    A fast and simple technique composed of dispersive liquid-liquid microextraction (DLLME) and online preconcentration MEKC with diode array detection was developed for the determination of four phenoxyacetic acids, 2,4,5-trichlorophenoxyacetic acid, 2,4-dichlorophenoxyacetic acid, 2,6-dichlorophenoxyacetic acid, and 4-chlorophenoxyacetic acid, in drinking water. The four phenoxyacetic acids were separated in reversed-migration MEKC to the baseline. About 145-fold increases in detection sensitivity were observed with online concentration strategy, compared with standard hydrodynamic injection (5 s at 25 mbar pressure). LODs ranged from 0.002 to 0.005 mg/L using only the online preconcentration procedures without any offline concentration of the extract. A DLLME procedure was used in combination with the proposed online preconcentration strategies, which achieved the determination of analytes at limits of quantification ranging from 0.2 to 0.5 μg/kg, which is far lower than the maximum residue limits established by China. The satisfactory recoveries obtained by DLMME spiked at two levels ranged from 67.2 to 99.4% with RSD <15%, making this proposed method suitable for the determination of phenoxyacetic acids in water samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Rapid determination of caffeine in one drop of beverages and foods using drop-to-drop solvent microextraction with gas chromatography/mass spectrometry.

    PubMed

    Shrivas, Kamlesh; Wu, Hui-Fen

    2007-11-02

    A simple and rapid sample cleanup and preconcentration method for the quantitative determination of caffeine in one drop of beverages and foods by gas chromatography/mass spectrometry (GC/MS) has been proposed using drop-to-drop solvent microextraction (DDSME). The best optimum experimental conditions for DDSME were: chloroform as the extraction solvent, 5 min extraction time, 0.5 microL exposure volume of the extraction phase and no salt addition at room temperature. The optimized methodology exhibited good linearity between 0.05 and 5.0 microg/mL with correlation coefficient of 0.980. The relative standard deviation (RSD) and limits of detection (LOD) of the DDSME/GC/MS method were 4.4% and 4.0 ng/mL, respectively. Relative recovery of caffeine in beverages and foods were found to be 96.6-101%, which showing good reliability of this method. This DDSME excludes the major disadvantages of conventional method of caffeine extraction, like large amount of organic solvent and sample consumption and long sample pre-treatment process. So, this approach proves that the DDSME/GC/MS technique can be applied as a simple, fast and feasible diagnosis tool for environmental, food and biological application for extremely small amount of real sample analysis.

  14. Sol-gel/nanoclay composite as a sorbent for microextraction in packed syringe combined with corona discharge ionization ion mobility spectrometry for the determination of diazinon in water samples.

    PubMed

    Saraji, Mohammad; Jafari, Mohammad Taghi; Amooshahi, Mohammad Mehdi

    2018-01-01

    In this work, the microextraction in packed syringe technique combined with corona discharge ion mobility spectrometry was used for determining diazinon in water samples. A new porous composite of nanoclay and polysiloxane was prepared using a sol-gel process. An amount of 2.0 mg of the sorbent was packed in a 250 μL syringe and used for extraction. A volume of 2 mL of the sample was passed through the sorbent bed, and the entrapped analyte was eluted by 25 μL of methanol. Important parameters influencing the extraction performance were investigated. Under optimum experimental conditions, the detection limit for diazinon was 0.07 ng/mL. The intra- and inter-day relative standard deviations were 5.0 and 12.3%, respectively. The calibration curve was linear in the concentration range from 0.2 to 20.0 ng/mL (r 2  = 0.999). The applicability of the method was demonstrated by analyzing spiked real water samples and the spiking recoveries were in the range of 95 to 106%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Polydimethylsiloxane/metal-organic frameworks coated fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in river and lake water samples.

    PubMed

    Zhang, Guijiang; Zang, Xiaohuan; Li, Zhi; Wang, Chun; Wang, Zhi

    2014-11-01

    In this study, polydimethylsiloxane/metal-organic frameworks (PDMS/MOFs), including PDMS/MIL-101 and PDMS/MOF-199, were immobilized onto a stainless steel wire through sol-gel technique as solid-phase microextraction (SPME) fiber coating. The prepared fibers were used for the extraction of some polycyclic aromatic hydrocarbons (PAHs) from water samples prior to gas chromatography-mass spectrometry (GC-MS) analysis. Under the optimized experiment conditions, the PDMS/MIL-101 coated fiber exhibited higher extraction efficiency towards PAHs than that of PDMS/MOF-199. Several parameters affecting the extraction of PAHs by SPME with PDMS/MIL-101 fiber, including the extraction temperature, extraction time, sample volume, salt addition and desorption conditions, were investigated. The limits of detection (LODs) were less than 4.0 ng L(-1) and the linearity was observed in the range from 0.01 to 2.0 µg L(-1) with the correlation coefficients (r) ranging from 0.9940 to 0.9986. The recoveries of the method for the PAHs from water samples at spiking levels of 0.05 and 0.2 µg L(-1) ranged from 78.2% to 110.3%. Single fiber repeatability and fiber-to-fiber reproducibility were less than 9.3% and 13.8%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Application of headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography (GC x GC) for the chemical profiling of volatile oils in complex herbal mixtures.

    PubMed

    Di, Xin; Shellie, Robert A; Marriott, Philip J; Huie, Carmen W

    2004-04-01

    The coupling of headspace solid-phase microextraction (HS-SPME) with comprehensive two-dimensional gas chromatography (GC x GC) was shown to be a powerful technique for the rapid sampling and analysis of volatile oils in complex herbal materials. When compared to one-dimensional (1-D) GC, the improved analytical capabilities of GC x GC in terms of increased detection sensitivity and separation power were demonstrated by using HS-SPME/GC x GC for the chemical profiling (fingerprinting) of essential/volatile oils contained in herbal materials of increasing analytical complexity. More than 20 marker compounds belonging to Panax quinquefolius (American ginseng) can be observed within the 2-D contour plots of ginseng itself, a mixture of ginseng and another important herb (P. quinquefolius/Radix angelicae sinensis), as well as a mixture of ginseng and three other herbs (P. quinquefolius /R. angelicae sinensis/R. astragali/R. rehmanniae preparata). Such analytical capabilities should be important towards the authentication and quality control of herbal products, which are receiving increasing attention as alternative medicines worldwide. In particular, the presence of Panax in the herb formulation could be readily identified through its specific peak pattern in the 2-D GC x GC plot.

  17. Monitoring leachables from single-use bioreactor bags for mammalian cell culture by dispersive liquid-liquid microextraction followed by ultra high performance liquid chromatography quadrupole time of flight mass spectrometry.

    PubMed

    Dorival-García, N; Bones, J

    2017-08-25

    A method for the identification of leachables in chemically defined media for CHO cell culture using dispersive liquid-liquid microextraction (DLLME) and UHPLC-MS is described. A Box-Behnken design of experiments (DoE) approach was applied to obtain the optimum extraction conditions of the target analytes. Performance of DLLME as extraction technique was studied by comparison of two commercial chemically defined media for CHO cell culture. General extraction conditions for any group of leachables, regardless of their specific chemical functionalities can be applied and similar optimum conditions were obtained with the two media. Extraction efficiency and matrix effects were determined. The method was validated using matrix-matched standard calibration followed by recovery assays with spiked samples. Finally, cell culture media was incubated in 7 single use bioreactors (SUBs) from different vendors and analysed. TBPP was not detected in any of the samples, whereas DtBP and TBPP-ox were found in all samples, with bDtBPP detected in six SUBs. This method can be used for early identification of non-satisfactory SUB films for cultivation of CHO cell lines for biopharmaceutical production. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Rapid separation of beryllium and lanthanide derivatives by capillary gas chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Scott D.; Lucke, Richard B.; Douglas, Matt

    2012-09-04

    Previous studies describe derivatization of metal ions followed by analysis using gas chromatography, usually on packed columns. In many of these studies, stable and volatile derivatives were formed using fluorinated β-diketonate reagents. This paper extends previous work by investigating separations of the derivatives on small-diameter capillary gas chromatography columns and exploring on-fiber, solid-phase microextraction derivatization techniques for beryllium. The β-diketonate used for these studies was 1,1,1,2,2,6,6,7,7,7-decafluoro-3,5-heptanedione. Derivatization of lanthanides also required addition of a neutral donor, dibutyl sulfoxide, in addition to 1,1,1,2,2,6,6,7,7,7-decafluoro-3,5-heptanedione. Unoptimized separations on a 100-μm i.d. capillary column proved capable of rapid separations (within 15 min) of lanthanidemore » derivatives that are adjacent to one another in the periodic table. Full-scan mass spectra were obtained from derivatives containing 5 ng of each lanthanide. Studies also developed a simple on-fiber solid-phase microextraction derivatization of beryllium. Beryllium could be analyzed in the presence of other alkali earth elements (Ba(II) and Sr(II)) without interference. Finally, extension of the general approach was demonstrated for several additional elements (i.e. Cu(II), Cr(III), and Ga(III)).« less

  19. Simultaneous dispersive liquid-liquid microextraction derivatisation and gas chromatography mass spectrometry analysis of subcritical water extracts of sweet and sour cherry stems.

    PubMed

    Švarc-Gajić, Jaroslava; Clavijo, Sabrina; Suárez, Ruth; Cvetanović, Aleksandra; Cerdà, Víctor

    2018-03-01

    Cherry stems have been used in traditional medicine mostly for the treatment of urinary tract infections. Extraction with subcritical water, according to its selectivity, efficiency and other aspects, differs substantially from conventional extraction techniques. The complexity of plant subcritical water extracts is due to the ability of subcritical water to extract different chemical classes of different physico-chemical properties and polarities in a single run. In this paper, dispersive liquid-liquid microextraction (DLLME) with simultaneous derivatisation was optimised for the analysis of complex subcritical water extracts of cherry stems to allow simple and rapid preparation prior to gas chromatography-mass spectrometry (GC-MS). After defining optimal extracting and dispersive solvents, the optimised method was used for the identification of compounds belonging to different chemical classes in a single analytical run. The developed sample preparation protocol enabled simultaneous extraction and derivatisation, as well as convenient coupling with GC-MS analysis, reducing the analysis time and number of steps. The applied analytical protocol allowed simple and rapid chemical screening of subcritical water extracts and was used for the comparison of subcritical water extracts of sweet and sour cherry stems. Graphical abstract DLLME GC MS analysis of cherry stem extracts obtained by subcritical water.

  20. Fast determination of Ziziphora tenuior L. essential oil by inorganic-organic hybrid material based on ZnO nanoparticles anchored to a composite made from polythiophene and hexagonally ordered silica.

    PubMed

    Piryaei, Marzieh; Abolghasemi, Mir Mahdi; Nazemiyeh, Hossein

    2015-01-01

    In this paper, for the first time, an inorganic-organic hybrid material based on ZnO nanoparticles was anchored to a composite made from polythiophene and hexagonally ordered silica (ZnO/PT/SBA-15) for use in solid-phase fibre microextraction (SPME) of medicinal plants. A homemade SPME apparatus was used for the extraction of volatile components of Ziziphora tenuior L. A simplex method was used for optimisation of five different parameters affecting the efficiency of the extraction. The main constituents extracted by ZnO/PT/SBA-15 and PDMS fibres and hydrodistillation (HD) methods, respectively, included pulegone (51.25%, 53.64% and 56.68%), limonene (6.73%, 6.58% and 8.3%), caryophyllene oxide (5.33%, 4.31% and 4.53%) and 1,8-cineole (4.21%, 3.31% and 3.18%). In comparison with the HD method, the proposed technique could equally monitor almost all the components of the sample, in an easier way, in a shorter time and requiring a much lower amount of the sample.

  1. Trace determination of volatile polycyclic aromatic hydrocarbons in natural waters by magnetic ionic liquid-based stir bar dispersive liquid microextraction.

    PubMed

    Benedé, Juan L; Anderson, Jared L; Chisvert, Alberto

    2018-01-01

    In this work, a novel hybrid approach called stir bar dispersive liquid microextraction (SBDLME) that combines the advantages of stir bar sorptive extraction (SBSE) and dispersive liquid-liquid microextraction (DLLME) has been employed for the accurate and sensitive determination of ten polycyclic aromatic hydrocarbons (PAHs) in natural water samples. The extraction is carried out using a neodymium stir bar magnetically coated with a magnetic ionic liquid (MIL) as extraction device, in such a way that the MIL is dispersed into the solution at high stirring rates. Once the stirring is ceased, the MIL is magnetically retrieved onto the stir bar, and subsequently subjected to thermal desorption (TD) coupled to a gas chromatography-mass spectrometry (GC-MS) system. The main parameters involved in TD, as well as in the extraction step affecting the extraction efficiency (i.e., MIL amount, extraction time and ionic strength) were evaluated. Under the optimized conditions, the method was successfully validated showing good linearity, limits of detection and quantification in the low ng L -1 level, good intra- and inter-day repeatability (RSD < 13%) and good enrichment factors (18 - 717). This sensitive analytical method was applied to the determination of trace amounts of PAHs in three natural water samples (river, tap and rainwater) with satisfactory relative recovery values (84-115%), highlighting that the matrices under consideration do not affect the extraction process. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Multivariate optimization of a headspace solid-phase microextraction method followed by gas chromatography with mass spectrometry for the determination of terpenes in Nicotiana langsdorffii.

    PubMed

    Ardini, Francisco; Carro, Marina Di; Abelmoschi, Maria Luisa; Grotti, Marco; Magi, Emanuele

    2014-07-01

    A simple and sensitive procedure based on headspace solid-phase microextraction and gas chromatography with mass spectrometry was developed for the determination of five terpenes (α-pinene, limonene, linalool, α-terpineol, and geraniol) in the leaves of Nicotiana langsdorffii. The microextraction conditions (extraction temperature, equilibration time, and extraction time) were optimized by means of a Doehlert design. The experimental design showed that, for α-pinene and limonene, a low temperature and a long extraction time were needed for optimal extraction, while linalool, α-terpineol, and geraniol required a high temperature and a long extraction time. The chosen compromise conditions were temperature 60°C, equilibration time 15 min and extraction time 50 min. The main analytical figures of the optimized method were evaluated; LODs ranged from 0.07 ng/g (α-pinene) to 8.0 ng/g (geraniol), while intraday and interday repeatability were in the range 10-17% and 9-13%, respectively. Finally, the procedure was applied to in vitro wild-type and transgenic specimens of N. langsdorffii subjected to abiotic stresses (chemical and heat stress). With the exception of geraniol (75-374 ng/g), low concentration levels of terpenes were measured (ng/g level or lower); some interesting variations in terpene concentration induced by abiotic stress were observed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Inorganic-organic hybrid coating material for the online in-tube solid-phase microextraction of monohydroxy polycyclic aromatic hydrocarbons in urine.

    PubMed

    Wang, ShuLing; Xu, Hui

    2016-12-01

    An inorganic-organic hybrid nanocomposite (zinc oxide/polypyrrole) that represents a novel kind of coating for in-tube solid-phase microextraction is reported. The composite coating was prepared by a facile electrochemical polymerization strategy on the inner surface of a stainless-steel tube. Based on the coated tube, a novel online in-tube solid-phase microextraction with liquid chromatography and mass spectrometry method was developed and applied for the extraction of three monohydroxy polycyclic aromatic hydrocarbons in human urine. The coating displayed good extraction ability toward monohydroxy polycyclic aromatic hydrocarbons. In addition, long lifespan, excellent stability, and good compression resistance were also obtained for the coating. The experimental conditions affecting the extraction were optimized systematically. Under the optimal conditions, the limits of detection and quantification were in the range of 0.039-0.050 and 0.130-0.167 ng/mL, respectively. Good linearity (0.2-100 ng/mL) was obtained with correlation coefficients larger than 0.9967. The repeatability, expressed as relative standard deviation, ranged between 2.5% and 9.4%. The method offered the advantage of process simplicity, rapidity, automation, and sensitivity in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities of Hubei province. An acceptable recovery of monohydroxy polycyclic aromatic hydrocarbons (64-122%) represented the additional attractive features of the method in real urine analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Development of a novel polystyrene/metal-organic framework-199 electrospun nanofiber adsorbent for thin film microextraction of aldehydes in human urine.

    PubMed

    Liu, Feilong; Xu, Hui

    2017-01-01

    In this work, electrospun polystyrene/metal-organic frameworks-199 (PS/MOF-199) nanofiber film was synthesized and investigated as a novel adsorbent for thin film microextraction (TFME) of aldehydes in human urine. Some properties of the prepared PS/MOF-199 nanofiber film, including morphology, structure, wettability, solvent stability and extraction performance were studied systematically. Porous fibrous structure, large surface area, good stability, strong hydrophobicity and excellent extraction efficiency were obtained for the film. Based on the PS/MOF-199 film, a thin film microextraction-high performance liquid chromatography (TFME-HPLC) method was developed, and the experimental parameters that affected the extraction and desorption were optimized. Under the optimal conditions, the limits of detection (LODs) were in the range of 4.2-17.3nmolL -1 for the analysis of six aldehydes. Good linearity was achieved with correlation coefficients (R 2 ) being lager than 0.9943. Satisfactory recovery (82-112%) and acceptable reproducibility (relative standard deviation: 2.1-13.3%) were also obtained for the method. The developed TFME-HPLC method has been successfully applied to the analysis of aldehyde metabolites in the urine samples of lung cancer patients and healthy people. The method possesses the advantages of simplicity, rapidity, cost-effective, sensitivity and non-invasion, it provides an alternative tool for the determination of aldehydes in complex sample matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Combination of solid phase extraction and dispersive liquid-liquid microextraction for separation/preconcentration of ultra trace amounts of uranium prior to its fiber optic-linear array spectrophotometry determination.

    PubMed

    Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Shakerian, Farid; Shiralian Esfahani, Golnaz

    2013-12-15

    A simple and sensitive method for the separation and preconcentration of the ultra trace amounts of uranium and its determination by spectrophotometry was developed. The method is based on the combination of solid phase extraction and dispersive liquid-liquid microextraction. Thus, by passing the sample through the basic alumina column, the uranyl ion and some cations are separated from the sample matrix. The retained uranyl ion along with the cations are eluted with 5 mL of nitric acid (2 mol L(-1)) and after neutralization of the eluent, the extracted uranyl ion is converted to its anionic benzoate complex and is separated from other cations by extraction of its ion pair with malachite green into small volume of chloroform using dispersive liquid-liquid microextraction. The amount of uranium is then determined by the absorption measurement of the extracted ion pair at 621 nm using flow injection spectrophotometry. Under the optimum conditions, with 500 mL of the sample, a preconcentration factor of 1980, a detection limit of 40 ng L(-1), and a relative standard deviation of 4.1% (n=6) at 400 ng L(-1) were obtained. The method was successfully applied to the determination of uranium in mineral water, river water, well water, spring water and sea water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Dispersive liquid-liquid microextraction and gas chromatography accurate mass spectrometry for extraction and non-targeted profiling of volatile and semi-volatile compounds in grape marc distillates.

    PubMed

    Fontana, Ariel; Rodríguez, Isaac; Cela, Rafael

    2018-04-20

    The suitability of dispersive liquid-liquid microextraction (DLLME) and gas chromatography accurate mass spectrometry (GC-MS), based on a time-of-flight (TOF) MS analyzer and using electron ionization (EI), for the characterization of volatile and semi-volatile profiles of grape marc distillates (grappa) are evaluated. DLLME conditions are optimized with a selection of compounds, from different chemical families, present in the distillate spirit. Under final working conditions, 2.5 mL of sample and 0.5 mL of organic solvents are consumed in the sample preparation process. The absolute extraction efficiencies ranged from 30 to 100%, depending on the compound. For the same sample volume, DLLME provided higher responses than solid-phase microextraction (SPME) for most of the model compounds. The GC-EI-TOF-MS records of grappa samples were processed using a data mining non-targeted search algorithm. In this way, chromatographic peaks and accurate EI-MS spectra of sample components were linked. The identities of more than 140 of these components are proposed from comparison of their accurate spectra with those in a low resolution EI-MS database, accurate masses of most intense fragment ions of known structure, and available chromatographic retention index. The use of chromatographic and spectral data, associated to the set of components mined from different grappa samples, for multivariate analysis purposes is also illustrated in the study. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. In-syringe demulsified dispersive liquid-liquid microextraction and high performance liquid chromatography-mass spectrometry for the determination of trace fungicides in environmental water samples.

    PubMed

    Xia, Yating; Cheng, Min; Guo, Feng; Wang, Xiangfang; Cheng, Jing

    2012-04-29

    An in-syringe demulsified dispersive liquid-liquid microextraction (ISD-DLLME) technique was developed using low-density extraction solvents for the highly sensitive determination of the three trace fungicides (azoxystrobin, diethofencarb and pyrimethanil) in water samples by high performance liquid chromatography-mass spectrometry chromatography-diode array detector/electrospray ionisation mass spectrometry. In the proposed technique, a 5-mL syringe was used as an extraction, separation and preconcentration container. The emulsion was obtained after the mixture of toluene (extraction solvent) and methanol (dispersive solvent) was injected into the aqueous bulk of the syringe. The obtained emulsion cleared into two phases without centrifugation, when an aliquot of methanol was introduced as a demulsifier. The separated floating organic extraction solvent was impelled and collected into a pipette tip fitted to the tip of the syringe. Under the optimal conditions, the enrichment factors for azoxystrobin, diethofencarb and pyrimethanil were 239, 200, 195, respectively. The limits of detection, calculated as three times the signal-to-noise ratio (SN(-1)), were 0.026 μg L(-1) for azoxystrobin, 0.071 μg L(-1) for diethofencarb and 0.040 μg L(-1) for pyrimethanil. The repeatability study was carried out by extracting the spiked water samples at concentration levels of 0.02 μg mL(-1) for all the three fungicides. The relative standard deviations varied between 4.9 and 8.2% (n=5). The recoveries of all the three fungicides from tap, lake and rain water samples at spiking levels of 0.2, 1, 5 μg L(-1) were in the range of 90.0-105.0%, 86.0-114.0% and 88.6-110.0%, respectively. The proposed ISD-DLLME technique was demonstrated to be simple, practical and efficient for the determination of different kinds of fungicide residues in real water samples. Copyright © 2012. Published by Elsevier B.V.

  8. Analysis of trace contaminants in hot gas streams using time-weighted average solid-phase microextraction: proof of concept.

    PubMed

    Woolcock, Patrick J; Koziel, Jacek A; Cai, Lingshuang; Johnston, Patrick A; Brown, Robert C

    2013-03-15

    Time-weighted average (TWA) passive sampling using solid-phase microextraction (SPME) and gas chromatography was investigated as a new method of collecting, identifying and quantifying contaminants in process gas streams. Unlike previous TWA-SPME techniques using the retracted fiber configuration (fiber within needle) to monitor ambient conditions or relatively stagnant gases, this method was developed for fast-moving process gas streams at temperatures approaching 300 °C. The goal was to develop a consistent and reliable method of analyzing low concentrations of contaminants in hot gas streams without performing time-consuming exhaustive extraction with a slipstream. This work in particular aims to quantify trace tar compounds found in a syngas stream generated from biomass gasification. This paper evaluates the concept of retracted SPME at high temperatures by testing the three essential requirements for TWA passive sampling: (1) zero-sink assumption, (2) consistent and reliable response by the sampling device to changing concentrations, and (3) equal concentrations in the bulk gas stream relative to the face of the fiber syringe opening. Results indicated the method can accurately predict gas stream concentrations at elevated temperatures. Evidence was also discovered to validate the existence of a second boundary layer within the fiber during the adsorption/absorption process. This limits the technique to operating within reasonable mass loadings and loading rates, established by appropriate sampling depths and times for concentrations of interest. A limit of quantification for the benzene model tar system was estimated at 0.02 g m(-3) (8 ppm) with a limit of detection of 0.5 mg m(-3) (200 ppb). Using the appropriate conditions, the technique was applied to a pilot-scale fluidized-bed gasifier to verify its feasibility. Results from this test were in good agreement with literature and prior pilot plant operation, indicating the new method can measure low concentrations of tar in gasification streams. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Analysis of Explosives in Soil Using Solid Phase Microextraction and Gas Chromatography: Environmental Analysis

    DTIC Science & Technology

    2006-01-01

    ENVIRONMENTAL ANALYSIS Analysis of Explosives in Soil Using Solid Phase Microextraction and Gas Chromatography Howard T. Mayfield Air Force Research...Abstract: Current methods for the analysis of explosives in soils utilize time consuming sample preparation workups and extractions. The method detection...chromatography/mass spectrometry to provide a con- venient and sensitive analysis method for explosives in soil. Keywords: Explosives, TNT, solid phase

  10. Development and Efficacy Testing of Next Generation Cyanide Antidotes

    DTIC Science & Technology

    2013-10-01

    Preparation of mDMTS A-2.2. HPLC method for DMTS determination in Micelles A-2.3. Head-space solid phase micro-extraction- gas chromatography -mass...Simultaneous determination of cyanide and thiocyanate in plasma by chemical ionization gas chromatography mass-spectrometry (CI-GC-MS). Analytical and...min. Peak integration was performed using Star Chromatography Workstation Version 6.20. A-2.3. Head-space solid phase micro-extraction- gas

  11. Development of an Alternative Mixed Odor Delivery Device (MODD) for Canine Training

    DTIC Science & Technology

    2017-05-10

    solid phase microextraction (SPME) and analysis by gas chromatography / mass spectrometry (GC/MS). Like the computational modeling, the laboratory...outlet was extracted by solid phase microextraction (SPME) and analyzed by gas chromatography with mass spectrometry (GC/MS). A polydimethylsiloxane...Menning and H. Ostmark, "Detection of liquid and homemade explosives: What do we need to know about their properties?," in Detection of Liquid

  12. Magnetic stirrer induced dispersive ionic-liquid microextraction for the determination of vanadium in water and food samples prior to graphite furnace atomic absorption spectrometry.

    PubMed

    Naeemullah; Kazi, Tasneem Gul; Tuzen, Mustafa

    2015-04-01

    A new dispersive liquid-liquid microextraction, magnetic stirrer induced dispersive ionic-liquid microextraction (MS-IL-DLLME) was developed to quantify the trace level of vanadium in real water and food samples by graphite furnace atomic absorption spectrometry (GFAAS). In this extraction method magnetic stirrer was applied to obtained a dispersive medium of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] in aqueous solution of (real water samples and digested food samples) to increase phase transfer ratio, which significantly enhance the recovery of vanadium - 4-(2-pyridylazo) resorcinol (PAR) chelate. Variables having vital role on desired microextraction methods were optimised to obtain the maximum recovery of study analyte. Under the optimised experimental variables, enhancement factor (EF) and limit of detection (LOD) were achieved to be 125 and 18 ng L(-1), respectively. Validity and accuracy of the desired method was checked by analysis of certified reference materials (SLRS-4 Riverine water and NIST SRM 1515 Apple leaves). The relative standard deviation (RSD) for 10 replicate determinations at 0.5 μg L(-1) of vanadium level was found to be <5.0%. This method was successfully applied to real water and acid digested food samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Investigation of fragrance stability used in the formulation of cosmetic and hygienic products using headspace solid-phase microextraction by nanostructured materials followed by gas chromatography with mass spectrometry.

    PubMed

    Masoum, Saeed; Gholami, Ali; Ghaheri, Salehe; Bouveresse, Delphine Jouan-Rimbaud; Cordella, Christophe B Y; Rutledge, Douglas N

    2016-07-01

    A new composite coating of polypyrrole and sodium lauryl ether sulfate was electrochemically prepared on a stainless-steel wire using cyclic voltammetry. The application and performance of the fiber was evaluated for the headspace solid-phase microextraction of a fragrance in aqueous bleach samples followed by gas chromatography combined with mass spectrometry to assess the fragrance stability in this kind of household cleaning product. To obtain a stable and efficient composite coating, parameters related to the coating process such as scan rate and numbers of cycles were optimized using a central composite design. In addition, the effects of various parameters on the extraction efficiency of the headspace solid-phase microextraction process such as extraction temperature and time, ionic strength, sample volume, and stirring rate were investigated by experimental design methods using Plackett-Burman and Doehlert designs. The optimum values of 53°C and 28 min for sample temperature and time, respectively, were found through response surface methodology. Results show that the combination of polypyrrole and sodium lauryl ether sulfate in a composite form presents desirable opportunities to produce new materials to study fragrance stability by headspace solid-phase microextraction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Comparison between solid phase microextraction (SPME) and hollow fiber liquid phase microextraction (HFLPME) for determination of extractables from post-consumer recycled PET into food simulants.

    PubMed

    Oliveira, Éder Costa; Echegoyen, Yolanda; Cruz, Sandra Andrea; Nerin, Cristina

    2014-09-01

    Hollow fiber liquid phase microextraction (HFLPME) and solid phase microextraction (SPME) methods for pre-concentration of contaminants (toluene, benzophenone, tetracosane and chloroform) in food simulants were investigated. For HFLPME 1-heptanol, 2-octanone and dibutyl-ether were studied as extracting solvents. Analysis by gas chromatography coupled to mass spectrometry (GC-MS), flame ionization (GC-FID) and electron capture detectors (GC-ECD) were carried out. In addition, the methods were employed to evaluate the safety in use of a PET material after the recycling process (comprising washing, extrusion and solid state polymerization (SSP)) through extractability studies of the contaminants using 10% (v/v) ethanol in deionized water and 3% (w/v) acetic acid in deionized water as food simulants in different conditions: 10 days at 40°C and 2h at 70°C. The HFLPME preconcentration method provided increased sensitivity when compared to the SPME method and allowed to analyze concentration levels below 10 µg surrogate per kg food simulant. The results of the extractability studies showed considerable reductions after the extrusion and SSP processes and indicated the compliance with regulations for using recycled PET in contact with food. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Optimization and determination of Cd (II) in different environmental water samples with dispersive liquid-liquid microextraction preconcentration combined with inductively coupled plasma optical emission spectrometry.

    PubMed

    Salahinejad, Maryam; Aflaki, Fereydoon

    2011-06-01

    Dispersive liquid-liquid microextraction followed by inductively coupled plasma-optical emission spectrometry has been investigated for determination of Cd(II) ions in water samples. Ammonium pyrrolidine dithiocarbamate was used as chelating agent. Several factors influencing the microextraction efficiency of Cd (II) ions such as extracting and dispersing solvent type and their volumes, pH, sample volume, and salting effect were optimized. The optimization was performed both via one variable at a time, and central composite design methods and the optimum conditions were selected. Both optimization methods showed nearly the same results: sample size 5 mL; dispersive solvent ethanol; dispersive solvent volume 2 mL; extracting solvent chloroform; extracting solvent volume 200 [Formula: see text]L; pH and salt amount do not affect significantly the microextraction efficiency. The limits of detection and quantification were 0.8 and 2.5 ng L( - 1), respectively. The relative standard deviation for five replicate measurements of 0.50 mg L( - 1) of Cd (II) was 4.4%. The recoveries for the spiked real samples from tap, mineral, river, dam, and sea waters samples ranged from 92.2% to 104.5%.

  16. Water-contained surfactant-based vortex-assisted microextraction method combined with liquid chromatography for determination of synthetic antioxidants from edible oil.

    PubMed

    Amlashi, Nadiya Ekbatani; Hadjmohammadi, Mohammad Reza; Nazari, Seyed Saman Seyed Jafar

    2014-09-26

    For the first time, a novel water-contained surfactant-based vortex-assisted microextraction method (WSVAME) was developed for the extraction of two synthetic antioxidants (t-butyl hydroquinone (TBHQ) and butylated hydroxyanisole (BHA)) from edible oil samples. The novel microextraction method is based on the injection of an aqueous solution of non-ionic surfactant, Brij-35, into the oil sample in a conical bottom glass tube to form a cloudy solution. Vortex mixing was applied to accelerate the dispersion process. After extraction and phase separation by centrifugation, the lower sediment phase was directly analyzed by HPLC. The effects of the four experimental parameters including volume and concentration of extraction solvent (aqueous solution of Brij-35), percentage of acetic acid added to the oil sample and vortex time on the extraction efficiency were studied with a full factorial design. The central composite design and multiple linear regression method were applied for the construction of the best polynomial model based on experimental recoveries. The proposed method showed good linearity within the range of 0.200-200 μg mL(-1), the square of correlation coefficient higher than 0.999 and appropriate limit of detection (0.026 and 0.020 μg mL(-1) for TBHQ and BHA, respectively), while the precision for inner-day was ≤ 3.0 (n=5) and it was ≤ 3.80 (n=5) for inter-day assay. Under the optimal condition (30 μL of 0.10 mol L(-1) Brij-35 solution as extraction solvent and vortex time 1 min), the method was successfully applied for determination of TBHQ and BHA in different commercial edible oil samples. The recoveries in all cases were above 95%, with relative standard deviations below 5%. This approach is considered as a simple, sensitive and environmentally friendly method because of biodegradability of the extraction phase and no use of organic solvent in the extraction procedure. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Capabilities and limitations of dispersive liquid-liquid microextraction with solidification of floating organic drop for the extraction of organic pollutants from water samples.

    PubMed

    Vera-Avila, Luz E; Rojo-Portillo, Tania; Covarrubias-Herrera, Rosario; Peña-Alvarez, Araceli

    2013-12-17

    Dispersive liquid-liquid microextraction with solidification of floating organic drop (DLLME-SFO) is one of the most interesting sample preparation techniques developed in recent years. Although several applications have been reported, the potentiality and limitations of this simple and rapid extraction technique have not been made sufficiently explicit. In this work, the extraction efficiency of DLLME-SFO for pollutants from different chemical families was determined. Studied compounds include: 10 polycyclic aromatic hydrocarbons, 5 pesticides (chlorophenoxy herbicides and DDT), 8 phenols and 6 sulfonamides, thus, covering a large range of polarity and hydrophobicity (LogKow 0-7, overall). After optimization of extraction conditions using 1-dodecanol as extractant, the procedure was applied for extraction of each family from 10-mL spiked water samples, only adjusting sample pH as required. Absolute recoveries for pollutants with LogKow 3-7 were >70% and recovery values within this group (18 compounds) were independent of structure or hydrophobicity; the precision of recovery was very acceptable (RSD<12%) and linear behavior was observed in the studied concentration range (r(2)>0.995). Extraction recoveries for pollutants with LogKow 1.46-2.8 were in the range 13-62%, directly depending on individual LogKow values; however, good linearity (r(2)>0.993) and precision (RSD<6.5%) were also demonstrated for these polar solutes, despite recovery level. DLLME-SFO with 1-dodecanol completely failed for extraction of compounds with LogKow≤1 (sulfa drugs), other more polar extraction solvents (ionic liquids) should be explored for highly hydrophilic pollutants. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Solid phase microextraction-high performance liquid chromatographic determination of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in the presence of sodium dodecyl sulfate surfactant.

    PubMed

    Malik, Ashok Kumar; Rai, Parmod Kumar

    2008-07-01

    A simple and sensitive method has been developed using preconcentration technique solid phase microextraction (SPME) and analytical technique HPLC-UV for the determination of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from the environmental samples. Aqueous solution of anionic surfactant SDS was used for the extraction of both nitramine high explosives, viz., HMX and RDX from soil samples which were subsequently sorbed on SPME fiber. The static desorption was carried out in the desorption chamber of the SPME-HPLC interface in the presence of mobile phase ACN/methanol/water (30:35:35) and the subsequent chromatographic analysis at a flow rate of 0.5 mL/min and detection at 230 nm. For this purpose, a C(18), 5 microm RP analytical column was used as a separation medium in this method. Several parameters relating to SPME, e.g., adsorption/desorption time, concentration of salt, stirring rate, etc., were optimized. The method was linear over the range of 20-400 ng/mL for HMX and RDX standards in the presence of surfactant in aqueous phase, respectively. The correlation coefficient (R(2)) for HMX and RDX are 0.9998 and 0.9982, respectively. With SPME, the detection limits (S/N = 3) in ng/mL are 0.05 and 0.1 for HMX and RDX, respectively in the presence of the SDS surfactant. The developed method has been applied successfully to the analysis of real environmental samples like bore well water, river water, and ground alluvial soil.

  19. Dispersive liquid-liquid microextraction of phenolic compounds from vegetable oils using a magnetic ionic liquid.

    PubMed

    Zhu, Shuqiang; Wang, Lijun; Su, Along; Zhang, Haixia

    2017-08-01

    A novel method was developed for the determination of two endocrine-disrupting chemicals, bisphenol A and 4-nonylphenol, in vegetable oil by dispersive liquid-liquid microextraction followed by ultra high performance liquid chromatography with tandem mass spectrometry. Using a magnetic liquid as the microextraction solvent, several key parameters were optimized, including the type and volume of the magnetic liquid, extraction time, amount of dispersant, and the type of reverse extractant. The detection limits for bisphenol A and 4-nonylphenol were 0.1 and 0.06 μg/kg, respectively. The recoveries were 70.4-112.3%, and the relative standard deviations were less than 4.2%. The method is simple for the extraction of bisphenol A and 4-nonylphenol from vegetable oil and suitable for routine analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Determination of ten pyrethroids in various fruit juices: comparison of dispersive liquid-liquid microextraction sample preparation and QuEChERS method combined with dispersive liquid-liquid microextraction.

    PubMed

    Zhang, Yaohai; Zhang, Xuelian; Jiao, Bining

    2014-09-15

    Dispersive liquid-liquid microextraction (DLLME) sample preparation and the quick, easy, cheap, effective, rugged and safe (QuEChERS) method combined with DLLME were developed and compared for the analysis of ten pyrethroids in various fruit juices using gas chromatography-electron capture detection (GC-ECD). QuEChERS-DLLME method has found its widespread applications to all the fruit juices including those samples with more complex matrices (orange, lemon, kiwi and mango) while DLLME was confined to the fruit juices with simpler matrices (apple, pear, grape and peach). The two methods provided acceptable recoveries and repeatability. In addition, the applicabilities of two methods were demonstrated with the real samples and further confirmed by gas chromatography-mass spectrometry (GC-MS). Copyright © 2014. Published by Elsevier Ltd.

  1. Monitoring Pb in Aqueous Samples by Using Low Density Solvent on Air-Assisted Dispersive Liquid-Liquid Microextraction Coupled with UV-Vis Spectrophotometry.

    PubMed

    Nejad, Mina Ghasemi; Faraji, Hakim; Moghimi, Ali

    2017-04-01

    In this study, AA-DLLME combined with UV-Vis spectrophotometry was developed for pre-concentration, microextraction and determination of lead in aqueous samples. Optimization of the independent variables was carried out according to chemometric methods in three steps. According to the screening and optimization study, 86 μL of 1-undecanol (extracting solvent), 12 times syringe pumps, pH 2.0, 0.00% of salt and 0.1% DDTP (chelating agent) were chosen as the optimum independent variables for microextraction and determination of lead. Under the optimized conditions, R = 0.9994, and linearity range was 0.01-100 µg mL -1 . LOD and LOQ were 3.4 and 11.6 ng mL -1 , respectively. The method was applied for analysis of real water samples, such as tap, mineral, river and waste water.

  2. Determination of volatile organic acids in oriental tobacco by needle-based derivatization headspace liquid-phase microextraction coupled to gas chromatography/mass spectrometry.

    PubMed

    Sun, Shi-Hao; Xie, Jian-Ping; Xie, Fu-Wei; Zong, Yong-Li

    2008-02-01

    A method coupling needle-based derivatization headspace liquid-phase microextraction with gas chromatography-mass spectrometry (HS-LPME/GC-MS) was developed to determine volatile organic acids in tobacco. The mixture of N,O-bis(trimethylsilyl)trifluoroacetamide and decane was utilized as the solvent for HS-LPME, resulting that extraction and derivatization were simultaneously completed in one step. The solvent served two purposes. First, it pre-concentrated volatile organic acids in the headspace of tobacco sample. Second, the volatile organic acids extracted were derivatized to form silyl derivatives in the drop. The main parameters affecting needle-based derivatization HS-LPME procedure such as extraction and derivatization reagent, microdrop volume, extraction and derivatization time, and preheating temperature and preheating time were optimized. The standard addition approach was essential to obtain accurate measurements by minimizing matrix effects. Good linearity (R(2)> or =0.9804) and good repeatability (RSDs< or =15.3%, n=5) for 16 analytes in spiked standard analytes sample were achieved. The method has the additional advantages that at the same time it is simple, fast, effective, sensitive, selective, and provides an overall profile of volatile organic acids in the oriental tobacco. This paper does offer an alternative approach to determine volatile organic acids in tobacco.

  3. Solid phase microextraction of phthalic acid esters from vegetable oils using iron (III)-based metal-organic framework/graphene oxide coating.

    PubMed

    Zhang, Shuaihua; Yang, Qian; Li, Zhi; Wang, Wenjin; Zang, Xiaohuan; Wang, Chun; Wang, Zhi

    2018-10-15

    A hybrid composite featuring an iron-based metal-organic framework Material of Institute Lavoisier-88(Fe) and graphene oxide (MIL-88(Fe)/GO) was synthesized and used as the solid-phase microextraction (SPME) coating. The SPME fiber was prepared by covalent bonding of the MIL-88(Fe)/GO composite onto the stainless steel substrate. The fiber had a good durability and allowed >100 replicate extractions. The developed method, which combined the MIL-88(Fe)/GO coated fiber based SPME with gas chromatography-flame ionization detection (GC-FID), achieved low limits of detection (0.5-2.0 ng g -1 , S/N = 3) and good linearity (r 2  > 0.994) for the phthalic acid esters (PAEs) from various vegetable oil samples. The repeatability and fiber-to-fiber reproducibility were in the range of 4.0-9.1% and 5.7-11.4%, respectively. The method was successfully applied to the analysis of PAEs from vegetable oil samples with good recoveries (83.1-104.1%) and satisfactory precisions (RSDs < 10.5%), indicating that the MIL-88(Fe)/GO hybrid composite is a good coating material for the SPME of PAEs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction and derivatization of sulfonamides in river water, honey, milk, and animal plasma.

    PubMed

    Xu, Xu; Su, Rui; Zhao, Xin; Liu, Zhuang; Zhang, Yupu; Li, Dan; Li, Xueyuan; Zhang, Hanqi; Wang, Ziming

    2011-11-30

    The ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction (IL-based MADLLME) and derivatization was applied for the pretreatment of six sulfonamides (SAs) prior to the determination by high-performance liquid chromatography (HPLC). By adding methanol (disperser), fluorescamine solution (derivatization reagent) and ionic liquid (extraction solvent) into sample, extraction, derivatization, and preconcentration were continuously performed. Several experimental parameters, such as the type and volume of extraction solvent, the type and volume of disperser, amount of derivatization reagent, microwave power, microwave irradiation time, pH of sample solution, and ionic strength were investigated and optimized. When the microwave power was 240 W, the analytes could be derivatized and extracted simultaneously within 90 s. The proposed method was applied to the analysis of river water, honey, milk, and pig plasma samples, and the recoveries of analytes obtained were in the range of 95.0-110.8, 95.4-106.3, 95.0-108.3, and 95.7-107.7, respectively. The relative standard deviations varied between 1.5% and 7.3% (n=5). The results showed that the proposed method was a rapid, convenient and feasible method for the determination of SAs in liquid samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Metabolite profiling on apple volatile content based on solid phase microextraction and gas-chromatography time of flight mass spectrometry.

    PubMed

    Aprea, Eugenio; Gika, Helen; Carlin, Silvia; Theodoridis, Georgios; Vrhovsek, Urska; Mattivi, Fulvio

    2011-07-15

    A headspace SPME GC-TOF-MS method was developed for the acquisition of metabolite profiles of apple volatiles. As a first step, an experimental design was applied to find out the most appropriate conditions for the extraction of apple volatile compounds by SPME. The selected SPME method was applied in profiling of four different apple varieties by GC-EI-TOF-MS. Full scan GC-MS data were processed by MarkerLynx software for peak picking, normalisation, alignment and feature extraction. Advanced chemometric/statistical techniques (PCA and PLS-DA) were used to explore data and extract useful information. Characteristic markers of each variety were successively identified using the NIST library thus providing useful information for variety classification. The developed HS-SPME sampling method is fully automated and proved useful in obtaining the fingerprint of the volatile content of the fruit. The described analytical protocol can aid in further studies of the apple metabolome. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Highly porous solid-phase microextraction fiber coating based on poly(ethylene glycol)-modified ormosils synthesized by sol-gel technology.

    PubMed

    da Costa Silva, Raquel Gomes; Augusto, Fabio

    2005-04-22

    The preparation and characteristics of solid-phase microextraction (SPME) fibers coated with Carbowax 20M ormosil (organically modified silica) are described here. Raw fused silica fibers were coated with Carbowax 20M-modified silica using sol-gel process. Scanning electron micrographs of fibers revealed a highly porous, sponge-like coating with an average thickness of (8 +/- 1) microm. The sol-gel Carbowax fibers were compared to commercial fibers coated with 100 microm polydimethylsiloxane (PDMS) and 65 microm Carbowax-divinylbenzene (DVB). Shorter equilibrium times were possible with the sol-gel Carbowax fiber: for headspace extraction of the test analytes, they ranged from less than 3 min for benzene to 15 min for o-xylene. Extraction efficiencies of the sol-gel Carbowax fiber were superior to those of conventional fibers: for o-xylene, the extracted masses were 230 and 540% of that obtained with 100 microm PDMS and 65 microm Carbowax-DVB fibers, respectively.

  7. A multiple hollow fibre liquid-phase microextraction method for the determination of halogenated solvent residues in olive oil.

    PubMed

    Manso, J; García-Barrera, T; Gómez-Ariza, J L; González, A G

    2014-02-01

    The present paper describes a method based on the extraction of analytes by multiple hollow fibre liquid-phase microextraction and detection by ion-trap mass spectrometry and electron capture detectors after gas chromatographic separation. The limits of detection are in the range of 0.13-0.67 μg kg(-1), five orders of magnitude lower than those reached with the European Commission Official method of analysis, with three orders of magnitude of linear range (from the quantification limits to 400 μg kg(-1) for all the analytes) and recoveries in fortified olive oils in the range of 78-104 %. The main advantages of the analytical method are the absence of sample carryover (due to the disposable nature of the membranes), high enrichment factors in the range of 79-488, high throughput and low cost. The repeatability of the analytical method ranged from 8 to 15 % for all the analytes, showing a good performance.

  8. Capillary liquid chromatographic analysis of fat-soluble vitamins and beta-carotene in combination with in-tube solid-phase microextraction.

    PubMed

    Xu, Hui; Jia, Li

    2009-01-01

    A capillary liquid chromatography (CLC) system with UV/vis detection was coupled with an in-tube solid-phase microextraction (SPME) device for the analysis of fat-soluble vitamins and beta-carotene. A monolithic silica-ODS column was used as the extraction medium. An optical-fiber flow cell with a long light path in the UV/vis detector was utilized to further enhance the detection sensitivity. In the in-tube SPME/CLC system, the pre-condition of the extraction column and the effect of the injection volume were investigated. The detection limits (LOD) for the fat-soluble vitamins and beta-carotene were in the range from 1.9 to 173 ng/mL based on the signal-to-noise ratio of 3 (S/N=3). The relative standard deviations of migration time and peak area for each analyte were less than 5.0%. The method was applied to the analysis of fat-soluble vitamins and beta-carotene contents in corns.

  9. Solvent microextraction-flame atomic absorption spectrometry (SME-FAAS) for determination of ultratrace amounts of cadmium in meat and fish samples.

    PubMed

    Goudarzi, Nasser

    2009-02-11

    A simple, low cost and highly sensitive method based on solvent microextraction (SME) for separation/preconcentration and flame atomic absorption spectrometry (FAAS) was proposed for the determination of ultratrace amounts of cadmium in meat and fish samples. The analytical procedure involved the formation of a hydrophobic complex by mixing the analyte solution with an ammonium pyrrolidinedithiocarbamate (APDC) solution. In suitable conditions, the complex of cadmium-APDC entered the micro organic phase, and thus, separation of the analyte from the matrix was achieved. Under optimal chemical and instrumental conditions, a detection limit (3 sigma) of 0.8 ng L(-1) and an enrichment factor of 93 were achieved. The relative standard deviation for the method was found to be 2.2% for Cd. The interference effects of some anions and cations were also investigated. The developed method has been applied to the determination of trace Cd in meat and fish samples.

  10. A Facile Vortex-Assisted Dispersive Liquid-Liquid Microextraction Method for the Determination of Uranyl Ion at Low Levels by Spectrophotometry.

    PubMed

    Corazza, Marcela Zanetti; Pires, Igor Matheus Ruiz; Diniz, Kristiany Moreira; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira

    2015-08-01

    A facile and reliable UV-Vis spectrophotometric method associated with vortex-assisted dispersive liquid-liquid microextraction has been developed and applied to the determination of U(VI) at low levels in water samples. It was based on preconcentration of 24.0 mL sample at pH 8.0 in the presence of 7.4 µmol L(-1) 1-(2-pyridylazo)-2-naphthol, 1.0 mL of methanol as disperser solvent and 1.0 mL of chloroform as extraction solvent. A high preconcentration factor was achieved (396 times), thus providing a wide analytical curve from 6.9 up to 75.9 µg L(-1) (r=0.9982) and limits of detection and quantification of 0.40 and 1.30 µg L(-1), respectively. When necessary, EDTA or KCN can be used to remove interferences of foreign ions. The method was applied to the analysis of real water samples, such as tap, mineral and lake waters with good recovery values.

  11. Synthesis and application of magnetic deep eutectic solvents: Novel solvents for ultrasound assisted liquid-liquid microextraction of thiophene.

    PubMed

    Khezeli, Tahere; Daneshfar, Ali

    2017-09-01

    Two novel magnetic deep eutectic solvents (MDESs), comprised of cheap and simple components named [choline chloride/phenol] [FeCl 4 ] and [choline chloride/ethylene glycol] [FeCl 4 ] were prepared and characterized by CHN elemental analysis, proton nuclear magnetic resonance ( 1 H NMR), vibrating sample magnetometery (VSM), Raman, Fourier transform-infrared (FT-IR) and UV-Vis spectrometery. The extraction efficiency of the prepared MDESs has been investigated in ultrasound assisted liquid-liquid microextraction based MDES (UALLME-MDES). Briefly, MDESs were added to n-heptan containing thiophene. Then, MDESs were dispersed in n-heptane by sonication. After that, microdroplets of MDESs were collected by a magnet and the remained concentration of thiophene in n-heptane phase was analyzed by GC-FID. The results indicated that [choline chloride/phenol] [FeCl 4 ] has higher extraction efficiency than [choline chloride/ethylene glycol] [FeCl 4 ]. This work opens a new way to the application of MDESs. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Aqueous two-phase based on ionic liquid liquid-liquid microextraction for simultaneous determination of five synthetic food colourants in different food samples by high-performance liquid chromatography.

    PubMed

    Sha, Ou; Zhu, Xiashi; Feng, Yanli; Ma, Weixing

    2015-05-01

    A rapid and effective method of aqueous two-phase systems based on ionic liquid microextraction for the simultaneous determination of five synthetic food colourants (tartrazine, sunset yellow, amaranth, ponceau 4R and brilliant blue) in food samples was established. High-performance liquid chromatography coupled with an ultraviolet detector of variable wavelength was used for the determinations. 1-alkyl-3-methylimidazolium bromide was selected as the extraction reagent. The extraction efficiency of the five colourants in the proposed system is influenced by the types of salts, concentrations of salt and [CnMIM]Br, as well as the extracting time. Under the optimal conditions, the extraction efficiencies for these five colourants were above 95%. The phase behaviours of aqueous two-phase system and extraction mechanism were investigated by UV-vis spectroscopy. This method was applied to the analysis of the five colourants in real food samples with the detection limit of 0.051-0.074 ng/mL. Good spiked recoveries from 93.2% to 98.9% were obtained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Bis(trifluoromethylsulfonyl)imide-based frozen ionic liquid for the hollow-fiber solid-phase microextraction of dichlorodiphenyltrichloroethane and its main metabolites.

    PubMed

    Pang, Long; Yang, Peijie; Pang, Rong; Li, Shunyi

    2017-08-01

    1-Hexadecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide is a solid-phase ionic organic material under ambient temperature and is considered as a kind of "frozen" ionic liquid. Because of their solid-state and ultra-hydrophobicity, "frozen" ionic liquids are able to be confined in the pores of hollow fiber, based on which a simple method was developed for the hollow-fiber solid-phase microextraction of dichlorodiphenyltrichloroethane and its main metabolites. Under optimized conditions, the proposed method results in good linearity (R 2 > 0.9965) over the range of 0.5-50 μg/L, with low limits of detection and quantification in the range of 0.33-0.38 and 1.00-1.25 μg/L, respectively. Intra- and interday precisions evaluated by relative standard deviation were 3-6 and 1-6%, respectively. The spiked recoveries of dichlorodiphenyltrichloroethane and its main metabolites from real water samples were in the range of 64-113 and 79-112%, respectively, at two different concentration levels. The results suggest that "frozen" ionic liquids are promising for use as a class of novel sorbents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dispersive liquid-liquid microextraction based on solidification of floating organic drop for preconcentration and determination of trace amounts of copper by flame atomic absorption spectrometry.

    PubMed

    Karadaş, Cennet; Kara, Derya

    2017-04-01

    A novel, simple, rapid, sensitive, inexpensive and environmentally friendly dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop (DLLME-SFO) was developed for the determination of copper by flame atomic absorption spectrometry (FAAS). N-o-Vanillidine-2-amino-p-cresol was used as a chelating ligand and 1-undecanol was selected as an extraction solvent. The main parameters affecting the performance of DLLME-SFO, such as sample pH, volume of extraction solvent, extraction time, concentration of the chelating ligand, salt effect, centrifugation time and sample volume were investigated and optimized. The effect of interfering ions on the recovery of copper was also examined. Under the optimum conditions, the detection limit (3σ) was 0.93μgL -1 for Cu using a sample volume of 20mL, yielding a preconcentration factor of 20. The proposed method was successfully applied to the determination of Cu in tap, river and seawater, rice flour and black tea samples as well as certified reference materials. Copyright © 2016. Published by Elsevier Ltd.

  15. A Paper-Based Analytical Device Based on Combination of Thin Film Microextraction and Reflection Scanometry for Sensitive Colorimetric Determination of Ni(II) in Aqueous Matrix.

    PubMed

    Allafchian, Ali Reza; Farajmand, Bahman; Koupaei, Amin Javaheri

    2018-04-01

    In this research, the thin film microextraction method was applied for the extraction of Ni(II) ion from aqueous matrixes. Chemically modified cellulosic filter paper with phosphorus was used as a thin film extractor. After extraction, the thin film was treated with a solution of dimethylglyoxime. The colored film was captured by flatbed scanner and the absorbance of the images was extracted by some suitable software. Under the optimum conditions and at the pH 7.0, with the sample volume of 100 mL, the stirring rate of 800 rpm, and the extraction time of 50 min, the calibration curve was obtained in the range of 0.05-5 mg/L Ni(II) (R 2  = 0.989). Limit and relative standard deviation were achieved to be 18 µg/L and less than 6.7%, respectively. Relative recoveries were obtained in the range of 87%-105%. Finally, the proposed method was found to be simple and cost-effective, with adequate analytical performance for the rapid detection of Ni(II) in river and wastewater samples.

  16. Multivariate optimization of the factors influencing the solid-phase microextraction of pyrethroid pesticides in water.

    PubMed

    Casas, Vanessa; Llompart, Maria; García-Jares, Carmen; Cela, Rafael; Dagnac, Thierry

    2006-08-18

    A method based on solid-phase microextraction (SPME) and gas chromatography with micro-electron capture detection (GC-microECD) has been optimized for the analysis of pyrethroids in water samples. The influence of parameters such as temperature, fibre coating, salting-out effect and sampling mode on the extraction efficiency has been studied by means of a mix-level factorial design, which allowed the study of main effects as well as two factor interactions. Finally, a method based on direct SPME at 50 degrees C, using polydimethylsiloxane fibre is proposed. The method showed good linearity (R2>0.995) and repeatability (RSD

  17. Planar solid-phase microextraction-ion mobility spectrometry: a diethoxydiphenylsilane-based coating for the detection of explosives and explosive taggants.

    PubMed

    Mattarozzi, M; Bianchi, F; Bisceglie, F; Careri, M; Mangia, A; Mori, G; Gregori, A

    2011-03-01

    A novel diethoxydiphenylsilane-based coating for planar solid-phase microextraction was developed using sol-gel technology and used for ion mobility spectrometric detection of the explosives 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and of the explosive taggant ethylene glycol dinitrate. The trap was characterized in terms of coating thickness, morphology, inter-batch repeatability, and extraction efficiency. An average thickness of 143 ± 13 μm with a uniform distribution of the coating was obtained. Good performances of the developed procedure in terms of both intra-batch and inter-batch repeatability with relative standard deviations <7% were obtained. Experimental design and desirability function were used to find the optimal conditions for simultaneous headspace extraction of the investigated compounds: the optimal values were found in correspondence of a time and a temperature of extraction of 45 min and 40 °C, respectively. Detection and quantitation limits in low nanogram levels were achieved proving the superior extraction capability of the developed coating, obtaining ion mobility spectrometric responses at least two times higher than those achieved using commercial teflon and paper traps.

  18. Optimization of dispersive liquid-phase microextraction based on solidified floating organic drop combined with high-performance liquid chromatography for the analysis of glucocorticoid residues in food.

    PubMed

    Huang, Yuan; Zheng, Zhiqun; Huang, Liying; Yao, Hong; Wu, Xiao Shan; Li, Shaoguang; Lin, Dandan

    2017-05-10

    A rapid, simple, cost-effective dispersive liquid-phase microextraction based on solidified floating organic drop (SFOD-LPME) was developed in this study. Along with high-performance liquid chromatography, we used the developed approach to determine and enrich trace amounts of four glucocorticoids, namely, prednisone, betamethasone, dexamethasone, and cortisone acetate, in animal-derived food. We also investigated and optimized several important parameters that influenced the extraction efficiency of SFOD-LPME. These parameters include the extractant species, volumes of extraction and dispersant solvents, sodium chloride addition, sample pH, extraction time and temperature, and stirring rate. Under optimum experimental conditions, the calibration graph exhibited linearity over the range of 1.2-200.0ng/ml for the four analytes, with a reasonable linearity(r 2 : 0.9990-0.9999). The enrichment factor was 142-276, and the detection limits was 0.39-0.46ng/ml (0.078-0.23μg/kg). This method was successfully applied to analyze actual food samples, and good spiked recoveries of over 81.5%-114.3% were obtained. Copyright © 2017. Published by Elsevier B.V.

  19. Indirect spectrophotometric determination of ultra trace amounts of selenium based on dispersive liquid-liquid microextraction-solidified floating organic drop.

    PubMed

    Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh; Nozohor, Mahnaz

    2013-12-01

    A novel dispersive liquid-liquid microextraction-solidified floating organic drop (DLLME-SFOD) method combined with fiber optic-linear array detection spectrophotometry has been developed for the indirect determination of selenium. The method is based on the oxidation of the I(-) to iodine by inorganic Se(IV). The produced I2 reacts with the excess of I(-) ions in acidic media to give triiodide ions. The I3(-) is then extracted into 1-undecanol by DLLME-SFOD upon the formation of an ion pair with cetyltrimethylammonium cation. The extracted ion pair is determined by measuring its absorption at 360 nm. The absorbance signal is proportional to the selenium concentration in the aqueous phase. Under optimum conditions, the method provided an enrichment factor of 250 with a detection limit of 16.0 μg L(-1) and a linear dynamic range of 40.0-1000.0 μg L(-1). The relative standard deviation was found to be 2.1% (n=7) at 100.0 μg L(-1) concentration level. The method was successfully applied to th e determination of selenium in water samples and selenium plus tablet. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Fast automated dual-syringe based dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry for the determination of polycyclic aromatic hydrocarbons in environmental water samples.

    PubMed

    Guo, Liang; Tan, Shufang; Li, Xiao; Lee, Hian Kee

    2016-03-18

    An automated procedure, combining low density solvent based solvent demulsification dispersive liquid-liquid microextraction (DLLME) with gas chromatography-mass spectrometry analysis, was developed for the determination of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Capitalizing on a two-rail commercial autosampler, fast solvent transfer using a large volume syringe dedicated to the DLLME process, and convenient extract collection using a small volume microsyringe for better GC performance were enabled. Extraction parameters including the type and volume of extraction solvent, the type and volume of dispersive solvent and demulsification solvent, extraction and demulsification time, and the speed of solvent injection were investigated and optimized. Under the optimized conditions, the linearity ranged from 0.1 to 50 μg/L, 0.2 to 50 μg/L, and 0.5 to 50 μg/L, depending on the analytes. Limits of detection were determined to be between 0.023 and 0.058 μg/L. The method was applied to determine PAHs in environmental water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Chemical Vapor Identification Using Field-Based Attenuated Total Reflectance Fourier Transform Infrared Detection and Solid Phase Microextraction

    DTIC Science & Technology

    2005-01-01

    Index IMS Ion Mobility Spectrometry IR Infrared IRE Internal Reflection Element KBr Potassium Bromide LOD Limit of Detection MS Mass Spectrometer NB...Kaiser Bryant, Master of Science in Public Health, 2005 Directed By: Peter T. LaPuma, LtCol, USAF, BSC Assistant Professor, Department of Prey Med and...hereby certifies that the use of any copyrighted material in the thesis manuscript entitled: Chemical Agent Identification Using Field-Based Attenuated

  2. Determination of some organophosphorus pesticides in water and watermelon samples by microextraction prior to high-performance liquid chromatography.

    PubMed

    Wang, Chun; Wu, Qiuhua; Wu, Chunxia; Wang, Zhi

    2011-11-01

    A novel method based on simultaneous liquid-liquid microextraction and carbon nanotube reinforced hollow fiber microporous membrane solid-liquid phase microextraction has been developed for the determination of six organophosphorus pesticides, i.e. isocarbophos, phosmet, parathion-methyl, triazophos, fonofos and phoxim, in water and watermelon samples prior to high-performance liquid chromatography (HPLC). Under the optimum conditions, the method shows a good linearity within a range of 1-200 ng/mL for water samples and 5-200 ng/g for watermelon samples, with the correlation coefficients (r) varying from 0.9990 to 0.9997 and 0.9986 to 0.9995, respectively. The limits of detection (LODs) were in the range between 0.1 and 0.3 ng/mL for water samples and between 1.0 and 1.5 ng/g for watermelon samples. The recoveries of the method at spiking levels of 5.0 and 50.0 ng/mL for water samples were between 85.4 and 100.8%, and at spiking levels of 5.0 and 50.0 ng/g for watermelon samples, they were between 82.6 and 92.4%, with the relative standard deviations (RSDs) varying from 4.5-6.9% and 5.2-7.4%, respectively. The results suggested that the developed method represents a simple, low-cost, high analytes preconcentration and excellent sample cleanup procedure for the determination of organophosphorus pesticides in water and watermelon samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Drop-to-drop solvent microextraction coupled with gas chromatography/mass spectrometry for rapid determination of trimeprazine in urine and blood of rats: application to pharmacokinetic studies.

    PubMed

    Agrawal, Kavita; Wu, Hui-Fen

    2007-01-01

    A simple and rapid method based on drop-to-drop solvent microextraction (DDSME) coupled with gas chromatography/mass spectrometry (GC/MS) has been successfully applied for the pharmacokinetic studies of trimeprazine in 8 microL of urine and blood samples of rats. Several factors that influenced the extraction efficiency of DDSME, such as selection of organic solvent, extraction time, exposure volume of organic phase, addition of salt and pH, were optimized. Linearity was obtained over the concentration ranges of 0.2-10, 0.25-7.0 and 0.5-6.0 microg/mL with correlation coefficients of 0.998, 0.996 and 0.993 in deionized water, urine and blood samples of rats, respectively. The limits of detection (LODs) of trimeprazine were 0.05, 0.06 and 0.1 microg/mL in deionized water, urine and blood samples. The concentrations of trimeprazine obtained in urine and blood samples of rats were 0.21-1.25 and 2.72-0.22 microg/mL, respectively, after a single intravenous administration of this drug. The enrichment factors and LOD values obtained by DDSME coupled to GC/MS were compared with those of hollow fiber liquid-phase microextraction (HF-LPME) combined with GC/MS. We believe that this novel approach can be very useful in clinical application since only one microdrop of biological samples was required to perform the pharmacokinetic studies from rats, so the sample pretreatments for animal experiments can be very easy too. Copyright (c) 2007 John Wiley & Sons, Ltd.

  4. Magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction of selenium for speciation in foods and beverages.

    PubMed

    Wang, Xiaojun; Wu, Long; Cao, Jiaqi; Hong, Xincheng; Ye, Rui; Chen, Weiji; Yuan, Ting

    2016-07-01

    A novel, simple and rapid method based on magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction (MEA-IL-DLLME) followed by graphite furnace atomic absorption spectrometry (GFAAS) determination was established for the speciation of selenium in various food and beverage samples. In the procedure, a special magnetic effervescent tablet containing CO2 sources (sodium carbonate and sodium dihydrogenphosphate), ionic liquids and Fe3O4 magnetic nanoparticles (MNPs) was used to combine extractant dispersion and magnetic recovery procedures into a single step. The parameters influencing the microextraction efficiency, such as pH of the sample solution, volume of ionic liquid, amount of MNPs, concentration of the chelating agent, salt effect and matrix effect were investigated and optimised. Under the optimised conditions, the limits of detection (LODs) for Se(IV) were 0.021 μg l(-)(1) and the linear dynamic range was 0.05-5.0 μg l(-)(1). The relative standard deviation for seven replicate measurements of 1.0 μg l(-)(1) of Se(IV) was 2.9%. The accuracy of the developed method was evaluated by analysis of the standard reference materials (GBW10016 tea, GBW10017 milk powder, GBW10043 Liaoning rice, GBW10046 Henan wheat, GBW10048 celery). The proposed method was successfully applied to food and beverage samples including black tea, milk powder, mushroom, soybean, bamboo shoots, energy drink, bottled water, carbonated drink and mineral water for the speciation of Se(IV) and Se(VI) with satisfactory relative recoveries (92.0-108.1%).

  5. Dispersive liquid-liquid microextraction and preconcentration of thallium species in water samples by two ionic liquids applied as ion-pairing reagent and extractant phase.

    PubMed

    Escudero, Leticia B; Berton, Paula; Martinis, Estefanía M; Olsina, Roberto A; Wuilloud, Rodolfo G

    2012-01-15

    In the present work, a simple and highly sensitive analytical methodology for determination of Tl(+) and Tl(3+) species, based on the use of modern and non-volatile solvents, such as ionic liquids (ILs), was developed. Initially, Tl(+) was complexed by iodide ion at pH 1 in diluted sulfuric acid solution. Then, tetradecyl(trihexyl)phosphonium chloride ionic liquid (CYPHOS(®) IL 101) was used as ion-pairing reagent and a dispersive liquid-liquid microextraction (DLLME) procedure was developed by dispersing 60 mg of 1-hexyl-3-methylimidazolium hexafluorophosphate [C(6) mim][PF(6)] with 500 μL of ethanol in the aqueous solution. After the microextraction procedure was finished, the final IL phase was solubilized in methanol and directly injected into the graphite furnace of an electrothermal atomic absorption spectrometer (ETAAS). An extraction efficiency of 77% and a sensitivity enhancement factor of 100 were obtained with only 5.00 mL of sample. The limit of detection (LOD) was 3.3 ng L(-1) Tl while the relative standard deviation (RSD) was 5.3% (at 0.4 μg L(-1) Tl and n=10), calculated from the peak height of absorbance signals. The method was finally applied to determine Tl species in tap and river water samples after separation of Tl(3+) species. To the best of our knowledge, this work reports the first application of ILs for Tl extraction and separation in the analytical field. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Development of a new microextraction method based on elevated temperature dispersive liquid-liquid microextraction for determination of triazole pesticides residues in honey by gas chromatography-nitrogen phosphorus detection.

    PubMed

    Farajzadeh, Mir Ali; Mogaddam, Mohammad Reza Afshar; Ghorbanpour, Houshang

    2014-06-20

    In the present study, a rapid, highly efficient, and reliable sample preparation method named "elevated temperature dispersive liquid-liquid microextraction" followed by gas chromatography-nitrogen-phosphorus detection was developed for the extraction, preconcentration, and determination of five triazole pesticides (penconazole, hexaconazole, diniconazole, tebuconazole, and difenoconazole) in honey samples. In this method the temperature of high-volume aqueous phase was adjusted at an elevated temperature and then a disperser solvent containing an extraction solvent was rapidly injected into the aqueous phase. After cooling to room temperature, the phase separation was accelerated by centrifugation. Various parameters affecting the extraction efficiency such as type and volume of the extraction and disperser solvents, temperature, salt addition, and pH were evaluated. Under the optimum extraction conditions, the method resulted in low limits of detection and quantification within the range 0.05-0.21ngg(-1) in honey (15-70ngL(-1) in solution) and 0.15-1.1ngg(-1) in honey (45-210ngL(-1) in solution), respectively. Enrichment factors and extraction recoveries were in the ranges of 1943-1994 and 97-100%, respectively. The method precision was evaluated at 1.5ngg(-1) of each analyte, and the relative standard deviations were found to be less than 4% for intra-day (n=6) and less than 6% for inter-days. The method was successfully applied to the analysis of honey samples and difenoconazole was determined at ngg(-1) levels. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Application of headspace solid-phase microextraction followed by gas chromatography coupled with mass spectrometry to determine esters of carboxylic acids and other volatile compounds in Dermestes maculatus and Dermestes ater lipids.

    PubMed

    Cerkowniak, Magdalena; Boguś, Mieczysława I; Włóka, Emilia; Stepnowski, Piotr; Gołębiowski, Marek

    2018-02-01

    A constant problem in veterinary medicine, human healthcare, agriculture, forestry and horticulture is the large number of pests, and the lack of effective methods to combat them which cause no harm to the rest of the environment. It is recommended and desired to reduce the use of chemicals and increase the use of agents based on knowledge acquired in the fields of biology, chemistry and agrochemicals. To learn the defense mechanisms of insects we should consider not only the site of their physiological ability to protect against external factors (cuticle), but also the possibility of chemical protection, formed by all compounds on the surface and in the body of insects. In this study, a procedure was developed to determine the esters of carboxylic acids in insect lipids. Headspace solid-phase microextraction was followed by gas chromatography coupled with gas spectrometry. First, the best conditions were selected for the analysis to obtain the best chromatographic separation. An RTx-5 column was used for this purpose. Polydimethylsiloxane/divinylbenzene (PDMS/DVB) and polyacrylate fibers were used to isolate acid esters. PDMS/DVB fiber achieved the best conditions for the extraction; the extraction time was 50 min, the extraction temperature was 105°C and the desorption time was 10 min at 230°C. These solid-phase microextraction conditions were used to analyze volatile compounds extracted from insects belonging to the Dermestidae family. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Rapid analysis of aflatoxins B1, B2, and ochratoxin A in rice samples using dispersive liquid-liquid microextraction combined with HPLC.

    PubMed

    Lai, Xian-Wen; Sun, Dai-Li; Ruan, Chun-Qiang; Zhang, He; Liu, Cheng-Lan

    2014-01-01

    A novel, simple, and rapid method is presented for the analysis of aflatoxin B1, aflatoxin B2, and ochratoxin A in rice samples by dispersive liquid-liquid microextraction combined with LC and fluorescence detection. After extraction of the rice samples with a mixture of acetonitrile/water/acetic acid, mycotoxins were rapidly partitioned into a small volume of organic solvent (chloroform) by dispersive liquid-liquid microextraction. The three mycotoxins were simultaneously determined by LC with fluorescence detection after precolumn derivatization for aflatoxin B1 and B2. Parameters affecting both extraction and dispersive liquid-liquid microextraction procedures, including the extraction solvent, the type and volume of extractant, the volume of dispersive solvent, the addition of salt, the pH and the extraction time, were optimized. The optimized protocol provided an enrichment factor of approximately 1.25 and with detection of limits (0.06-0.5 μg/kg) below the maximum levels imposed by current regulations for aflatoxins and ochratoxin A. The mean recovery of three mycotoxins ranged from 82.9-112%, with a RSD less than 7.9% in all cases. The method was successfully applied to measure mycotoxins in commercial rice samples collected from local supermarkets in China. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Determination of Aroclor 1260 in soil samples by gas chromatography with mass spectrometry and solid-phase microextraction.

    PubMed

    Zhang, Mengliang; Jackson, Glen P; Kruse, Natalie A; Bowman, Jennifer R; Harrington, Peter de B

    2014-10-01

    A novel fast screening method was developed for the determination of polychlorinated biphenyls that are constituents of the commercial mixture, Aroclor 1260, in soil matrices by gas chromatography with mass spectrometry combined with solid-phase microextraction. Nonequilibrium headspace solid-phase microextraction with a 100 μm polydimethylsiloxane fiber was used to extract polychlorinated biphenyls from 0.5 g of soil matrix. The use of 2 mL of saturated potassium dichromate in 6 M sulfuric acid solution improved the reproducibility of the extractions and the mass transfer of the polychlorinated biphenyls from the soil matrix to the microextraction fiber via the headspace. The extraction time was 30 min at 100°C. The percent recoveries, which were evaluated using an Aroclor 1260 standard and liquid injection, were within the range of 54.9-65.7%. Two-way extracted ion chromatogram data were used to construct calibration curves. The relative error was <±15% and the relative standard deviation was <15%, which are respective measures of the accuracy and precision. The method was validated with certified soil samples and the predicted concentrations for Aroclor 1260 agreed with the certified values. The method was demonstrated to be linear from 10 to 1000 ng/g for Aroclor 1260 in dry soil. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Evaluation of microextraction by packed sorbent, liquid-liquid microextraction and derivatization pretreatment of diet-derived phenolic acids in plasma by gas chromatography with triple quadrupole mass spectrometry.

    PubMed

    Bustamante, Luis; Cárdenas, Diana; von Baer, Dietrich; Pastene, Edgar; Duran-Sandoval, Daniel; Vergara, Carola; Mardones, Claudia

    2017-09-01

    Miniaturized sample pretreatments for the analysis of phenolic metabolites in plasma, involving protein precipitation, enzymatic deconjugation, extraction procedures, and different derivatization reactions were systematically evaluated. The analyses were conducted by gas chromatography with mass spectrometry for the evaluation of 40 diet-derived phenolic compounds. Enzyme purification was necessary for the phenolic deconjugation before extraction. Trimethylsilanization reagent and two different tetrabutylammonium salts for derivatization reactions were compared. The optimum reaction conditions were 50 μL of trimethylsilanization reagent at 90°C for 30 min, while tetrabutylammonium salts were associated with loss of sensitivity due to rapid activation of the inert gas chromatograph liner. Phenolic acids extractions from plasma were optimized. Optimal microextraction by packed sorbent performance was achieved using an octadecylsilyl packed bed and better recoveries for less polar compounds, such as methoxylated derivatives, were observed. Despite the low recovery for many analytes, repeatability using an automated extraction procedure in the gas chromatograph inlet was 2.5%. Instead, using liquid-liquid microextraction, better recoveries (80-110%) for all analytes were observed at the expense of repeatability (3.8-18.4%). The phenolic compounds in gerbil plasma samples, collected before and 4 h after the administration of a calafate extract, were analyzed with the optimized methodology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sol-gel approach to in situ creation of high pH-resistant surface-bonded organic-inorganic hybrid zirconia coating for capillary microextraction (in-tube SPME).

    PubMed

    Alhooshani, Khalid; Kim, Tae-Young; Kabir, Abuzar; Malik, Abdul

    2005-01-07

    A novel zirconia-based hybrid organic-inorganic sol-gel coating was developed for capillary microextraction (CME) (in-tube SPME). High degree of chemical inertness inherent in zirconia makes it very difficult to covalently bind a suitable organic ligand to its surface. In the present work, this problem was addressed from a sol-gel chemistry point of view. Principles of sol-gel chemistry were employed to chemically bind a hydroxy-terminated silicone polymer (polydimethyldiphenylsiloxane, PDMDPS) to a sol-gel zirconia network in the course of its evolution from a highly reactive alkoxide precursor undergoing controlled hydrolytic polycondensation reactions. A fused silica capillary was filled with a properly designed sol solution to allow for the sol-gel reactions to take place within the capillary for a predetermined period of time (typically 15-30 min). In the course of this process, a layer of the evolving hybrid organic-inorganic sol-gel polymer got chemically anchored to the silanol groups on the capillary inner walls via condensation reaction. At the end of this in-capillary residence time, the unbonded part of the sol solution was expelled from the capillary under helium pressure, leaving behind a chemically bonded sol-gel zirconia-PDMDPS coating on the inner walls. Polycyclic aromatic hydrocarbons, ketones, and aldehydes were efficiently extracted and preconcentrated from dilute aqueous samples using sol-gel zirconia-PDMDPS coated capillaries followed by thermal desorption and GC analysis of the extracted solutes. The newly developed sol-gel hybrid zirconia coatings demonstrated excellent pH stability, and retained the extraction characteristics intact even after continuous rinsing with a 0.1 M NaOH solution for 24 h. To our knowledge, this is the first report on the use of a sol-gel zirconia-based hybrid organic-inorganic coating as an extraction medium in solid phase microextraction (SPME).

  12. A dispersive liquid-liquid microextraction based on solidification of floating organic droplet followed by injector port silylation coupled with gas chromatography-tandem mass spectrometry for the determination of nine bisphenols in bottled carbonated beverages.

    PubMed

    Mandrah, Kapil; Satyanarayana, G N V; Roy, Somendu Kumar

    2017-12-15

    In the present study, a method has been efficiently developed for the first time to determine nine bisphenol analogues [bisphenol A (BPA), bisphenol C (BPC), bisphenol AF (BPAF), bisphenol E (BPE), bisphenol F (BPF), bisphenol G (BPG), bisphenol M (BPM), bisphenol S (BPS), and bisphenol Z (BPZ)] together in bottled carbonated beverages (collected from the local market of Lucknow, India) using dispersive liquid-liquid microextraction process. This is based on solidification of floating organic droplet (DLLME-SFO) followed by injector port silylation coupled with gas chromatography-tandem mass spectrometry. The process investigated parameters of DLLME-SFO (including the type of extraction and disperser solvents with their volumes, effect of pH, ionic strength, and the sample volume), factors influencing to injection port derivatization like, collision energy, injector port temperature, derivatizing reagent with sample injection volume, and type of organic solvent. BPA, BPF, BPZ, and BPS were detected in each sample; whereas, other bisphenols were also detected in some carbonated beverage samples. After optimizing the required conditions, good linearity of analytes was achieved in the range of 0.097-100ngmL -1 with coefficients of determination (R 2 )≥0.995. Intra-day and inter day precision of the method was good, with relative standard deviation (% RSD)≤10.95%. The limits of detection (LOD) and limits of quantification (LOQ) values of all bisphenols were ranged from 0.021 to 0.104ngmL -1 and 0.070 to 0.343ngmL -1 , respectively. The recovery of extraction was good (73.15-95.08%) in carbonated beverage samples and good enrichment factors (96.36-117.33) were found. Thus, the developed method of microextraction was highly precise, fast, and reproducible to determine the level of contaminants in bottled carbonated beverages. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Glyoxal and methylglyoxal as urinary markers of diabetes. Determination using a dispersive liquid-liquid microextraction procedure combined with gas chromatography-mass spectrometry.

    PubMed

    Pastor-Belda, M; Fernández-García, A J; Campillo, N; Pérez-Cárceles, M D; Motas, M; Hernández-Córdoba, M; Viñas, P

    2017-08-04

    Glyoxal (GO) and methylglyoxal (MGO) are α-oxoaldehydes that can be used as urinary diabetes markers. In this study, their levels were measured using a sample preparation procedure based on salting-out assisted liquid-liquid extraction (SALLE) and dispersive liquid-liquid microextraction (DLLME) combined with gas chromatography-mass spectrometry (GC-MS). The effect of the derivatization reaction with 2,3-diaminonaphthalene, the addition of acetonitrile and sodium chloride to urine, and the DLLME step using the acetonitrile extract as dispersant solvent and carbon tetrachloride as extractant solvent were carefully optimized. Quantification was performed by the internal standard method, using 5-bromo-2-chloroanisole. The intraday and interday precisions were lower than 6%. Limits of detection were 0.12 and 0.06ngmL -1 , and enrichment factors 140 and 130 for GO and MGO, respectively. The concentrations of these α-oxoaldehydes in urine were between 0.9 and 35.8ngg -1 levels (creatinine adjusted). A statistical comparison of the analyte contents of urine samples from non-diabetic and diabetic patients pointed to significant differences (P=0.046, 24 subjects investigated), particularly regarding MGO, which was higher in diabetic patients. The novelty of this study compared with previous procedures lies in the treatment of the urine sample by SALLE based on the addition of acetonitrile and sodium chloride to the urine. The DLLME procedure is performed with a sedimented drop of the extractant solvent, without a surfactant reagent, and using acetonitrile as dispersant solvent. Separation of the analytes was performed using GC-MS detection, being the analytes unequivocal identified. The proposed procedure is the first microextraction method applied to the analysis of urine samples from diabetic and non-diabetic patients that allows a clear differentiation between both groups using a simple analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Rapid analysis of the essential oil components of dried Zanthoxylum bungeanum Maxim by Fe2O3-magnetic-microsphere-assisted microwave distillation and simultaneous headspace single-drop microextraction followed by GC-MS.

    PubMed

    Ye, Qing

    2013-06-01

    In this work, microwave distillation assisted by Fe2 O3 magnetic microspheres (FMMS) and headspace single-drop microextraction were combined, and developed for determination of essential oil compounds in dried Zanthoxylum bungeanum Maxim (ZBM). The FMMS were used as microwave absorption solid medium for dry distillation of dried ZBM. Using the proposed method, isolation, extraction, and concentration of essential oil compounds can be carried out in a single step. The experimental parameters including extraction solvent, solvent volume, microwave power, irradiation time, and the amount of added FMMS, were studied. The optimal analytical conditions were: 2.0 μL decane as the extraction solvent, microwave power of 300 W, irradiation time of 2 min, and the addition of 0.1 g FMMS to ZBM. The method precision was from 4 to 10%. A total of 52 compounds were identified by the proposed method. The conventional steam distillation method was also used for the analysis of essential oil in dried ZBM and only 31 compounds were identified by steam distillation method. It was found that the proposed method is a simple, rapid, reliable, and solvent-free technique for the determination of volatile compounds in Chinese herbs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effervescence-assisted dispersive liquid-liquid microextraction using a solid effervescent agent as a novel dispersion technique for the analysis of fungicides in apple juice.

    PubMed

    Jiang, Wenqing; Chen, Xiaochu; Liu, Fengmao; You, Xiangwei; Xue, Jiaying

    2014-11-01

    A novel effervescence-assisted dispersive liquid-liquid microextraction method has been developed for the determination of four fungicides in apple juice samples. In this method, a solid effervescent agent is added into samples to assist the dispersion of extraction solvent. The effervescent agent is environmentally friendly and only produces an increase in the ionic strength and a negligible variation in the pH value of the aqueous sample, which does not interfere with the extraction of the analytes. The parameters affecting the extraction efficiency were investigated including the composition of effervescent agent, effervescent agent amount, formulation of effervescent agent, adding mode of effervescent agent, type and volume of extraction solvent, and pH. Under optimized conditions, the method showed a good linearity within the range of 0.05-2 mg/L for pyrimethanil, fludioxonil, and cyprodinil, and 0.1-4 mg/L for kresoxim-methyl, with the correlation coefficients >0.998. The limits of detection for the method ranged between 0.005 and 0.01 mg/L. The recoveries of the target fungicides in apple juice samples were in the range of 72.4-110.8% with the relative standard deviations ranging from 1.2 to 6.8%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Barley husk carbon as the fiber coating for the solid-phase microextraction of twelve pesticides in vegetables prior to gas chromatography-mass spectrometric detection.

    PubMed

    Liang, Weiqian; Wang, Juntao; Zang, Xiaohuan; Dong, Wenhuan; Wang, Chun; Wang, Zhi

    2017-03-31

    In this work, a barley husk biomaterial was successfully carbonized by hydrothermal method. The carbon had a high specific surface area and good stability. It was coated onto a stainless steel wire through sol-gel technique to prepare a solid-phase microextraction fiber for the extraction of trace levels of twelve pesticides (tsumacide, fenobucarb, indoxacarb, diethofencarb, thimet, terbufos, malathion, thiamethoxam, imidacloprid, buprofezin, acetamiprid, thiamethoxam) from vegetable samples prior to gas chromatography-mass spectrometric (GC-MS) detection. The main experimental parameters that could influence the extraction efficiency such as extraction time, extraction temperature, sample pH, sample salinity, stirring rate, desorption temperature and desorption time, were investigated. Under the optimized conditions, the linearity was observed in the range of 0.2-75.0μgkg -1 for tomato samples, and 0.3-60.0μgkg -1 for cucumber samples, with the correlation coefficients (r) ranging from 0.9959 to 0.9983. The limits of detection of the method were 0.01-0.05μgkg -1 for tomato samples, and 0.03-0.10μgkg -1 for cucumber samples. The recoveries of the analytes for the method from spiked samples were in the range of 76%-104%, and the precision, expressed as the relative standard deviations, was less than 12%. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Sensitive determination of cholesterol and its metabolic steroid hormones by UHPLC-MS/MS via derivatization coupled with dual ultrasonic-assisted dispersive liquid-liquid microextraction.

    PubMed

    Zhao, Xian-En; Yan, Ping; Wang, Renjun; Zhu, Shuyun; You, Jinmao; Bai, Yu; Liu, Huwei

    2016-08-01

    Quantitative analysis of cholesterol and its metabolic steroid hormones plays a vital role in diagnosing endocrine disorders and understanding disease progression, as well as in clinical medicine studies. Because of their extremely low abundance in body fluids, it remains a challenging task to develop a sensitive detection method. A hyphenated technique of dual ultrasonic-assisted dispersive liquid-liquid microextraction (dual-UADLLME) coupled with microwave-assisted derivatization (MAD) was proposed for cleansing, enrichment and sensitivity enhancement. 4'-Carboxy-substituted rosamine (CSR) was synthesized and used as derivatization reagent. An ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was developed for determination of cholesterol and its metabolic steroid hormones in the multiple reaction monitoring mode. Parameters of dual-UADLLME, MAD and UHPLC-MS/MS were all optimized. Satisfactory linearity, recovery, repeatability, accuracy and precision, absence of matrix effect and extremely low limits of detection (LODs, 0.08-0.15 pg mL(-1) ) were achieved. Through the combination of dual-UADLLME and MAD, a determination method for cholesterol and its metabolic steroid hormones in human plasma, serum and urine samples was developed and validated with high sensitivity, selectivity, accuracy and perfect matrix effect results. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Determination of Levetiracetam in Human Plasma by Dispersive Liquid-Liquid Microextraction Followed by Gas Chromatography-Mass Spectrometry

    PubMed Central

    2016-01-01

    Levetiracetam (LEV) is an antiepileptic drug that is clinically effective in generalized and partial epilepsy syndromes. The use of this drug has been increasing in clinical practice and intra- or -interindividual variability has been exhibited for special population. For this reason, bioanalytical methods are required for drug monitoring in biological matrices. So this work presents a dispersive liquid-liquid microextraction method followed by gas chromatography-mass spectrometry (DLLME-GC-MS) for LEV quantification in human plasma. However, due to the matrix complexity a previous purification step is required. Unlike other pretreatment techniques presented in the literature, for the first time, a procedure employing ultrafiltration tubes Amicon® (10 kDa porous size) without organic solvent consumption was developed. GC-MS analyses were carried out using a linear temperature program, capillary fused silica column, and helium as the carrier gas. DLLME optimized parameters were type and volume of extraction and dispersing solvents, salt addition, and vortex agitation time. Under chosen parameters (extraction solvent: chloroform, 130 μL; dispersing solvent: isopropyl alcohol, 400 μL; no salt addition and no vortex agitation time), the method was completely validated and all parameters were in agreement with the literature recommendations. LEV was quantified in patient's plasma sample using less than 550 μL of organic solvent. PMID:27830105

  19. Combination of saponification and dispersive liquid-liquid microextraction for the determination of tocopherols and tocotrienols in cereals by reversed-phase high-performance liquid chromatography.

    PubMed

    Shammugasamy, Balakrishnan; Ramakrishnan, Yogeshini; Ghazali, Hasanah M; Muhammad, Kharidah

    2013-07-26

    A simple sample preparation technique coupled with reversed-phase high-performance liquid chromatography was developed for the determination of tocopherols and tocotrienols in cereals. The sample preparation procedure involved a small-scale hydrolysis of 0.5g cereal sample by saponification, followed by the extraction and concentration of tocopherols and tocotrienols from saponified extract using dispersive liquid-liquid microextraction (DLLME). Parameters affecting the DLLME performance were optimized to achieve the highest extraction efficiency and the performance of the developed DLLME method was evaluated. Good linearity was observed over the range assayed (0.031-4.0μg/mL) with regression coefficients greater than 0.9989 for all tocopherols and tocotrienols. Limits of detection and enrichment factors ranged from 0.01 to 0.11μg/mL and 50 to 73, respectively. Intra- and inter-day precision were lower than 8.9% and the recoveries were around 85.5-116.6% for all tocopherols and tocotrienols. The developed DLLME method was successfully applied to cereals: rice, barley, oat, wheat, corn and millet. This new sample preparation approach represents an inexpensive, rapid, simple and precise sample cleanup and concentration method for the determination of tocopherols and tocotrienols in cereals. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Nanomanipulation-Coupled Matrix-Assisted Laser Desorption/ Ionization-Direct Organelle Mass Spectrometry: A Technique for the Detailed Analysis of Single Organelles

    NASA Astrophysics Data System (ADS)

    Phelps, Mandy S.; Sturtevant, Drew; Chapman, Kent D.; Verbeck, Guido F.

    2016-02-01

    We describe a novel technique combining precise organelle microextraction with deposition and matrix-assisted laser desorption/ionization (MALDI) for a rapid, minimally invasive mass spectrometry (MS) analysis of single organelles from living cells. A dual-positioner nanomanipulator workstation was utilized for both extraction of organelle content and precise co-deposition of analyte and matrix solution for MALDI-direct organelle mass spectrometry (DOMS) analysis. Here, the triacylglycerol (TAG) profiles of single lipid droplets from 3T3-L1 adipocytes were acquired and results validated with nanoelectrospray ionization (NSI) MS. The results demonstrate the utility of the MALDI-DOMS technique as it enabled longer mass analysis time, higher ionization efficiency, MS imaging of the co-deposited spot, and subsequent MS/MS capabilities of localized lipid content in comparison to NSI-DOMS. This method provides selective organellar resolution, which complements current biochemical analyses and prompts for subsequent subcellular studies to be performed where limited samples and analyte volume are of concern.

  1. Application of Solid Phase Microextraction Coupled with Gas Chromatography/Mass Spectrometry as a Rapid Method for Field Sampling and Analysis of Chemical Warfare Agents and Toxic Industrial Chemicals

    DTIC Science & Technology

    2003-01-01

    PHASE MICROEXTRACTION COUPLED WITH GAS CHROMATOGRAPHY/MASS SPECTROMETRY AS A RAPID METHOD FOR FIELD SAMPLING AND ANALYSIS OF CHEMICAL WARFARE AGENTS...SAMPLING AND ANALYSIS OF CHEMICAL WARFARE AGENTS AND TOXIC INDUSTRIAL CHEMICALS 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...GAS CHROMATOGRAPHY/MASS SPECTROMETRY AS A RAPID METHOD FOR FIELD SAMPLING AND ANALYSIS OF CHEMICAL WARFARE AGENTS AND TOXIC INDUSTRIAL CHEMICALS

  2. Application of Solid Phase Microextraction with Gas Chromatography-Mass Spectrometry as a Rapid, Reliable, and Safe Method for Field Sampling and Analysis of Chemical Warfare Agent Precursors

    DTIC Science & Technology

    2005-03-01

    in hair samples with analysis by GC-MS [41,42]. The research discussed here examined a polydimethylsiloxane polymer with 10% activated charcoal (PDMS...Field Sampling and Analysis of Chemical Warfare Agent Precursors” Name of Candidate: LT Douglas Parrish Doctor of Philosophy, Environmental...Microextraction with Gas Chromatography-Mass Spectrometry as a Rapid, Reliable, and Safe Method for Field Sampling and Analysis of Chemical Warfare

  3. Sensory and analytical evaluations of paints with and without texanol.

    PubMed

    Gallagher, Michelle; Dalton, Pamela; Sitvarin, Laura; Preti, George

    2008-01-01

    Perception of odor can figure prominently in complaints about indoor air,yet identification of the responsible compound(s) is often difficult. For example, paint emissions contain a variety of odorous volatile organic compounds (VOCs) which maytrigger reports of irritation and upper respiratory health effects. Texanol ester alcohol (2,2,4-trimethyl-1,3-pentanediol monoisobutyrate), a paint coalescing agent, is frequently associated with the "persistent, characteristic odor" of water-based paint. To evaluate the sensory impact of Texanol, naive (unfamiliar with paint constituents) and experienced (familiar with paint constituents) subjects evaluated the odor properties of paints with and without Texanol. VOC emissions from neat paint and paint applied to gypsum wallboard were collected via solid-phase microextraction and analyzed by gas chromatography/ mass spectrometry and gas chromatography/olfactometry. Regardless of subjects' prior experience, aromatic hydrocarbons and oxygenated compounds, introduced from other paint additives and not Texanol, were most commonly associated with paint odor. However, quantitative sensory techniques demonstrated that addition of Texanol to paints led to an overall increase in the perceived intensity of the coating. The combined use of these techniques proved to be an effective methodology for analyzing the structure of paint volatiles and their sensory properties and holds promise for solving many odorous indoor air problems.

  4. Determination of chlorophenols in honey samples using in-situ ionic liquid-dispersive liquid-liquid microextraction as a pretreatment method followed by high-performance liquid chromatography.

    PubMed

    Fan, Chen; Li, Nai; Cao, Xueli

    2015-05-01

    In-situ ionic liquid-dispersive liquid-liquid microextraction (IL-DLLME) method was developed as a pretreatment method for the detection of six chlorophenols (CPs) in honey samples. The hydrophobic ionic liquid [C4MIM][NTf2], formed in-situ by the hydrophilic ionic liquid [C4MIM][BF4] and the ion exchange reagent LiNTf2 was used as the microextractant solvent of CPs from honey sample. Then the enriched analytes were back-extracted into 40 μL of 0.14 M NaOH solution and finally subjected to analysis by high-performance liquid chromatography. The method showed low limit of detection of CPs, 0.8-3.2 μg/L and high enrichment factor, 34-65 with the recoveries range from 91.60% to 114.33%. The method is simple, rapid, environmentally friendly and with high extraction efficiency. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Ionic Liquid-Bonded Fused Silica as a New Solid-Phase Microextraction Fiber for the Liquid Chromatographic Determination of Bisphenol A as an Endocrine Disruptor.

    PubMed

    Mohammadnezhad, Nasim; Matin, Amir Abbas; Samadi, Naser; Shomali, Ashkan; Valizadeh, Hassan

    2017-01-01

    Linear ionic liquid bonded to fused silica and its application as a solid-phase microextraction fiber for the extraction of bisphenol A (BPA) from water samples were studied. After optimization of microextraction conditions (15 mL sample volume, extraction time of 40 min, extraction temperature of 30 ± 1°C, 300 μL acetonitrile as the desorption solvent, and desorption time of 7 min), the fiber was used to extract BPA from packed mineral water, followed by HPLC-UV on an XDB-C18 column (150 × 4.6 mm id, 3.5 μm particle) with a mobile phase of acetonitrile-water (45 + 55%, v/v) and flow rate of 1 mL . min-1). A low LOD (0.20 μg . L-1) and good linearity (0.9977) in the calibration graph indicated that the proposed method was suitable for the determination of BPA.

  6. Determination of N-vinyl-2-pyrrolidone and N-methyl-2-pyrrolidone in drugs using polypyrrole-based headspace solid-phase microextraction and gas chromatography-nitrogen-phosphorous detection.

    PubMed

    Mehdinia, Ali; Ghassempour, Alireza; Rafati, Hasan; Heydari, Rouhollah

    2007-03-21

    A headspace solid-phase microextraction and gas chromatography-nitrogen-phosphorous detection (HS-SPME-GC-NPD) method using polypyrrole (PPy) fibers has been introduced to determine two derivatives of pyrrolidone; N-vinyl-2-pyrrolidone (NVP) and N-methyl-2-pyrrolidone (NMP). Two types of PPy fibers, prepared using organic and aqueous media, were compared in terms of extraction efficiency and thermal stability. It was found that PPy film prepared using organic medium (i.e. acetonitrile) had higher extraction efficiency and more thermal stability compared to the film prepared in aqueous medium. To enhance the sensitivity of HS-SPME, the effects of pH, ionic strength, extraction time, extraction temperature and the headspace volume on the extraction efficiency were optimized. Using the results of this research, high sensitivity and selectivity had been achieved due to the combination of the high extraction efficiency of PPy film prepared in organic medium and the high sensitivity and selectivity of nitrogen-phosphorous detection. Linear range of the analytes was found to be between 1.0 and 1000 microg L(-1) with regression coefficients (R(2)) of 0.998 and 0.997 for NVP and NMP, consequently. Limits of detection (LODs) were 0.074 and 0.081 microg L(-1) for NVP and NMP, respectively. Relative standard deviation (R.S.D.) for five replications of analyses was found to be less than 6.0%. In real samples the mean recoveries were 94.81% and 94.15% for NVP and NMP, respectively. The results demonstrated the suitability of the HS-SPME technique for analyzing NVP and NMP in two different pharmaceutical matrices. In addition, the method was used for simultaneous detection of NVP, 2-pyrrolidone (2-Pyr), gamma-butyrolactone (GBL) and ethanolamine (EA) compounds.

  7. In tube-solid phase microextraction-nano liquid chromatography: Application to the determination of intact and degraded polar triazines in waters and recovered struvite.

    PubMed

    Serra-Mora, P; Jornet-Martinez, N; Moliner-Martinez, Y; Campíns-Falcó, P

    2017-09-01

    In-tube solid-phase microextraction (IT-SPME) coupled to miniaturized liquid chromatography (LC) techniques are attractive mainly due to the column efficiency improvement, sensitivity enhancement and reduction of solvent consumption. In addition, the nanomaterials based sorbents can play a key role in the improvement of the extraction efficiency taking into account their interesting physical and chemical properties. Thus, in this work the performance of IT-SPME coupled to nano LC (NanoLC) has been compared with the performance of IT-SPME coupled to capillary LC (CapLC) with similar configurations for the determination of polar triazines including their degradation products. In both cases, a DAD detector was used. Different extractive phases such as TRB-5, TRB-5/c-SWNTs, TRB-5/c-MWNTs capillary columns have been tested. The dimensions of the capillary columns were 0.32mm id×40cm length and 0.1 or 0.075mm i.d.×15cm length for the couplings with CapLC and NanoLC, respectively. The processed volume was 4mL for CapLC and 0.5mL for NanoLC. The elution was carried out with ACN:H 2 O (30:70, v/v). IT-SPME-NanoLC has shown a higher performance than IT-SPME-CapLC for the target analytes demonstrating the enhancement of the extraction efficiency with the former configuration. A new phase TEOS-MTEOS-SiO 2 NPs has been also proposed for IT-SPME-NanoLC, which improves the retention of polar compounds. Compared with previously published works, improved LODs were achieved (0.025-0.5μgL -1 ). The practical application of the proposed procedure has been demonstrated for the analysis of water samples and recovered struvite samples from wastewater treatment plants. Therefore, the proposed procedure can be an alternative method for regulatory purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A study of the influence on diabetes of free and conjugated bisphenol A concentrations in urine: Development of a simple microextraction procedure using gas chromatography-mass spectrometry.

    PubMed

    Pastor-Belda, Marta; Bastida, David; Campillo, Natalia; Pérez-Cárceles, María D; Motas, Miguel; Viñas, Pilar

    2016-09-10

    The association between bisphenol A (BPA) exposure and adult health status is examined by measuring the urinary BPA concentration using a miniaturized technique based on dispersive liquid-liquid microextraction (DLLME) in combination with gas chromatography-mass spectrometry (GC-MS). Both the free bioactive and the glucuronide conjugated forms of BPA were measured, the glucuronide form usually being predominant. The main analogs of BPA, including bisphenol Z (BPZ), bisphenol F (BPF) and biphenol (BP) were also determined. Several parameters affecting enzymatic hydrolysis, derivatization by in-situ acetylation and the DLLME stages were carefully optimized by means of multivariate designs. DLLME parameters were 2mL urine, 1mL acetone and 100μL chloroform, and hydrolysis was performed using β-glucuronidase and sulfatase at pH 5. No matrix effect was observed and quantification was carried out by aqueous calibration with a surrogate standard. Detection limits were in the range 0.01-0.04ngmL(-1). The intraday and interday precisions were lower than 11% in terms of relative standard deviation. Satisfactory values for all compounds were obtained in recovery studies (92-117%) at two concentration levels. Other bisphenols (BPF, BPZ and BP) were not detected in the urine samples, while BPA was the only bisphenol detected in the free form (creatinine adjusted) at concentration levels ranging from the detection limit to 15.9ngg(-1), and total BPA was detected at concentrations ranging from 0.46 to 24.5ngg(-1) levels. A comparison of the BPA content for both groups of patients revealed that slightly higher mean values were obtained for both free BPA and total BPA for diabetic patients, than for non-diabetic patients. However, a statistical comparison of the contents of BPA revealed that there were no significant differences. The procedure was validated using a certified reference material. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Guanidinium ionic liquid-based surfactants as low cytotoxic extractants: Analytical performance in an in-situ dispersive liquid-liquid microextraction method for determining personal care products.

    PubMed

    Pacheco-Fernández, Idaira; Pino, Verónica; Ayala, Juan H; Afonso, Ana M

    2018-07-20

    The IL-based surfactant octylguanidinium chloride (C 8 Gu-Cl) was designed and synthetized with the purpose of obtaining a less harmful surfactant: containing guanidinium as core cation and a relatively short alkyl chain. Its interfacial and aggregation behavior was evaluated through conductivity and fluorescence measurements, presenting a critical micelle concentration value of 42.5 and 44.6mmolL -1 , respectively. Cytotoxicity studies were carried out with C 8 Gu-Cl and other IL-based and conventional surfactants, specifically the analogue 1-octyl-3-methylimidazolium chloride (C 8 MIm-Cl), and other imidazolium- (C 16 MIm-Br) and pyridinium- (C 16 Py-Cl) based surfactants, together with the conventional cationic CTAB and the conventional anionic SDS. From these studies, C 8 Gu-Cl was the only one to achieve the classification of low cytotoxicity. An in situ dispersive liquid-liquid microextraction (DLLME) method based on transforming the water-soluble C 8 Gu-Cl IL-based surfactant into a water-insoluble IL microdroplet via a simple metathesis reaction was then selected as the extraction/preconcentration method for a group of 6 personal care products (PCPs) present in cosmetic samples. The method was carried out in combination with high-performance liquid chromatography (HPLC) and diode array detection (DAD). The method was properly optimized, requiring the use of only 30μL of C 8 Gu-Cl for 10mL of aqueous sample with a NaCl content of 8% (w/v) to adjust the ionic strength and pH value of 5. The metathesis reaction required the addition of the anion exchange reagent (bis[(trifluoromethyl)sulfonyl]imide - 1:1 molar ratio), followed by vortex and centrifugation, and dilution of the final microdroplet up to 60μL with acetonitrile before the injection in the HPLC-DAD system. The optimum in situ DLLME-HPLC-DAD method takes ∼10min for the extraction step and ∼22min for the chromatographic separation, with analytical features of low detection limits: down to 0.4μgL -1 ; high reproducibility: with RSD values lower than 10% (intra-day) and 16% (inter-day) for a spiked level of 15μgL -1 ; and an average enrichment factor of 89. The requirement of low volumes (30μL) of a low cytotoxic IL-based surfactant allows the method to be considered less harmful than other common analytical microextraction approaches. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Using dispersive liquid-liquid microextraction and liquid chromatography for determination of guaifenesin enantiomers in human urine.

    PubMed

    Hatami, Mehdi; Farhadi, Khalil; Abdollahpour, Assem

    2011-11-01

    A simple, rapid, and efficient method, dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography-fluorescence detector, has been developed for the determination of guaifenesin (GUA) enantiomers in human urine samples after an oral dose administration of its syrup formulation. Urine samples were collected during the time intervals 0-2, 2-4, and 4-6 h and concentration and ratio of two enantiomers was determined. The ratio of R-(-) to S-(+) enantiomer concentrations in urine showed an increase with time, with R/S ratios of 0.66 at 2 h and 2.23 at 6 h. For microextraction process, a mixture of extraction solvent (dichloromethane, 100 μL) and dispersive solvent (THF, 1 mL) was rapidly injected into 5.0 mL diluted urine sample for the formation of cloudy solution and extraction of enantiomers into the fine droplets of CH(2)Cl(2). After optimization of HPLC enantioselective conditions, some important parameters, such as the kind and volume of extraction and dispersive solvents, extraction time, temperature, pH, and salt effect were optimized for dispersive liquid-liquid microextraction process. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 10 to 2000 ng/mL for target analytes. LOD was 3.00 ng/mL for both of the enantiomers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. In-situ ionic liquid dispersive liquid-liquid microextraction using a new anion-exchange reagent combined Fe3O4 magnetic nanoparticles for determination of pyrethroid pesticides in water samples.

    PubMed

    Fan, Chen; Liang, You; Dong, Hongqiang; Ding, Guanglong; Zhang, Wenbing; Tang, Gang; Yang, Jiale; Kong, Dandan; Wang, Deng; Cao, Yongsong

    2017-07-04

    In this work, in-situ ionic liquid dispersive liquid-liquid microextraction combined ultrasmall Fe 3 O 4 magnetic nanoparticles was developed as a kind of pretreatment method to detect pyrethroid pesticides in water samples. New anion-exchange reagents including Na[DDTC] and Na[N(CN) 2 ] were optimized for in-situ extraction pyrethroids, which showed enhanced microextraction performance. Pyrethroids were enriched by hydrophilic ionic liquid [P 4448 ][Br] (aqueous solution, 200 μL, 0.2 mmol mL -1 ) reaction in-situ with anion-exchange reagent Na[N(CN) 2 ] (aqueous solution, 300 μL, 0.2 mmol mL -1 ) forming hydrophobic ionic liquid as extraction agent in water sample (10 mL). Ultrasmall superparamagnetic iron oxide nanoparticles (30 mg) were used to collect the mixture of ionic liquid and pyrethroids followed by elution with acetonitrile. The extraction of ionic liquid strategies was unique and efficiently fulfilled with high enrichment factors (176-213) and good recoveries (80.20-117.31%). The method was successively applied to the determination of pyrethroid pesticides in different kinds of water samples with the limits of detection ranged from 0.16 to 0.21 μg L -1 . The proposed method is actually nanometer-level microextraction (average size 80 nm) with the advantages of simplicity, rapidity, and sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Identification and quantification of odours from oxobiodegradable polyethylene oxidised under a free radical flow by headspace solid-phase microextraction followed by gas chromatography-olfactometry-mass spectrometry.

    PubMed

    Wrona, Magdalena; Vera, Paula; Pezo, Davinson; Nerín, Cristina

    2017-09-01

    Recently oxobiodegradable polyethylene gained popularity as food packaging material due to its potential to reduce polymer waste. However, this type of material can release after its oxidation off-odour compounds that affect the organoleptic properties of packaged food. Odour compounds released from both polyethylene and oxobiodegradable polyethylene before and after oxidation under a free radicals flow were investigated after 1 day, 2 days and 3 days of oxidation. The samples were analysed using headspace solid phase microextraction followed by gas chromatography-mass spectrometry and headspace solid phase microextraction coupled to gas chromatography-olfactometry-mass spectrometry. Sixty-two different odorous compounds were identified. 4-methylthio-2-butanone (fruit), nonanal (fat) and 3,6-nonadienal (fat) were present in different materials before oxidation. Multiple headspace-solid phase microextraction has been used to quantify all analytes. The most abundant compound was (Z)-3-hexenyl hexanoate with a concentration range between 1.5791±0.1387µg/g and 4.8181±0.3123µg/g. Compounds such as 2-dodecenal, 2-octenal, 2-pentanol, 3-nonenal, 3,6-nonadienal, ethyl 3-methylbutanoate, ethyl octenoate, hexanone, isopropyl hexanoate, octanal were below their LOD evaluated using MS detector; however, they were detected by gas chromatography-olfactometry. The minimum LOD and LOQ were 0.011µg/g and 0.036µg/g, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Development of a dispersive liquid-liquid microextraction method using a lighter-than-water ionic liquid for the analysis of polycyclic aromatic hydrocarbons in water.

    PubMed

    Medina, Giselle S; Reta, Mario

    2016-11-01

    A dispersive liquid-liquid microextraction method using a lighter-than-water phosphonium-based ionic liquid for the extraction of 16 polycyclic aromatic hydrocarbons from water samples has been developed. The extracted compounds were analyzed by liquid chromatography coupled to fluorescence/diode array detectors. The effects of several experimental parameters on the extraction efficiency, such as type and volume of ionic liquid and disperser solvent, type and concentration of salt in the aqueous phase and extraction time, were investigated and optimized. Three phosphonium-based ionic liquids were assayed, obtaining larger extraction efficiencies when trihexyl-(tetradecyl)phosphonium bromide was used. The optimized methodology requires a few microliters of a lighter-than-water phosphonium-based ionic liquid, which allows an easy separation of the extraction solvent phase. The obtained limits of detection were between 0.02 and 0.56 μg/L, enrichment factors between 109 and 228, recoveries between 60 and 108%, trueness between 0.4 and 9.9% and reproducibility values between 3 and 12% were obtained. These figures of merit combined with the simplicity, rapidity and low cost of the analytical methodology indicate that this is a viable and convenient alternative to the methods reported in the literature. The developed method was used to analyze polycyclic aromatic hydrocarbons in river water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Optimisation of a simple and reliable method based on headspace solid-phase microextraction for the determination of volatile phenols in beer.

    PubMed

    Pizarro, C; Pérez-del-Notario, N; González-Sáiz, J M

    2010-09-24

    A simple, accurate and sensitive method based on headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-tandem mass spectrometry (GC-MS/MS) was developed for the analysis of 4-ethylguaiacol, 4-ethylphenol, 4-vinylguaiacol and 4-vinylphenol in beer. The effect of the presence of CO2 in the sample on the extraction of analytes was examined. The influence on extraction efficiency of different fibre coatings, of salt addition and stirring was also evaluated. Divinylbenzene/carboxen/polydimethylsiloxane was selected as extraction fibre and was used to evaluate the influence of exposure time, extraction temperature and sample volume/total volume ratio (Vs/Vt) by means of a central composite design (CCD). The optimal conditions identified were 80 degrees C for extraction temperature, 55 min for extraction time and 6 mL of beer (Vs/Vt 0.30). Under optimal conditions, the proposed method showed satisfactory linearity (correlation coefficients between 0.993 and 0.999), precision (between 6.3% and 9.7%) and detection limits (lower than those previously reported for volatile phenols in beers). The method was applied successfully to the analysis of beer samples. To our knowledge, this is the first time that a HS-SPME based method has been developed to determine simultaneously these four volatile phenols in beers. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Role of precursors and coating polymers in sol-gel chemistry toward enhanced selectivity and efficiency in solid phase microextraction.

    PubMed

    Bagheri, Habib; Piri-Moghadam, Hamed; Ahdi, Tayebeh

    2012-09-12

    To evaluate the selectivity and efficiency of solid phase microextraction (SPME) fiber coatings, synthesized by sol-gel technology, roles of precursors and coating polymers were extensively investigated. An on-line combination of capillary microextraction (CME) technique and high performance liquid chromatography (HPLC) was set up to perform the investigation. Ten different fiber coatings were synthesized in which five of them contained only the precursor and the rests were prepared using both the precursor and coating polymer. All the coatings were chemically bonded to the inner surface of copper tubes, intended to be used as the CME device and already functionalized by self-assembly monolayers of 3-(mercaptopropyl)trimethoxysilane (3MPTMOS). The selected precursors included tetramethoxysilane (TMOS), 3-(trimethoxysilyl)propylmethacrylate (TMSPMA), 3-(triethoxysilyl)-propylamine (TMSPA), 3MPTMOS, [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane (EPPTMOS) while poly(ethyleneglycol) (PEG) was chosen as the coating polymer. The effects of different precursors on the extraction efficiency and selectivity, was studied by selecting a list of compounds ranging from non-polar to polar ones, i.e. polycyclic aromatic hydrocarbon, herbicides, estrogens and triazines. The results from CME-HPLC analysis revealed that there is no significant difference between precursors, except TMOS, in which has the lowest extraction efficiency. Most of the selected precursors have rather similar interactions toward the selected analytes which include Van der Walls, dipole-dipole and hydrogen bond while TMOS has only dipole-dipole interaction and therefore the least efficiency. TMOS is silica but the other sorbents are organically modified silica (ORMOSIL). Our investigation revealed that it is rather impossible to prepare a selective coating using conventional sol-gel methodologies. The comparison study performed among the fiber coatings contained only a precursor and those synthesized by a precursor along with coating polymer proved that the extraction efficiency obtained for all coatings are the same. This is an indication that by selecting the appropriate precursor there is no need to use any coating polymer. In overall, a fiber coating in sol-gel process could be synthesize with no coating polymer which leads to faster, easier, cheaper and more controllable synthesis. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. High Resolution Tissue Imaging Using the Single-probe Mass Spectrometry under Ambient Conditions

    NASA Astrophysics Data System (ADS)

    Rao, Wei; Pan, Ning; Yang, Zhibo

    2015-06-01

    Ambient mass spectrometry imaging (MSI) is an emerging field with great potential for the detailed spatial analysis of biological samples with minimal pretreatment. We have developed a miniaturized sampling and ionization device, the Single-probe, which uses in-situ surface micro-extraction to achieve high detection sensitivity and spatial resolution during MSI experiments. The Single-probe was coupled to a Thermo LTQ Orbitrap XL mass spectrometer and was able to create high spatial and high mass resolution MS images at 8 ± 2 and 8.5 μm on flat polycarbonate microscope slides and mouse kidney sections, respectively, which are among the highest resolutions available for ambient MSI techniques. Our proof-of-principle experiments indicate that the Single-probe MSI technique has the potential to obtain ambient MS images with very high spatial resolutions with minimal sample preparation, which opens the possibility for subcellular ambient tissue MSI to be performed in the future.

  17. Development and Applications of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zheng, Qiuling; Chen, Hao

    2016-06-01

    Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent advance in the field of analytical chemistry. This review surveys the development of liquid sample DESI-MS (LS-DESI-MS), a variant form of DESI-MS that focuses on fast analysis of liquid samples, and its novel analy-tical applications in bioanalysis, proteomics, and reaction kinetics. Due to the capability of directly ionizing liquid samples, liquid sample DESI (LS-DESI) has been successfully used to couple MS with various analytical techniques, such as microfluidics, microextraction, electrochemistry, and chromatography. This review also covers these hyphenated techniques. In addition, several closely related ionization methods, including transmission mode DESI, thermally assisted DESI, and continuous flow-extractive DESI, are briefly discussed. The capabilities of LS-DESI extend and/or complement the utilities of traditional DESI and electrospray ionization and will find extensive and valuable analytical application in the future.

  18. Air-assisted liquid-liquid microextraction by solidifying the floating organic droplets for the rapid determination of seven fungicide residues in juice samples.

    PubMed

    You, Xiangwei; Xing, Zhuokan; Liu, Fengmao; Zhang, Xu

    2015-05-22

    A novel air assisted liquid-liquid microextraction using the solidification of a floating organic droplet method (AALLME-SFO) was developed for the rapid and simple determination of seven fungicide residues in juice samples, using the gas chromatography with electron capture detector (GC-ECD). This method combines the advantages of AALLME and dispersive liquid-liquid microextraction based on the solidification of floating organic droplets (DLLME-SFO) for the first time. In this method, a low-density solvent with a melting point near room temperature was used as the extraction solvent, and the emulsion was rapidly formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent for ten times repeatedly using a 10-mL glass syringe. After centrifugation, the extractant droplet could be easily collected from the top of the aqueous samples by solidifying it at a temperature lower than the melting point. Under the optimized conditions, good linearities with the correlation coefficients (γ) higher than 0.9959 were obtained and the limits of detection (LOD) varied between 0.02 and 0.25 μgL(-1). The proposed method was applied to determine the target fungicides in juice samples and acceptable recoveries ranged from 72.6% to 114.0% with the relative standard deviations (RSDs) of 2.3-13.0% were achieved. Compared with the conventional DLLME method, the newly proposed method will neither require a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Determination of bisphenol A, 4-octylphenol, and 4-nonylphenol in soft drinks and dairy products by ultrasound-assisted dispersive liquid-liquid microextraction combined with derivatization and high-performance liquid chromatography with fluorescence detection.

    PubMed

    Lv, Tao; Zhao, Xian-En; Zhu, Shuyun; Qu, Fei; Song, Cuihua; You, Jinmao; Suo, Yourui

    2014-10-01

    A novel hyphenated method based on ultrasound-assisted dispersive liquid-liquid microextraction coupled to precolumn derivatization has been established for the simultaneous determination of bisphenol A, 4-octylphenol, and 4-nonylphenol by high-performance liquid chromatography with fluorescence detection. Different parameters that influence microextraction and derivatization have been optimized. The quantitative linear range of analytes is 5.0-400.0 ng/L, and the correlation coefficients are more than 0.9998. Limits of detection for soft drinks and dairy products have been obtained in the range of 0.5-1.2 ng/kg and 0.01-0.04 μg/kg, respectively. Relative standard deviations of intra- and inter-day precision for retention time and peak area are in the range of 0.47-2.31 and 2.76-8.79%, respectively. Accuracy is satisfactory in the range of 81.5-118.7%. Relative standard deviations of repeatability are in the range of 0.35-1.43 and 2.36-4.75% for retention time and peak area, respectively. Enrichment factors for bisphenol A, 4-octylphenol, and 4-nonylphenol are 170.5, 240.3, and 283.2, respectively. The results of recovery and matrix effect are in the range of 82.7-114.9 and 92.0-109.0%, respectively. The proposed method has been applied to the determination of bisphenol A, 4-octylphenol, and 4-nonylphenol in soft drinks and dairy products with much higher sensitivity than many other methods. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Identification of unwanted photoproducts of cosmetic preservatives in personal care products under ultraviolet-light using solid-phase microextraction and micro-matrix solid-phase dispersion.

    PubMed

    Alvarez-Rivera, Gerardo; Llompart, Maria; Garcia-Jares, Carmen; Lores, Marta

    2015-04-17

    The photochemical transformation of widely used cosmetic preservatives including benzoates, parabens, BHA, BHT and triclosan has been investigated in this work applying an innovative double-approach strategy: identification of transformation products in aqueous photodegradation experiments (UV-light, 254nm), followed by targeted screening analysis of such photoproducts in UV-irradiated cosmetic samples. Solid-phase microextraction (SPME) was applied, using different fiber coatings, in order to widen the range of detectable photoproducts in water, whereas UV-irradiated personal care products (PCPs) containing the target preservatives were extracted by micro-matrix solid-phase dispersion (micro-MSPD). Both SPME and micro-MSPD-based methodologies were successfully optimized and validated. Degradation kinetics of parent species, and photoformation of their transformation by-products were monitored by gas chromatography coupled to mass spectrometry (GC-MS). Thirty nine photoproducts were detected in aqueous photodegradation experiments, being tentatively identified based on their mass spectra. Transformation pathways between structurally related by-products, consistent with their kinetic behavior were postulated. The photoformation of unexpected photoproducts such as 2- and 4-hydroxybenzophenones, and 2,8-dichlorodibenzo-p-dioxin in PCPs are reported in this work for the first time. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Hollow mesoporous carbon spheres-based fiber coating for solid-phase microextraction of polycyclic aromatic hydrocarbons.

    PubMed

    Hu, Xingru; Liu, Chao; Li, Jiansheng; Luo, Rui; Jiang, Hui; Sun, Xiuyun; Shen, Jinyou; Han, Weiqing; Wang, Lianjun

    2017-10-20

    In this study, a novel hollow mesoporous carbon spheres-based fiber (HMCSs-F) was fabricated to immobilize HMCSs onto a stainless steel wire for solid-phase microextraction (SPME). Characterization results showed that the HMCSs-F possessed a large specific surface area, high porosity and uniform pore size. To demonstrate the extraction performance, a series of polycyclic aromatic hydrocarbons (PAHs) was chosen as target analytes. The experimental parameters including extraction and desorption conditions were optimized. Compared to commercial fibers, the HMCSs-F exhibited better extraction efficiency for PAHs. More interestingly, a good extraction selectivity for PAHs from the complex matrix was observed in these HMCSs-F. The enhanced SPME performance was attributed to the unique pore structure and special surface properties of the HMCSs. Furthermore, under the optimum conditions, the limits of detection (LODs) for the HMCSs-F were in the range of 0.20-1.15ngL -1 with a corresponding relative standard deviation that was below 8.6%. The method was successfully applied for the analysis of PAHs in actual environmental water samples with recoveries ranging from 85.9% to 112.2%. These results imply that the novel HMCSs-F have potential application in environmental water analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Integration of phase separation with ultrasound-assisted salt-induced liquid-liquid microextraction for analyzing the fluoroquinones in human body fluids by liquid chromatography.

    PubMed

    Wang, Huili; Gao, Ming; Wang, Mei; Zhang, Rongbo; Wang, Wenwei; Dahlgren, Randy A; Wang, Xuedong

    2015-03-15

    Herein, we developed a novel integrated device to perform phase separation based on ultrasound-assisted salt-induced liquid-liquid microextraction for determination of five fluoroquinones (FQs) in human body fluids. The integrated device consisted of three simple HDPE components used to separate the extraction solvent from the aqueous phase prior to retrieving the extractant. A series of extraction parameters were optimized using the response surface method based on central composite design. Optimal conditions consisted of 945μL acetone extraction solvent, pH 2.1, 4.1min stir time, 5.9g Na2SO4, and 4.0min centrifugation. Under optimized conditions, the limits of detection (at S/N=3) were 0.12-0.66μgL(-1), the linear range was 0.5-500μgL(-1) and recoveries were 92.6-110.9% for the five FQs extracted from plasma and urine. The proposed method has several advantages, such as easy construction from inexpensive materials, high extraction efficiency, short extraction time, and compatibility with HPLC analysis. Thus, this method shows excellent prospects for sample pretreatment and analysis of FQs in human body fluids. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A green ultrasonic-assisted liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame and cinnamon oil.

    PubMed

    Khezeli, Tahere; Daneshfar, Ali; Sahraei, Reza

    2016-04-01

    A simple, inexpensive and sensitive ultrasonic-assisted liquid-liquid microextraction method based on deep eutectic solvent (UALLME-DES) was used for the extraction of three phenolic acids (ferulic, caffeic and cinnamic) from vegetable oils. In a typical experiment, deep eutectic solvent as green extraction solvent was added to n-hexane (as a typical oil medium) containing target analytes. Subsequently, the extraction was accelerated by sonication. After the extraction, phase separation (DES rich phase/n-hexane phase) was performed by centrifugation. DES rich phase (lower phase) was withdrawn by a micro-syringe and submitted to isocratic reverse-phase HPLC with UV detection. Under optimum conditions obtained by response surface methodology (RSM) and desirability function (DF), the method has good linear calibration ranges (between 1.30 and 1000 µg L(-1)), coefficients of determination (r(2)>0.9949) and low limits of detection (between 0.39 and 0.63 µg L(-1)). This procedure was successfully applied to the determination of target analytes in olive, almond, sesame and cinnamon oil samples. The relative mean recoveries ranged from 94.7% to 104.6%. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Dispersive liquid-liquid microextraction of copper ions as neocuproine complex in environmental aqueous samples.

    PubMed

    Shariati, Shahab; Golshekan, Mostafa

    2011-06-01

    In the present study, a simple and efficient extraction method based on dispersive liquid-liquid microextraction prior to UV-Vis spectrophotometry was developed for the preconcentration and determination of copper ions in environmental samples. Briefly, cupric ions (Cu II) were reduced to cuprous (Cu I) with addition of hydroxyl amine hydrochloride and formed hydrophobic chelates with neocuproine. Then, a proper mixture of acetonitrile (as dispersive solvent) and choloroform (as extraction solvent) was rapidly injected into the solution and a cloudy solution was formed. After centrifuging, choloroform was sedimented at the bottom of a conical tube and diluted with 100 µL of methanol for further UV-Vis spectrophotometry measurement. An orthogonal array design (OAD) was employed to study the effects of different parameters on the extraction efficiency. Under the optimum experimental conditions, a preconcentration factor up to 63.6 was achieved for extraction from 5.0 mL of sample solution. The limit of detection (LOD) based on S/N = 3 was 0.33 µg L-1 and the calibration curve was linear in the range of 1-200 µg L-1 with reasonable linearity (r2 > 0.997). Finally, the accuracy of the proposed method was successfully evaluated by determination of trace amounts of copper ions in different water samples and satisfactory results were obtained.

  5. Ionic liquid based vortex assisted liquid-liquid microextraction combined with liquid chromatography mass spectrometry for the determination of bisphenols in thermal papers with the aid of response surface methodology.

    PubMed

    Asati, Ankita; Satyanarayana, G N V; Panchal, Smita; Thakur, Ravindra Singh; Ansari, Nasreen G; Patel, Devendra K

    2017-08-04

    A sensitive, rapid and efficient ionic liquid-based vortex assisted liquid-liquid microextraction (IL-VALLME) with Liquid Chromatography Mass spectrometry (LC-MS/MS) method is proposed for the determination of bisphenols in thermal paper. Extraction factors were systematically optimized by response surface methodology. Experimental factors showing significant effects on the analytical responses were evaluated using design of experiment. The limit of detection for Bisphenol-A (BPA) and Bisphenol-S (BPS) in thermal paper were 1.25 and 0.93μgkg -1 respectively. The dynamic linearity range for BPA was between 4 and 100μgkg -1 and the determination of coefficient (R 2 ) was 0.996. The values of the same parameters were 3-100μgkg -1 and 0.998 for BPS. The extraction recoveries of BPA and BPS in thermal paper were 101% and 99%. Percent relative standard deviation (% RSD) for matrix effect and matrix match effects were not more than 10%, for both bisphenols. The proposed method uses a statistical approach for the analysis of bisphenols in environmental samples, and is easy, rapid, requires minimum organic solvents and efficient. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Solid-phase extraction assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet to determine sildenafil and its analogues in dietary supplements.

    PubMed

    Li, Jing; Roh, Si Hun; Shaodong, Jia; Hong, Ji Yeon; Lee, Dong-Kyu; Shin, Byong-Kyu; Park, Jeong Hill; Lee, Jeongmi; Kwon, Sung Won

    2017-08-01

    A novel analytical method for the simultaneous determination of the concentration of sildenafil and its five analogues in dietary supplements using solid-phase extraction assisted reversed-phase dispersive liquid-liquid microextraction based on solidification of floating organic droplet combined with ion-pairing liquid chromatography with an ultraviolet detector was developed. Parameters that affect extraction efficiency were systematically investigated, including the type of solid-phase extraction cartridge, pH of the extraction environment, and the type and volume of extraction and dispersive solvent. The method linearity was in the range of 5.0-100 ng/mL for sildenafil, homosildenafil, udenafil, benzylsildenafil, and thiosildenafil and 10-100 ng/mL for acetildenafil. The coefficients of determination were ≥0.996 for all regression curves. The sensitivity values expressed as limit of detection were between 2.5 and 7.5 ng/mL. Furthermore, intraday and interday precisions expressed as relative standard deviations were less than 5.7 and 9.9%, respectively. The proposed method was successfully applied to the analysis of sildenafil and its five analogues in complex dietary supplements. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development of an ionic liquid-based ultrasonic-assisted liquid-liquid microextraction method for sensitive determination of biogenic amines: application to the analysis of octopamine, tyramine and phenethylamine in beer samples.

    PubMed

    Huang, Ke-Jing; Jin, Chun-Xue; Song, Shi-Lin; Wei, Cai-Yun; Liu, Yan-Ming; Li, Jing

    2011-03-15

    A simple and efficient method, ionic liquid-based ultrasound-assisted liquid-liquid microextraction, has been developed for the determination of three biogenic amines including octopamine (OCT), tyramine (TYR) and phenethylamine (PHE). Fluorescence probe 2,6-dimethyl-4-quinolinecarboxylic acid N-hydroxysuccinimide ester was applied for derivatization of biogenic amines and high-performance liquid chromatography coupled with fluorescence detection was used for the determination of the derivatives. The factors affecting the extraction efficiency, such as the type and volume of ionic liquid, ultrasonication time and centrifugation time have been investigated in detail. Under the optimum conditions, linearity of the method was observed in the range of 0.5-50 μgmL(-1) for OCT and TYR, and 0.025-2.5 μgmL(-1) for PHE, respectively, with correlation coefficients (γ)>0.996. The limits of detection ranged from 0.25-50 ngmL(-1) (S/N=3). The spiked recoveries of three target compounds in beer samples were in the range of 90.2-114%. As a result, this method has been successfully applied for the sensitive determination of OCT, TYR and PHE in beer samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Vortex-assisted surfactant-enhanced emulsification microextraction based on solidification of floating organic drop combined with high performance liquid chromatography for determination of naproxen and nabumetone.

    PubMed

    Asadi, Mohammad; Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh; Abbasi, Bijan

    2015-12-18

    A novel, rapid, simple and green vortex-assisted surfactant-enhanced emulsification microextraction method based on solidification of floating organic drop was developed for simultaneous separation/preconcentration and determination of ultra trace amounts of naproxen and nabumetone with high performance liquid chromatography-fluorescence detection. Some parameters influencing the extraction efficiency of analytes such as type and volume of extractant, type and concentration of surfactant, sample pH, KCl concentration, sample volume, and vortex time were investigated and optimized. Under optimal conditions, the calibration graph exhibited linearity in the range of 3.0-300.0ngL(-1) for naproxen and 7.0-300.0ngL(-1) for nabumetone with a good coefficient of determination (R(2)>0.999). The limits of detection were 0.9 and 2.1ngL(-1). The relative standard deviations for inter- and intra-day assays were in the range of 5.8-10.1% and 3.8-6.1%, respectively. The method was applied to the determination of naproxen and nabumetone in urine, water, wastewater and milk samples and the accuracy was evaluated through recovery experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Application of ionic liquid-based dispersive liquid phase microextraction for highly sensitive simultaneous determination of three endocrine disrupting compounds in food packaging.

    PubMed

    Wang, Lingling; Zhang, Danfeng; Xu, Xu; Zhang, Lei

    2016-04-15

    Ionic liquid (IL) dispersive liquid-liquid microextraction (DLLME) method was successfully developed for extracting three endocrine disrupting compounds (EDCs) (bisphenol A, bisphenol AF and bisphenol AP) from the food packaging. 1-Octyl-3-methylimidazoliumhexafluorophosphate ([C8MIM][PF6]) was selected as extraction solution. The extraction procedure did not require a dispersive solvent. Three EDCs extraction kinetics were found to be very fast and the equilibrium was attained within 3.0 min following the pseudo-first-order model. The H-bonding and hydrophobic interactions play an important role in the partitioning of EDCs into IL from aqueous solution. The recovered IL could be reused for three runs without significant loss of extraction efficiencies. The spiked recoveries of three targets in food packaging were in the range of 97.8-103.1%. The limits of detection ranged from 0.50 to 1.50 ng mL(-1) (S/N=3). As a result, this method has been successfully applied for the sensitive detection of three EDCs in real samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Rapid screening of selective serotonin re-uptake inhibitors in urine samples using solid-phase microextraction gas chromatography-mass spectrometry.

    PubMed

    Salgado-Petinal, Carmen; Lamas, J Pablo; Garcia-Jares, Carmen; Llompart, Maria; Cela, Rafael

    2005-07-01

    In this paper a solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) method is proposed for a rapid analysis of some frequently prescribed selective serotonin re-uptake inhibitors (SSRI)-venlafaxine, fluvoxamine, mirtazapine, fluoxetine, citalopram, and sertraline-in urine samples. The SPME-based method enables simultaneous determination of the target SSRI after simple in-situ derivatization of some of the target compounds. Calibration curves in water and in urine were validated and statistically compared. This revealed the absence of matrix effect and, in consequence, the possibility of quantifying SSRI in urine samples by external water calibration. Intra-day and inter-day precision was satisfactory for all the target compounds (relative standard deviation, RSD, <14%) and the detection limits achieved were <0.4 ng mL(-1) urine. The time required for the SPME step and for GC analysis (30 min each) enables high throughput. The method was applied to real urine samples from different patients being treated with some of these pharmaceuticals. Some SSRI metabolites were also detected and tentatively identified.

  11. Determination of furfural and hydroxymethylfurfural from baby formula using headspace solid phase microextraction based on nanostructured polypyrrole fiber coupled with ion mobility spectrometry.

    PubMed

    Kamalabadi, Mahdie; Ghaemi, Elham; Mohammadi, Abdorreza; Alizadeh, Naader

    2015-08-15

    Furfural (Fu) and hydroxymethylfurfural (HMFu) are extracted using a dodecylbenzenesulfonate-doped polypyrrole coating as a fiber for headspace solid phase microextraction (HS-SPME) method in baby formula samples and detected using ion mobility spectrometry (IMS). Sample pH, salt effect, extraction time and temperature were investigated and optimized as effective parameters in HS-SPME. The calibration curves were linear in the range of 20-300 ng g(-1) (R(2)>0.99). Limits of detection for Fu and HMFu were 6 ng g(-1) and 5 ng g(-1), respectively. The RSD% of Fu and HMFu for five analyses was 4.4 and 4.9, respectively. The proposed method was successfully applied to determine of Fu and HMFu in the different baby formula samples with satisfactory result. The results were in agreement with those obtained using HPLC analysis. The HS-SPME-IMS is precise, selective and sensitive analytical method for determination of Fu and HMFu in baby formula samples, without any derivatization process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Simple determination of fluoride in biological samples by headspace solid-phase microextraction and gas chromatography-tandem mass spectrometry.

    PubMed

    Kwon, Sun-Myung; Shin, Ho-Sang

    2015-08-14

    A simple and convenient method to detect fluoride in biological samples was developed. This method was based on derivatization with 2-(bromomethyl)naphthalene, headspace solid phase microextraction (HS-SPME) in a vial, and gas chromatography-tandem mass spectrometric detection. The HS-SPME parameters were optimized as follows: selection of CAR/PDMS fiber, 0.5% 2-(bromomethyl)naphthalene, 250 mg/L 15-crown-5-ether as a phase transfer catalyst, extraction and derivatization temperature of 95 °C, heating time of 20 min and pH of 7.0. Under the established conditions, the lowest limits of detection were 9 and 11 μg/L in 1.0 ml of plasma and urine, respectively, and the intra- and inter-day relative standard deviation was less than 7.7% at concentrations of 0.1 and 1.0 mg/L. The calibration curve showed good linearity of plasma and urine with r=0.9990 and r=0.9992, respectively. This method is simple, amenable to automation and environmentally friendly. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Dye-doped nanostructure polypyrrole film for electrochemically switching solid-phase microextraction of Ni(II) and ICP-OES analysis of waste water.

    PubMed

    Shamaeli, Ehsan; Alizadeh, Naader

    2012-01-01

    A nanostructure fiber based on conducting polypyrrole synthesized by an electrochemical method has been developed, and used for electrochemically switching solid-phase microextraction (ES-SPME). The ES-SPME was prepared by the doping of eriochrome blue in polypyrrole (PPy-ECB) and used for selectively extracting the Ni(II) cation in the presence of some transition and heavy metal ions. The cation-exchange behavior of electrochemically prepared polypyrrole on stainless-steel with and without eriochrome blue (ECB) dye was characterized using ICP-OES analysis. The effects of the scan rate for electrochemical synthesis, uptake and the release potential on the extraction behavior of the PPy-ECB conductive fiber were studied. Uptake and release time profiles show that the process of electrically switched cation exchange could be completed within 250 s. The results of the present study point concerning the possibility of developing a selective extraction process for Ni(II) from waste water was explored using such a nanostructured PPy-ECB film through an electrically switched cation exchange. 2012 © The Japan Society for Analytical Chemistry

  14. Rapid determination of pyridine derivatives by dispersive liquid-liquid microextraction coupled with gas chromatography/gas sensor based on nanostructured conducting polypyrrole.

    PubMed

    Pirsa, Sajad; Alizadeh, Naader

    2011-12-15

    Polypyrrole (PPy) gas sensor has been prepared by polymerization of pyrrole on surfaces of commercial polymer fibers in the presence of an oxidizing agent. The sensing behavior of PPy gas sensor was investigated in the presence of pyridine derivatives. The resistive responses of the PPy gas sensor to pyridine derivatives were in the order of quinoline>pyridine>4-methyl pyridine and 2-methyl pyridine. The PPy gas sensor was used as gas chromatography (GC) detector and exhibited linear responses to pyridine derivatives in the ranges 40-4,000 ng. Dispersive liquid-liquid microextraction (DLLME) combined with GC/PPy gas sensor has been developed for simultaneous determination of pyridine derivatives and quinoline. The purposed method was used for determination of pyridine derivatives from cigarette smoke. The GC runs were completed in 4 min. The reproducibility of this method is suitable and good standard deviations were obtained. RSD value is less than 10% for all analytes. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Solid-phase microextraction of phthalate esters by a new coating based on a thermally stable polypyrrole/graphene oxide composite.

    PubMed

    Jafari, Mostafa; Ebrahimzadeh, Homeira; Banitaba, Mohammad Hossein; Davarani, Saied Saeed Hosseiny

    2014-11-01

    A novel polypyrole/graphene oxide coating was made by the electrochemical polymerization of pyrrole in the presence of sodium dodecyl sulfate and graphene oxide on a platinum wire. The prepared fiber has shown a good thermal stability up to 300°C. The fiber was applied to the direct solid-phase microextraction and gas chromatographic analysis of four phthalate esters. The effect of four parameters on gas chromatography peak area including extraction temperature, extraction time, injection temperature, and ionic strength were investigated. Under the optimized conditions, the detection limits were between 0.042 and 0.26 μg/L. The intraday and interday relative standard deviations obtained at 55 μg/L, using a single fiber, were 8.2-16% and 17.3-25.6%, respectively. The method was successfully applied to the analysis of phthalate esters in two real samples of boiling water in cheap disposable clear plastic drinking cups showing recoveries from 83 to 120%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Monolithic molecular imprinted polymer fiber for recognition and solid phase microextraction of ephedrine and pseudoephedrine in biological samples prior to capillary electrophoresis analysis.

    PubMed

    Deng, Dong-Li; Zhang, Ji-You; Chen, Chen; Hou, Xiao-Ling; Su, Ying-Ying; Wu, Lan

    2012-01-06

    A novel capillary electrophoresis (CE) method coupled with monolithic molecular imprinted polymer (MIP) fiber based solid phase microextraction (SPME) was developed for selective and sensitive determination of ephedrine (E) and pseudoephedrine (PE). With in situ polymerization in a silica capillary mold and E as template, the MIP fibers could be produced in batch reproducibly and each fiber was available for 50 extraction cycles without significant decrease in extraction ability. Using the MIP fiber under optimized extraction conditions, CE detection limits of E and PE were greatly lowered from 0.20 to 0.00096 μg/mL and 0.12 to 0.0011 μg/mL, respectively. Analysis of urine and serum samples by the MIP-SPME-CE method was also performed, with results indicating that E and PE could be selectively extracted. The recoveries and relative standard deviations (RSDs) for sample analysis were found in the range of 91-104% and 3.8-9.1%, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Solid phase microextraction of diclofenac using molecularly imprinted polymer sorbent in hollow fiber combined with fiber optic-linear array spectrophotometry.

    PubMed

    Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Khodadoust, Saeid

    2015-08-05

    A simple solid phase microextraction method based on molecularly imprinted polymer sorbent in the hollow fiber (MIP-HF-SPME) combined with fiber optic-linear array spectrophotometer has been applied for the extraction and determination of diclofenac in environmental and biological samples. The effects of different parameters such as pH, times of extraction, type and volume of the organic solvent, stirring rate and donor phase volume on the extraction efficiency of the diclofenac were investigated and optimized. Under the optimal conditions, the calibration graph was linear (r(2)=0.998) in the range of 3.0-85.0 μg L(-1) with a detection limit of 0.7 μg L(-1) for preconcentration of 25.0 mL of the sample and the relative standard deviation (n=6) less than 5%. This method was applied successfully for the extraction and determination of diclofenac in different matrices (water, urine and plasma) and accuracy was examined through the recovery experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A microextraction procedure based on a task-specific ionic liquid for the separation and preconcentration of lead ions from red lipstick and pine leaves.

    PubMed

    Saljooqi, Asma; Shamspur, Tayebeh; Mohamadi, Maryam; Afzali, Daryoush; Mostafavi, Ali

    2015-05-01

    First, the extraction and preconcentration of ultratrace amounts of lead(II) ions was performed using microliter volumes of a task-specific ionic liquid. The remarkable properties of ionic liquids were added to the advantages of microextraction procedure. The ionic liquid used was trioctylmethylammonium thiosalicylate, which formed a lead thiolate complex due to the chelating effect of the ortho-positioned carboxylate relative to thiol functionality. So, trioctylmethylammonium thiosalicylate played the roles of both chelating agent and extraction solvent simultaneously. Hence, there is no need to use a ligand. The main parameters affecting the efficiency of the method were investigated and optimized. Under optimized conditions, this approach showed a linear range of 2.0-24.0 ng/mL with a detection limit of 0.0010 ng/mL. The proposed method was applied to the extraction and preconcentration of lead from red lipstick and pine leaves samples prior to electrothermal atomic absorption spectroscopic determination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Rapid analysis of ultraviolet filters using dispersive liquid-liquid microextraction coupled to headspace gas chromatography and mass spectrometry.

    PubMed

    Pierson, Stephen A; Trujillo-Rodríguez, María J; Anderson, Jared L

    2018-05-29

    An ionic-liquid-based in situ dispersive liquid-liquid microextraction method coupled to headspace gas chromatography and mass spectrometry was developed for the rapid analysis of ultraviolet filters. The chemical structures of five ionic liquids were specifically designed to incorporate various functional groups for the favorable extraction of the target analytes. Extraction parameters including ionic liquid mass, molar ratio of ionic liquid to metathesis reagent, vortex time, ionic strength, pH, and total sample volume were studied and optimized. The effect of the headspace temperature and volume during the headspace sampling step was also evaluated to increase the sensitivity of the method. The optimized procedure is fast as it only required ∼7-10 min per extraction and allowed for multiple extractions to be performed simultaneously. In addition, the method exhibited high precision, good linearity, and low limits of detection for six ultraviolet filters in aqueous samples. The developed method was applied to both pool and lake water samples attaining acceptable relative recovery values. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Differences in the fragrances of pollen and different floral parts of male and female flowers of Laurus nobilis.

    PubMed

    Flamini, Guido; Cioni, Pier Luigi; Morelli, Ivano

    2002-07-31

    The headspace analyses of pollen, whole living female and male flowers, and staminoids have been performed on Laurus nobilis L. (Lauraceae) from Italy to determine whether there are differences in the volatiles emitted in order to give a contribution to the roles of the different flower parts in the pollination ecology of dioecious plants. Also, the essential oils obtained from male and female plants have been studied to evaluate a possible correlation between the spontaneously emitted volatiles and the constituents stored in the glandular tissues. Furthermore, the headspace sampling technique has been improved, with respect to previously employed methods, by means of solid-phase microextraction (SPME).

  1. Development of a syringe pump assisted dynamic headspace sampling technique for needle trap device.

    PubMed

    Eom, In-Yong; Niri, Vadoud H; Pawliszyn, Janusz

    2008-07-04

    This paper describes a new approach that combines needle trap devices (NTDs) with a dynamic headspace sampling technique (purge and trap) using a bidirectional syringe pump. The needle trap device is a 22-G stainless steel needle 3.5-in. long packed with divinylbenzene sorbent particles. The same sized needle, without packing, was used for purging purposes. We chose an aqueous mixture of benzene, toluene, ethylbenzene, and p-xylene (BTEX) and developed a sequential purge and trap (SPNT) method, in which sampling (trapping) and purging cycles were performed sequentially by the use of syringe pump with different distribution channels. In this technique, a certain volume (1 mL) of headspace was sequentially sampled using the needle trap; afterwards, the same volume of air was purged into the solution at a high flow rate. The proposed technique showed an effective extraction compared to the continuous purge and trap technique, with a minimal dilution effect. Method evaluation was also performed by obtaining the calibration graphs for aqueous BTEX solutions in the concentration range of 1-250 ng/mL. The developed technique was compared to the headspace solid-phase microextraction method for the analysis of aqueous BTEX samples. Detection limits as low as 1 ng/mL were obtained for BTEX by NTD-SPNT.

  2. A star-shaped polythiophene dendrimer coating for solid-phase microextraction of triazole agrochemicals.

    PubMed

    Abolghasemi, Mir Mahdi; Habibiyan, Rahim; Jaymand, Mehdi; Piryaei, Marzieh

    2018-02-14

    A nanostructured star-shaped polythiophene dendrimer was prepared and used as a fiber coating for headspace solid phase microextraction of selected triazolic pesticides (tebuconazole, hexaconazole, penconazole, diniconazole, difenoconazole, triticonazole) from water samples. The dendrimer with its large surface area was characterized by thermogravimetric analysis, UV-Vis spectroscopy and field emission scanning electron microscopy. It was placed on a stainless steel wire for use in SPME. The experimental conditions for fiber coating, extraction, stirring rate, ionic strength, pH value, desorption temperature and time were optimized. Following thermal desorption, the pesticides were quantified by GC-MS. Under optimum conditions, the repeatability (RSD) for one fiber (for n = 3) ranges from 4.3 to 5.6%. The detection limits are between 8 and 12 pg mL -1 . The method is fast, inexpensive (in terms of equipment), and the fiber has high thermal stability. Graphical abstract Schematic presentation of a nanostructured star-shaped polythiophene dendrimer for use in headspace solid phase microextraction of the triazolic pesticides (tebuconazole, hexaconazole, penconazole, diniconazole, difenoconazole, triticonazole). They were then quantified by gas chromatography-mass spectrometry.

  3. Ligandless dispersive liquid--liquid microextraction of iron in biological and foodstuff samples and its determination by Electrothermal atomic absorption spectrometry.

    PubMed

    Madadizadeh, Mohadeseh; Taher, Mohammad Ali; Ashkenani, Hamid

    2013-01-01

    A new, simple, and efficient method comprising ligandless dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry is reported for the preconcentration and determination of ultratrace amounts of Fe(III). Carbon tetrachloride and acetone were used as the extraction and disperser solvents, respectively. Some effective parameters of the microextraction such as choice of extraction and disperser solvents, their volume, extraction time and temperature, salt and surfactant effect, and pH were optimized. Under the optimum conditions, the calibration curve was linear in the range of 0.02 to 0.46 microg/L of Fe(III), with LOD and LOQ of 5.2 and 17.4 ng/L, respectively. The RSD for seven replicated determinations of Fe(IIl) ion at 0.1 microg/L concentration level was 5.2%. Operational simplicity, rapidity, low cost, good repeatability, and low consumption of extraction solvent are the main advantages of the proposed method. The method was successfully applied to the determination of iron in biological, food, and certified reference samples.

  4. Simple fabrication of solid phase microextraction fiber employing nitrogen-doped ordered mesoporous polymer by in situ polymerization.

    PubMed

    Zheng, Juan; Liang, Yeru; Liu, Shuqin; Jiang, Ruifen; Zhu, Fang; Wu, Dingcai; Ouyang, Gangfeng

    2016-01-04

    A combination of nitrogen-doped ordered mesoporous polymer (NOMP) and stainless steel wires led to highly sensitive, selective, and stable solid phase microextraction (SPME) fibers by in situ polymerization for the first time. The ordered structure of synthesized NOMP coating was illustrated by transmission electron microscopy (TEM) and X-ray diffraction (XRD), and microscopy analysis by scanning electron microscopy (SEM) confirmed a homogenous morphology of the NOMP-coated fiber. The NOMP-coated fiber was further applied for the extraction of organochlorine pesticides (OCPs) with direct-immersion solid-phase microextraction (DI-SPME) method followed by gas chromatography-mass spectrometry (GC-MS) quantification. Under the optimized conditions, low detection limits (0.023-0.77 ng L(-1)), a wide linear range (9-1500 ng L(-1)), good repeatability (3.5-8.1%, n=6) and excellent reproducibility (1.5-8.3%, n=3) were achieved. Moreover, the practical feasibility of the proposed method was evaluated by determining OCPs in environmental water samples with satisfactory recoveries. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Sol-gel immobilized short-chain poly(ethylene glycol) coating for capillary microextraction of underivatized polar analytes.

    PubMed

    Kulkarni, Sameer; Shearrow, Anne M; Malik, Abdul

    2007-12-07

    Sol-gel coating with covalently bonded low-molecular-weight (MW<300 Da) poly(ethylene glycol) (PEG) chains was developed for capillary microextraction (CME). The sol-gel chemistry proved effective in the immobilization of low-molecular-weight PEGs thanks to the formation of chemical bonds between the organic-inorganic hybrid sol-gel PEG coating and the fused silica capillary inner surface. This chemical anchorage provided excellent thermal and solvent stability to the created sol-gel PEG coating as is evidenced by its high upper limit of allowable conditioning temperature (340 degrees C) and its practically identical performance before and after rinsing with various solvents. The prepared sol-gel PEG coating provided simultaneous extraction of moderately polar and highly polar analytes from aqueous samples without requiring derivatization, pH adjustment or salting-out procedures. Detection limits on the order of nanogram per liter (ng/L) were achieved in CME-GC-flame ionization detection experiments designed for the preconcentration and trace analysis of both highly polar and moderately polar compounds extracted directly from aqueous media using sol-gel short-chain PEG coated microextraction capillaries.

  6. Ultrasonic-assisted extraction and dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry as an efficient and sensitive method for determining of acrylamide in potato chips samples.

    PubMed

    Zokaei, Maryam; Abedi, Abdol-Samad; Kamankesh, Marzieh; Shojaee-Aliababadi, Saeedeh; Mohammadi, Abdorreza

    2017-11-01

    In this research, for the first time, we successfully developed ultrasonic-assisted extraction and dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry as a new, fast and highly sensitive method for determining of acrylamide in potato chips samples. Xanthydrol was used as a derivatization reagent and parameters affecting in the derivatization and microextraction steps were studied and optimized. Under optimum conditions, the calibration curves showed high levels of linearity (R 2 >0.9993) for acrylamide in the range of 2-500ngmL -1 . The relative standard deviation (RSD) for the seven analyses was 6.8%. The limit of detection (LOD) and limit of quantification (LOQ) were 0.6ngg -1 and 2ngg -1 , respectively. The UAE-DLLME-GC-MS method demonstrated high sensitivity, good linearity, recovery, and enrichment factor. The performance of the new proposed method was evaluated for the determination of acrylamide in various types of chips samples and satisfactory results were obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Optimisation of ultrasound-assisted reverse micelles dispersive liquid-liquid micro-extraction by Box-Behnken design for determination of acetoin in butter followed by high performance liquid chromatography.

    PubMed

    Roosta, Mostafa; Ghaedi, Mehrorang; Daneshfar, Ali

    2014-10-15

    A novel approach, ultrasound-assisted reverse micelles dispersive liquid-liquid microextraction (USA-RM-DLLME) followed by high performance liquid chromatography (HPLC) was developed for selective determination of acetoin in butter. The melted butter sample was diluted and homogenised by n-hexane and Triton X-100, respectively. Subsequently, 400μL of distilled water was added and the microextraction was accelerated by 4min sonication. After 8.5min of centrifugation, sedimented phase (surfactant-rich phase) was withdrawn by microsyringe and injected into the HPLC system for analysis. The influence of effective variables was optimised using Box-Behnken design (BBD) combined with desirability function (DF). Under optimised experimental conditions, the calibration graph was linear over the range of 0.6-200mgL(-1). The detection limit of method was 0.2mgL(-1) and coefficient of determination was 0.9992. The relative standard deviations (RSDs) were less than 5% (n=5) while the recoveries were in the range of 93.9-107.8%. Copyright © 2014. Published by Elsevier Ltd.

  8. Sensitive quantitation of polyamines in plant foods by ultrasound-assisted benzoylation and dispersive liquid-liquid microextraction with the aid of experimental designs.

    PubMed

    Pinto, Edgar; Melo, Armindo; Ferreira, Isabel M P L V O

    2014-05-14

    A new method involving ultrasound-assisted benzoylation and dispersive liquid-liquid microextraction was optimized with the aid of chemometrics for the extraction, cleanup, and determination of polyamines in plant foods. Putrescine, cadaverine, spermidine, and spermine were derivatized with 3,5-dinitrobenzoyl chloride and extracted by dispersive liquid-liquid microextraction using acetonitrile and carbon tetrachloride as dispersive and extraction solvents, respectively. Two-level full factorial design and central composite design were applied to select the most appropriate derivatization and extraction conditions. The developed method was linear in the 0.5-10.0 mg/L range, with a R(2) ≥ 0.9989. Intra- and interday precisions ranged from 0.8 to 6.9% and from 3.0 to 10.3%, respectively, and the limit of detection ranged between 0.018 and 0.042 μg/g of fresh weight. This method was applied to the analyses of six different types of plant foods, presenting recoveries between 81.7 and 114.2%. The method is inexpensive, versatile, simple, and sensitive.

  9. Ultrasonic nebulization extraction-heating gas flow transfer-headspace single drop microextraction of essential oil from pericarp of Zanthoxylum bungeanum Maxim.

    PubMed

    Wei, Shigang; Zhang, Huihui; Wang, Yeqiang; Wang, Lu; Li, Xueyuan; Wang, Yinghua; Zhang, Hanqi; Xu, Xu; Shi, Yuhua

    2011-07-22

    The ultrasonic nebulization extraction-heating gas flow transfer coupled with headspace single drop microextraction (UNE-HGFT-HS-SDME) was developed for the extraction of essential oil from Zanthoxylum bungeanum Maxim. The gas chromatography-mass spectrometry was applied to the determination of the constituents in the essential oil. The contents of the constituents from essential oil obtained by the proposed method were found to be more similar to those obtained by hydro-distillation (HD) than those obtained by ultrasonic nebulization extraction coupled with headspace single drop microextraction (UNE-HS-SDME). The heating gas flow was firstly used in the analysis of the essential oil to transfer the analytes from the headspace to the solvent microdrop. The relative standard deviations for determining the five major constituents were in the range from 1.5 to 6.7%. The proposed method is a fast, sensitive, low cost and small sample consumption method for the determination of the volatile and semivolatile constituents in the plant materials. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Determination of nitrate esters in water samples Comparison of efficiency of solid-phase extraction and solid-phase microextraction.

    PubMed

    Jezová, Vera; Skládal, Jan; Eisner, Ales; Bajerová, Petra; Ventura, Karel

    2007-12-07

    This paper deals with comparison of efficiency of extraction techniques (solid-phase extraction, SPE and solid-phase microextraction, SPME) used for extraction of nitrate esters (ethyleneglycoldinitrate, EGDN and nitroglycerin, NG), representing the first step of the method of quantitative determination of trace concentrations of nitrate esters in water samples. EGDN and NG are subsequently determined by means of high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Optimization of SPE and SPME conditions was carried out using model water samples. Seven SPE cartridges were tested and the conditions were optimized (type of sorbent, type and volume of solvent to be used as eluent). For both nitrate esters the limit of detection (LOD) and the limit of quantification (LOQ) obtained using SPE/HPLC-UV were 0.23 microg mL(-1) and 0.70 microg mL(-1), respectively. Optimization of SPME conditions: type of SPME fibre (four fibres were tested), type and time of sorption/desorption, temperature of sorption. PDMS/DVB (polydimethylsiloxane/divinylbenzene) fibre coating proved to be suitable for extraction of EGDN and NG. For this fibre the LOD and the LOQ for both nitrate esters were 0.16 microg mL(-1) and 0.50 microg mL(-1), respectively. Optimized methods SPE/HPLC-UV and SPME/HPLC-UV were then used for quantitative determination of nitrate esters content in real water samples from the production of EGDN and NG.

  11. Carbon nanotubes@silicon dioxide nanohybrids coating for solid-phase microextraction of organophosphorus pesticides followed by gas chromatography-corona discharge ion mobility spectrometric detection.

    PubMed

    Saraji, Mohammad; Jafari, Mohammad Taghi; Mossaddegh, Mehdi

    2016-01-15

    A high efficiency solid-phase microextraction (SPME) fiber coated with porous carbon nanotubes-silicon dioxide (CNTs-SiO2) nanohybrids was synthesized and applied for the determination of some organophosphorus pesticides (OPPs) in vegetables, fruits and water samples. Gas chromatography-corona discharge ion mobility spectrometry was used as the detection system. Glucose, as a biocompatible compound, was used for connecting CNT and SiO2 during a hydrothermal process. The electrospinning technique was also applied for the fiber preparation. The parameters affecting the efficiency of extraction, including stirring rate, salt effect, extraction temperature, extraction time, desorption temperature and desorption time, were investigated and optimized. The developed CNTs@SiO2 fiber presented better extraction efficiency than the commercial SPME fibers (PA, PDMS, and PDMS-DVB). The intra- and inter-day relative standard deviations were found to be lower than 6.2 and 9.0%, respectively. For water samples, the limits of detection were in the range of 0.005-0.020 μg L(-1) and the limits of quantification were between 0.010 and 0.050 μg L(-1). The results showed a good linearity in the range of 0.01-3.0 μg L(-1) for the analytes. The spiking recoveries ranged from 79 (± 9) to 99 (± 8). The method was successfully applied for the determination of OPPs in real samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Membrane solid phase microextraction with alumina hollow fiber on line coupled with ICP-OES for the determination of trace copper, manganese and nickel in environmental water samples.

    PubMed

    Cui, Chao; He, Man; Hu, Bin

    2011-03-15

    A novel alumina hollow fiber was synthesized by sol-gel template method and was characterized by scanning electron microscopy, N(2) adsorption technique and X-ray diffraction. With the use of prepared alumina hollow fiber as extraction membrane, a new method of flow injection (FI)-membrane solid phase microextraction (MSPME) on-line coupled to inductively coupled plasma-optical emission spectrometry (ICP-OES) was developed for simultaneous determination of trace metals (Cu, Mn and Ni) in environmental water samples. The adsorption capacities of the alumina hollow fiber for Cu, Mn and Ni were found to be 6.6, 8.7 and 13.3 mg g(-1), respectively. With a preconcentration factor of 10, the limits of detection (LODs) for Cu, Mn and Ni were found to be 0.88, 0.61 and 0.38 ng mL(-1), respectively, and the relative standard deviations (RSDs) were ranging from 6.2 to 7.9% (n = 7, c = 10 ng mL(-1)). To validate the accuracy, the proposed method was applied to the analysis of certified reference material GSBZ50009-88 environmental water and the determined values are in good agreement with the certified values. The developed method was also employed for the analysis of Yangtze River water and East Lake water, and the recoveries for the spiked samples were in the range of 87.4-110.2%. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Development of a simultaneous multiple solid-phase microextraction-single shot-gas chromatography/mass spectrometry method and application to aroma profile analysis of commercial coffee.

    PubMed

    Lee, Changgook; Lee, Younghoon; Lee, Jae-Gon; Buglass, Alan J

    2013-06-21

    A simultaneous multiple solid-phase microextraction-single shot-gas chromatography mass spectrometry (smSPME-ss-GC/MS) method has been developed for headspace analysis. Up to four fibers (50/30 μm DVB/CAR/PDMS) were used simultaneously for the extraction of aroma components from the headspace of a single sample chamber in order to increase sensitivity of aroma extraction. To avoid peak broadening and to maximize resolution, a simple cryofocusing technique was adopted during sequential thermal desorption of multiple SPME fibers prior to a 'single shot' chromatographic run. The method was developed and validated on a model flavor mixture, containing 81 known pure components. With the conditions of 10 min of incubation and 30 min of extraction at 50 °C, single, dual, triple and quadruple SPME extractions were compared. The increase in total peak area with increase in the number of fibers showed good linearity (R(2)=0.9917) and the mean precision was 12.0% (RSD) for the total peak sum, with quadruple simultaneous SPME extraction. Using a real sample such as commercial coffee granules, aroma profile analysis was conducted using single, dual, triple and quadruple SPME fibers. The increase in total peak intensity again showed good linearity with increase in the number of SPME fibers used (R(2)=0.9992) and the precision of quadruple SPME extraction was 9.9% (RSD) for the total peak sum. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Reverse micelle-mediated dispersive liquid-liquid microextraction of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid.

    PubMed

    Tayyebi, Moslem; Yamini, Yadollah; Moradi, Morteza

    2012-09-01

    A supramolecular solvent consisting of reverse micelles of decanoic acid, dispersed in a continuous phase of tetrahydrofuran:water, was proposed as an efficient microextraction technique for extraction of selected chlorophenoxy acid herbicides from water samples prior to high-performance liquid chromatography UV determination. The disperser solvent (1.0 mL tetrahydrofuran) containing 20 mg decanoic acid was rapidly injected into 10.0 mL of water sample. After centrifugation, the reverse micelle-rich phase (25 ± 0.5 μL) was floated at top of the home-designed centrifuge tube. The solvent was collected and 20 μL of it was injected into high-performance liquid chromatography for analysis. The results showed that the in situ solvent formation and extraction process can be completed in a few seconds. Under the optimal conditions, limits of detection of the method for 4-chloro-2-methylphenoxyacetic acid and 2,4-dichlorophenoxyacetic acid were in the range of 0.5-0.8 μg L(-1) and the repeatability of the proposed method, expressed as relative standard deviation, varied in the range of 2.5-3.2%. Linearity was found to be in the range of 1-200 μg L(-1) and the preconcentration factors were between 148 and 157. The mean percentage recoveries exceeded 92.0% for all the spiking levels in real water samples. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Improving Student Understanding of Qualitative and Quantitative Analysis via GC/MS Using a Rapid SPME-Based Method for Determination of Trihalomethanes in Drinking Water

    ERIC Educational Resources Information Center

    Huang, Shu Rong; Palmer, Peter T.

    2017-01-01

    This paper describes a method for determination of trihalomethanes (THMs) in drinking water via solid-phase microextraction (SPME) GC/MS as a means to develop and improve student understanding of the use of GC/MS for qualitative and quantitative analysis. In the classroom, students are introduced to SPME, GC/MS instrumentation, and the use of MS…

  16. Sensitive trace enrichment of environmental andiandrogen vinclozolin from natural waters and sediment samples using hollow-fiber liquid-phase microextraction.

    PubMed

    Lambropoulou, Dimitra A; Albanis, Triantafyllos A

    2004-12-17

    The presence of vinclozolin in the environment as far as the endocrine disruption effects in biota are concerned has raised interest in the environmental fate of this compound. In this respect, the present study attempts to investigate the feasibility of applying a novel quantitative method, liquid-phase microextraction (LPME), so as to determine this environmental andiandrogen in environmental samples such as water and sediment samples. The technique involved the use of a small amount (3 microL) of organic solvent impregnated in a hollow fiber membrane, which was attached to the needle of a conventional GC syringe. The extracted samples were analyzed by gas chromatography coupled with electron-capture detection. Experimental LPME conditions such as extraction solvent, stirring rate, content of NaCl and pH were tested. Once LPME was optimized, the performance of the proposed technique was evaluated for the determination of vinclozolin in different types of natural water samples. The recovery of spiked water samples was from 80 to 99%. The procedure was adequate for quantification of vinclozolin in waters at levels of 0.010 to 50 microg/L (r> 0.994) with a detection limit of 0.001 microg/L (S/N= 3). Natural sediment samples from the Aliakmonas River area (Macedonia, Greece) spiked with the target andiandrogen compound were liquid-liquid extracted and analyzed by the methodology developed in this work. No significant interferences from the samples matrix were noticed, indicating that the reported methodology is an innovative tactic for sample preparation in sediment analysis, with a considerable improvement in the achieved detection limits. The results demonstrated that apart from analyte enrichment, the proposed LPME procedure also serves as clean-up method and could be successfully performed to determine trace amounts of vinclozolin in water and sediment samples.

  17. Characterization of three agave species by gas chromatography and solid-phase microextraction-gas chromatography-mass spectrometry.

    PubMed

    Peña-Alvarez, Araceli; Díaz, Laura; Medina, Alejandra; Labastida, Carmen; Capella, Santiago; Vera, Luz Elena

    2004-02-20

    Steam distillation (SD) extraction-solid-phase microextraction coupled to GC-MS was developed for the determination of terpenes and Bligh-Dyer extraction-derivatization coupled with GC for the determination of fatty acids such as ethyl esters were used. It was found that the three different Agave species have the same profile of fatty acids; the quantity of these compounds is different in each Agave variety. On the other hand, different terpenes were identified in the three Agave plants studied: nine in A. salmiana, eight in A. angustifolia and 32 in A. tequilana Weber var. azul.

  18. [Improvement of the determination method of benzene, toluene, ethylbenzene and xylene(BTEX) in water using activated carbon fiber solid-phase microextraction/gas chromatography-mass spectrometry(GC-MS)].

    PubMed

    Jia, Jin-ping; Feng, Xue; Fang, Neng-hu; Huang, Jia-liang

    2002-01-01

    The methods of direct injection, carbon disulfide extraction and activated carbon fiber solid-phase microextraction/GC-MS, usually used in the determination of BTEX in water matrix, are compared and discussed. Experimental data of linearity, precision and limit of detection illustrate that the last one is better than the two other methods. This method was tested by the practical sample experiments and expected to be a simple and sensitive new method for the analysis of BTEX in water.

  19. Graphene/dodecanol floating solidification microextraction for the preconcentration of trace levels of cinnamic acid derivatives in traditional Chinese medicines.

    PubMed

    Hu, Shuang; Yang, Xiao; Xue, Jiao; Chen, Xuan; Bai, Xiao-Hong; Yu, Zhi-Hui

    2017-07-01

    A novel graphene/dodecanol floating solidification microextraction followed by HPLC with diode-array detection has been developed to extract trace levels of four cinnamic acid derivatives in traditional Chinese medicines. Several parameters affecting the performance were investigated and optimized. Also, possible microextraction mechanism was analyzed and discussed. Under the optimum conditions (amount of graphene in dodecanol: 0.25 mg/mL; volume of extraction phase: 70 μL; pH of sample phase: 3; extraction time: 30   min; stirring rate: 1000 rpm; salt amount: 26.5% NaCl; volume of sample phase: 10 mL, and without dispersant addition), the enrichment factors of four cinnamic acid derivatives ranged from 26 to 112, the linear ranges were 1.0 × 10 -2 -10.0 μg/mL for caffeic acid, 1.3 × 10 -3 -1.9 μg/mL for p-hydroxycinnamic acid, 2.8 × 10 -3 -4.1 μg/mL for ferulic acid, and 2.7 × 10 -3 -4.1 μg/mL for cinnamic acid, with r 2 ≥ 0.9993. The detection limits were found to be in the range of 0.1-1.0 ng/mL, and satisfactory recoveries (92.5-111.2%) and precisions (RSDs 1.1-9.5%) were also achieved. The results showed that the approach is simple, effective and sensitive for the preconcentration and determination of trace levels of cinnamic acid derivatives in Chinese medicines. The proposed method was compared with conventional dodecanol floating solidification microextraction and other extraction methods. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Suitable conditions for liquid-phase microextraction using solidification of a floating drop for extraction of fat-soluble vitamins established using an orthogonal array experimental design.

    PubMed

    Sobhi, Hamid Reza; Yamini, Yadollah; Esrafili, Ali; Abadi, Reza Haji Hosseini Baghdad

    2008-07-04

    A simple, rapid and efficient microextraction method for the extraction and determination of some fat-soluble vitamins (A, D2, D3) in aqueous samples was developed. For the first time orthogonal array designs (OADs) were employed to screen the liquid-phase microextraction (LPME) method in which few microliters of 1-undecanol were delivered to the surface of the aqueous sample and it was agitated for a selected time. Then sample vial was cooled by inserting it into an ice bath for 5 min. The solidified solvent was transferred into a suitable vial and immediately melted. Then, the extract was directly injected into a high-performance liquid chromatography (HPLC) for analysis. Several factors affecting the microextraction efficiency such as sample solution temperature, stirring speed, volume of the organic solvent, ionic strength and extraction time were investigated and screened using an OA16 (4(5)) matrix. Under the best conditions (temperature, 55 degrees C; stirring speed, 1000 rpm; the volume of extracting solvent, 15.0 microL; no salt addition and extraction time, 60 min), detection limits of the method were in the range of 1.0-3.5 microgL(-1). The relative standard deviations (RSDs) to determine the vitamins at microg L(-1) levels by applying the proposed method varied in the range of 5.1-10.7%. Dynamic linear ranges of 5-500 mugL(-1) with good correlation coefficients (0.9984

Top