Science.gov

Sample records for microextration spme fibers

  1. UPTAKE OF RADIONUCLIDE METALS BY SPME FIBERS

    SciTech Connect

    Duff, M; S Crump, S; Robert02 Ray, R; Keisha Martin, K; Donna Beals, D

    2006-08-28

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) and fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of HE and FD residue involves using solid phase microextraction or SPME fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research was to examine the affinity of dissolved radionuclide ({sup 239/240}Pu, {sup 238}U, {sup 237}Np, {sup 85}Sr, {sup 133}Ba, {sup 137}Cs, {sup 60}Co and {sup 226}Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE and FD residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE and FD residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection.

  2. Detection of Methyl Salicylate Transforted by Honeybees (Apis mellifera) Using Solid Phase Microextration (SPME) Fibers

    SciTech Connect

    BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; BARNETT, JAMES L.; BENDER, GARY L.

    2001-12-01

    The ultimate goal of many environmental measurements is to determine the risk posed to humans or ecosystems by various contaminants. Conventional environmental monitoring typically requires extensive sampling grids covering several media including air, water, soil and vegetation. A far more efficient, innovative and inexpensive tactic has been found using honeybees as sampling mechanisms. Members from a single bee colony forage over large areas ({approx}2 x 10{sup 6} m{sup 2}), making tens of thousands of trips per day, and return to a fixed location where sampling can be conveniently conducted. The bees are in direct contact with the air, water, soil and vegetation where they encounter and collect any contaminants that are present in gaseous, liquid and particulate form. The monitoring of honeybees when they return to the hive provides a rapid method to assess chemical distributions and impacts (1). The primary goal of this technology is to evaluate the efficiency of the transport mechanism (honeybees) to the hive using preconcentrators to collect samples. Once the extent and nature of the contaminant exposure has been characterized, resources can be distributed and environmental monitoring designs efficiently directed to the most appropriate locations. Methyl salicylate, a chemical agent surrogate was used as the target compound in this study.

  3. Detection of organophosphorous pesticides in soil samples with multiwalled carbon nanotubes coating SPME fiber.

    PubMed

    Feng, Xilan; Li, Ying; Jing, Ruijun; Jiang, Xiaoying; Tian, Mengkui

    2014-12-01

    A headspace solid phase microextraction (HS-SPME) technique using stainless steel fiber coated with 20 μm multi-walled carbon nanotubes (MWCNTs) and gas chromatography with thermionic specific detector (GC-TSD) was developed to determine organophosphorous pesticides (OPPs) in soil. Parameters affecting the extraction efficiency such as extraction time and temperature, ionic strength, the volume of water added to the soil, sample solution volume to headspace volume ratio, desorption time, and desorption temperature were investigated and optimized. Compared to commercial polydimethylsiloxane (PDMS, 7 μm) fiber, the PDMS fiber was better to be corrected as phorate, whereas the MWCNTs fiber gave slightly better results for methyl parathion, chlorpyrifos and parathion. The optimized SPME method was applied to analyze OPPs in spiked soil samples. The limits of detection (LODs, S/N = 3) for the four pesticides were <0.216 ng g(-1), and their calibration curves were all linear (r (2) ≥ 0.9908) in the range from 1 to 200 ng g(-1). The precision (RSD, n = 6) for peak areas was 6.5 %-8.8 %. The recovery of the OPPs spiked real soil samples at 50 and 150 ng g(-1) ranged from 89.7 % to 102.9 % and 94.3 % to 118.1 %, respectively.

  4. Using polyacrylate-coated SPME fibers to quantify sorption of polar and ionic organic contaminants to dissolved organic carbon.

    PubMed

    Haftka, Joris J-H; Scherpenisse, Peter; Jonker, Michiel T O; Hermens, Joop L M

    2013-05-07

    A passive sampling method using polyacrylate-coated solid-phase microextraction (SPME) fibers was applied to determine sorption of polar and ionic organic contaminants to dissolved organic carbon (DOC). The tested contaminants included pharmaceuticals, industrial chemicals, hormones, and pesticides and represented neutral, anionic, and cationic structures. Prior to the passive sampler application, sorption of the chemicals to the fibers was characterized. This was needed in order to accurately translate concentrations measured in fibers to freely dissolved aqueous concentrations during the sorption tests with DOC. Sorption isotherms of neutral compounds to the fiber were linear, whereas isotherms of basic chemicals covered a nonlinear and a linear range. Sorption of acidic and basic compounds to the fiber was pH-dependent and was dominated by sorption of the neutral sorbate species. Fiber- and DOC-water partition coefficients of neutral compounds were both linearly related to octanol-water partition coefficients (log Kow). The results of this study show that polyacrylate fibers can be used to quantify sorption to DOC of neutral and ionic contaminants, having multiple functional groups and spanning a wide hydrophobicity range (log Kow = 2.5-7.5).

  5. Improvement of HS-SPME for analysis of volatile organic compounds (VOC) in water samples by simultaneous direct fiber cooling and freezing of analyte solution.

    PubMed

    Fries, Elke; Püttmann, Wilhelm

    2006-11-01

    The sensitivity and precision of headspace solid-phase micro extraction (HS-SPME) at an analyte solution temperature (T (as)) of +35 degrees C and a fiber temperature (T (fiber)) of +5 degrees C were compared with those for HS-SPME at T (as) and T (fiber) of -20 degrees C for analysis of the volatile organic compounds benzene, 1,1,1-trichloroethane, trichloroethylene, toluene, o-xylene, ethylbenzene, m/p-xylene, and tetrachloroethylene in water samples. The effect of simultaneous fiber cooling and analyte solution freezing during extraction was studied. The compounds are of different hydrophobicity, with octanol/water partition coefficients (Kow) ranging from 126 and 2511. During a first set of experiments the polydimethylsiloxane (PDMS) SPME fiber was cooled to +5 degrees C with simultaneous heating of the aqueous analyte solution to +35 degrees C. During a second set of experiments, both SPME fiber holder and samples were placed in a deep freezer maintained at -20 degrees C for a total extraction time of 30 min. After approximately 2 min the analyte solution in the vial began to freeze from the side inwards and from the bottom upwards. After approximately 30 min the solution was completely frozen. Analysis of VOC was performed by coupling HS-SPME to gas chromatography-mass spectrometry (GC-MS). In general, i.e. except for tetrachloroethylene, the sensitivity of HS-SPME increased with increasing compound hydrophobicity at both analyte solution and fiber temperatures. At T (as) of +35 degrees C and T (fiber) of +5 degrees C detection limits of HS-SPME were 0.5 microg L(-1) for benzene, 1,1,1-trichloroethane, trichloroethylene, and tetrachloroethylene, 0.125 microg L(-1) for toluene, and 0.025 microg L(-1) for ethylbenzene, m/p-xylene, and o-xylene. In the experiments with T (as) and T (fiber) of -20 degrees C, detection limits were reduced for compounds of low hydrophobicity (Kow<501), for example benzene, toluene, 1,1,1-trichloroethane, and trichloroethylene. In

  6. Assessment of thiol compounds from garlic by automated headspace derivatized in-needle-NTD-GC-MS and derivatized in-fiber-SPME-GC-MS.

    PubMed

    Warren, Jamie Marcus; Parkinson, Don-Roger; Pawliszyn, Janusz

    2013-01-23

    This study investigates the analysis of thiol compounds using a needle trap device (HS-NTD) and solid-phase microextraction (HS-SPME) derivatized headspace techniques coupled to GC-MS. Thiol compounds and their outgassed products are particularly difficult to monitor in foodstuffs. It was found that with in-needle and in-fiber derivatization, using the derivatization agent N-phenylmaleimide, it was possible to enhance the selectivity toward thiol, which allowed the quantitation of butanethiol, ethanethiol, methanethiol, and propanethiol compounds found in fresh garlic. A side-hole NTD was prepared and packed in house and utilized mixed DVB and Carboxen polymer extraction phases made of 60-80 mesh particles. NTD sampling was accomplished in the exhaustive sampling mode, where breakthrough was negligible. This work demonstrates a new application for a side-hole NTD sampling. A commercial mixed polymer phase of polydimethylsiloxane (PDMS) and divinylbenzene polymer (DVB) SPME fiber was used for SPME extractions. Under optimized derivatization, extraction, and analysis conditions for both NTD-GC-MS and SPME-GC-MS techniques, automated sampling methods were developed for quantitation. Both methods demonstrate a successful approach to thiol determination and provide a quantitative linear response between <0.1 and 10 mg L(-1) (R(2) = 0.9996), with limits of detection (LOD) in the low micrograms per liter range for the investigated thiols. Addition methods using known spiked quantities of thiol analytes in ground garlic facilitated method validation. Carry-over was also negligible for both SPME and NTD under optimized conditions.

  7. Solid Phase Micro Extraction (SPME)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Internation Flavors and Fragrances Inc. proprietary research technology, Solid Phase Micro Extraction (SPME) utilizes a special fiber needle placed directly next to the bloom of the living flower to collect the fragrance molecules. SPME was used in the Space Flower experiment aboard STS-95 space shuttle mission, after which Dr. Braja Mookherjee (left) and Subha Patel of IFF will analyze the effects of gravity on the Overnight Scentsation rose plant.

  8. Investigation of pencil leads fiber efficiency for SPME of trace amount of methamphetamine from human saliva prior to GC-MS analysis.

    PubMed

    Djozan, Djavanshir; Baheri, Tahmineh

    2010-03-01

    The efficiency of pencil lead fiber was investigated for effective head-space solid-phase microextraction (HS-SPME) of methamphetamine (MAMP) from aqueous standard solutions without chemical derivatization prior to gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) analyses. Most effective experimental parameters such as extraction temperature and time, sample pH, and salting out were studied and optimized. At the optimum conditions, the efficiency of this fiber was compared with polyacrylate (PA) commercial fiber, which is most selective for volatile and semi-volatile compounds. The results obtained prove the suitability of modified pencil-lead fiber for sampling of the studied compound from aqueous solutions. Under optimum conditions, the calibration plot was linear in the range of 40-8000 ng/mL (r = 0.998), and the detection limit was 27 ng/mL (n = 3). The proposed method was successfully applied for HS-SPME of MAMP from 200 microL human saliva, which has been spiked with trace amounts of MAMP (160 ng/mL) followed by GC-MS monitoring.

  9. Remedy performance monitoring at contaminated sediment sites using profiling solid phase microextraction (SPME) polydimethylsiloxane (PDMS) fibers.

    PubMed

    Thomas, Courtney; Lampert, David; Reible, Danny

    2014-03-01

    Passive sampling using polydimethylsiloxane (PDMS) profilers was evaluated as a tool to assess the performance of in situ sediment remedies at three locations, Chattanooga Creek (Chattanooga, TN), Eagle Harbor (Bainbridge Island, WA) and Hunter's Point (San Francisco, CA). The remedy at the first two locations was capping over PAH contaminated sediments while at Hunter's Point, the assessment was part of an in situ treatment demonstration led by R. G. Luthy (Stanford University) using activated carbon mixed into PCB contaminated sediments. The implementation and results at these contaminated sediment sites were used to illustrate the utility and usefulness of the passive sampling approach. Two different approaches were employed to evaluate kinetics of uptake onto the sorbent fibers. At the capping sites, the passive sampling approach was employed to measure intermixing during cap placement, contamination migration into the cap post-placement and recontamination over time. At the in situ treatment demonstration site, reductions in porewater concentrations in treated versus untreated sediments were compared to measurements of bioaccumulation of PCBs in Neanthes arenaceodentata.

  10. Application of robust NiTi-ZrO2-PEG SPME fiber in the determination of haloanisoles in cork stopper samples.

    PubMed

    Budziak, Dilma; Martendal, Edmar; Carasek, Eduardo

    2008-11-23

    In this study, a novel solid-phase microextraction (SPME) fiber obtained using sol-gel technology was applied in the determination of off-flavor compounds (2,4,6-trichloroanisole (TCA), 2,4,6-tribromoanisole (TBA) and pentachloroanisole (PCA)) present in cork stopper samples. A NiTi alloy previously electrodeposited with zirconium oxide was used as the substrate for a poly(ethylene glycol) (PEG) coating. Scanning electronic microscopy showed good uniformity of the coating and allowed the coating thickness to be estimated as around 17 micarom. The optimization of the main parameters influencing the extraction efficiency, such as cork sample mass, sodium chloride mass, extraction temperature and extraction time were optimized using a full factorial design, followed by a Doehlert design. The optimum conditions were: 20 min of extraction at 70 degrees C using 60 mg of the cork sample and 10 mL of water saturated with sodium chloride in a 20 mL amber vial with constant magnetic stirring. Satisfactory detection limits between 2.5 and 5.1 ng g(-1) were obtained, as well as good precision (R.S.D. in the range of 5.8-12.0%). Recovery tests were performed on three different cork samples, and values between 83 and 119% were obtained. The proposed SPME fiber was compared with commercially available fibers and good results were achieved, demonstrating its applicability.

  11. Magnetically-induced solid-phase microextraction fiber actuation system for quantitative headspace and liquid sampling

    DOEpatents

    Harvey, Chris; Carter, Jerry; Chambers, David M.

    2017-05-23

    A magnetically-induced SPME fiber actuation system includes a SPME fiber holder and a SPME fiber holder actuator, for holding and magnetically actuating a SPME fiber assembly. The SPME fiber holder has a plunger with a magnetic material to which the SPME fiber assembly is connected, and the magnetic SPME fiber holder actuator has an elongated barrel with a loading chamber for receiving the SPME fiber assembly-connected SPME fiber holder, and an external magnet which induces axial motion of the magnetic material of the plunger to extend/retract the SPME fiber from/into the protective needle of the SPME fiber assembly.

  12. Comparison between solid phase microextraction (SPME) and hollow fiber liquid phase microextraction (HFLPME) for determination of extractables from post-consumer recycled PET into food simulants.

    PubMed

    Oliveira, Éder Costa; Echegoyen, Yolanda; Cruz, Sandra Andrea; Nerin, Cristina

    2014-09-01

    Hollow fiber liquid phase microextraction (HFLPME) and solid phase microextraction (SPME) methods for pre-concentration of contaminants (toluene, benzophenone, tetracosane and chloroform) in food simulants were investigated. For HFLPME 1-heptanol, 2-octanone and dibutyl-ether were studied as extracting solvents. Analysis by gas chromatography coupled to mass spectrometry (GC-MS), flame ionization (GC-FID) and electron capture detectors (GC-ECD) were carried out. In addition, the methods were employed to evaluate the safety in use of a PET material after the recycling process (comprising washing, extrusion and solid state polymerization (SSP)) through extractability studies of the contaminants using 10% (v/v) ethanol in deionized water and 3% (w/v) acetic acid in deionized water as food simulants in different conditions: 10 days at 40°C and 2h at 70°C. The HFLPME preconcentration method provided increased sensitivity when compared to the SPME method and allowed to analyze concentration levels below 10 µg surrogate per kg food simulant. The results of the extractability studies showed considerable reductions after the extrusion and SSP processes and indicated the compliance with regulations for using recycled PET in contact with food. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Development and application of an SPME/GC method for the determination of trace phthalates in beer using a calix[6]arene fiber.

    PubMed

    Ye, Chang-Wen; Gao, Jie; Yang, Cai; Liu, Xiao-Jing; Li, Xiu-Juan; Pan, Si-Yi

    2009-05-08

    A simple, low-cost and sensitive method for the determination of phthalate acid esters (PAEs) in beer has been developed based on solid-phase microextraction (SPME) followed by gas chromatography using a novel sol-gel calixarene-contained fiber. Generally speaking, matrix interference is one of the most important problems that researchers have to face when quantifying trace compounds in the complicated beer samples. In order to reproduce the influence of the matrix, synthetic beer solutions were popularly used, while they could not represent the real beer matrix absolutely. Owing to the good selectivity and high sensitivity of this new calixarene fiber, matrix interference from the beer samples was effectively avoided and low limits of detection (LODs) could be achieved. As a result, the SPME was performed in real beer matrices. Five experimental parameters including extraction temperature, extraction time, stirring speed, salt concentration and ultrasonic time were evaluated and optimized by means of a Taguchi's L25 (5(6)) orthogonal array experimental design. Under the optimized conditions, LODs of 0.003-3.429 microg L(-1) were obtained and the relative standard deviation values were < or =13.51% for all of the eight PAEs. The method was validated using standard addition methodology and recovery values were between 86.3% and 109.3%. The survey of three bottled beer samples showed that dibutyl-phthalate ester and bis(2-ethylhexyl)-phthalate ester (DEHP) were the main PAEs found in beer. The concentration of DEHP was as high as 5.24 microg L(-1). In order to investigate the source of phthalates contamination in beer, the composition of phthalates in the plasticized polyvinyl chloride (PVC) gaskets of the lids was analyzed. Results revealed that the high content of DEHP incorporated in PVC gaskets could be a potential source of PAEs in bottled beers during transportation and storage.

  14. Assessment of Volatile Chemical Composition of the Essential Oil of Jatropha ribifolia (Pohl) Baill by HS-SPME-GC-MS Using Different Fibers

    PubMed Central

    da Silva, Celia Eliane de Lara; da Costa, Willian Ferreira; Minguzzi, Sandro; da Silva, Rogério Cesar de Lara; Simionatto, Euclésio

    2013-01-01

    The chemical composition of essential oil and volatile obtained from the roots of Jatropha ribifolia (Pohl) Baill was performed in this work. The Clevenger extractor was utilized in hydrodistillation of oil and chemical composition determined by gas chromatography coupled with mass spectrometry detector (GC-MS). The identification of compounds was confirmed by retention index (Kovats index) obtained from a series of straight chain alkanes (C7–C30) and by comparison with NIST and ADAMS library. A total of 61 compounds were identified in essential oil by GC-MS. The extraction of volatile was performed also by the use of the solid phase microextraction (SPME) with four different fibers. The essential oil extraction was extremely rapid (15 s) to avoid saturation of the fiber and the MS detector. The majority of the composition of essential oil is the terpenes: β-pinene (major compound 9.16%), β-vatirene (8.34%), α-gurjunene (6.98%), α-pinene (6.35%), camphene (4.34%), tricyclene (3.79%) and dehydro aromadendrene (3.52%) it and aldehydes and alcohols. Through the SPME it was possible to determine the nine volatile compounds not identified in oil 2,3,4-trimethyl-2-cyclopenten-1-one, α-phellandrene, 3-carene, trans-p-mentha-2,8-dienol, pinocamphone, D-verbenon, 1,3,3-trimethyl-2-(2-methyl-cyclopropyl)-cyclohexene, 2,4-diisocyanato-1-methylbenzene, and (6-hydroxymethyl-2,3-dimethylehenyl) methanol. PMID:24371539

  15. Comparison of two SPME fibers for the extraction of some off-flavor cork-taint compounds in bottled wines investigated by GC-HRMS.

    PubMed

    Bianco, Giuliana; Novario, Giuseppe; Zianni, Rosalia; Cataldi, Tommaso R I

    2009-04-01

    Headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography with high-resolution mass spectrometry (GC-HRMS) was used to determine 2,4,6-trichloroanisole, 2,3,6-trichloroanisole, 2,3,4-trichloroanisole, 2,3,5,6-tetrachloroanisole, pentachloroanisole, 2,4,6-tribromoanisole, 2-methylisoborneol, and 4-ethylguaiacol in wine samples. Two types of fiber coating commonly employed for sampling trichloroanisoles in wine and cork stoppers, viz. a polar mixed 50/30 microm divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) and a nonpolar 100 microm polydimethylsiloxane (PDMS), both 1 cm in length, were compared. This study demonstrates that the most employed polar mixed fiber should not be used with ethanol-water solutions, viz. wine samples, as its coating is not chemically and mechanically robust for sample extractions, as confirmed by environmental scanning electron microscopy. Much more effective and reliable results were obtained with the PDMS fiber, which remained functional for more than 80 analyses of red and white wine samples with satisfactory extraction efficiencies. Detection limits of investigated compounds, under optimized experimental conditions, ranged from 0.2 to 0.4 ng/L at a signal-to-noise ratio of 3 and quantification limits from 0.8 to 1.5 ng/L. The proposed method was successfully applied to commercially available Italian white and red wines using 2,4,6-TCA-d(5) as the internal standard.

  16. Study of the effect of different fiber coatings and extraction conditions on dry cured ham volatile compounds extracted by solid-phase microextraction (SPME).

    PubMed

    Garcia-Esteban, M; Ansorena, D; Astiasarán, I; Ruiz, J

    2004-10-08

    Extraction of dry cured ham volatile compounds by solid-phase microextraction (SPME) was optimized. Different fiber coatings (carboxen/polydimethylsiloxane (CAR/PDMS), divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS), polydimethylsiloxane (PDMS), polydimethylsiloxane/divinylbenzene (PDMS/DVB)), times of extraction (15, 30, 60min) and sample preparation (ground samples and homogenates with NaCl saturated solution) were assayed. CAR/PDMS and DVB/CAR/PDMS fiber coatings extracted more than 100 volatile compounds and showed the highest area counts for most volatile compounds. CAR/PDMS coating extracted better those compounds whose Kovats index (KI) was lower than 980 (on average) and DVB/CAR/PDMS those with higher KI. Fifteen minutes of extraction provided a volatile compound profile with lower area counts for most compounds and qualitatively different to that obtained with 30 and 60min of extraction. Homogenates gave a different profile compared to ground samples, with lower total counts for most compounds but higher proportion of aldehydes, and presence of several compounds not found in ground samples.

  17. A high area, porous and resistant platinized stainless steel fiber coated by nanostructured polypyrrole for direct HS-SPME of nicotine in biological samples prior to GC-FID quantification.

    PubMed

    Abdolhosseini, Sana; Ghiasvand, Alireza; Heidari, Nahid

    2017-09-01

    The surface of a stainless steel fiber was made porous, resistant and cohesive using electrophoretic deposition and coated by the nanostructured polypyrrole using an amended in-situ electropolymerization method. The coated fiber was applied for direct extraction of nicotine in biological samples through a headspace solid-phase microextraction (HS-SPME) method followed by GC-FID determination. The effects of the important experimental variables on the efficiency of the developed HS-SPME-GC-FID method, including pH of sample solution, extraction temperature and time, stirring rate, and ionic strength were evaluated and optimized. Under the optimal experimental conditions, the calibration curve was linear over the range of 0.1-20μgmL(-1) and the detection limit was obtained 20ngmL(-1). Relative standard deviation (RSD, n=6) was calculated 7.6%. The results demonstrated the superiority of the proposed fiber compared with the most used commercial types. The proposed HS-SPME-GC-FID method was successfully used for the analysis of nicotine in urine and human plasma samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. New Insight on Biological Interaction Analysis: New Nanocrystalline Mixed Metal Oxide SPME Fiber for GC-FID Analysis of BTEX and Its Application in Human Hemoglobin-Benzene Interaction Studies

    PubMed Central

    Hosseinzadeh, Reza; Moosavi Movahedi, Ali Akbar; Ghourchian, Hedayatollah

    2014-01-01

    Nanocrystalline mixed metal oxides (MMO) of various metal cations were synthesized and were used for coating a piece of copper wire as a new high sensitive solid phase micro extraction (SPME) fiber in extraction and determination of BTEX compounds from the headspace of aqueous samples prior to GC-FID analysis. Under optimum extraction conditions, the proposed fiber exhibited low detection limits, and quantification limits, good reproducibility, simple and fast preparation method, high fiber capacity and high thermal and mechanical durability. These are some of the most important advantages of the new fiber. The proposed fiber was used for human hemoglobin upon interaction with benzene. Binding isotherm, Scatchard and Klotz logarithmic plots were constructed using HS-SPME-GC data, accurately. The obtained binding isotherm analyzed using Hill method. The Hill parameters have been obtained by calculating saturation parameter from the ratio of measured chromatographic peak areas in the presence and absence of hemoglobin. In this interaction, Hill coefficient and Hill constant determined as (nH = 6.14 and log KH = 6.47) respectively. These results reveal the cooperativity of hemoglobin upon interaction with benzene. PMID:25068260

  19. New insight on biological interaction analysis: new nanocrystalline mixed metal oxide SPME fiber for GC-FID analysis of BTEX and its application in human hemoglobin-benzene interaction studies.

    PubMed

    Hosseinzadeh, Reza; Moosavi Movahedi, Ali Akbar; Ghourchian, Hedayatollah

    2014-01-01

    Nanocrystalline mixed metal oxides (MMO) of various metal cations were synthesized and were used for coating a piece of copper wire as a new high sensitive solid phase micro extraction (SPME) fiber in extraction and determination of BTEX compounds from the headspace of aqueous samples prior to GC-FID analysis. Under optimum extraction conditions, the proposed fiber exhibited low detection limits, and quantification limits, good reproducibility, simple and fast preparation method, high fiber capacity and high thermal and mechanical durability. These are some of the most important advantages of the new fiber. The proposed fiber was used for human hemoglobin upon interaction with benzene. Binding isotherm, Scatchard and Klotz logarithmic plots were constructed using HS-SPME-GC data, accurately. The obtained binding isotherm analyzed using Hill method. The Hill parameters have been obtained by calculating saturation parameter from the ratio of measured chromatographic peak areas in the presence and absence of hemoglobin. In this interaction, Hill coefficient and Hill constant determined as (nH = 6.14 and log KH = 6.47) respectively. These results reveal the cooperativity of hemoglobin upon interaction with benzene.

  20. A comparison of exposure methods for SPME-based bioavailability estimates.

    PubMed

    Harwood, Amanda D; Landrum, Peter F; Lydy, Michael J

    2012-02-01

    The ability of polydimethlysiloxane coated solid phase microextraction (SPME) fibers to predict bioavailability has been documented for a number of species and compounds. There are also a variety of established methods for establishing SPME-based bioavailability estimates; however, factors such as time until equilibrium and exposure regimen could affect fiber concentrations and have not yet been thoroughly tested. Exposure time may influence SPME fiber concentrations at equilibrium. Co-exposure of the fibers with different animals or the invertebrate species used could yield different estimates than those acquired using a shaker table system to achieve equilibrium between the sediment and SPME fibers. The current study examined the effects of time and exposure method (shaker table versus co-exposure with test species) on SPME fiber concentrations for two hydrophobic compounds: permethrin and p,p'-dichlorodiphenyldichloroethylene (DDE). An additional experiment with permethrin determined whether animal densities or fiber number influenced fiber concentrations. There were significant differences between the time required for SPME fibers to reach equilibrium when co-exposed with different species or separately, but fiber concentrations at equilibrium among treatments for both compounds were similar. Furthermore, among the 12 variations in species and fiber densities, there were no significant differences among treatments indicating that neither the route of exposure, animal density, nor fiber volume influenced SPME fiber estimates. This demonstrated that SPME fiber concentrations at equilibrium were not affected by exposure conditions, increasing their versatility in environmental assessments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Automated on-fiber derivatization with headspace SPME-GC-MS-MS for the determination of primary amines in sewage sludge using pressurized hot water extraction.

    PubMed

    Llop, Anna; Pocurull, Eva; Borrull, Francesc

    2011-07-01

    An automated, environmentally friendly, simple, selective, and sensitive method was developed for the determination of ten primary aliphatic amines in sewage sludge at μg/kg dry weight (d.w.). The procedure involves a pressurized hot water extraction (PHWE) of the analytes from the solid matrix, followed by a fully automated on-fiber derivatization with 2,3,4,5-pentafluorobenzaldehyde (PFBAY) and headspace solid-phase microextraction (HS-SPME) and subsequent gas chromatography ion-trap tandem mass spectrometry (GC-IT-MS-MS) analysis. The limits of detection (LODs) of the method were between 0.5 and 45 μg/kg (d.w.) for all compounds except for ethyl-, isopropyl-, and amylamine, whose LODs were 70, 109, and 116 μg/kg (d.w.), respectively. The limits of quantification (LOQs) were between 10 and 350 μg/kg (d.w.). Repeatability and intermediate precision, expressed as RSD(%) (n=3), were lower than 18 and 21%, respectively. The method developed enabled to determine primary aliphatic amines in sludge from various urban and industrial sewage treatment plants as well as from a potable treatment plant. Most of the primary aliphatic amines were found in the sewage sludge samples analyzed corresponding to the maximum concentrations to the samples from the urban plant: for instance, isobutylamine and methylamine were found at 7728 and 12 536 μg/kg (d.w.), respectively. Amylamine was detected only in few samples but always at concentrations lower than its LOQ.

  2. A two-component mass balance model for calibration of solid-phase microextraction fibers for pyrethroids in seawater.

    PubMed

    Lao, Wenjian; Maruya, Keith A; Tsukada, David

    2012-11-06

    Determination of the analyte-specific distribution coefficient between the aqueous and sorbing phases is required for estimation of the aqueous-phase concentration of the analyte of interest using polymeric materials. Poly(dimethylsiloxane)-coated solid-phase microextration (PDMS-SPME) fiber-water partition coefficient (K(f)) values for eight common-use pyrethroids were determined using a two-compartment mass balance model and parameters determined in experimental seawater microcosms. Mass balance, epimerization, and aqueous-phase degradation (i.e., hydrolysis) were characterized using gas chromatography-negative chemical ionization mass spectrometry to facilitate K(f) estimation. Of the eight pyrethroids, only bifenthrin exhibited increasing sorption on the SPME fiber over the entire time-series exposure, indicating that its K(f) value could be estimated through a stable-compound model. The remaining pyrethroids were found to be unstable (half-life of <22 days), underscoring the importance of accounting for degradation in estimating K(f). The two-compartment model explained the experimental time-series data for bifenthrin (R(2) > 0.98) and the remaining unstable pyrethroids (R(2) > 0.7), leading to estimated values of log K(f) between 5.7 and 6.4, after correcting for residual dissolved organic carbon (DOC) in the experimental seawater. These K(f) values can be used to determine freely dissolved pyrethroid concentrations in the pg/L range using PDMS-SPME in fresh or seawater matrices under equilibrium conditions in laboratory or field applications.

  3. Analysis of gamma-hydroxybutyric acid (GHB) in spiked water and beverage samples using solid phase microextraction (SPME) on fiber derivatization/gas chromatography-mass spectrometry (GC/MS).

    PubMed

    Meyers, Jodi E; Almirall, José R

    2005-01-01

    Gamma-Hydroxybutyric acid (GHB) is a CNS depressant that has been abused recreationally for its purported euphoric and relaxation effects and for the purposes of drug facilitated sexual assault due to its sedative and amnesic effects at higher doses. The dramatic increase in the abuse of GHB and association in criminal investigations over the past decade has created the need for forensic laboratories to develop analytical methods to detect GHB in a variety of matrices. The method developed in this work used solid-phase microextraction (SPME) to extract GHB from aqueous samples followed by on-fiber derivatization and analysis by gas chromatography/mass spectrometry (GC/MS). This method detected GHB in aqueous matrices with good sensitivity, high precision, excellent linearity from 0.01 mg/mL to 0.25 mg/mL, and without the need for sample manipulation that could cause interconversion between GHB and its lactone, GBL. The method was successfully applied for detection of GHB in spiked water and beverage samples.

  4. Monitoring biogenic volatile compounds emitted by Eucalyptus citriodora using SPME.

    PubMed

    Zini, C A; Augusto, F; Christensen, T E; Smith, B P; Caramão, E B; Pawliszy, J

    2001-10-01

    A procedure to monitor BVOC emitted by living plants using SPME technique is presented. For this purpose, a glass sampling chamber was designed. This device was employed for the characterization of biogenic volatile compounds emitted by leaves of Eucalyptus citriodora. After extraction with SPME fibers coated with PDMS/ DVB, it was possible to identify or detect 33 compounds emitted by this plant. A semiquantitative approach was applied to monitor the behavior of the emitted BVOC during 9 days. Circadian profiles of the variation in the concentration of isoprene were plotted. Using diffusion-based SPME quantitation, a recently introduced analytical approach, with extraction times as short as 15 s, it was possible to quantify subparts-per-billion amounts of isoprene emitted by this plant.

  5. Immersed sol-gel based amino-functionalized SPME fiber and HPLC combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection of pyrethroid insecticides from water samples.

    PubMed

    Bagheri, Habib; Ghanbarnejad, Hadi; Khalilian, Faezeh

    2009-09-01

    A method based on direct immersion solid-phase microextraction (DI-SPME) coupled with high performance liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection (HPLC-PIF-FD) was developed to extract three pyrethroid insecticides, i.e. cyfluthrin, cypermethrin, and flumethrin from water samples. A sol-gel based coating fiber using 3-(trimethoxysilyl propyl) amine as precursor was prepared and used for the extraction of the pyrethroids from groundwater samples. A post-column photochemical reactor was designed and constructed for the derivatization of these environmentally important pollutants to increase their fluorescence sensitivity and determination in HPLC. The parameters affecting extraction process (extraction time and temperature, pH, salt addition, and co-solvent) and desorption step (solvent, desorption time, and temperature) of the analytes from the sol-gel-based fiber, along with photochemical reaction conditions were investigated. The developed method proved to be relatively rapid, simple, and easy and offers high sensitivity and reproducibility. Linear dynamic ranges (LDR) for these insecticides were ranged between 0.25 to 50 microg/L. The regression coefficients were satisfactory (R(2) > 0.984) for these pyrethroids. The limits of detection and limits of quantification varied between 0.09 and 0.35 microg/L and 0.25 and 1.00 microg/L, respectively. Relative standard deviation RSDs values varied between 4.41% and 6.20%. Relative recoveries obtained from analysis of Jajroud river water sample ranged between 94% and 104%.

  6. Solid-phase microextraction (SPME) of drugs and poisons from biological samples.

    PubMed

    Junting, L; Peng, C; Suzuki, O

    1998-11-09

    Solid-phase microextraction (SPME), a new solvent-free sample preparation technique, was invented by C. Arthur and J. Pawliszyn in 1990. This method mainly was applied for the extraction of volatile and semi-volatile organic pollutants in water samples. However, since 1995, SPME has been developed to various biological samples, such as whole blood, plasma, urine, hair and breath, in order to extract drugs and poisons in forensic field. The main advantages of SPME are: high sensitivity, solventless, small sample volume, simplicity and rapidity. We have reviewed the papers published in recent years about SPME in biological samples, and sorted out main experimental conditions, such as fibers, matrixes, the extraction approaches and time, as well as the acceleration method. We would expect SPME technique to have a promising future for toxicological analysis in forensic practice.

  7. Time-weighted average SPME analysis for in planta determination of cVOCs.

    PubMed

    Sheehan, Emily M; Limmer, Matt A; Mayer, Philipp; Karlson, Ulrich Gosewinkel; Burken, Joel G

    2012-03-20

    The potential of phytoscreening for plume delineation at contaminated sites has promoted interest in innovative, sensitive contaminant sampling techniques. Solid-phase microextraction (SPME) methods have been developed, offering quick, undemanding, noninvasive sampling without the use of solvents. In this study, time-weighted average SPME (TWA-SPME) sampling was evaluated for in planta quantification of chlorinated solvents. TWA-SPME was found to have increased sensitivity over headspace and equilibrium SPME sampling. Using a variety of chlorinated solvents and a polydimethylsiloxane/carboxen (PDMS/CAR) SPME fiber, most compounds exhibited near linear or linear uptake over the sampling period. Smaller, less hydrophobic compounds exhibited more nonlinearity than larger, more hydrophobic molecules. Using a specifically designed in planta sampler, field sampling was conducted at a site contaminated with chlorinated solvents. Sampling with TWA-SPME produced instrument responses ranging from 5 to over 200 times higher than headspace tree core sampling. This work demonstrates that TWA-SPME can be used for in planta detection of a broad range of chlorinated solvents and methods can likely be applied to other volatile and semivolatile organic compounds.

  8. Analysis of the volatile compounds in Ligusticum chuanxiong Hort. using HS-SPME-GC-MS.

    PubMed

    Zhang, Cong; Qi, Meiling; Shao, Qinglong; Zhou, Shan; Fu, Ruonong

    2007-06-28

    A headspace solid-phase microextraction (HS-SPME) method followed by gas chromatography-mass spectrometry (GC-MS) is described for the analysis of volatile compounds in the dry rhizome of Ligusticum chuanxiong Hort. Three types of SPME fibers including PDMS, PDMS-DVB and DVB-CAR-PDMS were investigated and the best extraction was achieved with the mixed fiber DVB-CAR-PDMS. Parameters for HS-SPME in terms of temperature and time, sample amount and particle size, and desorption time were also investigated. A polar capillary column was used for the chromatographic separation. As a result, 73 compounds were determined and identified by the HS-SPME-GC-MS method with at least 20 more compounds than those in the methods available. Comparison was made between HS-SPME-GC-MS and steam distillation (SD)-GC-MS methods. Using much less sample amount, shorter extraction time and simpler procedure, HS-SPME method can achieve similar results with those by SD. In conclusion, the present method is simple, rapid and effective and can be used for the analysis of volatile compounds in medicinal plants.

  9. Solid phase microextraction fiber cleaning and conditioning apparatus and method

    DOEpatents

    Alcaraz, Armando; Wiefel, Michael H.

    2006-05-23

    A SPME-fiber cleaning and conditioning apparatus and method having an elongated heating chamber with first and second opposite ends. The first end is capable of insertably receiving a SPME fiber portion of a SPME device, and the second end is a fluid outlet. A heater is provided for heating the chamber and heat-treating an inserted SPME fiber. Contaminants and other particles are agitated, desorbed and purged from the inserted SPME fiber by flowing a fluid through the chamber from the first end to the second end, away from the SPME device. Additionally, turbulence may be produced in the flow at a location adjacent the first end, to enhance agitation, desorption, and purging. A holder may also be provided extending from the first end for supporting the SPME device in a substantially horizontal orientation when the SPME fiber is positioned in the chamber.

  10. PAL SPME Arrow--evaluation of a novel solid-phase microextraction device for freely dissolved PAHs in water.

    PubMed

    Kremser, Andreas; Jochmann, Maik A; Schmidt, Torsten C

    2016-01-01

    After more than 25 years, solid-phase microextraction (SPME) has gained widespread acceptance as a well-automatable and flexible microextraction technique, while its instrumental basis remained mostly unchanged. The novel PAL (Prep And Load solution) SPME Arrow combines the advantages of SPME with the benefits of extraction techniques providing larger sorption phase volumes such as stir bar sorptive extraction (SBSE). It thereby avoids the inherent drawbacks of both techniques such as limitations in method automation in the case of SBSE, as well as the small sorption phase volumes and the lacking fiber robustness of classical SPME fibers. This new design is based on a robust stainless steel backbone, carrying, the screw connection to the PAL sampler, the enlarged sorption phase, and an arrow-shaped tip for conservative penetration of septa (hence the name). An outer capillary encloses this phase apart from enrichment and desorption processes and rests against the tip during transfer and penetrations, resulting in a homogeneously closed device. Here, we present an evaluation and a comparison of the novel PAL SPME Arrow with classical SPME fibers, extracting polycyclic aromatic hydrocarbons (PAHs) as model analytes, from the freely dissolved fraction in lab water and groundwater via direct immersion using polydimethylsiloxane (PDMS) as common sorption phase material. Limits of detection, repeatabilities, and extraction yields were determined for the PAL SPME Arrow and compared to data of classical SPME fibers and SBSE bars. Results indicate a significant benefit in extraction efficiency due to the larger sorption phase volume. It is accompanied by faultless mechanical robustness and thus better reliability, especially in case of prolonged, unattended, and automated operation. As an exemplary application, the water-soluble fraction of PAHs and derivatives in a roofing felt sample was quantified.

  11. Some applications of solid phase micro extraction (SPME) in the analysis of pesticide residues in food.

    PubMed

    Volante, M; Cattaneo, M; Bianchi, M; Zoccola, G

    1998-05-01

    The Solid Phase Micro-Extraction (SPME) technique was applied to analyze chlorpropham in potatoes and amitraz in honey. The homogenized sample, suspended in water and stirred, was extracted with a 100 microns thick polidimetylsiloxane fiber and desorbed into the injection port of a gas chromatograph/mass-spectrometer (quadrupole) operating in single ion monitoring. Sensitivities down to 0.01 mg/Kg and linear responses in the range of 0.01-0.1 mg/Kg were obtained. The results of SPME pesticide residue analysis in potatoes corresponded to those obtained with a traditional multiresidue method.

  12. Solid Phase Microextraction (SPME) as a Method to Defect the Presence of Escherichia Coli in Waster by Headspace Sampling and Gas Chromatography/Mass Spectrometry Analysis

    DTIC Science & Technology

    2002-01-01

    polydimethylsiloxane-divinylbenzene fiber coatings gave a statistically indistinguishable and best response compared to the other three types examined. The PA...indistinguishable and best response compared to the other three types examined. The PA fiber coating was selected for further study. The lower level of...a given amount of time, and then comparing the results of the amount extracted by each (13). Why SPME? SPME has been used extensively in the

  13. Experimental verification of a model describing solid phase microextraction (SPME) of freely dissolved organic pollutants in sediment porewater.

    PubMed

    Yang, Ze-Yu; Maruya, Keith A; Greenstein, Darrin; Tsukada, David; Zeng, Eddy Y

    2008-08-01

    To verify a theoretical mass balance and multiple compartment partitioning model developed to predict freely dissolved concentrations (FDCs) of hydrophobic organic chemicals (HOCs) using negligible depletion-solid phase microextraction (nd-SPME), a series of sediment slurry experiments were performed using disposable poly(dimethyl)siloxane (PDMS) coated-SPME fibers and (14)C-radiolabeled HOC analogs. First, pre-calibration of disposable PDMS coated fibers for four model compounds (phenanthrene, PCB 52, PCB 153 and p,p'-DDE) with good precision (SPME with manipulation of the sediment slurry mass (m(s)) or the PDMS coating volume (V(f)). The measured extent of depletion by SPME (x(e)) decreased with increasing sediment mass (m(s)); conversely, x(e) increased with increasing V(f), which is consistent with the theoretical prediction from our previous model [Yang, Z.-Y., Zeng, E.Y., Maruya, K.A., Mai, B.-X., Ran, Y., 2007b. Predicting organic contaminant concentrations in sediment porewater using solid-phase microextraction. Chemosphere 66, 1408-1414]. Moreover, the SPME-measured FDCs (C(pw,SPME)) followed the order of phenanthrene>PCB 52>PCB 153, and the measured and predicted C(pw) values were not substantially different from empirically determined values except for p,p'-DDE.

  14. Modified application of HS-SPME for quality evaluation of essential oil plant materials.

    PubMed

    Dawidowicz, Andrzej L; Szewczyk, Joanna; Dybowski, Michal P

    2016-01-01

    The main limitation in the standard application of head space analysis employing solid phase microextraction (HS-SPME) for the evaluation of plants as sources of essential oils (EOs) are different quantitative relations of EO components from those obtained by direct analysis of EO which was got in the steam distillation (SD) process from the same plant (EO/SD). The results presented in the paper for thyme, mint, sage, basil, savory, and marjoram prove that the quantitative relations of EO components established by HS-SPME procedure and direct analysis of EO/SD are similar when the plant material in the HS-SPME process is replaced by its suspension in oil of the same physicochemical character as that of SPME fiber coating. The observed differences in the thyme EO composition estimated by both procedures are insignificant (F(exp)SPME procedure proposed in this paper substantially shortens the evaluation time of plant material quality and thus may improve the efficiency of analytical laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. SPME technique for analyzing headspace volatiles in fish miso, a Japanese fish meat-based fermented product.

    PubMed

    Giri, Anupam; Osako, Kazufumi; Ohshima, Toshiaki

    2010-01-01

    The optimized conditions were evaluated for solid-phase microextraction (SPME) to investigate the headspace volatiles in fish miso, a Japanese fish meat-based fermented product. The influence on the efficiency for microextraction of such parameters as the sample size, isolation time and temperature, sensitivity and selectivity of several SPME fibers of different liquid phases as well as several extraction techniques was evaluated. Suitable reproducibility and sensitivity of SPME were achieved by combining carbowax/divenylbenzene of 65 µm thickness as the liquid phase of SPME, 3 g of fish miso, 40 °C of isolation temperature and 40 min of isolation time. The headspace volatiles of fish miso prepared from spotted mackerel were analyzed under the optimized conditions. Although several volatiles contributed to fish miso, certain volatile esters might have played the greatest role in imparting the sweet-fruity aroma to the product.

  16. Direct determination of anabolic steroids in pig urine by a new SPME-GC-MS method.

    PubMed

    Zhang, Zhuomin; Duan, Hongbin; Zhang, Lan; Chen, Xi; Liu, Wei; Chen, Guonan

    2009-05-15

    A new solid phase microextraction (SPME) method coupled with gas chromatography-mass spectrometry (GC-MS) was developed for rapid determination of four anabolic steroids such as 3alpha-hydroxy-5alpha-androstane-17-one (HA), dihydrotestosterone (DHT), androstenedione (AD) and methyltestosterone (MT) in pig urine. SPME was used to extract the four anabolic compounds directly without derivatization. The optimum SPME sampling conditions were based on the home-made carbowax-divinylbenzene (CW-DVB) fiber coating during extraction at 40 degrees C for 50 min with 0.18 g/mL NaCl solution and 750 rpm stirring speed. The linear ranges of the proposed method were in the range of 8-640 pg/mL for HA and DHT and 16-510 pg/mL for AD and MT, respectively. The detection limits (S/N=3) were from 2 to 8 pg/mL for the four anabolic steroids. This SPME method provided very high enrichment factors for the four anabolic steroids, which were 1063-fold and 965-fold for HA and DHT at the concentration of 8 pg/mL and 207-fold and 451-fold for AD and MT at the concentration of 16 pg/mL, respectively. The recoveries ranged from 71.3 to 121%, and the RSDs were lower than 12.9%. The method was sensitive and reliable for determination of trace anabolic steroids in biological samples.

  17. HS-SPME determination of volatile carbonyl and carboxylic compounds in different matrices.

    PubMed

    Stashenko, Elena E; Mora, Amanda L; Cervantes, Martha E; Martínez, Jairo R

    2006-07-01

    Specific chromatographic methodologies are developed for the analysis of carboxylic acids (C(2)-C(6), benzoic) and aldehydes (C(2)-C(10)) of low molecular weight in diverse matrices, such as air, automotive exhaust gases, human breath, and aqueous matrices. For carboxylic acids, the method is based on their reaction with pentafluorobenzyl bromide in aqueous solution, followed by the separation and identification of the resultant pentafluorobenzyl esters by means of headspace (HS)-solid-phase microextraction (SPME) combined with gas chromatography (GC) and electron capture detection (ECD). Detection limits in the microg/m(3) range are reached, with relative standard deviation (RSD) less than 10% and linear response (R(2) > 0.99) over two orders of magnitude. The analytical methodology for aldehydes is based on SPME with simultaneous derivatization of the analytes on the fiber, by reaction with pentafluorophenylhydrazine. The derivatization reagent is previously deposited on the SPME fiber, which is then exposed to the gaseous matrix or the HS of the sample solution. The pentafluorophenyl hydrazones formed on the fiber are analyzed selectively by means of GC-ECD, with detection limits in the ng/m(3) range, RSD less than 10%, and linear response (R(2) > 0.99) over two orders of magnitude.

  18. GC-MS and GC-NPD Determination of Formaldehyde Dimethylhydrazone in Water Using SPME.

    PubMed

    Kenessov, Bulat; Sailaukhanuly, Yerbolat; Koziel, Jacek A; Carlsen, Lars; Nauryzbayev, Mikhail

    2011-01-01

    Formaldehyde dimethylhydrazone (FADMH) is one of the important transformation products of residual rocket fuel 1,1-dimethylhydrazine (1,1-DMH). Thus, recent studies show that FADMH toxicity is comparable to that of undecomposed 1,1-DMH. In this study, a new method for quantification of FADMH in water based on solid phase microextraction (SPME) in combination with gas chromatography (GC) with mass spectrometric (MS) and nitrogen-phosphorus detection (NPD) is presented. Effects of SPME fiber coating type, extraction and desorption temperatures, extraction time, and pH on analyte recovery were studied. The optimized method used 65 micron polydimethylsiloxane/divinylbenzene fiber coating for 1 min headspace extractions at 30 °C. Preferred pH and desorption temperature from the SPME fiber are >8.5 and 200 °C, respectively. Detection limits were estimated to be 1.5 and 0.5 μg L(-1) for MS and NPD, respectively. The method was applied to laboratory-scale experiments to quantify FADMH. Results indicate applicability for in situ sampling and analysis and possible first-time detection of free FADMH in water.

  19. GC–MS and GC–NPD Determination of Formaldehyde Dimethylhydrazone in Water Using SPME

    PubMed Central

    Sailaukhanuly, Yerbolat; Koziel, Jacek A.; Carlsen, Lars; Nauryzbayev, Mikhail

    2011-01-01

    Formaldehyde dimethylhydrazone (FADMH) is one of the important transformation products of residual rocket fuel 1,1-dimethylhydrazine (1,1-DMH). Thus, recent studies show that FADMH toxicity is comparable to that of undecomposed 1,1-DMH. In this study, a new method for quantification of FADMH in water based on solid phase microextraction (SPME) in combination with gas chromatography (GC) with mass spectrometric (MS) and nitrogen-phosphorus detection (NPD) is presented. Effects of SPME fiber coating type, extraction and desorption temperatures, extraction time, and pH on analyte recovery were studied. The optimized method used 65 micron polydimethylsiloxane/divinylbenzene fiber coating for 1 min headspace extractions at 30 °C. Preferred pH and desorption temperature from the SPME fiber are >8.5 and 200 °C, respectively. Detection limits were estimated to be 1.5 and 0.5 μg L−1 for MS and NPD, respectively. The method was applied to laboratory-scale experiments to quantify FADMH. Results indicate applicability for in situ sampling and analysis and possible first-time detection of free FADMH in water. PMID:21423319

  20. Electrospun polyamide-polyethylene glycol nanofibers for headspace solid-phase microextration.

    PubMed

    Bagheri, Habib; Najarzadekan, Hamid; Roostaie, Ali

    2014-07-01

    A solution of polyamide (PA) containing polyethylene glycol (PEG) as a side low-molecular-weight polymer was electrospun. After synthesizing the PA-PEG nanofibers, the constituent was subsequently removed (modified PA) and confirmed by Fourier transform infrared spectroscopy. The scanning electron microscopy images showed an average diameter of 640 and 148 nm for PA and PA-PEG coatings, respectively, while the latter coating structure was more homogeneous and porous. The extraction efficiencies of PA, PA-PEG, and the modified PA fiber coatings were assayed by headspace solid-phase microextraction of a number of chlorophenols from real water samples followed by their determination by gas chromatography with mass spectrometry. To prepare the most appropriate coatings, the amounts and the flow rate of the electrospinning solution were investigated. Various extraction parameters, such as the salt content, desorption condition, extraction temperature, and time were optimized. The limits of detection of the method were in the range of 0.8-25 ng/L, while the RSDs at two concentration levels of 200 and 80 ng/L were between 2.1 and 12.2%. The analysis of real water samples led to relative recoveries between 85 and 98% with a linearity of 8-1500 ng/L.

  1. Identification of volatile organic compounds produced by bacteria using HS-SPME-GC-MS.

    PubMed

    Tait, Emma; Perry, John D; Stanforth, Stephen P; Dean, John R

    2014-04-01

    The analysis of volatile organic compounds (VOCs) as a tool for bacterial identification is reported. Headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) was applied to the analysis of bacterial VOCs with the aim of determining the impact of experimental parameters on the generated VOC profiles. The effect of culture medium, SPME fiber type and GC column were fully evaluated with the Gram-negative bacteria Escherichia coli and Klebsiella pneumoniae and the Gram-positive species Staphylococcus aureus. Multivariate analysis, including cluster analysis and principal component analysis, was applied to VOC data to determine whether the parameters under investigation significantly affected bacterial VOC profiles. Culture medium, and to a lesser extent, SPME fiber type, were found to significantly alter detected bacterial VOC profiles. The detected VOCs varied little with the polarity of the GC column. The results indicate that the generated bacterial VOC profiles need careful evaluation if they are to be used for clinical diagnostics. The whole process is limited by the need to grow the bacteria in broth (18 h) before extraction and analysis (63 min).

  2. [Analysis on volatile constituents of Semen Ziziphi Spinosae by HS-SPME-GC-MS].

    PubMed

    Zhang, Jun-an; Chen, Bo

    2012-02-01

    To establish a rapid and simple method for the determination of volatile constituents in Semen Ziziphi Spinosae. The volatile constituents in Semen Ziziphi Spinosae were extracted by head space solid-phase microextraction (HS-SPME) and analysed by GC-MS. Powder of sample was pre-heated for 30 min at 90 degrees C, then headspace-extracted with 65 microm PDMS/DVB fiber for 50 min. After desorbed for 5 min at 250 degrees C, the separation was well completed on a Rxi -50 capillary column. 126 kinds of volatile compounds were isolated and 116 compounds were identified. The amounts of compound from the volatile constituents were determined by area normalization method. The main components extracted by HS-SPME were alkane (32.08%), terpenoid and derivatives of oxygenated terpenoid (27.06%). The method is simple, fast and accurate, and it is suitable for the determination of the volatile constituents in fruit of Ziziphus jujuba.

  3. Characterization of an urban landfill soil by using physicochemical analysis and solid phase microextraction (SPME)-GC/MS.

    PubMed

    Banar, Müfide; Ozkan, Aysun; Vardar, Ciğdem

    2007-04-01

    We have aimed at characterizing top soil samples taken in-situ from five different locations of the unregulated dumping site in Eskişehir/Turkey for a period of six months. The study is the first attempt in the city and in Turkey, regarding particularly the SPME (Solid Phase Microextraction Technique) analysis method utilized. A comprehensive research has been conducted to produce critical soil data to be used for indicating current risks as well as the urgency of rehabilitating the site and establishing a sanitary landfill in the site. Conventional physicochemical analytical methods and SPME technique were used to analyze the samples. Physicochemical analyses were performed for determining the pH, total dried matter, volatile matter, total nitrogen, phosphorus, macro elements and heavy metals. Meteorological data were also recorded for the same period. SPSS.10.0 statistical program was used to determine the correlation between meteorological data and physicochemical analysis results. Mean values were used in the correlation analyses. These data indicated that the air temperature and precipitation have significant effects on soil characteristics. SPME, coupled with GC/MS, was used to identify eighty six volatile and semi-volatile organic compounds contained in soil samples. The samples were extracted by headspace SPME with heating (DeltaHS-SPME). SPME analyses were conducted using a commercially available polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber having a film thickness of 65 microm (Supelco) as a capture medium. The experimentally optimized headspace sampling conditions were arranged (15 min. at 50 degrees C) before a 30 min. sampling period.

  4. Headspace solid-phase microextraction (HS-SPME) for the determination of benzene, toluene, ethylbenzene, and xylenes (BTEX) in foundry molding sand

    SciTech Connect

    Dungan, R.S.

    2005-07-01

    The use of headspace solid-phase microextraction (HS-SPME) to determine benzene, toluene, ethylbenzene, and xylenes (BTEX) in foundry molding sand, specifically a 'green sand' (clay-bonded sand) was investigated. The BTEX extraction was conducted using a 75 {mu} M carboxen-polydimethylsiloxane (CAR-PDMS) fiber, which was suspended above 10 g of sample. The SPME fiber was desorbed in a gas chromatograph injector port (280{sup o}C for 1 min) and the analytes were characterized by mass spectrometry. The effects of extraction time and temperature, water content, and clay and bituminous coal percentage on HS-SPME of BTEX were investigated. Because green sands contain bentonite clay and carbonaceous material such as crushed bituminous coal, a matrix effect was observed. The detection limits for BTEX were determined to be {lt}= 0.18 ng g{sup -1} of green sand.

  5. Preparation of Solid Phase Microextraction (SPME) Probes through Polyaniline Multiwalled Carbon Nanotubes (PANI/MWCNTs) Coating for the Extraction of Palmitic Acid and Oleic Acid in Organic Solvents.

    PubMed

    Khajeamiri, Alireza

    2012-01-01

    A fiber coating from polyaniline (PANI) was electrochemically prepared and employed for Solid phase micreoextraction (SPME). The PANI film was directly electrodeposited on the platinum wire surface using cyclic voltametry (CV) technique. The same method was applied for the preparation of SPME fiber coated by polyaniline multiwalled carbon nanotubes (PANI/MWCNTs) composite. The concentration of sulfuric acid for electropolymerization was 0.1 M in the presence of 0.045 M aniline in aqueous solution. For the electrodeposition of PANI/MWCNT composite, 4 μg/mL of MWCNTs was dispersed into the solution. Film coating was carried out on the platinum wire by repetitive cycling of potentials between 0 and 1.0 V at the scan rate of 0.05 V/s. The applicability of these coatings were assessed through employing a laboratory-made SPME injecting device and gas chromatography with mass spectrometry (GC-MS) for the extraction of palmitic acid and oleic acid from chloroform. The developed method proved to be simple and easy, offering high reproducibility. Both PANI coated and PANI/CNT coated probes had the ability to concentrate palmitic acid and oleic acid on their coating and produced strong signals in GC-MS chromatograms. In the meantime, PANI/CNT coated SPME probes produced signals which were stronger than those produced by PANI coated SPME probes. The amount of extracted palmitic acid and oleic acid from chloroform by the PANI/MWCNTs coating was about 6 and 12 times higher than the amount extracted by plane PANI SPME fibers respectively. It could be suggested that the composite material with CNTs has both an increased surface area and an elevated absorptive capacity which leads to this overall increase in extracted palmitic acid and oleic acid.

  6. Analysis of trihalomethanes in drinking water using headspace-SPME technique with gas chromatography.

    PubMed

    Cho, Deok-Hee; Kong, Sung-Ho; Oh, Seong-Geun

    2003-01-01

    In many drinking water treatment plants, the chlorination process is one of the main techniques used for the disinfection of water. This disinfecting treatment leads to the formation of trihalomethanes (THMs) such as chloroform, dichlorobromomethane, chlorodibromomethane and bromoform. In this study, headspace-solid-phase microextraction (HS-SPME, 85 microm carboxen/polydimethylsiloxane fiber) technique was applied for the analysis of THMs in drinking water. The effects of experimental parameters such as kinds of SPME fiber, the volume ratio of sample to headspace, the addition of salts, magnetic stirring, extraction temperature, extraction time and desorption time on the analysis were investigated. Analytical parameters such as linearity, repeatability and limit of detection were also evaluated. The results of THMs from the survey of Seongnam (Korea) drinking water samples showed that the highest total trihalomethane and chloroform were 24.03 and 13.34 microg/l, which were well within the Korean drinking water quality standard of 100 and 80 microg/l, respectively.

  7. Microcrystalline cellulose based matrix solid phase dispersion microextration for isomeric triterpenoid acids in loquat leaves by ultrahigh-performance liquid chromatography and quadrupole time-of-flight mass spectrometry.

    PubMed

    Cao, Jun; Peng, Li-Qing; Xu, Jing-Jing

    2016-11-11

    An analytical procedure based on matrix solid phase dispersion (MSPD) microextration and ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was developed for the determination of isomeric triterpenoid acids (maslinic acid, corosolic acid, oleanolic acid and ursolic acid) in loquat leaves. Microcrystalline cellulose was used for the first time as a solid sorbent in MSPD microextration. Compared with the traditional extraction methods, the proposed method possessed the advantages of shorter extraction time, and lower consumption of sample, sorbent and organic solvent. The MSPD parameters that influenced the extraction efficiency of isomeric analytes were investigated and optimized in detail. Under the optimized conditions, good linearity was obtained with correlation coefficients higher than 0.9990. The limits of detection and quantification were 19.6-51.6μg/kg and 65.3-171.8μg/kg, respectively. Meanwhile, the recoveries obtained for all the analytes were ranging from 90.1% to 107.5%. Finally, the optimized method was successfully applied for analyzing these isomeric acids in loquat leaves samples obtained from different cultivated areas.

  8. Transport of explosives II: use of headspace-SPME/GC μ-ECD and TEEM GC/MS for detection of TNT vapors from sand buried samples

    NASA Astrophysics Data System (ADS)

    Baez, Bibiana; Correa, Sandra N.; Hernandez-Rivera, Samuel P.

    2005-06-01

    The detection of hidden explosives using vapors emanating from explosives has been considered an area in explosives technology that requires high sensitivity and selectivity. In this work is reported the results of two methods for vapor explosive detection, GC-μECD and GC/MS coupled to a Tunable Electron Energy Monochromator (TEEM-GC/MS). Both used Solid Phase Microextraction (SPME) in Headspace (HS) mode to collect vapors above the samples. Optimum parameters for SPME were determined with the purpose of obtaining a high-quality extraction. The parameters were: type of SPME fiber, exposure time and desorption time at the injection port of the GC. Headspace SPME procedure was carried out in samples with crystals of TNT buried in soil. These samples were analyzed under important environmental conditions such as temperature and water content. Analyses at contact times after the TNT-soil mix preparation were carried out during 1 month. A comparison of results from both techniques was performed. Vapors of TNT and 2,4-DNT were found predominantly in the samples. HS-SPME coupled with GC-μ ECD and TEEM GC/MS exhibited excellent selectivity and sensitivity.

  9. Critical micelle concentration values for different surfactants measured with solid-phase microextraction fibers.

    PubMed

    Haftka, Joris J-H; Scherpenisse, Peter; Oetter, Günter; Hodges, Geoff; Eadsforth, Charles V; Kotthoff, Matthias; Hermens, Joop L M

    2016-09-01

    The amphiphilic nature of surfactants drives the formation of micelles at the critical micelle concentration (CMC). Solid-phase microextraction (SPME) fibers were used in the present study to measure CMC values of 12 nonionic, anionic, cationic, and zwitterionic surfactants. The SPME-derived CMC values were compared to values determined using a traditional surface tension method. At the CMC of a surfactant, a break in the relationship between the concentration in SPME fibers and the concentration in water is observed. The CMC values determined with SPME fibers deviated by less than a factor of 3 from values determined with a surface tension method for 7 out of 12 compounds. In addition, the fiber-water sorption isotherms gave information about the sorption mechanism to polyacrylate-coated SPME fibers. A limitation of the SPME method is that CMCs for very hydrophobic cationic surfactants cannot be determined when the cation exchange capacity of the SPME fibers is lower than the CMC value. The advantage of the SPME method over other methods is that CMC values of individual compounds in a mixture can be determined with this method. However, CMC values may be affected by the presence of compounds with other chain lengths in the mixture because of possible mixed micelle formation. Environ Toxicol Chem 2016;35:2173-2181. © 2016 SETAC. © 2016 SETAC.

  10. Determination of total and available fractions of PAHs by SPME in oily wastewaters: overcoming interference from NAPL and NOM.

    PubMed

    Gomes, Rui B; Nogueira, Regina; Oliveira, José M; Peixoto, João; Brito, António G

    2009-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are often found in oily wastewaters. Their presence is usually the result of human activities and has a negative effect on the environment. One important step in addressing this problem is to evaluate the effectiveness of PAH removal by biological processes since these are the most cost-effective treatments known today. Many techniques are presently available for PAH determination in wastewaters. Solid phase microextracion (SPME) is known to be one of the most effective techniques for this purpose. When analyzing complex matrices with substances such as natural organic matter (NOM) and non-aqueous phase liquids (NAPL), it is important to differentiate the free dissolved PAH from matrix-bonded PAH. PAHs associated with the bonded fraction are less susceptible to biological treatment. The present study concerns the development of a simple and suitable methodology for the determination of the freely dissolved and the total fraction of PAHs present in oily wastewaters. The methodology was then applied to an oily wastewater from a fuel station retention basin. Headspace SPME was used for analyzing PAH since the presence of a complex or dirty matrix in direct contact with the fiber may damage it. Four model PAHs-anthracene, fluorene, phenanthrene, and pyrene-were analyzed by GC-MS. Negligible depletion SPME technique was used to determine the free fraction. Total PAH was determined by enhancing the mass transfer from the bonded phase to the freely dissolved phase by temperature optimization and the use of the method of standard additions. The PAH absorption kinetics were determined in order to define the optimal sampling conditions for this method. The fitting of the experimental data to a mathematical model was accomplished using Berkeley Madonna software. Humic acid and silicon oil were used as model NOM and NAPL, respectively, to study the effect of these compounds on the decrease of SPME response. Then, the method was evaluated

  11. Modified HS-SPME for determination of quantitative relations between low-molecular oxygen compounds in various matrices.

    PubMed

    Dawidowicz, Andrzej L; Szewczyk, Joanna; Dybowski, Michal P

    2016-09-07

    Similar quantitative relations between individual constituents of the liquid sample established by its direct injection can be obtained applying Polydimethylsiloxane (PDMS) fiber in the headspace solid phase microextraction (HS-SPME) system containing the examined sample suspended in methyl silica oil. This paper proves that the analogous system composed of sample suspension/emulsion in polyethylene glycol (PEG) and Carbowax fiber allows to get similar quantitative relations between components of the mixture as those established by its direct analysis, but only for polar constituents. It is demonstrated for essential oil (EO) components of savory, sage, mint and thyme, and of artificial liquid mixture of polar constituents. The observed differences in quantitative relations between polar constituents estimated by both applied procedures are insignificant (Fexp < Fcrit). The presented results indicates that wider applicability of the system composed of a sample suspended in the oil of the same physicochemical character as that of used SPME fiber coating strongly depends on the character of interactions between analytes-suspending liquid and analytes-fiber coating.

  12. Fiber

    MedlinePlus

    ... 2016:chap 213. National Research Council. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). The National Academies Press. ...

  13. Analysis of Volatile Markers for Virgin Olive Oil Aroma Defects by SPME-GC/FID: Possible Sources of Incorrect Data.

    PubMed

    Oliver-Pozo, Celia; Aparicio-Ruiz, Ramón; Romero, Inmaculada; García-González, Diego L

    2015-12-09

    The need to explain virgin olive oil (VOO) aroma descriptors by means of volatiles has raised interest in applying analytical techniques for trapping and quantitating volatiles. Static headspace sampling with solid phase microextraction (SPME) as trapping material is one of the most applied solutions for analyzing volatiles. The use of an internal standard and the determination of the response factors of the main volatiles seem to guarantee the correct determination of volatile concentrations in VOOs by SPME-GC/FID. This paper, however, shows that the competition phenomena between volatiles in their adsorption to the SPME fiber, inherent in static headspace sampling, may affect the quantitation. These phenomena are more noticeable in the particular case of highly odorant matrices, such as rancid and vinegary VOOs with high intensity of defect. The competition phenomena can modify the measurement sensitivity, which can be observed in volatile quantitation as well as in the recording of internal standard areas in different matrices. This paper analyzes the bias of the peak areas and concentrations of those volatiles that are markers for each sensory defect of VOOs (rancid, vinegary, musty, and fusty) when the intensity and complexity of aroma are increased. Of the 17 volatile markers studied in this work, 10 presented some anomalies in the quantitation in highly odorant matrices due the competition phenomena. However, quantitation was not affected in the concentration ranges at which each volatile marker is typically found in the defective oils they were characteristic of, validating their use as markers.

  14. Syntactic Polysulfide Degradation Observed by SPME GC/MS

    SciTech Connect

    Vance, A L; Alviso, C; Harvey, C; Saab, A

    2005-03-09

    We have utilized SPME GC/MS to monitor the degradation of syntactic polysulfide in the presence of Viton A at elevated temperature. This approach allowed the identification of products from two distinct degradation mechanisms. Small-scale laboratory experiments of this type are directly applicable to gas sampling for enhanced surveillance.

  15. Recent Applications of SPME in Directed Stockpile Work (FY04)

    SciTech Connect

    Alviso, C; Harvey, C; Vance, A

    2004-11-08

    Solid Phase Microextraction (SPME) has been used to sample nonnuclear materials for analysis by gas chromatography-mass spectrometry (GC/MS). This report summarizes progress in the areas of individual materials' outgassing signatures, microcompatibility tests and analysis of polar analytes.

  16. Screening of transformation products in soils contaminated with unsymmetrical dimethylhydrazine using headspace SPME and GC-MS.

    PubMed

    Kenessov, Bulat N; Koziel, Jacek A; Grotenhuis, Tim; Carlsen, Lars

    2010-07-26

    The paper describes a novel SPME-based approach for sampling and analysis of transformation products of highly reactive and toxic unsymmetrical dimethylhydrazine (UDMH) which is used as a fuel in many Russian, European, Indian, and Chinese heavy cargo carrier rockets. The effects of several parameters were studied to optimize analyte recovery. It was found that the 85 microm Carboxen/polydimethylsiloxane fiber coating provides the highest selectivity for selected UDMH transformation products. Optimal sampling/sample preparation parameters were determined to be 1-h soil headspace sampling time at 40 degrees C. The GC inlet temperature was optimized to 170 degrees C held for 0.1 min, then 1 degrees C s(-1) ramp to 250 degrees C where it was held for 40 min. Temperature programming resulted in a fast desorption along with minimal chemical transformation in the GC inlet. SPME was very effective extracting UDMH transformation products from soil samples contaminated with rocket fuel. The use of SPME resulted in high sensitivity, speed, small labor consumption due to an automation and simplicity of use. It was shown that water addition to soil leads to a significant decrease of recovery of almost all target transformation products of UDMH. The use of SPME for sampling and sample preparation resulted in detection of the total of 21 new compounds that are relevant to the UDMH transformation in soils. In addition, the number of confirmed transformation products of UDMH increased from 15 to 27. This sampling/sample preparation approach can be recommended for environmental assessment of soil samples from areas affected by space rocket activity. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Determination of venlafaxine in post-mortem whole blood by HS-SPME and GC-NPD.

    PubMed

    Mastrogianni, O; Theodoridis, G; Spagou, K; Violante, D; Henriques, T; Pouliopoulos, A; Psaroulis, K; Tsoukali, H; Raikos, N

    2012-02-10

    Venlafaxine is a phenethylamine derivative widely prescribed for the treatment of depression which inhibits both serotonin and norepinephrine reuptake (SNRI). In treatment with antidepressants of patient with depression and other psychiatric disorders there is also increased risk of suicidal thought and behaviour. Several lethal intoxications involving venlafaxine usually among psychotic patients have been reported in the literature. Sample preparation is of the greatest significance for a successful toxicological analysis. The development of simple, effective and rapid extraction procedures of drugs from post-mortem biological samples is a challenge. Headspace-solid phase microextraction (HS-SPME) offers significant advantages such as simplicity, low cost, compatibility with analytical systems, automation and solvent-free extraction. The aim of our work was the optimization of a HS-SPME procedure for the determination of venlafaxine in post-mortem biological samples by gas chromatography (GC) with nitrogen-phosphorous detection (NPD). Venlafaxine was extracted on 100 μm Polydimethylsiloxone Coating-Red (PDMS) SPME fiber and determined by GC-NPD. Salt addition, extraction temperature, preheating and extraction time were optimized to enhance the recovery of the extraction from aqueous solution spiked with venlafaxine. Finally the developed procedure was applied to post-mortem biological samples of a fatally poisoned woman by venlafaxine. The drug was quantified in post-mortem blood gastric and oesophagus contents of the deceased woman. A simple and rapid procedure using HS-SPME was developed for sample preparation of venlafaxine in post-mortem biological samples prior to GC-NPD determination. Validation data was satisfactory, thus enabling application in the toxicological analysis of forensic samples. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Development and validation of automatic HS-SPME with a gas chromatography-ion trap/mass spectrometry method for analysis of volatiles in wines.

    PubMed

    Paula Barros, Elisabete; Moreira, Nathalie; Elias Pereira, Giuliano; Leite, Selma Gomes Ferreira; Moraes Rezende, Claudia; Guedes de Pinho, Paula

    2012-11-15

    An automated headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-ion trap/mass spectrometry (GC-IT/MS) was developed in order to quantify a large number of volatile compounds in wines such as alcohols, ester, norisoprenoids and terpenes. The procedures were optimized for SPME fiber selection, pre-incubation temperature and time, extraction temperature and time, and salt addition. A central composite experimental design was used in the optimization of the extraction conditions. The volatile compounds showed optimal extraction using a DVB/CAR/PDMS fiber, incubation of 5 ml of wine with 2g NaCl at 45 °C during 5 min, and subsequent extraction of 30 min at the same temperature. The method allowed the identification of 64 volatile compounds. Afterwards, the method was validated successfully for the most significant compounds and was applied to study the volatile composition of different white wines.

  19. A passive sampler based on solid phase microextraction (SPME) for sediment-associated organic pollutants: Comparing freely-dissolved concentration with bioaccumulation.

    PubMed

    Maruya, Keith A; Lao, Wenjian; Tsukada, David; Diehl, Dario W

    2015-10-01

    The elevated occurrence of hydrophobic organic chemicals (HOCs) such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCBs) and legacy organchlorine pesticides (e.g. chlordane and DDT) in estuarine sediments continues to poses challenges for maintaining the health of aquatic ecosystems. Current efforts to develop and apply protective, science-based sediment quality regulations for impaired waterbodies are hampered by non-concordance between model predictions and measured bioaccumulation and toxicity. A passive sampler incorporating commercially available solid phase microextraction (SPME) fibers was employed in lab and field studies to measure the freely dissolved concentration of target HOCs (Cfree) and determine its suitability as a proxy for bioaccumulation. SPME deduced Cfree for organochlorines was highly correlated with tissue concentrations (Cb) of Macoma and Nereis spp. co-exposed in laboratory microcosms containing both spiked and naturally contaminated sediments. This positive association was also observed in situ for endemic bivalves, where SPME samplers were deployed for up to 1 month at an estuarine field site. The concordance between Cb and Cfree for PAH was more variable, in part due to likely biotransformation by model invertebrates. These results indicate that SPME passive samplers can serve as a proxy for bioaccumulation of sediment-associated organochlorines in both lab and field studies, reducing the uncertainty associated with model predictions that do not adequately account for differential bioavailability.

  20. Development of a simple and sensitive method for the characterization of odorous waste gas emissions by means of solid-phase microextraction (SPME) and GC-MS/olfactometry.

    PubMed

    Kleeberg, K K; Liu, Y; Jans, M; Schlegelmilch, M; Streese, J; Stegmann, R

    2005-01-01

    A solid-phase microextraction (SPME) method has been developed for the extraction of odorous compounds from waste gas. The enriched compounds were characterized by gas chromatography-mass spectrometry (GC-MS) and gas chromatography followed by simultaneous flame ionization detection and olfactometry (GC-FID/O). Five different SPME fiber coatings were tested, and the carboxen/polydimethylsiloxane (CAR/PDMS) fiber showed the highest ability to extract odorous compounds from the waste gas. Furthermore, parameters such as exposure time, desorption temperature, and desorption time have been optimized. The SPME method was successfully used to characterize an odorous waste gas from a fat refinery prior to and after waste gas treatment in order to describe the treatment efficiency of the used laboratory scale plant which consisted of a bioscrubber/biofilter combination and an activated carbon adsorber. The developed method is a valuable approach to provide detailed information of waste gas composition and complements existing methods for the determination of odors. However, caution should be exercised if CAR/PDMS fibers are used for the quantification of odorous compounds in multi-component matrices like waste gas emissions since the relative affinity of each analyte was shown to differ according to the total amount of analytes present in the sample.

  1. Method for sampling and analysis of volatile biomarkers in process gas from aerobic digestion of poultry carcasses using time-weighted average SPME and GC-MS.

    PubMed

    Koziel, Jacek A; Nguyen, Lam T; Glanville, Thomas D; Ahn, Heekwon; Frana, Timothy S; Hans van Leeuwen, J

    2017-10-01

    A passive sampling method, using retracted solid-phase microextraction (SPME) - gas chromatography-mass spectrometry and time-weighted averaging, was developed and validated for tracking marker volatile organic compounds (VOCs) emitted during aerobic digestion of biohazardous animal tissue. The retracted SPME configuration protects the fragile fiber from buffeting by the process gas stream, and it requires less equipment and is potentially more biosecure than conventional active sampling methods. VOC concentrations predicted via a model based on Fick's first law of diffusion were within 6.6-12.3% of experimentally controlled values after accounting for VOC adsorption to the SPME fiber housing. Method detection limits for five marker VOCs ranged from 0.70 to 8.44ppbv and were statistically equivalent (p>0.05) to those for active sorbent-tube-based sampling. The sampling time of 30min and fiber retraction of 5mm were found to be optimal for the tissue digestion process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Liquid-phase microextration combined with liquid chromatography-electrospray tandem mass spectrometry for detecting diuretics in urine.

    PubMed

    Tsai, Tzu-Feng; Lee, Maw-Rong

    2008-05-15

    Trace amounts of diuretics were determined in human urine by hollow fiber liquid-phase microextraction (LPME) combined with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) in this study. Chromatography was performed on a C(8) reversed-phase column. A 25 microL n-octanol was used to extract analytes in urine. Extraction was optimized using a pH 2 solution spiked with 0.15 g/mL NaCl for 40 min at 40 degrees C with 1010 rpm stirring. The limits of detection of diuretics in urine were 0.3-6.8 ng/mL, and linearity range was 1-1000 ng/mL. Recoveries of spiked 50 ng/mL diuretics were 97.7-102.5%. The intra-day precision and inter-day precision were 3-18% and 4-21%, respectively. The diuretics concentration profiles in patient urine were also determined. The results of this study reveal the adequacy of LPME-LC-MS/MS method for analyzing diuretics in urine and quantification limits exceed World Anti-Doping Agency requirements.

  3. Multiple monolithic fiber solid-phase microextraction: a new extraction approach for aqueous samples.

    PubMed

    Mei, Meng; Huang, Xiaojia; Yuan, Dongxing

    2014-06-06

    A novel multiple monolithic fiber solid-phase microextraction (MMF-SPME) was designed and prepared. Two steps were involved in the preparation of MMF-SPME. Firstly, single thin fiber (0.5mm in diameter) was prepared by co-polymerization of vinylimidazole and ethylene dimethacrylate. Secondly, several thin fibers were bound together to obtain the MMF assembly. The extraction and desorption dynamics of MMF-SPME with different numbers of fibers were studied in detail. In order to demonstrate the usability of the new MMF-SPME, the extraction performance of MMF-SPME for 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol was investigated in direct SPME mode. Results indicated that aqueous samples could form convection effectively within MMF-SPME because there were gaps between fibers. The extraction procedure was accelerated by the convection. At the same time, the MMF-SPME possessed high extraction capacity because more sorbent was employed. Under the optimized extraction conditions, low detection limits (S/N=3) and quantification limits (S/N=10) for the target analytes were achieved within the range of 0.13-0.29 μg/L and 0.44-0.98 μg/L, respectively. The MMF-SPME also showed a very long lifespan and good repeatability. Finally, the MMF-SPME was successfully applied to the analysis of tap, lake and ground water samples with spiked recoveries in the range of 73.8-101%. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Preparation of polypyrrole composite solid-phase microextraction fiber coatings by sol-gel technique for the trace analysis of polar biological volatile organic compounds.

    PubMed

    Zhang, Zhuomin; Zhu, Li; Ma, Yunjian; Huang, Yichun; Li, Gongke

    2013-02-21

    Two novel polypyrrole (PPy) composite solid-phase microextraction (SPME) fiber coatings involving polypyrrole β-naphthalenesulfonic acid (PPy/β-NSA) and polypyrrole graphene (PPy/GR) composite SPME fiber coatings were prepared by a simple sol-gel technique for selectively sampling relatively polar biological volatile organic compounds (VOCs). Crucial preparation conditions of the PPy composite SPME fiber coatings were optimized and are discussed in detail. Physical tests suggested that the PPy composite SPME fiber coatings possessed a porous surface morphology, stable chemical and thermal properties. Due to the inducing polar functional groups in the PPy molecule, the PPy composite SPME fiber coatings achieved a higher extraction capacity and special selectivity for the polar biological VOCs with conjugate structures, compared with commercial SPME fiber coatings. Enrichment factors of most of the VOCs by the PPy/β-NSA and PPy/GR SPME fibers were much higher than those achieved by common commercially available SPME fiber coatings. Finally, the PPy/β-NSA and PPy/GR SPME fiber coatings were applied for the trace analysis of typical polar VOCs from ant and coriander samples coupled with gas chromatography/mass spectrometry (GC/MS) detection, respectively. It was satisfactory that the average contents of 4-heptanone, 4-heptanol, 4-nonanone and methyl 5-methylsalicylate from ant samples were actually found to be 28.0, 58.7, 3.0 and 0.6 μg g(-1), and the average contents of nonane, decanal, undecanal and dodecanal from coriander samples were actually found to be 0.79, 0.13, 0.06 and 0.21 μg g(-1). The results suggested that PPy composite SPME coatings will be a potentially excellent sampling technique for the trace analysis of polar biological VOCs.

  5. Solid Phase Micro-extraction (SPME) with In Situ Transesterification: An Easy Method for the Detection of Non-volatile Fatty Acid Derivatives on the Insect Cuticle.

    PubMed

    Kühbandner, Stephan; Ruther, Joachim

    2015-06-01

    Triacylglycerides (TAGs) and other non-volatile fatty acid derivatives (NFADs) occur in large amounts in the internal tissues of insects, but their presence on the insect cuticle is controversially discussed. Most studies investigating cuticular lipids of insects involve solvent extraction, which implies the risk of extracting lipids from internal tissues. Here, we present a new method that overcomes this problem. The method employs solid phase micro-extraction (SPME) to sample NFADs by rubbing the SPME fiber over the insect cuticle. Subsequently, the sampled NFADs are transesterified in situ with trimethyl sulfonium hydroxide (TMSH) into more volatile fatty acid methyl esters (FAMEs), which can be analyzed by standard GC/MS. We performed two types of control experiments to enable significant conclusions: (1) to rule out contamination of the GC/MS system with NFADs, and (2) to exclude the presence of free fatty acids on the insect cuticle, which would also furnish FAMEs after TMSH treatment, and thus might simulate the presence of NFADs. In combination with these two essential control experiments, the described SPME technique can be used to detect TAGs and/or other NFADs on the insect cuticle. We analyzed six insect species from four insect orders with our method and compared the results with conventional solvent extraction followed by ex situ transesterification. Several fatty acids typically found as constituents of TAGs were detected by the SPME method on the cuticle of all species analyzed. A comparison of the two methods revealed differences in the fatty acid compositions of the samples. Saturated fatty acids showed by trend higher relative abundances when sampled with the SPME method, while several minor FAMEs were detected only in the solvent extracts. Our study suggests that TAGs and maybe other NFADs are far more common on the insect cuticle than usually thought.

  6. Assessment of strawberry aroma through SPME/GC and ANN methods. Classification and discrimination of varieties.

    PubMed

    Urruty, Louise; Giraudel, Jean-Luc; Lek, Sovan; Roudeillac, Philippe; Montury, Michel

    2002-05-22

    To provide an efficient and running analytical tool to strawberry plant breeders who have to characterize and compare the aromatic properties of new cultivars to those already known, a HS-SPME/GC-MS analysis method has been coupled with a statistical treatment method issued from the current development of artificial neuron networks (ANN), and more specifically, the unsupervised learning systems called Kohonen self-organizing maps (SOMs). So, 70 strawberry samples harvested at CIREF from 17 known varieties have been extracted by using a DVB/Carboxen/PDMS SPME fiber according to the headspace procedure, and then chromatographed. A panel of 23 characteristic aromatic constituents has been selected according to published results relative to strawberry aroma. The complex resulting matrix, collecting the relative abundance of the 23 selected constituents for each sample, has been input into the SOM software adapted and optimized from the Kohonen approach described by one of the authors. After a period of training, the self-organized system affords a map of virtual strawberries to which real samples are compared and plotted in the best matching unit (BMU) of the map. The efficiency for discriminating the real samples according to their variety is dependent on the number of units selected to define the map. In this case, a 24-unit map allowed the complete discrimination of the 17 selected varieties. Moreover, to test the validity of this approach, two additional samples were blind-analyzed and the results were computed according to the same procedure. At the end of this treatment, both samples were plotted into the same unit as those of the same variety used for training the map.

  7. Monolithic graphene fibers for solid-phase microextraction.

    PubMed

    Fan, Jing; Dong, Zelin; Qi, Meiling; Fu, Ruonong; Qu, Liangti

    2013-12-13

    Monolithic graphene fibers for solid-phase microextraction (SPME) were fabricated through a dimensionally confined hydrothermal strategy and their extraction performance was evaluated. For the fiber fabrication, a glass pipeline was innovatively used as a hydrothermal reactor instead of a Teflon-lined autoclave. Compared with conventional methods for SPME fibers, the proposed strategy can fabricate a uniform graphene fiber as long as several meters or more at a time. Coupled to capillary gas chromatography (GC), the monolithic graphene fibers in a direct-immersion (DI) mode achieved higher extraction efficiencies for aromatics than those for n-alkanes, especially for polycyclic aromatic hydrocarbons (PAHs), thanks to π-π stacking interaction and hydrophobic effect. Additionally, the fibers exhibited excellent durability and can be repetitively used more than 160 times without significant loss of extraction performance. As a result, an optimum extraction condition of 40°C for 50min with 20% NaCl (w/w) was finally used for SPME of PAHs in aqueous samples. For the determination of PAHs in water samples, the proposed DI-SPME-GC method exhibited linear range of 0.05-200μg/L, limits of detection (LOD) of 4.0-50ng/L, relative standard deviation (RSD) less than 9.4% and 12.1% for one fiber and different fibers, respectively, and recoveries of 78.9-115.9%. The proposed method can be used for analysis of PAHs in environmental water samples.

  8. An Innovative Rapid Method for Analysis of 10 Organophosphorus Pesticide Residues in Wheat by HS-SPME-GC-FPD/MSD.

    PubMed

    Du, Xin; Ren, YongLin; Beckett, Stephen J

    2016-01-01

    The rapid detection of pesticide residues in wheat has become a top food security priority. A solvent-free headspace solid-phase microextraction (HS-SPME) has been evaluated for rapid screening of organophosphorus pesticide (OPP) residues in wheat with high sensitivity. Individual wheat samples (1.7 g), spiked with 10 OPPs, were placed in a 4 mL sealed amber glass vial and heated at 60°C for 45 min. During this time, the OPP residues were extracted with a 50 μm/30 μm divinylbenzene (DVB)/carboxen (CAR)/plasma desorption mass spectroscopy polydimethylsiloxane (PDMS) fiber from the headspace above the sample. The fiber was then removed and injected into the GC injection port at 250°C for desorption of the extracted chemicals. The multiple residues were identified by a GC mass spectrometer detector (GC-MSD) and quantified with a GC flame photometric detector (GC-FPD). Seven spiked levels of 10 OPPs on wheat were analyzed. The GC responses for a 50 μm/30 μm DVB/CAR/PDMS fiber increased with increasing spiking levels, yielding significant (R(2) > 0.98) linear regressions. The lowest LODs of the multiple pesticide standards were evaluated under the conditions of the validation study in a range of levels from 0 (control) to 100 ng of pesticide residue per g of wheat that separated on a low-polar GC capillary column (Agilent DB-35UI). The results of the HS-SPME method were compared with the QuEChERS AOAC 2007.01 method and they showed several advantages over the latter. These included improved sensitivity, selectivity, and simplicity.

  9. ZnO nanorod array polydimethylsiloxane composite solid phase micro-extraction fiber coating: fabrication and extraction capability.

    PubMed

    Wang, Dan; Wang, Qingtang; Zhang, Zhuomin; Chen, Guonan

    2012-01-21

    ZnO nanorod array coating is a novel kind of solid-phase microextraction (SPME) fiber coating which shows good extraction capability due to the nanostructure. To prepare the composite coating is a good way to improve the extraction capability. In this paper, the ZnO nanorod array polydimethylsiloxane (PDMS) composite SPME fiber coating has been prepared and its extraction capability for volatile organic compounds (VOCs) has been studied by headspace sampling the typical volatile mixed standard solution of benzene, toluene, ethylbenzene and xylene (BTEX). Improved detection limit and good linear ranges have been achieved for this composite SPME fiber coating. Also, it is found that the composite SPME fiber coating shows good extraction selectivity to the VOCs with alkane radicals.

  10. Fiber-based solid phase microextraction using fused silica lined bottles to collect, store, and stabilize a multianalyte headspace gas sample for offline analyses.

    PubMed

    Harvey, Chris A; Carter, J Chance; Ertel, John R; Alviso, Cindy T; Chinn, Sarah C; Maxwell, Robert S

    2015-07-03

    We have developed a solid phase microextraction (SPME) sampling method using fused silica lined bottles (400 ml) to collect, store, and stabilize a headspace subsample from the source for subsequent offline, repetitive analyses of the gas using fiber-based SPME. The method enables long-term stability for repeated offline analysis of the organic species collected from the source headspace and retains all the advantages of fiber SPME sampling (e.g. rapid extraction, solvent free, simple and inexpensive) while providing additional advantages. Typically, the analytes collected on the SPME fiber must be desorbed and analyzed immediately to mitigate analyte loss or contamination. The new SPME sampling method, conducted offline using carboxen/polydimethylsiloxane (carboxen/PDMS - 85 μm) coated fibers, has been shown to be identical to in situ SPME sampling of a headspace acquired from an 80 component organic matrix with reproducibility demonstrated to be less than %RSD=7.0% for replicate samples measured over a 30-day period. In addition, repetitive samplings from one headspace aliquot are possible using one or more fibers and fiber types as well as quantitative options such as internal standard addition as demonstrated in a feasibility study using a benzene/toluene/xylene (BTX; 1 ppmv) certified gas standard, in which the SPME measurement precision (%RSD) was improved by a factor of 1.5-1.9 compared to the use of an external standard.

  11. Cold fiber solid-phase microextraction device based on thermoelectric cooling of metal fiber.

    PubMed

    Haddadi, Shokouh Hosseinzadeh; Pawliszyn, Janusz

    2009-04-03

    A new cold fiber solid-phase microextraction device was designed and constructed based on thermoelectric cooling. A three-stage thermoelectric cooler (TEC) was used for cooling a copper rod coated with a poly(dimethylsiloxane) (PDMS) hollow fiber, which served as the solid-phase microextraction (SPME) fiber. The copper rod was mounted on a commercial SPME plunger and exposed to the cold surface of the TEC, which was enclosed in a small aluminum box. A heat sink and a fan were used to dissipate the generated heat at the hot side of the TEC. By applying an appropriate dc voltage to the TEC, the upper part of the copper rod, which was in contact to the cold side of the TEC, was cooled and the hollow fiber reached a lower temperature through heat transfer. A thermocouple was embedded in the cold side of the TEC for indirect measurement of the fiber temperature. The device was applied in quantitative analysis of off-flavors in a rice sample. Hexanal, nonanal, and undecanal were chosen as three off-flavors in rice. They were identified according to their retention times and analyzed by GC-flame ionization detection instrument. Headspace extraction conditions (i.e., temperature and time) were optimized. Standard addition calibration graphs were obtained at the optimized conditions and the concentrations of the three analytes were calculated. The concentration of hexanal was also measured using a conventional solvent extraction method (697+/-143ng/g) which was comparable to that obtained from the cold fiber SPME method (644+/-8). Moreover, the cold fiber SPME resulted in better reproducibility and shorter analysis time. Cold fiber SPME with TEC device can also be used as a portable device for field sampling.

  12. Experimental design-based isotope-dilution SPME-GC/MS method development for the analysis of smoke flavoring products.

    PubMed

    Giri, Anupam; Zelinkova, Zuzana; Wenzl, Thomas

    2017-09-08

    For the implementation of EU legislation related to smoke flavourings used or intended for use in or on foods (Regulation (EC) No 2065/2003) a method based on solid phase micro extraction (SPME) GC/MS was developed for the chracterisation of liquid smoke products. A statistically based experimental design (DoE) was used for method optimization. The best general conditions to quantitatively analyze the liquid smoke compounds were obtained with a polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber, 60°C extraction temperature, 30 min of extraction time, 250°C desorption temperature, 180 sec of desorption time, agitation time of 15 sec and agitation speed of 250 rpm. Under the optimized condition 119 wood pyrolysis products including furan/pyran-derivatives, phenols, guaiacol, syringol, benzenediol and their derivatives, cyclic ketones and several other heterocyclic compounds were identified. The proposed method was repeatable (RSD% < 5) and the calibration functions were linear for all compounds under study. Nine isotopically labelled internal standards were used for improving quantification of analytes by compensating matrix effects that might affect headspace equilibrium and extractability of compounds. The optimized isotope dilution SPME-GC/MS based analytical method proved to be fit-for-purpose, allowing the rapid identification and quantification of volatile compounds in liquid smoke flavorings.

  13. Solid-phase micro extraction (SPME) and headspace derivatization of clenbuterol followed by GC-FID and GC-SIMMS quantification.

    PubMed

    Engelmann, M D; Hinz, D; Wenclawiak, B W

    2003-02-01

    Solid-phase micro extraction (SPME) and on-fiber derivatization followed by Gas Chromatography coupled with Flame Ionization Detection (GC-FID) or Selected Ion Monitoring Mass Spectrometry (GC-SIMMS) allows for simple yet sensitive quantification for the hexamethyldisilazane derivative of the beta-agonist clenbuterol. Using an 85- micro m polyacrylate fiber, the analysis method is optimized with respect to extraction time, derivatization time and temperature, and solution pH. In addition, the use of a rapid temperature ramping injection port allows for optimization of fiber desorption conditions. Under optimal conditions, the limits of detection for the hexamethyldisilazane derivative of clenbuterol are 1.1 ppb by FID and 0.20 ppb by SIMMS.

  14. Preparation of temperature sensitive molecularly imprinted polymer for solid-phase microextraction coatings on stainless steel fiber to measure ofloxacin.

    PubMed

    Zhao, Tong; Guan, Xiujuan; Tang, Wanjin; Ma, Ying; Zhang, Haixia

    2015-01-01

    A kind of new temperature sensitive molecularly imprinted polymer (MIP) with ofloxacin (OFL) as template was prepared for the coating of solid phase microextraction (SPME). Dopamine was self-polymerized on stainless steel fiber (SSF) as the SPME support followed by silanization. Then MIP was synthesized as SPME coating on the modified SSF in a capillary, with N-isopropyl acrylamide as temperature sensitive monomer and methacrylic acid as functional monomer. The synthesis could be well repeated with multiple capillaries putting in the same reaction solution. The obtained MIP fiber was evaluated in detail with different techniques and various adsorption experiments. At last the MIP fiber was used to extract the OFL in milk. Satisfied recoveries between 89.7 and 103.4% were obtained with the limit of quantification (LOQLC) of 0.04 μg mL(-1) by the method of SPME coupled with high performance of liquid chromatography (HPLC).

  15. Assessment of SPME Partitioning Coefficients: Implications for Passive Environmental Sampling of Hydrophobic Organic Compounds

    NASA Astrophysics Data System (ADS)

    Difilippo, E. L.; Eganhouse, R. P.

    2009-12-01

    Solid-phase microextraction (SPME) has shown potential as an in situ passive sampling technique in aqueous environments. The reliability of this method depends upon accurate determination of the partitioning coefficient between the fiber coating and water (Kf) for the compounds of interest. Kf values for poly(dimethylsiloxane) (PDMS) and water spanning 4 orders of magnitude have been reported for hydrophobic organic compounds (HOCs). However, most of the published data (86%) do not pass the criterion for negligible depletion (Vw > 100KfVf , where Vw is the sample volume [μl] and Vf is the fiber coating volume [μl]), resulting in erroneous Kf values. The range in reported Kf values is reduced to just over 2 orders of magnitude for some polychlorinated biphenyls (PCBs) when these erroneous values are removed. We conducted a two-tailed t-test comparing Kf values for the same compounds (polycyclic aromatic hydrocarbons (PAHs) and PCBs) measured with different fiber coating thicknesses and fiber manufacturers; the majority (85%) of these Kf values are not statistically different (p = 0.10). In addition to an accurate measurement of Kf, the impact of environmental factors on partitioning, such as temperature and ionic strength, are essential in applying laboratory-measured Kf values to field samples. To date, few studies have measured Kf at conditions other than at 25° C in distilled water. While the available data indicate slight differences in Kf at different temperatures and ionic strength, the data are too limited to make an accurate assessment of the impact of these factors on the accuracy of in situ concentration measurements. Because of the challenges in measuring Kf for HOCs, it may be useful to develop predictive models for calculating Kf using known or measured physico-chemical properties. A multi-parameter linear solvation energy relationship (LSER) was developed to estimate Kf in distilled water at 25° C for HOCs based on published physico

  16. Non-invasive characterization of the adipogenic differentiation of human bone marrow-derived mesenchymal stromal cells by HS-SPME/GC-MS

    PubMed Central

    Lee, Dong-Kyu; Yi, TacGhee; Park, Kyung-Eun; Lee, Hyun-Joo; Cho, Yun-Kyoung; Lee, Seul Ji; Lee, Jeongmi; Park, Jeong Hill; Lee, Mi-Young; Song, Sun U.; Kwon, Sung Won

    2014-01-01

    A non-invasive method to characterize human mesenchymal stromal cells during adipogenic differentiation was developed for the first time. Seven fatty acid methyl esters (FAMEs), including methyl laurate, methyl myristate, methyl palmitate, methyl linoleate, methyl oleate, methyl elaidate and methyl stearate, were used for characterizing adipogenic differentiation using headspace solid-phase microextraction (HS-SPME) which is a very simple and non-invasive method for the extraction of volatile compounds. Glassware was used for culturing mesenchymal stromal cells rather than the common plasticware to minimize contamination by volatile impurities. The optimal SPME fiber was selected by comparing diverse fibers containing two pure liquid polymers (PDMS and PA) and two porous solids (PDMS/DVB and CAR/PDMS). Using optimized procedures, we discovered that seven FAMEs were only detected in adipogenic differentiated mesenchymal stromal cells and not in the mesenchymal stromal cells before differentiation. These data could support the quality control of clinical mesenchymal stromal cell culture in the pharmaceutical industry in addition to the development of many clinical applications using mesenchymal stromal cells. PMID:25298091

  17. Non-invasive characterization of the adipogenic differentiation of human bone marrow-derived mesenchymal stromal cells by HS-SPME/GC-MS.

    PubMed

    Lee, Dong-Kyu; Yi, TacGhee; Park, Kyung-Eun; Lee, Hyun-Joo; Cho, Yun-Kyoung; Lee, Seul Ji; Lee, Jeongmi; Park, Jeong Hill; Lee, Mi-Young; Song, Sun U; Kwon, Sung Won

    2014-10-09

    A non-invasive method to characterize human mesenchymal stromal cells during adipogenic differentiation was developed for the first time. Seven fatty acid methyl esters (FAMEs), including methyl laurate, methyl myristate, methyl palmitate, methyl linoleate, methyl oleate, methyl elaidate and methyl stearate, were used for characterizing adipogenic differentiation using headspace solid-phase microextraction (HS-SPME) which is a very simple and non-invasive method for the extraction of volatile compounds. Glassware was used for culturing mesenchymal stromal cells rather than the common plasticware to minimize contamination by volatile impurities. The optimal SPME fiber was selected by comparing diverse fibers containing two pure liquid polymers (PDMS and PA) and two porous solids (PDMS/DVB and CAR/PDMS). Using optimized procedures, we discovered that seven FAMEs were only detected in adipogenic differentiated mesenchymal stromal cells and not in the mesenchymal stromal cells before differentiation. These data could support the quality control of clinical mesenchymal stromal cell culture in the pharmaceutical industry in addition to the development of many clinical applications using mesenchymal stromal cells.

  18. Preparation of novel alumina nanowire solid-phase microextraction fiber coating for ultra-selective determination of volatile esters and alcohols from complicated food samples.

    PubMed

    Zhang, Zhuomin; Ma, Yunjian; Wang, Qingtang; Chen, An; Pan, Zhuoyan; Li, Gongke

    2013-05-17

    A novel alumina nanowire (ANW) solid-phase microextraction (SPME) fiber coating was prepared by a simple and rapid anodization-chemical etching method for ultra-selective determination of volatile esters and alcohols from complicated food samples. Preparation conditions for ANW SPME fiber coating including corrosion solution concentration and corrosion time were optimized in detail for better surface morphology and higher surface area based on scanning electron microscope (SEM). Under the optimum conditions, homogeneous alumina nanowire structure of ANW SPME fiber coating was achieved with the average thickness of 20 μm around. Compared with most of commercial SPME fiber coatings, ANW SPME fiber coatings achieved the higher extraction capacity and special selectivity for volatile esters and alcohols. Finally, an efficient gas sampling technique based on ANW SPME fiber coating as the core was established and successfully applied for the ultra-selective determination of trace volatile esters and alcohols from complicated banana and fermented glutinous rice samples coupled with gas chromatography/mass spectrometry (GC/MS) detection. It was interesting that 25 esters and 2 alcohols among 30 banana volatile organic compounds (VOCs) identified and 4 esters and 7 alcohols among 13 identified VOCs of fermented glutinous rice were selectively sampled by ANW SPME fiber coatings. Furthermore, new analytical methods for the determination of some typical volatile esters and alcohols from banana and fermented glutinous rice samples at specific storage or brewing phases were developed and validated. Good recoveries for banana and fermented glutinous rice samples were achieved in range of 108-115% with relative standard deviations (RSDs) of 2.6-6.7% and 80.0-91.8% with RSDs of 0.3-1.3% (n=3), respectively. This work proposed a novel and efficient gas sampling technique of ANW SPME which was quite suitable for ultra-selectively sampling trace volatile esters and alcohols from

  19. JV Task 92 - Alcoa/Retec SFE and SPME

    SciTech Connect

    Steven Hawthorne

    2009-02-15

    This report summarizes the work performed by the Energy & Environmental Research Center (EERC) under the U.S. Department of Energy Jointly Sponsored Research Program JV Task 92, which is a continuation of JV9. Successful studies performed in 1999 through the end of 2008 demonstrated the potential for using selective supercritical fluid extraction (SFE) and a solid-phase microextraction (SPME) method for measuring sediment pore water polycyclic aromatic hydrocarbons (PAHs) to mimic the bioavailability of PAHs from manufactured gas plant and aluminum smelter soils and sediments both in freshwater and saltwater locations. The studies that the EERC has performed with the commercial partners have continued to generate increased interest in both the regulatory communities and in the industries that have historically produced or utilized coal tar products. Both ASTM International and the U.S. Environmental Protection Agency (EPA) have accepted the pore water method developed at the EERC as standard methods. The studies have demonstrated the effectiveness of our techniques in predicting bioavailability of PAHs from ca. 250 impacted and background field sediments and soils. The field demonstrations from the final years of the project continued to build the foundation data for acceptance of our methods by the regulatory communities. The JV92 studies provide the single largest database in the world that includes measures of PAH bioavailability along with biological end points. These studies clearly demonstrated that present regulatory paradigms based on equilibrium partitioning greatly overpredict bioavailability. These investigations also laid the foundation for present (non-JV) studies being applied to PAHs and polychlorinated biphenyls (PCBs) at EPA Superfund sites, investigations into PAH and PCB bioavailability at U.S Department of Defense sites, and the application of the techniques to investigating the bioavailability of chlorinated dioxins and furans from impacted

  20. Immersion mode SPME/μECD/GC and TEEM-GC/MS for analysis of explosives buried in sand

    NASA Astrophysics Data System (ADS)

    Correa, Sandra N.; Baez, Bibiana; de Jesus Echevarria, Maritza; Castro, Miguel E.; Briano, Julio; Hernandez-Rivera, Samuel P.

    2005-06-01

    The detection of trace amount of explosives is of utmost importance in many day-to-day military operations. Moreover, the detection of landmines is a complex and urgent worldwide problem, which needs specific, rapid and cost effective solutions. The most commonly used explosive in landmines is 2,4,6-trinitrotoluene (TNT). Almost 80% of the types of mines manufactured worldwide contain TNT. This contribution describes the use of Immersion Mode Solid-Phase Microextraction (I-SPME) for extraction of TNT and their degradation products from surface soil samples for subsequent analysis by either GC with 63Ni micro cell Electron Capture Detector or gas chromatograph-mass spectrometer coupled to a Tunable Electron Energy Monochromator. A pretreatment step was introduced for the soil samples which extracted the target compounds into an aqueous phase. The experimental results demonstrated the effects of controllable variables. Parameters studied include the chemical properties of the fiber coating, extraction and desorption times, fiber extraction and matrix effect. Surface soil samples containing TNT were evaluated to study the detection of the nitroaromatic explosives and its degradations products using different environmental conditions such as sample temperature, sample contact time and water content.

  1. Analysis of terpenes in white wines using SPE-SPME-GC/MS approach.

    PubMed

    Dziadas, Mariusz; Jeleń, Henryk H

    2010-09-10

    Terpenes contribute to some white wines aroma, especially these produced from Muscat grapes and others aromatic ones of high terpene contents (Gewürtztramminer, Traminer, Huxel, Sylvaner). Terpenes are present in wine in free and bound (in a form of glycosides) forms. Analyses of bound terpenes are usually performed using solid phase extraction after hydrolysis of glycosides. A new method for determination of terpenes from wine, focused on determination of terpenes released after acidic hydrolysis, based on solid phase extraction (SPE) followed by solid phase microextraction (SPME) was developed. Non-polar (free) and polar (bound terpenes) fractions were separated on 500 mg C18 cartridges. Bound terpenes were sampled using SPME immediately after acidic hydrolysis in non-equilibrium conditions. Application of combined SPE-SPME approach allowed quantification of selected terpenes in lower concentrations than in SPE approach and added a selectivity to the method, which enabled detection of compounds non-detectable in SPE extracts. Results obtained by SPE and SPE-SPME approach were correlated for free terpenes and those released after acid hydrolysis 20 white wines obtained from different grape varieties (R(2)=0.923). Although developed for wine terpenes analysis, SPE followed by SPME approach has a great potential in analysis of other bound wine flavor compounds, especially those potent odorants present in trace amounts.

  2. Optimization of the HS-SPME-GC-IT/MS method using a central composite design for volatile carbonyl compounds determination in beers.

    PubMed

    Moreira, Nathalie; Meireles, Sónia; Brandão, Tiago; de Pinho, Paula Guedes

    2013-12-15

    An automated headspace solid-phase microextraction (HS-SPME) combined with gas chromatography and ion trap mass spectrometry detection (GC-IT/MS) was developed in order to quantify a large number of carbonyl compounds in beers. Carbonyl compounds were previously derivatized with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA). Volatile carbonyl compounds associated with staling beer aroma includes alkanals, alkenals, alkadienals, dicarbonyl compounds, Strecker aldehydes, ketones and furans. The HS-SPME was performed using a polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber. The procedures were optimized for HS-SPME pre-incubation temperature and time, extraction temperature and time, and PFBHA addition. A central composite design was used in the optimization of extraction conditions and PFBHA addition. The volatile compounds showed optimal extraction incubating 5 ml of beer with 700 mg l(-1) of PFBHA for 7 min and extracted for more 20 min at 45 °C. The method was validated with regard to the linearity, repeatability, inter and intra-day precision and accuracy. The method achieved detection limits ranging from 0.003 to 0.510 µg l(-1), except for furans (1.54-3.44 µg l(-1)). The quantification limits varied from 0.010 to 1.55 µg l(-1), except for 2-furfural (4.68 µg l(-1)), 5-methyl-2-furfural (5.82 µg l(-1)) and 5-hyfroxymethylfurfural (10.4 µg l(-1)). Repeatability values of all compounds were lower than 17%. The method accuracy was satisfactory with recoveries ranging from 88% to 114%. The validated method showed to be suitable for a fast and reliable determination of main carbonyl compounds in beers. © 2013 Published by Elsevier B.V.

  3. Passive sampling of ambient ozone by solid phase microextraction with on-fiber derivatization.

    PubMed

    Lee, I-Su; Tsai, Shih-Wei

    2008-03-10

    The solid phase microextraction (SPME) device with the polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used as a passive sampler for ambient ozone. Both O-2,3,4,5,6-(pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) and 1,2-di-(4-pyridyl)ethylene (DPE) were loaded onto the fiber before sampling. The SPME fiber assembly was then inserted into a PTFE tubing as a passive sampler. Known concentrations of ozone around the ambient ground level were generated by a calibrated ozone generator. Laboratory validations of the SPME passive sampler with the direct-reading ozone monitor were performed side-by-side in an exposure chamber at 25 degrees C. After exposures, pyriden-4-aldehyde was formed due to the reaction between DPE and ozone. Further on-fiber derivatizations between pyriden-4-aldehyde and PFBHA were followed and the derivatives, oximes, were then determined by portable gas chromatography with electron capture detector. The experimental sampling rate of the SPME ozone passive sampler was found to be 1.10 x 10(-4) cm(3) s(-1) with detection limit of 58.8 microg m(-3) h(-1). Field validations with both SPME device and the direct-reading ozone monitor were also performed. The correlations between the results from both methods were found to be consistent with r=0.9837. Compared with other methods, the current designed sampler provides a convenient and sensitive tool for the exposure assessments of ozone.

  4. Magnetron sputtering Si interlayer: a protocol to prepare solid phase microextraction coatings on metal-based fiber.

    PubMed

    Liu, Hongmei; Ji, Li; Li, Jubai; Liu, Shujuan; Liu, Xia; Jiang, Shengxiang

    2011-05-20

    Use of metal fibers in solid phase microextraction (SPME) can overcome the fragility drawback of conventional fused-silica ones. However, the surface modification of metal substrates is rather difficult, which largely prevents many mature traditional techniques, such as sol-gel and chemical bonding, being used in fabrication of SPME coating on metal-based fibers. This study demonstrates a protocol to resolve this problem by magnetron sputtering a firm Si interlayer on stainless steel fiber. The Si interlayer was easily modified active group, and attached with a multiwalled carbon nanotubes (MWCNTs) coating using the reported approach. The as-prepared MWCNTs/Si/stainless steel wire fiber not only preserved the excellent SPME behaviors of MWCNTs coatings, but also exhibited a number of advantages including high rigidity, long service life, and good stability at high temperature, in acid and alkali solutions. This new surface modification technique might provide a versatile approach to prepare sorbent coatings on unconfined substrates using traditional methods.

  5. Determination of formaldehyde in Romanian cosmetic products using coupled GC/MS system after SPME extraction

    NASA Astrophysics Data System (ADS)

    Feher, I.; Schmutzer, G.; Voica, C.; Moldovan, Z.

    2013-11-01

    In this study we have made a quick review of some Romanian cosmetic products (shampoo, conditioner, face wash) in order to determine the formaldehyde content as well as other substances called "formaldehyde releasers". The process was performed based on solid-phase microextraction (SPME) followed by gas chromatography/mass spectrometry technique. Prior to SPME extraction we used a derivation step of formaldehyde using pentafluorophenyl hydrazine. The obtained product was adsorbed on SPME devices, then injected and desorbed into the GC/MS injection port. The concentration of formaldehyde (as derived compound) was calculated using calibration curve, having a regression coefficient of 0.9938. The performance parameters of the method were calculated using samples of standard concentration. The method proved to be sensitive, having a quantification limit (LOQ) of 0.15 μg/g.

  6. SPME-HPLC: a new approach to the analysis of explosives.

    PubMed

    Gaurav; Kaur, Varinder; Kumar, Ashwini; Malik, Ashok Kumar; Rai, P K

    2007-08-25

    Methods developed for the analysis of explosives by SPME coupled to HPLC are reviewed with special emphasis on determination and monitoring in environmental samples such as soil and water. Analysis of explosives by using SPME-HPLC as analytical technique is comparatively a new method on which a special attention is focused nowadays. It saves time, avoid use of hazardous extraction solvents, disposal costs and consequently improve the detection limits. The application of SPME is also widened for explosives by using modified 10-port interface and a C-8 refocusing unit combined with two pumps. Several parameters have been optimized to ensure quantitative results such as high concentration of salt and less acetonitrile:water ratio. CW/PDMS/DVB coatings were found to be superior over PA in terms of sensitivity.

  7. Quantitative Determination of Caffeine in Beverages Using a Combined SPME-GC/MS Method

    NASA Astrophysics Data System (ADS)

    Pawliszyn, Janusz; Yang, Min J.; Orton, Maureen L.

    1997-09-01

    Solid-phase microextraction (SPME) combined with gas chromatography/mass spectrometry (GC/MS) has been applied to the analysis of various caffeinated beverages. Unlike the current methods, this technique is solvent free and requires no pH adjustments. The simplicity of the SPME-GC/MS method lends itself to a good undergraduate laboratory practice. This publication describes the analytical conditions and presents the data for determination of caffeine in coffee, tea, and coke. Quantitation by isotopic dilution is also illustrated.

  8. Odor active compounds content in spices and their microencapsulated powders measured by SPME.

    PubMed

    Wojtowicz, Elżbieta; Zawirska-Wojtasiak, Renata; Adamiec, Janusz; Wąsowicz, Erwin; Przygoński, Krzysztof; Remiszewski, Marian

    2010-10-01

    Within this study, main odorants of marjoram and thyme (linalool and thymol) were determined in spices and microencapsulated powders using solid-phase microextraction (SPME). Analyses were conducted on selected batches of spices before and after decontamination and on microencapsulated powders prepared for technological purposes (improvement of aroma in decontaminated spices). Conditions of SPME analyses were determined for individual compounds and matrices. Determination of total and surface contents of compounds and the percentage dependencies between encapsulated and surface aroma made it possible to identify the best powders in terms of their quality.

  9. Development of a new SPME-HPLC-UV method for the analysis of nitro explosives on reverse phase amide column and application to analysis of aqueous samples.

    PubMed

    Gaurav; Malik, Ashok Kumar; Rai, P K

    2009-12-30

    A rapid, simple, sensitive and accurate quantitative method has been developed for the determination of eleven nitroaromatic components by solid phase microextraction (SPME) coupled to high performance liquid chromatography (HPLC) with UV detection from aqueous samples. PDMS/DVB resin fiber (60 microm) was used for concurrent extraction of all the analytes from aqueous matrix. Static desorption was carried out in the desorption chamber of SPME-HPLC interface containing mobile phase; methanol:water 43:57 (v/v) with subsequent liquid chromatographic analysis at isocratic flow rate of 1.3 mL/min and detection at 254 nm. A reverse phase amide column (5 microm) was used as a separation medium. The limit of detection (S/N=3) for TNT and Tetryl was found to be 0.35 and 0.54 ng/mL, respectively. Developed method has been applied successfully to the analysis of aqueous samples obtained from environmental and industrial sources like river water, ground water, drinking water and industrial waste water.

  10. A new method for rapid screening of ester-producing yeasts using in situ HS-SPME.

    PubMed

    Garavaglia, Juliano; Habekost, Andressa; Bjerk, Thiago Rodrigues; de Souza Schneider, Rosana de Cassia; Welke, Juliane Elisa; Zini, Cláudia Alcaraz; Valente, Patricia

    2014-08-01

    The selection of ester-producing yeasts is difficult because these molecules evaporate quickly, are extremely unstable and may be missed during analytical manipulation. We propose an easy, fast and efficient headspace-SPME method for screening of ester-producing yeasts directly at the extraction vials (in situ HS-SPME). Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Discrimination of smokeless powders by headspace SPME-GC-MS and SPME-GC-ECD, and the potential implications upon training canine detection of explosives

    NASA Astrophysics Data System (ADS)

    Harper, Ross J.; Almirall, Jose R.; Furton, Kenneth G.

    2005-05-01

    This presentation will provide an odour analysis of a variety of smokeless powders & communicate the rapid SPME-GC-ECD method utilized. This paper will also discuss the implications of the headspace analysis of Smokeless Powders upon the choice of training aids for Explosives Detection Canines. Canine detection of explosives relies upon the dogs" ability to equate finding a given explosive odour with a reward, usually in the form of praise or play. The selection of explosives upon which the dogs are trained thus determines which explosives the canines can and potentially cannot find. Commonly, the training is focussed towards high explosives such as TNT and Composition 4, and the low explosives such as Black and Smokeless Powders are added often only for completeness. Powder explosives constitute a major component of explosive incidents throughout the US, and canines trained to detect explosives must be trained across the entire range of powder products. Given the variability in the manufacture and product make-up many smokeless powders do not share common odour chemicals, giving rise to concerns over the extensiveness of canine training. Headspace analysis of a selection of Smokeless Powders by Solid Phase Microextraction Gas Chromatography using Mass Spectrometry (SPME-GC-MS) and Electron Capture Detectors (SPME-GC-ECD) has highlighted significant differences in the chemical composition of the odour available from different brands. This suggests that greater attention should be paid towards the choice of Powder Explosives when assigning canine training aids.

  12. Graphenized pencil lead fiber: facile preparation and application in solid-phase microextraction.

    PubMed

    Liu, Qian; Cheng, Mengting; Long, Yanmin; Yu, Miao; Wang, Thanh; Jiang, Guibin

    2014-01-17

    Graphenized pencil lead fiber was facilely prepared by in situ chemical exfoliation of graphite in pencil lead fiber to few-layered graphene sheets via a one-pot, one-step pressurized oxidation reaction for the first time. This new fiber was characterized and demonstrated to be a highly efficient but low-cost solid-phase microextraction (SPME) fiber. The extraction performance of the fiber was evaluated with four bisphenol analogs [bisphenol A (BPA), bisphenol S (BPS), bisphenol AF (BPAF), and tetrabromobisphenol A (TBBPA)] as model analytes in direct SPME mode. Unlike commercially available fibers, the graphenized pencil lead fiber showed an excellent chemical stability in highly saline, acidic, alkaline and organic conditions due to its coating-free configuration. The fiber also showed a very long lifespan. Furthermore, high extraction efficiency and good selectivity for the analytes with a wide polarity range could be obtained due to the exceptional properties of graphene. The detection limits (LODs) for the analytes were in the range of 1.1-25ng/L. The fiber was successfully applied in the analysis of tap water and effluent samples from a waste water treatment plant with spike recoveries ranging from 68.5 to 105.1%. Therefore, the graphenized pencil lead fiber provides a high performance, cheap, robust, and reliable tool for SPME.

  13. Headspace sampling and detection of cocaine, MDMA, and marijuana via volatile markers in the presence of potential interferences by solid phase microextraction-ion mobility spectrometry (SPME-IMS).

    PubMed

    Lai, Hanh; Corbin, Inge; Almirall, José R

    2008-09-01

    The successful air sampling and detection of cocaine, methylenedioxymethylamphetamine (MDMA), and marijuana using SPME-IMS achieved by targeting their volatile markers (methyl benzoate, piperonal, and terpenes, respectively) is presented. Conventional methods of direct air sampling for drugs are ineffective because the parent compounds of these drugs have very low vapor pressures, making them unavailable for headspace sampling. Instead of targeting the parent drugs, IMS was set at the optimal operating conditions (determined in previous work) in order to detect their volatile chemical markers. SPME is an effective and rapid air sampling technique for the preconcentration of analytes which is especially useful in confined spaces such as cargo containers, where the volatile marker compounds of drugs can be found in sufficient concentrations. By sampling the air using a 100 microm polydimethyl siloxane (PDMS) SPME fiber for as little as one minute, enough mass of the targeted volatile markers in the headspace of a quart-sized metal paint can (gallon, approximately 1101 cm(3)) which contained sub-gram quantities of the drug samples was recovered for IMS detection. Additionally, several potentially interfering compounds found in goods commonly shipped in cargo containers were tested individually as well as in mixtures with the drugs. No peak interferences were observed for MDMA or marijuana, and minimal peak interferences were found for cocaine.

  14. Metabolome based volatiles profiling in 13 date palm fruit varieties from Egypt via SPME GC-MS and chemometrics.

    PubMed

    Khalil, Mohammed N A; Fekry, Mostafa I; Farag, Mohamed A

    2017-02-15

    Dates (Phoenix dactylifera L.) are distributed worldwide as major food complement providing a source of sugars and dietary fiber as well as macro- and micronutrients. Although phytochemical analyses of date fruit non-volatile metabolites have been reported, much less is known about the aroma given off by the fruit, which is critical for dissecting sensory properties and quality traits. Volatile constituents from 13 date varieties grown in Egypt were profiled using SPME-GCMS coupled to multivariate data analysis to explore date fruit aroma composition and investigate potential future uses by food industry. A total of 89 volatiles were identified where lipid-derived volatiles and phenylpropanoid derivatives were the major components of date fruit aroma. Multivariate data analyses revealed that 2,3-butanediol, hexanal, hexanol and cinnamaldehyde contributed the most to classification of different varieties. This study provides the most complete map of volatiles in Egyptian date fruit, with Siwi and Sheshi varieties exhibiting the most distinct aroma among studied date varieties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Determination of urinary ortho- and meta-cresol in humans by headspace SPME gas chromatography/mass spectrometry.

    PubMed

    Fustinoni, Silvia; Mercadante, Rosa; Campo, Laura; Scibetta, Licia; Valla, Carla; Foà, Vito

    2005-03-25

    ortho-Cresol (o-C) and meta-cresol (m-C) are minor urinary metabolites of toluene, a widely used chemical with neurotoxicological properties. A new assay for their determination in human urine is here proposed. Urinary cresol sulphates and glucuronates are submitted to acid hydrolysis, urine is neutralized, added with o-cresols-d8, and analytes are sampled in the headspace of urine by SPME using a polydimethylsiloxane fiber. Analysis is performed by GC/MS using, for separation, either a SupelcoWax10 (for o-C) or a chiral CP Cresol (for o-C and m-C) column. The method is very specific, with a range of linearity 0-5.0 mg/l, within- and between-run precision, as coefficient of variation, <15% and <19%, limit of detection of 0.006 mg/l for o-C and 0.007 mg/l for m-C. The procedure is applied to the quantification of cresols in urine from workers exposed to toluene and from subjects belonging to the general population.

  16. SDE and SPME Analysis of Flavor Compounds in Jin Xuan Oolong Tea.

    PubMed

    Sheibani, Ershad; Duncan, Susan E; Kuhn, David D; Dietrich, Andrea M; O'Keefe, Sean F

    2016-02-01

    Simultaneous distillation-extraction (SDE) and solid phase micro extraction (SPME) are procedures used for the isolation of flavor compounds in foods. The purpose of this study was to optimize SDE conditions (solvent and time) and to compare SDE with SPME for the isolation of flavor compounds in Jin Xuan oolong tea using GC-MS and GC-O. The concentration of volatile compounds isolated with diethyl ether was higher (P < 0.05) than for dichloromethane and concentration was higher at 40 min (P < 0.05) than 20 or 60 min extractions. For SDE, 128 volatiles were identified using GC-MS and 45 aroma active compounds using GC-O. Trans-nerolidol was the most abundant compound in oolong tea. The number of volatiles identified using GC-MS was lower in SPME than SDE. For SPME, 59 volatiles and 41 aroma active compounds were identified. The composition of the volatiles isolated by the 2 methods differed considerably but provided complementary information.

  17. Polycyclic aromatic hydrocarbons bioavailability in industrial and agricultural soils: Linking SPME and Tenax extraction with bioassays.

    PubMed

    Guo, Meixia; Gong, Zongqiang; Li, Xiaojun; Allinson, Graeme; Rookes, James; Cahill, David

    2017-06-01

    The aims of this study were to evaluate the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in industrial and agricultural soils using chemical methods and a bioassay, and to study the relationships between the methods. This was conducted by comparing the quantities of PAHs extracted from two manufactured gas plant (MGP) soils and an agricultural soil with low level contamination by solid-phase micro-extraction (SPME) and Tenax-TA extraction with the quantities taken up by the earthworm (Eisenia fetida). In addition, a biodegradation experiment was conducted on one MGP soil (MGP-A) to clarify the relationship between PAH removal by biodegradation and the variation in PAH concentrations in soil pore water. Results demonstrated that the earthworm bioassay could not be used to examine PAH bioavailability in the tested MGP soils; which was the case even in the diluted MGP-A soils after biodegradation. However, the bioassay was successfully applied to the agricultural soil. These results suggest that earthworms can only be used for bioassays in soils with low toxicity. In general, rapidly desorbing concentrations extracted by Tenax-TA could predict PAH concentrations accumulated in earthworms (R(2)=0.66), while SPME underestimated earthworm concentrations by a factor of 2.5. Both SPME and Tenax extraction can provide a useful tool to predict PAH bioavailability for earthworms, but Tenax-TA extraction was proven to be a more sensitive and precise method than SPME for the prediction of earthworm exposure in the agricultural soil.

  18. Headspace analysis of polar organic compounds in biological matrixes using solid phase microextraction (SPME)

    USDA-ARS?s Scientific Manuscript database

    Analysis of biological fluids and waste material is difficult and tedious given the sample matrix. A rapid automated method for the determination of volatile fatty acids and phenolic and indole compounds was developed using a multipurpose sampler (MPS) with solid phase microextraction (SPME) and GC-...

  19. Preparation and application of solid-phase microextraction fiber based on molecularly imprinted polymer for determination of anabolic steroids in complicated samples.

    PubMed

    Qiu, Lijun; Liu, Wei; Huang, Min; Zhang, Lan

    2010-11-26

    A relatively selective, chemically and physically robust SPME fiber was developed in a simple way with testosterone-imprinted polymer, and then directly coupled with gas chromatography-mass spectrometry (GC-MS) for selective extraction and analysis of anabolic steroids. The factors influencing polymerization (i.e., cross-linker, polymerization solvent, polymerization time) were optimized in detail and the polymer was characterized by scanning electron microscope, infrared spectrometer and thermogravimetric analyzer. Furthermore, the extraction performance of the MIP-coated SPME fibers such as extraction ability and selectivity was evaluated. Moreover, the interaction mode between target analytes and fiber coating was deducted. Finally, the method for extraction and determination of androsterone, stanolone, androstenedione and methyltestosterone by the homemade MIP-coated SPME fibers with GC-MS was obtained. It was applied to the simultaneous analysis of four anabolic steroids in the spiked human urine with the satisfactory recoveries.

  20. A new polyethylene glycol fiber prepared by coating porous zinc electrodeposited onto silver for solid-phase microextraction of styrene.

    PubMed

    Sungkaew, Sakchaibordee; Thammakhet, Chongdee; Thavarungkul, Panote; Kanatharana, Proespichaya

    2010-04-01

    A new polyethylene glycol fiber was developed for solid-phase microextraction (SPME) of styrene by electrodepositing porous Zn film on Ag wire substrate followed by coating with polyethylene glycol sol-gel (Ag/Zn/PEG sol-gel fiber). The scanning electron micrographs of fibers surface revealed a highly porous structure. The extraction property of the developed fiber-to-styrene residue from polystyrene packaged food was investigated by headspace solid-phase microextraction (HS-SPME) and analyzed with a gas chromatograph coupled with flame ionization detection (GC-FID). The new Ag/Zn/PEG sol-gel fiber is simple to prepare, low cost, robust, has high thermal stability and long lifetime, up to 359 extractions. Repeatability of one fiber (n=6) was in the range of 4.7-7.5% and fiber-to-fiber reproducibility (n=4) for five concentration values were in the range 3.4-10%. This Ag/Zn/PEG sol-gel fiber was compared to two commercial SPME fibers, 75 microm carboxen/polydimethylsiloxane (CAR/PDMS) and 100 microm polydimethylsiloxane (PDMS). Under their optimum conditions, Ag/Zn/PEG sol-gel fiber showed the highest sensitivity and the lowest detection limit at 0.28+/-0.01 ng mL(-1).

  1. [GC-MS analysis on the volatile components of Platycladus orientalis extracted by HS-SPME and DSE].

    PubMed

    Huang, Chuan-Qi; Zhang, Lin-Bi; Yang, Min; Lei, Mi

    2013-09-01

    To analyze the volatile components of Platycladus orientalis extracted by headspace solid phase microextraction (HS-SPME) and steam distillation-extraction (DSE). The volatile components which were extracted by DSE and analyzed by GC-MS; The HS-SPME conditions was optimized, and the volatile components were analyzed by GC-MS. Sixty-two kinds of volatile components extracted by DSE were isolated and 50 of them were identified; Sixty-eight kinds of volatile components extracted by HS-SPME were isolated and 67 of them were identified. Compared with DSE,HS-SPME has higher retrieval matching and sensitivity, which is more suitable for the analysis of the volatile components of P. orientalis.

  2. Evaluation of the volatile profile of Tuber liyuanum by HS-SPME with GC-MS.

    PubMed

    Liu, Changjiao; Li, Yu

    2017-04-01

    The volatile components of Tuber liyuanum were determined by HS-SPME with GC-MS for the first time. The effects of different fibre coating, extraction time, extraction temperature and sample amount were studied to get optimal extraction conditions. The optimal conditions were SPME fibre of Carboxen/PDMS, extraction time of 40 min, extraction temperature of 80 °C, sample amount of 2 g. Under these conditions 57 compounds in volatile of T. liyuanum were detected with a resemblance percentage above 80%. Aldehydes and aromatics were the main chemical families identified. The contribution of 3-Octanone(11.67%), phenylethyl alcohol (10.60%), isopentana (9.29%) and methylbutana (8.06%) for the total volatile profile were more significant in T. liyuanum than other compounds.

  3. Introduction of coiled solid phase microextraction fiber coated by mesoporous silica/cetyltrimethylammonium bromide for ultra-trace environmental analysis.

    PubMed

    Razmi, Habib; Khosrowshahi, Elnaz Marzi; Farrokhzadeh, Samaneh

    2017-07-14

    In this study, a tiny coiled cupper wire as a novel solid phase microextraction (SPME) fiber was coated with mesoporous silica/cetyltrimethylammonium bromide (MCM-41/CTAB) as an adsorbent by electrochemically assisted self-assembly method and used for the preconcentration of polycyclic aromatic hydrocarbons (PAHs) as model analytes prior to chromatographic determination. Deposition of MCM-41/CTAB on the coiled SPME (C-SPME) fiber resulted in easily controlled and reproducible SPME coatings. Non-calcined MCM-41/CTAB on C-SPME plays a key role in the adsorption of PAHs. Under the optimized experimental conditions, low detection limits (36-1220pgL(-1)), and wide linear dynamic ranges (R(2)>0.98) were achieved in the range of 0.25-25,000, 0.12-15,000, 0.56-32,000, 4.1-100,000ngL(-1) for phenanthrene, anthracene, fluoranthene and pyrene respectively. The reusability of proposed fiber as well as relative standard deviations for repetitive determination of the target analytes was evaluated. The proposed method was successfully applied for determination of PAHs in several real samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Field sampling and determination of formaldehyde in indoor air with solid-phase microextraction and on-fiber derivatization.

    PubMed

    Koziel, J A; Noah, J; Pawliszyn, J

    2001-04-01

    A new sampling and analysis method for formaldehyde in indoor air was tested in several indoor air surveys. The method was based on the use of solid-phase microextraction (SPME) poly(dimethylsiloxane)/divinylbenzene,65-microm fiber and gas chromatography. Indoor air surveys included grab and time-weighted average (TWA) sampling and were completed at six locations using (a) the SPME method employing on-fiber formaldehyde derivatization with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride and (b)the conventional National Institute for Occupational Safety and Health (NIOSH) 2451 method. Sampling time for SPME fiber ranged from 10 min for grab sampling to 8 h for TWA sampling. Sampling locations included a residential house, a rental apartment, an office building, and industrial workplaces. The air concentrations measured by SPME ranged from 10 to 380 ppbv and correlated well with those estimated by the NIOSH method. Results also indicated thatin some cases the formaldehyde concentrations measured in residential air could be much higher than those allowed in occupational settings. The SPME method proved to be accurate, fast, sensitive, and cost-efficient in field sampling applications. This research should be of interest to research, industrial, and regulatory agencies as well as to the general public concerned with indoor air quality.

  5. Microwave/SPME method to quantify pesticide residues in tomato fruits.

    PubMed

    Guillet, Valérie; Fave, Céline; Montury, Michel

    2009-06-01

    A new analytical method using focused microwave-assisted extraction (FMAE), coupled with solid phase micro-extraction (SPME), has been elaborated to determine 25 pesticides used in tomato cultivation. Microwave energy was used for a fast and controlled heating of solvent to selectively extract compounds. Calibration curves were plotted from blank tomato samples spiked at different concentrations with standards. A linear response was obtained between 10 and 1000 microg/Kg for pyrethroids and between 0.1 and 5000 microg/Kg for other compounds. For all studied substances, the resulting correlation coefficient (r(2)) was greater than 0.99. Limits of detection (LOD) and quantification (LOQ) were measured lower than 8 and 25 microg/Kg, respectively. The relative standard deviation (RSD) was determined below 15% for all pesticides. Field incurred tomato samples were used to validate the new FMAE/SPME method. Observed analysis results by using this technique were in good agreement compared to those obtained by two accredited trading laboratories using traditional methods. Four tomato samples, bought in a local market, were also tested with the FMAE/SPME method.

  6. Prediction of partition coefficients of organic compounds between SPME/PDMS and aqueous solution.

    PubMed

    Chao, Keh-Ping; Lu, Yu-Ting; Yang, Hsiu-Wen

    2014-02-14

    Polydimethylsiloxane (PDMS) is commonly used as the coated polymer in the solid phase microextraction (SPME) technique. In this study, the partition coefficients of organic compounds between SPME/PDMS and the aqueous solution were compiled from the literature sources. The correlation analysis for partition coefficients was conducted to interpret the effect of their physicochemical properties and descriptors on the partitioning process. The PDMS-water partition coefficients were significantly correlated to the polarizability of organic compounds (r = 0.977, p < 0.05). An empirical model, consisting of the polarizability, the molecular connectivity index, and an indicator variable, was developed to appropriately predict the partition coefficients of 61 organic compounds for the training set. The predictive ability of the empirical model was demonstrated by using it on a test set of 26 chemicals not included in the training set. The empirical model, applying the straightforward calculated molecular descriptors, for estimating the PDMS-water partition coefficient will contribute to the practical applications of the SPME technique.

  7. Preparation of solid-phase microextraction fiber coated with single-walled carbon nanotubes by electrophoretic deposition and its application in extracting phenols from aqueous samples.

    PubMed

    Li, Quanlong; Wang, Xuefeng; Yuan, Dongxing

    2009-02-27

    A novel solid-phase microextraction (SPME) Pt fiber coated with single-walled carbon nanotubes (SWCNTs) was prepared by electrophoretic deposition (EPD) and applied to the determination of phenols in aqueous samples by direct immersion (DI)-SPME-HPLC-UV. The results revealed that EPD was a simple and reproducible technique for the preparation of SPME fibers coated with SWCNTs without the use of adhesive. The obtained SWCNT coating did not swell in organic solvents nor strip off from substrate, and possessed high mechanical strength due to the strong Van der Waals attractions between the surfaces of the SWCNTs. The prepared SPME fiber was conductive since both SWCNT coating and Pt wire were conductive. Using Pt wire as substrate, the fiber was unbreakable. Owing to the presence of oxygenated groups on SWCNTs and the high surface area of SWCNTs, the SWCNT fiber was similar to or superior to commercial PA fiber in extracting the studied phenols from aqueous sample. A durability of more than 80 analyses was achieved for one unique fiber. Under optimized conditions, the detection limits for the phenols varied between 0.9 and 3.8 ng/mL, the precisions were in the range of 0.7-3.2% (n=3), and linear ranges were within 10 and 300 ng/mL. The method was successfully applied to the analysis of spiked seawater and tap water samples with the recoveries from 87.5 to 102.0%.

  8. Analysis of haloacetic acids in water and air (aerosols) from indoor swimming pools using HS-SPME/GC/ECD.

    PubMed

    Sá, Christopher S A; Boaventura, Rui A R; Pereira, Isabel B

    2012-01-01

    A solid phase microextraction method was used for the analysis of nine haloacetic acids (HAAs) in water and air (aerosols) from indoor swimming pools (ISPs). The analysis is characterized by derivatization of HAAs to their methyl-esters with dimethyl sulphate, headspace solid phase microextraction (HS-SPME) with a Carboxen-polydimethylsiloxane (CAR-PDMS) fiber and gas chromatography - electron capture detector (GC/ECD). High correlation coefficients were obtained for esters mixture calibration lines and detection limits were found to be at the low ppb level. Repeatability was assessed and coefficients of variation varied from 10 to 20%. Reproducibility was also evaluated and coefficients of variation from 15 to 25% were obtained. Analytical results from four Portuguese ISPs showed that the mean concentration of total HAAs (THAAs) in water ranged from 10 ± 2 to 183 ± 28 μg/L in which 55 ± 20% corresponded to trichloroacetic and dichloroacetic acids (TCAA and DCAA). THAAs highest concentrations were directly related to higher ISPs' water organic matter content. In the lack of European specific regulation for water from ISPs and taking into consideration that ingestion is a form of exposure, THAAs concentration values were compared with drinking water maximum contamination level (MCL) of 60 μg/L proposed by the US EPA for the sum of five HAAs. In 35% of water sampling campaigns the sum of MBAA (monobromoacetic acid), MCAA (monochloroacetic acid), DCAA and TCAA exceeded that MCL value. The concentrations obtained for THAAs in the ISPs' atmosphere ranged from 5 ± 1 to 64 ± 10 μg/m(3) (T = 28°C at 5 cm above the water surface) and were proportional to the aerosols' quantity, which was deeply related to indoor air ventilation system.

  9. Use of solid phase microextraction to estimate toxicity: relating fiber concentrations to body residues--part II.

    PubMed

    Ding, Yuping; Landrum, Peter F; You, Jing; Harwood, Amanda D; Lydy, Michael J

    2012-09-01

    In the companion paper, solid phase microextraction (SPME) fiber concentrations were used as a dose metric to evaluate the toxicity of hydrophobic pesticides, and concentration-response relationships were found for the hydrophobic pesticides tested in the two test species. The present study extends the use of fiber concentrations to organism body residues to specifically address biotransformation and provide the link to toxic response. Test compounds included the organochlorines p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT), p,p'-dichlorodiphenyldichloroethane (p,p'-DDD), and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE); two pyrethroids, permethrin and bifenthrin; and an organophosphate, chlorpyrifos. Toxicity, body residues, and biotransformation of the target compounds were determined for the midge Chironomus dilutus and the amphipod Hyalella azteca. Significant regression relationships were found without regard to chemical, extent of biotransformation, or whether the chemical reached steady state in the organisms. The equilibrium SPME fiber concentrations correlated with the parent compound concentration in the biota; however, the regressions were duration specific. Furthermore, the SPME fiber-based toxicity values yielded species-specific regressions with the parent compound-based toxicity values linking the use of SPME fiber as a dose metric with tissue residues to estimate toxic response. Copyright © 2012 SETAC.

  10. On-fiber furan formation from volatile precursors: a critical example of artefact formation during Solid-Phase Microextraction.

    PubMed

    Adams, An; Van Lancker, Fien; De Meulenaer, Bruno; Owczarek-Fendor, Agnieszka; De Kimpe, Norbert

    2012-05-15

    For the analysis of furan, a possible carcinogen formed during thermal treatment of food, Solid-Phase Microextraction (SPME) is a preferred and validated sampling method. However, when volatile furan precursors are adsorbed on the carboxen/PDMS fiber, additional amounts of furan can be formed on the fiber during thermal desorption, as shown here for 2-butenal and furfural. No significant increase in furan amounts was found upon heating the furan precursor 2-butenal, indicating that the furan amounts formed during precursor heating experiments are negligible as compared to the additional amounts of furan formed during fiber desorption. This artefactual furan formation increased with increasing desorption time, but especially with increasing desorption temperature. Although this effect was most pronounced on the Carboxen/PDMS SPME-fiber, it was also noted on two other SPME-fibers tested (PDMS and DVB/Carboxen/PDMS). The general impact on furan data from food and model systems in literature will depend on the amounts of volatile precursors present, but will probably remain limited. However, considering the importance of this worldwide food contaminant, special care has to be taken during SPME-analysis of furan. Especially when performing precursor studies, static headspace sampling should preferably be applied for furan analysis.

  11. In situ hydrothermal growth of metal-organic framework 199 films on stainless steel fibers for solid-phase microextraction of gaseous benzene homologues.

    PubMed

    Cui, Xiao-Yan; Gu, Zhi-Yuan; Jiang, Dong-Qing; Li, Yan; Wang, He-Fang; Yan, Xiu-Ping

    2009-12-01

    Metal-organic frameworks (MOFs) have received great attention due to their fascinating structures and intriguing potential applications in various fields. Herein, we report the first example of the utilization of MOFs for solid-phase microextraction (SPME). MOF-199 with unique pores and open metal sites (Lewis acid sites) was employed as the coating for SPME fiber to extract volatile and harmful benzene homologues. The SPME fiber was fabricated by in situ hydrothermal growth of thin MOF-199 films on etched stainless steel wire. The MOF-199-coated fiber not only offered large enhancement factors from 19,613 (benzene) to 110,860 (p-xylene), but also exhibited wide linearity with 3 orders of magnitude for the tested benzene homologues. The limits of detection for the benzene homologues were 8.3-23.3 ng L(-1). The relative standard deviation (RSD) for six replicate extractions using one SPME fiber ranged from 2.0% to 7.7%. The fiber-to-fiber reproducibility for three parallel prepared fibers was 3.5%-9.4% (RSD). Indoor air samples were analyzed for the benzene homologues using the SPME with the MOF-199-coated fiber in combination with gas chromatography-flame ionization detection. The recoveries for the spiked benzene homologues in the collected indoor air samples were in the range of 87%-106%. The high affinity of the MOF-199-coated fiber to benzene homologues resulted from the combined effects of the large surface area and the unique porous structure of the MOF-199, the pi-pi interactions of the aromatic rings of the analytes with the framework 1,3,5-benzenetricarboxylic acid molecules, and the pi-complexation of the electron-rich analytes to the Lewis acid sites in the pores of MOF-199.

  12. Development of the HS-SPME-GC-MS/MS method for analysis of chemical warfare agent and their degradation products in environmental samples.

    PubMed

    Nawała, Jakub; Czupryński, Krzysztof; Popiel, Stanisław; Dziedzic, Daniel; Bełdowski, Jacek

    2016-08-24

    After World War II approximately 50,000 tons of chemical weapons were dumped in the Baltic Sea by the Soviet Union under the provisions of the Potsdam Conference on Disarmament. These dumped chemical warfare agents still possess a major threat to the marine environment and to human life. Therefore, continue monitoring of these munitions is essential. In this work, we present the application of new solid phase microextraction fibers in analysis of chemical warfare agents and their degradation products. It can be concluded that the best fiber for analysis of sulfur mustard and its degradation products is butyl acrylate (BA), whereas for analysis of organoarsenic compounds and chloroacetophenone, the best fiber is a co-polymer of methyl acrylate and methyl methacrylate (MA/MMA). In order to achieve the lowest LOD and LOQ the samples should be divided into two subsamples. One of them should be analyzed using a BA fiber, and the second one using a MA/MMA fiber. When the fast analysis is required, the microextraction should be performed by use of a butyl acrylate fiber because the extraction efficiency of organoarsenic compounds for this fiber is acceptable. Next, we have elaborated of the HS-SPME-GC-MS/MS method for analysis of CWA degradation products in environmental samples using laboratory obtained fibers The analytical method for analysis of organosulfur and organoarsenic compounds was optimized and validated. The LOD's for all target chemicals were between 0.03 and 0.65 ppb. Then, the analytical method developed by us, was used for the analysis of sediment and pore water samples from the Baltic Sea. During these studies, 80 samples were analyzed. It was found that 25 sediments and 5 pore water samples contained CWA degradation products such as 1,4-dithiane, 1,4-oxathiane or triphenylarsine, the latter being a component of arsine oil. The obtained data is evidence that the CWAs present in the Baltic Sea have leaked into the general marine environment.

  13. Investigation of a Quantitative Method for the Analysis of Chiral Monoterpenes in White Wine by HS-SPME-MDGC-MS of Different Wine Matrices.

    PubMed

    Song, Mei; Xia, Ying; Tomasino, Elizabeth

    2015-04-22

    A valid quantitative method for the analysis of chiral monoterpenes in white wine using head-space solid phase micro-extraction-MDGC-MS (HS-SPME-MDGC-MS) with stable isotope dilution analysis was established. Fifteen compounds: (S)-(-)-limonene, (R)-(+)-limonene, (+)-(2R,4S)-cis-rose oxide, (-)-(2S,4R)-cis-rose oxide, (-)-(2R,4R)-trans-rose oxide, (+)-(2S,4S)-cis-rose oxide, furanoid (+)-trans-linalool oxide, furanoid (-)-cis-linalool oxide, furanoid (-)-trans-linalool oxide, furanoid (+)-cis-linalool oxide, (-)-linalool, (+)-linalool, (-)-α-terpineol, (+)-α-terpineol and (R)-(+)-β-citronellol were quantified. Two calibration curves were plotted for different wine bases, with varying residual sugar content, and three calibration curves for each wine base were investigated during a single fiber's lifetime. This was needed as both sugar content and fiber life impacted the quantification of the chiral terpenes. The chiral monoterpene content of six Pinot Gris wines and six Riesling wines was then analyzed using the verified method. ANOVA with Tukey multiple comparisons showed significant differences for each of the detected chiral compounds in all 12 wines. PCA score plots showed a clear separation between the Riesling and Pinot Gris wines. Riesling wines had greater number of chiral terpenes in comparison to Pinot Gris wines. Beyond total terpene content it is possible that the differences in chiral terpene content may be driving the aromatic differences in white wines.

  14. High operationally stable sol-gel diglycidyloxycalix[4]arene fiber for solid-phase microextraction of propranolol in human urine.

    PubMed

    Li, Xiujuan; Zeng, Zhaorui; Hu, Mingbai; Mao, Ming

    2005-12-01

    A simple, sensitive, and accurate method for the determination of propranolol in human urine has been developed based on solid-phase microextraction (SPME) followed by GC-flame ionization detection (FID). The sol-gel 5,11,17,23-tetra-tert-butyl-25,27-dihydroxy-26,28-diglycidyloxycalix[4]arene/hydroxy-terminated silicone oil (diglycidyloxy-C[4]/OH-TSO) fiber was prepared to accommodate to the harsh extraction conditions. It possesses excellent alkali-proof ability and retains its extraction characteristics intact even after treatment with highly alkaline (4 mol/L) NaOH solution. Direct chemical bonding of the coating to the fiber surface provides it with excellent solvent resistance and the introduction of calixarene enhances its thermal stability. The newly developed sol-gel calixarene coating was effectively used for the extraction of propranolol in human urine. No interference with the determination of propranolol was observed from the urine components. Standard curves were linear in the range 50-5000 microg/L for headspace-SPME (HS-SPME) and 25-25000 microg/L for direct-SPME (Dir-SPME) with correlation coefficients better than 0.9999. The detection limit was 0.275 microg/L for HS-SPME and 0.193 microg/L for Dir-SPME. The method was validated using standard addition methodology and recovery values were between 91.4 and 117% for both the sampling modes with the RSDs less than 6% at different concentration levels in the linear ranges. The results obtained by both the sampling modes were feasible, and no significant differences between them regarding accuracy, precision, and detection limits were seen.

  15. Sulfonated nanoparticles doped electrospun fibers with bioinspired polynorepinephrine sheath for in vivo solid-phase microextraction of pharmaceuticals in fish and vegetable.

    PubMed

    Qiu, Junlang; Chen, Guosheng; Zhu, Fang; Ouyang, Gangfeng

    2016-07-15

    In this study, the biocompatible copolymer Poly(lactic acid-co-caprolactone) (PLCL) doped with sulfonated γ-Al2O3 nanoparticles was used for electrospun on stainless wires. The electrospun fibers were further sheathed by the self-polymerization of norepinephrine, a catecholamine found both in neurotransmitters and mussel adhesive proteins, to improve the surface hydrophilicity and provide a smooth bio-interface. The modified electrospun fibers on stainless wires were developed as novel custom-made solid-phase microextraction (SPME) fibers. These fibers exhibited much higher extraction efficiency compared to the polydimethylsiloxane (PDMS) fibers, especially to the sulfonamides. The custom-made SPME fibers also showed excellent stability with the relative standard deviations (RSDs) of intra-fiber ranged from 1.98% to 9.86% and RSDs of inter-fiber ranged from 4.36% to 15.6%. Moreover, these fibers were also demonstrated to be anti-biofouling and suitable for in vivo sampling. The custom-made SPME fibers were successfully applied to determine the Pharmaceutical concentrations in living fishes and vegetables. The accuracies were verified by the comparison with liquid extraction and the sensitivities were demonstrated to be satisfying with the limits of detection (LODs) ranged from 0.16ng/g to 5.35ng/g in fish muscle and 0.02ng/g to 8.02ng/g in vegetable stem.

  16. Analysis of BTEX and other substituted benzenes in water using headspace SPME-GC-FID: method validation.

    PubMed

    Almeida, Cristina M M; Boas, Luís Vilas

    2004-01-01

    The analysis of BTEX and other substituted benzenes in water samples using solid phase microextraction (SPME) and quantification by gas chromatography with flame ionization detection (GC-FID) was validated. The best analytical conditions were obtained using PDMS/DVB/CAR fibre using headspace extraction (HS-SPME) at 50 [degree]C for 20 min without stirring. The linear range for each compound by HS-SPME with GC/FID was defined. The detection limits for these compounds obtained with PDMS/DVB/CAR fibre and GC/FID were: benzene (15 ng L(-1)), toluene (160 ng L(-1)), monochlorobenzene (54 ng L(-1)), ethylbenzene (32 ng L(-1)), m-xylene (56 ng L(-1)), p-xylene (69 ng L(-1)), styrene (35 ng L(-1)), o-xylene (42 ng L(-1)), m-dichlorobenzene (180 ng L(-1)), p-dichlorobenzene (230 ng L(-1)), o-dichlorobenzene (250 ng L(-1)) and trichlorobenzene (260 ng L(-1)). This headspace SPME-GC-FID method was compared with a previously validated method of analysis using closed-loop-stripping analysis (CLSA). The headspace SPME-GC-FID method is suitable for monitoring the production and distribution of potable water and was used, in field trials, for the analysis of samples from main intakes of water (surface or underground) and from the water supply system of a large area (Lisbon and neighbouring municipalities).

  17. Determination of different recreational drugs in hair by HS-SPME and GC/MS.

    PubMed

    Merola, Gustavo; Gentili, Stefano; Tagliaro, Franco; Macchia, Teodora

    2010-08-01

    A simple procedure combining headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC/MS) to detect and quantify amphetamines, ketamine, methadone, cocaine, cocaethylene and Delta(9)-tetrahydrocannabinol (THC) in hair is described. This procedure allows, in a single sample, even scant, analysis of drugs requiring different analytical conditions. A hair sample (10 mg) is washed and subjected to acidic hydrolysis. Then the HS-SPME is carried out (10 min at 90 degrees C) for amphetamines, ketamine, methadone, cocaine and cocaethylene. For derivatization of analytes, the fibre is introduced into the headspace of another closed vial containing acetic anhydride. After a chromatographic run, an alkaline hydrolysis for THC analysis is carried out in the same vial containing the hair sample previously used. For adsorption, the solid-phase microextraction needle is inserted into the headspace of the vial and the fibre is exposed for 30 min at 150 degrees C. For derivatization of analytes, the fibre is introduced into the headspace of another closed vial containing N-methyl-N-(trimethylsilyl)trifluoroacetamide. The GC/MS parameters were the same for both chromatographic runs. The linearity was proved to be between 0.01 and 10.00 ng/mg. The repeatability (intra- and interday precision) was below 10% as the coefficient of variation for all compounds. The accuracy, as the relative recovery, was 96.2-103.5% (spiked samples) and 88.6-101.7% (quality control sample). The limit of detection ranged from 0.01 to 0.12 ng/mg, and the limit of quantification ranged from 0.02 to 0.37 ng/mg. Application of the procedure to real hair samples is described. To the best of our knowledge, the proposed procedure combining HS-SPME and GC/MS is the first one be to successfully applied to the simultaneous determination of most of the common recreational drugs, including THC, in a single hair sample.

  18. Development of a rapid and sensitive method for the simultaneous determination of 1,2-dibromoethane, 1,4-dichlorobenzene and naphthalene residues in honey using HS-SPME coupled with GC-MS.

    PubMed

    Tsimeli, K; Triantis, T M; Dimotikali, D; Hiskia, A

    2008-06-09

    A new method for the simultaneous determination of 1,4-dichlorobenzene (p-DCB), naphthalene and 1,2-dibromoethane (1,2-DBE) residues in honey has been developed. Analysis is carried out using gas chromatography-mass spectrometry (GC/MS) in selected ion monitoring mode (SIM), after extraction and preconcentration of target analytes by headspace solid-phase microextraction (HS-SPME), with a 100 microm film thickness polydimethylsiloxane (PDMS) fiber. Several parameters affecting the extension of the adsorption process (i.e., addition of salt, extraction time, extraction temperature) were studied. The optimal conditions for the determination of these analytes were established. The proposed HS-SPME method showed good sensitivity, without carryover between the samples. Linearity was studied from 5 to 2500 microg kg(-1) for p-DCB, 0.5 to 500 microg kg(-1) for naphthalene and 5 to 500 microg kg(-1) honey for 1,2-DBE with correlation coefficients (r(2)) ranging from 0.9901 to 0.9999. Precision was assessed and both intra and inter-day R.S.D.s (%) were below 6.3%. The detection limits were found to be 1, 0.1 and 2 microg kg(-1) honey for p-DCB, naphthalene and 1,2-DBE, respectively. The percentage recoveries that were evaluated with the proposed HS-SPME method and the standard addition calibration technique gave values among 72.8 and 104.3% for measurements in samples spiked with one target analyte or mixtures of the three. This method has been applied for the analysis of unknown honey samples. The results showed an excellent applicability of the proposed method for the determination of the target compounds in honey samples.

  19. [Analysis of volatile oil in herb of pimpinella candolleana by SPME-GC-MS].

    PubMed

    Zhao, Chao; Chen, Hua-guo; Cheng, Li; Zhou, Xin; Yang, Zai-bo; Zhang, Yi-sha

    2007-09-01

    To analyze components of volatile oil from the herb of Pimpinella candolleana. The components of volatile oil were investigated by SPME-GC-MS. Sixty-five compounds were identified which accounted for 92. 17% of total volatile oil. The main constituents in the essential oil were alpha-zingiberene (24.82%), pregeijerene (16.27%), beta-bisabolene (4. 82%), 2-isopropyl-5-methyl-9-methylene-bicyclo [ 4. 4. 0] dec-l-ene (4.03%), beta-sesquiphellandrene (3.98%), trans-beta-farnesene (3.68%), ar-curcumene (3.54%).

  20. Silver nanoparticle aggregates on metal fibers for solid phase microextraction-surface enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons.

    PubMed

    Liu, Cuicui; Zhang, Xiaoli; Li, Limei; Cui, Jingcheng; Shi, Yu-e; Wang, Le; Zhan, Jinhua

    2015-07-07

    Solid phase microextraction (SPME), a solvent free technique for sample preparation, has been successfully coupled with GC, GC-MS, and HPLC for environmental analysis. In this work, a method combining solid phase microextraction with surface enhanced Raman spectroscopy (SERS) is developed for detection of polycyclic aromatic hydrocarbons (PAHs). Silver nanoparticle aggregates were deposited on the Ag-Cu fibers via layer-by-layer deposition, which were modified with propanethiol (PTH). The SERS-active SPME fiber was immersed in water directly to extract PAHs and then detected using a portable Raman spectrometer. The pronounced valence vibration of the C-C bond at 1030 cm(-1) was chosen as an internal standard peak for the constant concentration of PTH. The RSD values of the stability and the uniformity of the SERS-active SPME fiber are 2.97% and 5.66%, respectively. A log-log plot of the normalized SERS intensity versus fluoranthene concentration showed a linear relationship (R(2) = 0.95). The detection limit was 7.56 × 10(-10) M and the recovery rate of water samples was in the range of 95% to 115%. The method can also be applied to detection of PAH mixtures, and each component of the mixtures can be distinguished by Raman characteristic peaks. The SERS-active SPME fiber could be further confirmed by GC-MS.

  1. Identification of volatile components in yak butter using SAFE, SDE and HS-SPME-GC/MS.

    PubMed

    Li, Ning; Sun, Bao-Guo; Zheng, Fu-Ping; Chen, Hai-Tao; Liu, Si-Yuan; Gu, Chen; Song, Zhen-Yang

    2012-01-01

    The volatile components of yak butter were isolated by solvent-assisted flavour evaporation (SAFE), simultaneous distillation extraction (SDE; dichloromethane and diethyl ether as solvent, respectively) and headspace solid-phase microextraction (HS-SPME; CAR/PDMS, PDMS/DVB and DVB/CAR/PDMS fibre extraction, respectively) and were analysed by GC/MS. A total of 83 volatile components were identified under six different conditions, including 28 acids, 12 esters, 11 ketones, 10 lactones, 10 alcohols, 4 other compounds, 2 aldehydes, 2 unsaturated aldehydes, 1 furan, 1 sulphur-containing compound, 1 unsaturated alcohol and 1 unsatruated ketone. Among them, 51 were identified by SAFE, 58 by SDE (45 with dichloromethane as solvent and 41 with diethyl ether as solvent) and 40 by HS-SPME (26 with CAR/PDMS; 26 with PDMS/DVB and 32 with DVB/CAR/PDMS). Three pretreatment methods were compared to show that the volatile components obtained using different methods varied greatly, both in terms of categories and in content. Therefore, a multi-pretreatment method should be adopted, together with GC/MS. A total of 25 aroma-active compounds were detected by gas chromatography-olfactometry, among which 20 aroma-active compounds were found by SDE (14 with dichloromethane as solvent and 14 with diethyl ether as solvent) and 17 by SAFE.

  2. Dynamic speciation analysis of atrazine in aqueous latex nanoparticle dispersions using solid phase microextraction (SPME).

    PubMed

    Benhabib, Karim; Town, Raewyn M; van Leeuwen, Herman P

    2009-04-09

    Solid phase microextraction (SPME) is applied in the dynamic speciation analysis of the pesticide atrazine in an aqueous medium containing sorbing latex nanoparticles. It is found that the overall rate of extraction of the analyte is faster than in the absence of nanoparticles and governed by the coupled diffusion of free and particle-bound atrazine toward the solid/sample solution interface. In the eventual equilibrium the total atrazine concentration in the solid phase is dictated by the solid phase/water partition coefficient (K(sw)) and the concentration of the free atrazine in the sample solution. These observations demonstrate that the nanoparticles do not enter the solid phase. The experimental data show that the rate of release of sorbed atrazine from the latex particles is fast on the effective time scale of the microextraction process. A lability criterion is derived to quantitatively describe the relative rates of these two processes. All together, the results indicate that SPME has a strong potential for dynamic speciation analysis of organic compounds in media containing sorbing nanoparticles.

  3. Determination of trace levels of aquaculture chemotherapeutants in seawater samples by SPME-GC-MS/MS.

    PubMed

    García-Rodríguez, Diego; Carro, Antonia M; Lorenzo, Rosa A; Fernández, Fátima; Cela, Rafael

    2008-08-01

    A sensitive and efficient solid-phase microextraction (SPME) method for the determination of organophosphorous (OPPs) and pyrethroid pesticides (Pyrs) in aquaculture-seawater samples by using GC with MS/MS (GC-MS/MS) was developed. Dichlorvos and chlorpyrifos (OPPs); permethrin, alpha-cypermethrin and deltamethrin (Pyrs) were selected according to their use as chemotherapeutants in the aquaculture industry. Different parameters affecting extraction efficiency such as fibre coating, agitation, pH and extraction time profiles were investigated. An experimental central composite design (alpha = 1) and desirability functions were used for the simultaneous optimization of extraction temperature and sample volume. Finally, a method based on direct SPME in 40 min at 75 degrees C using 100-microm-thick poly(dimethyl)siloxane (PDMS) fibre and 20 mL of sample volume is proposed. The method was validated, exhibiting good linearity, precision and accuracy parameters with picogram per millilitre LODs. The proposed methodology was applied to determine the ultratrace levels of OPPs and Pyrs in aquaculture-seawater samples by the standard addition approach, which proved to be reliable and sensitive, in addition to requiring only small amounts of sample.

  4. MQ NMR and SPME analysis of nonlinearity in the degradation of a filled silicone elastomer

    SciTech Connect

    Chinn, S C; Alviso, C T; Berman, E S; Harvey, C A; Maxwell, R S; Wilson, T S; Cohenour, R; Saalwachter, K; Chasse, W

    2008-10-10

    Radiation induced degradation of polymeric materials occurs via numerous, simultaneous, competing chemical reactions. Though degradation is typically found to be linear in adsorbed dose, some silicone materials exhibit non-linear dose dependence due to dose dependent dominant degradation pathways. We have characterized the effects of radiative and thermal degradation on a model filled-PDMS system, Sylgard 184 (commonly used as an electronic encapsulant and in biomedical applications), using traditional mechanical testing, NMR spectroscopy, and sample headspace analysis using Solid Phase Micro-Extraction (SPME) followed by Gas Chromatography/Mass Spectrometry (GC/MS). The mechanical data and {sup 1}H spin-echo NMR indicated that radiation exposure leads to predominantly crosslinking over the cumulative dose range studies (0 to 250 kGray) with a rate roughly linear with dose. {sup 1}H Multiple Quantum NMR detected a bimodal distribution in the network structure, as expected by the proposed structure of Sylgard 184. The MQ-NMR further indicated that the radiation induced structural changes were not linear in adsorbed dose and competing chain scission mechanisms contribute more largely to the overall degradation process in the range of 50 -100 kGray (though crosslinking still dominates). The SPME-GC/MS data were analyzed using Principal Component Analysis (PCA), which identified subtle changes in the distributions of degradation products (the cyclic siloxanes and other components of the material) as a function of age that provide insight into the dominant degradation pathways at low and high adsorbed dose.

  5. Quantification of Polyfunctional Thiols in Wine by HS-SPME-GC-MS Following Extractive Alkylation.

    PubMed

    Musumeci, Lauren E; Ryona, Imelda; Pan, Bruce S; Loscos, Natalia; Feng, Hui; Cleary, Michael T; Sacks, Gavin L

    2015-07-06

    Analyses of key odorous polyfunctional volatile thiols in wines (3-mercaptohexanol (3-MH), 3-mercaptohexylacetate (3-MHA), and 4-mercapto-4-methyl-2-pentanone (4-MMP)) are challenging due to their high reactivity and ultra-trace concentrations, especially when using conventional gas-chromatography electron impact mass spectrometry (GC-EI-MS). We describe a method in which thiols are converted to pentafluorobenzyl (PFB) derivatives by extractive alkylation and the organic layer is evaporated prior to headspace solid phase microextraction (HS-SPME) and GC-EI-MS analysis. Optimal parameters were determined by response surface area modeling. The addition of NaCl solution to the dried SPME vials prior to extraction resulted in up to less than fivefold improvement in detection limits. Using 40 mL wine samples, limits of detection for 4-MMP, 3-MH, and 3-MHA were 0.9 ng/L, 1 ng/L, and 17 ng/L, respectively. Good recovery (90%-109%) and precision (5%-11% RSD) were achieved in wine matrices. The new method was used to survey polyfunctional thiol concentrations in 61 commercial California and New York State wines produced from V. vinifera (Riesling, Gewürztraminer, Cabernet Sauvignon, Sauvignon blanc and non-varietal rosé wines), V. labruscana (Niagara), and Vitis spp. (Cayuga White). Mean 4-MMP concentrations in New York Niagara (17 ng/L) were not significantly different from concentrations in Sauvignon blanc, but were significantly higher than 4-MMP in other varietal wines.

  6. Development of a novel method for detection of Clostridium difficile using HS-SPME-GC-MS.

    PubMed

    Tait, E; Hill, K A; Perry, J D; Stanforth, S P; Dean, J R

    2014-04-01

    A novel method has been developed that allows successful differentiation between Clostridium difficile culture-positive and culture-negative stool samples based on volatile organic compound (VOC) evolution and detection by headspace solid-phase microextraction coupled with gas chromatography mass spectrometry (HS-SPME-GC-MS). The method is based on the activation of p-hydroxyphenylacetate decarboxylase produced by Cl. difficile and the detection of a specific VOC, that is 2-fluoro-4-methylphenol from an enzyme substrate. In addition, other VOCs were good indicators for Cl. difficile, that is isocaproic acid and p-cresol, although they could not be used alone for identification purposes. One hundred stool samples were tested, of which 77 were positive by culture. Detection using HS-SPME-GC-MS allowed confirmation of the presence of Cl. difficile within 18 h with a sensitivity and specificity of 83·1 and 100%, respectively. It is recommended that this new approach could be used alongside conventional methods for Cl. difficile detection, including toxin detection methods, which would allow any false-negative results to be eliminated. The ability to identify Cl. difficile-positive stool samples by the analysis of VOCs could allow the development of a VOC detection device which could allow rapid diagnosis of disease and hence prompt treatment with appropriate antibiotics. © 2013 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  7. Preparation and characterization of porous carbon material-coated solid-phase microextraction metal fibers.

    PubMed

    Zhu, Fang; Guo, Jiaming; Zeng, Feng; Fu, Ruowen; Wu, Dingcai; Luan, Tiangang; Tong, Yexiang; Lu, Tongbu; Ouyang, Gangfeng

    2010-12-10

    Two kinds of porous carbon materials, including carbon aerogels (CAs), wormhole-like mesoporous carbons (WMCs), were synthesized and used as the coatings of solid-phase microextraction (SPME) fibers. By using stainless steel wire as the supporting core, six types of fibers were prepared with sol-gel method, direct coating method and direct coating plus sol-gel method. Headspace SPME experiments indicated that the extraction efficiencies of the CA fibers are better than those of the WMC fibers, although the surface area of WMCs is much higher than that of CAs. The sol-gel-CA fiber (CA-A) exhibited excellent extraction properties for non-polar compounds (BTEX, benzene, toluene, ethylbenzene, o-xylene), while direct-coated CA fiber (CA-B) presented the best performance in extracting polar compounds (phenols). The two CA fibers showed wide linear ranges, low detection limits (0.008-0.047μgL(-1) for BTEX, 0.15-5.7μgL(-1) for phenols) and good repeatabilities (RSDs less than 4.6% for BTEX, and less than 9.5% for phenols) and satisfying reproducibilities between fibers (RSDs less than 5.2% for BTEX, and less than 9.9% for phenols). These fibers were successfully used for the analysis of water samples from the Pearl River, which demonstrated the applicability of the home-made CA fibers. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Silica-based ionogels: nanoconfined ionic liquid-rich fibers for headspace solid-phase microextraction coupled with gas chromatography-barrier discharge ionization detection.

    PubMed

    Pena-Pereira, Francisco; Marcinkowski, Lukasz; Kloskowski, Adam; Namieśnik, Jacek

    2014-12-02

    In this work, hybrid silica-based materials with immobilized ionic liquids (ILs) were prepared by sol-gel technology and evaluated as solid-phase microextraction (SPME) fiber coatings. High loadings of the IL 1-methyl-3-butylimidazolium bis(trifluoromethylsulfonyl)imide ([C4MIM][TFSI]) were confined within the hybrid network. Coatings composition and morphology were evaluated using scanning electron microscopy and energy dispersive X-ray spectrometry. The obtained ionogel SPME fibers exhibited high extractability for aromatic volatile compounds, yielding good sensitivity and precision when combined with a gas chromatograph with barrier ionization discharge (GC-BID) detection. A central composite design was used for assessing the effect of experimental parameters on the extraction process. Under optimized conditions, the proposed ionogel SPME fiber coatings enabled the achievement of excellent enrichment factors (up to 7400). The limits of detection (LODs) were found in the range 0.03-1.27 μg L(-1), whereas the repeatability and fiber-to-fiber reproducibility were 5.6% and 12.0% on average, respectively. Water samples were analyzed by the proposed methodology, showing recovery values in the range of 88.7-113.9%. The results obtained in this work suggest that ionogels can be promising coating materials for future applications of SPME and related sample preparation techniques.

  9. Polypyrrole/sol-gel composite as a solid-phase microextraction fiber coating for the determination of organophosphorus pesticides in water and vegetable samples.

    PubMed

    Saraji, Mohammad; Rezaei, Behzad; Boroujeni, Malihe Khalili; Bidgoli, Ali Akbar Hajialiakbari

    2013-03-01

    A novel solid-phase microextraction (SPME) fiber coated with polypyrrole/sol-gel composite was prepared through electrochemical deposition. The composite polymer coating was prepared using a three-electrode electrochemical system and directly deposited on a stainless steel wire by applying a constant potential (1.2V for 1000 s). The coating has porous surface structure, stable performance in high temperature, and good coating preparation reproducibility. The SPME composite coating was evaluated by analyzing some organophosphorus pesticides (OPPs) in water and vegetable samples followed by gas chromatography and nitrogen phosphorus detection. Different SPME parameters influencing the extraction efficiency such as coating thickness, salt concentration, stirring rate, extraction time and temperature, desorption time and desorption temperature were investigated. Under the optimized conditions, the coating showed better extraction efficiency than polypyrrole and commercial SPME fibers. The detection limits were 1.5-10 ng L(-1). Relative standard deviations for intra- and inter-day precision for a single fiber were in the range of 1.1-2.9% and 2.2-4.2%, respectively. Fiber to fiber reproducibility was in the range of 6.0-10.1% (n=3). The calibration curves were linear in the concentration range from 5 to 2000 ng L(-1) (r(2)>0.9953). Finally, the developed method was applied for the analysis of cucumber, lettuce, tap and well water samples and the relative recovery was found to be in the range of 80-109%, at the optimum conditions.

  10. A headspace solid-phase microextraction gas-chromatographic mass-spectrometric method (HS-SPME-GC/MS) to quantify hexanal in butter during storage as marker of lipid oxidation.

    PubMed

    Panseri, Sara; Soncin, Silvia; Chiesa, Luca Maria; Biondi, Pier Antonio

    2011-07-15

    A method using headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC/MS) was developed and validated for the extraction and quantification of hexanal content in butter (at ngg(-1) level) during storage at 4°C. The variability of hexanal content among seasons of production and the influence of high extraction temperature on ex-novo formation of hexanal were also evaluated. The HS-SPME conditions were optimised and analytical parameters of the method (linearity, accuracy, and precision) demonstrate its usefulness. The reproducibility and accuracy of the quantitative analysis was assured by the use of D(12)-hexanal as internal standard. For the applications, the headspace was extracted using CAR/PDMS fiber for 180min at 4°C. Hexanal contents in samples during all storage period (shelf-life) and from butters produced in different seasons were analysed. Butter samples at the end of shelf-life and samples produced in August showed highest values of hexanal, confirming that the temperature both in storage and distribution phases represents a critical factor to maintain the quality of butter.

  11. Comparison of characteristic flavor and aroma volatiles in melons and standards using solid phase microextraction (SPME) and Stir Bar Sorptive Extraction (SBSE) with GC-MS.

    USDA-ARS?s Scientific Manuscript database

    Stir bar sorptive extraction (SBSE) is a technique for extraction and analysis of organic compounds in aqueous matrices, similar in theory to solid phase microextraction (SPME). SBSE has been successfully used to analyze several organic compounds, including food matrices. When compared with SPME, ...

  12. Freeze-thaw method improves the detection of volatile compounds in insects using Headspace Solid-Phase Microextraction (HS-SPME)

    USDA-ARS?s Scientific Manuscript database

    Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography–mass spectrometry (GC-MS) is commonly used in analyzing insect volatiles. In order to improve the detection of volatiles in insects, a freeze-thaw method was applied to insect samples before the HS-SPME-GC-MS analysis. ...

  13. A novel graphene nanosheets coated stainless steel fiber for microwave assisted headspace solid phase microextraction of organochlorine pesticides in aqueous samples followed by gas chromatography with electron capture detection.

    PubMed

    Ponnusamy, Vinoth Kumar; Jen, Jen-Fon

    2011-09-28

    In this study, a novel graphene nanosheets (GNSs) coated solid phase microextraction (SPME) fiber was prepared by immobilizing microwave synthesized GNSs on a stainless steel wire. Microwave synthesized GNSs were verified by X-ray diffraction, field emission-scanning electron microscopy (FE-SEM) and transmission electron microscope (TEM). GNS-SPME fiber was characterized using FE-SEM and the results showed the GNS coating was homogeneous, porous, and highly adherent to the surface of the stainless steel fiber. The performance and feasibility of the GNS-SPME fiber was evaluated under one-step microwave assisted (MA) headspace (HS) SPME followed by gas chromatography with electron capture detection for five organochlorine pesticides (OCPs) in aqueous samples. Parameters influencing the extraction efficiency of MA-HS-GNS-SPME such as microwave irradiation power and time, pH, ionic strength, and desorption conditions were thoroughly examined. Under the optimized conditions, detection limits for the OCPs varied between 0.16 and 0.93 ng L(-1) and linear ranges varied between 1 and 1500 n gL(-1), with correlation coefficients ranging from 0.9984 to 0.9998, and RSDs in the range of 3.6-15.8% (n=5). In comparison with the commercial 100 μm polydimethylsiloxane fiber, the GNS coated fiber showed better extraction efficiency, higher mechanical and thermal stability (up to 290°C), longer life span (over 250 times), and lower production cost. The method was successfully applied to the analysis of real water samples with recoveries ranged between 80.1 and 101.1% for river water samples. The results demonstrated that the developed MA-HS-GNS-SPME method was a simple, rapid, efficient pretreatment and environmentally friendly procedure for the analysis of OCPs in aqueous samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Graphene oxide based sol-gel stainless steel fiber for the headspace solid-phase microextraction of organophosphate ester flame retardants in water samples.

    PubMed

    Jin, Tingting; Cheng, Jing; Cai, Cuicui; Cheng, Min; Wu, Shiju; Zhou, Hongbin

    2016-07-29

    In this paper, graphene oxide was coated onto a stainless steel wire through sol-gel technique and it was used as a solid phase microextraction (SPME) fiber. The prepared fiber was characterized by scanning electron microscopy (SEM), which displayed that the fiber had crinkled surface and porous structure The application of the fiber was evaluated through the headspace SPME of nine organophosphate ester flame retardants (OPFRs) with different characteristics in water samples followed by gas chromatography and nitrogen-phosphorous detector (GC/NPD). The major factors influencing the extraction efficiency, including the extraction and desorption conditions, were studied and optimized. Under the optimum conditions, the proposed method was evaluated, and applied to the analysis of organophosphate ester flame retardants in real environmental water samples. The results demonstrated the HS-SPME method based on GO sol-gel fiber had good linearity (R>0.9928), and limits of detection (1.4-135.6ngL(-1)), high repeatability (RSD<9.8%) and good recovery (76.4-112.4%). The GO based sol-gel fiber displayed bigger extraction capability than the commercial PDMS fiber and the pure sol-gel fiber for both polar and apolar organophosphate esters, especially for the OPFRs containing benzene rings.

  15. CMK-3 nanoporous carbon as a new fiber coating for solid-phase microextraction coupled to gas chromatography-mass spectrometry.

    PubMed

    Rahimi, Akram; Hashemi, Payman; Badiei, Alireza; Arab, Pezhman; Ghiasvand, Ali Reza

    2011-06-10

    CMK-3 nanoporous carbon was prepared and characterized as a highly porous fiber coating, with a highly ordered carbon framework, for solid-phase microextraction (SPME). The nanomaterial was immobilized onto platinum, stainless steel and copper metal wires for preparation of new SPME fibers. The copper-CMK-3 fiber showed superior properties and therefore was applied for extraction of some phenolic compounds in combination with GC-MS. For optimization of the extraction conditions, a simplex optimization method was used. The selected conditions were: sample volume 13 ml, extraction temperature 56°C, extraction time 7 min, ultrasonic time 5.5 min, pH 5 and salt concentration 8.9%. The selected fiber showed some selectivity towards the polar phenolic compounds and its extraction efficiency was better than a commercial PDMS fiber. Linear calibration curves with correlation coefficients better than 0.99 and detection limits in the range from 0.002 to 0.068 μg mL(-1) were obtained for the fiber. No significant change was observed in the extraction efficiency of the new SPME fiber over at least 40 extractions. The fiber was successfully used for the determination of phenolic compounds in natural water samples.

  16. Polythiophene as a novel fiber coating for solid-phase microextraction.

    PubMed

    Li, Xiang; Li, Chunmei; Chen, Jianmin; Li, Chunlei; Sun, Cheng

    2008-07-11

    The efficiency of polythiophene (PTh) was investigated as a new fiber for solid-phase microextraction (SPME). The PTh film was directly electrodeposited on the surface of a stainless steel wire in boron trifluoride diethyl etherate (BFEE) solution using cyclic voltammetry (CV) technique. PTh fibers were used for the extraction of some organochlorine pesticides (OCPs) from water samples. The extracted analytes were transferred to an injection port of gas chromatography using a laboratory-designed SPME device. The results obtained prove the ability of PTh material as a new fiber for sampling of organic compounds from water samples. This behavior is due most probably to the granulated surface of PTh film, which produces large surface areas. In this work, the optimum conditions for the preparation and conditioning of fibers and the extraction of analytes from water samples were obtained. In the optimum conditions, the limit of detection of the proposed method is 0.5-10 ng L(-1) for analysis of OCPs from aqueous samples, and the calibration graphs were linear in a concentration range of 10-10,000 ng L(-1) (R(2)>0.982) for most of organochlorine pesticides. Single fiber repeatability and fiber-to-fiber reproducibility were less than 12 and 18% (n=5), respectively. The PTh fiber was used to monitor the OCPs in real water samples, and the results compared favorably with the data determined by commercially available carbowax/divinylbenzene (CW/DVB) fiber.

  17. Characterization of the volatility of flavor compounds in alcoholic beverages through headspace solid-phase microextraction (HS-SPME) and mathematical modeling.

    PubMed

    Khio, Shuh-Wen; Cheong, Mun-Wai; Zhou, Weibiao; Curran, Philip; Yu, Bin

    2012-01-01

    The volatility of flavor compounds (10 distinctive esters commonly found in alcoholic beverages) was characterized using headspace solid-phase microextraction (HS-SPME) analysis combined with mathematical modeling. The impacts of extrinsic factors (extraction time and temperature) and intrinsic parameters (ethanol content and concentration of these flavor compounds) were evaluated on their influences. From extraction profiles, different kinetic behaviors of flavor compounds revealed that volatility is influenced by chemical natures (that is, molecular weight and physicochemical properties). Moreover, volatility was also found to be interrelated with extraction temperature and absorption/adsorption on the fiber's surface. Through mathematical modeling, the kinetic constants of these volatile compounds were computed, and their release profiles were determined. Finally, it was observed that an increase of ethanol (a competitive interference compound to flavor compounds) could decrease the extraction efficiency. Our studies indicated that this approach might be a rapid and practical method that would provide a better understanding of flavor release behavior from alcoholic beverages. The proposed approach may provide a simple and fast method in predicting the performance of key aroma esters in different alcoholic beverages. It could also be a practical way in quality control during the production of alcoholic beverage by monitoring key aroma esters. © 2011 Institute of Food Technologists®

  18. Gas chromatography-combustion-mass spectrometry with postcolumn isotope dilution for compound-independent quantification: its potential to assess HS-SPME procedures.

    PubMed

    Cueto Díaz, Sergio; Ruiz Encinar, Jorge; Sanz-Medel, Alfredo; García Alonso, J Ignacio

    2010-08-15

    A quadrupole GC-MS instrument with an electron ionization (EI) source has been modified to enable application of postcolumn isotope dilution analysis for the standardless quantification of organic compounds injected in the gas chromatograph. Instrumental modifications included the quantitative conversion of the separated compounds into CO(2), using a postcolumn combustion furnace, and the subsequent mixing of the gas with a constant flow of (13)CO(2) diluted in helium. The online measurement of the (12)CO(2)/(13)CO(2) (44/45) ratio in the EI-MS allowed us to obtain quantitative data without resorting to compound-specific standards. Validation of the procedure involved the analysis of standard solutions containing different families of organic compounds (C(9)-C(20) linear hydrocarbons, BTEX and esters) obtaining satisfactory results in all cases in terms of absolute errors (<6%) and precision (<4% RSD). The developed procedure showed excellent linearity over the range assayed (2 orders of magnitude) and adequate detection limits for carbon containing compounds (0.8 pg C s(-1)). The generic value of this compound-independent calibration approach was assessed by studying the quantitative performance of Head Space-Solid Phase Microextraction (HS-SPME). The proposed compound-independent quantification by EI-MS permits comparison of the performance of different fibers by assessing analyte recoveries with extreme robustness, simplicity, and precision.

  19. Extraction with SPME and synthesis of 2-methyl-6-vinylpyrazine by a 'one pot' reaction using microwaves.

    PubMed

    Robledo, Norma; Escalante, Jaime; Arzuffi, René

    2009-06-15

    A synthesis of 2-methyl-6-vinylpyrazine was carried out by way of a 'one pot' reaction. In order to establish the efficiency of this synthesis the extraction of the volatiles released by male papaya fruit flies was performed by SPME (solid phase micro-extraction). The compound was separated and identified using GC/MSD (gas chromatography/mass spectrometry detector).

  20. HS-SPME analysis of volatile organic compounds of coniferous needle litter

    NASA Astrophysics Data System (ADS)

    Isidorov, V. A.; Vinogorova, V. T.; Rafałowski, K.

    The composition of volatile emission of Scots pine ( Pinus sylvestris) and spruce ( Picea exelsa) litter was studied by gas chromatography-mass spectrometry (GC-MS) and samples were collected by solid-phase microextraction (SPME) method. The list of identified compounds includes over 60 organic substances of different classes. It was established that volatile emission contain not only components of essential oils of pine and spruce needles but also a large number of organic compounds which are probably secondary metabolites of litter-decomposing fungi. They include lower carbonyl compounds and alcohols as well as products of terpene dehydration and oxidation. These data show that the processes of litter decomposition are an important source of reactive organic compounds under canopy of coniferous forests.

  1. Determination of terpene alcohols in Sicilian Muscat wines by HS-SPME-GC-MS.

    PubMed

    Barbera, Daniela; Avellone, Giuseppe; Filizzola, Felice; Monte, Lucio G; Catanzaro, Paola; Agozzino, Pasquale

    2013-01-01

    Muscat is a grape family used to obtain several sweet, aromatic white dessert wines common in the Mediterranean area. Currently, three Sicilian cultivars (all classified DOC) are known: 'Moscato di Siracusa' the oldest and very rare today; 'Moscato di Noto', a modern derivative of the first and finally 'Moscato di Pantelleria', now the most common. This study concerns the volatile profile of 15 different Sicilian Muscat wines produced in different years using HS-SPME-GC-MS. In particular, four fundamental terpene alcohols (linalool, geraniol, nerol and citronellol) were considered. The principal aim was to study the evolution of aromatic compounds in wine during aging, and the information obtained is useful for production and marketing. It was found that the amount of terpenes decreased with aging, thereby reducing the quality characteristic of these wines. An accurate analysis of chromatograms could characterise Muscat wines on the basis of geographic origin.

  2. [Analyze on volatile compounds of Antrodia camphorata using HS-SPME-GC-MS].

    PubMed

    He, Zhe; Lu, Zhen-Ming; Xu, Hong-Yu; Shi, Jing-Song; Xu, Zheng-Hong

    2011-11-01

    To analyze the volatile compounds of Antrodia camphorata in solid-state and submerged cultures. A headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry(GC-MS) were used to evaluate the profile of the volatile compounds. 49 volatile compounds were identified in A. camphorata mycelia in submerged culture, while 43 volatile compounds were identified in mycelia in solid-state culture. 1-octen-3-ol, 3-octanone, 1-octen-3-ylacetate, acetic acid octyl ester and ethanol were the main volatile compounds in A. camphorata mycelia in submerged culture, while 1-octen-3-ol, 3-octanone, 3-methyl-butyraldenhyde, gamma-podecalactone and methyl 2-furozte were the most potent key volatile compounds in mycelia in solid-state culture. The volatile compounds in the mycelia of A. camphorata in solid-state and submerged cultures are similar but their relative contents are different.

  3. Optimization of HS-SPME/GC-MS analysis and its use in the profiling of illicit ecstasy tablets (Part 1).

    PubMed

    Bonadio, Federica; Margot, Pierre; Delémont, Olivier; Esseiva, Pierre

    2009-05-30

    A headspace solid-phase microextraction procedure (HS-SPME) was developed for the profiling of traces present in 3,4-methylenedioxymethylampethamine (MDMA). Traces were first extracted using HS-SPME and then analyzed by gas chromatography-mass spectroscopy (GC-MS). The HS-SPME conditions were optimized using varying conditions. Optimal results were obtained when 40 mg of crushed MDMA sample was heated at 80 degrees C for 15 min, followed by extraction at 80 degrees C for 15 min with a polydimethylsiloxane/divinylbenzene coated fibre. A total of 31 compounds were identified as traces related to MDMA synthesis, namely precursors, intermediates or by-products. In addition some fatty acids used as tabletting materials and caffeine used as adulterant, were also detected. The use of a restricted set of 10 target compounds was also proposed for developing a screening tool for clustering samples having close profile. 114 seizures were analyzed using an SPME auto-sampler (MultiPurpose Samples MPS2), purchased from Gerstel GMBH & Co. (Germany), and coupled to GC-MS. The data was handled using various pre-treatment methods, followed by the study of similarities between sample pairs based on the Pearson correlation. The results show that HS-SPME, coupled with the suitable statistical method is a powerful tool for distinguishing specimens coming from the same seizure and specimens coming from different seizures. This information can be used by law enforcement personnel to visualize the ecstasy distribution network as well as the clandestine tablet manufacturing.

  4. Solid-phase microextraction coupled with capillary electrophoresis for the determination of propranolol enantiomers in urine using a sol-gel derived calix[4]arene fiber.

    PubMed

    Zhou, Xingwang; Li, Xiujuan; Zeng, Zhaorui

    2006-02-03

    A new type of diglycidyloxy-calix[4]arene coated fiber made by sol-gel method was initially prepared for capillary electrophoresis (CE) sample pretreatment. By using headspace solid-phase microextraction (SPME) combined with a novel back-extraction facility coupled off-line to capillary zone electrophoresis (CZE), the simultaneous determination of propranolol enantiomers in human urine was achieved. The clean up effect and preconcentration effect were realized for the first time without derivatization during the SPME process in terms of these strong polarity and thermal stable compounds. Ultrasonic back-extraction and field amplified sample injection (FASI) technologies were employed. Extraction and back-extraction parameters were optimized. Preconcentration of the sample by calix[4]arene fiber based SPME and FASI increased the sensitivity, yielding a limit of detection (LOD) of 0.01microg/ml by CZE-diode array detection (DAD). Method repeatability (RSD<6.5%) and fiber reusability (>150 extraction procedures) were observed over a linear range (0.05-10microg/ml) in urine samples. Based on the superior thermal stability, high alkali- and solvent-resistant ability, marvelous repeatability and long lifetime of the novel fiber, this SPME-FASI-CZE procedure could meet the demand of minimum required performance limit (MRPL) set by the World Anti-doping Agency (WADA) for the detection of propranolol in urine samples.

  5. Simultaneous determination of salicylic, 3-methyl salicylic, 4-methyl salicylic, acetylsalicylic and benzoic acids in fruit, vegetables and derived beverages by SPME-LC-UV/DAD.

    PubMed

    Aresta, Antonella; Zambonin, Carlo

    2016-03-20

    Salicylic and benzoic acid are phenolic acids occurring in plant cells, thus they can be present in fruit and vegetables at various levels. They possess anti-inflammatory and antimicrobial properties, however they may induce symptoms and health problems in a small percentage of the population. Therefore, a low phenolic acid diet may be of clinical benefit to such individuals. In order to achieve this goal, the concentration of these substances in different food and beverages should be assessed. The present work describes for the first time a new method, based on solid phase microextraction (polydimethylsiloxane-divinylbenzene fiber) coupled to liquid chromatography with UV diode array detection, for the simultaneous determination of salicylic acid, 3-methyl salicylic acid, 4-methyl salicylic acid, acetylsalicylic acid and benzoic acid in selected fruit, vegetables and beverages. All the aspects influencing fiber adsorption (time, temperature, pH, salt addition) and desorption (desorption and injection time, desorption solvent mixture composition) of the analytes have been investigated. An isocratic separation was performed using an acetonitrile-phosphate buffer (pH 2.8; 2 mM) mixture (70:30, v/v) as the mobile phase. The estimated LOD and LOQ values (μg/mL) were in the range 0.002-0.028 and 0.007-0.095. The within-day and day-to-day precision values (RSD%) were between 4.7-6.1 and 6.6-9.4, respectively. The method has been successfully applied to the analysis of fava beans, blueberries, kiwi, tangerines, lemons, oranges and fruit juice (lemon and blueberry) samples. The major advantage of the method is that it only requires simple homogenization and/or centrifugation and dilution steps prior to SPME and injection in the LC system. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Solid-phase microextraction of phthalate esters from aqueous media by electrophoretically deposited TiO₂ nanoparticles on a stainless steel fiber.

    PubMed

    Banitaba, Mohammad Hossein; Davarani, Saied Saeed Hosseiny; Pourahadi, Ahmad

    2013-03-29

    A novel SPME fiber was prepared by electrophoretic deposition of titanium dioxide nanoparticles (nano-TiO2) on a stainless steel wire. It was used in the direct immersion solid-phase microextraction (DI-SPME) of four phthalate esters from aqueous samples prior to gas chromatographic (GC) analysis. The effects of various parameters on the efficiency of the SPME process such as the mode of extraction, extraction temperature, film thickness of the SPME fiber, salt content, extraction time and stirring rate were investigated. The comparison of the fiber with another homemade poly(3,4-ethylenedioxythiophene)-TiO2 (PEDOT-TiO2) nanocomposite fiber and a commercial polydimethylsiloxane (PDMS) fiber showed the better extraction efficiency of the nano-TiO2 fiber for phthalate esters. Under optimized conditions, the limit of detection (LOD) for the phthalate esters varied between 0.05 and 0.12μgL(-1). The inter-day and intra-day relative standard deviations for various phthalate esters at 10μgL(-1) concentration level (n=6) using a single fiber were 6.6-7.5% and 8.3-11.1%, respectively. The fiber to fiber repeatabilities (n=4), expressed as relative standard deviation (RSD%), were between 8.9% and 10.2% at 10μgL(-1) concentration level. The linear ranges varied between 0.5 and 1000μgL(-1). The method was successfully applied to the analysis of the bottled mineral water sample with recoveries from 86 to 107%.

  7. Polythiophene/hexagonally ordered silica nanocomposite coating as a solid-phase microextraction fiber for the determination of polycyclic aromatic hydrocarbons in water.

    PubMed

    Abolghasemi, Mir Mahdi; Yousefi, Vahid

    2014-01-01

    A highly porous fiber coated with polythiophene/hexagonally ordered silica nanocomposite was prepared for solid-phase microextraction (SPME). The prepared nanomaterial was immobilized onto a stainless-steel wire for the fabrication of the SPME fiber. Polythiophene/hexagonally ordered silica nanocomposite fibers were used for the extraction of some polycyclic aromatic hydrocarbons from water samples. The extracted analytes were transferred to the injection port of a gas chromatograph using a laboratory-designed SPME device. The results obtained prove the ability of the polythiophene/hexagonally ordered silica material as a new fiber for the sampling of organic compounds from water samples. This behavior is due most probably to the increased surface area of the polythiophene/hexagonally ordered silica nanocomposite. A one-at-a-time optimization strategy was applied for optimizing the important extraction parameters such as extraction temperature, extraction time, ionic strength, stirring rate, and desorption temperature and time. Under the optimum conditions, the LOD of the proposed method is 0.1-3 pg/mL for analysis of polycyclic aromatic hydrocarbons from aqueous samples, and the calibration graphs were linear in a concentration range of 0.001-20 ng/mL (R(2) > 0.990) for most of the polycyclic aromatic hydrocarbons. The single fiber repeatability and fiber-to-fiber reproducibility were less than 8.6 and 19.1% (n = 5), respectively.

  8. Fiber webs

    Treesearch

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  9. Preparation and characterization of metal-organic framework MIL-101(Cr)-coated solid-phase microextraction fiber.

    PubMed

    Xie, Lijun; Liu, Shuqin; Han, Zhubing; Jiang, Ruifen; Liu, Hong; Zhu, Fang; Zeng, Feng; Su, Chengyong; Ouyang, Gangfeng

    2015-01-01

    Metal-organic frameworks (MOFs) have received great attention as novel sorbents due to their fascinating structures and intriguing potential applications in various fields. In this work, a MIL-101(Cr)-coated solid-phase microextraction (SPME) fiber was fabricated by a simple direct coating method and applied to the determination of volatile compounds (BTEX, benzene, toluene, ethylbenzene, m-xylene and o-xylene) and semi-volatile compounds (PAHs, polycyclic aromatic hydrocarbons) from water samples. The extraction and desorption conditions of headspace SPME (HS-SPME) were optimized. Under the optimized conditions, the established methods exhibited excellent extraction performance. Good precision (<7.7%) and low detection limits (0.32-1.7 ng L(-1) and 0.12-2.1 ng L(-1) for BTEX and PAHs, respectively) were achieved. In addition, the MIL-101(Cr)-coated fiber possessed good thermal stability, and the fiber can be reused over 150 times. The fiber was successfully applied to the analysis of BTEX and PAHs in river water by coupling with gas chromatography-mass spectrometry (GC-MS). The analytes at low concentrations (1.7 and 10 ng L(-1)) were detected, and the recoveries obtained with the spiked river water samples were in the range of 80.0-113% and 84.8-106% for BTEX and PAHs, respectively, which demonstrated the applicability of the self-made fiber. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Selective solid-phase microextraction of explosives using fibers coated with the La (III) complex of p-di (4,4,5,5,6,6,6-hepafluoro-1,3-hexanediony) benzene

    SciTech Connect

    Harvey, Scott D.

    2008-12-12

    This research demonstrates enhanced capture of explosives on polydimethylsiloxane (PDMS) solid-phase microextraction (SPME) fibers coated with a metal beta-diketonate polymer, [La(III) complex of p-di(4,4,5,5,6,6,6-heptafluoro-1,3-hexanedionyl)benzene, La(dihed)], compared to PDMS control fibers. SPME sampling was performed in an explosives bunker where the concentration of 2,4,6-trinitrotoluene (TNT) was estimated at less than 3 parts-per-trillion (v/v). Analysis by gas chromatography/mass spectrometry showed an approximate ten-fold enhancement in the quantity of 2,4-dinitrotoluene captured on La(dihed) over the control fiber. La(dihed) sampling also resulted in a strong signal for TNT, whereas this explosive was well below the detection limit (1 pg on fiber) on the control fiber.

  11. Comparison of solid phase microextraction and hollow fiber liquid phase microextraction for the determination of pesticides in aqueous samples by gas chromatography triple quadrupole tandem mass spectrometry.

    PubMed

    Garrido Frenich, Antonia; Romero-González, R; Martínez Vidal, José Luis; Martínez Ocaña, R; Baquero Feria, P

    2011-02-01

    This work compares two miniaturised sample preparation methods, solid phase microextraction (SPME) and hollow fiber liquid phase microextraction (HF-LPME), in combination with gas chromatography coupled to tandem mass spectrometry with a triple quadrupole analyzer for the determination of 77 pesticides in drinking water. In the case of SPME, extraction temperature and time were optimized by experimental design, although other parameters, as desorption time, pH, and ionic strength, were also evaluated. The extraction and desorption solvents [octanol/dihexyl ether (75:25, v/v) and cyclohexane, respectively], as well as the extraction and desorption time, ionic strength, and pH, were studied for the HF-LPME procedure. Under the optimal conditions, recoveries (70.2-113.5% for SPME and 70.0-119.5% for HF-LPME), intra-day precision (2.1-19.4% for SPME and 4.3-22.5% for HF-LPME), inter-day precision (5.2-21.5% for SPME and 8.4-27.3% for HF-LPME), and limits of detection, between 0.1 and 28.8 ng/L for SPME and 0.2 and 47.1 ng/L for HF-LPME and overall uncertainty (9.6-25.2% for SPME and 13.3-27.5% for HF-LPME) were established for both extraction procedures. Finally, the proposed methods were successfully applied to the analysis of 41 drinking water samples, and similar results were obtained with both extraction approaches.

  12. Analytical comparison and sensory representativity of SAFE, SPME, and Purge and Trap extracts of volatile compounds from pea flour.

    PubMed

    Murat, Chloe; Gourrat, Karine; Jerosch, Heike; Cayot, Nathalie

    2012-12-01

    Pisum sativum is of great economic and nutritional interest due to its protein content. Nevertheless, pea products are underused as a protein source in human food because of their strong beany flavour. Therefore, the objective of this study was to select an efficient and representative method to extract volatile molecules of pea flour. In the first step, three extraction methods were chosen: solid phase micro extraction (SPME); Purge and Trap extraction and solvent assisted flavour evaporation (SAFE). The corresponding extracts were analysed by gas chromatography coupled with mass spectrometry. In the second step, the sensory representativity of the extracts was assessed either by direct gas chromatography-olfactometry for SPME and for Purge and Trap extracts, or by sniffing for the aqueous SAFE extract. It appeared that SAFE extraction was the most suitable method because of its good extraction capacities and its high sensory representativity of the global odour of pea flour.

  13. Determination of chlorophenols in water by headspace solid phase microextraction ion mobility spectrometry (HS-SPME-IMS).

    PubMed

    Holopainen, Sanna; Luukkonen, Ville; Nousiainen, Marjaana; Sillanpää, Mika

    2013-09-30

    Chlorophenols (CPs) as persistent toxic compounds are of worldwide environmental concern. Usage of chlorinated phenols, especially pentachlorophenol (PCP), has been restricted or widely banned in many countries due to their possible adverse health effects even at low concentrations. Ion mobility spectrometry (IMS) has received increasing interest in environmental applications due to its unique characteristics, such as portability and speed of analysis. A range of sample introduction methods combined with IMS enable analysis from different environmental matrices. This study utilised headspace solid phase microextraction IMS (HS-SPME-IMS) in the determination of CPs from water samples. The extraction conditions were examined and the method was applied to real water samples. The developed method is suitable to detect CPs at milligram per liter level in water. Based on the results, SPME-IMS setup is feasible as an early warning system for water monitoring of pollutants present in drinking or surface water in case of environmental accidents or leakages.

  14. [Solid-phase microextraction coupled with capillary electrophoresis for doping analysis of propranolol enantiomers in urine using a sol-gel derived calix [4] arene fiber].

    PubMed

    Zhou, Xingwang; Li, Xiujuan; Zeng, Zhaorui

    2006-01-01

    A new type fiber coated with diglycidyloxy calix [4] arene/hydroxy-terminated silicone oil (diglycidyloxy-C [4] arene/OH-TSO) made by sol-gel method was prepared for capillary electrophoresis (CE) sample pretreatment. By using headspace solid-phase microextraction (HS-SPME) combined with a novel back-extraction facility coupled off-line to capillary zone electrophoresis (CZE), the determination of propranolol enantiomers in urine was achieved with combination of ultrasonic back-extraction and field amplified sample injection (FASI) technologies. Extraction and back-extraction parameters were optimized. The clean-up effect and preconcentration effect were realized without derivatization during the SPME process in terms of this strongly polar and thermally stable compound. Preconcentration of the sample by calix [4] arene fiber increased the sensitivity, yielding a limit of detection (LOD) of 0.01 mg/L by CZE-diode array detection (DAD). Method repeatability (relative standard deviations (RSD) < 6.5%) and fiber reusability (> 150 extraction procedures) were observed over a wide linear range of propranolol (0.05 - 10 mg/L) in urine samples. Compared with commercial SPME stationary phases, the new coating showed higher extraction efficiency and this SPME-CZE-DAD procedures could meet the demand of minimum required performance limits (MRPL) set by the World Anti-Doping Agency (WADA) for the detection of propranolol in urine samples.

  15. Development of a simple, accurate SPME-based method for assay of VOCs in column breakthrough experiments.

    PubMed

    Salaices Avila, Manuel Alejandro; Breiter, Roman; Mott, Henry

    2007-01-01

    Solid-phase microextraction (SPME) with gas chromatography is to be used for assay of effluent liquid samples from soil column experiments associated with VOC fate/transport studies. One goal of the fate/transport studies is to develop accurate, highly reproducible column breakthrough curves for 1,2-cis-dichloroethylene (cis-DCE) and trichloroethylene (TCE) to better understand interactions with selected natural solid phases. For SPME, the influences of the sample equilibration time, extraction temperature and the ratio of volume of sample bottle to that of the liquid sample (V(T)/V(w)) are the critical factors that could influence accuracy and precision of the measured results. Equilibrium between the gas phase and liquid phase was attained after 200 min of equilibration time. The temperature must be carefully controlled due to variation of both the Henry's constant (K(h)) and the fibre/gas phase distribution coefficient (K(fg)). K(h) decreases with decreasing temperature while K(fg) increases. Low V(T)/V(w) yields better sensitivity but results in analyte losses and negative bias of the resultant assay. High V(T)/V(w) ratio yields reduced sensitivity but analyte losses were found to be minimal, leading to better accuracy and reproducibility. A fast SPME method was achieved, 5 min for SPME extraction and 3.10 min for GC analysis. A linear calibration function in the gas phase was developed to analyse the breakthrough curve data, linear between a range of 0.9-236 microgl(-1), and a detection limit lower than 5 microgl(-1).

  16. Bioconcentration of organic chemicals: is a solid-phase microextraction fiber a good surrogate for biota?

    PubMed

    Leslie, Heather A; Ter Laak, Thomas L; Busser, Frans J M; Kraak, Michiel H S; Hermens, Joop L M

    2002-12-15

    When organic chemicals are extracted from a water sample with solid-phase microextraction (SPME) fibers, the resulting concentrations in exposed fibers are proportional to the hydrophobicity of the compounds. This fiber accumulation is analogous to the bioconcentration of chemicals observed in aquatic organisms. The objective of this study was to investigate the prospect of measuring the total concentration in SPME fibers to estimate the total body residue in biota for the purpose of risk assessment. Using larvae of the midge, Chironomus riparius and disposable 15-microm poly(dimethylsiloxane) fibers, we studied the accumulation and accumulation kinetics of a number of narcotic compounds with a range of log K(ow) between 3 and 6. The fibers, which have a larger surface area-to-volume ratio, had consistently higher uptake and elimination rate constants (k1 and k2, respectively) than midge larvae and accumulated the chemicals 5 times faster. Comparison of the relationships of the partition coefficients K(PDMS-water) and K(midge-water) (lipid-normalized) to log K(ow) for all compounds yielded a factor of 28 for translating fiber concentrations to biota concentrations. This factor can be used to estimate internal concentrations in biota for compounds structurally similar to the compounds in this study. The exact chemical domain to which this factor can be applied needs to be defined in future research.

  17. Optimization of headspace solid-phase Microextraction (SPME) for the odor analysis of surface-ripened cheese.

    PubMed

    Lecanu, Laurent; Ducruet, Violette; Jouquand, Céline; Gratadoux, Jean Jacques; Feigenbaum, Alexandre

    2002-06-19

    Fifty volatile compounds of surface smear-ripened cheese were detected and identified using headspace solid-phase microextraction (HS-SPME) and vacuum distillation coupled to gas chromatography-mass spectrometry. Changes in the headspace of aroma compounds were monitored over the whole packaging period (47 days) using the HS-SPME method. Initially, the concentration of methanethiol increased before reaching a plateau. This evolution could be linked to the growth of Brevibacterium linens. During the shelf life of cheese, levels of acetic acid and 3-methylbutanoic acid remained constant, whereas butane-2,3-dione, 3-hydroxybutan-2-one, and hydroxypropan-2-one levels gradually declined and acetone and 3-methylbutanol levels dropped sharply to a plateau. Changes in odor could be related to changes of the rind, which behaved as a barrier, strongly influencing the distribution of volatile compounds in the headspace. Using a gas chromatography-olfactometry technique without separation, it was shown that the SPME extract was representative of the cheese odor.

  18. Detection of 2,4,6-trichloroanisole in chlorinated water at nanogram per litre levels by SPME-GC-ECD.

    PubMed

    Pinheiro, Paula B M; Esteves da Silva, Joaquim C G

    2005-05-01

    A method involving solid-phase micro extraction (SPME) and gas chromatography with electron capture detection (SPME-GC-ECD) has been optimised for identification and quantification of 2,4,6-trichloroanisole (TCA) at ng L(-1) concentrations in disinfected (chlorinated) water samples. A central composite design was used for factorial analysis of four factors, three factors related to the SPME (PDMS fibre) procedure (adsorption time, temperature of the sample during headspace sampling, and desorption time) and one related to the GC operation (the rate of increase of the temperature of the GC oven). Good linearity (linear correlation coefficient greater than 0.999) was observed for TCA concentrations up to 50 ng L(-1), limits of detection and quantification of 0.7 and 2.3 ng L(-1), respectively, and good precision (relative standard deviation 2.8% and 3.4% for 5 and 30 ng L(-1) of TCA, respectively). Besides TCA, this system also enables the detection and quantification of the four trihalomethanes in the microg L(-1) concentration range with limits of detection and quantification of approximately 0.3 microg L(-1) and 1 microg L(-1), respectively.

  19. Development of a Direct Headspace Collection Method from Arabidopsis Seedlings Using HS-SPME-GC-TOF-MS Analysis

    PubMed Central

    Kusano, Miyako; Iizuka, Yumiko; Kobayashi, Makoto; Fukushima, Atsushi; Saito, Kazuki

    2013-01-01

    Plants produce various volatile organic compounds (VOCs), which are thought to be a crucial factor in their interactions with harmful insects, plants and animals. Composition of VOCs may differ when plants are grown under different nutrient conditions, i.e., macronutrient-deficient conditions. However, in plants, relationships between macronutrient assimilation and VOC composition remain unclear. In order to identify the kinds of VOCs that can be emitted when plants are grown under various environmental conditions, we established a conventional method for VOC profiling in Arabidopsis thaliana (Arabidopsis) involving headspace-solid-phase microextraction-gas chromatography-time-of-flight-mass spectrometry (HS-SPME-GC-TOF-MS). We grew Arabidopsis seedlings in an HS vial to directly perform HS analysis. To maximize the analytical performance of VOCs, we optimized the extraction method and the analytical conditions of HP-SPME-GC-TOF-MS. Using the optimized method, we conducted VOC profiling of Arabidopsis seedlings, which were grown under two different nutrition conditions, nutrition-rich and nutrition-deficient conditions. The VOC profiles clearly showed a distinct pattern with respect to each condition. This study suggests that HS-SPME-GC-TOF-MS analysis has immense potential to detect changes in the levels of VOCs in not only Arabidopsis, but other plants grown under various environmental conditions. PMID:24957989

  20. Development of a Direct Headspace Collection Method from Arabidopsis Seedlings Using HS-SPME-GC-TOF-MS Analysis.

    PubMed

    Kusano, Miyako; Iizuka, Yumiko; Kobayashi, Makoto; Fukushima, Atsushi; Saito, Kazuki

    2013-04-09

    Plants produce various volatile organic compounds (VOCs), which are thought to be a crucial factor in their interactions with harmful insects, plants and animals. Composition of VOCs may differ when plants are grown under different nutrient conditions, i.e., macronutrient-deficient conditions. However, in plants, relationships between macronutrient assimilation and VOC composition remain unclear. In order to identify the kinds of VOCs that can be emitted when plants are grown under various environmental conditions, we established a conventional method for VOC profiling in Arabidopsis thaliana (Arabidopsis) involving headspace-solid-phase microextraction-gas chromatography-time-of-flight-mass spectrometry (HS-SPME-GC-TOF-MS). We grew Arabidopsis seedlings in an HS vial to directly perform HS analysis. To maximize the analytical performance of VOCs, we optimized the extraction method and the analytical conditions of HP-SPME-GC-TOF-MS. Using the optimized method, we conducted VOC profiling of Arabidopsis seedlings, which were grown under two different nutrition conditions, nutrition-rich and nutrition-deficient conditions. The VOC profiles clearly showed a distinct pattern with respect to each condition. This study suggests that HS-SPME-GC-TOF-MS analysis has immense potential to detect changes in the levels of VOCs in not only Arabidopsis, but other plants grown under various environmental conditions.

  1. Assessment of propofol concentrations in human breath and blood by means of HS-SPME-GC-MS.

    PubMed

    Miekisch, Wolfram; Fuchs, Patricia; Kamysek, Svend; Neumann, Christine; Schubert, Jochen K

    2008-09-01

    Breath analysis could offer a non-invasive means of drug monitoring if adequate analytical methods and robust correlations between drug concentrations in breath and blood can be established. We therefore applied headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) to assess breath and blood concentrations of the intravenous drug propofol in patients under anesthesia or sedation. Arterial, central- and peripheral-venous blood and alveolar breath samples were drawn in parallel from 16 mechanically ventilated patients. In addition, six patients undergoing lung resection were investigated. Substances were preconcentrated by means of HS-SPME, separated by GC and identified by MS. Propofol detection limits were 0.006 nmol/L in breath and 72.20 nmol/L in blood, the quantitation limits were 0.009 nmol/L and 75.89 nmol/L (end tidal breath/blood). Intraday precision was 8-11%, recovery 97-103%. Propofol concentrations were 0.04-0.5 nmol/L in breath and 2-120 micromol/L in blood. Only arterial propofol concentrations showed a correlation with concentrations in breath. Impaired ventilation/perfusion ratios in patients under lung resection resulted in changes of correlation coefficients. Reliable and precise analytical methods such as HS-SPME-GC-MS represent basic requirements if breath analysis is to be set up for non-invasive monitoring of intravenous drugs and control of anesthesia.

  2. Evaluation of vapor profiles of explosives over time using ATASS (Automated Training Aid Simulation using SPME).

    PubMed

    Moore, Stephanie; Maccrehan, William; Schantz, Michele

    2011-10-10

    Despite numerous instrumental achievements, canines are still considered the most effective field method for explosive detection. However, due to strict explosive regulations and safety requirements, it can be a challenge for agencies with "bomb dogs" to train using neat explosive materials. This establishes a need for non-explosive canine training aids with the same volatile component profiles as the explosives that they represent. In order to compare mimic materials to their explosive counterparts, a technique must be established that not only allows for identification of volatile compounds but also can monitor changes in the headspace profile over time with respect to time and temperature. The Automated Training Aid Simulation using SPME (or ATASS) was developed for that purpose. As described, ATASS was used to observe changes in the volatile profile of three explosives (Composition C-4, 2,4-dinitrotoluene (DNT), and triacetone triperoxide (TATP)) and respective prototype training materials (0.1% by mass C-4, 1% by mass 2,4-DNT, and 1% by mass TATP). Samples were prepared in vials and metal tins within a gallon (≈ 3785 mL) paint can to simulate common field techniques for canine training. Monitoring these materials in real time provides a better understanding of the major volatile components present and how the relative abundances of these components can change over time. The results presented indicate that ATASS successfully allows for a sufficient comparison between explosive and non-explosive training materials. Copyright © 2011. Published by Elsevier Ireland Ltd.

  3. Analysis of Five Earthy-Musty Odorants in Environmental Water by HS-SPME/GC-MS

    PubMed Central

    Ding, Zhen; Peng, Shifu; Xia, Weiwen; Zheng, Hao; Chen, Xiaodong; Yin, Lihong

    2014-01-01

    The pressing issue of earthy and musty odor compounds in natural waters, which can affect the organoleptic properties of drinking water, makes it a public health concern. A simple and sensitive method for simultaneous analysis of five odorants in environmental water was developed by headspace solid-phase microextraction (HS-SPME) coupled to chromatography-mass spectrometry (GC-MS), including geosmin (GSM) and 2-methylisoborneol (2-MIB), as well as dimethyl trisulfide (DMTS), β-cyclocitral, and β-ionone. Based on the simple modification of original magnetic stirrer purchased from CORNING (USA), the five target compounds can be separated within 23 min, and the calibration curves show good linearity with a correlation coefficient above 0.999 (levels = 5). The limits of detection (LOD) are all below 1.3 ng L−1, and the relative standard deviation (%RSD) is between 4.4% and 9.9% (n = 7) and recoveries of the analytes from water samples are between 86.2% and 112.3%. In addition, the storage time experiment indicated that the concentrations did not change significantly for GSM and 2-MIB if they were stored in canonical environment. In conclusion, the method in this study could be applied for monitoring these five odorants in natural waters. PMID:24527037

  4. Determination of Volatile Organic Compounds in Snow Using Solid Phase Micro Extraction (SPME)

    NASA Astrophysics Data System (ADS)

    Kos, G.; Ariya, P. A.

    2004-12-01

    Volatile organic compounds (VOC) in snow-samples from different environments were determined. Samples were collected in Resolute, Nunavut in the high Arctic (latitude: 74.70° /longitude: - 94.91° ), the Gaspé Peninsula in Quebec (at Mont Albert near Ste-Anne-des Monts: 49.12° /- 66.49° ) and downtown Montreal, Quebec ( 45.54° /- 73.60° ) in order to reflect different degrees of anthropogenic influence. In order to assess the ability of compounds contained in the sample to perform photochemistry, samples were irradiated with UV-light in the 300-400 nm range. Filtering through a 0.2 μ m-filter provided information about compounds primarily associated with the liquid phase. A solid phase micro extraction (SPME) procedure was developed for sample preparation and VOC were identified using gas chromatography with mass spectrometric detection (GC-MS). We will present our results at several urban and remote sites, and the implication of the result to atmospheric chemistry will be discussed.

  5. Authenticity of raspberry flavor in food products using SPME-chiral-GC-MS.

    PubMed

    Hansen, Anne-Mette S; Frandsen, Henrik L; Fromberg, Arvid

    2016-05-01

    A fast and simple method for authenticating raspberry flavors from food products was developed. The two enantiomers of the compound (E)-α-ionone from raspberry flavor were separated on a chiral gas chromatographic column. Based on the ratio of these two enantiomers, the naturalness of a raspberry flavor can be evaluated due to the fact that a natural flavor will consist almost exclusively of the R enantiomer, while a chemical synthesis of the same compound will result in a racemic mixture. Twenty-seven food products containing raspberry flavors where investigated using SPME-chiral-GC-MS. We found raspberry jam, dried raspberries, and sodas declared to contain natural aroma all contained almost only R-(E)-α-ionone supporting the content of natural raspberry aroma. Six out of eight sweets tested did not indicate a content of natural aroma on the labeling which was in agreement with the almost equal distribution of the R and S isomer. Two products were labeled to contain natural raspberry flavors but were found to contain almost equal amounts of both enantiomers indicating a presence of synthetic raspberry flavors only. Additionally, two products that were labeled to contain both raspberry juice and flavor showed equal amounts of both enantiomers, indicating the presence of synthetic flavor.

  6. Study of flavour compounds from orange juices by HS-SPME and GC-MS

    NASA Astrophysics Data System (ADS)

    Schmutzer, G.; Avram, V.; Covaciu, F.; Feher, I.; Magdas, A.; David, L.; Moldovan, Z.

    2013-11-01

    The flavour of the orange juices, which gives the taste and odour of the product, is an important criterion about the products quality for consumers. A fresh single strength and two commercial orange juices (obtained from concentrate) flavour profile were studied using a selective and sensitive gas chromatography - mass spectrometry (GC-MS) analytical system, after a solvent free, single step preconcentration and extraction technique, the headspace solid phase microextraction (HP-SPME). In the studied orange juices 55 flavour compounds were detected and classified as belonging to the esters, alcohols, ketones, monoterpenes and sesquiterpenes chemical families. The fresh single strength orange juice was characterized by high amount of esters, monoterpenes and sesquiterpenes. Limonene and valencene were the most abundant flavours in this fresh natural orange juice. Alcohols and ketones were found in higher concentration in the commercial orange juices made from concentrate, than in the single strength products. Nevertheless, in commercial juices the most abundant flavour was limonene and α-terpineol. The results highlight clear differences between fresh singles strength orange juice and juice from concentrate. The orange juices reconstructed from concentrate, made in Romania, present low quantity of flavour compounds, suggesting the absence or a low rearomatization process, but extraneous components were not detected.

  7. Transport and fate of dieldrin in poplar and willow trees analyzed by SPME.

    PubMed

    Skaates, Serena V; Ramaswami, Anu; Anderson, Larry G

    2005-09-01

    Dieldrin is a hydrophobic organochlorine insecticide that is persistent in the environment. The fate and transport of dieldrin in trees is important both in the context of potential remediation, as well as food chain impacts through dieldrin transport to shoots and leaves. Experiments were conducted to measure the degree of dieldrin partitioning to plant tissue and the potential for biodegradation of dieldrin in the microbe rich tree rhizosphere. Dieldrin was analyzed in water and plant tissue using headspace solid-phase microextraction (SPME) coupled with gas chromatography. Poplar and willow saplings planted in soil and watered with 10 microgl(-1) dieldrin for up to 9 months showed no adverse effects due to dieldrin exposure and no dieldrin was observed in plant shoots with a method detection limit (MDL) of 7 ngg(-1). One-week hydroponic tests of poplar saplings exposed to aqueous dieldrin also showed no detection of dieldrin in shoots, with an average of 66% of the dieldrin partitioned to the plant roots and an overall mass balance recovery of 76% in the plant-water system. The root concentration factor (RCF) was found to be 30+/-3 ml water g(-1) root. Biodegradation of dieldrin was not observed in an aqueous batch bioreactor containing 8 microgl(-1) dieldrin, nutrients and bacteria from the root zone of a poplar sapling that had been exposed to dieldrin for 9 months. These results show that planting trees is likely to be safe and potentially useful at sites containing low-levels of dieldrin in groundwater.

  8. D-optimal design of an untargeted HS-SPME-GC-TOF metabolite profiling method.

    PubMed

    Fedrizzi, Bruno; Carlin, Silvia; Franceschi, Pietro; Vrhovsek, Urska; Wehrens, Ron; Viola, Roberto; Mattivi, Fulvio

    2012-08-21

    In recent times we have seen the development of many "-omics" technologies. One of the youngest is undoubtedly metabolomics, which aims to define the whole chemical fingerprint unique to each specific organism. The development and optimisation of an untargeted high-throughput method capable of investigating the volatile fraction of a biological system represents a crucial step for the success of such holistic approaches, and specific optimisation criteria must be developed in connection with suitable experimental designs. In this paper experimental designs (D-optimal) were applied for the first time as an automatic optimisation tool to an untargeted HS-SPME-GC-TOF method. In this case, optimal conditions correspond to a maximal number of detected features, in order to provide a fingerprint that is as complete as possible. The system under study is the grape berry. Four variables were considered: the type of fibre, extraction time, equilibration time and temperature. The results show that the D-optimal design methodology provides an easily interpretable assessment of experimental settings. This and other specific properties of the D-optimal design, such as the possibility to explicitly exclude certain experimental conditions, make it an extremely suitable strategy for method optimisation in untargeted metabolomics.

  9. Analysis of Five Earthy-Musty Odorants in Environmental Water by HS-SPME/GC-MS.

    PubMed

    Ding, Zhen; Peng, Shifu; Xia, Weiwen; Zheng, Hao; Chen, Xiaodong; Yin, Lihong

    2014-01-01

    The pressing issue of earthy and musty odor compounds in natural waters, which can affect the organoleptic properties of drinking water, makes it a public health concern. A simple and sensitive method for simultaneous analysis of five odorants in environmental water was developed by headspace solid-phase microextraction (HS-SPME) coupled to chromatography-mass spectrometry (GC-MS), including geosmin (GSM) and 2-methylisoborneol (2-MIB), as well as dimethyl trisulfide (DMTS), β -cyclocitral, and β -ionone. Based on the simple modification of original magnetic stirrer purchased from CORNING (USA), the five target compounds can be separated within 23 min, and the calibration curves show good linearity with a correlation coefficient above 0.999 (levels = 5). The limits of detection (LOD) are all below 1.3 ng L(-1), and the relative standard deviation (%RSD) is between 4.4% and 9.9% (n = 7) and recoveries of the analytes from water samples are between 86.2% and 112.3%. In addition, the storage time experiment indicated that the concentrations did not change significantly for GSM and 2-MIB if they were stored in canonical environment. In conclusion, the method in this study could be applied for monitoring these five odorants in natural waters.

  10. SPME-GC-MS analysis of commercial henna samples (Lawsonia inermis L.).

    PubMed

    Mengoni, Tamara; Peregrina, Dolores Vargas; Censi, Roberta; Cortese, Manuela; Ricciutelli, Massimo; Maggi, Filippo; Di Martino, Piera

    2016-01-01

    The aim of this work was to provide a characterisation of volatile constituents from different commercial batches of henna (Lawsonia inermis) leaves of different geographic origin. Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was used for the purpose. A total of 72 components were identified by GC-MS in the headspace of different henna samples which proved to differ considerably from each other, because they were characterised by different classes of components, mainly aliphatic compounds (9.0-64.7%), terpenoids (5.8-45.5%) and aromatics (7.9-45.2%), with alkanes (0.9-18.5%), aldehydes (2.1-18.8%) and carboxylic acids (3.1-29.3%), monoterpenes (3.4-30.0%) and sesquiterpenes (0.8-23.7%) and phenyl propanoids (0.6-43.1%), being the most abundant, respectively. Major representatives of these groups were n-hexadecane (0.5-4.7%), (2E)-hexenal (0.5-11.7%) and acetic acid (2.8-24.5%), limonene (0.8-14.7%), carvol (3.8-7.1%), geranyl acetone (1.4-7.9%) and (E)-caryophyllene (3.3-8.4%), and (E)-anethole (0.6-35.0%), respectively. We assume that factors such as the manufacturing process, the storage conditions and the different geographic origin of the samples may contribute to such variability.

  11. Method development by GC-ECD and HS-SPME-GC-MS for beer volatile analysis.

    PubMed

    da Silva, Gisele C; da Silva, Abner A S; da Silva, Larissa S N; Godoy, Ronoel Luiz de O; Nogueira, Luciana C; Quitério, Simone L; Raices, Renata S L

    2015-01-15

    Two methods for the extraction, identification and quantification of the highest occurrence and lowest perception threshold off-flavours in fifteen different samples of Brazilian Pilsner beers were developed. For this purpose, headspace solid phase microextraction in combination with a gas chromatography coupled to a mass spectrometric detection (HS-SPME-GC-MS) as well as headspace extraction in combination with a gas chromatography coupled to electron capture detection (HS-GC-ECD) were evaluated. The first and the second methods were used for esters and vicinal diketones analysis, respectively. All data were comprehended below the taster's threshold detection limit: ethyl acetate 39.48 ng mL(-1) (RSD mean value 4.2%), isoamyl acetate 3.88 ng mL(-1) (RSD mean value 3.4%), ethyl hexanoate 0.61 ng mL(-1) (RSD mean value 3.1%) and 2,3-butanedione 0.10 ng mL(-1) (RSD mean value 2.9%). The validated method demonstrated to be useful for the analysis of highest incidence beer off-flavours.

  12. Natural fibers

    Treesearch

    Craig M. Clemons; Daniel F. Caulfield

    2005-01-01

    The term “natural fibers” covers a broad range of vegetable, animal, and mineral fibers. However, in the composites industry, it usually refers to wood fiber and agrobased bast, leaf, seed, and stem fibers. These fibers often contribute greatly to the structural performance of the plant and, when used in plastic composites, can provide significant reinforcement. Below...

  13. Fiber diffraction without fibers.

    PubMed

    Poon, H-C; Schwander, P; Uddin, M; Saldin, D K

    2013-06-28

    Postprocessing of diffraction patterns of completely randomly oriented helical particles, as measured, for example, in so-called "diffract-and-destroy" experiments with an x-ray free electron laser can yield "fiber diffraction" patterns expected of fibrous bundles of the particles. This will allow "single-axis alignment" to be performed computationally, thus obviating the need to do this by experimental means such as forming fibers and laser or flow alignment. The structure of such particles may then be found by either iterative phasing methods or standard methods of fiber diffraction.

  14. An automated solid-phase microextraction method based on magnetic molecularly imprinted polymer as fiber coating for detection of trace estrogens in milk powder.

    PubMed

    Lan, Hangzhen; Gan, Ning; Pan, Daodong; Hu, Futao; Li, Tianhua; Long, Nengbing; Qiao, Li

    2014-02-28

    A new automated solid-phase micro extraction (SPME) sampling method was developed for quantitative enrichment of estrogens (ES) from milk powder, using magnetic molecularly imprinted polymer (MMIP) as fiber coating. The method (MMIP-SPME) was built with several electromagnetic stainless steel fibers, placed in parallel for simultaneously extraction. The MMIP was synthesized using core-shell Fe3O4@SiO2 nanoparticles (NPs) as magnetic support. Estradiol (E2) was employed as the template molecule, acrylamide (AA) as functional monomer, and ethylene glycol dimethacrylate (EGDMA) as cross-linker. MMIP can be easily absorbed or desorbed from fibers when the current is turned on or off, creating magnetism. Compared to traditional MIP-SPME, the prepared procedure of MMIP-SPME is time-saving and organic solvent-free. The proposed device significantly improved the efficiency of separation and enrichment of estrogens from complex matrices thereby and facilitating the pretreatment steps by electromagnetically controlled extraction fibers to achieve full automation. Several experimental parameters were studied, including extraction and desorption kinetics, solution pH, desorption solution, ratio, and shuttle rate. The newly developed MMIP-SPME showed good sensitivity and high binding capacity, fast adsorption kinetics and desorption kinetics for estrone (E1), estradiol (E2), estriol (E3) and diethylstilbestrol (DES) under optimized conditions. The detection limits for the four estrogens were 1.5-5.5ngg(-1) with excellent reproducibility (RSD values less than 7.1%) when milk powder samples spiked with analytes at 20, 100 and 250ngg(-1) were studied.

  15. Recovery of phosphonate surface contaminants from glass using a simple vacuum extractor with a solid-phase microextraction fiber

    SciTech Connect

    Gary S. Groenewold; Jill R. Scott; Cathy Rae

    2011-07-01

    Recovery of chemical contaminants from fixed surfaces for analysis can be challenging particularly if it is not possible to acquire a solid sample. A simple device is described that collects semivolatile organic compounds from fixed surfaces by creating an enclosed volume over the surface, then generating a modest vacuum. A solid-phase microextraction fiber is then inserted into the evacuated volume where it functions to sorb volatilized organic contaminants. The device is based on a syringe modified with a seal that is used to create the vacuum, with a perforable plunger through which the SPME fiber is inserted. The vacuum speeds partitioning of the semivolatile compounds into the gas phase, and reduces the boundary layer around the SPME fiber, which enables a fraction of the volatilized organics to partition into the SPME fiber. After sample collection the SPME fiber is analyzed using conventional gas chromatography/mass spectrometry. The methodology has been used to collect organophosphorus compounds from glass surfaces, to provide a simple test for the functionality of the devices. Thirty minute sampling times (deltaTvac) resulted in fractional recovery efficiencies ranged from 10(-3) to > 10(-1), and in absolute terms collection of low nanograms was demonstrated. Fractional recovery values were correlated to the vapor pressure of the compounds being sampled. Fractional recovery increased with increasing deltaTvac, and displayed a roughly logarithmic profile indicating that an operational equilibrium is being approached. Fractional recovery decreased with increasing time between exposure and sampling, however recordable quantities of the phosphonates could be collected three weeks after exposure.

  16. Headspace-solid phase microextraction-gas chromatography-tandem mass spectrometry (HS-SPME-GC-MS2) method for the determination of pyrazines in perilla seed oils: impact of roasting on the pyrazines in perilla seed oils.

    PubMed

    Kwon, Tae Young; Park, Ji Su; Jung, Mun Yhung

    2013-09-11

    A new headspace (HS)-solid phase microextraction (SPME)-gas chromatography-tandem quadrupole mass spectrometry (GC-MS(2)) was established for the simultaneous characterization and quantitation of pyrazines in perilla seed oils. HS-SPME conditions such as fiber choice, extraction temperature, and adsorption times were tested. The established GC-MS(2) showed low detection limit (LOD) and high specificity, recovery, and precision for analysis of pyrazines in perilla seed oils. The LODs for the pyrazines were in the range of 0.07-22.22 ng/g oil. The relative standard deviations (RSDs) for the intra- and interday repeated analyses of pyrazines were less than 9.49 and 9.76%, respectively. The mean recoveries for spiked pyrazines in perilla seed oil were in the range of 94.6-107.92%. Perilla seed oils were obtained by mechanical pressing from perilla seeds roasted to different degrees of roasting (mild, medium, medium dark, and dark roasting). Fourteen pyrazine compounds in perilla seed oils were isolated, identified, and quantitated. Among them, 2-methyl-3-propylpyrazine, tetramethylpyrazine, and 2,3-diethyl-5-methylpyrazine were the first identified in perilla seed oils. Degree of roasting influenced greatly the composition and contents of pyrazines in perilla seed oils. In light-roasted perilla seed oil, 2,5-dimethylpyrazine was the most predominant pyrazine. However, in dark-roasted perilla seed oil, 2-methylpyrazine was the most abundant pyrazine in the oil, representing 38.3% of its total pyrazine content. Dark-roasted perilla seed oil contains 16.78 times higher quantity of pyrazines than light-roasted perilla seed oil. This represents the first report on the quantity of pyrazines in perilla seed oils.

  17. Analysis of ammonium nitrate headspace by on-fiber solid phase microextraction derivatization with gas chromatography mass spectrometry.

    PubMed

    Lubrano, Adam L; Andrews, Benjamin; Hammond, Mark; Collins, Greg E; Rose-Pehrsson, Susan

    2016-01-15

    A novel analytical method has been developed for the quantitation of trace levels of ammonia in the headspace of ammonium nitrate (AN) using derivatized solid phase microextraction (SPME) fibers with gas chromatography mass spectrometry (GC-MS). Ammonia is difficult to detect via direct injection into a GC-MS because of its low molecular weight and extreme polarity. To circumvent this issue, ammonia was derivatized directly onto a SPME fiber by the reaction of butyl chloroformate coated fibers with the ammonia to form butyl carbamate. A derivatized externally sampled internal standard (dESIS) method based upon the reactivity of diethylamine with unreacted butyl chloroformate on the SPME fiber to form butyl diethylcarbamate was established for the reproducible quantification of ammonia concentration. Both of these compounds are easily detectable and separable via GC-MS. The optimized method was then used to quantitate the vapor concentration of ammonia in the headspace of two commonly used improvised explosive device (IED) materials, ammonium nitrate fuel oil (ANFO) and ammonium nitrate aluminum powder (Ammonal), as well as identify the presence of additional fuel components within the headspace.

  18. A novel Schiff base network-1 nanocomposite coated fiber for solid-phase microextraction of phenols from honey samples.

    PubMed

    Wang, Wenchang; Wang, Juntao; Zhang, Shuaihua; Cui, Penglei; Wang, Chun; Wang, Zhi

    2016-12-01

    A novel covalent organic framework, Schiff base network-1 (SNW-1), was synthesized and used as a solid-phase microextraction (SPME) fiber coating material. The SNW-1 coated SPME fiber was fabricated by a covalent chemical cross-linking between the SNW-1 nanocomposite and a silanol-functionalized stainless steel wire substrate. Scanning electron microscopy and nitrogen isothermal adsorption results indicate that the new fiber coating exhibited a porous, homogenous surface with the Brunauer-Emmett-Teller surface of 668m(2)g(-1). The prepared fiber was explored for the SPME of phenols from honey samples prior to their determination by gas chromatography-mass spectrometry. The developed method had large enrichment factors (136-816), low limits of detection (0.06-0.2ngg(-1)), good linearity (0.1-100.0ngg(-1)) and repeatability (<9.7%) for phenols. The recoveries for spiked phenols (1.0ngg(-1) and 10.0ngg(-1)) in Wolfberry, Robinia and Codonopsis honey samples were in the range of 84.2-107.2% with the relative standard deviations ranging from 3.8% to 12.7%. The developed method was suitable for the determination of phenols from honey samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Optimization of an analytical methodology for the determination of alkyl- and methoxy-phenolic compounds by HS-SPME in biomass smoke.

    PubMed

    Conde, Francisco J; Afonso, Ana M; González, Venerando; Ayala, Juan H

    2006-08-01

    A sampling and analysis method for the determination of 21 phenolic compounds in smoke samples from biomass combustion has been developed. The smoke is used to make smoked foods, following an artisanal procedure used in some parts of the Canary Islands. The sampling system consists of a Bravo H air sampler, two impingers, each one containing an aqueous solution of sodium hydroxide 0.1 mol L(-1), followed by a silica gel trap. The variables optimized to reach the best sampling conditions were volume of absorbent solution and sampling flow. Under the optimum conditions, 100 mL of absorbent solution of NaOH 0.10 mol L(-1) and 2 L min(-1) for the sampling flow, sampling efficiencies are higher than 80%. Analysis of phenolic compounds was carried out by headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS). Five different fiber coatings were employed in this study. By means of a central composite design, extraction time, salt concentration, and pH of the solution were optimized: 65-microm carbowax-divinylbenzene, extraction time 90 min, concentration in NaCl of 35% (m/v), and pH 2 yielded the highest response. Detection limits of phenol and their alkyl derivatives, guaiacol and eugenol, are between 1.13 and 4.60 ng mL(-1). 3-Methoxyphenol, 2,6-dimethoxyphenol, and vanillin have detection limits considerably higher. Good linearity (R2 > or = 0.98) was observed for all calibration curves in the established ranges. The reproducibility of the method (RSD, relative standard deviation) was found to oscillate between 7 and 18% (generally close or lower than 10%).

  20. Field Analysis of Polychlorinated Biphenyls (PCBs) in Soil Using Solid-Phase Microextraction (SPME) and a Portable Gas Chromatography-Mass Spectrometry System.

    PubMed

    Zhang, Mengliang; Kruse, Natalie A; Bowman, Jennifer R; Jackson, Glen P

    2016-05-01

    An expedited field analysis method was developed for the determination of polychlorinated biphenyls (PCBs) in soil matrices using a portable gas chromatography-mass spectrometry (GC-MS) instrument. Soil samples of approximately 0.5 g were measured with a portable scale and PCBs were extracted by headspace solid-phase microextraction (SPME) with a 100 µm polydimethylsiloxane (PDMS) fiber. Two milliliters of 0.2 M potassium permanganate and 0.5 mL of 6 M sulfuric acid solution were added to the soil matrices to facilitate the extraction of PCBs. The extraction was performed for 30 min at 100 ℃ in a portable heating block that was powered by a portable generator. The portable GC-MS instrument took less than 6 min per analysis and ran off an internal battery and helium cylinder. Six commercial PCB mixtures, Aroclor 1016, 1221, 1232, 1242, 1248, 1254, and 1260, could be classified based on the GC chromatograms and mass spectra. The detection limit of this method for Aroclor 1260 in soil matrices is approximately 10 ppm, which is sufficient for guiding remediation efforts in contaminated sites. This method was applicable to the on-site analysis of PCBs with a total analysis time of 37 min per sample. However, the total analysis time could be improved to less than 7 min per sample by conducting the rate-limiting extraction step for different samples in parallel.

  1. Evaluation of the solid-phase microextraction fiber coated with single walled carbon nanotubes for the determination of benzene, toluene, ethylbenzene, xylenes in aqueous samples.

    PubMed

    Li, Quanlong; Ma, Xiaoxia; Yuan, Dongxing; Chen, Jinsheng

    2010-04-09

    A solid-phase microextraction (SPME) fiber coated with single walled carbon nanotubes (SWCNTs) was prepared by electrophoretic deposition and treated at 500 degrees C in H(2) stream. In order to evaluate the characteristics of the obtained fiber, it was applied in the headspace solid-phase microextraction (HS-SPME) of benzene, toluene, ethylbenzene and xylenes (BTEX) from water sample and quantification by gas chromatography with flame ionization detection (GC-FID). The results indicated that the thermal treatment with H(2) enhanced the extraction of the SWCNTs fiber for BTEX significantly. Thermal stability and durability of the fiber were also investigated, showing excellent stability up to 350 degrees C and life time over 120 times. In the comparison with the commercial CAR-PDMS fiber, the SWCNTs fiber showed similar and higher extraction efficiencies for BTEX. Under the optimized conditions, the linearity, LODs (S/N=3) and LOQs (S/N=10) of the method based on the SWCNTs fiber were 0.5-50.0, 0.005-0.026 and 0.017-0.088 microg/L, respectively. Repeatability for one fiber (n=3) was in the range of 1.5-5.6% and fiber-to-fiber reproducibility (n=3) was in the range of 4.2-8.3%. The proposed method was successfully applied in the analysis of BTEX compounds in seawater, tap water and wastewater from a paint plant. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Isotope dilution SPME GC/MS for the determination of methylmercury in tuna fish samples.

    PubMed

    Centineo, Giuseppe; Blanco González, Elisa; García Alonso, J Ignacio; Sanz-Medel, Alfredo

    2006-01-01

    The development of a rapid, precise and accurate analytical method for the determination of methylmercury in tuna fish samples is described. The method is based on the use of isotope dilution GC/MS with electron impact ionization, a widespread technique in routine testing laboratories. A certified spike containing (202)Hg-enriched methylmercury was used for the isotope dilution of the samples. After extraction of the methylmercury from the sample, methylmercury was propylated using sodium tetrapropyl borate in SPME vials and the analytes were sampled from the headspace for 15 min. For isotope measurements, the molecular ion (MePrHg(+)) was used in the SIM mode. Five molecular ions were monitored, corresponding to the (198)Hg, (199)Hg, (200)Hg, (201)Hg and (202)Hg isotopes. The detection at masses corresponding to (198)Hg was used to correct for m + 1 contributions of (13)C from the organic groups attached to the mercury atom on the (199)Hg, (200)Hg, (201)Hg and (202)Hg masses with simple mathematical equations, and the concentration of methylmercury was calculated on the basis of the corrected (200)Hg/(202)Hg isotope ratio. The (202)Hg-enriched methylmercury spike was applied, with satisfactory results, to the determination of methylmercury in the certified reference material BCR 464. The method was successfully applied to the determination of methylmercury in tuna fish samples, and the obtained results were included in the CCQM-P39 interlaboratory exercise, organized by the Institute for Reference Materials and Measurements (IRMM, Geel, Belgium) with excellent agreement between our results and the average obtained by the other participants.

  3. In situ solvothermal synthesis of metal-organic framework coated fiber for highly sensitive solid-phase microextraction of polycyclic aromatic hydrocarbons.

    PubMed

    Gao, Jia; Huang, Chuanhui; Lin, Yifen; Tong, Ping; Zhang, Lan

    2016-03-04

    The present work reported a facile and simple in situ solvothermal growth method for immobilization of metal-organic framework UiO-66 via covalent bonding on amino functional silica fiber for highly sensitive solid-phase microextraction (SPME) of ten polycyclic aromatic hydrocarbons (PAHs) by coupling with gas chromatography-mass spectrometry (GC-MS) analysis. The developed SPME coated fiber has been characterized through SEM, TGA and XRD, confirmed the coating thickness of ∼25μm with high thermal and chemical stability. Under optimized conditions, the obtained method exhibited satisfactory linearity in range of 1.0-5000.0ngL(-1) for all the PAHs. The low detection limits were from 0.28ngL(-1) to 0.60ngL(-1) (S/N=3). The UiO-66 coated fibers showed good repeatability (RSDs less than 8.2%, n=5) and satisfying reproducibility between fiber to fiber (RSDs less than 8.9%, n=5). This method was successfully used for simultaneous determination of ten PAHs from Minjiang water and soil samples with satisfactory recoveries of 87.0-113.6% and 83.8-116.7%, respectively. Experimental results shows that the chemical bonding approach has dramatically improve the stability and lifetime of pure MOFs coating for SPME in sample pretreatment.

  4. Analysis of volatile oil composition of Citrus aurantium L. by microwave-assisted extraction coupled to headspace solid-phase microextraction with nanoporous based fibers.

    PubMed

    Gholivand, Mohammad Bagher; Piryaei, Marzieh; Abolghasemi, Mir Mahdi

    2013-03-01

    Nanoporous silica was prepared and functionalized with amino propyl-triethoxysilane to be used as a highly porous fiber-coating material for solid-phase microextraction (SPME). The prepared nanomaterials were immobilized onto a stainless steel wire for fabrication of the SPME fiber. The proposed fiber was evaluated for the extraction of volatile component of Citrus aurantium L. leaves. A homemade microwave-assisted extraction followed by headspace (HS) solid-phase apparatus was used for the extraction of volatile components. For optimization of factors affecting the extraction efficiency of the volatile compounds, a simplex optimization method was used. The repeatability for one fiber (n = 4), expressed as RSD, was between 3.1 and 8.6% and the reproducibility for five prepared fibers was between 10.1 and 14.9% for the test compounds. Using microwave-assisted distillation HS-SPME followed by GC-MS, 53 compounds were separated and identified in C. aurantium L., which mainly included limonene (62.0%), linalool (7.47%), trans-β-Ocimene (3.47%), and caryophyllene (2.05%). In comparison to a hydrodistillation method, the proposed technique could equally monitor almost all the components of the sample, in an easier way, which was rapid and required a much lower amount of sample. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Determination of low level methyl tert-butyl ether, ethyl tert-butyl ether and methyl tert-amyl ether in human urine by HS-SPME gas chromatography/mass spectrometry.

    PubMed

    Scibetta, Licia; Campo, Laura; Mercadante, Rosa; Foà, Vito; Fustinoni, Silvia

    2007-01-02

    Methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME) are oxygenated compounds added to gasoline to enhance octane rating and to improve combustion. They may be found as pollutants of living and working environments. In this work a robotized method for the quantification of low level MTBE, ETBE and TAME in human urine was developed and validated. The analytes were sampled in the headspace of urine by SPME in the presence of MTBE-d12 as internal standard. Different fibers were compared for their linearity and extraction efficiency: carboxen/polydimethylsiloxane, polydimethylsiloxane/divinylbenzene, and polydimethylsiloxane. The first, although highly efficient, was discarded due to deviation of linearity for competitive displacement, and the polydimethylsiloxane/divinylbenzene fiber was chosen instead. The analysis was performed by GC/MS operating in the electron impact mode. The method is very specific, with range of linearity 30-4600 ng L(-1), within- and between-run precision, as coefficient of variation, <22 and <16%, accuracy within 20% the theoretical level, and limit of detection of 6 ng L(-1) for all the analytes. The influence of the matrix on the quantification of these ethers was evaluated analysing the specimens of seven traffic policemen exposed to autovehicular emissions: using the calibration curve and the method of standard additions comparable levels of MTBE (68-528 ng L(-1)), ETBE (<6 ng L(-1)), and TAME (<6 ng L(-1)) were obtained.

  6. A novel silver-coated solid-phase microextraction metal fiber based on electroless plating technique.

    PubMed

    Feng, Juanjuan; Sun, Min; Li, Jubai; Liu, Xia; Jiang, Shengxiang

    2011-09-09

    A novel silver-coated solid-phase microextraction fiber was prepared based on electroless plating technique. Good extraction performance of the fiber for model compounds including phthalate esters (dibutyl phthalate, dioctyl phthalate, dicyclohexyl phthalate and diallyl phthalate) and polycyclic aromatic hydrocarbons (naphthalene, fluorene, phenanthrene, fluoranthene) in aqueous solution was obtained. Under the optimized conditions (extraction temperature, extraction time, ionic strength and desorption temperature), the proposed SPME-GC method showed wide linear ranges with correlation coefficients (R(2)) ranging from 0.9745 to 0.9984. The limits of detection were at the range of 0.02 to 0.1 μg L(-1). Single fiber repeatability and fiber-to-fiber reproducibility as well as stability to acid, alkali and high temperature were studied and the results were all satisfactory. The method was applied successfully to the aqueous extracts of disposable paper cup and instant noodle barrel. Several kinds of analytes were detected and quantified.

  7. Multiple headspace solid-phase microextraction using a new fiber for avoiding matrix interferences in the quantitative determination of ethyl carbamate in pickles.

    PubMed

    Lei, Fen-Fen; Zhang, Xue-Na; Gao, Yuan-Li; Han, Ya-Hong; Li, Xiu-Juan; Pan, Si-Yi

    2012-05-01

    Multiple headspace solid-phase microextraction (HS-SPME) using a novel fiber coated with anilino-methyl triethoxy silicane-methacrylic acid/terminated silicone oil has been introduced as a useful pretreatment technique coupled to gas chromatography-flame ionization detector for the detection of ethyl carbamate in pickles. Anilino-methyl triethoxy silicane and methacrylic acid are put into use simultaneously with the aim to increase the hydrogen interaction strength between ethyl carbamate and the coating. In addition, the new fiber exhibits high thermal stability, good reproducibility, and long lifetime. Extraction temperature, extraction time, amount of desiccant, and amount of sample were well optimized to guarantee the suitability of multiple HS-SPME. Significant matrix interference was observed among various types of pickles and the multiple HS-SPME procedure was proved to be effective in avoiding the matrix effect by a complete recovery of the analyte. The method showed satisfactory linearity (0.1-100 mg kg(-1)), precision (4.25%, n = 5), and detection limit (0.038 mg kg(-1)). The accuracy of the method was evaluated by comparison with standard addition method and the results were statistically equivalent. The study indicates that the multiple HS-SPME procedure is simple, convenient, accurate, and low-cost, and most of all, can be used for quantitative analysis in complex matrix without matrix effect.

  8. Novel metal-ion-mediated, complex-imprinted solid-phase microextraction fiber for the selective recognition of thiabendazole in citrus and soil samples.

    PubMed

    Lian, Haixian; Hu, Yuling; Li, Gongke

    2014-01-01

    A novel metal-ion-mediated complex-imprinted-polymer-coated solid-phase microextraction (SPME) fiber used to specifically recognize thiabendazole (TBZ) in citrus and soil samples was developed. The complex-imprinted polymer was introduced as a novel SPME coating using a "complex template" constructed with Cu(II) ions and TBZ. The recognition and enrichment properties of the coating in water were significantly improved based on the metal ion coordination interaction rather than relying on hydrogen bonding interactions that are commonly applied for the molecularly imprinting technique. Several parameters controlling the extraction performance of the complex-imprinted-polymer-coated fiber were investigated including extraction solvent, pH value, extraction time, metal ion species, etc. Furthermore, SPME coupled with HPLC was developed for detection of TBZ, and the methods resulted in good linearity in the range of 10.0-150.0 ng/mL with a detection limit of 2.4 ng/mL. The proposed method was applied to the analysis of TBZ in spiked soil, orange, and lemon with recoveries of 80.0-86.9% and RSDs of 2.0-8.1%. This research provides an example to prepare a desirable water-compatible and specifically selective SPME coating to extract target molecules from aqueous samples by introducing metal ions as the mediator. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fiber biology

    USDA-ARS?s Scientific Manuscript database

    Cotton fiber cells arising from seed epidermis is the most important agricultural textile commodity in the world. To produce fully mature fibers, approximately two months of fiber developmental process are required. The timing of four distinctive fiber development stages consisting of initiation, ...

  10. A preconcentrator chip employing μ-SPME array coated with in-situ-synthesized carbon adsorbent film for VOCs analysis.

    PubMed

    Wong, Ming-Yee; Cheng, Wei-Rui; Liu, Mao-Huang; Tian, Wei-Cheng; Lu, Chia-Jung

    2012-11-15

    We report the design, fabrication, and evaluation of a μ-preconcentrator chip that utilizes an array of solid-phase microextraction (SPME) needles coated with in-situ-grown carbon adsorbent film. The structure of the SPME needle (diameter=100 μm, height=250 μm) array inside the sampling chamber was fabricated using a deep reactive-ion etching (DRIE) process to enhance the attachable surface area for adsorbent film. Heaters and temperature sensors were fabricated onto the back of a μ-preconcentrator chip using lithography patterning and a metal lift-off process. The devices were sealed by anodic bonding and diced prior to the application of the adsorbent film. An adsorbent precursor, cellulose was dissolved in water and dynamically coated onto the SPME needle array. The coated cellulose film was converted into a porous carbon film via pyrolysis at 600 °C in a N(2) atmosphere. The surface area of the carbon adsorbent film was 308 m(2)/g, which is higher than that of a commercial adsorbent Carbopack X. A preconcentration factor as high as 13,637-fold was demonstrated using toluene. Eleven volatile organic compounds (VOCs) of different volatilities and functional groups were sampled and analyzed by GC-FID, and the desorption peak widths at half height were all less than 2.6 s after elution from a 15m capillary GC column. There was no sign of performance degradation after continuous operation for 50 cycles in air. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. HS-SPME-GC×GC-qMS volatile metabolite profiling of Chrysolina herbacea frass and Mentha spp. leaves.

    PubMed

    Cordero, Chiara; Zebelo, Simon Atsbaha; Gnavi, Giorgio; Griglione, Alessandra; Bicchi, Carlo; Maffei, Massimo E; Rubiolo, Patrizia

    2012-02-01

    Headspace solid-phase microextraction (HS-SPME) comprehensive two-dimensional (2D) gas chromatography combined with quadrupole-mass spectrometry (GC×GC-qMS) with dedicated comparative data elaboration was applied to separate chemical patterns arising from the interaction between some Mentha species and the herbivore Chrysolina herbacea, also known as the mint bug. Upon feeding on different Mentha species (Mentha spicata L., Mentha × piperita L. and Mentha longifolia L.), C. herbacea produced frass (faeces) which were characterized by a typical volatile fraction. HS-SPME GC×GC-qMS analysis of the complex volatile fraction of both mint leaf and C. herbacea frass was submitted to advanced fingerprinting analysis of 2D chromatographic data. 1,8-Cineole, found in the leaves of all the Mentha species examined, was oxidized, and C. herbacea frass yielded high rates of several hydroxy-1,8-cineoles, including 2α-hydroxy-, 3α-hydroxy-, 3β-hydroxy- and 9-hydroxy-1,8-cineole. Upon insect feeding, several unknown oxidized monoterpenes, a p-menthane diol and three unknown phenylpropanoids were also detected in the frass volatiles. In M. longifolia, the occurrence of the monoterpene piperitenone oxide was found to be toxic and associated with insect death. The results of this work show that high throughput techniques such as HS-SPME and GC×GC-qMS fingerprint analysis are ideal tools to analyze complex volatile matrices, and provide a sensitive method for the direct comparison and chemical visualization of plant and insect emitted volatile components.

  12. Molecularly imprinted calixarene fiber for solid-phase microextraction of four organophosphorous pesticides in fruits.

    PubMed

    Li, Jing-Wen; Wang, Yu-Long; Yan, Shan; Li, Xiu-Juan; Pan, Si-Yi

    2016-02-01

    Calixarene was used as a functional monomer to fabricate a molecularly imprinted polymer (MIP) by sol-gel technique for solid-phase microextraction (SPME) of parathion-methyl and its structural analogs. The MIP-coated fiber possessed excellent thermal and chemical stability as well as high extraction capacity. Its selectivity and possible recognition mechanism were investigated. The similarities in molecular shape and functional group play a key role in the selective recognition of the imprinted material. Any changes to the structure of the template would decrease the imprinting factor. A comparison of MIP-SPME was made with liquid-liquid extraction coupled with gas chromatography for the determination of organophosphorus pesticides (OPPs) in fruits. Much lower limits of detection and better recoveries were achieved by SPME in spiked apple and pineapple samples. The experiment demonstrates that the proposed method using the calixarene MIP fiber was more suitable for selective determination of trace OPPs in those fruit samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. [Analysis of volatile constituents of Astragali Complanati semen by HS-SPME combined with GC-MS].

    PubMed

    Guo, Sheng-nan; Lu, Jin-qing; Cai, Jun-long; Li, Qiang; Liang, Huan

    2013-12-01

    To analyze the compositions of volatile constituents in Astragali Complanati Semen. The volatile constituents were extracted with headspace solid phase micro extraction (HS-SPME), and identified by GC-MS. 51 compounds were separated from Astragali Complanati Semen and 25 of them were identified, which made up 78.85% of the total amount. The main components obtained from Astragali Complanati Semen were L-Bornyl acetate (14.1%), Camphor (5.98%) and L(-)-Borneol (4.27%). The compounds in Astragali Complanati Semen are firstly confirmed,which provides scientific evidence for the development of Astragali Complanati Semen.

  14. Natural fibers

    Treesearch

    Craig M. Clemons

    2010-01-01

    The term “natural fibers” covers a broad range of vegetable, animal, and mineral fibers. However, in the composites industry, it usually refers to wood fiber and plant-based bast, leaf, seed, and stem fibers. These fibers often contribute greatly to the structural performance of the plant and, when used in plastic composites, can provide significant reinforcement....

  15. Headspace solid-phase microextraction (HS-SPME) and liquid-liquid extraction (LLE): comparison of the performance in classification of ecstasy tablets. Part 2.

    PubMed

    Bonadio, Federica; Margot, Pierre; Delémont, Olivier; Esseiva, Pierre

    2008-11-20

    Headspace solid-phase microextraction (HS-SPME) is assessed as an alternative to liquid-liquid extraction (LLE) currently used for 3,4-methylenedioxymethampethamine (MDMA) profiling. Both methods were compared evaluating their performance in discriminating and classifying samples. For this purpose 62 different seizures were analysed using both extraction techniques followed by gas chromatography-mass spectroscopy (GC-MS). A previously validated method provided data for HS-SPME, whereas LLE data were collected applying a harmonized methodology developed and used in the European project CHAMP. After suitable pre-treatment, similarities between sample pairs were studied using the Pearson correlation. Both methods enable to distinguish between samples coming from the same pre-tabletting batches and samples coming from different pre-tabletting batches. This finding emphasizes the use of HS-SPME as an effective alternative to LLE, with additional advantages such as sample preparation and a solvent-free process.

  16. Characterization of Aronia melanocarpa volatiles by headspace-solid-phase microextraction (HS-SPME), simultaneous distillation/extraction (SDE), and gas chromatography-olfactometry (GC-O) methods.

    PubMed

    Kraujalytė, Vilma; Leitner, Erich; Venskutonis, Petras Rimantas

    2013-05-22

    The profiles of volatile constituents of berry fruit of two Aronia melanocarpa genotypes were evaluated by headspace-solid-phase microextraction (HS-SPME), simultaneous distillation and extraction (SDE), and gas chromatography-olfactometry (GC-O). In total, 74 volatile compounds were identified in chokeberry juice, 3-penten-2-one, 3,9-epoxy-p-menth-1-ene, and benzaldehyde being the most abundant constituents; however, their percentage concentrations were remarkably different in the HS-SPME and SDE profiles. Twenty two aroma-active compounds were detected and characterized by the trained panelists in HS-SPME using GC-O detection frequency analysis. Olfactometry revealed that ethyl-2-methyl butanoate, ethyl-3-methyl butanoate, ethyl decanoate ("fruity" aroma notes), nonanal ("green" notes), unidentified compound possessing "moldy" odor, and some other volatiles may be very important constituents in formation of chokeberry aroma of both analyzed plant cultivars.

  17. Sampling gaseous compounds from essential oils evaporation by solid phase microextraction devices

    NASA Astrophysics Data System (ADS)

    Cheng, Wen-Hsi; Lai, Chin-Hsing

    2014-12-01

    Needle trap samplers (NTS) are packed with 80-100 mesh divinylbenzene (DVB) particles to extract indoor volatile organic compounds (VOCs). This study compared extraction efficiency between an NTS and a commercially available 100 μm polydimethylsiloxane-solid phase microextration (PDMS-SPME) fiber sampler used to sample gaseous products in heated tea tree essential oil in different evaporation modes, which were evaporated respectively by free convection inside a glass evaporation dish at 27 °C, by evaporation diffuser at 60 °C, and by thermal ceramic wicks at 100 °C. The experimental results indicated that the NTS performed better than the SPME fiber samplers and that the NTS primarily adsorbed 5.7 ng ethylbenzene, 5.8 ng m/p-xylenes, 11.1 ng 1,2,3-trimethylbenzene, 12.4 ng 1,2,4-trimethylbenzene and 9.99 ng 1,4-diethylbenzene when thermal ceramic wicks were used to evaporate the tea tree essential oil during a 1-hr evaporation period. The experiment also indicated that the temperature used to heat the essential oils should be as low as possible to minimize irritant VOC by-products. If the evaporation temperature does not exceed 100 °C, the concentrations of main by-products trimethylbenzene and diethylbenzene are much lower than the threshold limit values recommended by the National Institute for Occupational Safety and Health (NIOSH).

  18. Volatile profile analysis and quality prediction of Longjing tea (Camellia sinensis) by HS-SPME/GC-MS

    PubMed Central

    Lin, Jie; Dai, Yi; Guo, Ya-nan; Xu, Hai-rong; Wang, Xiao-chang

    2012-01-01

    This study aimed to analyze the volatile chemical profile of Longjing tea, and further develop a prediction model for aroma quality of Longjing tea based on potent odorants. A total of 21 Longjing samples were analyzed by headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Pearson’s linear correlation analysis and partial least square (PLS) regression were applied to investigate the relationship between sensory aroma scores and the volatile compounds. Results showed that 60 volatile compounds could be commonly detected in this famous green tea. Terpenes and esters were two major groups characterized, representing 33.89% and 15.53% of the total peak area respectively. Ten compounds were determined to contribute significantly to the perceived aroma quality of Longjing tea, especially linalool (0.701), nonanal (0.738), (Z)-3-hexenyl hexanoate (−0.785), and β-ionone (−0.763). On the basis of these 10 compounds, a model (correlation coefficient of 89.4% and cross-validated correlation coefficient of 80.4%) was constructed to predict the aroma quality of Longjing tea. Summarily, this study has provided a novel option for quality prediction of green tea based on HS-SPME/GC-MS technique. PMID:23225852

  19. Partitioning of the pesticide trifluralin between dissolved organic matter and water using automated SPME-GC/MS.

    PubMed

    Caupos, Emilie; Touffet, Arnaud; Mazellier, Patrick; Croue, Jean-Philippe

    2015-03-01

    Solid-phase microextraction (SPME) was used to determine the equilibrium association constant for a pesticide, trifluralin (TFR), with dissolved organic matter (DOM). After optimization of the SPME method for the analysis of TFR, partition coefficients (K DOM) with three different sources of DOM were determined in buffered solutions at pH 7. Commercial humic acids and DOM fractions isolated from two surface waters were used. The values of log K DOM varied from 4.3 to 5.8, depending on the nature of the organic material. A good correlation was established between log K DOM and DOM properties (as measured with the H/O atomic ratio and UV absorbance), in agreement with literature data. This is consistent with the effect of polarity and aromaticity for governing DOM-pollutant associations, regardless of the origin of DOM. This association phenomenon is relevant to better understand the behavior of pesticides in the environment since it controls part of pesticide leaching and fate in aquatic systems.

  20. Analysis of the chloroacetanilide herbicides in water using SPME with CAR/PDMS and GC/ECD.

    PubMed

    Hwang, Ying-Ming; Wong, Yih-Gang; Ho, Wu-Hsiung

    2005-01-01

    The solid-phase microextraction (SPME) technique using a 75 mm film of carboxen/polydimethylsiloxane was applied to the analysis of chloroacetanilide herbicides (acetochlor, alachlor, butachlor, metolachlor, and propachlor) residues. The feasibility of SPME with gas chromatography electron capture detection analysis has been evaluated. The effects of experimental parameters such as magnetic stirring, salt addition, humic acid addition, pH value, and extraction time, as well as desorption temperature and time, were investigated. Analytical parameters such as linearity, repeatability and limit of detection were also evaluated. The inhibition of humic acid to the extraction of chloroacetanilide herbicides was observed. A standard addition method for calibration was recommended to reduce deviations caused by matrix interferences. The proposed method provided a simple and rapid analytical procedure for chloroacetanilide herbicides in water with limits of detection 0.002-0.065 microg/L for deionized water, and 0.005-0.22 microg/L for farm water. The relative standard deviations (n = 5) for analyses of farm water were 7-20% for 5 [corrected] microg/L chloroacetanilide herbicides. This application was illustrated by the analysis of sample collected from farm water in the Chung-hwa area, Taiwan.

  1. Characterisation of the volatile profile of coconut water from five varieties using an optimised HS-SPME-GC analysis.

    PubMed

    Prades, Alexia; Assa, Rebecca Rachel Ablan; Dornier, Manuel; Pain, Jean-Pierre; Boulanger, Renaud

    2012-09-01

    Coconut (Cocos nucifera L.) water is a refreshing tropical drink whose international market has recently been growing. However, little is yet known about its physicochemical composition, particularly its aroma. This study set out to characterise the volatile profile of water from five coconut varieties. Aroma compounds were characterised by headspace solid phase microextraction gas chromatography (HS-SPME-GC) analysis. An experimental design was established to optimise SPME conditions, leading to an equilibration time of 10 min followed by an extraction time of 60 min at 50 °C. Accordingly, immature coconut water from WAT (West African Tall), PB121 (MYD × WAT Hybrid), MYD (Malayan Yellow Dwarf), EGD (Equatorial Guinea Green Dwarf) and THD (Thailand Aromatic Green Dwarf) palms was analysed and described. Ketones were mainly present in the Tall and Hybrid varieties, whereas aldehydes were most abundant in the Dwarf palms. Tall coconut water was characterised by a high lactone content. THD exhibited a high ethyl octanoate level. The cluster analysis of the volatile fraction from the five coconut cultivars was found to be related to their genetic classification. The volatile compounds of immature coconut water from five varieties were characterised for the first time. Volatile profile analysis could be a useful tool for the selection of Dwarf coconut varieties, which are mainly consumed as a beverage. Copyright © 2012 Society of Chemical Industry.

  2. Volatile profile analysis and quality prediction of Longjing tea (Camellia sinensis) by HS-SPME/GC-MS.

    PubMed

    Lin, Jie; Dai, Yi; Guo, Ya-nan; Xu, Hai-rong; Wang, Xiao-chang

    2012-12-01

    This study aimed to analyze the volatile chemical profile of Longjing tea, and further develop a prediction model for aroma quality of Longjing tea based on potent odorants. A total of 21 Longjing samples were analyzed by headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Pearson's linear correlation analysis and partial least square (PLS) regression were applied to investigate the relationship between sensory aroma scores and the volatile compounds. Results showed that 60 volatile compounds could be commonly detected in this famous green tea. Terpenes and esters were two major groups characterized, representing 33.89% and 15.53% of the total peak area respectively. Ten compounds were determined to contribute significantly to the perceived aroma quality of Longjing tea, especially linalool (0.701), nonanal (0.738), (Z)-3-hexenyl hexanoate (-0.785), and β-ionone (-0.763). On the basis of these 10 compounds, a model (correlation coefficient of 89.4% and cross-validated correlation coefficient of 80.4%) was constructed to predict the aroma quality of Longjing tea. Summarily, this study has provided a novel option for quality prediction of green tea based on HS-SPME/GC-MS technique.

  3. Selective extraction and enrichment of glycoproteins based on boronate affinity SPME and determination by CIEF-WCID.

    PubMed

    Li, Lixian; Xia, Zhining; Pawliszyn, Janusz

    2015-07-30

    In this study, a new thin-film boronic acid coating was developed for solid-phase microextraction (SPME) followed by capillary isoelectric focusing with whole-column imaging detection (CIEF-WCID). Boronate functionalized particles of phenylboronic acid (PBA) and 3-aminophenylboronic acid (3-aPBA) were utilized as boronate affinity solid phase coating on thin-film stainless steel blades for selective extraction and enrichment of glycoproteins. The process of extraction and elution could be easily controlled by adjusting pH. To test specificity, asialofetuin and lactoferrin were selected as glycoproteins test molecules, while BSA and myoglobin were used as control non-glycoproteins in this study. The boronate affinity coating was characterized. The effect of buffer, pH, extraction profiles and elution profiles were investigated. The developed method was successfully applied to extract glycoproteins from standard buffer, PBS, human plasma and 10-fold diluted human blood using two kinds of boronate affinity blades. Boronate affinity SPME could be a promising tool for selective extraction and enrichment of low-abundance glycoproteins in real biological samples.

  4. Solid-phase microextraction-gas chromatography-time-of-flight mass spectrometry utilized for the evaluation of the new-generation super elastic fiber assemblies.

    PubMed

    Setkova, Lucie; Risticevic, Sanja; Linton, Christopher M; Ouyang, Gangfeng; Bragg, Leslie M; Pawliszyn, Janusz

    2007-01-09

    The aim of this study was to evaluate the performance characteristics of the recently developed super elastic solid-phase microextraction (SPME) fibers. The fiber needle, plunger and fiber core are manufactured with a special type of flexible alloy that exhibits excellent shape memory and tensile strength. This material makes the assemblies more robust, permitting several hundreds of analyses in a sequence, which is one of the ways to improve the robustness and sample throughput of automated SPME methods. The design and size of the needle utilized in the new fiber assemblies is discussed here, as well as the use of a septum-free injector replacement and a low-volume direct injection glass liner placed in the GC inlet. Deionized water and pump oil samples spiked with target volatile compounds (McReynold's probes and toluene) were used for the purposes of the presented study. A fully automated SPME sample preparation technique was combined with the GC-TOFMS system for the chromatographic separation and identification/quantification of the target analytes.

  5. Fiber introduction mass spectrometry: determination of pesticides in herbal infusions using a novel sol-gel PDMS/PVA fiber for solid-phase microextraction.

    PubMed

    da Silva, Rogério Cesar; Zuin, Vânia Gomes; Yariwake, Janete Harumi; Eberlin, Marcos Nogueira; Augusto, Fabio

    2007-06-01

    An application of the direct coupling of solid-phase microextraction (SPME) with mass spectrometry (MS), a technique known as fiber introduction mass spectrometry (FIMS), is described to determine organochlorine (OCP) and organophosphorus (OPP) pesticides in herbal infusions of Passiflora L. A new fiber coated with a composite of poly(dimethylsiloxane) and poly(vinyl alcohol) (PDMS/PVA) was used. Sensitive, selective, simple and simultaneous quantification of several OCP and OPP was achieved by monitoring diagnostic fragment ions of m/z 266 (chlorothalonil), m/z 195 (alpha-endosulfan), m/z 278 (fenthion), m/z 263 (methyl parathion) and m/z 173 (malathion). Simple headspace SPME extraction (25 min) and fast FIMS detection (less than 40 s) of OCP and OPP from a highly complex herbal matrix provided good linearity with correlation coefficients of 0.991-0.999 for concentrations ranging from 10 to 140 ng ml(-1) of each compound. Good accuracy (80 to 110%), precision (0.6-14.9%) and low limits of detection (0.3-3.9 ng ml(-1)) were also obtained. Even after 400 desorption cycles inside the ionization source of the mass spectrometer, no visible degradation of the novel PDMS/PVA fiber was detected, confirming its suitability for FIMS. Fast (ca 20 s) pesticide desorption occurs for the PDMS/PVA fiber owing to the small thickness of the film and its reduced water sorption.

  6. Fiber introduction mass spectrometry: determination of pesticides in herbal infusions using a novel sol-gel PDMS/PVA fiber for solid-phase microextraction.

    PubMed

    da Silva, Rogério Cesar; Zuin, Vânia Gomes; Yariwake, Janete Harumi; Eberlin, Marcos Nogueira; Augusto, Fabio

    2007-10-01

    An application of the direct coupling of solid-phase microextraction (SPME) with mass spectrometry (MS), a technique known as fiber introduction mass spectrometry (FIMS), is described to determine organochlorine (OCP) and organophosphorus (OPP) pesticides in herbal infusions of Passiflora L. A new fiber coated with a composite of poly(dimethylsiloxane) and poly(vinyl alcohol) (PDMS/PVA) was used. Sensitive, selective, simple and simultaneous quantification of several OCP and OPP was achieved by monitoring diagnostic fragment ions of m/z 266 (chlorothalonil), m/z 195 (alpha-endosulfan), m/z 278 (fenthion), m/z 263 (methyl parathion) and m/z 173 (malathion). Simple headspace SPME extraction (25 min) and fast FIMS detection (less than 40 s) of OCP and OPP from a highly complex herbal matrix provided good linearity with correlation coefficients of 0.991-0.999 for concentrations ranging from 10 to 140 ng ml(-1) of each compound. Good accuracy (80 to 110%), precision (0.6-14.9%) and low limits of detection (0.3-3.9 ng ml(-1)) were also obtained. Even after 400 desorption cycles inside the ionization source of the mass spectrometer, no visible degradation of the novel PDMS/PVA fiber was detected, confirming its suitability for FIMS. Fast (ca 20 s) pesticide desorption occurs for the PDMS/PVA fiber owing to the small thickness of the film and its reduced water sorption.

  7. Fiber Techniques

    ERIC Educational Resources Information Center

    Nalle, Leona

    1976-01-01

    Describes a course in fiber techniques, which covers design methods involving fibers and fabric, that students in the Art Department at Sleeping Giant Junior High School had the opportunity to learn. (Author/RK)

  8. Analyzing freely dissolved concentrations of cationic surfactant utilizing ion-exchange capability of polyacrylate coated solid-phase microextraction fibers.

    PubMed

    Chen, Yi; Droge, Steven T J; Hermens, Joop L M

    2012-08-24

    A 7-μm polyacrylate (PA) coated fiber was successfully employed to determine freely dissolved concentrations of cationic surfactants by solid-phase microextraction (SPME) and utilizing the capability of the PA-coating to sorb organic cations via ion-exchange at carboxylic groups. Measured fiber-water partitioning coefficients (K(fw)) were constant below a fiber loading of 2mmol per liter polyacrylate, allowing for simple and accurate analysis in a concentration range that is relevant from a risk assessment point of view. Ion-exchange was confirmed to be the main sorption mechanism because of a decreasing K(fw) with either higher CaCl(2) concentrations or lower pH, and maximum fiber uptake at the polyacrylate cation-exchange capacity (CEC, at 30mmol/L PA). Fiber-water sorption isotherms were established in various aqueous media in toxicological relevant concentrations. The developed SPME method has a high potential for application in ecotoxicological studies, as demonstrated in sorption studies with humic acid in different electrolyte solutions at aqueous concentrations down to the sub nM range. Cationic surfactant sorption affinities for humic acid also depend on medium composition but are orders of magnitude higher than to the PA fiber on a sorbent weight basis. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Investigation of cuticular hydrocarbons from Bagrada hilaris genders by SPME/GC-MS.

    PubMed

    De Pasquale, C; Guarino, S; Peri, E; Alonzo, G; Colazza, S

    2007-10-01

    The cuticular hydrocarbons of male and female Bagrada hilaris Burmeister (Heteroptera: Pentatomidae) were investigated, by headspace solid-phase microextraction followed by gas chromatography-mass spectrometry. Measurements were done with fiber coatings of different polarity after optimization of headspace volumes and extraction temperatures. This resulted in the use of polyacrylate fiber, 22-ml vial as the sample holder, and an extraction temperature of 150 degrees C. The analytical procedures allowed identification of 13 peaks, corresponding to a homologous series of n-alkanes (nC(17)-nC(29)). The hydrocarbon profiles of male and female B. hilaris were qualitatively equal, but marked sex-specific quantitative differences were observed for some of the linear alkanes.

  10. SPME-GC determination of methanol as a hydrate inhibitor in crude oil.

    PubMed

    Mokhtari, Bahram; Pourabdollah, Kobra

    2011-12-15

    This work focused on the quantitation of methanol as a hydrate inhibitor in the crude oil. The novelty is microextraction of a polar compound from a complex non-polar matrix and selection of proper fiber with maximum selectivity, loading percent, and lifetime. This approach not only does not require specific instrumentation, such as multiple columns, and selective detectors, but also has eliminated the use of organic solvent and avoids the insertion of water inside the GC columns. The objective is optimization of extraction conditions, GC adjustments and data processing. Experiments were conducted on the real sample of Iranian offshore crude oil by a carboxen/PDMS fiber via a GC equipped with a cross-linked polyethylene glycol column and FID. The results revealed that this fiber adsorbed the alcohols among other light non-polar compounds of crude oil. Moreover, the interference effects of ethanol were solved by proper selection of thermal program. The LOD, LOQ and linear range of this approach were determined to be 3.9, 12.9 and 14-229 mg L(-1) for methanol, respectively. Moreover, the sensitivity was 30 area-counts per mg L(-1). Using the standard calibration and the standard addition methods, the relative errors of 1.6-7.2 and 5.3-14.0% were determined, respectively.

  11. Dietary Fiber

    MedlinePlus

    Fiber is a substance in plants. Dietary fiber is the kind you eat. It's a type of carbohydrate. You may also see it listed on a food label as soluble ... types have important health benefits. Good sources of dietary fiber include Whole grains Nuts and seeds Fruit and ...

  12. Preparation of new solid phase micro extraction fiber on the basis of atrazine-molecular imprinted polymer: application for GC and GC/MS screening of triazine herbicides in water, rice and onion.

    PubMed

    Djozan, Djavanshir; Ebrahimi, Bahram

    2008-06-02

    A simple polymerization strategy has been used to produce a monolithic solid phase micro extraction (SPME) fiber on the basis of molecularly imprinted polymer able to couple with GC and GC-MS for selective extraction and analysis of triazine herbicides. A fiber was produced by copolymerization of methacrylic acid-ethylene glycol dimethacrylate imprinted with atrazine. The effective factors influencing the polymerization have been investigated and are detailed here. At the optimum conditions the prepared fiber is firm, inexpensive, durable and thermally stable up to 280 degrees C which has vital importance in SPME coupled with GC or GC/MS. In addition, the influences of pH, extraction time and temperature on the extraction efficiency of analytes were optimized. Selectivity of prepared fibers in relation to triazine herbicides and some of the other pesticide has been investigated. The high extraction efficiency was obtained for atrazine, simazine, propazine, cyanazine, ametryn, terbutryn and prometryn yielding the detection limits of 20, 70, 80, 81, 69, 88 and 68 ng mL(-1), respectively and the high quantities of recoveries. The reliability of prepared fiber to extraction of atrazine and other analogues in real samples has been investigated and proved by implementation of SPME in spiked samples such as tap water, onion and rice.

  13. Critical evaluation of fiber coatings for organotin determination by using solid phase microextraction in headspace mode.

    PubMed

    Bravo, Manuel M; Valenzuela, Aníbal S; Fuentes, Edwar P; Quiroz, Waldo V

    2012-02-03

    In the present work three different SPME fibers have been investigated for simultaneous determination of methyl-, butyl- and phenyltins by using gas chromatography-pulsed flame photometer detection (GC-PFPD). The optimal experimental conditions for each fiber were determined and the respective figures of merit were evaluated. All fiber evaluated presented similar limit of detection (sub ng L⁻¹) and requires two internal standards to reach an acceptable repeatability. However, the CAR-PDMS fiber offers the best compromise between selectivity and sensibility for determination of organotins selected. The developed method was validated for analysis of certified reference material and spiked samples, obtaining satisfactory results. Finally, some contaminated samples were analyzed demonstrating the applicability of developed method for determination of organotin compounds in the environment and for monitoring their biochemical cycle.

  14. A metal organic framework-polyaniline nanocomposite as a fiber coating for solid phase microextraction.

    PubMed

    Bagheri, Habib; Javanmardi, Hasan; Abbasi, Alireza; Banihashemi, Solmaz

    2016-01-29

    A metal organic framework-polyaniline (MOF/PANI) nanocomposite was electrodeposited on a stainless steel wire and used as a solid phase microextraction (SPME) fiber coating. The electropolymerization process was carried out under a constant deposition potential and applied to the corresponding aqueous electrolyte containing aniline and MOF particles. The employment of MOFs with their large and small cages and 3-D structures in synthesizing a nanocomposite was assumed to be efficient constitutes to induce more non-smooth and porous structures, approved by scanning electron microscopy (SEM) images. Three different MOFs were incorporated to synthesize the desired nanocomposites and the preliminary experiments showed that all of them, particularly the one containing MOF2, have higher extraction performances in compared with PANI. The applicability of the new fiber coating was examined by headspace-solid phase microextraction (HS-SPME) of some chlorobenzenes (CBs) from aqueous samples. Influencing parameters on the synthesize and extraction processes including the electrodeposition voltage and its duration time, the weight ratio of PANI and MOF, the ionic strength, desorption temperature and time, and extraction time and temperature were optimized. The developed method was validated by analyzing the spiked distilled water and gas chromatography-mass spectrometry (GC-MS). Under optimum condition, the relative standard deviation (RSD%) values for a double distilled water spiked with the selected CBs at 20ngL(-1) were 5-8% (n=3) and the detection limits were below 0.2ngL(-1). The linear dynamic range (LDR) of the method was in the concentration range of 0.5-1000ngL(-1) (R(2)>0.9994). The fiber-to-fiber reproducibility was found to be in the range of 4-7%. Eventually, various real-water samples were analyzed by the MOF/PANI-based HS-SPME and GC-MS and the relative recovery values were found to be in the range of 92-98%.

  15. Anti-malarial activity and HS-SPME-GC-MS chemical profiling of Plinia cerrocampanensis leaf essential oil

    PubMed Central

    2014-01-01

    Background Plinia cerrocampanensis is an endemic plant of Panama. The leaf essential oil of this plant has shown antibacterial activity. However, anti-malarial activity and chemical profiling by HS-SPME-GC-MS of this essential oil have not been reported before. Methods Anti-malarial activity of the essential oil (EO) was evaluated in vitro against chloroquine-sensitive HB3 and chloroquine-resistant W2 strains of Plasmodium falciparum. Synergistic effect of chloroquine and the EO on parasite growth was evaluated by calculating the combination index. A methodology involving headspace solid phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS) was developed to investigate the composition of Plinia cerrocampanensis EO. Results Plinia cerrocampanensis EO showed a high anti-malarial activity and a synergistic interaction with chloroquine. The Plinia cerrocampanensis EO inhibited P. falciparum growth in vitro at an IC50 of 7.3 μg/mL. Chloroquine together with the EO decreased the IC50 of chloroquine from 0.1 μg/mL to 0.05 μg/mL, and of the EO from 7.3 μg/mL to 1.1 μg/mL. The measured combination index was 0.58, which clearly indicates that the EO acts synergistically with chloroquine. Since the EO maintained its inhibitory activity on the chloroquine-sensitive strain of the parasite, it could be acting by a different mechanism of action than chloroquine. The best HS-SPME-GC-MS analytical conditions were obtained when the temperature of extraction was 49°C, incubation time 14 min, and the time of extraction 10 min. This method allowed for the identification of 53 volatile constituents in the EO, including new compounds not reported earlier. Conclusions The anti-malarial activity exhibited by the Plinia cerrocampanensis EO may lend support for its possible use as an alternative for anti-malarial therapy. PMID:24410874

  16. Anti-malarial activity and HS-SPME-GC-MS chemical profiling of Plinia cerrocampanensis leaf essential oil.

    PubMed

    Durant, Armando A; Rodríguez, Candelario; Herrera, Liuris; Almanza, Alejandro; Santana, Ana I; Spadafora, Carmenza; Spadadora, Carmenza; Gupta, Mahabir P

    2014-01-13

    Plinia cerrocampanensis is an endemic plant of Panama. The leaf essential oil of this plant has shown antibacterial activity. However, anti-malarial activity and chemical profiling by HS-SPME-GC-MS of this essential oil have not been reported before. Anti-malarial activity of the essential oil (EO) was evaluated in vitro against chloroquine-sensitive HB3 and chloroquine-resistant W2 strains of Plasmodium falciparum. Synergistic effect of chloroquine and the EO on parasite growth was evaluated by calculating the combination index. A methodology involving headspace solid phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS) was developed to investigate the composition of Plinia cerrocampanensis EO. Plinia cerrocampanensis EO showed a high anti-malarial activity and a synergistic interaction with chloroquine. The Plinia cerrocampanensis EO inhibited P. falciparum growth in vitro at an IC50 of 7.3 μg/mL. Chloroquine together with the EO decreased the IC50 of chloroquine from 0.1 μg/mL to 0.05 μg/mL, and of the EO from 7.3 μg/mL to 1.1 μg/mL. The measured combination index was 0.58, which clearly indicates that the EO acts synergistically with chloroquine. Since the EO maintained its inhibitory activity on the chloroquine-sensitive strain of the parasite, it could be acting by a different mechanism of action than chloroquine. The best HS-SPME-GC-MS analytical conditions were obtained when the temperature of extraction was 49°C, incubation time 14 min, and the time of extraction 10 min. This method allowed for the identification of 53 volatile constituents in the EO, including new compounds not reported earlier. The anti-malarial activity exhibited by the Plinia cerrocampanensis EO may lend support for its possible use as an alternative for anti-malarial therapy.

  17. Coupling ASE, sylilation and SPME-GC/MS for the analysis of current-used pesticides in atmosphere.

    PubMed

    Raeppel, Caroline; Fabritius, Marie; Nief, Marie; Appenzeller, Brice M R; Millet, Maurice

    2014-04-01

    An analytical methodology using Accelerated Solvent Extraction (ASE) and a sylilation procedure coupled to Solid Phase Micro-Extraction (SPME) and GC/MS was developed for the determination of 31 pesticides of different chemical classes (urea, phenoxy acids, pyrethrenoïds, etc.) commonly used in non-agricultural areas in atmospheric samples. This methodology was developed to evaluate the outdoor atmospheric contamination by non-agricultural pesticides. Pesticides were simultaneously sampled on glass fibre filters and on XAD-2 resin traps by using a low volume sampler (Partisol) for 1 week. Traps were extracted by Accelerated Solvent Extraction (ASE) with acetonitrile and concentrated to 1 mL by using a rotary evaporator. 500 µL of the extract was dissolved in 19.5 mL of 1.5% NaCl acidified water (pH=3) and SPME extracted by PA fibre for 55 min at 50 °C. Since most of the studied pesticides are polar or thermo-labile, a derivatisation step by injection of 2 µL of MtBSTFA just before SPME desorption was done. MtBSTFA was chosen since it delivers very specific ions on electronic impact (m/z=M-57). Detection limits varied between 5 and 179 ng resin(-1) and between 0.3 and 126 ng filter(-1) corresponding to 2 and 750 pg m(-3) and 30 and 1165 pg m(-3) for 168 m(3) of air pumped through traps. Quantification limits varied between 18 and 595 ng resin(-1) and between 1 and 420 ng filter(-1) corresponding to 107 and 3542 pg m(-3) and 6 and 2500 pg m(-3) for 168 m(3) of air pumped through traps. Uncertainties varied between 7.2% and 39.6% and between 7.2% and 53.4% respectively for filter and resin. The method was used for the analysis of atmospheric samples collected in a background urban site of Strasbourg (east of France) during spring and summer 2010. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Graphene-coated fiber for solid-phase microextraction of triazine herbicides in water samples.

    PubMed

    Wu, Qiuhua; Feng, Cheng; Zhao, Guangying; Wang, Chun; Wang, Zhi

    2012-01-01

    Graphene is a novel and interesting carbon material that could be used for the separation and purification of some chemical compounds. In this investigation, graphene was used as a novel fiber-coating material for the solid-phase microextraction (SPME) of four triazine herbicides (atrazine, prometon, ametryn and prometryn) in water samples. The main parameters that affect the extraction and desorption efficiencies, such as the extraction time, stirring rate, salt addition, desorption solvent and desorption time, were investigated and optimized. The optimized SPME by graphene-coated fiber coupled with high-performance liquid chromatography-diode array detection (HPLC-DAD) was successfully applied for the determination of the four triazine herbicides in water samples. The linearity of the method was in the range from 0.5 to 200 ng/mL, with the correlation coefficients (r) ranging from 0.9989 to 0.9998. The limits of detection of the method were 0.05-0.2 ng/mL. The relative standard deviations varied from 3.5 to 4.9% (n=5). The recoveries of the triazine herbicides from water samples at spiking levels of 20.0 and 50.0  ng/mL were in the range between 86.0 and 94.6%. Compared with two commercial fibers (CW/TPR, 50 μm; PDMS/DVB, 60 μm), the graphene-coated fiber showed higher extraction efficiency.

  19. Quantitative Analysis of Bisphenol A Leached from Household Plastics by Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry (SPME-GC-MS)

    ERIC Educational Resources Information Center

    Johnson, Bettie Obi; Burke, Fernanda M.; Harrison, Rebecca; Burdette, Samantha

    2012-01-01

    The measurement of trace levels of bisphenol A (BPA) leached out of household plastics using solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) is reported here. BPA is an endocrine-disrupting compound used in the industrial manufacture of polycarbonate plastic bottles and epoxy resin can liners. This experiment…

  20. Multivariate statistical analysis of hemlock (Tsuga) volatiles by SPME/GC/MS: insights into the phytochemistry of the hemlock woolly adelgid (Adelges tsugae Annand)

    Treesearch

    Anthony Lagalante; Frank Calvosa; Michael Mirzabeigi; Vikram Iyengar; Michael Montgomery; Kathleen Shields

    2007-01-01

    A previously developed single-needle, SPME/GC/MS technique was used to measure the terpenoid content of T. canadensis growing in a hemlock forest at Lake Scranton, PA (Lagalante and Montgomery 2003). The volatile terpenoid composition was measured over a 1-year period from June 2003 to May 2004 to follow the annual cycle of foliage development from...

  1. Quantitative Analysis of Bisphenol A Leached from Household Plastics by Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry (SPME-GC-MS)

    ERIC Educational Resources Information Center

    Johnson, Bettie Obi; Burke, Fernanda M.; Harrison, Rebecca; Burdette, Samantha

    2012-01-01

    The measurement of trace levels of bisphenol A (BPA) leached out of household plastics using solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) is reported here. BPA is an endocrine-disrupting compound used in the industrial manufacture of polycarbonate plastic bottles and epoxy resin can liners. This experiment…

  2. Electrodeposition of gold nanoparticles onto an etched stainless steel wire followed by a self-assembled monolayer of octanedithiol as a fiber coating for selective solid-phase microextraction.

    PubMed

    Yang, Yaoxia; Li, Yi; Liu, Haixia; Wang, Xuemei; Du, Xinzhen

    2014-11-03

    In the present study, a novel approach for rapid electrodeposition on an etched stainless steel (SS) wire followed by self-assembled monolayer (SAM) was proposed for the fabrication of solid-phase microextraction (SPME) fiber. The etched SS wire offers a rough surface structure for subsequent electrochemical deposition of gold nanoparticles (AuNPs). As a result, uniform AuNPs coating was tightly attached to the etched SS wire substrate. After SAM of 1,8-octanedithiol onto AuNPs coating via Au-S bonding, a unique floccular structure with extremely large surface area was obtained for the fabricated fiber. The mercaptooctyl groups modified AuNPs coated etched SS fiber (C8-S-AuNPs/SS) was then assessed for SPME of phthalate esters (PAEs), polychlorinated biphenyls (PCBs), chlorophenols (CPs), ultraviolet (UV) filters, polycyclic aromatic hydrocarbons (PAHs) and substituted anilines coupled to high-performance liquid chromatography with UV detection. This fiber exhibits higher extraction capability and better selectivity for some PCBs, CPs, UV filters and PAHs. Extraction conditions were investigated and optimized for SPME performance of UV filters. Under the optimized conditions, the developed method showed good linearity between 0.10 and 400μgL(-1) with corresponding coefficients in the range of 0.9989-0.9998. The limits of detection ranged from 0.025 to 0.056μgL(-1). The relative standard deviation for fiber-to-fiber reproducibility of five fabricated fibers was less than 9.4%. The developed method was successfully applied to the preconcentration and determination of trace UV filters from environmental water samples. Furthermore the fabrication of the C8-S-AuNPs/SS fiber can be performed in a highly reproducible manner. This fabricated fiber exhibits good stability and long lifetime, and could be a potential alternative for the conventional fused silica fiber. Copyright © 2014. Published by Elsevier B.V.

  3. Preparation and characterization of polydimethylsiloxane/poly(vinylalcohol) coated solid phase microextraction fibers using sol-gel technology.

    PubMed

    Lopes, Alexandre Leite; Augusto, Fabio

    2004-11-12

    The applicability of a composite composed of polydimethylsiloxane (PDMS) and poly(vinyl alcohol) (PDMS/PVA) as coating sorbent for SPME fibers is demonstrated here. Fused silica (FS) fibers were coated with PDMS/PVA composite through a sol-gel process, using methyltrimethoxysilane as reticulating agent. The chemical and physical properties of the sol-gel PDMS/PVA composite were determined by infrared spectroscopy and thermogravimetric analysis. Electron scanning microscopy of the prepared fibers, showed that the coating obtained was highly microporous, having a thickness of approximately 5 microm. The fibers were tested for the headspace extraction of several organic compounds (o-xylene, naphthalene, ethyl caprate, p-chlorotoluene and PCB) prior to gas chromatographic analysis. The extractive capacity of the PDMS/PVA coating was found to be superior to that of pure conventional PDMS fibers.

  4. Molecularly imprinted polymer coated solid-phase microextraction fiber prepared by surface reversible addition-fragmentation chain transfer polymerization for monitoring of Sudan dyes in chilli tomato sauce and chilli pepper samples.

    PubMed

    Hu, Xiaogang; Fan, Yanan; Zhang, Yi; Dai, Guimei; Cai, Quanling; Cao, Yujuan; Guo, Changjuan

    2012-06-20

    Surface reversible addition-fragmentation chain transfer (RAFT) polymerization method was firstly applied to the preparation of molecularly imprinted polymer (MIP) coated silicon solid-phase microextraction (SPME) fibers. With Sudan I as template, an ultra-thin MIP coating with about 0.55-μm thickness was obtained with homogeneous structure and controlled composition, due to the controllable radical growing and chain propagation in surface RAFT polymerization. The MIP-coated fibers were found with enhanced selectivity coefficients (3.0-6.5) to Sudan I-IV dyes in contrast with those reported in our previous work. Furthermore, the ultra-thin thickness of MIP coating was helpful to the effective elution of template and fast adsorption/desorption kinetics, so only about 18 min was needed for MIP-coated SPME operation. The detection limits of 21-55 ng L(-1) were achieved for four Sudan dyes, when MIP-coated SPME was coupled with liquid chromatography (LC) and mass spectrometry (MS) detection. The MIP-coated SPME-LC-MS/MS method was tested for the monitoring of ultra trace Sudan dyes in spiked chilli tomato sauce and chilli pepper samples, and high enrichment effect, remarkable matrix peaks-removing capability, and consequent high sensitivities were achieved to four Sudan dyes.

  5. Contact solid-phase microextraction with uncoated glass and polydimethylsiloxane-coated fibers versus solvent sampling for the determination of hydrocarbons in adhesion secretions of Madagascar hissing cockroaches Gromphadorrhina portentosa (Blattodea) by gas chromatography-mass spectrometry.

    PubMed

    Gerhardt, Heike; Schmitt, Christian; Betz, Oliver; Albert, Klaus; Lämmerhofer, Michael

    2015-04-03

    Molecular profiles of adhesion secretions of Gromphadorrhina portentosa (Madagascar hissing cockroach, Blattodea) were investigated by gas chromatography mass spectrometry with particular focus on a comprehensive analysis of linear and branched hydrocarbons. For this purpose, secretions from the tarsi (feet), possibly contributing to adhesion on smooth surfaces, and control samples taken from the tibiae (lower legs), which contain general cuticular hydrocarbons that are supposed to be not involved in the biological adhesion function, were analyzed and their molecular fingerprints compared. A major analytical difficulty in such a study constitutes the representative, spatially controlled, precise and reproducible sampling from a living insect as well as the minute quantities of insect secretions on both tarsi and tibiae. Thus, three different in vivo sampling methods were compared in terms of sampling reproducibility and extraction efficiency by replicate measurement of samples from tarsi and tibiae. While contact solid-phase microextraction (SPME) with a polydimethylsiloxane (PDMS) fiber showed higher peak intensities, a self-made uncoated glass fiber had the best repeatability in contact-SPME sampling. Chromatographic profiles of these two contact-SPME sampling methods were statistically not significantly different. Inter-individual variances were larger than potentially existing minor differences in molecular patterns of distinct sampling methods. Sampling by solvent extraction was time consuming, showed lower sensitivities and was less reproducible. In general, sampling by contact-SPME with a cheap glass fiber turned out to be a viable alternative to PDMS-SPME sampling. Hydrocarbon patterns of the tarsal adhesion secretions were qualitatively similar to those of epicuticular hydrocarbon profiles of the tibiae. However, hydrocarbons were in general less abundant in tarsal secretions than secretions from tibiae. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Characterization and aging study of currency ink and currency canine training aids using headspace SPME/GC-MS.

    PubMed

    Vu, Doan-Trang T

    2003-07-01

    Solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) was used to characterize the volatile components associated with U.S. currency, U.S. currency inks, and Canadian currency. Compounds that can be attributed to the ink-curing process include series of straight-chain aldehydes, alkenals, acids, alcohols, and ketones and a series of lactones and 2-alkyl furans. Solvent compounds include naphthenic and paraffinic hydrocarbons with a profile typical of petroleum products, alkyl cyclohexanes, various ethylene glycol alkyl ethers, and traces of chlorinated solvents. Trace levels of 2-phenoxyethanol, a solvent often used in ink formulations, were also detected. Environmental contaminants, those compounds found in circulating currency but not in currency ink, include 2,2'-diethyl-1,1'-biphenyl, methyl benzoate and salicylate, menthol, limonene, dimethyl and diethyl phthalate, and ionol. Not including simple hydrocarbons, over 100 compounds were identified in the headspace of currency-related samples.

  7. Measurement of the isotope ratio of acetic acid in vinegar by HS-SPME-GC-TC/C-IRMS.

    PubMed

    Hattori, Ryota; Yamada, Keita; Shibata, Hiroki; Hirano, Satoshi; Tajima, Osamu; Yoshida, Naohiro

    2010-06-23

    Acetic acid is the main ingredient of vinegar, and the worth of vinegar often depends on the fermentation of raw materials. In this study, we have developed a simple and rapid method for discriminating the fermentation of the raw materials of vinegar by measuring the hydrogen and carbon isotope ratio of acetic acid using head space solid-phase microextraction (HS-SPME) combined with gas chromatography-high temperature conversion or combustion-isotope ratio mass spectrometry (GC-TC/C-IRMS). The measurement of acetic acid in vinegar by this method was possible with repeatabilities (1sigma) of +/-5.0 per thousand for hydrogen and +/-0.4 per thousand for carbon, which are sufficient to discriminate the origin of acetic acid. The fermentation of raw materials of several vinegars was evaluated by this method.

  8. Evaluation of the volatile profile of 33 Pyrus ussuriensis cultivars by HS-SPME with GC-MS.

    PubMed

    Qin, Gaihua; Tao, Shutian; Cao, Yufen; Wu, Juyou; Zhang, Huping; Huang, Wenjiang; Zhang, Shaoling

    2012-10-15

    Evaluation of the volatile compounds in fruit provides useful information for plant breeding for improved fruit aroma. In this study, headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) was used to assess the volatile profile of 33 cultivars of the Chinese pear Pyrus ussuriensis. In all, 108 volatile compounds were identified and there were significant differences in the composition and concentration of volatiles among cultivars. On the basis of principal components analysis (PCA), the cultivars could be divided into four groups: Group 1 contained Reli, Jinxiang, Hongbalixiang, Baibalixiang and Fuwuxiang, cultivars with a high concentration of esters and a low concentration of hydrocarbons. Group 2 contained Qiuxiang, Fuanjianba, Longxiang, Guanhongxiao, Shanli24 and Wuxiangli, cultivars with high concentrations of hydrocarbons and low concentrations of esters. Group 3 contained Shatangli and Manyuanxiang, cultivars with high concentrations of aldehydes. Group 4 contained the other 25 cultivars. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Fragrant volatile compounds in the liverwort Drepanolejeunea madagascariensis (Steph.) Grolle: approach by the HS-SPME technique.

    PubMed

    Gauvin-Bialecki, Anne; Ah-Peng, Claudine; Smadja, Jacqueline; Strasberg, Dominique

    2010-03-01

    Three populations of the epiphyllous liverwort Drepanolejeunea madagascariensis collected in the cloud forests of Reunion Island (Mascarene Archipelago) were investigated for their volatile compounds, because of the pleasant, sweet, warm, woody-spicy, and herbaceous fragrance, slightly reminiscent of dill, of this species. By applying the headspace solid-phase microextraction (HS-SPME) technique coupled to GC/MS analysis, 34 compounds were detected in total, with p-menth-1-en-9-ol (28.8-43.5%), limonene (10.5-14.7%), beta-phellandrene (8.8-11.6%), and the so-called dill ether (8.5-16.6%) as the main components. The presence of 1-epi-alpha-pinguisene confirms the possible use of pinguisane-type sesquiterpenoids as a characteristic chemical marker for the order Jungermanniales.

  10. Solid-phase micro-extraction (SPME-GC) and sensors as rapid methods for monitoring lipid oxidation in nuts.

    PubMed

    Pastorelli, S; Torri, L; Rodriguez, A; Valzacchi, S; Limbo, S; Simoneau, C

    2007-11-01

    Dry foods with high fat content are susceptible to lipid oxidation, which involves a quality deterioration of the product, since this process is responsible for the generation of off-flavours. Hexanal is considered to be a good shelf-life indicator of such oxidation products. In addition, due to its high volatility, hexanal can be easily determined by fast headspace analytical techniques. For this reason an electronic nose comprising ten metal oxide semiconductors (MOS) and a solid-phase microextraction (SPME) coupled with gas chromatography and flame ionization detector (GC-FID) method were compared in order to determine hexanal formed in hazelnuts during storage under different conditions (room temperature, 40 degrees C, ultraviolet light, with and without oxygen scavenger). The results obtained by the two methods showed a good correlation, confirming the possibility of using a multi-sensor system as a screening tool for the monitoring of shelf-life and oxidation state of nuts.

  11. Solid-phase microextraction of methadone in urine samples by electrochemically co-deposited sol-gel/Cu nanocomposite fiber.

    PubMed

    Mohammadiazar, Sirwan; Hasanli, Fateme; Maham, Mehdi; Payami Samarin, Somayeh

    2016-12-30

    Electrochemically co-deposited sol-gel/Cu nanocomposites have been introduced as a novel, simple and single-step technique for preparation of solid-phase microextraction (SPME) coating to extract methadone (MDN) (a synthetic opioid) in urine samples. The porous surface structure of the sol-gel/Cu nanocomposite coating was revealed by scanning electron microscopy. Direct immersion SPME followed by HPLC-UV determination was employed. The factors influencing the SPME procedure, such as the salt content, desorption solvent type, pH and equilibration time, were optimized. The best conditions were obtained with no salt content, acetonitrile as desorption solvent type, pH 9 and 10 min equilibration time. The calibration graphs for urine samples showed good linearity. The detection limit was about 0.2 ng mL(-1) . Also, the novel method for preparation of nanocomposite fiber was compared with previously reported techniques for MDN determination. The results show that the novel nanocomposite fiber has relatively high extraction efficiency.

  12. High scalable implementation of SPME using parallel spherical cutoff three-dimensional FFT on the six-dimensional torus QCDOC supercomputer

    NASA Astrophysics Data System (ADS)

    Fang, Bin

    In order to model complex heterogeneous biophysical systems with non-trivial charge distributions such as globular proteins in water, it is important to evaluate the long range forces present in these systems accurately and efficiently. The Smooth Particle Mesh Ewald summation technique (SPME) is commonly employed to determine the long range part of electrostatic energy in large scale molecular simulations. While the SPME technique does not give rise to a performance bottleneck in a single processor or scalar computation, current implementations of SPME on massively parallel supercomputers become problematic at large processor numbers, limiting the time and length scales that can be reached. Here, two accomplishments have been made in this dissertation to give rise to both improved accuracy and efficiency on massively parallel computing platforms. First of all, a well designed parallel framework of 3D complex-to-complex FFT and 3D real-to-complex FFT for the novel QCDOC supercomputer with its 6D-torus architecture is given. The efficiency of this framework was tested on up to 4096 processors. Secondly, a new modification of the SPME technique is exploited, which was inspired by the non-linear growth of the approximation error of Euler Exponential Spline interpolation function. This fine grained parallel implementation of SPME has been embedded into MDoC package. Numerical tests of package performance on up to 1024-processor QCDOC supercomputer residing at Brookhaven National Lab are presented for two systems of interest, beta-hairpin solvated in explicit water, a system which consists of 1112 water molecules and a 20 residue protein for a total of 3579 atoms, and HIV-1 protease solvated in explicit water, a system which consists of 8793 water molecules and a 198 residue protein for a total of 29508 atoms.

  13. Polydimethylsiloxane/metal-organic frameworks coated fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in river and lake water samples.

    PubMed

    Zhang, Guijiang; Zang, Xiaohuan; Li, Zhi; Wang, Chun; Wang, Zhi

    2014-11-01

    In this study, polydimethylsiloxane/metal-organic frameworks (PDMS/MOFs), including PDMS/MIL-101 and PDMS/MOF-199, were immobilized onto a stainless steel wire through sol-gel technique as solid-phase microextraction (SPME) fiber coating. The prepared fibers were used for the extraction of some polycyclic aromatic hydrocarbons (PAHs) from water samples prior to gas chromatography-mass spectrometry (GC-MS) analysis. Under the optimized experiment conditions, the PDMS/MIL-101 coated fiber exhibited higher extraction efficiency towards PAHs than that of PDMS/MOF-199. Several parameters affecting the extraction of PAHs by SPME with PDMS/MIL-101 fiber, including the extraction temperature, extraction time, sample volume, salt addition and desorption conditions, were investigated. The limits of detection (LODs) were less than 4.0 ng L(-1) and the linearity was observed in the range from 0.01 to 2.0 µg L(-1) with the correlation coefficients (r) ranging from 0.9940 to 0.9986. The recoveries of the method for the PAHs from water samples at spiking levels of 0.05 and 0.2 µg L(-1) ranged from 78.2% to 110.3%. Single fiber repeatability and fiber-to-fiber reproducibility were less than 9.3% and 13.8%, respectively.

  14. Development of solid-phase microextraction fibers based on multi-walled carbon nanotubes for pre-concentration and analysis of alkanes in human breath.

    PubMed

    Tang, Zhentao; Liu, Yong; Duan, Yixiang

    2015-12-18

    In this work, a laboratory preparation method based on sol-gel technology was proposed to develop a new kind of SPME (solid phase microextraction) fibers. Multi-walled carbon nanotubes (MWCNT) were selected as sol-gel active organic component. Stainless steel wires were used as the substrate of the fibers. Instead of traditional modification methods, microwave induced plasma was used to modify the stainless steel wire surface, resulting in a significant improvement in chemical adhesion of the fiber substrate and coating. The MWCNT coating exhibited several good properties. Acceptable fiber-to-fiber reproducibility (RSD≤13%) and repeatability (RSD<7%) were obtained. End-tidal breath of 10 normal humans were collected by Bio-VOC(®) sampler and assayed by the optimized SPME-GC-MS method. The calibration curves were all linear (R(2)≥0.994) in the range from 0.03 to 403.3ppbv for five alkanes. Detection limits (down to 0.001ppbv) were about one order of magnitude better than those of commercial PDMS fibers. The recovery of the spiked alkanes in real breath sample at 1ppbv ranged from 89.71 to 101.08% and the relative standard deviations were less than 8%. These results demonstrated the feasibility and practicality of the proposed preparation procedure. Applications of the in-house fabricated fibers for human breath analysis were successfully verified.

  15. Phytoscreening for chlorinated solvents using rapid in vitro SPME sampling: application to urban plume in Verl, Germany.

    PubMed

    Limmer, Matt A; Balouet, Jean-Christophe; Karg, Frank; Vroblesky, Don A; Burken, Joel G

    2011-10-01

    Rapid detection and delineation of contaminants in urban settings is critically important in protecting human health. Cores from trees growing above a plume of contaminated groundwater in Verl, Germany, were collected in 1 day, with subsequent analysis and plume mapping completed over several days. Solid-phase microextraction (SPME) analysis was applied to detect tetrachloroethene (PCE) and trichloroethene (TCE) to below nanogram/liter levels in the transpiration stream of the trees. The tree core concentrations showed a clear areal correlation to the distribution of PCE and TCE in the groundwater. Concentrations in tree cores were lower than the underlying groundwater, as anticipated; however, the tree core water retained the PCE:TCE signature of the underlying groundwater in the urban, populated area. The PCE:TCE ratio can indicate areas of differing degradation activity. Therefore, the phytoscreening analysis was capable not only of mapping the spatial distribution of groundwater contamination but also of delineating zones of potentially differing contaminant sources and degradation. The simplicity of tree coring and the ability to collect a large number of samples in a day with minimal disruption or property damage in the urban setting demonstrates that phytoscreening can be a powerful tool for gaining reconnaissance-level information on groundwater contaminated by chlorinated solvents. The use of SPME decreases the detection level considerably and increases the sensitivity of phytoscreening as an assessment, monitoring, and phytoforensic tool. With rapid, inexpensive, and noninvasive methods of detecting and delineating contaminants underlying homes, as in this case, human health can be better protected through screening of broader areas and with far faster response times.

  16. Phytoscreening for chlorinated solvents using rapid in vitro SPME sampling: Application to urban plume in Verl, Germany

    USGS Publications Warehouse

    Limmer, M.A.; Balouet, J.-C.; Karg, F.; Vroblesky, D.A.; Burken, J.G.

    2011-01-01

    Rapid detection and delineation of contaminants in urban settings is critically important in protecting human health. Cores from trees growing above a plume of contaminated groundwater in Verl, Germany, were collected in 1 day, with subsequent analysis and plume mapping completed over several days. Solid-phase microextraction (SPME) analysis was applied to detect tetrachloroethene (PCE) and trichloroethene (TCE) to below nanogram/liter levels in the transpiration stream of the trees. The tree core concentrations showed a clear areal correlation to the distribution of PCE and TCE in the groundwater. Concentrations in tree cores were lower than the underlying groundwater, as anticipated; however, the tree core water retained the PCE:TCE signature of the underlying groundwater in the urban, populated area. The PCE:TCE ratio can indicate areas of differing degradation activity. Therefore, the phytoscreening analysis was capable not only of mapping the spatial distribution of groundwater contamination but also of delineating zones of potentially differing contaminant sources and degradation. The simplicity of tree coring and the ability to collect a large number of samples in a day with minimal disruption or property damage in the urban setting demonstrates that phytoscreening can be a powerful tool for gaining reconnaissance-level information on groundwater contaminated by chlorinated solvents. The use of SPME decreases the detection level considerably and increases the sensitivity of phytoscreening as an assessment, monitoring, and phytoforensic tool. With rapid, inexpensive, and noninvasive methods of detecting and delineating contaminants underlying homes, as in this case, human health can be better protected through screening of broader areas and with far faster response times. ?? 2011 American Chemical Society.

  17. Development of a cheap and accessible carbon fibers-in-poly(ether ether ketone) tube with high stability for online in-tube solid-phase microextraction.

    PubMed

    Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan

    2016-02-01

    Carbon fibers (CFs) are one kind of important industrial materials that can be obtained commercially at low price. Based on the high extraction efficiency of carbon sorbents, a cheap and accessible carbon fibers-in-poly(ether ether ketone) (PEEK) tube was developed for online in-tube solid-phase microextraction (SPME) method. Coupled to high performance liquid chromatography (HPLC), the CFs-in-tube SPME was applied to analyze eight polycyclic aromatic hydrocarbons (PAHs) in environmental aqueous samples. Extraction conditions (sampling rate, extraction time, methanol content) and desorption time were investigated for optimization of conditions. Under the optimum conditions, the CFs-in-tube SPME-HPLC method provided high extraction efficiency with enrichment factors up to 1748. Good linearity (0.05-50 μg L(-1), 0.5-50 μg L(-1)) and low detection limits (0.01-0.1 μg L(-1)) were also obtained. The online analysis method was finally applied to determine several model PAHs analytes in real environmental aqueous samples. Some target analytes were detected and relative recoveries were in the range of 92.3-111%. Due to natural chemical stability of carbon fibers and PEEK tube, the CFs-in-tube device exhibited high resistance to organic solvent, acid and alkaline conditions.

  18. Preparation and evaluation of amino modified graphene solid-phase microextraction fiber and its application to the determination of synthetic musks in water samples.

    PubMed

    Li, Siyan; Zhu, Fang; Jiang, Ruifen; Ouyang, Gangfeng

    2016-01-15

    In the current study, amino modified (NH2-modified) graphene was developed as a solid-phase microextraction (SPME) coating for the first time. The structure of the NH2-modified graphene was characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The fiber was fabricated using xylene-diluted silicone sealant as an adhesion agent. The performance and feasibility of the NH2-modified graphene fiber was evaluated through autosampler-assisted direct immersion (DI) SPME followed by gas chromatography-mass spectrometry (GC/MS) for the analysis of five synthetic musks (muscone, galaxolide, musk-xylene, tonalide and musk-ketone) in aqueous samples. The results showed that the prepared fiber had good thermal stability, excellent solvent resistance and a long service lifetime (more than 200 replicate extraction cycles). The proposed autosampler-assisted DI-SPME-GC/MS method showed low limits of detection (0.46-5.96 ng L(-1)), wide linear ranges (5-500 ng L(-1)), and acceptable reproducibility (relative standard deviation, RSD<12%). Finally, the method was successfully applied to the analysis of synthetic musks in environmental water samples with good recoveries (82.3-112%) and satisfactory precisions (RSD<9.9%). These results indicated that the NH2-modified graphene provided a promising alternative in sample pretreatment.

  19. Highly sensitive copper fiber-in-tube solid-phase microextraction for online selective analysis of polycyclic aromatic hydrocarbons coupled with high performance liquid chromatography.

    PubMed

    Sun, Min; Feng, Juanjuan; Bu, Yanan; Luo, Chuannan

    2015-08-21

    A fiber-in-tube solid-phase microextraction (SPME) device was developed with copper wire and copper tube, which was served as both the substrate and sorbent with high physical strength and good flexibility. Its morphology and surface properties were characterized by scanning electron microscopy and energy dispersive X-ray spectrometry. It was coupled with high performance liquid chromatography (HPLC) equipment by replacing the sample loop of six-port injection valve, building the online SPME-HPLC system conveniently. Using ten polycyclic aromatic hydrocarbons (PAHs) as model analytes, extraction conditions including sampling rate, extraction time, organic content and desorption time were investigated and optimized. The copper fiber-in-tube exhibits excellent extraction efficiency toward PAHs, with enrichment factors from 268 to 2497. The established online SPME-HPLC method provides good linearity (0.05-100μgL(-1)) and low detection limits (0.001-0.01μgL(-1)) for PAHs. It has been used to determine PAHs in water samples, with recoveries in the range of 86.2-115%. Repeatability on the same extraction tube is in the range of 0.6-3.6%, and repeatability among three tubes is in the range of 5.6-20.1%. Compared with phthalates, anilines and phenols, the copper fiber-in-tube possesses good extraction selectivity for PAHs. The extraction mechanism is probably related to hydrophobic interaction and π-electron-metal interaction.

  20. Preparation of ionic liquid based solid-phase microextraction fiber and its application to forensic determination of methamphetamine and amphetamine in human urine.

    PubMed

    He, Yi; Pohl, Jeremy; Engel, Robert; Rothman, Leah; Thomas, Marie

    2009-06-12

    A new solid-phase microextraction (SPME) procedure using an ionic liquid (IL) has been developed. Reusable IL-based SPME fiber was prepared for the first time by fixing IL through cross-linkage of IL impregnated silicone elastomer on the surface of a fused silica fiber. 1-Ethoxyethyl-3-methylimidazloium bis(trifluoromethane) sulfonylimide ([EeMim][NTf(2)]) ionic liquid was employed as a demonstration and the prepared fiber was applied to the forensic headspace determination of methamphetamine (MAP) and amphetamine (AP) in human urine samples. Important extraction parameters including the concentration of salt and base in sample matrix, extraction temperature and extraction time were investigated and optimized. Combined with gas chromatography/mass spectrometry (GC/MS) working in selected ion monitoring (SIM) mode, the new method showed good linearity in the range of 20-1500 microg L(-1), good repeatability (RSD<7.5% for MAP, and <11.5% for AP, n=6), and low detection limits (0.1 microg L(-1) for MAP and 0.5 microg L(-1) for AP). Feasibility of the method was evaluated by analyzing human urine samples. Although IL-based SPME is still at the beginning of its development stage, the results obtained by this work showed that it is a promising simple, fast and sensitive sample preparation method.

  1. Sensitive and selective determination of polycyclic aromatic hydrocarbons in mainstream cigarette smoke using a graphene-coated solid-phase microextraction fiber prior to GC/MS.

    PubMed

    Wang, Xiaoyu; Wang, Yuan; Qin, Yaqiong; Ding, Li; Chen, Yi; Xie, Fuwei

    2015-08-01

    A simple method has been developed for the simultaneous determination of 16 polycyclic aromatic hydrocarbons (PAHs) in mainstream cigarette smoke. The procedure is based on employing a homemade graphene-coated solid-phase microextraction (SPME) fiber for extraction prior to GC/MS. In comparison to commercial 100-μm poly(dimethyl siloxane) (PDMS) fiber, the graphene-coated SPME fiber exhibits advantageous cleanup and preconcentration efficiencies. By collecting the particulate phase 5 cigarettes, the LODs and LOQs of 16 target PAHs were 0.02-0.07 and 0.07-0.22 ng/cigarette, respectively, and all of the linear correlation efficiencies were larger than 0.995. The validation results also indicate that the method has good repeatability (RSD between 4.2% and 9.5%) and accuracy (spiked recoveries between 80% and 110%). The developed method was applied to analyze two Kentucky reference cigarettes (1R5F and 3R4F) and six Chinese brands of cigarettes. In addition, the PAH concentrations in the particulate phase of the smoke from the 1R5F Kentucky cigarettes were in good agreement with recently reported results. Due to easy operation and good validation results, this SPME-GC/MS method may be an excellent alternative for trace analysis of PAHs in cigarette smoke. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Ionic liquid coated copper wires and tubes for fiber-in-tube solid-phase microextraction.

    PubMed

    Sun, Min; Feng, Juanjuan; Bu, Yanan; Luo, Chuannan

    2016-08-05

    A fiber-in-tube solid-phase microextraction (SPME) device was developed by filling eleven copper wires into a copper tube, and all of those were functionalized with ionic liquids. Its morphology and surface properties were characterized by scanning electron microscopy. It was connected into high performance liquid chromatography (HPLC) equipment by replacing the sample loop of six-port injection valve, building the online SPME-HPLC system. In the optimization of extraction conditions, sampling rate, sample volume, pH of sample and desorption time were investigated with five estrogens as model analytes. Under the optimum conditions, an online SPME-HPLC analysis method was achieved, showing enrichment efficiency from 611 to 1661 and a good linearity of 0.06-60μgL(-1) with low detection limits of 0.02-0.05μgL(-1). It was applied to detect estrogens analytes in two water samples, with recoveries in the range of 85-114%. Relative standard deviation (n=3) of extraction repeatability is in the range of 1.9-3.0%. Relative standard deviation of extraction tubes (n=3) is in the range of 12-19%. The extraction mechanism is probably related to hydrophobic, π-π and dipole-dipole interactions between ionic liquids coating and estrogens analytes.

  3. Hydrothermally grown and self-assembled modified titanium and nickel oxide composite nanosheets on Nitinol-based fibers for efficient solid phase microextraction.

    PubMed

    Wang, Huiju; Song, Wenlan; Zhang, Min; Zhen, Qi; Guo, Mei; Zhang, Yida; Du, Xinzhen

    2016-10-14

    A novel titanium and nickel oxide composite nanosheets (TiO2/NiOCNSs) coating was in situ grown on a Nitinol (NiTi) wire by direct hydrothermal treatment and modified by self-assembly of trichlorophenylsilane for solid phase microextraction (SPME). TiO2/NiOCNSs were radially oriented and chemically bonded to the NiTi substrate with double-faced open access sites. Moreover the phenyl modified TiO2/NiOCNSs (TiO2/NiOCNSs-Ph) coating exhibited original surface supporting framework favorable for effective SPME. The extraction performance of TiO2/NiOCNSs-Ph coated NiTi (NiTi-TiO2/NiOCNSs-Ph) fiber was investigated for the concentration and detection of ultraviolet (UV) filters, polycyclic aromatic hydrocarbons (PAHs), phthalate acid esters and polychlorinated biphenyls coupled to HPLC with UV detection. The novel fiber exhibited better selectivity for UV filters and PAHs and presented greater extraction capability compared to commercial polydimethylsiloxane and polyacrylate fibers. Under the optimized conditions for SPME of UV filters, the proposed method presented linear ranges from 0.1 to 300μg/L with correlation coefficients of higher than 0.999 and limits of detection from 0.030μg/L to 0.064μg/L. Relative standard deviations (RSDs) were below 7.16% and 8.42% for intra-day and inter-day measurements with the single fiber, respectively. Furthermore RSDs for fiber-to-fiber reproducibility from 6.57% to 8.93% were achieved. The NiTi-TiO2/NiOCNSs-Ph fiber can be used up to 200 times. The proposed method was successfully applied to the preconcentration and determination of trace target UV filters in different environmental water samples. The relative recoveries from 87.3% to 104% were obtained with RSDs less than 8.7%.

  4. Liquid-liquid-solid microextraction based on membrane-protected molecularly imprinted polymer fiber for trace analysis of triazines in complex aqueous samples.

    PubMed

    Hu, Yuling; Wang, Yangyang; Hu, Yufei; Li, Gongke

    2009-11-20

    A novel liquid-liquid-solid microextraction (LLSME) technique based on porous membrane-protected molecularly imprinted polymer (MIP)-coated silica fiber has been developed. In this technique, a MIP-coated silica fiber was protected with a length of porous polypropylene hollow fiber membrane which was filled with water-immiscible organic phase. Subsequently the whole device was immersed into aqueous sample for extraction. The LLSME technique was a three-phase microextraction approach. The target analytes were firstly extracted from the aqueous sample through a few microliters of organic phase residing in the pores and lumen of the membrane, and were then finally extracted onto the MIP fiber. A terbutylazine MIP-coated silica fiber was adopted as an example to demonstrate the feasibility of the novel LLSME method. The extraction parameters such as the organic solvent, extraction and desorption time were investigated. Comparison of the LLSME technique was made with molecularly imprinted polymer based solid-phase microextraction (MIP-SPME) and hollow fiber membrane-based liquid-phase microextraction (HF-LPME), respectively. The LLSME, integrating the advantages of high selectivity of MIP-SPME and enrichment and sample cleanup capability of the HF-LPME into a single device, is a promising sample preparation method for complex samples. Moreover, the new technique overcomes the problem of disturbance from water when the MIP-SPME fiber was exposed directly to aqueous samples. Applications to analysis of triazine herbicides in sludge water, watermelon, milk and urine samples were evaluated to access the real sample application of the LLSME method by coupling with high-performance liquid chromatography (HPLC). Low limits of detection (0.006-0.02 microg L(-1)), satisfactory recoveries and good repeatability for real sample (RSD 1.2-9.6%, n = 5) were obtained. The method was demonstrated to be a fast, selective and sensitive pretreatment method for trace analysis of triazines

  5. Development, validation and application of a methodology based on solid-phase micro extraction followed by gas chromatography coupled to mass spectrometry (SPME/GC-MS) for the determination of pesticide residues in mangoes.

    PubMed

    Menezes Filho, Adalberto; dos Santos, Fábio Neves; Pereira, Pedro Afonso de Paula

    2010-04-15

    A method was developed for the simultaneous analysis of 14 pesticide residues (clofentezine, carbofuran, diazinon, methyl parathion, malathion, fenthion, thiabendazole, imazalil, bifenthrin, permethrin, prochloraz, pyraclostrobin, difenoconazole and azoxystrobin) in mango fruit, based on solid-phase micro extraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS). Different parameters of the method were evaluated, such as fiber type, extraction mode (direct immersion and headspace), temperature, extraction and desorption times, stirring velocities and ionic strength. The best results were obtained using polyacrylate fiber and direct immersion mode at 50 degrees C for 30 min, along with stirring at 250 rpm and desorption for 5 min at 280 degrees C. The method was validated using mango samples spiked with pesticides at concentration levels ranging from 33.3 to 333.3 microg kg(-1). The average recoveries (n=3) for the lowest concentration level ranged from 71.6 to 117.5%, with relative standard deviations between 3.1 and 12.3%, respectively. Detection and quantification limits ranged from 1.0 to 3.3 microg kg(-1) and from 3.33 to 33.33 microg kg(-1), respectively. The optimized method was then applied to 16 locally purchased mango samples, all of them containing the pesticides bifenthrin and azoxystrobin in concentrations of 18.3-57.4 and 12.7-55.8 microg kg(-1), respectively, although these values were below the MRL established by Brazilian legislation. The method proved to be selective, sensitive, and with good precision and recovery rates, presenting LOQ below the MRL admitted by Brazilian legislation. (c) 2009 Elsevier B.V. All rights reserved.

  6. Application of β-cyclodextrin-modified, carbon nanotube-reinforced hollow fiber to solid-phase microextraction of plant hormones.

    PubMed

    Song, Xin-Yue; Ha, Wei; Chen, Juan; Shi, Yan-Ping

    2014-12-29

    A new, efficient, and environmental friendly solid-phase microextraction (SPME) medium based on β-cyclodextrin (β-CD)-modified carbon nanotubes (CNTs) and a hollow fiber (HF) was prepared. Functionalized β-CD was covalently linked to the surface of the carboxylic CNTs and then the obtained nanocomposite was immobilized into the wall pores of HFs under ultrasonic-assisted effect. The scanning electron microscope was used to inspect surface characteristics of fibers, demonstrating the presence of nanocomposites in their wall pores. The reinforced HF was employed in SPME, and its extraction performance was evaluated by analyzing 1-naphthaleneacetic acid (NAA) and 2-naphthoxyacetic acid (2-NOA) in vegetables. Without any tedious clean-up procedure, analytes were extracted from the sample to the adsorbent and organic solvent immobilized in HFs and then desorbed in acetonitrile prior to chromatographic analysis. Under the optimized extraction conditions, the method provided 275- and 283-fold enrichment factors of NAA and 2-NOA, low limits of detection and quantification (at an ngg(-1) level), satisfactory spiked recoveries, good inter-fiber repeatability, and batch-to-batch reproducibility. The selectivity of the developed fiber was investigated to three structurally similar compounds and two reference compounds with recognition coefficients up to 3.18. The obtained results indicate that the newly developed fiber is a feasible, selective, green, and cost-effective microextraction medium and could be successfully applied for extraction and determination of naphthalene-derived plant hormones in complex matrices.

  7. C12-Ag wire as solid-phase microextraction fiber for determination of benzophenone ultraviolet filters in river water.

    PubMed

    Li, Jian; Ma, Liyun; Tang, Minqiong; Xu, Li

    2013-07-12

    In the present study, a novel approach for fabrication of solid-phase microextraction (SPME) fiber based on silver wire was proposed. 3-(Mercaptopropyl) trimethoxysilane (MPTS) was self-assembled on the silver wire by the special interaction between Ag and S, producing MPTS-Ag wire. The MPTS-Ag wire was then functionalized with dodecyltrimethoxysilane via sol-gel approach, giving C12-Ag wire. The preparation conditions were systematically optimized. The prepared fiber was then used as the SPME fiber to extract three benzophenone UV filters from the river water. The developed method showed good linearity between 0.005 and 0.200 μg mL(-1) with regression determination coefficients in the range of 0.9929-0.9988 and detection limits ranging from 0.58 to 1.86 ng mL(-1). The C12-Ag fiber exhibited good stability and long lifetime, and could be an alternative to the traditional fused silica fiber. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Development and application of a new solid-phase microextraction fiber by sol-gel technology on titanium wire.

    PubMed

    Es-haghi, Ali; Hosseini, Seyed Maryam; Khoshhesab, Zahra Monsef

    2012-09-12

    Novel solid-phase microextraction fibers were prepared based on sol-gel technique. Commonly used fused silica substrate was replaced by titanium wire which provided high strength and longer fiber life cycle. Titanium isopropoxide was employed as the precursor which provides a sol solution containing Ti-OH groups and shows more tendencies to the molecularly similar group on the substrate. Three different polymers, poly (dimethylsiloxane) (PDMS), poly(ethylenepropyleneglycol)-monobutyl ether (Ucon) and polyethylene glycol (PEG) were employed as coating polymer in preparing three different fibers. The applicability of these fibers was assessed for the headspace SPME (HS-SPME) of benzene, toluene, ethylbenzene and xylenes (BTEX) from water sample followed by gas chromatography-mass spectrometry (GC-MS). Effects of different parameters such as fiber coating type, extraction condition, desorption condition were investigated and optimized. Under the optimized conditions, LODs and LOQs of 0.75-10 μg L(-1) (S/N=3) and 1-20 μg L(-1) (S/N=10) were respectively obtained. The method showed linearity in the range of 10-25,000 μg L(-1) with correlation coefficient of >0.99. The relative standard deviation was less than 8%.

  9. Facile modification of multi-walled carbon nanotubes-polymeric ionic liquids-coated solid-phase microextraction fibers by on-fiber anion exchange.

    PubMed

    Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan

    2015-05-08

    In situ anion exchange has been proved to be an efficient method for facile modification of polymeric ionic liquids (PILs)-based stationary phases. In this work, an on-fiber anion exchange process was utilized to tune the extraction performance of a multi-walled carbon nanotubes (MWCNTs)-poly(1-vinyl-3-octylimidazolium bromide) (poly(VOIm(+)Br(-)))-coated solid-phase microextraction (SPME) fiber. MWCNTs were first coated onto the stainless steel wire through a layer-by-layer fabrication method and then the PILs were coated onto the MWCNTs physically. Anion of the MWCNTs-poly(VOIm(+)Br(-)) fiber was changed into bis(triflroromethanesulfonyl)imide (NTf2(-)) and 2-naphthalene-sulfonate (NapSO3(-)) by on-fiber anion exchange. Coupled to gas chromatography, the MWCNTs-poly(VOIm(+)Br(-)) fiber showed acceptable extraction efficiency for hydrophilic and hydrogen-bonding-donating alcohols, with limits of detection (LODs) in the range of 0.005-0.05μgmL(-1); after the anion exchange with NTf2(-), the obtained MWCNTs-poly(VOIm(+)NTf2(-)) fiber brought wide linear ranges for hydrophobic n-alkanes with correlation coefficient (R) ranging from 0.994 to 0.997; aromatic property of the fiber was enhanced by aromatic NapSO3(-) anions to get sufficient extraction capacity for phthalate esters and halogenated aromatic hydrocarbons. The MWCNTs-poly(VOIm(+)NapSO3(-)) fiber was finally applied to determine several halogenated aromatic hydrocarbons in groundwater of industrial park.

  10. A new poly(phthalazine ether sulfone ketone)-coated fiber for solid-phase microextraction to determine nitroaromatic explosives in aqueous samples.

    PubMed

    Guan, Wenna; Xu, Feng; Liu, Wenmin; Zhao, Jinghong; Guan, Yafeng

    2007-04-13

    A novel polar solid-phase microextraction (SPME) fiber coated with poly(phthalazine ether sulfone ketone) (PPESK) was prepared by immersion precipitation technique. The microstructure of the coating exhibits a sponge-like sublayer supporting a dense cracking shaped top layer (about 1 microm in thickness). This coating shows long lifetime (up to 100 times) and is stable at desorption temperature up to 290 degrees C due to the rigid aromatic rings in chemical structure. We evaluated the extraction-desorption properties of the PPESK fiber for nitroaromatic explosives in aqueous samples. The parameters affecting the extraction were optimized, including extraction temperature and time, salt addition, desorption temperature and time. Limits of detection (LOD), precisions and linear dynamic range for the analysis of explosives by SPME-GC/TSD or ECD were evaluated. Limits of detection of the new fiber was three orders of magnitude lower than those with carbowax/divinylbenzene (CW/DVB), and the relative standard deviation (RSD) of single fiber and fiber-to-fiber were less than 9.3 and 10.4%, respectively. The results demonstrated that the PPESK coating exhibited high extraction efficiency for nitroaromatic compounds due to the pi-pi interaction, dipole-dipole interactions and interactions by polar functional groups. The method was applied to the analysis of nitroaromatic explosives in real aqueous samples including seawater and groundwater samples, with relative recoveries better than 90.7%.

  11. Development of novel molecularly imprinted solid-phase microextraction fiber and its application for the determination of triazines in complicated samples coupled with high-performance liquid chromatography.

    PubMed

    Hu, Xiaogang; Hu, Yuling; Li, Gongke

    2007-04-13

    A novel molecularly imprinted polymer (MIP) coated solid-phase microextraction (SPME) fiber that could be coupled directly to high-performance liquid chromatography (HPLC) was prepared with prometryn as the template molecule. The characteristics and application of this fiber were investigated. Electron microscope photographs indicated that the MIP coating with average thickness of 25.0 microm was homogeneous and porous. The extraction yield of prometryn with the MIP-coated fibers was 10 times as much as that with the non-imprinted polymer (NIP) coated fibers. And special selectivity to other triazines which have similar structure to prometryn was discovered with the MIP-coated fibers. A method for the determination of triazines by the MIP-coated SPME coupled with HPLC was developed. The optimized extraction conditions were studied. Detection limits for the triazines studied were within the range of 0.012-0.090 microg/L. The method was applied to five triazines determination in the spiked soybean, corn, lettuce, and soil samples with the recoveries of 78.0-103.5%, 82.4-113.4%, 75.5-83.4%, and 81.0-106.1%, respectively. The MIP-coated fibers are suitable for the selective extraction of trace triazines in complicated samples.

  12. Metal-organic framework UiO-66 coated stainless steel fiber for solid-phase microextraction of phenols in water samples.

    PubMed

    Shang, Hai-Bo; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2014-08-29

    Effective solid-phase microextraction (SPME) of polar phenols from water samples is usually difficult due to the strong interaction between polar phenols and aqueous matrix. Here, we report the fabrication of a metal-organic framework UiO-66 coated stainless steel fiber via physical adhesion for the SPME of polar phenols (phenol, o-cresol, p-cresol, 2,6-dimethylphenol, 2,4-dichlorophenol and 2,6-dichlorophenol) in water samples before gas chromatographic separation with flame ionic detection. Headspace SPME of 10mL sample solution with the fabricated UiO-66 coated fiber gave the enhancement factors of 160 (phenol) - 3769 (2,4-dichlorophenol), and the linear ranges of 1-1000μgL(-1) (2,6-dimethylphenol, 2,4-dichlorophenol and 2,6-dichlorophenol), 1-500μgL(-1) (o-cresol and p-cresol) and 5-500μgL(-1) (phenol). The detection limits ranged from 0.11μgL(-1) (2,6-dimethylphenol) to 1.23μgL(-1) (phenol). The precision (relative standard deviations, RSDs) for six replicate determinations of the analytes at 100μgL(-1) using a single UiO-66 coated fiber ranged from 2.8% to 6.2%. The fiber-to-fiber reproducibility (RSDs) for three parallel UiO-66 coated fibers varied from 5.9% to 10%. The recoveries obtained by spiking 5μgL(-1) of the phenols in the water samples ranged from 80% to 115%.

  13. Fabrication and application of zinc-zinc oxide nanosheets coating on an etched stainless steel wire as a selective solid-phase microextraction fiber.

    PubMed

    Song, Wenlan; Guo, Mei; Zhang, Yida; Zhang, Min; Wang, Xuemei; Du, Xinzhen

    2015-03-06

    A novel zinc-zinc oxide (Zn-ZnO) nanosheets coating was directly fabricated on an etched stainless steel wire substrate as solid-phase microextraction (SPME) fiber via previous electrodeposition of robust Zn coating. The scanning electron micrograph of the Zn-ZnO nanosheets coated fiber exhibits a flower-like nanostructure with high surface area. The SPME performance of as-fabricated fiber was investigated for the concentration and determination of polycyclic aromatic hydrocarbons, phthalates and ultraviolet (UV) filters coupled to high performance liquid chromatography with UV detection (HPLC-UV). It was found that the Zn-ZnO nanosheets coating exhibited high extraction capability, good selectivity and rapid mass transfer for some UV filters. The main parameters affecting extraction performance were investigated and optimized. Under the optimized conditions, the calibration graphs were linear over the range of 0.1-200μgL(-1). The limits of detection of the proposed method were 0.052-0.084μgL(-1) (S/N=3). The single fiber repeatability varied from 5.18% to 7.56% and the fiber-to-fiber reproducibility ranged from 6.74% to 8.83% for the extraction of spiked water with 50μgL(-1) UV filters (n=5). The established SPME-HPLC-UV method was successfully applied to the selective concentration and sensitive determination of target UV filters from real environmental water samples with recoveries from 85.8% to 105% at the spiking level of 10μgL(-1) and 30μgL(-1). The relative standard deviations were below 9.7%. Copyright © 2015. Published by Elsevier B.V.

  14. Development of a solid-phase microextraction fiber by chemical binding of polymeric ionic liquid on a silica coated stainless steel wire.

    PubMed

    Pang, Long; Liu, Jing-Fu

    2012-03-23

    A novel approach was developed for the fabrication of solid-phase microextraction (SPME) fiber by coating stainless steel fiber with a polymeric ionic liquid (PIL) through covalent bond. The stainless steel fiber was sequentially coated with a gold film by replacement reaction between Fe and Au when immerged in chloroauric acid, assembled with a monolayer of 3-(mercaptopropyl) triethoxysilane on the gold layer through the Au-S bond, and coated with a silica layer by the hydrolysis and polycondensation reaction of the surface-bonded siloxane moieties and the active silicate solution. Then, 1-vinyl-3-(3-triethoxysilylpropyl)-4,5-dihydroimidazolium chloride ionic liquid was anchored on the silica layer by covalent bond, and the PIL film was further formed by free radical copolymerization between 1-vinyl-3-(3-triethoxysilylpropyl)-4,5-dihydroimidazdium and vinyl-substituted imidazolium with azobisisobutyronitrile (AIBN) as initiator. Parameters influencing the preparation of PIL fiber were optimized, and the developed SPME fiber has a coating thickness of ~20 μm with good thermal stability and long lifetime. The performance of the PIL fiber was evaluated by analysis of polycyclic aromatic hydrocarbons (PAHs) in water samples. The developed PIL fiber showed good linearity between 0.5 and 20 μg l(-1) with regression coefficient in the range of 0.963-0.999, detection limit ranging from 0.05 to 0.25 μg l(-1), and relative standard deviation of 9.2-29% (n=7). This developed PIL fiber exhibited comparable analytical performance to commercial 7 μm thickness PDMS fiber in the extraction of PAHs. The spiked recoveries for three real water samples at 0.5-5 μg l(-1) levels were 49.6-111% for the PIL fiber and 40.8-103% for the commercial PDMS fiber.

  15. Two Fiber Optical Fiber Thermometry

    NASA Technical Reports Server (NTRS)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  16. Two Fiber Optical Fiber Thermometry

    NASA Technical Reports Server (NTRS)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  17. Optical Fibers

    NASA Astrophysics Data System (ADS)

    Ghatak, Ajoy; Thyagarajan, K.

    With the development of extremely low-loss optical fibers and their application to communication systems, a revolution has taken fiber glass place during the last 40 years. In 2001, using glass fibers as the transmission medium and lightwaves as carrier wave waves, information was transmitted at a rate more than 1 Tbit/s (which is roughly equivalent to transmission of about 15 million simultaneous telephone conversations) through one hair thin optical fiber. Experimental demonstration of transmission at the rate of 14 Tbit/s over a 160 km long single fiber was demonstrated in 2006, which is equivalent to sending 140 digital high definition movies in 1 s. Very recently record transmission of more than 100 Tbit/s over 165 km single mode fiber has been reported. These can be considered as extremely important technological achievements. In this chapter we will discuss the propagation characteristics of optical fibers with special applications to optical communication systems and also present some of the noncommunication applications such as sensing.

  18. Disposable Polydimethylsiloxane (PDMS)-Coated Fused Silica Optical Fibers for Sampling Pheromones of Moths

    PubMed Central

    Lievers, Rik; Groot, Astrid T.

    2016-01-01

    In the past decades, the sex pheromone composition in female moths has been analyzed by different methods, ranging from volatile collections to gland extractions, which all have some disadvantage: volatile collections can generally only be conducted on (small) groups of females to detect the minor pheromone compounds, whereas gland extractions are destructive. Direct-contact SPME overcomes some of these disadvantages, but is expensive, the SPME fiber coating can be damaged due to repeated usage, and samples need to be analyzed relatively quickly after sampling. In this study, we assessed the suitability of cheap and disposable fused silica optical fibers coated with 100 μm polydimethylsiloxane (PDMS) by sampling the pheromone of two noctuid moths, Heliothis virescens and Heliothis subflexa. By rubbing the disposable PDMS fibers over the pheromone glands of females that had called for at least 15 minutes and subsequently extracting the PDMS fibers in hexane, we collected all known pheromone compounds, and we found a strong positive correlation for most pheromone compounds between the disposable PDMS fiber rubs and the corresponding gland extracts of the same females. When comparing this method to volatile collections and the corresponding gland extracts, we generally found comparable percentages between the three techniques, with some differences that likely stem from the chemical properties of the individual pheromone compounds. Hexane extraction of cheap, disposable, PDMS coated fused silica optical fibers allows for sampling large quantities of individual females in a short time, eliminates the need for immediate sample analysis, and enables to use the same sample for multiple chemical analyses. PMID:27533064

  19. Application of solid phase-microextraction (SPME) and electronic nose techniques to differentiate volatiles of sesame oils prepared with diverse roasting conditions.

    PubMed

    Park, Min Hee; Jeong, Min Kyu; Yeo, JuDong; Son, Hee-Jin; Lim, Chae-Lan; Hong, Eun Jeung; Noh, Bong-Soo; Lee, JaeHwan

    2011-01-01

    Headspace volatiles of sesame oil (SO) from sesame seeds roasted at 9 different conditions were analyzed by a combination of solid phase microextraction (SPME)-gas chromatography/mass spectrometry (GC/MS), electronic nose/metal oxide sensors (MOS), and electronic nose/MS. As roasting temperature increased from 213 to 247 °C, total headspace volatiles and pyrazines increased significantly (P < 0.05). Pyrazines were major volatiles in SO and furans, thiazoles, aldehydes, and alcohols were also detected. Roasting temperature was more discrimination factor than roasting time for the volatiles in SO through the principal component analysis (PCA) of SPME-GC/MS, electronic nose/MOS, and electronic nose/MS. Electronic nose/MS showed that ion fragment 52, 76, 53, and 51 amu played important roles in discriminating volatiles in SO from roasted sesame seeds, which are the major ion fragments from pyrazines, furans, and furfurals. SO roasted at 213, 230, and 247 °C were clearly differentiated from each other on the base of volatile distribution by SPME-GC/MS, electronic nose/MOS, and electronic nose/MS analyses. Practical Application: The results of this study are ready to apply for the discriminating samples using a combinational analysis of volatiles. Not only vegetable oils prepared from roasting process but also any food sample possessing volatiles could be targets for the SPME-GC/MS and electronic nose assays. Contents and types of pyrazines in sesame seed oil could be used as markers to track down the degree of roasting and oxidation during oil preparation.

  20. Selective molecularly imprinted polymer combined with restricted access material for in-tube SPME/UHPLC-MS/MS of parabens in breast milk samples.

    PubMed

    Souza, Israel D; Melo, Lidervan P; Jardim, Isabel C S F; Monteiro, Juliana C S; Nakano, Ana Marcia S; Queiroz, Maria Eugênia C

    2016-08-17

    A new molecularly imprinted polymer modified with restricted access material (a hydrophilic external layer), (MIP-RAM) was synthesized via polymerization in situ in an open fused silica capillary. This stationary phase was used as sorbent for in-tube solid phase microextraction (in-tube SPME) to determine parabens in breast milk samples by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Scanning electron micrographs (SEM) illustrate MIP surface modification after glycerol dimethacrylate (hydrophilic monomer) incorporation. The interaction between parabens and MIP-RAM was investigated by Fourier-transform infrared (FTIR) spectroscopy. The Scatchard plot for MIP-RAM presented two linear parts with different slopes, illustrating binding sites with high- and low-affinity. Endogenous compounds exclusion from the MIP-RAM capillary was demonstrated by in-tube SPME/LC-UV assays carried out with blank milk samples. The in-tube SPME/UHPLC-MS/MS method presented linear range from 10 ng mL(-1) (LLOQ) to 400 ng mL(-1) with coefficients of determination higher than 0.99, inter-assay precision with coefficient of variation (CV) values ranging from 2 to 15%, and inter-assay accuracy with relative standard deviation (RSD) values ranging from -1% to 19%. Analytical validation parameters attested that in-tube SPME/UHPLC-MS/MS is an appropriate method to determine parabens in human milk samples to assess human exposure to these compounds. Analysis of breast milk samples from lactating women demonstrated that the proposed method is effective. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Vacuum fiber-fiber coupler

    NASA Astrophysics Data System (ADS)

    Heinrici, Axel; Bjelajac, Goran; Jonkers, Jeroen; Jakobs, Stefan; Olschok, Simon; Reisgen, Uwe

    2017-02-01

    Research and development carried out by the ISF Welding and Joining Institute of RWTH Aachen University has proven that combining high power laser and low vacuum atmosphere provides a welding performance and quality, which is comparable to electron beam welding. The developed welding machines are still using a beam forming which takes place outside the vacuum and the focusing laser beam has to be introduced to the vacuum via a suitable window. This inflexible design spoils much of the flexibility of modern laser welding. With the target to bring a compact, lightweight flying optics with flexible laser transport fibers into vacuum chambers, a high power fiber-fiber coupler has been adapted by II-VI HIGHYAG that includes a reliable vacuum interface. The vacuum-fiber-fiber coupler (V-FFC) is tested with up to 16 kW sustained laser power and the design is flexible in terms of a wide variety of laser fiber plug systems and vacuum flanges. All that is needed to implement the V-FFC towards an existing or planned vacuum chamber is an aperture of at least 100 mm (4 inch) diameter with any type of vacuum or pressure flange. The V-FFC has a state-of-the-art safety interface which allows for fast fiber breakage detection for both fibers (as supported by fibers) by electric wire breakage and short circuit detection. Moreover, the System also provides connectors for cooling and electric signals for the laser beam optics inside the vacuum. The V-FFC has all necessary adjustment options for coupling the laser radiation to the receiving fiber.

  2. Application of GC-MS with a SPME and thermal desorption technique for determination of dimethylamine and trimethylamine in gaseous samples for medical diagnostic purposes.

    PubMed

    Wzorek, Beata; Mochalski, Paweł; Sliwka, Ireneusz; Amann, Anton

    2010-06-01

    Biogenic amines are interesting compounds which may be of use for medical diagnosis or therapeutic monitoring. The present paper deals with the problems that occur with concentration determination of dimethylamine (DMA) and trimethylamine (TMA). These occur in the breath of people suffering from renal disease. The measurement of amines present in trace concentrations requires the application of suitable analytical methods during sampling, storage and preconcentration. This is particularly so due to their polar and basic properties. In this paper, the application of solid phase microextraction (SPME) and thermal desorption (TD) with subsequent measurement by GC-MS for the determination of amines is discussed. For DMA, preconcentration by SPME did not give satisfactory results. TMA may be analysed using SPME preconcentration with an LOD of 1.5 ppb. Thermal desorption with Tenax as the adsorbing material allows reliable concentration determination for TMA (LOD = 0.5 ppb) and DMA (LOD = 4.6 ppb). DMA cannot be stored reliably in Tedlar bags and longer storage on Tenax (with subsequent TD) does not give good repeatability of results. For TMA, storage can be done on Tenax or in bags, the best results for the latter being achieved with Flex Foil bags.

  3. Determination of different recreational drugs in sweat by headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME GC/MS): Application to drugged drivers.

    PubMed

    Gentili, Stefano; Mortali, Claudia; Mastrobattista, Luisa; Berretta, Paolo; Zaami, Simona

    2016-09-10

    A procedure based on headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography/mass spectrometry (GC/MS) has been developed for the determination of most commonly used drugs of abuse in sweat of drivers stopped during roadside controls. DrugWipe 5A sweat screening device was used to collect sweat by a specific pad rubbed gently over forehead skin surface. The procedure involved an acid hydrolysis, a HS-SPME extraction for drugs of abuse but Δ(9)-tetrahydrocannabinol, which was directly extracted in alkaline medium HS-SPME conditions, a GC separation of analytes by a capillary column and MS detection by electron impact ionisation. The method was linear from the limit of quantification (LOQ) to 50ng drug per pad (r(2)≥0.99), with an intra- and inter-assay precision and accuracy always less than 15% and an analytical recovery between 95.1% and 102.8%, depending on the considered analyte. Using the validated method, sweat from 60 apparently intoxicated drivers were found positive to one or more drugs of abuse, showing sweat patches testing as a viable economic and simple alternative to conventional (blood and/or urine) and non conventional (oral fluid) testing of drugs of abuse in drugged drivers. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Differentiation of manuka honey from kanuka honey and from jelly bush honey using HS-SPME-GC/MS and UHPLC-PDA-MS/MS.

    PubMed

    Beitlich, Nicole; Koelling-Speer, Isabelle; Oelschlaegel, Stefanie; Speer, Karl

    2014-07-09

    In the present study, pollen-identical pure manuka and kanuka honeys and an Australian jelly bush honey were analyzed for the nonvolatiles by UHPLC-PDA-MS/MS and for the volatiles by HS-SPME-GC/MS. A chromatographic profile matchup by means of characteristic marker compounds achieved a clear discrimination between manuka, kanuka, and jelly bush honey. UHPLC-PDA profiles of manuka honey show leptosin, acetyl-2-hydroxy-4-(2-methoxyphenyl)-4-oxobutanate, 3-hydroxy-1-(2-methoxyphenyl)-penta-1,4-dione, kojic acid, 5-methyl-3-furancarboxylic acid, and two unknown compounds as prominent, kanuka honey was characterized by 4-methoxyphenyllactic acid, methyl syringate, p-anisic acid, and lumichrome. 2-Methylbenzofuran, 2'-hydroxyacetophenone, and 2'-methoxyacetophenone were markant volatiles for manuka honey, whereas kanuka honey was characterized by 2,6,6-trimethyl-2-cyclohexene-1,4-dione, phenethyl alcohol, p-anisaldehyde, and an unknown compound in HS-SPME-GC/MS. The jelly bush honey differed from the manuka honey by higher contents of 2-methoxybenzoic acid and an individual unknown substance in the PDA profile and by lower intensities of 2'-methoxyacetophenone, higher concentrations of cis-linalool oxide, and 3,4,5-trimethylphenol in the HS-SPME-GC/MS profile.

  5. Formation of the aroma of a raw goat milk cheese during maturation analysed by SPME-GC-MS.

    PubMed

    Delgado, Francisco José; González-Crespo, José; Cava, Ramón; Ramírez, Rosario

    2011-12-01

    The volatile profile of the Spanish goat raw milk cheese of the protected designation of origin (PDO) "Queso Ibores" was studied at four stages of maturation (day 1, 30, 60, and 90) by the method of solid-phase micro-extraction-gas chromatography-mass spectrometry (SPME-GC-MS) to determinate the characteristic volatile compounds of this cheese and to know the changes in the volatile profile of this cheese during maturation. According to the PDO, Ibores cheese aroma varies between sweet and mild and it has a strong taste, slightly tart. A total of 64 compounds were detected: 14 acids, 18 alcohols, 13 esters, 6 ketones and 13 compounds which could not be classified in these groups. Carboxylic acids were the most abundant volatile compounds in the headspace of Ibores cheese. Content of volatile compounds was significantly modified (P<0.05) during ripening. The relative total amounts of acids, esters and ketones increased during the first 60days of maturation. The most characteristic compounds of Ibores cheese aroma were butanoic, hexanoic and octanoic acids, some alcohols (2-butanol and 2-heptanol), ethyl esters of hexanoic and butanoic acids, some methyl ketones (2-butanone, 2-pentanone and 2-heptanone) and δ-decalactone.

  6. Optimisation of recovery protocols for double-base smokeless powder residues analysed by total vaporisation (TV) SPME/GC-MS.

    PubMed

    Sauzier, Georgina; Bors, Dana; Ash, Jordan; Goodpaster, John V; Lewis, Simon W

    2016-09-01

    The investigation of explosive events requires appropriate evidential protocols to recover and preserve residues from the scene. In this study, a central composite design was used to determine statistically validated optimum recovery parameters for double-base smokeless powder residues on steel, analysed using total vaporisation (TV) SPME/GC-MS. It was found that maximum recovery was obtained using isopropanol-wetted swabs stored under refrigerated conditions, then extracted for 15min into acetone on the same day as sample collection. These parameters were applied to the recovery of post-blast residues deposited on steel witness surfaces following a PVC pipe bomb detonation, resulting in detection of all target components across the majority of samples. Higher overall recoveries were obtained from plates facing the sides of the device, consistent with the point of first failure occurring in the pipe body as observed in previous studies. The methodology employed here may be readily applied to a variety of other explosive compounds, and thus assist in establishing 'best practice' procedures for explosive investigations. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Statistical analysis for improving data precision in the SPME GC-MS analysis of blackberry (Rubus ulmifolius Schott) volatiles.

    PubMed

    D'Agostino, M F; Sanz, J; Martínez-Castro, I; Giuffrè, A M; Sicari, V; Soria, A C

    2014-07-01

    Statistical analysis has been used for the first time to evaluate the dispersion of quantitative data in the solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS) analysis of blackberry (Rubus ulmifolius Schott) volatiles with the aim of improving their precision. Experimental and randomly simulated data were compared using different statistical parameters (correlation coefficients, Principal Component Analysis loadings and eigenvalues). Non-random factors were shown to significantly contribute to total dispersion; groups of volatile compounds could be associated with these factors. A significant improvement of precision was achieved when considering percent concentration ratios, rather than percent values, among those blackberry volatiles with a similar dispersion behavior. As novelty over previous references, and to complement this main objective, the presence of non-random dispersion trends in data from simple blackberry model systems was evidenced. Although the influence of the type of matrix on data precision was proved, the possibility of a better understanding of the dispersion patterns in real samples was not possible from model systems. The approach here used was validated for the first time through the multicomponent characterization of Italian blackberries from different harvest years.

  8. HS-SPME GC/MS characterization of volatiles in raw and dry-roasted almonds (Prunus dulcis).

    PubMed

    Xiao, Lu; Lee, Jihyun; Zhang, Gong; Ebeler, Susan E; Wickramasinghe, Niramani; Seiber, James; Mitchell, Alyson E

    2014-05-15

    A robust HS-SPME and GC/MS method was developed for analyzing the composition of volatiles in raw and dry-roasted almonds. Almonds were analyzed directly as ground almonds extracted at room temperature. In total, 58 volatiles were identified in raw and roasted almonds. Straight chain aldehydes and alcohols demonstrated significant but minimal increases, while the levels of branch-chain aldehydes, alcohols, heterocyclic and sulfur containing compounds increased significantly (500-fold) in response to roasting (p<0.05). Benzaldehyde decreased from 2934.6±272.5 ng/g (raw almonds) to 315.8±70.0 ng/g (averaged across the roasting treatments evaluated i.e. 28, 33 and 38 min at 138 °C) after roasting. Pyrazines were detected in only the roasted almonds, with the exception of 2,5-dimethylpyrazine, which was also found in raw almonds. The concentration of most alcohols increased in the roasted samples with the exception of 2-methyl-1-propanol, 3-methyl-1-butanol and 2-phenylethyl alcohol, which decreased 68%, 80%, and 86%, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Identification of volatile components in Chinese Sinkiang fermented camel milk using SAFE, SDE, and HS-SPME-GC/MS.

    PubMed

    Ning, Li; Fu-Ping, Zheng; Hai-Tao, Chen; Si-Yuan, Liu; Chen, Gu; Zhen-Yang, Song; Bao-Guo, Sun

    2011-12-01

    The volatile components of Chinese Sinkiang fermented camel milk were isolated by solvent assisted flavour evaporation (SAFE), simultaneous distillation extraction (SDE, dichloromethane and diethyl ether as solvent, respectively) and headspace solid-phase microextraction (HS-SPME, CAR/PDMS, PDMS/DVB and DVB/CAR/PDMS fibre extraction, respectively) and analysed by GC/MS. A total of 133 volatile components were identified under 6 different conditions, including 30 esters, 20 acids, 18 saturated alcohols, 15 unsaturated aliphatic alcohols, 8 saturated ketones, 9 saturated aldehydes, 8 unsaturated aliphatic aldehydes, 6 furans, 5 sulphur-containing compounds, 5 ethers, 5 lactones, 3 other compounds, and 1 unsaturated aliphatic ketone. Three pretreatment methods were compared, assisted by principal component analysis (PCA). The results indicated that the volatile components obtained using different methods varied greatly both in categories and in content, and therefore, a multi-pretreatment method should be adopted together with GC/MS. A total of 71 aroma-active compounds were detected by gas chromatography-olfactometry (GC-O), among which 66 aroma-active compounds were found by SDE (60, dichloromethane as solvent; 24, diethyl ether as solvent), 26 by SAFE.

  10. Evaluation of Residual Diazinon and Chlorpiryfos in Children Herbal Medicines by Headspace-SPME and GC-FID.

    PubMed

    Mosaddegh, Mohammad Hossein; Emami, Fakhrossadat; Asghari, Gholamreza

    2014-01-01

    The oldest method for the managing of the illness is the use of medicinal plants. The use of herbal products as the first choice in self-treatment of minor conditions continues to expand rapidly across Iran. This makes the safety of herbal products an important public health issue. Pesticides are used widely in agriculture to increase the production by controlling the harmful insects and disease vectors, however it has some hazards on biological system of human especially children. The present study was designed to examine the residual amount of organophosphorus pesticides (Diazinon and Chlorpyrifos) in children herbal medicines available in the Iranian market. Five children herbal medicine liquid dosage forms were purchased from pharmacy store. They were extracted with SPME (Solid Phase Microextraction) using the PDMS-DVB fibre. Then the extracts were injected into a GC. The gas chromatograph was Younglin model YL 6100 equipped with a flame ionization detector. The column was Technokroma 60 m length, 0.53 mm internal diameter and 1.25 µm film coated. The presence and quantity of Diazinon and Chlorpyrifos were evaluated using their standard curves. Trace amounts of chlorpyrifos and diazinon were detected in a few herbal medicines. Based on European pharmacopeia, threshold limits of chlorpyrifos and diazinon residues for medicinal plant materials are 0.2 and 0.5 mg/Kg, respectively. Our analysis results showed that residue limits of these two pesticides in five children herbal medicines are ignorable.

  11. Optimization of espresso machine parameters through the analysis of coffee odorants by HS-SPME-GC/MS.

    PubMed

    Caprioli, Giovanni; Cortese, Manuela; Cristalli, Gloria; Maggi, Filippo; Odello, Luigi; Ricciutelli, Massimo; Sagratini, Gianni; Sirocchi, Veronica; Tomassoni, Giacomo; Vittori, Sauro

    2012-12-01

    The aroma profile and the final quality of espresso coffee (EC) are influenced by such technical conditions as the EC machine extraction temperature and the pressure used. The effect of these two parameters on EC quality were studied in combination by headspace solid phase micro extraction-gas chromatography-mass spectrometry (SPME-GC-MS) and sensory profile. Moreover, 10 key odorants at the best EC machine settings were examined to compare the two coffee cultivars (Arabica and Robusta) and two EC machines [Aurelia Competizione (A) and Leva Arduino (B)]. The data obtained provides important information about espresso making technique, suggesting that the usual espresso machine temperature and pressure settings (i.e. 92°C and 9bar) are very close to those needed to obtain the best quality espresso. This confirms the traditional wisdom of coffee making, which judges 25ml, the typical volume of a certified Italian EC, to be ideal for very strong aroma intensity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Characterization of Volatile Compounds with HS-SPME from Oxidized n-3 PUFA Rich Oils via Rancimat Tests.

    PubMed

    Yang, Kai-Min; Cheng, Ming-Ching; Chen, Chih-Wei; Tseng, Chin-Yin; Lin, Li-Yun; Chiang, Po-Yuan

    2017-02-01

    Algae oil and fish oil are n-3 PUFA mainstream commercial products. The various sources for the stability of n-3 PUFA oxidation are influenced by the fatty acid composition, extraction and refined processing. In this study, the oil stability index (OSI) occurs within 2.3 to 7.6 hours with three different n-3 PUFA rich oil. To set the OSI in the Rancimat test as the oil stability limit and observed various degrees of oxidation (0, 25, 50, 75, 100 and 125%). The volatile oxidation compounds were analyzed via headspace-solid phase microextraction (HS-SPME) and GC/MS. We detected 51 volatile compound variations during the oxidation, which were composed of aldehydes, hydrocarbons, cyclic compounds, alcohols, benzene compounds, ketones, furans, ester and pyrrolidine. The off-flavor characteristics can be strongly influenced by the synergy effects of volatile oxidation compounds. Chemometric analysis (PCA and AHC) was applied to identify the sensitive oxidation marker compounds, which included a (E,E)-2,4-heptadienal appropriate marker, via lipid oxidation in the n-3 PUFA rich oil.

  13. Application of HS-SPME-GC-MS method for the detection of active moulds on historical parchment.

    PubMed

    Sawoszczuk, Tomasz; Syguła-Cholewińska, Justyna; Del Hoyo-Meléndez, Julio M

    2017-03-01

    The goal of this work was to analyse the profile of microbial volatile organic compounds (MVOCs) emitted by moulds growing on parchment samples, in search of particular volatiles mentioned in the literature as indicators of active mould growth. First, the growth of various moulds on samples of parchment was assessed. Those species that showed collagenolytic activity were then inoculated on two types of media: samples of parchment placed on media and on media containing amino acids that are elements of the structure of collagen. All samples were prepared inside 20-ml vials (closed system). In the first case, the media did not contain any sources of organic carbon, nitrogen, or sulphur, i.e. parchment was the only nutrient for the moulds. A third type of sample was historical parchment prepared in a Petri dish without a medium and inoculated with a collagenolytically active mould (open system). The MVOCs emitted by moulds were sampled with the headspace-SPME method. Volatiles extracted on DVB/CAR/PDMS fibres were analysed in a gas chromatography-mass spectrometry system. Qualitative and quantitative analyses of chromatograms were carried out in search of indicators of metabolic activity. The results showed that there are three groups of volatiles that can be used for the detection of active forms of moulds on parchment objects. To the best of our knowledge, this is the first work to measure MVOCs emitted by moulds growing on parchment.

  14. Identification of volatile components of liverwort (Porella cordaeana) extracts using GC/MS-SPME and their antimicrobial activity.

    PubMed

    Bukvicki, Danka; Gottardi, Davide; Veljic, Milan; Marin, Petar D; Vannini, Lucia; Guerzoni, Maria Elisabetta

    2012-06-06

    Chemical constituents of liverwort (Porella cordaeana) extracts have been identified using solid-phase microextraction-gas chromatography mass spectrometry (SPME-GC/MS). The methanol, ethanol and ethyl acetate extracts were rich in terpenoids such as sesquiterpene hydrocarbons (53.12%, 51.68%, 23.16%), and monoterpene hydrocarbons (22.83%, 18.90%, 23.36%), respectively. The dominant compounds in the extracts were β-phellandrene (15.54%, 13.66%, 12.10%) and β-caryophyllene (10.72%, 8.29%, 7.79%, respectively). The antimicrobial activity of the extracts was evaluated against eleven food microorganisms using the microdilution and disc diffusion methods. The minimum inhibitory concentration (MIC) varied from 0.50 to 2.00 mg/mL for yeast strains (Saccharomyces cerevisiae 635, Zygosacharomyces bailii 45, Aerobasidium pullulans L6F, Pichia membranaefaciens OC 71, Pichia membranaefaciens OC 70, Pichia anomala CBS 5759, Pichia anomala DBVPG 3003 and Yarrowia lipolytica RO13), and from 1.00 to 3.00 mg/mL for bacterial strains (Salmonella enteritidis 155, Escherichia coli 555 and Listeria monocytogenes 56Ly). Methanol extract showed better activity in comparison with ethanol and ethyl acetate extracts. High percentages of monoterpene and sesquiterpene hydrocarbons could be responsible for the better antimicrobial activity.

  15. HS-SPME-GC-FID method for detection and quantification of Bacillus cereus ATCC 10702 mediated 2-acetyl-1-pyrroline.

    PubMed

    Deshmukh, Yogita; Khare, Puja; Patra, D D; Nadaf, Altafhusain B

    2014-01-01

    A rapid micro-scale solid-phase micro-extraction (SPME) procedure coupled with gas-chromatography with flame ionized detector (GC-FID) was used to extract parts per billion levels of a principle basmati aroma compound "2-acetyl-1-pyrroline" (2-AP) from bacterial samples. In present investigation, optimization parameters of bacterial incubation period, sample weight, pre-incubation time, adsorption time, and temperature, precursors and their concentrations has been studied. In the optimized conditions, detection of 2-AP produced by Bacillus cereus ATCC10702 using only 0.5 g of sample volume was 85 μg/kg. Along with 2-AP, 15 other compounds produced by B. cereus were also reported out of which 14 were reported for the first time consisting mainly of (E)-2-hexenal, pentadecanal, 4-hydroxy-2-butanone, n-hexanal, 2-6-nonadienal, 3-methoxy-2(5H) furanone and 2-acetyl-1-pyridine and octanal. High recovery of 2-AP (87 %) from very less amount of B. cereus samples was observed. The method is reproducible fast and can be used for detection of 2-AP production by B. cereus. © 2014 American Institute of Chemical Engineers.

  16. Preparation of solid-phase microextraction fibers by in-mold coating strategy for derivatization analysis of 24-epibrassinolide in pollen samples.

    PubMed

    Pan, Jialiang; Hu, Yuling; Liang, Tingan; Li, Gongke

    2012-11-02

    A novel and simple in-mold coating strategy was proposed for the preparation of uniform solid-phase microextraction (SPME) coatings. Such a strategy is based on the direct synthesis of the polymer coating on the surface of a solid fiber using a glass capillary as the mold. The capillary was removed and the polymer with well-controlled thickness could be coated on the silica fiber reproductively. Following the strategy, a new poly(acrylamide-co-ethylene glycol dimethacrylate) (poly(AM-co-EGDMA)) coating was prepared for the preconcentration of 24-epibrassinolide (24-epiBL) from plant matrix. The coating had the enrichment factor of 32 folds, and the extraction efficiency per unit thickness was 5 times higher than that of the commercial polydimethylsiloxane/divinylbenzene (PDMS/DVB) coating. A novel method based on SPME coupled with derivatization and large volume injection-high performance liquid chromatography (LVI-HPLC) was developed for the analysis of 24-epiBL. The linear range was 0.500-20.0 μg/L with the detection limit of 0.13 μg/L. The amounts of endogenous 24-epiBL in rape and sunflower breaking-wall pollens samples were determined with satisfactory recovery (77.8-104%) and reproducibility (3.9-7.9%). The SPME-DE/LVI-HPLC method is rapid, reliable, convenient and applicable for complicated plant samples.

  17. Fireblocking Fibers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    PBI was originally developed for space suits. In 1980, the need for an alternative to asbestos and stricter government anti-pollution standards led to commercialization of the fire blocking fiber. PBI is used for auto racing driver suits and aircraft seat covers. The fiber does not burn in air, is durable and easily maintained. It has been specified by a number of airliners and is manufactured by Hoechst-Celanese Corporation.

  18. Nanocomposite Fibers

    DTIC Science & Technology

    2003-01-01

    attempts to prepare carbon nanotube , CNT, containing fiber material. Modulus and tenacity tests on experimentally prepared nanosilica filled PET...individual entities of nanofibers, such as carbon nanotubes and SiC whiskers, silica and clay, into polymers with the goal of producing new forms of...if carbon nanotube (CNT) particle implanted fibers are used, one would expect a great increase in the electrical conductivity of the so-reinforced

  19. Dietary fiber.

    PubMed

    Madar, Z; Thorne, R

    1987-01-01

    Studies done on dietary fiber (DF) over the past five years are presented in this Review. The involvement of dietary fiber in the control of plasma glucose and lipid levels is now established. Two dietary fiber sources (soybean and fenugreek) were studied in our laboratory and are discussed herein. These sources were found to be potentially beneficial in the reduction of plasma glucose in non-insulin dependent diabetes mellitus subjects. They are shown to be acceptable by human subjects and are easy to use either in a mixture of milk products and in cooking. The mechanism by which dietary fiber alters the nutrient absorption is also discussed. The effect of DF on gastric emptying, transit time, adsorption and glucose transport may contribute to reducing plasma glucose and lipid levels. DF was found to be effective in controlling blood glucose and lipid levels of pregnant diabetic women. Dietary fiber may also be potentially beneficial in the reduction of exogenous insulin requirements in these subjects. However, increased consumption of DF may cause adverse side effects; the binding capabilities of fiber may affect nutrient availability, particularly that of minerals and prolonged and high DF dosage supplementation must be regarded cautiously. This is particularly true when recommending such a diet for pregnant or lactating women, children or subjects with nutritional disorders. Physiological effects of DF appear to depend heavily on the source and composition of fiber. Using a combination of DF from a variety of sources may reduce the actual mass of fiber required to obtain the desired metabolic effects and will result in a more palatable diet. Previously observed problems, such as excess flatus, diarrhea and mineral malabsorption would also be minimized.

  20. Hollow fiber membrane-coated functionalized polymeric ionic liquid capsules for direct analysis of estrogens in milk samples.

    PubMed

    Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan

    2016-02-01

    Protein removal process is always time-consuming for the analysis of milk samples. In this work, hollow fiber membrane-coated functionalized polymeric ionic liquid (HF-PIL) capsules were synthesized and used as solid-phase microextraction (SPME) sorbent for direct analysis of estrogens in milk samples. The functionalized PIL monolith sorbent was obtained by copolymerization between 1-(3-aminopropyl)-3-(4-vinylbenzyl)imidazolium 4-styrenesulfonate IL monomer and 1,6-di(3-vinylimidazolium) hexane bishexafluorophosphate IL-crosslinking agent. A group of four capsules were installed as SPME device, to determine four kinds of estrogens (estrone, diethylstilbestrol, hexestrol, and 17α-ethynylestradiol) in milk samples, coupled to high performance liquid chromatography. Extraction and desorption conditions were optimized to get satisfactory extraction efficiency. Good linearity was obtained in the range of 5-200 μg L(-1). The limits of detection were 1 μg L(-1) for diethylstilbestrol and 2 μg L(-1) for 17α-ethynylestradiol, estrone, and hexestrol. The present method was applied to analyze the model analytes in different milk samples. Relative recoveries were in the range of 85.5-112%. The HF-PIL SPME capsules showed satisfactory extraction efficiency and high resistance to sample matrix interference.

  1. A solid-phase microextraction fiber with carbon nanoparticles as sorbent material prepared by a simple flame-based preparation process.

    PubMed

    Sun, Min; Feng, Juanjuan; Qiu, Huamin; Fan, Lulu; Li, Leilei; Luo, Chuannan

    2013-07-26

    A novel carbon nanoparticles-coated solid-phase microextraction (SPME) fiber was prepared via a simple and low-cost flame-based preparation process, with stainless steel wire as support. Surface characteristic of the fiber was studied with scanning electron microscope. A nano-scaled brushy structure was observed. Coupled to gas chromatography (GC), the fiber was used to extract phthalate esters (PAEs) and polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Analytical performances of the proposed method were investigated under the optimum extraction conditions (extraction temperature, 40°C; content of KCl, 30% (w/v); extraction time, 50min for PAEs and 40min for PAHs) and compared with other reports for the same analytes. Calibration ranges were 0.06-500μgL(-1) for di-n-butyl phthalate (DBP), and 0.1-300μgL(-1) for di-cyclohexyl phthalate (DCHP) and di-(2-ethyl-hexyl) phthalate (DEHP). For the eight PAHs, good linearity was obtained ranging from 0.01 to 150μgL(-1). Limits of detection were 0.005μgL(-1) for three PAEs and 0.001-0.003μgL(-1) for eight PAHs. The fiber exhibited excellent stability. It can be used for 100 times with RSDs of extraction efficiency less than 22.4%. The as-established SPME-GC method was applied to determine PAEs in food-wrap and PAHs in cigarette ash and snow water, and satisfactory results were obtained. The carbon nanoparticles-coated SPME fiber was efficient for sampling of organic compounds from aqueous samples.

  2. Determination of chlorophenols in landfill leachate using headspace sampling with ionic liquid-coated solid-phase microextraction fibers combined with gas chromatography-mass spectrometry.

    PubMed

    Ho, Tse-Tsung; Chen, Chung-Yu; Li, Zu-Guang; Yang, Thomas Ching-Cherng; Lee, Maw-Rong

    2012-01-27

    A new microextraction technique based on ionic liquid solid-phase microextraction (IL-SPME) was developed for determination of trace chlorophenols (CPs) in landfill leachate. The synthesized ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)MIM][PF(6)]), was coated onto the spent fiber of SPME for extraction of trace CPs. After extraction, the absorbed analytes were desorbed and quantified using gas chromatography-mass spectrometry (GC/MS). The term of the proposed method is as ionic liquid-coated of solid-phase microextraction combined with gas chromatography-mass spectrometry (IL-SPME-GC/MS). No carryover effect was found, and every laboratory-made ionic liquids-coated-fiber could be used for extraction at least eighty times without degradation of efficiency. The chlorophenols studied were 2,4-dichlorophenol (2,4-DP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP), and pentachlorophenol (PCP). The best results of chlorophenols analysis were obtained with landfill leachate at pH 2, headspace extraction for 4 min, and thermal desorption with the gas chromatograph injector at 240°C for 4 min. Linearity was observed from 0.1 to 1000 μg L(-1) with relative standard deviations (RSD) less than 7% and recoveries were over 87%. The limit of detection (LOD) for pentachlorophenol was 0.008 μg L(-1). The proposed method was tested by analyzing landfill leachate from a sewage farm. The concentrations of chlorophenols were detected to range from 1.1 to 1.4 μg L(-1). The results demonstrate that the IL-SPME-GC/MS method is highly effective in analyzing trace chlorophenols in landfill leachate. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Field Air Sampling with SPME for Ranking and Prioritization of Downwind Livestock Odors with MDGC-MS-Olfactometry

    NASA Astrophysics Data System (ADS)

    Koziel, Jacek A.; Cai, Lingshuang; Wright, Donald W.; Hoff, Steven J.

    2009-05-01

    Air sampling and characterization of odorous livestock gases is one of the most challenging analytical tasks. This is due to low concentrations, physicochemical properties, and problems with sample recoveries for typical odorants. Livestock operations emit a very complex mixture of volatile organic compounds and other gases. Many of these gases are odorous. Relatively little is known about the link between specific VOCs/gases and specifically, about the impact of specific odorants downwind from sources. In this research, solid phase microextraction (SPME) was used for field air sampling of odors downwind from swine and beef cattle operations. Sampling time ranged from 20 min to 1 hr. Samples were analyzed using a commercial GC-MS-Olfactometry system. Odor profiling efforts were directed at odorant prioritization with respect to distance from the source. The results indicated the odor downwind was increasingly defined by a smaller number of high priority odorants. These `character defining' odorants appeared to be dominated by compounds of relatively low volatility, high molecular weight and high polarity. In particular, p-cresol alone appeared to carry much of the overall odor impact for swine and beef cattle operations. Of particular interest was the character-defining odor impact of p-cresol as far as 16 km downwind of the nearest beef cattle feedlot. The findings are very relevant to scientists and engineers working on improved air sampling and analysis protocols and on improved technologies for odor abatement. More research evaluating the use of p-cresol and a few other key odorants as a surrogate for the overall odor dispersion modeling is warranted.

  4. Validation of SPME-GCMS method for the analysis of virgin olive oil volatiles responsible for sensory defects.

    PubMed

    Romero, I; García-González, D L; Aparicio-Ruiz, R; Morales, M T

    2015-03-01

    Volatile compounds are responsible for the aroma of virgin olive oil and also for its quality. The high number and different nature of volatile compounds drive to the need of a reliable analytical method that allows their proper quantification to explain the standard method of panel test. Although there are some analytical solutions available, they have not been validated and the regulatory bodies are reluctant to adopt them since they can be subjected to unknown errors. In this regards, the European Union has encouraged the validation of these analytical tools through the research program Horizon2020, which involves gaining knowledge from the analytical properties of the chemical methods for sensory assessment. This work is focused on the analytical validation of the methodology used to determine the actual concentration of volatiles in virgin olive oils when applying SPME-GCMS. The validation process includes the calibration curves for 29 volatile compounds responsible for the most common sensory perceptions in virgin olive oils, the determination of their working ranges with linear response, the detection and quantification limits, the sensitivity, the accuracy estimated as trueness and precision and the selectivity. Sixty-seven percent of the compounds presented a relative standard deviation in repeatability lower than 10%, and this percentage rises to 95% in lampante virgin olive oils. The accuracy was established in 97% of the studied volatile compounds. Finally, an empirical example of the ability of the method to discriminate virgin olive oils of different categories (extra virgin, virgin, ordinary and lampante) by the quantification of their volatiles is provided.

  5. An approach to determination of phenolic compounds in seawater using SPME-GC-MS based on SWCNTs coating

    NASA Astrophysics Data System (ADS)

    Zhu, Jia; Wang, Ying; Zeng, Lin

    2016-08-01

    Phenolic compounds have become one kind of the important pollutants of the marine environment. Single-walled Carbon nanotubes, as one-dimensional nano materials, have light weight and perfect hexagonal structure of connections, with many unusual mechanical, chemical and electrical properties. In recent years, with the research of carbon nanotubes and other nano materials, the application prospect is also constantly discussed. In this paper, homemade single-walled carbon nanotubes (SWCNTs) coating was used for establishing an analytical approach to the determination of five kinds of phenolic compounds in seawater using SPME-GC-MS. Optimal conditions: After saturation was conducted with NaCl, and pH was adjusted to 2.0 with H2SO4, the extract was immersed in a water bath at 40°C for GC-MS determination through 40-min agitating extraction at 500 rmin-1 and 3-min desorption at 280°C. The liniearities ranged between 0.01-100 μg L-1, and the determination limits ranged between 1.5-10 ng L-1. The relative standard deviation (RSD, n = 5) was less than 6.5%. For the phenolic compounds obtained from the spiked recovery test for actual seawater samples, the rates of recovery were 87.5%-101.7%, and the RSDs were less than 8.8%, which met the requirements of determination. Due to its simplicity, high efficiency and low consumption, this approach is suitable for the analysis of trace amounts of phenolic compounds in marine waters.

  6. Photovoltaic fibers

    NASA Astrophysics Data System (ADS)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  7. Simple fabrication of solid phase microextraction fiber employing nitrogen-doped ordered mesoporous polymer by in situ polymerization.

    PubMed

    Zheng, Juan; Liang, Yeru; Liu, Shuqin; Jiang, Ruifen; Zhu, Fang; Wu, Dingcai; Ouyang, Gangfeng

    2016-01-04

    A combination of nitrogen-doped ordered mesoporous polymer (NOMP) and stainless steel wires led to highly sensitive, selective, and stable solid phase microextraction (SPME) fibers by in situ polymerization for the first time. The ordered structure of synthesized NOMP coating was illustrated by transmission electron microscopy (TEM) and X-ray diffraction (XRD), and microscopy analysis by scanning electron microscopy (SEM) confirmed a homogenous morphology of the NOMP-coated fiber. The NOMP-coated fiber was further applied for the extraction of organochlorine pesticides (OCPs) with direct-immersion solid-phase microextraction (DI-SPME) method followed by gas chromatography-mass spectrometry (GC-MS) quantification. Under the optimized conditions, low detection limits (0.023-0.77 ng L(-1)), a wide linear range (9-1500 ng L(-1)), good repeatability (3.5-8.1%, n=6) and excellent reproducibility (1.5-8.3%, n=3) were achieved. Moreover, the practical feasibility of the proposed method was evaluated by determining OCPs in environmental water samples with satisfactory recoveries. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Fiber resources

    Treesearch

    P. J. Ince

    2004-01-01

    In economics, primary inputs or factors of production define the term ‘resources.’ Resources include land resources (plants, animals, and minerals), labor, capital, and entrepreneurship. Almost all pulp and paper fiber resources are plant materials obtained from trees or agricultural crops. These resources encompass plant materials harvested directly from the land (...

  9. Fiber crops

    USDA-ARS?s Scientific Manuscript database

    Much research continues to develop renewable, recyclable, sustainable, and bio-based products from agricultural feed stocks such as cotton and flax fiber. Primary requirements are sustainable production, low cost, and consistent and known quality. To better understand these products, research contin...

  10. Preliminary construction of integral analysis for characteristic components in complex matrices by in-house fabricated solid-phase microextraction fibers combined with gas chromatography-mass spectrometry.

    PubMed

    Tang, Zhentao; Hou, Wenqian; Liu, Xiuming; Wang, Mingfeng; Duan, Yixiang

    2016-08-26

    Integral analysis plays an important role in study and quality control of substances with complex matrices in our daily life. As the preliminary construction of integral analysis of substances with complex matrices, developing a relatively comprehensive and sensitive methodology might offer more informative and reliable characteristic components. Flavoring mixtures belonging to the representatives of substances with complex matrices have now been widely used in various fields. To better study and control the quality of flavoring mixtures as additives in food industry, an in-house fabricated solid-phase microextraction (SPME) fiber was prepared based on sol-gel technology in this work. The active organic component of the fiber coating was multi-walled carbon nanotubes (MWCNTs) functionalized with hydroxyl-terminated polydimethyldiphenylsiloxane, which integrate the non-polar and polar chains of both materials. In this way, more sensitive extraction capability for a wider range of compounds can be obtained in comparison with commercial SPME fibers. Preliminarily integral analysis of three similar types of samples were realized by the optimized SPME-GC-MS method. With the obtained GC-MS data, a valid and well-fit model was established by partial least square discriminant analysis (PLS-DA) for classification of these samples (R2X=0.661, R2Y=0.996, Q2=0.986). The validity of the model (R2=0.266, Q2=-0.465) has also approved the potential to predict the "belongingness" of new samples. With the PLS-DA and SPSS method, further screening out the markers among three similar batches of samples may be helpful for monitoring and controlling the quality of the flavoring mixtures as additives in food industry. Conversely, the reliability and effectiveness of the GC-MS data has verified the comprehensive and efficient extraction performance of the in-house fabricated fiber. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Why do Ladybugs Smell Bad? In-vivo Quantification of Odorous Insect Kairomones with SPME and Multidimensional GC-MS-Olfactometry

    NASA Astrophysics Data System (ADS)

    Cai, Lingshuang; Koziel, Jacek A.; O'Neal, Matthew E.

    2009-05-01

    Winemakers, small fruit growers, and homeowners are concerned with noxious compounds released by multicolored Asian ladybird beetles (Harmonia axyridis, Coleoptera: Coccinellidae). New method based on headspace solid phase microextraction (HS-SPME) coupled with multidimensional gas chromatography mass spectrometry—olfactometry (MDGC-MS-O) system was developed for extraction, isolation and simultaneous identification of compounds responsible for the characteristic odor of live H. axyridis. Four methoxypyrazines (MPs) were identified in headspace volatiles of live H. axyridis as those responsible for the characteristic odor: 2, 5-dimethy1-3-methoxypyrazine (DMMP), 2-isopropy1-3-methoxypyrazine (IPMP), 2-sec-buty1-3-methoxypyrazine (SBMP), and 2-isobuty1-3-methoxypyrazine (IBMP). To the best of our knowledge this is the first report of H. axyridis releasing DMMP and the first report of this compound being a component of the H. axyridis characteristic odor. Quantification of three MPs (IPMP, SBMP and IBMP) emitted from live H. axyridis were performed using external calibration with HS-SPME and direct injections. A linear relationship (R2>0.9958 for all 3 MPs) between MS response and concentration of standard was observed over a concentration range from 0.1 ng L-1 to 0.05 μg L-1 for HS-SPME-GC-MS. The method detection limits (MDL) based on multidimensional GC-MS approach for three MPs were estimated to be between 0.020 ng L-1. to 0.022 ng L-1. This methodology is applicable for in vivo determination of odor-causing chemicals associated with emissions of volatiles from insects.

  12. Measurement of pentane in expiratory gas during rabbit hepatic ischemia/ reperfusion by solid-phase microextraction and gas chromatography–mass spectrometry (SPME GC/MS).

    PubMed

    Liu, Shujuan; Shi, Jinghui; Wang, Changsong; Li, Peng; Gong, Yulei; He, Ying; Xu, Guowang; Li, Jianyi; Luo, Ailin; Li, Enyou

    2012-06-01

    The aim of this study was to determine the changes in the pentane concentration of expiratory gas as well as the relationship between this pentane concentration and hepatic oxidative stress during rabbit hepatic ischemia/reperfusion using solid-phase microextraction (SPME) and gas chromatography–mass spectrometry (GC/MS). 45 white male rabbits with body weights between 2.5 and 3.0 kg were randomly assigned to the following three groups: the 10 min ischemia group (group S); the 20 min ischemia group (group M); or the 30 min ischemia group(group L). Expiratory gases were collected prior to ischemia (T0) and for 1, 10, 20, 30, 60 and 120 min (T1–T6) following reperfusion. Pentane concentrations were determined using SPME and GC/MS. In addition, arterial blood samples were collected, and serum aminotransferase(AST) and malondialdehyde (MDA) concentrations were measured. In the three groups, the pentane concentrations of the expiratory gases at points T1 and T2 were significantly increased(P < 0.05) compared with those at point T0, and the serum AST and MDA concentrations at points T5 and T6 were also significantly increased (P < 0.05) compared with those at point T0.Therefore, the use of SPME in combination with GC/MS represents an improved anesthesia system that can be used to continuously measure the concentration of pentane in expiratory gases, which can reflect the degree of oxidative stress during hepatic ischemia/reperfusion.

  13. Why do Ladybugs Smell Bad? In-vivo Quantification of Odorous Insect Kairomones with SPME and Multidimensional GC-MS-Olfactometry

    SciTech Connect

    Cai Lingshuang; Koziel, Jacek A.; O'Neal, Matthew E.

    2009-05-23

    Winemakers, small fruit growers, and homeowners are concerned with noxious compounds released by multicolored Asian ladybird beetles (Harmonia axyridis, Coleoptera: Coccinellidae). New method based on headspace solid phase microextraction (HS-SPME) coupled with multidimensional gas chromatography mass spectrometry--olfactometry (MDGC-MS-O) system was developed for extraction, isolation and simultaneous identification of compounds responsible for the characteristic odor of live H. axyridis. Four methoxypyrazines (MPs) were identified in headspace volatiles of live H. axyridis as those responsible for the characteristic odor: 2, 5-dimethy1-3-methoxypyrazine (DMMP), 2-isopropy1-3-methoxypyrazine (IPMP), 2-sec-buty1-3-methoxypyrazine (SBMP), and 2-isobuty1-3-methoxypyrazine (IBMP). To the best of our knowledge this is the first report of H. axyridis releasing DMMP and the first report of this compound being a component of the H. axyridis characteristic odor. Quantification of three MPs (IPMP, SBMP and IBMP) emitted from live H. axyridis were performed using external calibration with HS-SPME and direct injections. A linear relationship (R{sup 2}>0.9958 for all 3 MPs) between MS response and concentration of standard was observed over a concentration range from 0.1 ng L{sup -1} to 0.05 {mu}g L{sup -1} for HS-SPME-GC-MS. The method detection limits (MDL) based on multidimensional GC-MS approach for three MPs were estimated to be between 0.020 ng L{sup -1}. to 0.022 ng L{sup -1}. This methodology is applicable for in vivo determination of odor-causing chemicals associated with emissions of volatiles from insects.

  14. The evolution of volatile compounds profile of "Toscano" dry-cured ham during ripening as revealed by SPME-GC-MS approach.

    PubMed

    Pugliese, C; Sirtori, F; Calamai, L; Franci, O

    2010-09-01

    The volatile compounds profile is an important feature for the characterization of dry-cured hams. Some minor typical Italian products, such as 'Toscano' ham, have been poorly studied in regards to their composition of volatile compounds. In this article, we studied the evolution of the aromatic profile of 'Toscano' dry-cured ham by solid-phase microextraction-gas chromatographic-mass spectrometry (SPME-GC-MS) with ripening. Ten right thighs were cured according to the 'Toscano' PDO protocol, sampled at 0, 1, 3, 6 and 12 months and submitted to volatile compounds analysis by SPME with a Divinylbenzene (DVB)/Carboxen/Polydimethylsiloxane (PDMS) 75-µ Stable Flex fibre. An Agilent 5975C mass selective detector (MSD) spectrometer with electron ionization (EI) source operating in scan mode within the m/z 29-350 range was used for data collection. Seven internal standards, either deuterium labeled or absent in the specimens and chosen to represent low or high boiling esters, alcohols, acids or phenols, were added to the homogenized samples and used to normalize the SPME fibre response to account for response changes upon wearing. Linear calibrations were obtained in this way for selected representative compounds. Over 60 compounds belonging to esters, aldehydes, organic acids, ketones and alcohols were identified by comparison with spectral libraries and Kovats indices. Aldehydes were the most represented chemical family, followed by organic acids, alcohols, ketones and esters. The aldehydes and ketones increased during the first 3 months, when the larger formation of volatiles occurred. For other families, the evolution over time was less evident. The principal component and discriminant analyses of the aromatic profile were effective in classifying the hams at 0, 6 or 12 months of ripening while for 1 and 3 months' samples a partial overlapping was shown. These results represent the first characterization of 'Toscano' ham and may constitute the basis to identify the

  15. Determination of methylisothiocyanate in soil and water by HS-SPME followed by GC-MS-MS with a triple quadrupole.

    PubMed

    Peruga, Aranzazu; Beltrán, Joaquim; López, Francisco; Hernández, Félix

    2014-09-01

    Methylisothiocyanate (MITC) is the main degradation product of metam sodium, a soil disinfectant widely used in agriculture, and is responsible for its disinfectant properties. Because MITC is highly toxic and volatile, metam sodium has to be applied in a manner that tries to reduce atmospheric emissions but still maintains adequate concentration of MITC in soil to ensure its disinfectant effect. Thus, monitoring of MITC concentrations in soil is required, and to this end sensitive, fast, and reliable analytical methods must be developed. In this work, a headspace solid-phase microextraction (HS-SPME) method was developed for MITC determination in water and soil samples using gas chromatography-tandem mass spectrometry (GC-MS-MS) with a triple-quadrupole analyzer. Two MS-MS transitions were acquired to ensure the reliable quantification and confirmation of the analyte. The method had linear behavior in the range tested (0.026-2.6 ng mL(-1) in water, 1-100 ng g(-1) in soil) with r (2) over 0.999. Detection limits were 0.017 ng mL(-1) and 0.1 ng g(-1) in water and soil, respectively. Recoveries for five replicates were in the range 76-92 %, and RSD was below 7 % at the two spiking levels tested for each matrix (0.1 and 1 ng mL(-1) for water, 4 and 40 ng g(-1) for soil). The potential of using multiple HS-SPME for analyzing soil samples was also investigated, and its feasibility for quantification of MITC evaluated. The developed HS-SPME method was applied to soil samples from experimental plots treated with metam sodium following good agriculture practices.

  16. Optimization of total vaporization solid-phase microextraction (TV-SPME) for the determination of lipid profiles of Phormia regina, a forensically important blow fly species.

    PubMed

    Kranz, William; Carroll, Clinton; Dixon, Darren; Picard, Christine; Goodpaster, John

    2017-08-29

    A new method has been developed for the determination of fatty acids, sterols, and other lipids which naturally occur within pupae of the blow fly Phormia regina. The method relies upon liquid extraction in non-polar solvent, followed by derivatization using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) w/ 1% trimethylchlorsilane (TMCS) carried out inside the sample vial. The analysis is facilitated by total vaporization solid-phase microextraction (TV-SPME), with gas chromatography-mass spectrometry (GC-MS) serving as the instrumentation for analysis. The TV-SPME delivery technique is approximately a factor of five more sensitive than traditional liquid injection, which may alleviate the need for rotary evaporation, reconstitution, collection of high performance liquid chromatography fractions, and many of the other pre-concentration steps that are commonplace in the current literature. Furthermore, the ability to derivatize the liquid extract in a single easy step while increasing sensitivity represents an improvement over current derivatization methods. The most common lipids identified in fly pupae were various saturated and unsaturated fatty acids ranging from lauric acid (12:0) to arachinoic acid (20:4), as well as cholesterol. The concentrations of myristic acid (14:0), palmitelaidic acid (16:2), and palmitoleic acid (16:1) were the most reliable indicators of the age of the pupae. Graphical abstract Blow fly pupae were extracted prior to emerging as adults. The extracts were analyzed via total vaporization solid-phase microextraction (TV-SPME), revealing a complex mixture of lipids that could be associated with the age of the insect. This information may assist in determining a post-mortum interval (PMI) in a death investigation.

  17. A multi-fiber handling device for in vivo solid phase microextraction-liquid chromatography-mass spectrometry applications.

    PubMed

    Cudjoe, Erasmus; Pawliszyn, Janusz

    2012-04-06

    Solid phase microextraction, an in vivo and ex vivo sample preparation method, continues to capture growing interest among researchers for bioanalytical applications. When coupled with liquid chromatography mass spectrometry, the procedure often involves large numbers of fibers in, for example, both pharmacokinetic and pharmadynamic studies as well as other bioapplications. In this regard, appropriate and adequate precaution will be critical in preventing the fibers firstly from any possible external contamination and damage to maintain high analytical data integrity. In addition, improving the offline desorption of fibers specifically for in vivo SPME will not only help in improving data quality, but will also significantly decrease the overall analysis time. This article introduces a prototype multi-fiber handling device capable of simultaneous extraction/desorption of multiple solid phase microextraction (SPME) fibers on a 96-deep well plate format. This device thus provides an alternative approach to improving higher sample throughput for in vivo SPME liquid chromatography mass spectrometry applications. The portable design of the device ensures effective protection and prevention of fibers against damage and possible contamination and thus maintains analytical data reliability. To ensure its suitability for parallel extraction/desorption, the device was carefully evaluated using four benzodiazepines (diazepam, nordiazepam, oxazepam and lorazepam) as model drugs by monitoring inter- and intra-well variability. The effect of agitation speed on data precision and accuracy, effect of device weight on data precision, and comparison of the overall performance of the device with traditional manual desorption approach were also assessed. Results obtained from evaluation of the device with particular focus on the desorption process indicated that the weight of the device has no effect on the reliability and reproducibility of data acquired using the device. The average

  18. Monolithic molecular imprinted polymer fiber for recognition and solid phase microextraction of ephedrine and pseudoephedrine in biological samples prior to capillary electrophoresis analysis.

    PubMed

    Deng, Dong-Li; Zhang, Ji-You; Chen, Chen; Hou, Xiao-Ling; Su, Ying-Ying; Wu, Lan

    2012-01-06

    A novel capillary electrophoresis (CE) method coupled with monolithic molecular imprinted polymer (MIP) fiber based solid phase microextraction (SPME) was developed for selective and sensitive determination of ephedrine (E) and pseudoephedrine (PE). With in situ polymerization in a silica capillary mold and E as template, the MIP fibers could be produced in batch reproducibly and each fiber was available for 50 extraction cycles without significant decrease in extraction ability. Using the MIP fiber under optimized extraction conditions, CE detection limits of E and PE were greatly lowered from 0.20 to 0.00096 μg/mL and 0.12 to 0.0011 μg/mL, respectively. Analysis of urine and serum samples by the MIP-SPME-CE method was also performed, with results indicating that E and PE could be selectively extracted. The recoveries and relative standard deviations (RSDs) for sample analysis were found in the range of 91-104% and 3.8-9.1%, respectively.

  19. Preparation of durable graphene-bonded titanium fibers for efficient microextraction of phthalates from aqueous matrices and analysis with gas chromatography-mass spectrometry.

    PubMed

    Zhang, Bo-Tao; Li, Hai-Fang; Zheng, Xiaoxia; Teng, Yanguo; Liu, Yan; Lin, Jin-Ming

    2014-11-28

    A solid-phase microextraction fiber (SPME) was synthesized for pre-concentration of 15 phthalates from aqueous samples. Graphene oxide was immobilized on Ti wire with titanol groups using a cross-linking agent and subsequently reduced to yield a folded and wrinkled graphene coating. This graphene-Ti fiber demonstrated durable mechanical robustness and enhanced stability for more than 200 extraction cycles due to the Ti substrate and chemical bond. The extraction efficiencies reached highest when the graphene layers were four and their performances were superior to commercial SPME fibers. The prepared fiber was used for pre-concentration of phthalates from aqueous samples by direct immersion extraction and thermal desorption for gas chromatography-mass spectrometry analysis. The method was utilized for the simultaneous analysis of 15 phthalates with satisfactory recoveries in the range of 82.8-97.8% for bottled water and 73.3-102.0% for intravenous drips in plastic packaging. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples.

    PubMed

    Zhang, Suling; Du, Zhuo; Li, Gongke

    2013-10-15

    The hybrid material of a copper-based metal-organic framework (MOF-199) and graphite oxide (GO) was explored as the solid-phase microextraction (SPME) coating for the first time. This fiber was fabricated by using 3-amino-propyltriethoxysilane (APTES) as the cross-linking agent, which enhanced its durability and allowed more than 140 replicate extractions. With the incorporation of GO, the MOF-199/GO fibers with GO contents ranging from 5 to 15 wt% exhibited enhanced adsorption affinity to organochlorine pesticides (OCPs) compared to MOF or GO individually. This improvement was linked to the enhanced dispersive forces (increased volume of small pores) that provided by the dense carbon layers of GO. Combining the superior properties of high porosity of MOFs and the unique layered character of GO, the MOF-199/GO (10 wt%) fiber exhibited higher adsorption affinity to some OCPs than commercial polydimethylsiloxane (PDMS) and polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibers. This new fiber was developed for headspace (HS) SPME of eight OCPs followed by GC/ECD analysis. The limits of detection were 2.3-6.9 ng/L. The relative standard deviation (RSD) for five replicate extractions using one fiber ranged from 5.3% to 8.8%. The fiber-to-fiber reproducibility was 5.2-12.8%. This method was successfully used for simultaneous determination of eight OCPs from river water, soil, water convolvulus and longan with satisfactory recoveries of 90.6-104.4%, 82.7-96.8%, 72.2-107.7% and 82.8-94.3%, respectively. These results indicated the MOF-199/GO composite provided a promising alternative in sample pretreatment.

  1. A smooth particle-mesh Ewald algorithm for Stokes suspension simulations: The sedimentation of fibers

    NASA Astrophysics Data System (ADS)

    Saintillan, David; Darve, Eric; Shaqfeh, Eric S. G.

    2005-03-01

    Large-scale simulations of non-Brownian rigid fibers sedimenting under gravity at zero Reynolds number have been performed using a fast algorithm. The mathematical formulation follows the previous simulations by Butler and Shaqfeh ["Dynamic simulations of the inhomogeneous sedimentation of rigid fibres," J. Fluid Mech. 468, 205 (2002)]. The motion of the fibers is described using slender-body theory, and the line distribution of point forces along their lengths is approximated by a Legendre polynomial in which only the total force, torque, and particle stresslet are retained. Periodic boundary conditions are used to simulate an infinite suspension, and both far-field hydrodynamic interactions and short-range lubrication forces are considered in all simulations. The calculation of the hydrodynamic interactions, which is typically the bottleneck for large systems with periodic boundary conditions, is accelerated using a smooth particle-mesh Ewald (SPME) algorithm previously used in molecular dynamics simulations. In SPME the slowly decaying Green's function is split into two fast-converging sums: the first involves the distribution of point forces and accounts for the singular short-range part of the interactions, while the second is expressed in terms of the Fourier transform of the force distribution and accounts for the smooth and long-range part. Because of its smoothness, the second sum can be computed efficiently on an underlying grid using the fast Fourier transform algorithm, resulting in a significant speed-up of the calculations. Systems of up to 512 fibers were simulated on a single-processor workstation, providing a different insight into the formation, structure, and dynamics of the inhomogeneities that occur in sedimenting fiber suspensions.

  2. Analytical Determination of KDOC-Values of Polycyclic Musk Compounds with HS-SPME and GC/MS/MS

    NASA Astrophysics Data System (ADS)

    Böhm, L.; Düring, R.-A.

    2009-04-01

    Polycyclic musk compounds, used as fragrances in cosmetics and detergents, get into rivers via domestic wastewater and sewage treatment plants and with sewage sludge as fertilizer into soils. Because of their persistence and lipophilic character they accumulate in biota, so they are pollutants with environmental relevance. The coefficient KDOC is used to quantify the distribution of substances between aqueous phase and dissolved organic matter (DOM) which is quantified by the determination of dissolved organic carbon (DOC). DOM is of specific relevance for the transport and fate of persistent and lipophilic compounds in the environment. The affinity to DOM increases, the more lipophilic a substance is. So the environmental mobility is enhanced with increasing binding on DOM. For that reason, measured KDOC-values are important to predict the fate and behaviour of chemicals in the environment and should be used for environmental fate modelling purposes. LITZ ET AL. (2007) state that, to carry out a risk-assessment for polycyclic musk compounds, further research on their sorption-behaviour is necessary. For the determination of KDOC-values, different concentrations of humic acid were spiked with a multi-component stock solution. The samples were analysed with headspace solid-phase microextraction in combination with gas chromatography coupled with mass spectrometry (HS-SPME GC/MS/MS). The KDOC-values were calculated according to YABUTA ET AL. (2004). The method was validated with single substance stock solutions and with polycyclic aromatic hydrocarbons (PAHs). The results show that the method is applicable, repeatable and suitable to get KDOC-values for many substances very fast, cheap and solvent-free. With our results KDOC-values for polycyclic musk compounds were determined for the first time. Literature LITZ, N. TH., MüLLER, J. AND BöHMER, W. (2007): Occurrence of Polycyclic Musks in Sewage Sludge and their Behaviour in Soils and Plants. Part 2: Investigation

  3. Polyimide Fibers

    NASA Technical Reports Server (NTRS)

    St.Clair, Terry L. (Inventor); Fay, Catharine C. (Inventor); Working, Dennis C. (Inventor)

    1997-01-01

    A polyimide fiber having textile physical property characteristics and the process of melt extruding same from a polyimide powder. Polyimide powder formed as the reaction product of the monomers 3.4'-ODA and ODPA, and endcapped with phthalic anhydride to control the molecular weight thereof, is melt extruded in the temperature range of 340? C. to 360? C. and at heights of 100.5 inches, 209 inches and 364.5 inches. The fibers obtained have a diameter in the range of 0.0068 inch to 0.0147 inch; a mean tensile strength in the range of 15.6 to 23.1 ksi; a mean modulus of 406 to 465 ksi; and a mean elongation in the range of 14 to 103%.

  4. Polyimide Fibers

    NASA Technical Reports Server (NTRS)

    St.Clair, Terry L. (Inventor); Fay, Catharine C. (Inventor); Working, Dennis C. (Inventor)

    1998-01-01

    A polyimide fiber having textile physical property characteristics and the process of melt extruding same from a polyimide powder. Polyimide powder formed as the reaction product of the monomers 3.4'-ODA and ODPA, and end- capped with phthalic anhydride to control the molecular weight thereof, is melt extruded in the temperature range of 340 C. to 360 C. and at heights of 100.5 inches. 209 inches and 364.5 inches. The fibers obtained have a diameter in the range of 0.0068 inch to 0.0147 inch; a mean tensile strength in the range of 15.6 to 23.1 ksi; a mean modulus of 406 to 465 ksi, and a mean elongation in the range of 14 to 103%.

  5. Development of an SPME-GC-MS method for the specific quantification of dimethylamine and trimethylamine: use of a new ratio for the freshness monitoring of cod fillets.

    PubMed

    Dehaut, Alexandre; Duthen, Simon; Grard, Thierry; Krzewinski, Frédéric; N'Guessan, Assi; Brisabois, Anne; Duflos, Guillaume

    2016-08-01

    Fish is a highly perishable food, so it is important to be able to estimate its freshness to ensure optimum quality for consumers. The present study describes the development of an SPME-GC-MS technique capable of quantifying both trimethylamine (TMA) and dimethylamine (DMA), components of what has been defined as partial volatile basic nitrogen (PVB-N). This method was used, together with other reference methods, to monitor the storage of cod fillets (Gadus morhua) conserved under melting ice. Careful optimisation enabled definition of the best parameters for extracting and separating targeted amines and an internal standard. The study of cod spoilage by sensory analysis and TVB-N assay led to the conclusion that the shelf-life of cod fillet was between 6 and 7 days. Throughout the study, TMA and DMA were specifically quantified by SPME-GC-MS; the first was found to be highly correlated with the values returned by steam distillation assays. Neither TMA-N nor DMA-N were able to successfully characterise the decrease in early freshness, unlike dimethylamine/trimethylamine ratio (DTR), whose evolution is closely related to the results of sensory analysis until the stage where fillets need to be rejected. DTR was proposed as a reliable indicator for the early decrease of freshness until fish rejection. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  6. The dynamics of the HS/SPME-GC/MS as a tool to assess the spoilage of minced beef stored under different packaging and temperature conditions.

    PubMed

    Argyri, Anthoula A; Mallouchos, Athanasios; Panagou, Efstathios Z; Nychas, George-John E

    2015-01-16

    The aim of the current study was to assess meat spoilage through the evolution of volatile compounds using chemometrics. Microbiological and sensory assessment, pH measurement and headspace solid phase microextraction gas chromatography/mass spectroscopy (headspace SPME-GC/MS) analysis were carried out in minced beef stored aerobically and under modified atmosphere packaging (MAP) at 0, 5, 10, and 15 °C. It was shown that the HS/SPME-GC/MS analysis provided useful information about a great number of volatile metabolic compounds detected during meat storage. Many of the identified and semi-quantified compounds were correlated with the sensory scores through the use of chemometrics, depicting possible spoilage indicators such as 2-pentanone, 2-nonanone, 2-methyl-1-butanol, 3-methyl-1-butanol, ethyl hexanoate, ethyl propanoate, ethyl lactate, ethyl acetate, ethanol, 2-heptanone, 3-octanone, diacetyl, and acetoin. Finally, the applied GC/MS global models were able to estimate the microbial counts of the different microorganisms and the sensory scores of a meat sample regardless of storage conditions (i.e. packaging and temperature).

  7. Automated SPME-GC-MS monitoring of headspace metabolomic responses of E. coli to biologically active components extracted by the coating.

    PubMed

    Hossain, S M Zakir; Bojko, Barbara; Pawliszyn, Janusz

    2013-05-07

    Monitoring extracellular metabolites of bacteria is very useful for not only metabolomics research but also for assessment of the effects of various chemicals, including antimicrobial agents and drugs. Herein, we describe the automated headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography-mass spectrometry (GC-MS) for the qualitative as well as semi-quantitative determination of metabolic responses of Escherichia coli to an antimicrobial agent, cinnamaldehyde. The minimum inhibitory concentration of cinnamaldehyde was calculated to be 2 g L(-1). We found that cinnamaldehyde was an important factor influencing the metabolic profile and growth process. A higher number of metabolites were observed during the mid-logarithmic growth phase. The metabolite variations (types and concentrations) induced by cinnamaldehyde were dependent on both cell density and the dose of cinnamaldehyde. Simultaneously, 25 different metabolites were separated and detected (e.g., indole, alkane, alcohol, organic acids, esters, etc.) in headspace of complex biological samples due to intermittent addition of high dose of cinnamaldehyde. The study was done using an automated system, thereby minimizing manual workup and indicating the potential of the method for high-throughput analysis. These findings enhanced the understanding of the metabolic responses of E. coli to cinnamaldehyde shock effect and demonstrated the effectiveness of the SPME-GC-MS based metabolomics approach to study such a complex biological system. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Investigation of volatiles evolution during the alcoholic fermentation of grape must using free and immobilized cells with the help of solid phase microextraction (SPME) headspace sampling.

    PubMed

    Mallouchos, Athanasios; Komaitis, Michael; Koutinas, Athanasios; Kanellaki, Maria

    2002-06-19

    A biocatalyst was prepared by immobilization of Saccharomyces cerevisiae strain AXAZ-1 on delignified cellulosic material (DCM). Repeated batch fermentations were conducted using these biocatalysts and free cells, separately, at temperatures of 20, 15, and 10 degrees C. Solid phase microextraction (SPME) was used in monitoring the formation of volatile alcohols, acetate esters, and ethyl esters of fatty acids. The kinetics of volatile production were similar for free and immobilized cells. In all cases immobilized cells showed a better rate of volatile production, which was directly connected to sugar consumption. The main difference observed was in propanol production, which increased with temperature decrease for the immobilized cells, whereas it remained constant for the free ones. In the case of immobilized cells significant amounts of esters were also produced. It is well-known that esters contribute to the fruity aroma of wine. It was also established that SPME is a very sensitive, accurate, and reliable technique and can be used without any reservation in the characterization of volatile constituents of wine.

  9. Monitoring of persistent organic pollutants in seawater of the Pearl River Estuary with rapid on-site active SPME sampling technique.

    PubMed

    Huang, Siming; He, Shuming; Xu, Hao; Wu, Peiyan; Jiang, Ruifen; Zhu, Fang; Luan, Tiangang; Ouyang, Gangfeng

    2015-05-01

    An on-site active solid-phase microextraction (SPME) sampling technique coupled with gas chromatography-mass spectrometry (GC-MS) for sampling and monitoring 16 polycyclic aromatic hydrocarbons (PAHs) and 8 organochlorine pesticides (OCPs) in seawater was developed. Laboratory experiments demonstrated that the sampling-rate calibration method was practical and could be used for the quantification of on-site sampling. The proposed method was employed for field tests which covered large amounts of water samples in the Pearl River Estuary in rainy and dry seasons. The on-site SPME sampling method can avoid the contamination of sample, the losses of analytes during sample transportation, as well as the usage of solvent and time-consuming sample preparation process. Results indicated that the technique with the designed device can address the requirement of modern environment water analysis. In addition, the sources, bioaccumulation and potential risk to human of the PAHs and OCPs in seawater of the Pearl River Estuary were discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Re-exploring the high-throughput potential of microextraction techniques, SPME and MEPS, as powerful strategies for medical diagnostic purposes. Innovative approaches, recent applications and future trends.

    PubMed

    Pereira, Jorge; Silva, Catarina Luís; Perestrelo, Rosa; Gonçalves, João; Alves, Vera; Câmara, José S

    2014-03-01

    The human population continues to grow exponentially in the fast developing and most populated countries, whereas in Western Europe it is getting older and older each year. This inevitably raises the demand for better and more efficient medical services without increasing the economic burden in the same proportion. To meet these requirements, improvement of medical diagnosis is certainly a key aspect to consider. Therefore, we need powerful analytical methodologies able to go deeper and further in the characterization of human metabolism and identification of disease biomarkers and endogenous molecules in body fluids and tissues. The ultimate goal is to have a reliable and early medical diagnosis, mitigating the disease complications as much as possible. Microextraction techniques (METs) represent a key step in these analytical methodologies by providing samples in the suitable volumes and purification levels necessary for the characterization of the target analytes. In this aspect, solid-phase microextraction (SPME) and, more recently, microextraction by packed sorbent (MEPS), are powerful sample preparation techniques, characterized by their reduced time of analysis, low solvent consumption, and broad application. Moreover, as miniaturized techniques, they can be easily automatized to have a high-throughput performance in the clinical environment. In this review, we explore some of the most interesting MEPS and SPME applications, focusing on recent trends and applications to medical diagnostic, particularly the in vivo and near real time applications.

  11. Comparison of HS-SDME with SPME and SPE for the determination of eight organochlorine and organophosphorus pesticide residues in food matrices.

    PubMed

    Kin, Chai Mee; Huat, Tan Guan

    2009-09-01

    A headspace single-drop microextraction (HS-SDME) procedure is optimized for the analysis of organochlorine and organophosphorous pesticide residues in food matrices, namely cucumbers and strawberries by gas chromatography with an electron capture detector. The parameters affecting the HS-SDME performance, such as selection of the extraction solvent, solvent drop volume, extraction time, temperature, stirring rate, and ionic strength, were studied and optimized. Extraction was achieved by exposing 1.5 microL toluene drop to the headspace of a 5 mL aqueous solution in a 15-mL vial and stirred at 800 rpm. The analytical parameters, such as linearity, correlation coefficients, precision, limits of detection (LOD), limits of quantification (LOQ), and recovery, were compared with those obtained from headspace solid-phase microextraction (HS-SPME) and solid-phase extraction. The mean recoveries for all three methods were all above 70% and below 104%. HS-SPME was the best method with the lowest LOD and LOQ values. Overall, the proposed HS-SDME method is acceptable in the analysis of pesticide residues in food matrices.

  12. Gas chromatographic-mass spectrometric analysis of urinary volatile organic metabolites: Optimization of the HS-SPME procedure and sample storage conditions.

    PubMed

    Živković Semren, Tanja; Brčić Karačonji, Irena; Safner, Toni; Brajenović, Nataša; Tariba Lovaković, Blanka; Pizent, Alica

    2018-01-01

    Non-targeted metabolomics research of human volatile urinary metabolome can be used to identify potential biomarkers associated with the changes in metabolism related to various health disorders. To ensure reliable analysis of urinary volatile organic metabolites (VOMs) by gas chromatography-mass spectrometry (GC-MS), parameters affecting the headspace-solid phase microextraction (HS-SPME) procedure have been evaluated and optimized. The influence of incubation and extraction temperatures and times, coating fibre material and salt addition on SPME efficiency was investigated by multivariate optimization methods using reduced factorial and Doehlert matrix designs. The results showed optimum values for temperature to be 60°C, extraction time 50min, and incubation time 35min. The proposed conditions were applied to investigate urine samples' stability regarding different storage conditions and freeze-thaw processes. The sum of peak areas of urine samples stored at 4°C, -20°C, and -80°C up to six months showed a time dependent decrease over time although storage at -80°C resulted in a slight non-significant reduction comparing to the fresh sample. However, due to the volatile nature of the analysed compounds, more than two cycles of freezing/thawing of the sample stored for six months at -80°C should be avoided whenever possible. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Screening of volatile compounds in honey using a new sampling strategy combining multiple extraction temperatures in a single assay by HS-SPME-GC-MS.

    PubMed

    Bianchin, Joyce Nunes; Nardini, Giuliana; Merib, Josias; Dias, Adriana Neves; Martendal, Edmar; Carasek, Eduardo

    2014-02-15

    This paper proposes a new optimization strategy for the extraction of volatile compounds from honey samples using headspace solid-phase microextraction (HS-SPME) and separation/detection by gas chromatography-mass spectrometry (GC-MS). The new optimization strategy was based on the use of three different extraction temperatures in a single assay, aiming at extracting a high number of compounds with wide range of volatilities. As an analytical tool, experimental designs were used for the optimization. The variables extraction time (10-80 min), extraction temperature (0-60 °C), water volume (0.5-5 mL) and percentage of sodium chloride saturation in water (0-100%) were optimised using a five-level fractional central composite design with CAR/DVB/PDMS fibre. The final optimised combination of extraction times at each temperature was 60 min with the sample temperature being held at 60 °C for 36 min, 40 °C for 18 min and 0 °C for 6 min. The proposed method was compared to conventional methods which employ one or two extraction temperatures. It was found that the proposed method presented better results considering the response in terms of the arithmetic means of the peak areas. The use of multiple extraction temperatures for the HS-SPME procedure proved to be an excellent alternative for the screening of compounds present in honey with a wide range of volatilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short-range penetration correction up to quadrupoles

    PubMed Central

    Narth, Christophe; Lagardère, Louis; Polack, Étienne; Gresh, Nohad; Wang, Qiantao; Bell, David R.; Rackers, Joshua A.; Ponder, Jay W.; Ren, Pengyu Y.; Piquemal, Jean-Philip

    2015-01-01

    We propose a general coupling of the Smooth Particle Mesh Ewald (spme) approach for distributed multipoles to a short-range charge penetration correction modifying the charge-charge, charge-dipole and charge-quadrupole energies. Such an approach significantly improves electrostatics when compared to ab initio values and has been calibrated on Symmetry-Adapted Perturbation Theory (sapt) reference data. Various neutral molecular dimers have been tested as results on charged systems (metal cation complexes) are provided. Transferability of the correction is adressed in the context of the implementation of the amoeba and sibfa polarizable force fields in the Tinker-hp software. As the choices of the multipolar distribution are discussed, conclusions are drawn for the future penetration-corrected polarizable force fields highlighting the mandatory need of non-spurious procedures for the obtention of well balanced and physically meaningful distributed moments. Finally scalability and parallelism of the short-range corrected spme approach are addressed, demonstrating that the damping function is computationally affordable and accurate for molecular dynamics simulations of complexe bio- or bioinorganic systems in periodic boundary conditions. PMID:26814845

  15. Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short-range penetration correction up to quadrupoles.

    PubMed

    Narth, Christophe; Lagardère, Louis; Polack, Étienne; Gresh, Nohad; Wang, Qiantao; Bell, David R; Rackers, Joshua A; Ponder, Jay W; Ren, Pengyu Y; Piquemal, Jean-Philip

    2016-02-15

    We propose a general coupling of the Smooth Particle Mesh Ewald SPME approach for distributed multipoles to a short-range charge penetration correction modifying the charge-charge, charge-dipole and charge-quadrupole energies. Such an approach significantly improves electrostatics when compared to ab initio values and has been calibrated on Symmetry-Adapted Perturbation Theory reference data. Various neutral molecular dimers have been tested and results on the complexes of mono- and divalent cations with a water ligand are also provided. Transferability of the correction is adressed in the context of the implementation of the AMOEBA and SIBFA polarizable force fields in the TINKER-HP software. As the choices of the multipolar distribution are discussed, conclusions are drawn for the future penetration-corrected polarizable force fields highlighting the mandatory need of non-spurious procedures for the obtention of well balanced and physically meaningful distributed moments. Finally, scalability and parallelism of the short-range corrected SPME approach are addressed, demonstrating that the damping function is computationally affordable and accurate for molecular dynamics simulations of complex bio- or bioinorganic systems in periodic boundary conditions. Copyright © 2016 Wiley Periodicals, Inc.

  16. Enantiomeric and non-enantiomeric monoterpenes of Juniperus communis L. and Juniperus oxycedrus needles and berries determined by HS-SPME and enantioselective GC/MS.

    PubMed

    Foudil-Cherif, Yazid; Yassaa, Noureddine

    2012-12-01

    For the first time, enantiomeric and non-enantiomeric distribution of monoterpenes in the headspace of Juniperus communis L. and Juniperus oxycedrus needles and berries has been determined using HS-SPME combined with enantioselective GC/MS. The essential oils from needles and berries of both Juniperus species obtained by hydrodistillation were also performed. HS-SPME has shown good potential to reproduce the same results as the commonly used hydrodistillation extraction technique. While needles and berries of J. communis showed high contents of sabinene, α-pinene and β-myrcene with 19-30%, 12-24% and 9-20%, respectively, J. oxycedrus was strongly dominated by α-pinene with 85-92% in both needles and berries. Large variations in chiral distribution of monoterpenes within the same plant species and between the two junipers were observed. Interestingly, similar enantiomeric preferences of monoterpenes were obtained between needles and berries of the two junipers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Simultaneous detection of seventeen drugs of abuse and metabolites in hair using solid phase micro extraction (SPME) with GC/MS.

    PubMed

    Aleksa, Katarina; Walasek, Paula; Fulga, Netta; Kapur, Bhushan; Gareri, Joey; Koren, Gideon

    2012-05-10

    The analysis of pediatric and adult hair is a useful non-invasive biomarker to effectively detect long term exposure to various xenobiotics, specifically drugs of abuse such as cocaine, opiates and amphetamines. Very often individuals are using, or are exposed to multiple drugs simultaneously and therefore it is important to be able to detect them in the same analysis. We have developed a sensitive and specific solid phase micro extraction (SPME) coupled with gas chromatography mass spectrometry (GC/MS) to detect 17 different analytes in hair using a single extraction method. Five milligrams of hair is extracted overnight, subjected to solid phase extraction (SPE) and then to SPME-GC/MS. The aimed analytes include amphetamine, methamphetamine, MDA, MDMA, cocaine, benzoylecognine, norcocaine, cocaethylene, methadone, codeine, morphine, 6-AM, oxycodone, oxymorphone, hydrocodone, hydromorphone and meperidone. The following are the LOD of the various drugs: 0.2ng/mg hair for amphetamine, methamphetamine, MDA, MDMA, morphine, codeine, 6-AM, oxycodone, oxymorphone, hydromorphone, hydrocodone, meperidine and 0.13ng/mg hair for cocaine, benzoylecognine, cocaethylene, norcocaine and methadone. This GC/MS method is sensitive and specific to detect the presence of these 17 analytes in as little as 5mg of hair and is especially useful for newborn and child hair analysis where the amount of hair is often very limited. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Determination of furfural and hydroxymethylfurfural from baby formula using headspace solid phase microextraction based on nanostructured polypyrrole fiber coupled with ion mobility spectrometry.

    PubMed

    Kamalabadi, Mahdie; Ghaemi, Elham; Mohammadi, Abdorreza; Alizadeh, Naader

    2015-08-15

    Furfural (Fu) and hydroxymethylfurfural (HMFu) are extracted using a dodecylbenzenesulfonate-doped polypyrrole coating as a fiber for headspace solid phase microextraction (HS-SPME) method in baby formula samples and detected using ion mobility spectrometry (IMS). Sample pH, salt effect, extraction time and temperature were investigated and optimized as effective parameters in HS-SPME. The calibration curves were linear in the range of 20-300 ng g(-1) (R(2)>0.99). Limits of detection for Fu and HMFu were 6 ng g(-1) and 5 ng g(-1), respectively. The RSD% of Fu and HMFu for five analyses was 4.4 and 4.9, respectively. The proposed method was successfully applied to determine of Fu and HMFu in the different baby formula samples with satisfactory result. The results were in agreement with those obtained using HPLC analysis. The HS-SPME-IMS is precise, selective and sensitive analytical method for determination of Fu and HMFu in baby formula samples, without any derivatization process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Sensitive Monitoring of Fluoroquinolones in Milk and Honey Using Multiple Monolithic Fiber Solid-Phase Microextraction Coupled to Liquid Chromatography Tandem Mass Spectrometry.

    PubMed

    Chen, Lei; Huang, Xiaojia

    2016-11-16

    In the present study, a new multiple monolithic fiber solid-phase microextraction (MMF-SPME) based on poly(apronal-co-divinylbenzene/ethylenedimethacrylate) monolith (APDE) was synthesized. The effect of the preparation parameters of APED on extraction efficiency was studied thoroughly. The combination of APDE/MMF-SPME with high-performance liquid chromatography tandem mass spectrometry detection (HPLC/MS-MS) was developed for sensitive monitoring of ultratrace fluoroquinolones (FQs) in foodstuffs, including milk and honey samples. Under the optimized experimental conditions, the limits of detection (S/N = 3) for the targeted FQs ranged from 0.0019 to 0.018 μg/kg in milk and 0.0010 to 0.0028 μg/kg in honey. The relative standard deviations (RSDs) for method reproducibility were less than 9% in all samples. The established method was successfully applied for the monitoring of FQs residues in milk and honey samples with the recoveries between 74.5% and 116% (RSDs were in the range 0.9-9.5%). In comparison to previous methods, the developed APDE/MMF-SPME-HPLC/MS-MS showed some merits, including satisfactory sensitivity, simplicity, high cost-effectiveness, and low consumption of organic solvent.

  20. Preparation, characterization, and applications of a novel solid-phase microextraction fiber by sol-gel technology on the surface of stainless steel wire for determination of poly cyclic aromatic hydrocarbons in aquatic environmental samples.

    PubMed

    Es-haghi, Ali; Hosseininasab, Valiallah; Bagheri, Habib

    2014-02-27

    A novel solid-phase microextraction(SPME) fiber was prepared using sol-gel technology with ethoxylated nonylphenol as a fiber coating material. The fiber was employed to develop a headspace SPME-GC-MS method suitable for quantification of 13 polycyclic aromatic hydrocarbons (PAHs) in water samples. Surface characteristics of the fibers were inspected by energy dispersive X-ray (EDX) spectroscopy as well as by scanning electron microscopy (SEM). The SEM measurements showed the presence of highly porous nano-sized particles in the coating. Important parameters affecting the extraction efficiency such as extraction temperature and time, desorption conditions as well as ionic strength have been evaluated and optimized. In the next step, the validation of the new method have been performed, finding it to be specific in the trace analysis of PAHs, with the limit of detection (LOD) ranging from 0.01 to 0.5 μg L(-1) and the linear range from the respective LOD to 200 μg L(-1) with RSD amounting to less than 8%. The thermal stability of the fibers was investigated as well and they were found to be durable at 280°C for 345 min. Furthermore, the proposed method was successfully applied for quantification of PAHs in real water samples.

  1. Fabrication of a polymeric ionic liquid-based adsorbent for multiple monolithic fiber solid-phase microextraction of endocrine disrupting chemicals in complicated samples.

    PubMed

    Pei, Miao; Zhang, Zirui; Huang, Xiaojia; Wu, Yuanfei

    2017-04-01

    A multiple monolithic fiber solid-phase microextraction (MMF-SPME) utilizing polymeric ionic liquid-based adsorbent was prepared. The adsorbent was obtained by in situ copolymerization of an ionic liquid, 1-trimethyl-(4-vinylbenzyl) aminium chloride and dual cross-linkers (divinylbenzene and ethylenedimethacrylate). The effect of preparation conditions including the content of ionic liquid and porogen in the polymerization mixture on extraction performance was studied in detail. Infrared spectroscopy, elemental analysis, scanning electron microscopy and mercury intrusion porosimetry were used to inspect the physicochemical properties of the new adsorbent. The applicability of the new MMF-SPME was demonstrated by the extraction of trace endocrine disrupting chemicals (EDCs). Results indicated that the prepared MMF-SPME could extract EDCs effectively through multi-interactions such as ion-exchange, π-π and hydrophobic interactions. After optimization of extraction parameters, a method of MMF-SPME coupled to high performance liquid chromatography/diode array detection was conducted to detect trace EDCs in complicated samples including environmental water and human urine. The limits of detection (S/N=3) and quantification (S/N=10) for targeted compounds were 0.011-0.065μg/L and 0.036-0.21μg/L, respectively. Satisfactory precision was also achieved by evaluating the repeatability and intermediate precision with relative standard deviations (RSDs) of less than 9% and 10%, respectively. At the same time, the proposed method was successfully applied for the determination of EDCs in water and human urine with spiking recoveries ranged from 70.6% to 119%.

  2. Novel molecularly-imprinted solid-phase microextraction fiber coupled with gas chromatography for analysis of furan.

    PubMed

    Hashemi-Moghaddam, Hamid; Ahmadifard, Mojtaba

    2016-04-01

    This study combined a molecularly-imprinted polymer with headspace solid-phase microextraction (HS-SPME). Preparation of molecularly-imprinted polymer is not effective for volatile compounds. To overcome this limitation, pyrrole was chosen as a template for the preparation of the furan-imprinted polymer. The holes in the synthesized polymer were suitable for furan adsorption because the chemical structure of pyrrole is similar to that of furan. The extraction properties of the fiber to furan were examined using an HS-SPME device coupled with gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The effects of the extraction parameters of exposure time, sampling temperature, and salt concentration on extraction efficiency were studied. Satisfactory reproducibility was obtained for extractions from spiked water samples at RSD<7.5% (n=5). The calibration graphs were linear at 0.5-100 ng ml(-1) and the detection limit for furan was 0.042 ng ml(-1). The fabricated fiber was successfully applied for headspace extraction of furan from tap water and canned tuna as shown by GC-MS analysis. Copyright © 2015. Published by Elsevier B.V.

  3. Anodized aluminum wire as a solid-phase microextraction fiber for rapid determination of volatile constituents in medicinal plant.

    PubMed

    Gholivand, Mohammad Bagher; Piryaei, Marzieh; Abolghasemi, Mir Mahdi

    2011-09-02

    Headspace solid phase microextraction using anodized aluminum fiber in combination with capillary GC-MS was utilized as monitoring technique for the collection and detection of the volatile compounds of Echinophora platyloba DC. Experimental parameters, including the sample weight, extraction temperature, extraction time and humidity effect, desorption time and desorption temperature were examined and optimized. Using HS-SPME followed by GC-MS, 53 compounds were separated and identified in E. platyloba DC, which mainly included E-β ocimene (47.63%), R-D-decalactone (13.28%), α-pinene (7.43%) and nonane (6.71%). Compared with hydrodistillation (HD), HS-SPME, provides the advantages of a small amount of sample, timesaving, simplicity and cheapness. To the best of our knowledge, this is the first report on using anodized aluminum fiber in solid-phase microextraction coupled to headspace for the investigation of volatile fraction of medicinal plant. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Assessment of solid phase microfiber extraction fibers for the monitoring of volatile organoarsinicals emitted from a plant-soil system.

    PubMed

    Ruppert, L; Lin, Z-Q; Dixon, R P; Johnson, K A

    2013-11-15

    Phytoremediation, the use of plants and microbes to clean up inorganic and organic pollutants, has shown great promise as an inexpensive and feasible form of remediation. More recently, studies have shown that some plants have an amazing capacity to volatilize contaminants and can be an effective remediation strategy if the chemicals released are non-toxic. Arsenic contamination and remediation has drawn great attention in the scientific community. However, its toxicity also varies depending on its form. We evaluated, optimized, and then utilized a solid phase microfiber extraction (SPME) head space sampling technique to characterize the organoarsinical emissions from rabbitfoot grass (Polypogon monspeliensis) in arsenic treated soils to determine if the potentially more toxic organic forms of arsenic (AsH3, AsH2CH3, AsH(CH3)2, and As(CH3)3) were being emitted from the plant-soil system. The SPME fiber that proved best fitted for this application was the DVB/CAR/PDMS fiber with a 45 min sampling period. We did detect and confirm the emissions of dimethylchloroarsine (AsCl(CH3)2) and pentamethylarsine (As(CH3)5). However, it was determined that the more toxic organic forms of arsenic were not released during phytovolatilization.

  5. Composite Fiber Hazards

    DTIC Science & Technology

    1990-12-01

    During grinding on carbon fiber composites , most of the fibers fragment into a nonfibrous dust. Of those particles retaining a fibrous shape...quantity and type of airborne carbon fibers generated from the burning of carbon fiber composites in an airplane crash. In a simulated aircraft fire...It was estimated that following an aiicraft crasl in which carbon fiber composites burned, there would be a release of 5 x 10 fibers ( ɛ om diameter

  6. Rapid determination of 54 pharmaceutical and personal care products in fish samples using microwave-assisted extraction-Hollow fiber-Liquid/solid phase microextraction.

    PubMed

    Zhang, Yi; Guo, Wen; Yue, Zhenfeng; Lin, Li; Zhao, Fengjuan; Chen, Peijin; Wu, Weidong; Zhu, Hong; Yang, Bo; Kuang, Yanyun; Wang, Jiong

    2017-04-15

    In this paper, a simple, rapid, solvent-less and environmental friendliness microextraction method, microwave-assisted extraction-hollow fiber-liquid/solid phase microextraction (MAE-HF-L/SME), was developed for simultaneous extraction and enrichment of 54 trace hydrophilic/lipophilic pharmaceutical and personal care products (PPCPs) from fish samples. A solid-phase extraction material, solid-phase microextraction (SPME) fiber, was synthesized. The SPME fiber had a homogeneous, loose structure and good mechanical properties, and they exhibited a good adsorption capacity for most PPCPs selected. The material formed the basis for the method of MAE-HF-L/SME. A method of liquid chromatography-high resolution mass spectroscopy (LC-HRMS) for analysis of 54 PPCPs. Under optimal synthesis and extraction conditions, the limits of detection (LODs, n=3) and the limits of quantitation (LOQs, n=10) for the 54 PPCPs were between 0.01-0.50μg·kg(-1) and 0.052.00μg·kg(-1), respectively. Percent recoveries and the relative standard deviations (RSDs) in spiked fish samples (n=6) were between 56.3%-119.9% and 0.3%-17.1%, respectively. The microextraction process of 54 PPCPs in MAE-HF-L/SME took approximately 12min. The method has a low matrix interference and high enrichment factor and may be applicable for determination of 54 different PPCPs in fish samples.

  7. Hollow fiber liquid-liquid-liquid microextraction followed by solid-phase microextraction and in situ derivatization for the determination of chlorophenols by gas chromatography-electron capture detection.

    PubMed

    Saraji, Mohammad; Ghani, Milad

    2015-10-30

    A method based on the combination of hollow fiber liquid-liquid-liquid microextraction and solid-phase microextraction (SPME) followed by gas chromatography-electron capture detection was developed for the determination of chlorophenols in water and wastewater samples. Silica microstructures fabricated on the surface of a stainless steel wire were coated by an organic solvent and used as a SPME fiber. The analytes were extracted through a hollow fiber membrane containing n-decane from sample solution to an alkaline aqueous acceptor phase. They were then extracted and in situ derivatized on the SPME fiber using acetic anhydride. Experimental parameters such as the type of extraction solvent, acceptor phase NaOH concentration, donor phase HCl concentration, the amount of derivatizing reagent, salt concentration, stirring rate and extraction time were investigated and optimized. The precision of the method for the analytes at 0.02-30μgL(-1) concentration level ranged from 7.1 to 10.2% (as intra-day relative standard deviation) and 6.4 to 9.8% (as inter-day relative standard deviation). The linear dynamic ranges were in the interval of 5-500μgL(-1), 0.05-5μgL(-1), 0.02-1μgL(-1) and 0.001-0.5μgL(-1) for 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol, respectively. The enrichment factors were between 432 and 785. The limits of detection were in the range of 0.0004-1.2μgL(-1). Tap water, well water and wastewater samples were also analyzed to evaluate the method capability for real sample analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Determination of phthalate esters in drinking water and edible vegetable oil samples by headspace solid phase microextraction using graphene/polyvinylchloride nanocomposite coated fiber coupled to gas chromatography-flame ionization detector.

    PubMed

    Amanzadeh, Hatam; Yamini, Yadollah; Moradi, Morteza; Asl, Yousef Abdossalmi

    2016-09-23

    In the current study, a graphene/polyvinylchloride nanocomposite was successfully coated on a stainless steel substrate by a simple dip coating process and used as a novel headspace solid phase microextraction (HS-SPME) fiber for the extraction of phthalate esters (PEs) from drinking water and edible vegetable oil samples. The prepared SPME fibers exhibited high extractability for PEs (due to the dominant role of π-π stacking interactions and hydrophobic effects) yielding good sensitivity and precision when followed by a gas chromatograph with a flame ionization detector (GC-FID). The optimization strategy of the extraction process was carried out using the response surface method based on a central composite design. The developed method gave a low limit of detection (0.06-0.08μgL(-1)) and good linearity (0.2-100μgL(-1)) for the determination of the PEs under the optimized conditions (extraction temperature, 70±1°C; extraction time, 35min; salt concentration, 30% w/v; stirring rate, 900rpm; desorption temperature, 230°C; and desorption time, 4min) whereas the repeatability and fiber-to-fiber reproducibility were in the range 6.1-7.8% and 8.9-10.2%, respectively. Finally, the proposed method was successfully applied to the analysis of PEs in drinking water and edible oil samples with good recoveries (87-112%) and satisfactory precisions (RSDs<8.3%), indicating the absence of matrix effects in the proposed HS-SPME method.

  9. Characterisation of volatile profiles in 50 native Peruvian chili pepper using solid phase microextraction-gas chromatography mass spectrometry (SPME-GCMS).

    PubMed

    Patel, Kirti; Ruiz, Candy; Calderon, Rosa; Marcelo, Mavel; Rojas, Rosario

    2016-11-01

    The volatiles were characterised by headspace solid phase micro extraction (HS-SPME), gas chromatography mass spectrometry (GC-FID/MS). A total of 127 compounds were identified with terpenes (including mono terpenes and sesquiterpenes - a total of 45 compounds), esters (31 compounds) and hydrocarbons (20 compounds) were the predominant volatile compounds. Principal component analysis (PCA) of the volatile compounds yielded 2 significant PC's, which together accounted for 90.3% of the total variance in the data set and the scatter plot generated between PC1 and PC2 successfully segregated the 50 chili pepper samples into 7 groups. Clusters of hydrocarbons, esters, terpenes, aldehyde and ketones formed the major determinants of the difference. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Odor Profile of Different Varieties of Extra-Virgin Olive Oil During Deep Frying Using an Electronic Nose and SPME-GC-FID

    NASA Astrophysics Data System (ADS)

    Messina, Valeria; Biolatto, Andrea; Sancho, Ana; Descalzo, Adriana; Grigioni, Gabriela; de Reca, Noemí Walsöe

    2011-09-01

    The aim of the performed work was to evaluate with an electronic nose changes in odor profile of Arauco and Arbequina varieties of extra-virgin olive oil during deep-frying. Changes in odor were analyzed using an electronic nose composed of 16 sensors. Volatile compounds were analyzed by SPME-GC-FID. Principal Component Analysis was applied for electronic results. Arauco variety showed the highest response for sensors. Statistical analysis for volatile compounds indicated a significant (P<0.001) interaction between variety and time of frying processes. Arauco variety showed the highest production of volatile compounds at 60 min of deep frying. The two varieties presented distinct patterns of volatile products, being clearly identified with the electronic nose.

  11. Discrimination of oolong tea (Camellia sinensis) varieties based on feature extraction and selection from aromatic profiles analysed by HS-SPME/GC-MS.

    PubMed

    Lin, Jie; Zhang, Pan; Pan, Zhiqiang; Xu, Hairong; Luo, Yaoping; Wang, Xiaochang

    2013-11-01

    This study aimed to develop an objective and accurate analytical method to discriminate oolong tea varieties that easily causing adulteration by potential volatile compounds. A total of 75 oolong tea samples of five similar varieties (Tieguanyin, Benshan, Maoxie, Huangjingui and Jinguanyin) were analysed by headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). The relative content of 26 major volatile compounds varied significantly according to variety, combined with the results of hierarchical cluster analysis (HCA), indicating that the varietal differences of aromatic profile remain significant for tea cultivars with very close origin. Principal component analysis (PCA) of the aromatic profiles showed that the feature of variety dominated over the other features (like producing region and quality). By stepwise linear discriminant analysis (S-LDA), 18 volatiles with the best discriminating capacity were selected, and 4 discriminant functions (DFs) enabled simultaneously discrimination of the five oolong varieties with 100% correct rate.

  12. Microextraction by Packed Sorbent (MEPS) and Solid-Phase Microextraction (SPME) as Sample Preparation Procedures for the Metabolomic Profiling of Urine

    PubMed Central

    Silva, Catarina; Cavaco, Carina; Perestrelo, Rosa; Pereira, Jorge; Câmara, José S.

    2014-01-01

    For a long time, sample preparation was unrecognized as a critical issue in the analytical methodology, thus limiting the performance that could be achieved. However, the improvement of microextraction techniques, particularly microextraction by packed sorbent (MEPS) and solid-phase microextraction (SPME), completely modified this scenario by introducing unprecedented control over this process. Urine is a biological fluid that is very interesting for metabolomics studies, allowing human health and disease characterization in a minimally invasive form. In this manuscript, we will critically review the most relevant and promising works in this field, highlighting how the metabolomic profiling of urine can be an extremely valuable tool for the early diagnosis of highly prevalent diseases, such as cardiovascular, oncologic and neurodegenerative ones. PMID:24958388

  13. Review: DNA oxidation, its consequences and efficacy of GC-MS and SPME-GC-MS for In Vitro quantification of DNA oxidative products

    NASA Astrophysics Data System (ADS)

    Singh, Himansha; Udawat, Abhishek; Franklin, Tony; Sarathi, Sai Partha

    2012-10-01

    DNA oxidation could be one of the main factors contributing to DNA damage, eventually leading to carcinogenesis, mutations or non-carcinogenic diseases such as Parkinsonís and Alzheimerís. Only recently has the focus turned towards identifying oxidative products of DNA and their consequences. Metabolism activities in vitro produce reactive radicals, which can break DNA strands to cause lesions. These lesions could also act as biomarkers for diagnostic purposes. This review provides an insight of the DNA oxidation mechanism, its harmful consequences and the advantages/disadvantages of available techniques to quantify such DNA oxidative products, focussing mainly on the use GC-MS along with derivatization reaction. In addition, the review also discusses the use of Solid Phase Micro Extraction (SPME) before conducting GC-MS as a potential assay to overcome the discrepancies involved in using GC-MS alone for the identification of DNA oxidative products.

  14. Assay of aroma active components of virgin olive oils from southern Italian regions by SPME-GC/ion trap mass spectrometry.

    PubMed

    Benincasa, Cinzia; De Nino, Antonio; Lombardo, Nicola; Perri, Enzo; Sindona, Giovanni; Tagarelli, Antonio

    2003-01-29

    An SPME-GC/ion trap method was exploited to determine the chromatogram of volatile compounds of organic olive oils of southern Italian regions. The method is based on the assay of the terminal species of the "lipoxygenase pathway", which are present in the volatile fraction of the sampled compounds. Ethyl isobutanoate was used as internal standard in either the EI or CI ionization mode. The absolute concentration values of each analyte were evaluated through good-to-excellent calibration curves. Case studies on oils obtained from different cultivars or harvesting times are presented. The quantitative data for each compound were subjected to principal component analysis to characterize the different cultivars of this work.

  15. Quantitative Profiling of Ester Compounds Using HS-SPME-GC-MS and Chemometrics for Assessing Volatile Markers of the Second Fermentation in Bottle.

    PubMed

    Muñoz-Redondo, José Manuel; Cuevas, Francisco Julián; León, Juan Manuel; Ramírez, Pilar; Moreno-Rojas, José Manuel; Ruiz-Moreno, María José

    2017-04-05

    A quantitative approach using HS-SPME-GC-MS was performed to investigate the ester changes related to the second fermentation in bottle. The contribution of the type of base wine to the final wine style is detailed. Furthermore, a discriminant model was developed based on ester changes according to the second fermentation (with 100% sensitivity and specificity values). The application of a double-check criteria according to univariate and multivariate analyses allowed the identification of potential volatile markers related to the second fermentation. Some of them presented a synthesis-ratio around 3-fold higher after this period and they are known to play a key role in wine aroma. Up to date, this is the first study reporting the role of esters as markers of the second fermentation. The methodology described in this study confirmed its suitability for the wine aroma field. The results contribute to enhance our understanding of this fermentative step.

  16. Differentiation of Commercial PDO Wines Produced in Istria (Croatia) According to Variety and Harvest Year Based on HS-SPME-GC/MS Volatile Aroma Compound Profiling.

    PubMed

    Lukić, Igor; Horvat, Ivana

    2017-03-01

    To differentiate monovarietal wines made from native and introduced varieties in Istria (Croatia), samples of Malvazija istarska, Chardonnay and Muscat yellow from two harvest years (2013 and 2014) were subjected to headspace solid-phase microextraction and gas chromatographic/mass spectrometric analysis (HS-SPME-GC/MS) of volatile aroma compounds. Significant effects of variety and harvest year were determined, but their interaction complicated the differentiation. Particular compounds were consistent as markers of variety in both years: nerol for Malvazija, ethyl cinnamate and a tentatively identified isomer of dimethylbenzaldehyde for Chardonnay, and terpenes for Muscat yellow. Wines from 2013 contained higher concentrations of the majority of important volatiles. A 100% correct differentiation of Malvazija istarska and Chardonnay wines according to both variety and harvest year was achieved by stepwise linear discriminant analysis.

  17. Comparison of liquid-liquid partition, HS-SPME and static HS GC/MS analysis for the quantification of (-)-linalool in human whole blood samples.

    PubMed

    Friedl, Susanne Mirjam; Oedendorfer, Katharina; Kitzer, Simone; Reznicek, Gottfried; Sladek, Guenther; Heuberger, Eva

    2010-09-01

    The aim of this investigation was to develop a fast and convenient method for the determination of (-)-linalool in human whole blood to facilitate pharmacokinetic studies. Analytical protocols were elaborated for three different GC/MS sampling techniques, i.e., static headspace (s-HS), headspace solid phase micro extraction (HS-SPME), and liquid-liquid partition. In principle, all tested methods were feasible, but s-HS had the greatest benefit because of the easy handling of the blood samples and its short analysis time. For s-HS two different incubation temperatures were tested (40 degrees C and 60 degrees C). The limit of detection was slightly lower when samples were incubated at 60 degrees C, but the same quantitative results were achieved using alpha-terpineol as internal standard. An accurate and sensitive method for the quantification of (-)-linalool in blood samples after either inhalation or percutaneous application, as well as pharmacokinetic data are presented.

  18. Differentiation of Commercial PDO Wines Produced in Istria (Croatia) According to Variety and Harvest Year Based on HS-SPME-GC/MS Volatile Aroma Compound Profiling

    PubMed Central

    Horvat, Ivana

    2017-01-01

    Summary To differentiate monovarietal wines made from native and introduced varieties in Istria (Croatia), samples of Malvazija istarska, Chardonnay and Muscat yellow from two harvest years (2013 and 2014) were subjected to headspace solid-phase microextraction and gas chromatographic/mass spectrometric analysis (HS-SPME-GC/MS) of volatile aroma compounds. Significant effects of variety and harvest year were determined, but their interaction complicated the differentiation. Particular compounds were consistent as markers of variety in both years: nerol for Malvazija, ethyl cinnamate and a tentatively identified isomer of dimethylbenzaldehyde for Chardonnay, and terpenes for Muscat yellow. Wines from 2013 contained higher concentrations of the majority of important volatiles. A 100% correct differentiation of Malvazija istarska and Chardonnay wines according to both variety and harvest year was achieved by stepwise linear discriminant analysis. PMID:28559738

  19. Assessing a traceability technique in fresh oranges (Citrus sinensis L. Osbeck) with an HS-SPME-GC-MS method. Towards a volatile characterisation of organic oranges.

    PubMed

    Cuevas, Francisco Julián; Moreno-Rojas, José Manuel; Ruiz-Moreno, María José

    2017-04-15

    A targeted approach using HS-SPME-GC-MS was performed to compare flavour compounds of 'Navelina' and 'Salustiana' orange cultivars from organic and conventional management systems. Both varieties of conventional oranges showed higher content of ester compounds. On the other hand, higher content of some compounds related with the geranyl-diphosphate pathway (neryl and geranyl acetates) and some terpenoids were found in the organic samples. Furthermore, the partial least square discriminant analysis (PLS-DA) achieved an effective classification for oranges based on the farming system using their volatile profiles (90 and 100% correct classification). To our knowledge, it is the first time that a comparative study dealing with farming systems and orange aroma profile has been performed. These new insights, taking into account local databases, cultivars and advanced analytical tools, highlight the potential of volatile composition for organic orange discrimination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A comparison of solid-phase microextraction (SPME) with simultaneous distillation-extraction (SDE) for the analysis of volatile compounds in heated beef and sheep fats.

    PubMed

    Watkins, P J; Rose, G; Warner, R D; Dunshea, F R; Pethick, D W

    2012-06-01

    A comparison has been made on the application of SPME and SDE for the extraction of volatile compounds from heated beef and sheep fats with separation and measurement by gas chromatography-mass spectrometry. As far as we know, this report represents the first time that such a comparison has been made for the measurement of volatile compounds in heated sheep fat. Approximately 100 compounds (in relatively high abundance) were characterised in the volatile profiles of heated beef and sheep fats using both techniques. Differences were observed in the volatile profiles obtained from each technique, independent of compound class. Rather than rate one technique as superior to another, the techniques can be regarded as complementary to each other. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  1. Single-walled carbon nanotubes coated fibers for solid-phase microextraction and gas chromatography-mass spectrometric determination of pesticides in Tea samples.

    PubMed

    Wu, Fang; Lu, Wanping; Chen, Jinghua; Liu, Wei; Zhang, Lan

    2010-08-15

    Using a single-walled carbon nanotubes (SWCNTs) as stationary phase of solid-phase microextraction (SPME) fibers, a simple, low cost and environmentally friendly method for extraction of 13 pesticides in Tea samples has been developed following gas chromatography-mass spectrometric determination. Potential factors affecting the extraction efficiency were investigated and optimized, including extraction and desorption time, extraction temperature, stirring rate, solution pH and ionic strength. Under optimized conditions, the linearity of the developed method was in the range of 0.125-25 ng/mL with correlation coefficients greater than 0.9928 and the limits of detections (LODs) were 0.027-0.23 ng/mL (S/N=3). Meanwhile, the relative standard deviations (RSDs) for five successive measurements with single fiber, fiber-to-fiber, day-to-day were 2.3-13.0, 8.2-14.6 and 4.1-12.5%, respectively, indicating good reproducibility of the proposed method. The fiber had high extraction efficiency for studied pesticides in comparison with commercial poly(dimethylsiloxane) (PDMS) and polyacrylate (PA) fibers and could be used for more than 70 times without decrease of efficiency. The developed method was successfully applied for the analysis of real samples including green Tea, oolong Tea, white Tea, and flower Tea, and the recoveries of the pesticides spiked in these samples ranged from 75.1 to 118.4%. Chlorfenapyr and lambda-cyhalothrin were found in the Tea samples bought randomly from local market. The results demonstrated that the developed SWCNTs-SPME method was a simple, efficient pretreatment and enrichment procedure for pesticides in complex matrices.

  2. Development and Validation of a SPME-GC-MS Method for In situ Passive Sampling of Root Volatiles from Glasshouse-Grown Broccoli Plants Undergoing Below-Ground Herbivory by Larvae of Cabbage Root Fly, Delia radicum L.

    PubMed

    Deasy, William; Shepherd, Tom; Alexander, Colin J; Birch, A Nicholas E; Evans, K Andrew

    2016-11-01

    Research on plant root chemical ecology has benefited greatly from recent developments in analytical chemistry. Numerous reports document techniques for sampling root volatiles, although only a limited number describe in situ collection. To demonstrate a new method for non-invasive in situ passive sampling using solid phase micro extraction (SPME), from the immediate vicinity of growing roots. SPME fibres inserted into polyfluorotetrafluoroethylene (PTFE) sampling tubes located in situ which were either perforated, covered with stainless steel mesh or with microporous PTFE tubing, were used for non-invasive sub-surface sampling of root volatiles from glasshouse-grown broccoli. Sampling methods were compared with above surface headspace collection using Tenax TA. The roots were either mechanically damaged or infested with Delia radicum larvae. Principal component analysis (PCA) was used to investigate the effect of damage on the composition of volatiles released by broccoli roots. Analyses by gas chromatography-mass spectrometry (GC-MS) with SPME and automated thermal desorption (ATD) confirmed that sulphur compounds, showing characteristic temporal emission patterns, were the principal volatiles released by roots following insect larval damage. Use of SPME with in situ perforated PTFE sampling tubes was the most robust method for out-of-lab sampling. This study describes a new method for non-invasive passive sampling of volatiles in situ from intact and insect damaged roots using SPME. The method is highly suitable for remote sampling and has potential for wide application in chemical ecology/root/soil research. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Covalent Bonding of Metal-Organic Framework-5/Graphene Oxide Hybrid Composite to Stainless Steel Fiber for Solid-Phase Microextraction of Triazole Fungicides from Fruit and Vegetable Samples.

    PubMed

    Zhang, Shuaihua; Yang, Qian; Wang, Wenchang; Wang, Chun; Wang, Zhi

    2016-04-06

    A hybrid material of the zinc-based metal-organic framework-5 and graphene oxide (metal-organic framework-5/graphene oxide) was prepared as a novel fiber coating material for solid-phase microextraction (SPME). The SPME fibers were fabricated by covalent bonding via chemical cross-linking between the coating material metal-organic framework-5/graphene oxide and stainless steel wire. The prepared fiber was used for the extraction of five triazole fungicides from fruit and vegetable samples. Gas chromatography coupled with microelectron capture detector (GC-μECD) was used for quantification. The developed method gave a low limit of detection (0.05-1.58 ng g(-1)) and good linearity (0.17-100 ng g(-1)) for the determination of the triazole fungicides in fruit and vegetable samples. The relative standard deviations (RSDs) for five replicate extractions of the triazole fungicides ranged from 3.7 to 8.9%. The method recoveries for spiked fungicides (5, 20, and 50 ng g(-1)) in grape, apple, cucumber, celery cabbage, pear, cabbage, and tomato samples were in the range of 85.6-105.8% with the RSDs ranging from 3.6 to 11.4%, respectively, depending on both the analytes and samples. The metal-organic framework-5/graphene oxide coated fiber was stable enough for 120 extraction cycles without a significant loss of extraction efficiency. The method was suitable for the determination of triazole fungicides in fruit and vegetable samples.

  4. Optimization of biological and instrumental detection of explosives and ignitable liquid residues including canines, SPME/ITMS and GC/MSn

    NASA Astrophysics Data System (ADS)

    Furton, Kenneth G.; Harper, Ross J.; Perr, Jeannette M.; Almirall, Jose R.

    2003-09-01

    A comprehensive study and comparison is underway using biological detectors and instrumental methods for the rapid detection of ignitable liquid residues (ILR) and high explosives. Headspace solid phase microextraction (SPME) has been demonstrated to be an effective sampling method helping to identify active odor signature chemicals used by detector dogs to locate forensic specimens as well as a rapid pre-concentration technique prior to instrumental detection. Common ignitable liquids and common military and industrial explosives have been studied including trinitrotoluene, tetryl, RDX, HMX, EGDN, PETN and nitroglycerine. This study focuses on identifying volatile odor signature chemicals present, which can be used to enhance the level and reliability of detection of ILR and explosives by canines and instrumental methods. While most instrumental methods currently in use focus on particles and on parent organic compounds, which are often involatile, characteristic volatile organics are generally also present and can be exploited to enhance detection particularly for well-concealed devices. Specific examples include the volatile odor chemicals 2-ethyl-1-hexanol and cyclohexanone, which are readily available in the headspace of the high explosive composition C-4; whereas, the active chemical cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) is not. The analysis and identification of these headspace 'fingerprint' organics is followed by double-blind dog trials of the individual components using certified teams in an attempt to isolate and understand the target compounds to which dogs are sensitive. Studies to compare commonly used training aids with the actual target explosive have also been undertaken to determine their suitability and effectiveness. The optimization of solid phase microextraction (SPME) combined with ion trap mobility spectrometry (ITMS) and gas chromatography/mass spectrometry/mass spectrometry (GC/MSn) is detailed including interface development

  5. Multiple internal standard normalization for improving HS-SPME-GC-MS quantitation in virgin olive oil volatile organic compounds (VOO-VOCs) profile.

    PubMed

    Fortini, Martina; Migliorini, Marzia; Cherubini, Chiara; Cecchi, Lorenzo; Calamai, Luca

    2017-04-01

    The commercial value of virgin olive oils (VOOs) strongly depends on their classification, also based on the aroma of the oils, usually evaluated by a panel test. Nowadays, a reliable analytical method is still needed to evaluate the volatile organic compounds (VOCs) and support the standard panel test method. To date, the use of HS-SPME sampling coupled to GC-MS is generally accepted for the analysis of VOCs in VOOs. However, VOO is a challenging matrix due to the simultaneous presence of: i) compounds at ppm and ppb concentrations; ii) molecules belonging to different chemical classes and iii) analytes with a wide range of molecular mass. Therefore, HS-SPME-GC-MS quantitation based upon the use of external standard method or of only a single internal standard (ISTD) for data normalization in an internal standard method, may be troublesome. In this work a multiple internal standard normalization is proposed to overcome these problems and improving quantitation of VOO-VOCs. As many as 11 ISTDs were used for quantitation of 71 VOCs. For each of them the most suitable ISTD was selected and a good linearity in a wide range of calibration was obtained. Except for E-2-hexenal, without ISTD or with an unsuitable ISTD, the linear range of calibration was narrower with respect to that obtained by a suitable ISTD, confirming the usefulness of multiple internal standard normalization for the correct quantitation of VOCs profile in VOOs. The method was validated for 71 VOCs, and then applied to a series of lampante virgin olive oils and extra virgin olive oils. In light of our results, we propose the application of this analytical approach for routine quantitative analyses and to support sensorial analysis for the evaluation of positive and negative VOOs attributes.

  6. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor); Mattes, Brenton L. (Inventor); Charnetski, Clark J. (Inventor)

    1999-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  7. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  8. Fiber optic connector

    DOEpatents

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  9. Fiber optic connector

    DOEpatents

    Rajic, S.; Muhs, J.D.

    1996-10-22

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded are disclosed. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled. 3 figs.

  10. Coatings for graphite fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Graphite fibers released from composites during burning or an explosion caused shorting of electrical and electronic equipment. Silicon carbide, silica, silicon nitride and boron nitride were coated on graphite fibers to increase their electrical resistances. Resistances as high as three orders of magnitude higher than uncoated fiber were attained without any significant degradation of the substrate fiber. An organo-silicone approach to produce coated fibers with high electrical resistance was also used. Celion 6000 graphite fibers were coated with an organo-silicone compound, followed by hydrolysis and pyrolysis of the coating to a silica-like material. The shear and flexural strengths of composites made from high electrically resistant fibers were considerably lower than the shear and flexural strengths of composites made from the lower electrically resistant fibers. The lower shear strengths of the composites indicated that the coatings on these fibers were weaker than the coating on the fibers which were pyrolyzed at higher temperature.

  11. Fiber optic monitoring device

    DOEpatents

    Samborsky, James K.

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  12. Photonic Crystal Fibers

    DTIC Science & Technology

    2005-12-01

    passive and active versions of each fiber designed under this task. Crystal Fibre shall provide characteristics of the fiber fabricated to include core...passive version of multicore fiber iteration 2. 15. SUBJECT TERMS EOARD, Laser physics, Fibre Lasers, Photonic Crystal, Multicore, Fiber Laser 16...9 00* 0 " CRYSTAL FIBRE INT ODUCTION This report describes the photonic crystal fibers developed under agreement No FA8655-o5-a- 3046. All

  13. Alumina fiber strength improvement

    NASA Technical Reports Server (NTRS)

    Pepper, R. T.; Nelson, D. C.

    1982-01-01

    The effective fiber strength of alumina fibers in an aluminum composite was increased to 173,000 psi. A high temperature heat treatment, combined with a glassy carbon surface coating, was used to prevent degradation and improve fiber tensile strength. Attempts to achieve chemical strengthening of the alumina fiber by chromium oxide and boron oxide coatings proved unsuccessful. A major problem encountered on the program was the low and inconsistent strength of the Dupont Fiber FP used for the investigation.

  14. Volatile profile of cashew apple juice fibers from different production steps.

    PubMed

    Nobre, Ana Carolina de Oliveira; de Almeida, Áfia Suely Santos da Silva; Lemos, Ana Paula Dajtenko; Magalhães, Hilton César Rodrigues; Garruti, Deborah dos Santos

    2015-05-27

    This study aimed to determine the volatile profile of cashew apple fibers to verify which compounds are still present after successive washings and thus might be responsible for the undesirable remaining cashew-like aroma present in this co-product, which is used to formulate food products like vegetarian burgers and cereal bars. Fibers were obtained from cashew apple juice processing and washed five times in an expeller press. Compounds were analyzed by the headspace solid-phase micro extraction technique (HS-SPME) and gas chromatography-mass spectrometry (GC-MS), using a DB-5 column. Sensory analysis was also performed to compare the intensity of the cashew-like aroma of the fibers with the original juice. Altogether, 80 compounds were detected, being esters and terpenes the major chemical classes. Among the identified substances, 14 were classified as odoriferous in the literature, constituting the matrix used in the Principal Component Analysis (PCA). Odoriferous esters were substantially reduced, but many compounds were extracted by the strength used in the expeller press and remained until the last wash. Among them are the odoriferous compounds ethyl octanoate, γ-dodecalactone, (E)-2-decenal, copaene, and caryophyllene that may contribute for the mild but still perceptible cashew apple aroma in the fibers that have been pressed and washed five times. Development of a deodorization process should include reduction of pressing force and stop at the second wash, to save water and energy, thus reducing operational costs and contributing to process sustainability.

  15. Evaluation of simulant migration of volatile nitrosamines from latex gloves and balloons by HS-SPME-GC-MS.

    PubMed

    Feng, Di; Liu, Luo; Zhao, Liyuan; Zhou, Qingfeng; Tan, Tianwei

    2012-09-01

    Nitrosamines are a group of carcinogens that have been found in various latex products. Methods have been developed for extraction, concentration and detection of simulant migration of volatile nitrosamines from latex gloves and balloons. After glove samples or balloon samples were treated with artificial sweat and artificial saliva, headspace solid-phase microextraction and gas chromatography with mass spectrometer detection were performed. Eight volatile nitrosamines were extracted by a fused silica fiber coated with carboxen-polydimethylsioxane, and solid-phase microextraction conditions were optimized. The developed method was successfully used to analyze simulant migration of volatile nitrosamines from latex gloves and balloons. The described methods are rapid and simple, with adequate sensitivity and without organic solvent.

  16. Determination of trace Cd, Cu, Fe, Pb and Zn in diesel and gasoline by inductively coupled plasma mass spectrometry after sample clean up with hollow fiber solid phase microextraction system

    NASA Astrophysics Data System (ADS)

    Nomngongo, Philiswa N.; Ngila, J. Catherine

    2014-08-01

    This study reports a simple and efficient method for the determination of trace Cd, Cu, Fe, Pb and Zn in diesel and gasoline samples by inductively coupled plasma mass spectrometry after matrix removal and analyte pre-concentration using hollow fiber-solid phase microextraction (HF-SPME). The optimization of HF-SPME procedure was carried out using two-level full factorial and central composite designs. Four factors (variables), that are, sample solution pH, acceptor phase amount, extraction time and eluent concentration were optimized. Under the optimized experimental conditions, the precision was ≤ 3% (C = 10 μg L- 1, n = 15), limits of detection and quantification ranged from 0.1 to 0.3 μg L- 1 and 0.3-0.9 μg L- 1, respectively, and the maximum preconcentration factor was 30. The HF-SPME method was applied for the determination of trace metals in real gasoline and diesel samples.

  17. Bis(trifluoromethanesulfonyl)imide-based ionic liquids grafted on graphene oxide-coated solid-phase microextraction fiber for extraction and enrichment of polycyclic aromatic hydrocarbons in potatoes and phthalate esters in food-wrap.

    PubMed

    Hou, Xiudan; Guo, Yong; Liang, Xiaojing; Wang, Xusheng; Wang, Lei; Wang, Licheng; Liu, Xia

    2016-06-01

    A class of novel, environmental friendly ionic liquids (ILs) were synthesized by on-fiber preparation strategy and modified on graphene oxide (GO)-coated stainless steel wire, which was used as a solid-phase microextraction (SPME) fiber for efficient enrichment of polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs). Surface characteristic of the ILs and polymeric-ILs (PILs) fibers with the wave-structure were inspected by scanning electron microscope. The successfully synthesis of bis(trifluoromethanesulfonyl)imide (NTf2(-))-based ILs were also characterized by energy dispersive spectrometer analysis. Through the chromatograms of the proposed two ILs (1-aminoethyl-3-methylimidazolium bromide (C2NH2MIm(+)Br(-)), C2NH2MIm(+)NTf2(-)) and two PILs (polymeric 1-vinyl-3-hexylimidazolium bromide (poly(VHIm(+)Br(-))), poly(VHIm(+)NTf2(-)))-GO-coated fibers for the extraction of analytes, NTf2(-)-based PIL demonstrated higher extraction capacity for hydrophobic compounds than other as-prepared ILs. Analytical performances of the proposed fibers were investigated under the optimized extraction and desorption conditions coupled with gas chromatography (GC). Compared with the poly(VHIm(+)Br(-))-GO fiber, the poly(VHIm(+)NTf2(-))-GO SPME fiber brought wider linear ranges for analytes with correlation coefficient in the range of 0.9852-0.9989 and lower limits of detection ranging from 0.015-0.025μgL(-1). The obtained results indicated that the newly prepared PILs-GO coating was a feasible, selective and green microextraction medium, which could be suitable for extraction and determination of PAHs and PAEs in potatoes and food-wrap sample, respectively.

  18. Monitoring the emission of volatile organic compounds from flowers of Jasminum sambac using solid-phase micro-extraction fibers and gas chromatography with mass spectrometry detection.

    PubMed

    Pragadheesh, Vppalayam Shanmugam; Yadav, Anju; Chanotiya, Chandan Singh; Rout, Prasanta Kumar; Uniyal, Girish Chandra

    2011-09-01

    Solid-phase micro-extraction (SPME) was studied as a solvent free alternative method for the extraction and characterization of volatile compounds in intact and plucked flowers of Jasminum sambac at different day time intervals using gas chromatography (GC-FID) and gas chromatography-quadrupole mass spectrometry. The analytes identified included alcohols, esters, phenolic compounds, and terpenoids. The main constituents identified in the flower aroma using different fibers were cis-3-hexenyl acetate, (E)-beta-ocimene, linalool, benzyl acetate, and (E,E)-alpha-farnesene. The benzyl acetate proportion decreased from morning to afternoon and then increased in evening collections. PDMS fiber showed a high proportion of (E,E)-alpha-farnesene in jasmine floral aroma. Among other constituents identified, cis-3-hexenyl acetate, linalool, and benzyl acetate were major aroma contributors in plucked and living flowers extracts using PDMS/DVB, Carboxen/PDMS, and DVB/Carboxen/PDMS fibers. PDMS/DVB recorded the highest emission for benzyl acetate while the (E)-beta-ocimene proportion was highest in DVB/Carboxen/PDMS when compared with the rest. The highest linalool content, with increasing proportion from morning to noon, was found using mixed coating fibers. Almost negligible volatile adsorption was recorded for the polyacrylate fiber for intact flower aroma, whereas it was most effective for benzyl acetate, followed by indole under plucked conditions. Moreover, the highest amounts extracted, evaluated from the sum of peak areas, were achieved using Carboxen/PDMS, and DVB/Carboxen/PDMS. Introduction of a rapid, and solvent free SPME method for the analysis of multicomponent volatiles can be successfully employed to monitor the extraction and characterization of flower aroma constituents.

  19. Solid phase microextraction procedure for the determination of alkylphenols in water by on-fiber derivatization with N-tert-butyl-dimethylsilyl-N-methyltrifluoroacetamide.

    PubMed

    Pan, Yi-Ping; Tsai, Shih-Wei

    2008-08-29

    The solid phase microextraction (SPME) technique with on-fiber derivatization was evaluated for the analysis of alkylphenols (APs), including 4-tert-octylphenol (4-t-OP), technical nonylphenol isomers (t-NPs) and 4-nonylphenol (4-NP), in water. The 85 microm polyacrylate (PA) fiber was used and a two-step sample preparation procedure was established. In the first step, water sample of 2 mL was placed in a 4 mL PTFE-capped glass vial. Headspace extraction of APs in water was then performed under 65 degrees C for 30 min with 800 rpm magnetic stirring and the addition of 5% of sodium chloride. In the second step, the SPME fiber was placed in another 4 mL vial, which contained 100 microL of N-tert-butyl-dimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA) with 1% tert-butyl-dimethylchlorosilane (TBDMCS). Headspace extraction of MTBSTFA and on-fiber derivatization with APs were performed at 45 degrees C for 10 min. Gas chromatography/mass spectrometry (GC/MS) was used for the analysis of derivatives formed on-fiber. The adsorption-time profiles were also examined. The precision, accuracy and method detection limits (MDLs) for the analysis of all the APs were evaluated with spiked water samples, including detergent water, chlorinated tap water, and lake water. The relative standard deviations were all less than 10% and the accuracies were 100+/-15%. With 2 mL of water sample, MDLs were in the range of 1.58-3.85 ng L(-1). Compared with other techniques, the study described here provided a simple, fast and reliable method for the analysis of APs in water.

  20. Electrospun modified silica-polyamide nanocomposite as a novel fiber coating.

    PubMed

    Bagheri, Habib; Roostaie, Ali

    2014-01-10

    In the present work, a new solid phase microextraction (SPME) fiber coating based on modified silica-polyamide (PA) nanocomposite was electrospun on a stainless steel wire. Four modified silica-PA nanocomposites together with PA were fabricated by dispersing several typical modified silica nanoparticles in PA polymer solution prior to electrospinning. The surface characteristic of PA nanofibers and modified silica-PA nanocomposites was investigated using scanning electron microscopy (SEM). The homogeneity and the porous surface structure of the modified silica-PA nanocomposites were confirmed by SEM, showing nanofibers diameters lower than 170 nm. The applicability of the new fiber coating was examined by headspace SPME of some selected chlorobenzenes (CBs), as model compounds, from aqueous samples. Subsequently, the extracted analytes were transferred into a gas chromatography (GC) by thermal desorption. Influencing parameters on the morphology of nanocomposites such as type of modified silica nanoparticles and the weight ratio of components were optimized. In addition, effects of different parameters influencing the extraction efficiency including extraction temperature, extraction time, ionic strength, desorption temperature, and desorption time were investigated and optimized. Eventually, the developed method was validated by gas chromatography-mass spectrometry (GC-MS). At the optimum conditions, the relative standard deviation values for a double distilled water spiked with the selected CBs at 100 ng L(-1) were 4-12% (n=3) and the limit of detection for the studied compounds was between 5 and 30 ng L(-1). The calibration curves of analytes were investigated in the range of 50-1000 ng L(-1) and correlation coefficients (R(2)) between 0.9897 and 0.9992 were obtained. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Analysis of perfluorooctane sulfonate and perfluorooctanoic acid with a mixed-mode coating-based solid-phase microextraction fiber.

    PubMed

    Chen, Chunyan; Wang, Jianping; Yang, Shaolei; Yan, Zhihong; Cai, Qingyun; Yao, Shouzhuo

    2013-09-30

    A novel mixed-mode coating-based solid-phase microextraction (SPME) fiber was prepared by chemical bonding dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride and 3-(trimethoxysilyl)-1-propanamine, the sol-gel precursors, on an anodized Ti wire, aiming to effectively adsorb perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). The anodized Ti wire with uniform TiO2 nanotube arrays provides high mechanical strength and strong adhesion to the mixed-mode coating. The prepared fiber shows excellent organic solvent stability due to the covalent bonding between the coating and the fiber, and significantly higher extraction efficiency than the commercial fibers, 100 μm polydimethylsiloxane and 85 μm polyacrylate fiber, due to the synergistic extraction effects of the coating functional groups. Good linearity (R(2)=0.9994 for PFOS, R(2)=0.9992 for PFOA) was obtained with detection limits of 2.5 and 7.5 pg mL(-1) for PFOS and PFOA, respectively. Recoveries were in the range of 88%-102%. The proposed method was successfully applied in the analysis of PFOS and PFOA in a local river with the results of 0.05 and 0.06 ng mL(-1), respectively. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  2. Hollow fiber-stir bar sorptive extraction and microwave assisted derivatization of amino acids in biological matrices.

    PubMed

    Li, Jia; Qi, Huan-Yang; Wang, Yan-Bin; Su, Qiong; Wu, Shang; Wu, Lan

    2016-11-25

    A kind of solid phase microextraction configuration combining the principles of hollow fiber solid phase microextraction (HF-SPME) and stir bar sorptive extraction (SBSE) is presented. The main feature of HF-SBSE is the use of microporous hollow fiber acting as the carrier and filter, while a thin stainless steel wire and silica microspheres in the lumen of hollow fiber respectively acting as the magnetic stirrer and the dispersed sorbents for the collection and extraction of the target analytes, thus affording extraction process like SBSE. Moreover, the prepared hollow fiber stir bar was applied to direct microextraction and microwave assisted derivatization with N,O-Bis(trimethylsilyl)trifluroacetamide (BSTFA) of four amino acids in rats' urine and cerebrospinal fluid followed by gas chromatography mass spectrometric analysis. The limits of detection for four amino acids were found to be in the range of 0.0003-0.017μgmL(-1), and all the analytes did not exhibit any lack of fit. The extraction recoveries using HF-SBSE techniques ranged from 71.8% to 102.3%. The results indicated that hollow fiber stir bar sorptive extraction was a promising technique for the enrichment and direct derivatization of analytes extracted from biological matrices without sample clean-up.

  3. Ceramic fiber reinforced filter

    DOEpatents

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  4. Study of the volatile compounds and odor-active compounds of dry-cured Iberian ham extracted by SPME.

    PubMed

    del Pulgar, José Sánchez; García, Carmen; Reina, Raquel; Carrapiso, Ana I

    2013-06-01

    The volatile compounds and the most odor-active compounds of dry-cured Iberian ham were investigated by extracting them using a solid phase microextraction technique with a 2 cm Carboxen/PDMS/DVB fiber. The detection frequency method was applied to estimate the potential contribution of each compound to the odor of hams. Twenty-one volatile compounds were tentatively identified for the first time in dry-cured ham by gas chromatography-mass spectrometry, and eight in dry-cured Iberian ham. Gas chromatography-olfactometry allowed the identification for the first time of six compounds not previously reported as odorants of Iberian ham, and also two odorants were newly identified in dry-cured ham. According to the detection frequency method, the most odor active compounds found were 3-methylbutanoic acid (dirty sock-like smelling), hexanal (cut grass-like odor), 3-methylbutanal (sweaty and bitter almond-like odor), 2-methyl-3-furanthiol (toasted nuts-like odor) and 1-octen-3-one (mushroom-like odor).

  5. Fabrication of Metal-Organic Framework MOF-177 Coatings on Stainless Steel Fibers for Head-Space Solid-Phase Microextraction of Phenols.

    PubMed

    Wang, Guan-Hua; Lei, Yong-Qian

    2017-08-01

    Direct head-space solid-phase microextraction (HS-SPME) of phenols in water is usually difficult due to its polarity and solubility in aqueous matrix. Herein we report the fabrication of metal-organic framework MOF-177 coated stainless steel fiber for the HS-SPME of phenols (2-methylolphenol, 4-methylolphenol, 2,4-dimethylolphenol, 2,4-dichlorphenol, and 3-methyl-4-chlorophenol) in environmental water samples prior to the gas chromatography-mass spectrometry detection. Several parameters affecting the extraction efficiency were optimized in the experiment, including extraction temperature and time, the pH value and salt addition. The results indicated that the coated fiber gave low detection limits (0.015-0.043 μg L(-1)) and good repeatability with the RSD ranging from 2.8% to 5.5% for phenols. The recoveries are between 84.5%-98.6% with the spiked level of 10 μg L(-1) for the real water samples. The established method may afford a kind of potential enrichment material and a reference method for the analysis of methylphenols in water samples.

  6. Polyparameter linear free energy models for polyacrylate fiber-water partition coefficients to evaluate the efficiency of solid-phase microextraction.

    PubMed

    Endo, Satoshi; Droge, Steven T J; Goss, Kai-Uwe

    2011-02-15

    The fiber-water partition coefficient, K(fw), is decisive for performance of solid-phase microextraction (SPME) techniques in organic chemical analyses. In this study, polyacrylate (PA)-coated fiber was evaluated for its K(fw) values toward diverse neutral organic compounds. Literature K(fw) data were thoroughly evaluated, and additional K(fw) values for 69 compounds were measured in phosphate-buffered saline (PBS) solution at 37 °C. These K(fw) data, spanning over 6 orders of magnitude, were used to construct polyparameter linear free energy relationship (PP-LFER) models. The PP-LFER models fit well to the data with a standard deviation of 0.15-0.23 log units. Additional experiments indicated that the differences in temperature (25 vs 37 °C), electrolyte concentrations (pure water vs PBS), and conditioning methods (heat vs methanol) had only minor influences (<0.3 log units) on K(fw). Using the established PP-LFERs, the SPME extraction efficiency of PA coating toward compounds of differing polarity was evaluated in comparison to poly(dimethylsiloxane) (PDMS) coating. PA exhibited higher extraction capacities for H-bond donor compounds (e.g., phenols, anilines, amides, and many drugs and pesticides) with the estimated K(fw) values being 1-4 log units higher than those of PDMS. Also, PA was shown to be more efficient than PDMS for hydrophobic aromatic compounds.

  7. Design, synthesis and evaluation of a molecularly imprinted polymer for hollow fiber-solid phase microextraction of chlorogenic acid in medicinal plants.

    PubMed

    Golsefidi, Mazyar Ahmadi; Es'haghi, Zarrin; Sarafraz-Yazdi, Ali

    2012-03-16

    In this study, a simple preparation approach was developed for modified bisphenol A (BPA) molecularly imprinted polymer sorbent used in the hollow fiber solid phase microextraction (MIP-HF-SPME) of chlorogenic acid (CGA). The pre-polymer solution containing the template was introduced into the polypropylene hollow fiber segment for in situ polymerization. MIP-HF-SPME conditions based on the modified MIP-sorbent were optimized. Finally, the tool was used for selective extraction of chlorogenic acid in Echinacea purpurea, a medicinal plant. Main parameters affecting synthesis of organic-inorganic hybrid MIP and microextraction procedure were investigated and optimized. The measurements were done under the optimal conditions. The limit of detection has been gained 0.08 ng/mL. The linear range and relative standard deviation (RSD %) are 0.2-1000 ng/mL and 0.38 (n=3) respectively. The average relative recoveries of spiked analyte in the four concentration levels were between 84.8 and 97.2%. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. New nanostructure of polydimethylsiloxane coating as a solid-phase microextraction fiber: Application to analysis of BTEX in aquatic environmental samples.

    PubMed

    Zali, Sara; Jalali, Fahimeh; Es-Haghi, Ali; Shamsipur, Mojtaba

    2016-10-15

    Electrospinning technique was used to convert polydimethyl siloxane (PDMS) sol-gel solution to a new nanostructure on a stainless steel wire. The surface morphology of the fiber was observed by scanning electron microscopy (SEM). It showed a diameter range of 30-60nm for PDMS nanoparticles with a homogeneous and porous surface structure. The applicability of this coating was assessed for the headspace SPME (HS-SPME) of benzene, toluene, ethylbenzene and xylenes (BTEX) from water samples followed by gas chromatography-mass spectrometry. The important parameters affecting extraction efficiency such as extraction time and temperature, desorption conditions, agitation rate and ionic strength were investigated and optimized. Under the optimized conditions, LODs and LOQs of 0.3-5μgL(-1) and 1-10μgL(-1) were obtained, respectively. The method showed linearity in the broad range of 1-5000μgL(-1) with correlation coefficient of >0.99. Inter-day and intra-day precisions of the developed method ranged from 2.43% to 6.54% and from 5.24% to 13.73%, respectively. The thermal stability of the fiber was investigated on stainless steel wire. It was found to be durable at 260°C for more than 360min. Furthermore, the proposed method was successfully applied for quantification of BTEX in real water samples.

  9. Development of a HS-SPME-GC/MS protocol assisted by chemometric tools to study herbivore-induced volatiles in Myrcia splendens.

    PubMed

    Souza Silva, Érica A; Saboia, Giovanni; Jorge, Nina C; Hoffmann, Camila; Dos Santos Isaias, Rosy Mary; Soares, Geraldo L G; Zini, Claudia A

    2017-12-01

    A headspace solid phase microextraction (HS-SPME) method combined with gas chromatography-mass spectrometry (GC/MS) was developed and optimized for extraction and analysis of volatile organic compounds (VOC) of leaves and galls of Myrcia splendens. Through a process of optimization of main factors affecting HS-SPME efficiency, the coating divivnilbenzene-carboxen-polydimethylsiloxane (DVB/Car/PDMS) was chosen as the optimum extraction phase, not only in terms of extraction efficiency, but also for its broader analyte coverage. Optimum extraction temperature was 30°C, while an extraction time of 15min provided the best compromise between extraction efficiencies of lower and higher molecular weight compounds. The optimized protocol was demonstrated to be capable of sampling plant material with high reproducibility, considering that most classes of analytes met the 20% RSD FDA criterion. The optimized method was employed for the analysis of three classes of M. splendens samples, generating a final list of 65 tentatively identified VOC, including alcohols, aldehydes, esters, ketones, phenol derivatives, as well as mono and sesquiterpenes. Significant differences were evident amongst the volatile profiles obtained from non-galled leaves (NGL) and leaf-folding galls (LFG) of M. splendens. Several differences pertaining to amounts of alcohols and aldehydes were detected between samples, particularly regarding quantities of green leaf volatiles (GLV). Alcohols represented about 14% of compounds detected in gall samples, whereas in non-galled samples, alcohol content was below 5%. Phenolic derived compounds were virtually absent in reference samples, while in non-galled leaves and galls their content ranged around 0.2% and 0.4%, respectively. Likewise, methyl salicylate, a well-known signal of plant distress, amounted for 1.2% of the sample content of galls, whereas it was only present in trace levels in reference samples. Chemometric analysis based on Heatmap associated

  10. Discrimination of cherry wines based on their sensory properties and aromatic fingerprinting using HS-SPME-GC-MS and multivariate analysis.

    PubMed

    Xiao, Zuobing; Liu, Shengjiang; Gu, Yongbo; Xu, Na; Shang, Yi; Zhu, Jiancai

    2014-03-01

    Volatiles of cherry wines were extracted by headspace solid phase microextraction (HS-SPME) and analyzed by gas chromatography mass spectrometry (GC-MS), multivariate statistical techniques (such as principal component analysis (PCA) and cluster analysis (CA) and correlation analysis) to differentiate sensory attributes of 3 groups of the wines through characterization of volatiles of cherry wine. Seventy-five volatiles were identified in 9 samples, including 29 esters, 22 alcohols, 8 acids, 3 ketones, 5 aldehydes, and 8 miscellaneous compounds. The PCA results showed that the cherry wines were mainly differentiated by 8 sensory attributes. The samples W2, W4, and W7 were grouped around sweet aromatic and the samples W1, W5, and W9 were highly associated with the sweet, esters, green, bitter, and fermented. Nevertheless, the samples W3, W6, and W8 were located close to the sour, alcoholic, and fruity. The final result of correlation analysis was in conformity with the conclusion of PCA. The CA results showed that the group of W2, W4, and W7, and the group of W1, W5, and W9 had less difference than the group of W3, W6, and W8. The reason should be that esterification reactions and fermentation process during the ageing period was more extended. The results of analyzing revealed that HS-SPME-GC-MS coupled with chemometrics could give an appropriate way of characterizing and classifying the cherry wines. Attributes that represent and discriminate among cherry wines might be made use of a better comprehending of the wines and for being utilized in future work. In addition, several chemometrics were used to classify the type of wines and try to install the relationship between volatiles and sensory property. Especially, PCA clearly revealed that the most contributing compounds for sensory attributes of cherry wines, CA was a more applicable way to distinguish types of cherry wines. Therefore, a feasible method that would be helpful to promote the quality of the wines by

  11. Fiber Optics Technology.

    ERIC Educational Resources Information Center

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  12. Soluble vs. insoluble fiber

    MedlinePlus

    ... soluble and insoluble. Both are important for health, digestion, and preventing diseases. Soluble fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in ...

  13. Sources of fiber (image)

    MedlinePlus

    ... to avoid constipation. Vegetables, fresh fruits (especially dried fruits) and whole wheat, bran, or oatmeal cereals are excellent sources of fiber. To reap the benefits of fiber, it is very important to drink ...

  14. Fiber Optics Instrumentation Development

    NASA Technical Reports Server (NTRS)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  15. Fiber Optics Technology.

    ERIC Educational Resources Information Center

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  16. Omnidirectional fiber optic tiltmeter

    DOEpatents

    Benjamin, B.C.; Miller, H.M.

    1983-06-30

    A tiltmeter is provided which is useful in detecting very small movements such as earth tides. The device comprises a single optical fiber, and an associated weight affixed thereto, suspended from a support to form a pendulum. A light source, e.g., a light emitting diode, mounted on the support transmits light through the optical fiber to a group of further optical fibers located adjacent to but spaced from the free end of the single optical fiber so that displacement of the single optical fiber with respect to the group will result in a change in the amount of light received by the individual optical fibers of the group. Photodetectors individually connectd to the fibers produce corresponding electrical outputs which are differentially compared and processed to produce a resultant continuous analog output representative of the amount and direction of displacement of the single optical fiber.

  17. High-fiber foods

    MedlinePlus

    ... are a good source of fiber. Eat more: Lettuce, Swiss chard, raw carrots, and spinach Tender cooked ... WJ, Stewart ML. Position of the Academy of Nutrition and Dietetics: health implications of dietary fiber. J ...

  18. Fiber length distributions and fiber quality

    USDA-ARS?s Scientific Manuscript database

    Cotton (Gossypium hirsutum L.) is grown in Georgia on ~1 million acres by producers as a raw material input for textile mills. Georgia cotton fiber qualities continue to improve through crop management, genetic, and ginning improvements. Competition from synthetic fibers, mill modernization, and g...

  19. Helical Fiber Amplifier

    DOEpatents

    Koplow, Jeffrey P.; Kliner, Dahy; Goldberg, Lew

    2002-12-17

    A multi-mode gain fiber is provided which affords substantial improvements in the maximum pulse energy, peak power handling capabilities, average output power, and/or pumping efficiency of fiber amplifier and laser sources while maintaining good beam quality (comparable to that of a conventional single-mode fiber source). These benefits are realized by coiling the multimode gain fiber to induce significant bend loss for all but the lowest-order mode(s).

  20. Superlattice Microstructured Optical Fiber

    PubMed Central

    Tse, Ming-Leung Vincent; Liu, Zhengyong; Cho, Lok-Hin; Lu, Chao; Wai, Ping-Kong Alex; Tam, Hwa-Yaw

    2014-01-01

    A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10−4 is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure. PMID:28788693

  1. Superlattice Microstructured Optical Fiber.

    PubMed

    Tse, Ming-Leung Vincent; Liu, Zhengyong; Cho, Lok-Hin; Lu, Chao; Wai, Ping-Kong Alex; Tam, Hwa-Yaw

    2014-06-16

    A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10(-4) is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure.

  2. Fiber pulling apparatus modification

    NASA Technical Reports Server (NTRS)

    Smith, Guy A.; Workman, Gary L.

    1992-01-01

    A reduced gravity fiber pulling apparatus (FPA) was constructed in order to study the effects of gravity on glass fiber formation. The apparatus was specifically designed and built for use on NASA's KC-135 aircraft. Four flights have been completed to date during which E-glass fiber was successfully produced in simulated zero, high, and lunar gravity environments. In addition simulated lunar soil samples were tested for their fiber producing properties using the FPA.

  3. Graphite Fibers from Pitch

    DTIC Science & Technology

    1976-09-01

    yarn filaments may cause early fiber failure, particularly when the crack follows a tight spiral along the fiber axis, as it was observed in isolated...ray Results 4. Mechanical Properties 5. Conclusions V. STRUCTURE OF FILAMENTS IN TYPE P YARN 1. Fiber Structure Terminology 2. Correlation of...Fiber Structure with Single Filament Properties 3. Optical Microscopy of Filaments with Variable Structure 4. SEM Studies of Yarn Samples with

  4. Graphite Fibers from Pitch

    DTIC Science & Technology

    1975-07-01

    r»dJ ^ ^improve fiber properties by modified thermosetting methods or by processing with tension were not fruitful. Many structural features of... PROCESSING AND PROPERTIES OF TYPE-P FIBERS 1. Thermosetting of Pitch Fibers 2. Single Filament Properties 3. Single Filament Strength as a Function of...Gauge Length 4. Sinclair Loop Test 5. Processing Under Tension 6. Continuous Processing and Composite Properties SECTION V FIBER STRUCTURE 1

  5. Simultaneous analysis of organochlorine pesticides and polychlorinated biphenyls in air samples by using accelerated solvent extraction (ASE) and solid-phase micro-extraction (SPME) coupled to gas chromatography dual electron capture detection.

    PubMed

    Mokbel, Haifaa; Al Dine, Enaam Jamal; Elmoll, Ahmad; Liaud, Céline; Millet, Maurice

    2016-04-01

    An analytical method associating accelerated solvent extraction (ASE) and solid-phase micro-extraction (SPME) in immersion mode combined with gas chromatography dual electrons capture detectors (SPME-GC-2ECD) has been developed and studied for the simultaneous determination of 19 organochlorine pesticides (OCPs) and 22 polychlorinated biphenyls (PCBs) in air samples (active and XAD-2 passive samplers). Samples were extracted with ASE with acetonitrile using the following conditions: temperature, 150 °C; pressure, 1500 psi; static, 15 min; cycles, 3; purge, 300 s; flush, 100 %. Extracts were reduced to 1 mL, and 500 μL of this extract, filled with deionised water, was subject to SPME extraction. Experimental results indicated that the proposed method attained the best extraction efficiency under the optimised conditions: extraction of PCB-OCP mixture using 100-μm PDMS fibre at 80 °C for 40 min with no addition of salt. The performance of the proposed ASE-SPME-GC-2ECD methodology with respect to linearity, limit of quantification and detection was evaluated by spiking of XAD-2 resin with target compounds. The regression coefficient (R (2)) of most compounds was found to be high of 0.99. limits of detection (LODs) are between 0.02 and 4.90 ng m(-3), and limits of quantification (LOQs) are between 0.05 and 9.12 ng m(-3) and between 0.2 and 49 ng/sampler and 0.52 and 91 ng/sampler, respectively, for XAD-2 passive samplers. Finally, a developed procedure was applied to determine selected PCBs and OCPs in the atmosphere.

  6. Detection of total microcystin in fish tissues based on lemieux oxidation, and recovery of 2-methyl-3-methoxy-4-phenylbutanoic acid (MMPB) by solid-phase microextraction gas chromatography-mass spectrometry (SPME-GC/MS)

    PubMed Central

    Suchy, Patricia; Berry, John

    2012-01-01

    Microcystins (MCs) are widespread cyanobacterial toxins in freshwater systems, and have been linked to both acute and chronic health effects. A growing number of studies suggest that MC can bioaccumulate in food webs. Although, several methods (i.e. ELISA, LC-MS) have been developed for analysis of MC in water, extraction (for subsequent analysis) of the toxin from biological matrices (i.e. animal tissues) is impeded owing to covalent binding of toxins and active sites of their cellular targets, i.e. protein phosphatases. As an alternative approach, chromatographic methods for analysis of a unique marker, 2-methyl-3-methoxy-4-phenylbutanoic acid (MMPB), the product of the Lemieux oxidation of MCs, have been previously developed, and shown to measure total (bound and unbound) MC. Application, however, has been limited by poor recovery of the analyte. An improved recovery method is proposed – specifically the use of solidphase microextraction (SPME). The MMPB analogue, 4-phenylbutanoic acid (4PB), and oxidized MC, were used to develop methods, and we specifically investigated several SPME fibres, and post-oxidation steps. Specifically, a method employing post-oxidation methyl esterification, followed by headspace SPME recovery of MMPB, was developed, and subsequently applied to analysis of environmental samples (i.e. fish tissues) previously shown to contain MCs. The method shows high linearity for both water and tissues spiked with MC, and an improved limit of quantitation of approximately 140 ng g−1. Evaluation of field samples by SPME-GC/MS detected considerably higher levels of MC, than detected by conventional methods (i.e. ELISA), and it is proposed that this technique reveals MC (particularly in the bound form) that is not detected by these methods. These results indicate that the developed method provides improved detection capability for MC in biological matrices, and will enhance our ability to understand bioaccumulation in freshwater food webs, as well

  7. Oil sorption by lignocellulosic fibers

    Treesearch

    Beom-Goo. Lee; James S. Han; Roger M. Rowell

    1999-01-01

    The oil sorption capacities of cotton fiber, kenaf bast fiber, kenaf core fiber, and moss fiber were compared after refining, extraction, and reduction in particle sizes. The tests were conducted on diesel oil in a pure form. Cotton fiber showed the highest capacity, followed by kenaf core and bast fibers. Wetting, extraction, and reduction in particle size all...

  8. Fiber optic coupled optical sensor

    DOEpatents

    Fleming, Kevin J.

    2001-01-01

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  9. Advanced Engineering Fibers.

    ERIC Educational Resources Information Center

    Edie, Dan D.; Dunham, Michael G.

    1987-01-01

    Describes Clemson University's Advanced Engineered Fibers Laboratory, which was established to provide national leadership and expertise in developing the processing equipment and advance fibers necessary for the chemical, fiber, and textile industries to enter the composite materials market. Discusses some of the laboratory's activities in…

  10. The Fiber Optic Connection.

    ERIC Educational Resources Information Center

    Reese, Susan

    2003-01-01

    Describes the fiber optics programs at the Career and Technical Center in Berlin, Pennsylvania and the Charles S. Monroe Technology Center in Loudoun County, Virginia. Discusses the involvement of the Fiber Optic Association with education, research and development, manufacturing, sales, distribution, installation, and maintenance of fiber optic…

  11. Mineral Fiber Toxicology

    EPA Science Inventory

    The chemical and physical properties of different forms of mineral fibers impact biopersistence and pathology in the lung. Fiber chemistry, length, aspect ratio, surface area and dose are critical factors determining mineral fiber-associated health effects including cancer and as...

  12. Mineral Fiber Toxicology

    EPA Science Inventory

    The chemical and physical properties of different forms of mineral fibers impact biopersistence and pathology in the lung. Fiber chemistry, length, aspect ratio, surface area and dose are critical factors determining mineral fiber-associated health effects including cancer and as...

  13. Advanced Engineering Fibers.

    ERIC Educational Resources Information Center

    Edie, Dan D.; Dunham, Michael G.

    1987-01-01

    Describes Clemson University's Advanced Engineered Fibers Laboratory, which was established to provide national leadership and expertise in developing the processing equipment and advance fibers necessary for the chemical, fiber, and textile industries to enter the composite materials market. Discusses some of the laboratory's activities in…

  14. The Fiber Optic Connection.

    ERIC Educational Resources Information Center

    Reese, Susan

    2003-01-01

    Describes the fiber optics programs at the Career and Technical Center in Berlin, Pennsylvania and the Charles S. Monroe Technology Center in Loudoun County, Virginia. Discusses the involvement of the Fiber Optic Association with education, research and development, manufacturing, sales, distribution, installation, and maintenance of fiber optic…

  15. SYNTHETIC FIBERS, 1965,

    DTIC Science & Technology

    The following groups of fibers are each briefly discussed: Glass and other inorganic fibers, viscose rayon, cuprammonium rayon, saponified acetate rayon, alginate rayon, regenerated protein fibers, cellulose nitrate, cellulose acetate rayon, cellulose triacetate, polyamides, acrylics, modacrylics, polyvinyls, polyvinylidenes, polyesters, polyolefins, polyurethanes, fluorocarbons.

  16. Oxynitride glass fibers

    NASA Technical Reports Server (NTRS)

    Patel, Parimal J.; Messier, Donald R.; Rich, R. E.

    1991-01-01

    Research at the Army Materials Technology Laboratory (AMTL) and elsewhere has shown that many glass properties including elastic modulus, hardness, and corrosion resistance are improved markedly by the substitution of nitrogen for oxygen in the glass structure. Oxynitride glasses, therefore, offer exciting opportunities for making high modulus, high strength fibers. Processes for making oxynitride glasses and fibers of glass compositions similar to commercial oxide glasses, but with considerable enhanced properties, are discussed. We have made glasses with elastic moduli as high as 140 GPa and fibers with moduli of 120 GPa and tensile strengths up to 2900 MPa. AMTL holds a U.S. patent on oxynitride glass fibers, and this presentation discusses a unique process for drawing small diameter oxynitride glass fibers at high drawing rates. Fibers are drawn through a nozzle from molten glass in a molybdenum crucible at 1550 C. The crucible is situated in a furnace chamber in flowing nitrogen, and the fiber is wound in air outside of the chamber, making the process straightforward and commercially feasible. Strengths were considerably improved by improving glass quality to minimize internal defects. Though the fiber strengths were comparable with oxide fibers, work is currently in progress to further improve the elastic modulus and strength of fibers. The high elastic modulus of oxynitride glasses indicate their potential for making fibers with tensile strengths surpassing any oxide glass fibers, and we hope to realize that potential in the near future.

  17. Determination of butyl- and phenyltin compounds in human urine by HS-SPME after derivatization with tetraethylborate and subsequent determination by capillary GC with microwave-induced plasma atomic emission and mass spectrometric detection.

    PubMed

    Zachariadis, G A; Rosenberg, E

    2009-04-30

    A headspace solid-phase micro-extraction (HS-SPME) method was developed and optimized for gas chromatographic separation and determination of commonly found organotin compounds in human urine after potential exposure. Butyl- and phenyltin compounds were in situ derivatized to ethylated derivatives by sodium tetraethylborate (NaBEt(4)) directly in the urine matrix. The relevant parameters affecting the yield of the SPME procedure were examined using tetrabutyltin as internal standard. The method was optimized for direct use in the analysis of undiluted human urine samples and mono-, di- and tri-substituted butyl- and phenyltin compounds could be determined after a 15-min headspace extraction time at room temperature. The selectivity of the microwave-induced plasma atomic emission detector (MIP-AED) as an element specific detector in combination with the relatively selective sample preparation technique of HS-SPME allowed the interference-free detection of the organotin compounds in all cases. A quadrupole mass spectrometer was used in parallel experiments as a detector for the confirmation of the identity molecular structure of the eluted compounds. The performance characteristics of the developed method are given for the determination of mixtures of these compounds. Finally the proposed method was applied to the analysis of several human urine samples.

  18. Stable isotope dilution assay (SIDA) and HS-SPME-GCMS quantification of key aroma volatiles for fruit and sap of Australian mango cultivars.

    PubMed

    San, Anh T; Joyce, Daryl C; Hofman, Peter J; Macnish, Andrew J; Webb, Richard I; Matovic, Nicolas J; Williams, Craig M; De Voss, James J; Wong, Siew H; Smyth, Heather E

    2017-04-15

    Reported herein is a high throughput method to quantify in a single analysis the key volatiles that contribute to the aroma of commercially significant mango cultivars grown in Australia. The method constitutes stable isotope dilution analysis (SIDA) in conjunction with headspace (HS) solid-phase microextraction (SPME) coupled with gas-chromatography mass spectrometry (GCMS). Deuterium labelled analogues of the target analytes were either purchased commercially or synthesised for use as internal standards. Seven volatiles, hexanal, 3-carene, α-terpinene, p-cymene, limonene, α-terpinolene and ethyl octanoate, were targeted. The resulting calibration functions had determination coefficients (R(2)) ranging from 0.93775 to 0.99741. High recovery efficiencies for spiked mango samples were also achieved. The method was applied to identify the key aroma volatile compounds produced by 'Kensington Pride' and 'B74' mango fruit and by 'Honey Gold' mango sap. This method represents a marked improvement over current methods for detecting and measuring concentrations of mango fruit and sap volatiles.

  19. Volatile profiles of Italian monovarietal extra virgin olive oils via HS-SPME-GC-MS: newly identified compounds, flavors molecular markers, and terpenic profile.

    PubMed

    Cecchi, Teresa; Alfei, Barbara

    2013-12-01

    This study aims to contribute to the knowledge of the commercial, sensory, and analytical characteristics of extra virgin olive oil (EVOO) from Italy (Marche region), renowned since ancient times. Headspace solid-phase micro-extraction (HS-SPME) was applied for the very first time to the sampling of volatile compounds of eleven typical Italian monocultivar EVOOs. Forty-eight compounds were characterised by GC-MS, some of them were only occasionally found in other EVOOs and some other were never detected before in any EVOO. Compounds belonging mainly to alcohols, esters, aldehydes, ketones and hydrocarbons chemical classes characterised the volatile profiles. The main volatile compounds detected in the EVOOs were the C6 compounds derived from polyunsaturated fatty acids, through the lipoxygenase pathway, in different proportion according to the specific cultivar. The results suggest that genetic factors strongly influence volatile formation and terpene hydrocarbons are claimed to be suitable markers of the geographic origin and genotype of the EVOO. Correlations among sensory attributes evaluated by a panel test and the presence of specific volatile compounds were highlighted for the very first time. The significance of the presence of some newly identified volatile compounds was discussed.

  20. Quantification of furanic compounds in coated deep-fried products simulating normal preparation and consumption: optimisation of HS-SPME analytical conditions by response surface methodology.

    PubMed

    Pérez-Palacios, T; Petisca, C; Melo, A; Ferreira, I M P L V O

    2012-12-01

    The validation of a method for the simultaneous quantification of furanic compounds in coated deep-fried samples processed and handled as usually consumed is presented. The deep-fried food was grinded using a device that simulates the mastication, and immediately analysed by headspace solid phase microextraction coupled to gas chromatography-mass spectrometry. Parameters affecting the efficiency of HS-SPME procedure were selected by response surface methodology, using a 2(3) full-factorial central composite design. Optimal conditions were achieved using 2g of sample, 3g of NaCl and 40min of absorption time at 37°C. Consistency between predicted and experimented values was observed and quality parameters of the method were established. As a result, furan, 2-furfural, furfuryl alcohol and 2-pentylfuran were, for the first time, simultaneously detected and quantified (5.59, 0.27, 10.48 and 1.77μgg(-1) sample, respectively) in coated deep-fried fish, contributing to a better understanding of the amounts of these compounds in food.

  1. Degradation product emission from historic and modern books by headspace SPME/GC-MS: evaluation of lipid oxidation and cellulose hydrolysis.

    PubMed

    Clark, Andrew J; Calvillo, Jesse L; Roosa, Mark S; Green, David B; Ganske, Jane A

    2011-04-01

    Volatile organic compounds emitted from a several decade series of bound periodicals (1859-1939) printed on ground wood paper, as well as historical books dating from the 1500s to early 1800s made from cotton/linen rag, were studied using an improved headspace SPME/GC-MS method. The headspace over the naturally aging books, stored upright in glass chambers, was monitored over a 24-h period, enabling the identification of a wide range of organic compounds emanating from the whole of the book. The detection of particular straight chain aldehydes, as well as characteristic alcohols, alkenes and ketones is correlated with oxidative degradation of the C(18) fatty acid constituency of paper. The relative importance of hydrolytic and oxidative chemistry involved in paper aging in books published between 1560 and 1939 was examined by comparing the relative abundances of furfural (FUR) a known cellulose hydrolysis product, and straight chain aldehydes (SCA) produced from the oxidation of fatty acids in paper. The relative abundance of furfural is shown to increase across the 379-year publication time span. A comparison of relative SCA peak areas across the series of books examined reveals that SCA emission is more important in the cotton/linen rag books than in the ground wood books.

  2. Rapid evaluation technique to differentiate mushroom disease-related moulds by detecting microbial volatile organic compounds using HS-SPME-GC-MS.

    PubMed

    Radványi, Dalma; Gere, Attila; Jókai, Zsuzsa; Fodor, Péter

    2015-01-01

    Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was used to analyse microbial volatile organic compounds (MVOCs) of mushroom disease-related microorganisms. Mycogone perniciosa, Lecanicillum fungicola var. fungicola, and Trichoderma aggressivum f. europaeum species, which are typically harmful in mushroom cultivation, were examined, and Agaricus bisporus (bisporic button mushroom) was also examined as a control. For internal standard, a mixture of alkanes was used; these were introduced as the memory effect of primed septa in the vial seal. Several different marker compounds were found in each sample, which enabled us to distinguish the different moulds and the mushroom mycelium from each other. Monitoring of marker compounds enabled us to investigate the behaviour of moulds. The records of the temporal pattern changes were used to produce partial least squares regression (PLS-R) models that enabled determination of the exact time of contamination (the infection time of the media). Using these evaluation techniques, the presence of mushroom disease-related fungi can be easily detected and monitored via their emitted MVOCs.

  3. NMR investigation of acrolein stability in hydroalcoholic solution as a foundation for the valid HS-SPME/GC-MS quantification of the unsaturated aldehyde in beverages.

    PubMed

    Kächele, Martin; Monakhova, Yulia B; Kuballa, Thomas; Lachenmeier, Dirk W

    2014-04-11

    Acrolein (propenal) is found in many foods and beverages and may pose a health hazard due to its cytotoxicity. Considerable knowledge gaps regarding human exposure to acrolein exist, and there is a lack of reliable analytical methods. Hydroalcoholic dilutions prepared for calibration purposes from pure acrolein show considerable degradation of the compound and nuclear magnetic resonance (NMR) spectroscopy showed that 1,3,3-propanetriol and 3-hydroxypropionaldehyde are formed. The degradation can be prevented by addition of hydroquinone as stabilizer to the calibration solutions, which then show linear concentration-response behaviour required for quantitative analysis. The stabilized calibration solutions were used for quantitative headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) determination of acrolein in alcoholic beverages with a detection limit of 14 μg L(-1). Of 117 tested alcoholic beverages, 64 were tested positive with the highest incidence in grape marc spirits and whiskey (100%, mean 252 μg L(-1)), followed by fruit spirits (86%, mean 591 μg/L(-1)), tequila (86%, mean 404 μg L(-1)), Asian spirits (43%, mean 54 μg L(-1)) and wine (9%, mean 0.7 μg L(-1)). Acrolein could not be detected in beer, vodka, absinthe and bottled water. Six of the fruit and grape marc spirits had acrolein levels above the World Health Organization (WHO) provisional tolerable concentration of 1.5 mg L(-1).

  4. Aroma volatiles obtained at harvest by HS-SPME/GC-MS and INDEX/MS-E-nose fingerprint discriminate climacteric behaviour in melon fruit.

    PubMed

    Chaparro-Torres, Libia A; Bueso, María C; Fernández-Trujillo, Juan P

    2016-05-01

    Melon aroma volatiles were extracted at harvest from juice of a climacteric near-isogenic line (NIL) SC3-5-1 with two quantitative trait loci (QTLs) introgressed which produced climacteric behaviour and its non-climacteric parental (PS) using two methodologies of analysis: static headspace solid phase micro-extraction (HS-SPME) by gas chromatography-mass spectrometry (GC-MS) and inside needle dynamic extraction (INDEX) by MS-based electronic nose (MS-E-nose). Of the 137 volatiles compounds identified, most were found at significantly higher concentrations in SC3-5-1 than in PS in both seasons. These volatiles were mostly esters, alcohols, sulfur-derived esters and even some aldehydes and others. The number of variables with high correlation values was reduced by using correlation network analysis. Partial least squares-discriminant analysis (PLS-DA) achieved the correct classification of PS and SC3-5-1. The ions m/z 74, 91, 104, 105, 106 and 108, mainly volatile derivatives precursor phenylalanine, were the most discriminant in SC3-5-1 and PS. As many as 104 QTLs were mapped in season 1 and at least 78 QTLs in each season with an effect above the PS mean. GC-MS gave better discrimination than E-nose. Most of the QTLs that mapped in both seasons enhanced aroma volatiles associated with climacteric behaviour. © 2015 Society of Chemical Industry.

  5. NMR, HS-SPME-GC-MS and HPLC-MS(n) analyses of phytoconstituents and aroma profile of Rosmarinus eriocalyx L.

    PubMed

    Bendif, Hamdi; Miara, Mohamed Djamel; Peron, Gregorio; Sut, Stefania; Dall'Acqua, Stefano; Flamini, Guido; Maggi, Filippo

    2017-06-28

    In this work a comprehensive study on the chemical constituents of the aerial parts of Rosmarinus eriocalyx L. (Lamiaceae), an aromatic shrub traditionally consumed as a food and herbal remedy in Algeria, is presented. The aroma profile was analysed by headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS), whereas the crude extract constituents were analyzed by (1) H-NMR and by high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS(n) ). Thirty-nine volatile compounds, most of them being monoterpenes, have been identified, with camphor, camphene and α-pinene as the most abundant constituents. (1) H-NMR analysis revealed the presence of phenolic and betulinic acid while HPLC-MS(n) allowed the identification of glycosilated and aglyconic flavonoids as well as phenylpropanoid derivatives. Some of these constituents, namely as betulinic acid, rosmanol and cirsimaritin were reported for the first time in R. eriocalyx. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. HS-SPME comparative analysis of genotypic diversity in the volatile fraction and aroma-contributing compounds of Capsicum fruits from the annuum-chinense-frutescens complex.

    PubMed

    Rodríguez-Burruezo, Adrián; Kollmannsberger, Hubert; González-Mas, M Carmen; Nitz, Siegfried; Fernando, Nuez

    2010-04-14

    Volatile constituents of ripe fruits of 16 Capsicum accessions from the annuum-chinense-frutescens complex, with different aroma impressions and geographical origins, were isolated by headspace-solid phase microextraction (HS-SPME) and analyzed by gas chromatography-olfactometry-mass spectrometry (GC-sniffing port-MS). More than 300 individual compounds could be detected in the studied genotypes; most of them could be identified by comparing mass spectra and retention times with authentic reference substances or literature data. Esters and terpenoids were the main groups, although other minor compounds, such as nitrogen and sulfur compounds, phenol derivatives, norcarotenoids, lipoxygenase derivatives, carbonyls, alcohols, and other hydrocarbons, were also identified. The sniffing test revealed that the diversity of aromas found among the studied cultivars is due to qualitative and quantitative differences of, at least, 23 odor-contributing volatiles (OCVs). C. chinense, and C. frutescens accessions, with fruity/exotic aromas, were characterized by a high contribution of several esters and ionones and a low or nil contribution of green/vegetable OCVs. Different combinations of fruity/exotic and green/vegetable OCVs would explain the range of aroma impressions found among C. annuum accessions. Implications of these findings for breeding and phylogeny studies in Capsicum are also discussed.

  7. A fast and effective routine method based on HS-SPME-GC-MS/MS for the analysis of organotin compounds in biota samples.

    PubMed

    Noventa, Seta; Barbaro, Jvan; Formalewicz, Malgorzata; Gion, Claudia; Rampazzo, Federico; Brusà, Rossella Boscolo; Gabellini, Massimo; Berto, Daniela

    2015-02-09

    This work validated an automated, fast, and low solvent- consuming methodology suited for routine analysis of tributyltin (TBT) and degradation products (dibutyltin, DBT; monobutyltin, MBT) in biota samples. The method was based on the headspace solid-phase microextraction methodology (HS-SPME), coupled with gas chromatographic separation and tandem mass-spectrometry (GC-MS/MS). The effectiveness of the matrix-matched signal ratio external calibration was tested for quantification purposes. The exclusion of matrix influences in the calibration curves proved the suitability of this versatile quantification method. The method detection limits obtained were of 3 ng Sn g(-1) dw for all the analytes. The analysis of references materials showed satisfying accuracy under optimum calibration conditions (% recovery between 87-111%; |Z-scores|<2). The repeatability RSD% and intra-laboratory reproducibility RSD% were lower than 9.6% and 12.6%, respectively. The work proved the remarkable analytical performances of the method and its high potential for routine application in monitoring organotin compounds (OTC). Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Effect of hot air drying on volatile compounds of Flammulina velutipes detected by HS-SPME-GC-MS and electronic nose.

    PubMed

    Yang, Wenjian; Yu, Jie; Pei, Fei; Mariga, Alfred Mugambi; Ma, Ning; Fang, Yong; Hu, Qiuhui

    2016-04-01

    Volatile compounds are important factors that affect the flavor quality of Flammulina velutipes, but the changes occurring during hot air drying is still unclear. To clarify the dynamic changes of flavor components during hot air drying, comprehensive flavor characterization and volatile compounds of F. velutipes were evaluated using electronic nose technology and headspace solid phase micro-extraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS), respectively. Results showed that volatile components in F. velutipes significantly changed during hot air drying according to the principal component analysis and radar fingerprint chart of electronic nose. Volatile compounds of fresh F. velutipes consisted mainly of ketones, aldehydes and alcohols, and 3-octanone was the dominant compound. Drying process could significantly decrease the relative content of ketones and promoted the generation of alcohols, acids, and esters, which became the main volatile compounds of dried F. velutipes. These may provide a theoretical basis for the formation mechanism of flavor substances in dried F. velutipes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Chemometric approach to the optimization of HS-SPME/GC-MS for the determination of multiclass pesticide residues in fruits and vegetables.

    PubMed

    Abdulra'uf, Lukman Bola; Tan, Guan Huat

    2015-06-15

    An HS-SPME method was developed using multivariate experimental designs, which was conducted in two stages. The significance of each factor was estimated using the Plackett-Burman (P-B) design, for the identification of significant factors, followed by the optimization of the significant factors using central composite design (CCD). The multivariate experiment involved the use of Minitab® statistical software for the generation of a 2(7-4) P-B design and CCD matrices. The method performance evaluated with internal standard calibration method produced good analytical figures of merit with linearity ranging from 1 to 500 μg/kg with correlation coefficient greater than 0.99, LOD and LOQ were found between 0.35 and 8.33 μg/kg and 1.15 and 27.76 μg/kg respectively. The average recovery was between 73% and 118% with relative standard deviation (RSD=1.5-14%) for all the investigated pesticides. The multivariate method helps to reduce optimization time and improve analytical throughput. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. HS-SPME-GC-MS/MS Method for the Rapid and Sensitive Quantitation of 2-Acetyl-1-pyrroline in Single Rice Kernels.

    PubMed

    Hopfer, Helene; Jodari, Farman; Negre-Zakharov, Florence; Wylie, Phillip L; Ebeler, Susan E

    2016-05-25

    Demand for aromatic rice varieties (e.g., Basmati) is increasing in the US. Aromatic varieties typically have elevated levels of the aroma compound 2-acetyl-1-pyrroline (2AP). Due to its very low aroma threshold, analysis of 2AP provides a useful screening tool for rice breeders. Methods for 2AP analysis in rice should quantitate 2AP at or below sensory threshold level, avoid artifactual 2AP generation, and be able to analyze single rice kernels in cases where only small sample quantities are available (e.g., breeding trials). We combined headspace solid phase microextraction with gas chromatography tandem mass spectrometry (HS-SPME-GC-MS/MS) for analysis of 2AP, using an extraction temperature of 40 °C and a stable isotopologue as internal standard. 2AP calibrations were linear between the concentrations of 53 and 5380 pg/g, with detection limits below the sensory threshold of 2AP. Forty-eight aromatic and nonaromatic, milled rice samples from three harvest years were screened with the method for their 2AP content, and overall reproducibility, observed for all samples, ranged from 5% for experimental aromatic lines to 33% for nonaromatic lines.

  11. Sensitive multiresidue method by HS-SPME/GC-MS for 10 volatile organic compounds in urine matrix: a new tool for biomonitoring studies on children.

    PubMed

    Antonucci, Arianna; Vitali, Matteo; Avino, Pasquale; Manigrasso, Maurizio; Protano, Carmela

    2016-08-01

    A HS-SPME method coupled with GC-MS analysis has been developed for simultaneously measuring the concentration of 10 volatile organic compounds (VOCs) (benzene, toluene, ethylbenzene, o-, m-, and p-xylene, methyl tert-butyl ether, ethyl tert-butyl ether, 2-methyl-2-butyl methyl ether, and diisopropyl ether) in urine matrix as a biomonitoring tool for populations at low levels of exposure to such VOCs. These compounds, potentially toxic for human health, are common contaminants of both outdoor and indoor air, as they are released by autovehicular traffic; some of them are also present in environmental tobacco smoke (ETS). Thus, the exposure to these pollutants cannot be neglected and should be assessed. The low limits of detection and quantification (LODs and LOQs <6.5 and 7.5 ng L(-1), respectively) and the high reproducibility (CVs <4 %) make the developed method suited for biomonitoring populations exposed at low levels such as children. Further, the method is cost-effective and low in time-consumption; therefore, it is useful for investigating large populations. It has been applied to children exposed to traffic pollution and/or ETS; the relevant results are reported, and the relevant implications are discussed.

  12. Volatile compounds of Asphodelus microcarpus Salzm. et Viv. Honey obtained by HS-SPME and USE analyzed by GC/MS.

    PubMed

    Jerković, Igor; Tuberoso, Carlo I G; Kasum, Ana; Marijanović, Zvonimir

    2011-04-01

    Chemical analysis of Asphodelus microcarpus Salzm. et Viv. honey is of great importance, since melissopalynology does not allow the unambiguous determination of its botanical origin. Therefore, the volatile compounds of eight unifloral asphodel honeys have been investigated for the first time. The honey extracts were obtained by headspace solid-phase microextraction (HS-SPME) and ultrasonicsolvent extraction (USE) and analyzed by GC and GC/MS. In the honey headspace, 31 volatile compounds were identified with high percentages of 2-phenylacetaldehyde (2; 14.8–34.7%), followed by somewhat lower percentages of methyl syringate (1; 10.5–11.5%). Compound 2 is not a specific marker of the botanical origin of the honey, but its high percentage can be emphasized as headspace characteristic of asphodel honey. The extraction solvent for all the samples was selected after extracting a representative sample with pentane, Et(2)O, pentane/Et(2)O 1:2 (v/v), and CH(2)Cl(2) . Compound 1 was the major constituent of all the USE extracts (46.8–87.0%). According to these preliminary results, all the honey samples were extracted by USE with the solvent pentane/Et(2)O 1:2. A total of 60 volatile compounds were identified with 1 as predominant compound (69.4–87.0%), pointing out 1 as Asphodelus honey volatile marker.

  13. Study of aroma formation and transformation during the manufacturing process of Biluochun green tea in Yunnan Province by HS-SPME and GC-MS.

    PubMed

    Wang, Chen; Lv, Shidong; Wu, Yuanshuang; Lian, Ming; Gao, Xuemei; Meng, Qingxiong

    2016-10-01

    Biluochun is a typical non-fermented tea and is also famous for its unique aroma in China. Few studies have been performed to evaluate the effect of the manufacturing process on the formation and content of its aroma. The volatile components were extracted at different manufacturing process steps of Biluochun green tea using fully automated headspace solid-phase microextraction (HS-SPME) and further characterised by gas chromatography-mass spectrometry (GC-MS). Among 67 volatile components collected, the fractions of linalool oxides, β-ionone, phenylacetaldehyde, aldehydes, ketones, and nitrogen compounds were increased while alcohols and hydrocarbons declined during the manufacturing process. The aroma compounds decreased the most during the drying steps. We identified a number of significantly changed components that can be used as markers and quality control during the producing process of Biluochun. The drying step played a major role in the aroma formation of green tea products and should be the most important step for quality control. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Effect of water content on thermal oxidation of oleic acid investigated by combination of EPR spectroscopy and SPME-GC-MS/MS.

    PubMed

    Chen, Hongjian; Cao, Peirang; Li, Bo; Sun, Dewei; Wang, Yong; Li, Jinwei; Liu, Yuanfa

    2017-04-15

    Promotion of water to the thermal oxidation of oleic acid was detected by the combination of EPR, SPME-GC-MS/MS and GC. Spin-trapping technique was used to identify and quantify the radical species formed during thermal oxidation of oleic acid by using DMPO as electron spin trap. The most abundant radical species were identified as DMPO-alkyl radical adducts. EPR intensity plateau of the samples with 5% water content was 140% higher than the samples without water. It implies oleic acid samples with high water content had high level of oxidation rates. The proportion of aldehydes of the samples with 2% water content was the maximum about 59.97%. Among the formed products, (E,E)-2,4-decadienal has genotoxic and cytotoxic effects, whose percentage was nearly twice comparing with that of 5-0% water content. This study demonstrated that higher water content in frying systems would contribute to seriously oxidation and degradation of oleic acids.

  15. Comparison of volatile components in Chinese traditional pickled peppers using HS-SPME-GC-MS, GC-O and multivariate analysis.

    PubMed

    Xiao, Z B; Zhu, J C; Feng, T; Tian, H X; Yu, H Y; Niu, Y W; Zhang, X M

    2010-12-01

    Volatile compounds of Chinese traditional pickled peppers (CTPPs) were extracted by solid-phase micro-extraction (SPME) and analysed by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O) to visually compare their volatile compositions by applying principal component analysis (PCA). A total of 67 volatile components were identified by GC-MS, including 7 acids, 6 alkanes, 14 alcohols, 9 esters, 11 terpenes, 3 aldehydes, 5 ketones, 7 phenols and 5 miscellaneous compounds, tentatively identified or identified by comparing with mass spectra and retention indices of the standards or from literature. Of 45 volatile compounds detected in the sniffing port of GC-O, the majority of odour-active components included acetic acid, 2-ethyl phenol, L-linalool, tridecane, butyl butanoate, δ-3-carene. The individual concentrations of the volatile compounds such as acetic acid, ethanol, 1-propanol, L-linalool, hexyl 2-methyl butyrate and hexyl pentanoate corresponded well to the intensities of related attributes in the correlation analysis. Due to their high concentration level and low threshold value, these compounds played an important role in the final aromatic profile of the pickled peppers. The differences in flavours were observed by applying PCA to GC-MS data sets. From the PCA results, samples were primarily separated along the first principal component.

  16. Distribution of volatile organic compounds in Sicilian groundwaters analysed by head space-solid phase micro extraction coupled with gas chromatography mass spectrometry (SPME/GC/MS).

    PubMed

    Pecoraino, Giovannella; Scalici, Lea; Avellone, Giuseppe; Ceraulo, Leopoldo; Favara, Rocco; Candela, Esterina Gagliano; Provenzano, Maria Clara; Scaletta, Claudio

    2008-08-01

    This work presents the results of an assessment of the existence and concentration of 13 volatile organic compounds (VOCs) in groundwaters from 14 hydrological basins in Sicily (25,710km (2)). On the basis of hydrological, hydrogeochemical and geological studies, 324 sampling points were selected. All groundwater sampled were collected twice, from October to December 2004 and from February to May 2005, and were analysed to determine the concentration and spatial distribution of the VOCs in the aquifers. The need to analyze a large number of samples in a short space of time so as to obtain quantitative analyses in trace concentration levels spurred us to create a new analytical method, both simple and sensitive, based on HS-SPME/GC/MS. The concentrations of VOCs measured in industrial and intensive agricultural unconfined aquifers were greater than those found in other aquifers. Tetrachloroethylene, chloroform, trichloroethylene and 1,2-dichloropropane were the most frequently detected VOCs. However, they exceeded the guideline values proposed by the EU in only three aquifers located near to industrial and intense agricultural areas.

  17. Rapid determination of furan in heated foodstuffs by isotope dilution solid phase micro-extraction-gas chromatography--mass spectrometry (SPME-GC-MS).

    PubMed

    Goldmann, Till; Périsset, Adrienne; Scanlan, Francis; Stadler, Richard H

    2005-06-01

    An analytical method is reported to determine trace amounts of furan in several different commercial foodstuffs that are subjected to thermal treatment. The SPME-GC-MS method is rapid and robust, and entails the following steps: addition of deuterated furan to the sample, sodium chloride-assisted extraction into the headspace, cryofocussing, and finally fibre desorption and GC-MS analysis. Furan is quantified by the use of an external calibration curve, achieving a decision limit (CC alpha) and detection capability (CC beta) of 17 pg and 43 pg, respectively, as absolute furan concentration in a 10 ml headspace vial. The method is applicable to a wide variety of foods, including fruits juices, baby foods in jars, canned foods, pet food, coffee and coffee substitutes. Typical amounts of furan found in selected foodstuffs range from about 1 microg kg(-1) (fruit juice) to 110 microg kg(-1) (baby food containing cooked vegetables). In-house validation data show good precision and accuracy of the method, with a typical repeatability of between 5 and 16% in different food matrices, and trueness determined in orange juice and coffee as 87 and 93%, respectively. Moreover, the measurement uncertainty has been evaluated for two matrices (fruit juice and coffee). Studies on short-term stability of furan in certain foods are also presented, and show that the furan content decreases in food while heating for preparation or reconstitution.

  18. Three dimensionally honeycomb layered double hydroxides framework as a novel fiber coating for headspace solid-phase microextraction of phenolic compounds.

    PubMed

    Abolghasemi, Mir Mahdi; Yousefi, Vahid

    2014-06-06

    A new solid phase microextraction (SPME) fiber based on high-temperature three dimensionally honeycomb layered double hydroxide (TDH-LDH) material is presented. The fiber coating can be prepared easily, it is mechanically stable and exhibits relatively high thermal stability. This study shows that three dimensionally honeycomb layered double hydroxide generated porous morphology. The TDH-LDH material was tested for the extraction of some phenolic and polycyclic aromatic hydrocarbon compounds from aqueous sample solutions in combination with gas chromatography-mass spectrometry (GC-MS). The TDH-LDH fiber contains polar groups and its efficiency for non-polar polycyclic aromatic hydrocarbon compounds was lower than phenolic compounds. On the other hand, a high tendency towards the adsorption of polar phenolic compounds was observed for the proposed fiber. The effects of the extraction and desorption parameters including extraction temperature, extraction time, ionic strength, stirring rate, pH and desorption temperature and time have been studied. In optimum conditions, the repeatability for one fiber (n=5), expressed as relative standard deviation (R.S.D. %), was between 2.8% and 7.1% for the phenolic compounds. The detection limits for the studied phenolic compounds were between 0.02 and 5.8 ng mL(-1). The developed method offers the advantage of being simple to use, with shorter analysis time, lower cost of equipment, thermal stability of fiber and high relative recovery in comparison to conventional methods of analysis.

  19. Fiber coating method

    DOEpatents

    Corman, Gregory Scot

    2003-04-15

    A coating is applied to reinforcing fibers arranged into a tow by coaxially aligning the tow with an adjacent separation layer and winding or wrapping the tow and separation layer onto a support structure in an interleaved manner so that the separation layer separates a wrap of the tow from an adjacent wrap of the tow. A coating can then be uniformly applied to the reinforcing fibers without defects caused by fiber tow to fiber tow contact. The separation layer can be a carbon fiber veil.

  20. Fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Hesse, J.; Sohler, W.

    1984-01-01

    A survey of the developments in the field of fiber optics sensor technology is presented along with a discussion of the advantages of optical measuring instruments as compared with electronic sensors. The two primary types of fiber optics sensors, specifically those with multiwave fibers and those with monowave fibers, are described. Examples of each major sensor type are presented and discussed. Multiwave detectors include external and internal fiber optics sensors. Among the monowave detectors are Mach-Zender interferometers, Michelson interferometers, Sagnac interferometers (optical gyroscopes), waveguide resonators, and polarimeter sensors. Integrated optical sensors and their application in spectroscopy are briefly discussed.

  1. Fiber optic laser rod

    DOEpatents

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  2. Fiber optic monitoring device

    DOEpatents

    Samborsky, J.K.

    1993-10-05

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information. 4 figures.

  3. Hybrid matrix fiber composites

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  4. Fiber coating method

    DOEpatents

    Corman, Gregory Scot

    2001-01-01

    A coating is applied to reinforcing fibers arranged into a tow by coaxially aligning the tow with an adjacent separation layer and winding or wrapping the tow and separation layer onto a support structure in an interleaved manner so that the separation layer separates a wrap of the tow from an adjacent wrap of the tow. A coating can then be uniformly applied to the reinforcing fibers without defects caused by fiber tow to fiber tow contact. The separation layer can be a carbon fiber veil.

  5. Fiber optic monitoring device

    SciTech Connect

    Samborsky, J.K.

    1992-12-31

    This invention is comprised of a device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  6. Preparation and characterization of microporous fibers for sample preparation and LC-MS determination of drugs.

    PubMed

    Buszewski, Boguslaw; Nowaczyk, Jacek; Ligor, Tomasz; Olszowy, Pawel; Ligor, Magdalena; Wasiniak, Bartlomiej; Miekisch, Wolfram; Schubert, Jochen K; Amann, Anton

    2009-07-01

    The aim of this study was the preparation of polypyrrole (PPy) fibers for solid phase microextraction (SPME). PPy coatings were obtained during the electrochemical polymerization process. The utility of various metal wires (Fe, Cu, Ag, Cu/Ag, kanthal and medical stainless steel) as a support for polymers was compared. Various experimental conditions of the synthesis process such as scan rate, voltage limits and number of scans and deposition time were applied. The average polymer thickness was in the range of 7-125 microm and its weight was in the scope of 0.65-5.6 mg. Different techniques, mainly elemental analysis, Fourier transform infrared spectroscopy, microscopy, and chromatography were performed for the characterization of obtained fibers with microporous structure. The extraction efficiency of cardiovascular drugs (metoprolol, propranolol, oxprenolol, propafenone and mexiletine) by means of fibers was tested. The concentration of mentioned compounds in standard solution was in the span of 10-150 ng/mL. LC-MS was employed for determination of drugs in desorption solution. LODs varied from 0.013 to 1.51 ng/mL for metoprolol and mexiletine respectively. The repeatability of extraction was obtained with the RSD values lower than 10%.

  7. Splicing of aged fibers

    NASA Astrophysics Data System (ADS)

    Volotinen, Tarja T.; Yuce, Hakan H.; Bonanno, Nicholas; Frantz, Rolf A.; Duffy, Sean

    1993-11-01

    The deployment of fiber in the subscriber loop will require that an optical fiber network maintain the highest possible level of reliability over time, despite being subjected to extremes of temperature, humidity, and other environmental and mechanical stresses imposed on the outside plant. At the same time, both the initial cost and the ongoing maintenance expenses for loop equipment must be kept low. Fiber in the Loop (FITL) applications will entail increased fiber handling. Cable lengths will be shorter, and fiber counts higher, than has been the case so far in long-distance applications. There will also be more cable sheath openings per unit length of cable and/or fiber, as well as more splicing and connectorization. It may become a common practice that a customer is connected to a cable installed many years earlier. In subscriber loops, cables and fibers will be installed in harsher and more varying environments. Fibers will be exposed to higher humidity and temperature, particularly in splice boxes mounted on building walls, in pedestal cabinets, and in other similar enclosures. Corrosive gases and/or liquids may also be present at some locations and will adversely affect the fibers. The combination of increased handling, greater exposure, and more stressful environments may give rise to a need for new, more stringent requirements for fiber mechanical reliability. These can include increaSed fiber strength, increased aging resistance, and increased fatigue resistance.

  8. Kinetics of fiber solidification

    PubMed Central

    Mercader, C.; Lucas, A.; Derré, A.; Zakri, C.; Moisan, S.; Maugey, M.; Poulin, P.

    2010-01-01

    Many synthetic or natural fibers are produced via the transformation of a liquid solution into a solid filament, which allows the wet processing of high molecular weight polymers, proteins, or inorganic particles. Synthetic wet-spun fibers are used in our everyday life from clothing to composite reinforcement applications. Spun fibers are also common in nature. Silk solidification results from the coagulation of protein solutions. The chemical phenomena involved in the formation of all these classes of fibers can be quite different but they all share the same fundamental transformation from a liquid to a solid state. The solidification process is critical because it governs the production rate and the strength that fibers can sustain to be drawn and wound. An approach is proposed in this work to investigate the kinetics of fiber solidification. This approach consists in circulating solidifying fibers in the extensional flow of a surrounding liquid. Such as polymers in extensional flows, the fibers break if resultant drag forces exceed the fiber tensile strength. The solidification kinetics of nanotube composite fibers serves as a validation example of this approach. The method could be extended to other systems and advance thereby the science and technology of fiber and textile materials. It is also a way to directly visualize the scission of chain-like systems in extensional flows. PMID:20937910

  9. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  10. Fiber optic vibration sensor

    DOEpatents

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  11. Fiber optic vibration sensor

    DOEpatents

    Dooley, Joseph B.; Muhs, Jeffrey D.; Tobin, Kenneth W.

    1995-01-01

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  12. Fiber optic communications

    NASA Astrophysics Data System (ADS)

    Palais, J. C.

    A description of fiber optic communications systems and an optics review are provided, taking into account the historical perspective, the basic communications system, the nature of light, advantages of fibers, the applicatins of fiber optic communications, ray theory and applications, lenses, imaging, numerical aperture, and diffraction. Other subjects examined are related to integrated optic waveguides, lightwave fundamentals, optic fiber waveguides, light sources, light detectors, couplers and connectors, distribution systems, modulation, noise and detection, and system design. Attention is given to electromagnetic waves, dispersion, pulse distortion, polarization, integrated optic networks, the step-index fiber, the graded-index fiber, optic fiber cables, light-emitting diodes, laser principles, laser diodes, splices, source coupling, distribution networks, directional couplers, star couplers, switches, analog and digital modulation formats, optic heterodyne receives, thermal and shot noise, error rates, receiver circuit design, and analog and digital system design.

  13. Fiber draw synthesis

    PubMed Central

    Orf, Nicholas D.; Shapira, Ofer; Sorin, Fabien; Danto, Sylvain; Baldo, Marc A.; Joannopoulos, John D.; Fink, Yoel

    2011-01-01

    The synthesis of a high-melting temperature semiconductor in a low-temperature fiber drawing process is demonstrated, substantially expanding the set of materials that can be incorporated into fibers. Reagents in the solid state are arranged in proximate domains within a fiber preform. The preform is fluidized at elevated temperatures and drawn into fiber, reducing the lateral dimensions and bringing the domains into intimate contact to enable chemical reaction. A polymer preform containing a thin layer of selenium contacted by tin–zinc wires is drawn to yield electrically contacted crystalline ZnSe domains of sub-100-nm scales. The in situ synthesized compound semiconductor becomes the basis for an electronic heterostructure diode of arbitrary length in the fiber. The ability to synthesize materials within fibers while precisely controlling their geometry and electrical connectivity at submicron scales presents new opportunities for increasing the complexity and functionality of fiber structures.

  14. Indium fluoride glass fibers

    NASA Astrophysics Data System (ADS)

    Saad, Mohammed

    2012-03-01

    Fluoride glasses are the only material that transmit light from ultraviolet to mid-infrared and can be drawn into industrial optical fibers. The mechanical and optical properties of new indium fluoride glass fibers have been investigated. Multimode fiber 190 microns, has very high mechanical strength greater than 100 kpsi and optical loss as low as 45 dB/km between 2 and 4 microns. Unlike chalcogenide glass fibers, indium fluoride fiber has a wide transmission window from 0.3 to 5.5 microns without any absorption peak. Indium fluoride glass fibers are the technology of choice for all application requiring transmission up to 5 micron such as infrared contour measure (IRCM) and chemical sensing. Furthermore, Indium fluoride glasses have low phonon energy and can be heavily doped and co-doped whit rare-earth elements. Therefore they are very promising candidates for infrared fiber lasers.

  15. Fiber optic moisture sensor

    DOEpatents

    Kirkham, R.R.

    1984-08-03

    A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.

  16. Advanced Optical Fibers for High power Fiber lasers

    DTIC Science & Technology

    2015-08-24

    0704-0188 3. DATES COVERED (From - To) - UU UU UU UU 24-08-2015 Approved for public release; distribution is unlimited. Advanced Optical Fibers for...0946 ABSTRACT Advanced Optical Fibers for High power Fiber lasers Report Title A review of recent fiber developement for high power fiber lasers...Chapter 7 Advanced Optical Fibers for High Power Fiber Lasers Liang Dong Additional information is available at the end of the chapter http://dx.doi.org

  17. Highly porous nanostructured copper foam fiber impregnated with an organic solvent for headspace liquid-phase microextraction.

    PubMed

    Saraji, Mohammad; Ghani, Milad; Rezaei, Behzad; Mokhtarianpour, Maryam

    2016-10-21

    A new headspace liquid-phase microextraction technique based on using a copper foam nanostructure substrate followed by gas chromatography-flame ionization detection was developed for the determination of volatile organic compounds in water and wastewater samples. The copper foam with highly porous nanostructured walls was fabricated on the surface of a copper wire by a rapid and facile electrochemical process and used as the extractant solvent holder. Propyl benzoate was immobilized in the pores of the copper foam coating and used for the microextraction of benzene, toluene, ethylbenzene and xylenes. The experimental parameters such as the type of organic solvent, desorption temperature, desorption time, salt concentration, sample temperature, equilibrium time and extraction time, were investigated and optimized. Under the optimum conditions, the method detection limit was between 0.06 and 0.25μgL(-1). The relative standard deviation of the method for the analytes at 4-8μgL(-1) concentration level ranged from 7.9 to 11%. The fiber-to-fiber reproducibility for three fibers prepared under the same condition was 9.3-12%. The enrichment factor was in the range of 615-744. Different water samples were analyzed for the evaluation of the method in real sample analysis. Relative recoveries for spiked tap, river and wastewater samples were in the range of 85-94%. Finally, the extraction efficiency of the method was compared with those of headspace single drop microextraction and headspace SPME with the commercial fibers.

  18. Coatings for Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Several approaches for applying high resistance coatings continuously to graphite yarn were investigated. Two of the most promising approaches involved (1) chemically vapor depositing (CVD) SiC coatings on the surface of the fiber followed by oxidation, and (2) drawing the graphite yarn through an organo-silicone solution followed by heat treatments. In both methods, coated fibers were obtained which exhibited increased electrical resistances over untreated fibers and which were not degraded. This work was conducted in a previous program. In this program, the continuous CVD SiC coating process used on HTS fiber was extended to the coating of HMS, Celion 6000, Celion 12000 and T-300 graphite fiber. Electrical resistances three order of magnitude greater than the uncoated fiber were measured with no significant degradation of the fiber strength. Graphite fibers coated with CVD Si3N4 and BN had resistances greater than 10(exp 6) ohm/cm. Lower pyrolysis temperatures were used in preparing the silica-like coatings also resulting in resistances as high as three orders of magnitude higher than the uncoated fiber. The epoxy matrix composites prepared using these coated fibers had low shear strengths indicating that the coatings were weak.

  19. Raman fiber lasers

    NASA Astrophysics Data System (ADS)

    Supradeepa, V. R.; Feng, Yan; Nicholson, Jeffrey W.

    2017-02-01

    High-power fiber lasers have seen tremendous development in the last decade, with output powers exceeding multiple kilowatts from a single fiber. Ytterbium has been at the forefront as the primary rare-earth-doped gain medium owing to its inherent material advantages. However, for this reason, the lasers are largely confined to the narrow emission wavelength region of ytterbium. Power scaling at other wavelength regions has lagged significantly, and a large number of applications rely upon the diversity of emission wavelengths. Currently, Raman fiber lasers are the only known wavelength agile, scalable, high-power fiber laser technology that can span the wavelength spectrum. In this review, we address the technology of Raman fiber lasers, specifically focused on the most recent developments. We will also discuss several applications of Raman fiber lasers in laser pumping, frequency conversion, optical communications and biology.

  20. Solid phase microextraction of diclofenac using molecularly imprinted polymer sorbent in hollow fiber combined with fiber optic-linear array spectrophotometry.

    PubMed

    Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Khodadoust, Saeid

    2015-08-05

    A simple solid phase microextraction method based on molecularly imprinted polymer sorbent in the hollow fiber (MIP-HF-SPME) combined with fiber optic-linear array spectrophotometer has been applied for the extraction and determination of diclofenac in environmental and biological samples. The effects of different parameters such as pH, times of extraction, type and volume of the organic solvent, stirring rate and donor phase volume on the extraction efficiency of the diclofenac were investigated and optimized. Under the optimal conditions, the calibration graph was linear (r(2)=0.998) in the range of 3.0-85.0 μg L(-1) with a detection limit of 0.7 μg L(-1) for preconcentration of 25.0 mL of the sample and the relative standard deviation (n=6) less than 5%. This method was applied successfully for the extraction and determination of diclofenac in different matrices (water, urine and plasma) and accuracy was examined through the recovery experiments.

  1. Solid phase microextraction of diclofenac using molecularly imprinted polymer sorbent in hollow fiber combined with fiber optic-linear array spectrophotometry

    NASA Astrophysics Data System (ADS)

    Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Khodadoust, Saeid

    2015-08-01

    A simple solid phase microextraction method based on molecularly imprinted polymer sorbent in the hollow fiber (MIP-HF-SPME) combined with fiber optic-linear array spectrophotometer has been applied for the extraction and determination of diclofenac in environmental and biological samples. The effects of different parameters such as pH, times of extraction, type and volume of the organic solvent, stirring rate and donor phase volume on the extraction efficiency of the diclofenac were investigated and optimized. Under the optimal conditions, the calibration graph was linear (r2 = 0.998) in the range of 3.0-85.0 μg L-1 with a detection limit of 0.7 μg L-1 for preconcentration of 25.0 mL of the sample and the relative standard deviation (n = 6) less than 5%. This method was applied successfully for the extraction and determination of diclofenac in different matrices (water, urine and plasma) and accuracy was examined through the recovery experiments.

  2. SPME-GCMS study of the natural attenuation of aviation diesel spilled on the perennial ice cover of Lake Fryxell, Antarctica.

    PubMed

    Jaraula, Caroline M B; Kenig, Fabien; Doran, Peter T; Priscu, John C; Welch, Kathleen A

    2008-12-15

    In January 2003, a helicopter crashed on the 5 m thick perennial ice cover of Lake Fryxell (McMurdo Dry Valleys, East Antarctica), spilling approximately 730 l of aviation diesel fuel (JP5-AN8 mixture). The molecular composition of the initial fuel was analyzed by solid phase microextraction (SPME) gas chromatography-mass spectrometry (GC-MS), then compared to the composition of the contaminated ice, water, and sediments collected a year after the spill. Evaporation is the major agent of diesel weathering in meltpool waters and in the ice. This process is facilitated by the light non-aqueous phase liquid properties of the aviation diesel and by the net upward movement of the ice as a result of ablation. In contrast, in sediment-bearing ice, biodegradation by both alkane- and aromatic-degraders was the prominent attenuation mechanism. The composition of the diesel contaminant in the ice was also affected by the differential solubility of its constituents, some ice containing water-washed diesel and some ice containing exclusively relatively soluble low molecular weight aromatic hydrocarbons such as alkylbenzene and naphthalene homologues. The extent of evaporation, water washing and biodegradation between sites and at different depths in the ice are evaluated on the basis of molecular ratios and the results of JP5-AN8 diesel evaporation experiment at 4 degrees C. Immediate spread of the aviation diesel was enhanced where the presence of aeolian sediments induced formations of meltpools. However, in absence of melt pools, slow spreading of the diesel is possible through the porous ice and the ice cover aquifer.

  3. The Study of Fingerprint Characteristics of Dayi Pu-Erh Tea Using a Fully Automatic HS-SPME/GC–MS and Combined Chemometrics Method

    PubMed Central

    Lv, Shidong; Wu, Yuanshuang; Zhou, Jiangsheng; Lian, Ming; Li, Changwen; Xu, Yongquan; Liu, Shunhang; Wang, Chao; Meng, Qingxiong

    2014-01-01

    The quality of tea is presently evaluated by the sensory assessment of professional tea tasters, however, this approach is both inconsistent and inaccurate. A more standardized and efficient method is urgently needed to objectively evaluate tea quality. In this study, the chemical fingerprint of 7 different Dayi Pu-erh tea brands and 3 different Ya'an tea brands on the market were analyzed using fully automatic headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC–MS). A total of 78 volatiles were separated, among 75 volatiles were identified by GC–MS in seven Dayi Pu-erh teas, and the major chemical components included methoxyphenolic compounds, hydrocarbons, and alcohol compounds, such as 1,2,3-trimethoxybenzene, 1,2,4-trimethoxybenzene, 2,6,10,14-tetramethyl-pentadecane, linalool and its oxides, α-terpineol, and phytol. The overlapping ratio of peaks (ORP) of the chromatogram in the seven Dayi Pu-erh tea samples was greater than 89.55%, whereas the ORP of Ya'an tea samples was less than 79.10%. The similarity and differences of the Dayi Pu-erh tea samples were also characterized using correlation coefficient similarity and principal component analysis (PCA). The results showed that the correlation coefficient of similarity of the seven Dayi Pu-erh tea samples was greater than 0.820 and was gathered in a specific area, which showed that samples from different brands were basically the same, despite have some slightly differences of chemical indexes was found. These results showed that the GC-MS fingerprint combined with the PCA approach can be used as an effective tool for the quality assessment and control of Pu-erh tea. PMID:25551231

  4. Volatile Compound Profiling by HS-SPME/GC-MS-FID of a Core Olive Cultivar Collection as a Tool for Aroma Improvement of Virgin Olive Oil.

    PubMed

    García-Vico, Lourdes; Belaj, Angjelina; Sánchez-Ortiz, Araceli; Martínez-Rivas, José M; Pérez, Ana G; Sanz, Carlos

    2017-01-14

    Virgin olive oil (VOO) is the only food product requiring official sensory analysis to be classified in commercial categories, in which the evaluation of the aroma plays a very important role. The selection of parents, with the aim of obtaining new cultivars with improved oil aroma, is of paramount importance in olive breeding programs. We have assessed the volatile fraction by headspace-solid-phase microextraction/gas chromatography-mass spectrometry-flame ionization detection (HS-SPME/GC-MS-FID) and the deduced aroma properties of VOO from a core set of olive cultivars (Core-36) which possesses most of the genetic diversity found in the World Olive Germplasm Collection (IFAPA Alameda del Obispo) located in Cordoba, Spain. The VOO volatile fractions of Core-36 cultivars display a high level of variability. It is mostly made of compounds produced from polyunsaturated fatty acids through the lipoxygenase pathway, which confirms to be a general characteristic of the olive species (Olea europaea L.). The main group of volatile compounds in the oils was six straight-chain carbon compounds derived from linolenic acid, some of them being the main contributors to the aroma of the olive oils according to their odor activity values (OAV). The high level of variability found for the volatile fraction of the oils from Core-36 and, therefore, for the aroma odor notes, suggest that this core set may be a very useful tool for the choice of optimal parents in olive breeding programs in order to raise new cultivars with improved VOO aroma.

  5. Determination of volatile organic compounds (VOCs) from wrapping films and wrapped PDO Italian cheeses by using HS-SPME and GC/MS.

    PubMed

    Panseri, Sara; Chiesa, Luca Maria; Zecconi, Alfonso; Soncini, Gabriella; De Noni, Ivano

    2014-06-25

    Nowadays food wrapping assures attractive presentation and simplifies self-service shopping. Polyvinylchloride (PVC)- and polyethylene (PE)-based cling-films are widely used worldwide for wrapping cheeses. For this purpose, films used in retail possess suitable technical properties such as clinginess and unrolling capacity, that are achieved by using specific plasticizers during their manufacturing process. In the present study, the main VOCs of three cling-films (either PVC-based or PE-based) for retail use were characterized by means of Solid-Phase Micro-Extraction and GC/MS. In addition, the effects of cling film type and contact time on the migration of VOCs from the films to four different PDO Italian cheeses during cold storage under light or dark were also investigated. Among the VOCs isolated from cling-films, PVC released 2-ethylhexanol and triacetin. These compounds can likely be considered as a "non-intentionally added substance". These same compounds were also detected in cheeses wrapped in PVC films with the highest concentration found after 20 days storage. The PE cling-film was shown to possess a simpler VOC profile, lacking some molecules peculiar to PVC films. The same conclusions can be drawn for cheeses wrapped in the PE cling-film. Other VOCs found in wrapped cheeses were likely to have been released either by direct transfer from the materials used for the manufacture of cling-films or from contamination of the films. Overall, HS-SPME is shown to be a rapid and solvent free technique to screen the VOCs profile of cling-films, and to detect VOCs migration from cling-films to cheese under real retail storage conditions.

  6. Tequila authenticity assessment by headspace SPME-HRGC-IRMS analysis of 13C/12C and 18O/16O ratios of ethanol.

    PubMed

    Aguilar-Cisneros, Blanca O; López, Mercedes G; Richling, Elke; Heckel, Frank; Schreier, Peter

    2002-12-18

    By use of headspace SPME sampling and a PLOT column, on-line capillary gas chromatography-isotope ratio mass spectrometry was employed in the combustion (C) and the pyrolysis (P) modes (HRGC-C/P-IRMS) to determine the delta(13)C(VPDB) and delta(18)O(VSMOW) values of ethanol in authentic (n = 14) and commercial tequila samples (n = 15) as well as a number of other spirits (n = 23). Whereas with delta(13)C(VPDB) values ranging from -12.1 to -13.2 per thousand and from -12.5 to -14.8 per thousand similar variations were found for 100% agave and mixed tequilas, respectively, the delta(18)O(VSMOW) data differed slightly within these categories: ranges from +22.1 to +22.8 per thousand and +20.8 to +21.7 per thousand were determined for both the authentic 100% agave and mixed products, respectively. The data recorded for commercial tequilas were less homogeneous; delta(13)C(VPDB) data from -10.6 to -13.9 per thousand and delta(18)O(VSMOW) values from +15.5 to +22.7 per thousand were determined in tequilas of both categories. Owing to overlapping data, attempts to differentiate between white, rested, and aged tequilas within each of the two categories failed. In addition, discrimination of tequila samples from other spirits by means of delta(13)C(VPDB) and delta(18)O(VSMOW) data of ethanol was restricted to the products originating from C(3) as well as C(4)/CAM raw materials.

  7. Application of the experimental design of experiments (DoE) for the determination of organotin compounds in water samples using HS-SPME and GC-MS/MS.

    PubMed

    Coscollà, Clara; Navarro-Olivares, Santiago; Martí, Pedro; Yusà, Vicent

    2014-02-01

    When attempting to discover the important factors and then optimise a response by tuning these factors, experimental design (design of experiments, DoE) gives a powerful suite of statistical methodology. DoE identify significant factors and then optimise a response with respect to them in method development. In this work, a headspace-solid-phase micro-extraction (HS-SPME) combined with gas chromatography tandem mass spectrometry (GC-MS/MS) methodology for the simultaneous determination of six important organotin compounds namely monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), monophenyltin (MPhT), diphenyltin (DPhT), triphenyltin (TPhT) has been optimized using a statistical design of experiments (DOE). The analytical method is based on the ethylation with NaBEt4 and simultaneous headspace-solid-phase micro-extraction of the derivative compounds followed by GC-MS/MS analysis. The main experimental parameters influencing the extraction efficiency selected for optimization were pre-incubation time, incubation temperature, agitator speed, extraction time, desorption temperature, buffer (pH, concentration and volume), headspace volume, sample salinity, preparation of standards, ultrasonic time and desorption time in the injector. The main factors (excitation voltage, excitation time, ion source temperature, isolation time and electron energy) affecting the GC-IT-MS/MS response were also optimized using the same statistical design of experiments. The proposed method presented good linearity (coefficient of determination R(2)>0.99) and repeatibilty (1-25%) for all the compounds under study. The accuracy of the method measured as the average percentage recovery of the compounds in spiked surface and marine waters was higher than 70% for all compounds studied. Finally, the optimized methodology was applied to real aqueous samples enabled the simultaneous determination of all compounds under study in surface and marine water samples obtained from Valencia region

  8. Development of SPME-LC-MS method for screening of eight beta-blockers and bronchodilators in plasma and urine samples.

    PubMed

    Goryński, Krzysztof; Kiedrowicz, Alicja; Bojko, Barbara

    2016-08-05

    The current work describes the development and validation of a simple, efficient, and fast method using solid phase microextraction coupled to liquid chromatography-tandem mass spectrometry (SPME-LC-MS/MS) for the concomitant measurement of eight beta-blockers and bronchodilators in plasma and urine. The presented assay enables quantitative determination of acebutolol, atenolol, fenoterol, nadolol, pindolol, procaterol, sotalol, and timolol. In this work, samples were prepared on a high-throughput platform using the 96-well plate format of the thin film solid phase microextraction (TFME) system, and a biocompatible extraction phase made of hydrophilic-lipophilic balance particles. Analytes were separated on a pentafluorophenyl column (100mm×2.1mm, 3μm) by gradient elution using an UPLC Nexera coupled with an LCMS-8060 mass spectrometer. The mobile phase consisted of water-acetonitrile (0.1% formic acid) at a flow rate of 0.4mLmin(-1). The linearity of the method was checked within therapeutic blood-plasma concentrations, and shown to adequately reflect typically expected concentrations of future study samples. Post-extraction addition experiments showed that the matrix effect ranged in plasma from 98% for procaterol to 115% for nadolol, and in urine, from 85% for nadolol and pindolol to 119% for atenolol. The method was successfully validated using Food and Drug Administration (FDA) guidelines, and met all acceptance criteria for bioanalytical assays at five concentration levels for all selected drugs. The final protocol can be successfully applied for monitoring concentrations of the selected drugs in both plasma and urine matrices obtained from patients or athletes.

  9. Identification of volatiles from oxidised phosphatidylcholine molecular species using headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Zhou, Li; Zhao, Minjie; Khalil, Ali; Marcic, Christophe; Bindler, Françoise; Marchioni, Eric

    2013-11-01

    Headspace solid-phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry analysis (GC-MS) was used to investigate the volatile compounds from oxidised phosphatidylcholine molecular species. 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) and 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (SLPC) were chosen as models. The influence of several parameters on the efficiency of volatile oxidised compounds (VOCs) microextraction, such as type of fibre, extraction duration and temperature were studied. The best results were obtained with a polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre used at 50 °C during 25 min. The effect of oxidation temperature on the yield of VOCs from SOPC and SLPC was investigated. Oxidative kinetics of SOPC and SLPC were investigated by measuring both the production of VOCs and the degradation of starting materials. More than 30 VOCs were detected by means of the reference mass spectra of the National Institute of Standards and Technology mass spectral library, and most of them were further confirmed by comparing their mass spectra and retention time with those obtained from authentic reference compounds under the same analytical conditions. Moreover, the origins of VOCs from oxidised PLs were studied by comparing those obtained from their corresponding triacylglycerides under the same experimental conditions. The main VOCs identified from oxidised SOPC were (E)-2-decenal, nonanal and octanal and from oxidised SLPC were (E)-2-heptenal, (E)-2-octenal and (E, E)-2,4-decadienal. The proposed method was applied to a real food sample, soy lecithin.

  10. The study of fingerprint characteristics of Dayi Pu-Erh tea using a fully automatic HS-SPME/GC-MS and combined chemometrics method.

    PubMed

    Lv, Shidong; Wu, Yuanshuang; Zhou, Jiangsheng; Lian, Ming; Li, Changwen; Xu, Yongquan; Liu, Shunhang; Wang, Chao; Meng, Qingxiong

    2014-01-01

    The quality of tea is presently evaluated by the sensory assessment of professional tea tasters, however, this approach is both inconsistent and inaccurate. A more standardized and efficient method is urgently needed to objectively evaluate tea quality. In this study, the chemical fingerprint of 7 different Dayi Pu-erh tea brands and 3 different Ya'an tea brands on the market were analyzed using fully automatic headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS). A total of 78 volatiles were separated, among 75 volatiles were identified by GC-MS in seven Dayi Pu-erh teas, and the major chemical components included methoxyphenolic compounds, hydrocarbons, and alcohol compounds, such as 1,2,3-trimethoxybenzene, 1,2,4-trimethoxybenzene, 2,6,10,14-tetramethyl-pentadecane, linalool and its oxides, α-terpineol, and phytol. The overlapping ratio of peaks (ORP) of the chromatogram in the seven Dayi Pu-erh tea samples was greater than 89.55%, whereas the ORP of Ya'an tea samples was less than 79.10%. The similarity and differences of the Dayi Pu-erh tea samples were also characterized using correlation coefficient similarity and principal component analysis (PCA). The results showed that the correlation coefficient of similarity of the seven Dayi Pu-erh tea samples was greater than 0.820 and was gathered in a specific area, which showed that samples from different brands were basically the same, despite have some slightly differences of chemical indexes was found. These results showed that the GC-MS fingerprint combined with the PCA approach can be used as an effective tool for the quality assessment and control of Pu-erh tea.

  11. A comparative qualitative study of the profile of volatile organic compounds associated with Salmonella contamination of packaged aged and fresh beef by HS-SPME/GC-MS.

    PubMed

    Bhattacharjee, Paramita; Panigrahi, Suranjan; Lin, Dongqing; Logue, Catherine M; Sherwood, Julie S; Doetkott, Curt; Marchello, Martin

    2011-02-01

    Vacuum packaged beef strip-loins (fresh and aged) were repackaged on polystyrene trays and over-wrapped with food grade cling film for the storage study. Several volatile compounds such as 3-methyl-1-butanol, 2,3-butanedione, 2-butanone, 3-hydroxy-2-butanone, acetic acid and a few hydrocarbons were detected in the headspace of these tray packaged fresh and aged beef strip loins both in the control and Salmonella typhimurium inoculated samples, in varying concentrations. These compounds were identified using manual headspace solid-phase microextraction (HS-SPME) in combination with gas chromatography/mass spectrometry (GC-MS) over a storage period of 4 days and samples were incubated at 20°C. No naturally occurring Salmonella was present in the control samples. Hexanal (r = 0.99), carbon dioxide (r = 0.98), 3-hydroxy-2-butanone (r = 0.93) and 2-methyl propane (r = 0.95) showed positive correlations with Salmonella population for fresh beef samples. In aged beef samples, 3-methyl-1-butanol (r = 0.99), 3-hydroxy-2-butanone (r = 0.98), carbon dioxide (r = 0.98) and acetic acid (r = 0.86) showed similar trends. In fresh beef samples, F values were significant at p < 0.05 for 3-hydroxy-2-butanone and for carbon dioxide with storage time for fresh beef samples; they were significant for 3-hydroxy-2-butanone, acetic acid and carbon dioxide for aged beef samples.

  12. Evaluation of HS-SPME and ultrasonic solvent extraction for monitoring of plant flavours added by the bees to herbhoneys: traceability biomarkers.

    PubMed

    Kuś, Piotr Marek; Marijanović, Zvonimir; Jerković, Igor

    2015-01-01

    The volatile composition of 21 herbhoneys (HHs) of 7 different botanical origins was characterised for the first time. Ultrasound solvent extraction (USE) and headspace solid-phase microextraction (HS-SPME) followed by GC-FID/MS were successfully applied as complementary methods for monitoring the volatile plant flavours added by the bees. HHs showed significant compositional variability related to the botanical origin and compounds that could serve as traceability biomarkers were identified. The most important compounds with high abundance were (E,extract; H, headspace): caffeine (up to 68.7%, E) and trans-linalool oxide (up to 26.0%, H) in coffee HH, α-terpineol (up to 8.2%, E; 27.1%, H) and bornyl acetate (up to 3.1, E; 11.9%, H) in pine HH, thymol (up to 3.1%, E; 55.4%, H) in thyme HH. Hawthorn HH was characterised by the presence of herniarin (up to 13.4%, E) and lemon HH contained limonene (up to 1.6%, E; 33.2%, H). Other HHs (nettle and aloe) contained lower amounts of volatiles and their profiles were not specific. In all the HHs, methyl syringate was found and it was most abundant in thyme HH (up to 17.4%, E). The volatile fraction of HHs showed some substantial similarities and differences with the composition of herbs from which they derive. It confirms the selective bee-mediated transfer of phytochemicals, including known flavour-active volatiles into the final product, but also biotransformation of several compounds. Additionally, several similarities to the corresponding natural honeys were observed, but in general HHs exhibited less rich volatile profiles.

  13. Characterization of fish sauce aroma-impact compounds using GC-MS, SPME-Osme-GCO, and Stevens' power law exponents.

    PubMed

    Pham, A J; Schilling, M W; Yoon, Y; Kamadia, V V; Marshall, D L

    2008-05-01

    The objectives of this study were to characterize volatile compounds and to determine the characteristic aromas associated with impact compounds in 4 fish sauces using solid-phase micro-extraction, gas chromatography-mass spectrometry, Osme, and gas chromatography olfactometry (SPME-Osme-GCO) coupled with Stevens' Power Law. Compounds were separated using GCMS and GCO and were identified with the mass spectral database, aroma perceived at the sniffing port, retention indices, and verification of compounds by authentic standards in the GCMS and GCO. Aromas that were isolated and present in all 4 fish sauce samples at all concentrations included fishy (trimethylamine), pungent and dirty socks (combination of butanoic, pentanoic, hexanoic, and heptanoic acids), cooked rice and buttery popcorn (2,6-dimethyl pyrazine), and sweet and cotton candy (benzaldehyde). All fish sauces contained the same aromas as determined by GCO and GCMS (verified using authentic standard compounds), but the odor intensity associated with each compound or group of compounds was variable for different fish sauce samples. Stevens' Power Law exponents were also determined using this analytical technique, but exponents were not consistent for the same compounds that were found in all fish sauces. Stevens' Power Law exponents ranged from 0.14 to 0.37, 0.24 to 0.34, 0.09 to 0.21, and 0.10 to 0.35 for dirty socks, fishy, buttery popcorn, and sweet aromas, respectively. This demonstrates that there is variability in Stevens' Power Law exponents for odorants within fish sauce samples.

  14. Fiber composite flywheel rim

    DOEpatents

    Davis, D.E.; Ingham, K.T.

    1987-04-28

    A flywheel comprising a hub having at least one radially projecting disc, an annular rim secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers wound about said rim congruent to said surface, and a shell enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface. 2 figs.

  15. Optical Fiber Communications

    NASA Astrophysics Data System (ADS)

    Singal, T. L.

    2017-01-01

    Preface; Dedication; List of figures; List of tables; Acknowledgements; 1. Introduction; 2. Basics of optical fibers; 3. Optical sources and transmitters; 4. Optical receivers; 5. Optical amplifiers; 6. Dispersion management techniques; 7. WDM concepts and components; 8. Optical measurements; Appendix A. Fiber optic sensors; Appendix B. Radio over fiber; Appendix C. Wireless optics; Appendix D. Model test papers; Appendix E. Abbreviations and acronyms; References; Index.

  16. Fiber optic micro accelerometer

    DOEpatents

    Swierkowski, Steve P.

    2005-07-26

    An accelerometer includes a wafer, a proof mass integrated into the wafer, at least one spring member connected to the proof mass, and an optical fiber. A Fabry-Perot cavity is formed by a partially reflective surface on the proof mass and a partially reflective surface on the end of the optical fiber. The two partially reflective surfaces are used to detect movement of the proof mass through the optical fiber, using an optical detection system.

  17. Fiber Optic Feed

    DTIC Science & Technology

    1990-11-06

    Naval Research Laboratory IIK Washington, DC,20375 5000 NRL Memorandum Report 6741 0 N Fiber Optic Feed DENZIL STILWELL, MARK PARENT AND LEw GOLDBERG...SUBTITLE S. FUNDING NUMBERS Fiber Optic Feed 53-0611-A0 6. AUTHOR(S) P. D. Stilwell, M. G. Parent, L. Goldberg 7. PERFORMING ORGANIZATION NAME(S) AND...DISTRIBUTION CODE Approved for public release; distribution unlimited. 13. ABSTRACT (Maximum 200 words) This report details a Fiber Optic Feeding

  18. Continuous Fiber Ceramic Composites

    SciTech Connect

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  19. Nanotailored Carbon Fibers

    DTIC Science & Technology

    2012-04-27

    precursor fiber and also utilize bi- component spinning along with gel spinning, to obtain small diameter fibers. Various processing parameters during...shape of the fiber. In this regard, we have also conducted single component gel spinning using different gelation bath temperatures (100% methanol). SEM...domestic dishwashing detergent, Palmolive antibacterial , 3 wt% detergent and 97% water) for about a week and retested. *** For 5th trial, tungsten

  20. Insulated Fiber Brush.

    DTIC Science & Technology

    An insulated-strand fiber brush is provided for a DC motor /generator. The brush is comprised of a plurality of fiber segments which are insulated from one another near the contact surface of a rotor bar. In one embodiment, insulating spacers are fixed to a brush assembly and wear with the fibers, and in another embodiment insulation is provided by a separate shell. (Author)

  1. Fiber composite flywheel rim

    DOEpatents

    Davis, Donald E.; Ingham, Kenneth T.

    1987-01-01

    A flywheel 2 comprising a hub 4 having at least one radially projecting disc 6, an annular rim 14 secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers 22 wound about said rim congruent to said surface, and a shell 26 enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface.

  2. Innovative fabrication of the flower-like nanocomposite coating on a nitinol fiber through Fenton's oxidation for selective and sensitive solid-phase microextraction.

    PubMed

    Zhang, Min; Zhen, Qi; Wang, Huiju; Guo, Mei; Zhou, Shanshan; Wang, Xuemei; Du, Xinzhen

    2016-09-01

    A novel flower-like nanostructure was successfully in situ fabricated on the surface of nitinol wire through Fenton's oxidation for the first time. It was found that the densely immobilized coating on the surface of the nitinol fiber was composed of nickel and titanium oxide nanocomposite (NiO/TiO2NC). The NiO/TiO2NC coated fiber was used to extract aromatic compounds coupled with high performance liquid chromatography (HPLC) with UV detection and exhibited excellent extraction efficiency for polycyclic aromatic hydrocarbons (PAHs) with larger delocalized π-system among the studied analytes. Important factors affecting extraction efficiency of PAHs were examined. Under the optimized conditions, the calibration curves were linear in the range from 0.05 to 500μgL(-1) with correlation coefficients of R(2)≥0.999, and the lowest limit of detection of 0.006μgL(-1) was achieved for benzo[a]pyrene. Furthermore, the intra-day and inter-day precisions for the single fiber varied from 4.69% to 5.97% and from 5.28% to 6.32% for five replicates of PAHs at the spiking level of 50μgL(-1), respectively. The fiber-to-fiber precision for five fibers prepared in different batches ranged from 6.19% to 8.35%. The developed method was successfully applied to concentration and determination of target PAHs from real environmental water samples. Moreover, this novel nitinol-based fiber exhibited long lifespan. Therefore, the proposed fiber can be used as a promising candidate for a conventional fused silica-based fiber in SPME.

  3. Apparatus Impregnates Weak Fibers

    NASA Technical Reports Server (NTRS)

    Stanfield, Clarence E.; Wilson, Maywood L.

    1989-01-01

    Low-cost apparatus developed for use in conventional drum winding machine to impregnate fibrous materials having very low tensile strengths. Fiber fitted onto freely-spinning unwinding creel. Unwinds from creel between two tension bars onto guide spools, aligns fiber so properly enters sealed reservoir of resin. Stainless-steel metering die at entrance to reservoir aligns fiber and seals reservoir. Beneficial results obtained by use of reservoir made of polyethylene. Composite material made from resin matrices reinforced by fibers have great potential for solving challenging and often critical problems in design of spacecraft, space structures, and terrestrial structures.

  4. Microstructured polarizing fiber

    NASA Astrophysics Data System (ADS)

    Mergo, Pawel; Wójcik, Jan; Czyzewska, Lidia; Walewski, Aleksander

    2005-09-01

    Introduction of metal elements into the optical fiber's structure creates new possibilities of waveguides' parameters' modification especially permit to obtain polarizing fibers. A known solution is introducing of molten metal into a hole situated along a single-mode fibre's core. The alternative manner is deposition of metal layers on the internal surface of those holes. In our laboratory we manufactured new kind of optical fibers named side metal pipe (SMP) optical fiber. Its structure is similar to that of the side-hole optical fiber but the internal surface of the two open holes placed on the both sides of the core is covered with silver. The silver layers were deposited with elaborated in our laboratory static method deposition from liquid phase. The measured polarizing efficiency of this fiber of 1 m length was equal to 25% for 633nm wavelength. In the last time we manufactured the high birefringent single mode SMP fiber with elliptical core (SMK HB). Paper presents the basis of technology of SMK HB optical fiber, description of the static method of preparation of silver layers by liquid phase deposition and geometrical and optical parameters of the SMK HB optical fiber.

  5. Optical Fiber Cutting Machine for Rectangular and Circular Fibers

    DTIC Science & Technology

    1977-06-30

    OPTICAL FIBER CUTTING MACHINE FOR RECTANGULAR AND CIRCULAR FIBERS Gordon L. Mitchell -June 30,’1977 Principal Investigators Gordon L. Mitchell and...bet) An optical fiber cutting machine for use with rectangular or round cros- section fibers has been developed. It combines a sliding-weight tension...OP* THIS PAGE (When 13.fe Afn(-’-d) ii Abstract An optical fiber cutting machine for use with rectangular or round cross section fibers has been

  6. Fabrication of metal-organic framework MIL-88B films on stainless steel fibers for solid-phase microextraction of polychlorinated biphenyls.

    PubMed

    Wu, Ye-Yu; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2014-03-21

    Metal-organic frameworks (MOFs) have received considerable attention as novel sorbents for sample preparation due to their fascinating structures and functionalities such as large surface area, good thermal stability, and uniform structured nanoscale cavities. Here, we report the application of a thermal and solvent stable MOF MIL-88B with nanosized bipyramidal cages and large surface area for solid-phase microextraction (SPME) of polychlorinated biphenyls (PCBs). Novel MIL-88B coated fiber was fabricated via an in situ hydrothermal growth of MIL-88B film on etched stainless steel fiber. The MIL-88B coated fiber gave large enhancement factors (757-2243), low detection limits (0.45-1.32ngL(-1)), and good linearity (5-200ngL(-1)) for PCBs. The relative standard deviation (RSD) for six replicate extractions of PCBs at 100ngL(-1) on MIL-88B coated fiber ranged from 4.2% to 8.7%. The recoveries for spiked PCBs (10ngL(-1)) in water and soil samples were in the range of 79.7-103.2%. Besides, the MIL-88B coated fiber was stable enough for 150 extraction cycles without significant loss of extraction efficiency. The developed method was successfully applied to the determination of PCBs in water samples and soil samples.

  7. Molecularly imprinted polymer coated solid-phase microextraction fibers for determination of Sudan I-IV dyes in hot chili powder and poultry feed samples.

    PubMed

    Hu, Xiaogang; Cai, Quanlin; Fan, Yanan; Ye, Tingting; Cao, Yujuan; Guo, Changjuan

    2012-01-06

    In this research, a novel strategy was developed to prepare molecularly imprinted polymer (MIP) coated solid-phase microextraction fibers on a large scale with Sudan I as template and stainless steel fibers as substrate. More than 20 fibers could be obtained in one glass tube, and the efficiency and coating repeatability were enhanced remarkably in contrast with the yield of only one fiber in our previous works. The obtained MIP-coated stainless steel fibers were characterized by homogeneous and highly cross-linked coating, good chemical and thermal stabilities, high extraction capacities, and specific selectivities to Sudan I-IV dyes. Based on the systemic optimization of extraction conditions, a simple and cost-effective method based on the coupling of MIP-coated SPME with high-performance liquid chromatography was developed for the fast and selective determination of trace Sudan I-IV dyes in hot chili powder and poultry feed samples. The limits of detection of Sudan I-IV dyes were within 2.5-4.6 ng g(-1), and the spiked recoveries were in the range of 86.3-96.3% for hot chili powder sample and 84.6-97.4% for poultry feed sample.

  8. Exploration of metal-organic framework MOF-177 coated fibers for headspace solid-phase microextraction of polychlorinated biphenyls and polycyclic aromatic hydrocarbons.

    PubMed

    Wang, Guanhua; Lei, Yongqian; Song, Huacan

    2015-11-01

    Metal-organic frameworks (MOFs) have received much attention in analytical science for their large langmuir surface and high thermostability. Herein MOF-177-coated solid-phase micro-extraction (SPME) fibers were fabricated on etched stainless steel by an adhensive method, and applied to the enrichment of polychlorinated biphenyls (PCB01, PCB05, PCB29, PCB47, PCB98, PCB154, PCB171, PCB201) and polycyclic aromatic hydrocarbons (ANY, ANA, FLU, PHE, ANT, FLT, PYR) from environmental water samples. Several parameters affecting the extraction efficiency were optimized prior to the gas chromatography-mass spectrometry analysis, including extraction temperature and time, desorption time, stirring rate and salt addition. The results indicated that the coated fiber gave low detection limits (0.69-4.42 ng L(-1)) and good repeatability with the RSD ranging from 1.47% to 8.67% for PCBs and PAHs. The recoveries were between 81.8% and 113% with the spiked level of 10 ng L(-1) for the real water samples. Besides, the MOF-177 coated fiber was stable enough over 100 extraction cycles and the RSD for fiber-to- fiber reproducibility was less than 9.82% during the experiment.

  9. Soluble and insoluble fiber (image)

    MedlinePlus

    Dietary fiber is the part of food that is not affected by the digestive process in the body. ... of the stool. There are two types of dietary fiber, soluble and insoluble. Soluble fiber retains water and ...

  10. USDA Flax fiber utilization research

    USDA-ARS?s Scientific Manuscript database

    The United States is pursuing natural fibers as sustainable, environmentally friendly sources for a variety of industrial applications. Flax (Linum usitatissimum L.) fiber offers many possibilities towards this goal. Research on flax fiber production, processing, and standards development is urgen...

  11. Ultrafine PBI fibers and yarns

    NASA Technical Reports Server (NTRS)

    Leal, J. R.; Tan, M.

    1979-01-01

    Gentle precisely controlled process is used to draw polybenzimidazole (PBI) fibers to denier as low as 0.17 per fiber. Yarns of lightweight fibers could be useful in applications where lightweight textiles must withstand high temperatures, corrosion, or radiation.

  12. Ultrafine PBI fibers and yarns

    NASA Technical Reports Server (NTRS)

    Leal, J. R.; Tan, M.

    1979-01-01

    Gentle precisely controlled process is used to draw polybenzimidazole (PBI) fibers to denier as low as 0.17 per fiber. Yarns of lightweight fibers could be useful in applications where lightweight textiles must withstand high temperatures, corrosion, or radiation.

  13. Preconcentration and determination of polybrominated diphenyl ethers in environmental water samples by solid-phase microextraction with Fe3O4-coated bamboo charcoal fibers prior to gas chromatography-mass spectrometry.

    PubMed

    Zhao, Ru-Song; Liu, Yan-Long; Chen, Xiang-Feng; Yuan, Jin-Peng; Bai, Ai-Ying; Zhou, Jia-Bin

    2013-03-26

    In this paper, bamboo charcoals were modified using Fe3O4 nanosheets for the first time. The composites, as a novel solid-phase microextraction (SPME) fiber coating, were used for the extraction of seven polybrominated diphenyl ethers (PBDEs) in environmental water samples. The extraction factors (stirring rate, extraction time, and ionic strength) and desorption factors (desorption time and desorption temperature) of the fibers were systematically investigated and optimized. Under optimum conditions, the linear range was 1-1000 ng L(-1). Based on the ratio of chromatographic signal to base line noise (SN(-1)=3), the limits of detection (LODs) can reach 0.25-0.62 ng L(-1). The novel method was successful in the analysis of PBDEs in real environmental water samples. The results indicate that bamboo charcoal/Fe3O4 as an SPME coating material coupled with gas chromatography-negative chemical ionization-mass spectrometry is an excellent method for the routine analysis of PBDEs at trace levels in environmental water samples.

  14. Optimization of a novel method for determination of benzene, toluene, ethylbenzene, and xylenes in hair and waste water samples by carbon nanotubes reinforced sol-gel based hollow fiber solid phase microextraction and gas chromatography using factorial experimental design.

    PubMed

    Es'haghi, Zarrin; Ebrahimi, Mahmoud; Hosseini, Mohammad-Saeid

    2011-05-27

    A novel design of solid phase microextraction fiber containing carbon nanotube reinforced sol-gel which was protected by polypropylene hollow fiber (HF-SPME) was developed for pre-concentration and determination of BTEX in environmental waste water and human hair samples. The method validation was included and satisfying results with high pre-concentration factors were obtained. In the present study orthogonal array experimental design (OAD) procedure with OA(16) (4(4)) matrix was applied to study the effect of four factors influencing the HF-SPME method efficiency: stirring speed, volume of adsorption organic solvent, extraction and desorption time of the sample solution, by which the effect of each factor was estimated using individual contributions as response functions in the screening process. Analysis of variance (ANOVA) was employed for estimating the main significant factors and their percentage contributions in extraction. Calibration curves were plotted using ten spiking levels of BTEX in the concentration ranges of 0.02-30,000ng/mL with correlation coefficients (r) 0.989-0.9991 for analytes. Under the optimized extraction conditions, the method showed good linearity (0.3-20,000ng/L), repeatability, low limits of detections (0.49-0.7ng/L) and excellent pre-concentration factors (185-1872). The best conditions which were estimated then applied for the analysis of BTEX compounds in the real samples.

  15. Method of carbonizing polyacrylonitrile fibers

    NASA Technical Reports Server (NTRS)

    Cagliostro, D. E.; Lerner, N. R. (Inventor)

    1983-01-01

    This invention relates to a method of carbonizing polyacrylonitrile fibers by exposing the fibers at an elevated temperature to an oxidizing atmosphere; then exposing the oxidized fibers to an atmosphere of an inert gas such as nitrogen containing a carbonaceous material such as acetylene. The fibers are preferably treated with an organic compound, for example benzoic acid, before the exposure to an oxidizing atmosphere. The invention also relates to the resulting fibers. The treated fibers have enhanced tensile strength.

  16. Solid-phase microextraction (SPME) for the determination of pyrethroids in cucumber and watermelon using liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection.

    PubMed

    Vázquez, P Parrilla; Mughari, Ahmed R; Galera, M Martínez

    2008-01-21

    A sensitive and efficient solid-phase microextraction (SPME) method for the determination of seven pyrethroid insecticides including fenpropathrin, lambda-cyhalothrin, deltamethrin, fenvalerate, permethrin, tau-fluvalinate and bifenthrin in cucumber and watermelon samples using high performance liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection (SPME-HPLC-PIF-FD) was developed and validated. The optimum SPME conditions were used for the extraction of samples of both matrices (extraction time 30 min, stirring rate 1100 rpm, extraction temperature 65 degrees C, sample pH 3, soaking time 7 min, desorption time 5 min, ACN content 25%, desorption and soaking solvent was the mobile phase and in static mode). The method was validated in terms of limits of detection (LODs) and the limits of quantification (LOQs) in both IUPAC and EURACHEM criteria. LODs and LOQs were achieved in values lower than the maximum residue levels (MRLs) established in the Spanish regulations for all pesticides in this study (MRLs range between 0.01 and 0.1 mg kg(-1) for all pyrethroid insecticides in both matrices). LOQs according to the second criterion were between 1.5 and 5 microg kg(-1) for cucumber; and between 1.3 and 5 microg kg(-1) for watermelon samples. Precision and recovery studies were evaluated at two concentration levels for each matrix. Good precision was obtained and relative standard deviation values were less than 10% in all cases. Recovery values were calculated at 0.05 and 0.5 mg kg(-1) levels (n=6) and they ranged between 93% and 108% for cucumber and between 91% and 110% for watermelon samples. Applicability of the method to pyrethroids in cucumber and watermelon of commercial samples was demonstrated.

  17. Field-based Evaluation of a Novel SPME-GC-MS Method for Investigation of Below-ground Interaction between Brassica Roots and Larvae of Cabbage Root Fly, Delia radicum L.

    PubMed

    Deasy, William; Shepherd, Tom; Alexander, Colin J; Birch, A Nicholas E; Evans, K Andrew

    2016-11-01

    Collection of volatiles from plant roots poses technical challenges due to difficulties accessing the soil environment without damaging the roots. To validate a new non-invasive method for passive sampling of root volatiles in situ, from plants grown under field conditions, using solid phase micro-extraction (SPME). SPME fibres were inserted into perforated polytetrafluoroethene (PTFE) tubes positioned in the soil next to broccoli plants for collection of root volatiles pre- and post-infestation with Delia radicum larvae. After sample analysis by gas chromatography-mass spectrometry (GC-MS), principal component analysis (PCA) was applied to determine differences in the profiles of volatiles between samples. GC-MS analysis revealed that this method can detect temporal changes in root volatiles emitted before and after Delia radicum damage. PCA showed that samples collected pre- and post-infestation were compositionally different due to the presence of root volatiles induced by D. radicum feeding. Sulphur containing compounds, in particular, accounted for the differences observed. Root volatiles emission patterns post-infestation are thought to follow the feeding and developmental progress of larvae. This study shows that volatiles released by broccoli roots can be collected in situ using SPME fibres within perforated PTFE tubes under field conditions. Plants damaged by Delia radicum larvae could be distinguished from plants sampled pre-infestation and soil controls on the basis of larval feeding-induced sulphur-containing volatiles. These results show that this new method is a powerful tool for non-invasive sampling of root volatiles below-ground. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Fiber Sensor Technology Today

    NASA Astrophysics Data System (ADS)

    Hotate, Kazuo

    2006-08-01

    Fiber sensor technologies are overviewed. Since the early 1970s, this field has been developed, on the basis of the same devices and photonic principles as fiber communication technologies. Besides simple configurations, in which the fiber acts only as a data transmission line, sophisticated configurations have also been developed, in which the fiber is used as a device to realize unique sensing mechanisms. The fiber optic gyroscope (FOG) is a good example, and has been developed as an absolute rotation sensor used, for example, for navigation and/or attitude control applications. Compared with traditional spinning-mass gyroscopes, the FOG has advantages, such as a short warming-up time, a light weight, and easy handling. A Japanese satellite, which was launched in August 2005 with a mission to observe the aurora, is controlled with a FOG. The FOG has also been used in consumer applications, such as the camera stabilizer, radio-controlled (RC) helicopter navigation, and the control of humanoid robots. Recently, distributed and multiplexed sensing schemes, in particular, have been studied and developed, in which a long fiber acts like a “nerve” for feeling the strain and/or the temperature distribution along the fiber. Performances of artificial nerve systems have markedly improved within the last couple of years, in spatial resolution and measurement speed. By embedding the “fiber-optic nerve system” in aircraft wings, bridges and tall buildings, these materials and structures can sense damage to prevent disasters.

  19. Fiber Laser Array

    DTIC Science & Technology

    2004-01-01

    telecommunications market and do not emphasize high powers. Because high power applications are of significant interest to the Air Force, we were interested in fiber...available from NTIC . 9. T.B. Simpson, A. Gavrielides and P. Peterson, “Extraction Characteristics of a Dual Fiber Compound Cavity,” Optics Express 10

  20. Diamond fiber field emitters

    DOEpatents

    Blanchet-Fincher, Graciela B.; Coates, Don M.; Devlin, David J.; Eaton, David F.; Silzars, Aris K.; Valone, Steven M.

    1996-01-01

    A field emission electron emitter comprising an electrode formed of at least one diamond, diamond-like carbon or glassy carbon composite fiber, said composite fiber having a non-diamond core and a diamond, diamond-like carbon or glassy carbon coating on said non-diamond core, and electronic devices employing such a field emission electron emitter.

  1. Fiber reinforced engineering plastics

    Treesearch

    Daniel F. Caulfield; Rodney E. Jacobson; Karl D. Sears; John H. Underwood

    2001-01-01

    Although natural fiber reinforced commodity thermoplastics have a wide range of nonstructural applications in the automotive and decking industries, there have been few reports of cellulosic fiber-reinforced engineering thermoplastics. The commonly held belief has been that the only thermoplastics amenable to natural-fibre reinforcement are limited to low-melting (...

  2. Low dielectric polyimide fibers

    NASA Technical Reports Server (NTRS)

    Dorogy, William E., Jr. (Inventor); St.clair, Anne K. (Inventor)

    1994-01-01

    A high temperature resistant polyimide fiber that has a dielectric constant of less than 3 is presented. The fiber was prepared by first reacting 2,2-bis (4-(4aminophenoxy)phenyl) hexafluoropropane with 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride in an aprotic solvent to form a polyamic acid resin solution. The polyamic acid resin solution is then extruded into a coagulation medium to form polyamic acid fibers. The fibers are thermally cured to their polyimide form. Alternatively, 2,2-bis(4-(4-aminophenoxy)phenyl) hexafluoropropane is reacted with 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride to form a polyamic acid, and the polyamic acid is chemically converted to its polyimide form. The polyimide is then dissolved in a solvent to form a polyimide resin solution, and the polyimide resin is extruded into a coagulation medium to form a polyimide wet gel filament. In order to obtain polyimide fibers of increased tensile properties, the polyimide wet gel filaments are stretched at elevated temperatures. The tensile properties of the fibers were measured and found to be in the range of standard textile fibers. Polyimide fibers obtained by either method will have a dielectric constant similar to that of the corresponding polymer, viz., less than 3 at 10 GHz.

  3. RF Fiber Optic Link.

    DTIC Science & Technology

    1984-06-01

    CONTENTS (Continued) 0 o p- Paragraph Title Page 4.6.3 Laser Diode and Single Mode Fiber Interface ....... 68 0 4.6.4 Laser Noise Discussion...A111-4. 2. 0. Marcuse and C. L. Lin, "Low Dispersion Single-Mode Fiber Transmission - The Question of Practical Versus Theoretical Maxlimum...001/0161A 68 ,.-. .- ,-... -. ..- , .. -............. . ............... • :q

  4. Multimode optical fiber

    DOEpatents

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  5. ROLE OF FIBER MODIFICATION IN NATURAL FIBER COMPOSITE PROCESSING

    SciTech Connect

    Fifield, Leonard S.; Denslow, Kayte M.; Gutowska, Anna; Simmons, Kevin L.; Holbery, Jim

    2005-11-03

    The prediction and characterization of the adhesion between fiber, surface treatment, and polymer is critical to the success of large-scale natural fiber based polymer composites in automotive semi-structural application. The two primary factors limiting the use of natural fiber in polymer composites are fiber moisture uptake and fiber degradation during high-temperature processing. In this study, we have developed several fiber surface modification techniques and analyzed the fiber-polymer adhesion of modified fibers to more clearly understand the critical parameters controlling moisture uptake, swelling, and fiber degradation due to interfacial structure. We will present a overview of surface modification techniques we have applied to date for hemp fiber sources, and illustrate a path to characterize surface modification effects on natural fiber adhesion in thermoplastic composites.

  6. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1977-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  7. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Yen, S. P. S.; Klein, E. (Inventor)

    1976-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, crosslinked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  8. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1980-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  9. Fluorescent fiber diagnostics

    DOEpatents

    Toeppen, John S.

    1994-10-04

    A fluorescent fiber (13) having a doped core (16) is pumped (11) by light (18) of a relatively short wavelength to produce fluorescence at a longer wavelength that is detected by detector (24). The level of fluorescence is monitored (26) and evaluated to provide information as to the excitation of the fiber (13) or the environment thereof. In particular, the level of intensity of the detected fluorescence may be used to measure the intensity of a light beam (18) passing axially through an optical fiber system (12) (FIG. 1 ), or the intensity of a light beam (46) passing radially through a fluorescent fiber (13) (FIG. 2 ), or the level of a fluid (32) in a tank (31) (FIG. 3 ), or a scintillation event (37) in a fluorescent fiber (13) pumped to produce amplification of the scintillation event (FIG. 4 ).

  10. Fluorescent fiber diagnostics

    DOEpatents

    Toeppen, John S.

    1994-01-01

    A fluorescent fiber (13) having a doped core (16) is pumped (11) by light (18) of a relatively short wavelength to produce fluorescence at a longer wavelength that is detected by detector (24). The level of fluorescence is monitored (26) and evaluated to provide information as to the excitation of the fiber (13) or the environment thereof. In particular, the level of intensity of the detected fluorescence may be used to measure the intensity of a light beam (18) passing axially through an optical fiber system (12) (FIG. 1 ), or the intensity of a light beam (46) passing radially through a fluorescent fiber (13) (FIG. 2 ), or the level of a fluid (32) in a tank (31) (FIG. 3 ), or a scintillation event (37) in a fluorescent fiber (13) pumped to produce amplification of the scintillation event (FIG. 4 ).

  11. Remote optical fiber dosimetry

    NASA Astrophysics Data System (ADS)

    Huston, A. L.; Justus, B. L.; Falkenstein, P. L.; Miller, R. W.; Ning, H.; Altemus, R.

    2001-09-01

    Optical fibers offer a unique capability for remote monitoring of radiation in difficult-to-access and/or hazardous locations. Optical fiber sensors can be located in radiation hazardous areas and optically interrogated from a safe distance. A variety of remote optical fiber radiation dosimetry methods have been developed. All of the methods take advantage of some form of radiation-induced change in the optical properties of materials such as: radiation-induced darkening due to defect formation in glasses, luminescence from native defects or radiation-induced defects, or population of metastable charge trapping centers. Optical attenuation techniques are used to measure radiation-induced darkening in fibers. Luminescence techniques include the direct measurement of scintillation or optical excitation of radiation-induced luminescent defects. Optical fiber radiation dosimeters have also been constructed using charge trapping materials that exhibit thermoluminescence or optically stimulated luminescence (OSL).

  12. Woven fiber optics.

    PubMed

    Schmidt, A C; Courtney-Pratt, J S; Ross, E A

    1975-02-01

    In this paper we describe how the art of weaving can be applied to fiber optics in order to produce precisely controlled reproducible image guides and image dissectors. As examples of the types of device for which woven fiber optics are applicable, we describe a 3:1 interleaver for use with a cathode-ray tube to produce color images, and a high speed alpha numeric output device. The techniques of weaving fiber optics are discussed in sufficient detail in order to allow for further work. Although, in principle, one might be able to weave glass optical fibers, all the work described here made use of plastic optical fibers 0.25 mm in diameter.

  13. Fiber optic hydrophone

    DOEpatents

    Kuzmenko, Paul J.; Davis, Donald T.

    1994-01-01

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  14. Splicing plastic optical fibers

    NASA Astrophysics Data System (ADS)

    Carson, Susan D.; Salazar, Roberto A.

    1991-12-01

    Polymethylmethacrylate (PMMA) plastic optical fiber (500 micrometers diameter, fluoropolymer cladding) has been spliced using a fused silica sleeve and a variety of solvent/PMMA solutions as adhesives. Mechanical splicing using index matching fluid has also been investigated. To ensure good bonding and minimize scattering, fiber ends are polished prior to application of adhesive. Using an LED ((lambda) max approximately 640 nm), losses are routinely less than 1.0 dB/splice, and some adhesive formulations have exhibited losses as low as 0.2 dB/splice. Five-meter fibers with as many as ten splices/fiber have been monitored over a period of several months. No fiber has exhibited an increase in optical loss with time.

  15. Fiber optic hydrophone

    DOEpatents

    Kuzmenko, P.J.; Davis, D.T.

    1994-05-10

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer is disclosed. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optical fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends. 2 figures.

  16. Python fiber optic seal

    SciTech Connect

    Ystesund, K.; Bartberger, J.; Brusseau, C.; Fleming, P.; Insch, K.; Tolk, K.

    1993-08-01

    Sandia National Laboratories has developed a high security fiber optic seal that incorporates tamper resistance features that are not available in commercial fiber optic seals. The Python Seal is a passive fiber optic loop seal designed to give indication of unauthorized entry. The seal includes a fingerprint feature that provides seal identity information in addition to the unique fiber optic pattern created when the seal is installed. The fiber optic cable used for the seal loop is produced with tamper resistant features that increase the difficulty of attacking that component of a seal. A Seal Reader has been developed that will record the seal signature and the fingerprint feature of the seal. A Correlator software program then compares seal images to establish a match or mismatch. SNL is also developing a Polaroid reader to permit hard copies of the seal patterns to be obtained directly from the seal.

  17. Fiber optic attenuator

    NASA Technical Reports Server (NTRS)

    Buzzetti, Mike F. (Inventor)

    1994-01-01

    A fiber optic attenuator of the invention is a mandrel structure through which a bundle of optical fibers is wrapped around in a complete circle. The mandrel structure includes a flexible cylindrical sheath through which the bundle passes. A set screw on the mandrel structure impacts one side of the sheath against two posts on the opposite side of the sheath. By rotating the screw, the sheath is deformed to extend partially between the two posts, bending the fiber optic bundle to a small radius controlled by rotating the set screw. Bending the fiber optic bundle to a small radius causes light in each optical fiber to be lost in the cladding, the amount depending upon the radius about which the bundle is bent.

  18. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    DOEpatents

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  19. Longitudinally Graded Optical Fibers

    NASA Astrophysics Data System (ADS)

    Evert, Alexander George

    Described herein, for the first time to the best of our knowledge, are optical fibers possessing significant compositional gradations along their length due to longitudinal control of the core glass composition. More specifically, MCVD-derived germanosilicate fibers were fabricated that exhibited a gradient of up to about 0.55 weight percent GeO2 per meter. These gradients are about 1900 times greater than previously reported for fibers possessing longitudinal changes in composition. The refractive index difference is shown to change by about 0.001, representing a numerical aperture change of about 10%, over a fiber length of less than 20 m. The lowest attenuation measured from the present longitudinally-graded fiber (LGF) was 82 dB/km at a wavelength of 1550 nm, though this is shown to result from extrinsic process-induced factors and could be reduced with further optimization. The stimulated Brillouin scattering (SBS) spectrum from the LGF exhibited a 4.4 dB increase in the spectral width, and thus reduction in Brillouin gain, relative to a standard commercial single mode fiber, over a fiber length of only 17 m. Fibers with longitudinally uniform (i.e., not gradient) refractive index profiles but differing chemical compositions among various core layers were also fabricated to determine acoustic effects of the core slug method. The refractive index of the resulting preform varies by about +/- 0.00013 from the average. Upon core drilling, it was found that the core slugs had been drilled off-center from the parent preform, resulting in semi-circular core cross sections that were unable to guide light. As a result, optical analysis could not be conducted. Chemical composition data was obtained, however, and is described herein. A third fiber produced was actively doped with ytterbium (Yb3 ) and fabricated similarly to the previous fibers. The preforms were doped via the solution doping method with a solution of 0.015 M Yb 3 derived from ytterbium chloride

  20. High fiber-low matrix composites: kenaf fiber/polypropylene.

    Treesearch

    Anand R. Sanadi; J.F. Hunt; D.F. Caulfield; G. Kovacsvolgyi; B. Destree

    2002-01-01

    Considerable interest has been generated in the use of lignocellulosic fibers and wastes (both agricultural and wood based) as fillers and reinforcements in thermoplastics. In general, present technologies limit fiber loading in thermoplastics to about 60 percent by weight of fiber. To produce high fiber content composites for commercial use while maintaining adequate...