Science.gov

Sample records for microfilaments

  1. Method and apparatus for testing microfilaments

    DOEpatents

    Schleitweiler, P.M.; Merten, C.W. Jr.

    1995-08-01

    A method and apparatus are disclosed for testing tensile strength of microfilaments. Fibers as small as 0.001 inch in diameter and 0.04 inches in length have been tested, although the method and apparatus of the invention are capable of testing fibers of smaller diameter and length. The invention utilizes a method wherein one or both ends of a microfilament is gripped using resin which is softened sufficiently to accept an end of the microfilament and then allowed to harden. The invention also employs the use of a translation stage capable of controlled three-dimensional movement suited to facilitating gripping of the microfilament. 2 figs.

  2. Method and apparatus for testing microfilaments

    DOEpatents

    Schleitweiler, Patrick M.; Merten, Jr., Charles W.

    1995-08-01

    A method and apparatus are disclosed for testing tensile strength of microfilaments. Fibers as small as 0.001 inch in diameter and 0.04 inches in length have been tested, although the method and apparatus of the invention are capable of testing fibers of smaller diameter and length. The invention utilizes a method wherein one or both ends of a microfilament is gripped using resin which is softened sufficiently to accept an end of the microfilament and then allowed to harden. The invention also employs the use of a translation stage capable of controlled three-dimensional movement suited to facilitating gripping of the microfilament.

  3. Dynamic aspects of microfilament-membrane attachments.

    PubMed

    Jockusch, B M; Wiegand, C; Temm-Grove, C J; Nikolai, G

    1993-01-01

    Microfilament-membrane attachment sites are complex structures that are essential for tissue differentiation in animals. In this article, we focus on the assembly and dynamics of such contact sites as seen in two cell types differentiating in cultures of the embryonic chicken heart, cardiocytes and fibroblasts. Concentrating on the cytoplasmic domain, we refer to previous biochemical, light, and electron microscopic studies on the structure and dynamics of these regions and supplement them with our own recent data. Although many details are still to be elucidated, we would like to propose the following model. Actin, alpha-actinin and vinculin are the major structural components of all microfilament-membrane contacts. Various subtypes of junctions are characterised by additional structural components or by specific isoforms. Temporal regulation of contact sites is linked to assembly and disassembly of microfilaments and might be controlled by special regulatory proteins. Finally, the cytoplasmic domains of junctional complexes may serve as structural matrices for the positioning of proteins involved in signal transduction pathways.

  4. Nomofungin: a new microfilament disrupting agent.

    PubMed

    Ratnayake, A S; Yoshida, W Y; Mooberry, S L; Hemscheidt, T K

    2001-12-28

    A new alkaloid, nomofungin, has been isolated from the fermentation broth of an unidentified endophytic fungus obtained from the bark of Ficus microcarpa L. The structure of nomofungin was determined by application of spectroscopic methods. The absolute stereochemistry of nomofungin was assigned by using the exciton chirality method. Nomofungin disrupts microfilaments in cultured mammalian cells and is moderately cytotoxic with minimum inhibitory concentrations (MICs) of 2 and 4.5 microg/mL against LoVo and KB cells, respectively. The ring system of nomofungin is unprecedented.

  5. Microfilament distribution in protonemata of the moss Ceratodon

    NASA Technical Reports Server (NTRS)

    Walker, L. M.; Sack, F. D.

    1995-01-01

    Microfilaments were visualized in dark-grown protonemata of the moss Ceratodon to assess their possible role in tip growth and gravitropism. The relative effectiveness of rhodamine phalloidin (with or without m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS)) and of immunofluorescence (using the C4 antibody) was evaluated for actin localization in the same cell type. Using immunofluorescence, microfilaments were primarily in an axial orientation within the apical cell. However, a more complex network of microfilaments was observed using rhodamine phalloidin after MBS pretreatment, especially when viewed by confocal laser scanning microscopy. This method revealed a rich three dimensional network of fine microfilaments throughout the apical cell, including the extreme apex. Although there were numerous internal microfilaments, peripheral microfilaments were more abundant. No major redistribution of microfilaments was detected after gravistimulation. The combination of MBS, rhodamine phalloidin, and confocal laser scanning microscopy preserves and reveals microfilaments remarkably well and documents perhaps the most extensive F-actin network visualized to date in any tip-growing cell.

  6. Helical Microfilaments with Alternating Imprinted Intrinsic Curvatures.

    PubMed

    Silva, Pedro Emanuel Santos; Godinho, Maria Helena

    2017-03-01

    There has been an intense research for developing techniques that can produce filaments with helical shapes, given the widespread of potential applications. In this work, how helices with different curvatures can be precisely imprinted in microfilaments is shown. It is also shown that using this technique, it is possible to produce, in a single fiber, helices with different curvatures. This striking and innovative behavior is observed when one side of the stretched filaments is irradiated with UV light, modifying the mechanical properties at surface. Upon release, the regions with higher curvature start to curl first, while regions with lower intrinsic curvature remain stretched until start to curl later. The results presented here can be important to understand why structures adopt a helical shape in general, which can be of interest in nanotechnology, biomolecular science, or even to understand why plant filaments curl.

  7. A Microfilament-eruption Mechanism for Solar Spicules

    NASA Astrophysics Data System (ADS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2016-09-01

    Recent investigations indicate that solar coronal jets result from eruptions of small-scale chromospheric filaments, called minifilaments; that is, the jets are produced by scaled-down versions of typical-sized filament eruptions. We consider whether solar spicules might in turn be scaled-down versions of coronal jets, being driven by eruptions of microfilaments. Assuming a microfilament's size is about a spicule's width (∼300 km), the estimated occurrence number plotted against the estimated size of erupting filaments, minifilaments, and microfilaments approximately follows a power-law distribution (based on counts of coronal mass ejections, coronal jets, and spicules), suggesting that many or most spicules could result from microfilament eruptions. Observed spicule-base Ca ii brightenings plausibly result from such microfilament eruptions. By analogy with coronal jets, microfilament eruptions might produce spicules with many of their observed characteristics, including smooth rise profiles, twisting motions, and EUV counterparts. The postulated microfilament eruptions are presumably eruptions of twisted-core micro-magnetic bipoles that are ∼1.″0 wide. These explosive bipoles might be built and destabilized by merging and cancelation of approximately a few to 100 G magnetic-flux elements of size ≲ 0\\buildrel{\\prime\\prime}\\over{.} 5{--}1\\buildrel{\\prime\\prime}\\over{.} 0. If, however, spicules are relatively more numerous than indicated by our extrapolated distribution, then only a fraction of spicules might result from this proposed mechanism.

  8. Statoliths pull on microfilaments: experiments under microgravity.

    PubMed

    Buchen, B; Braun, M; Hejnowicz, Z; Sievers, A

    1993-01-01

    Previous videomicroscopy of Chara rhizoids during parabolic flights of rockets showed that the weightless statoliths moved basipetally. A hypothesis was offered that the removal of gravity force disturbed the initial balance between this force and the basipetally acting forces generated in a dynamic interaction of statoliths with microfilaments (MFs). The prediction of this hypothesis that the statoliths would not be displaced basipetally during the microgravity phase (MG-phase) after disorganizing the MFs was tested by videomicroscopy of a rhizoid treated with cytochalasin D (CD) immediately before the flight. The prediction was fully supported by the flight experiment. Additionally, by chemical fixation of many rhizoids at the end of the MG-phase it was shown that all rhizoids treated with CD before the flight had statoliths at the same location. i.e., sedimented an the apical cell wall, while all untreated rhizoids had statoliths considerably displaced basipetally from their normal position. Thus, a dynamical interaction involving shearing forces between MFs and statoliths appears highly probable.

  9. Microfilament Distribution in Maize Meiotic Mutants Correlates with Microtubule Organization.

    PubMed Central

    Staiger, CJ; Cande, WZ

    1991-01-01

    Microtubules and microfilaments often codistribute in plants; their presumed interaction can be tested with drugs although it is not always clear that these are without side effects. In this study, we exploited mutants defective in meiotic cell division to investigate in a noninvasive way the relationship between the two cytoskeletal elements. By staining unfixed, permeabilized cells with rhodamine-phalloidin, spatial and temporal changes in microfilament distribution during maize meiosis were examined. In wild-type microsporocytes, a microtubule array that radiates from the nucleus disappeared during spindle formation and returned at late telophase. This result differed from the complex cytoplasmic microfilament array that is present at all stages, including karyokinesis and cytokinesis. During division, a second class of microfilaments also was observed in the spindle and phragmoplast. To analyze this apparent association of microtubules and microfilaments, we examined several meiotic mutants known to have stage-specific disruptions in their microtubule arrays. Two mutations that altered the number or form of meiotic spindles also led to a dramatic reorganization of F-actin. In contrast, rearrangement of nonspindle, cytoplasmic microtubules did not lead to concomitant changes in F-actin distribution. These results suggested that microtubules and microfilaments interact in a cell cycle-specific and site-specific fashion during higher plant meiosis. PMID:12324607

  10. Calcium influx through stretch-activated channels mediates microfilament reorganization in osteoblasts under simulated weightlessness

    NASA Astrophysics Data System (ADS)

    Luo, Mingzhi; Yang, Zhouqi; Li, Jingbao; Xu, Huiyun; Li, Shengsheng; Zhang, Wei; Qian, Airong; Shang, Peng

    2013-06-01

    We have explored the role of Ca2+ signaling in microfilament reorganization of osteoblasts induced by simulated weightlessness using a random positioning machine (RPM). The RPM-induced alterations of cell morphology, microfilament distribution, cell proliferation, cell migration, cytosol free calcium concentration ([Ca2+]i), and protein expression in MG63 osteoblasts were investigated. Simulated weightlessness reduced cell size, disrupted microfilament, inhibited cellular proliferation and migration, and induced an increase in [Ca2+]i in MG63 human osteosarcoma cells. Gadolinium chloride (Gd), an inhibitor for stretch-activated channels, attenuated the increase in [Ca2+]i and microfilament disruption. Further, the expression of calmodulin was significantly increased by simulated weightlessness, and an inhibitor of calmodulin, W-7, aggravated microfilament disruption. Our findings demonstrate that simulated weightlessness induces Ca2+ influx through stretch-activated channels, then results in microfilament disruption.

  11. Selective, pulsed CVD of platinum on microfilament gas sensors

    SciTech Connect

    Manginell, R.P.; Smith, J.H.; Ricco, A.J.; Moreno, D.J.; Hughes, R.C.; Huber, R.J.; Senturia, S.D.

    1996-05-01

    A post-processing, selective micro-chemical vapor deposition (``micro-CVD``) technology for the deposition of catalytic films on surface-micromachined, nitride-passivated polysilicon filaments has been investigated. Atmospheric pressure deposition of Pt on microfilaments was accomplished by thermal decomposition of Pt acetylacetonate; deposition occurs selectively only on those filaments which are electrically heated. Catalyst morphology, characterized by SEM, can be controlled by altering deposition time, filament temperature, and through the use of pulsed heating of the filament during deposition. Morphology plays an important role in determining the sensitivity of these devices when used as combustible gas sensors.

  12. Microfilament Depolymerization Is a Pre-requisite for Stem Cell Formation During In vitro Shoot Regeneration in Arabidopsis

    PubMed Central

    Tang, Li Ping; Li, Xiao Ming; Dong, Yu Xiu; Zhang, Xian Sheng; Su, Ying Hua

    2017-01-01

    De novo shoot regeneration is widely used in fundamental studies and agricultural applications. Actin microfilaments are involved in many aspects of plant cell division, cell morphogenesis and cell signal transduction. However, the function of actin microfilaments during de novo shoot regeneration is poorly understood. Here, we investigated the organization of actin microfilaments during this process and found that stem cell formation was associated with microfilament depolymerization. Furthermore, inhibition of microfilament depolymerization by phalloidin treatment or downregulation of actin depolymerizing factors (ADFs) restrained stem cell initiation and shoot regeneration. Inhibition of ADF expression affected the architecture of microfilaments during stem cell formation, and the polar transport and distribution of auxin were also disrupted. Together, our results demonstrate that organization of the microfilament cytoskeleton play important roles in stem cell formation and shoot meristem induction during shoot regeneration. PMID:28261231

  13. The nitrate reductase inhibitor, tungsten, disrupts actin microfilaments in Zea mays L.

    PubMed

    Adamakis, Ioannis-Dimosthenis S; Panteris, Emmanuel; Eleftheriou, Eleftherios P

    2014-05-01

    Tungsten is a widely used inhibitor of nitrate reductase, applied to diminish the nitric oxide levels in plants. It was recently shown that tungsten also has heavy metal attributes. Since information about the toxic effects of tungsten on actin is limited, and considering that actin microfilaments are involved in the entry of tungsten inside plant cells, the effects of tungsten on them were studied in Zea mays seedlings. Treatments with sodium tungstate for 3, 6, 12 or 24 h were performed on intact seedlings and seedlings with truncated roots. Afterwards, actin microfilaments in meristematic root and leaf tissues were stained with fluorescent phalloidin, and the specimens were examined by confocal laser scanning microscopy. While the actin microfilament network was well organized in untreated seedlings, in tungstate-treated ones it was disrupted in a time-dependent manner. In protodermal root cells, the effects of tungsten were stronger as cortical microfilaments were almost completely depolymerized and the intracellular ones appeared highly bundled. Fluorescence intensity measurements confirmed the above results. In the meristematic leaf tissue of intact seedlings, no depolymerization of actin microfilaments was noticed. However, when root tips were severed prior to tungstate application, both cortical and endoplasmic actin networks of leaf cells were disrupted and bundled after 24 h of treatment. The differential response of root and leaf tissues to tungsten toxicity may be due to differential penetration and absorption, while the effects on actin microfilaments could not be attributed to the nitric oxide depletion by tungsten.

  14. Statolith positioning by microfilaments in Chara rhizoids and protonemata

    NASA Astrophysics Data System (ADS)

    Hodick, Dieter; Buchen, Brigitte; Sievers, Andreas

    The rhizoids of the green alga Chara are tip-growing cells with a precise positive gravitropism. In rhizoids growing downwards the statoliths never sediment upon the cell wall at the very tip but keep a minimal distance of approximately 10 μm from the cell vertex. It has been argued that this position is attained by a force acting upon the statoliths in the basal direction and that this force is generated by an interaction between actin microfilaments and myosin on the statolith membrane. This hypothesis received experimental support from (1) effects of the actin-attacking drug cytochalasin, (2) experiments under microgravity conditions, and (3) clinostat experiments. Using video-microscopy it is now shown that this basipetal force also acts on statoliths during sedimentation. As a result, many statoliths in Chara rhizoids do not simply fall along the plumb line while sedimenting during gravistimulation, but move basipetally. This statolith movement is compared to the ones occurring in the unicellular Chara protonemata during gravistimulation. Dark-grown protonemata morphologically closely resemble the rhizoids but respond negatively gravitropic. In contrast to the rhizoids a gravistimulation of the protonemata induces a transport of statoliths towards the tip. This transport is mainly along the cell axis and not parallel to the gravity vector. It is stressed that the sedimentation of statoliths in Chara rhizoids and protonemata as well as in gravity sensing cells in mosses and higher plants is accompanied by statolith movements based on interactions with the cytoskeleton. In tip-growing cells these movements direct the statoliths to a definite region of the cell where they can sediment and elicit a gravitropic curvature. In the statocytes of higher plants the interactions of the statoliths with the cytoskeleton probably do not serve primarily to move the statoliths but to transduce mechanical stresses from the sedimenting statoliths to the plasma membrane.

  15. Immunohistochemical evidence for an association of ribosomes with microfilaments in 3T3 fibroblasts.

    PubMed

    Hesketh, J E; Horne, Z; Campbell, G P

    1991-02-01

    Ribosome distribution in cultured fibroblasts was investigated immunohistochemically using antibodies which recognize the 60S ribosomal subunit. After treatment of cells with buffer containing 25mM KCl and 0.05% Nonidet-P40 immunostained material was present in punctate patterns and linear arrays consistent with some ribosomes being associated with the cytoskeleton. Treatment of the cells with 130mM KCl caused loss of both the beaded lines of immunostaining and micro-filaments. Double immunostaining showed ribosomes to be closely associated with microfilaments.

  16. Cortical granule translocation is microfilament mediated and linked to meiotic maturation in the sea urchin oocyte.

    PubMed

    Wessel, Gary M; Conner, Sean D; Berg, Linnea

    2002-09-01

    Cortical granules exocytose after the fusion of egg and sperm in most animals, and their contents function in the block to polyspermy by creating an impenetrable extracellular matrix. Cortical granules are synthesized throughout oogenesis and translocate en masse to the cell surface during meiosis where they remain until fertilization. As the mature oocyte is approximately 125 micro m in diameter (Lytechinus variegatus), many of the cortical granules translocate upwards of 60 micro m to reach the cortex within a 4 hour time window. We have investigated the mechanism of this coordinated vesicular translocation event. Although the stimulus to reinitiate meiosis in sea urchin oocytes is not known, we found many different ways to reversibly inhibit germinal vesicle breakdown, and used these findings to discover that meiotic maturation and cortical granule translocation are inseparable. We also learned that cortical granule translocation requires association with microfilaments but not microtubules. It is clear from endocytosis assays that microfilament motors are functional prior to meiosis, even though cortical granules do not use them. However, just after GVBD, cortical granules attach to microfilaments and translocate to the cell surface. This latter conclusion is based on organelle stratification within the oocyte followed by positional quantitation of the cortical granules. We conclude from these studies that maturation promoting factor (MPF) activation stimulates vesicle association with microfilaments, and is a key regulatory step in the coordinated translocation of cortical granules to the egg cortex.

  17. Cytoplasmic streaming emerges naturally from hydrodynamic self-organisation of a microfilament suspension

    NASA Astrophysics Data System (ADS)

    Woodhouse, Francis; Goldstein, Raymond

    2013-03-01

    Cytoplasmic streaming is the ubiquitous phenomenon of deliberate, active circulation of the entire liquid contents of a plant or animal cell by the walking of motor proteins on polymer filament tracks. Its manifestation in the plant kingdom is particularly striking, where many cells exhibit highly organised patterns of flow. How these regimented flow templates develop is biologically unclear, but there is growing experimental evidence to support hydrodynamically-mediated self-organisation of the underlying microfilament tracks. Using the spirally-streaming giant internodal cells of the characean algae Chara and Nitella as our prototype, we model the developing sub-cortical streaming cytoplasm as a continuum microfilament suspension subject to hydrodynamic and geometric forcing. We show that our model successfully reproduces emergent streaming behaviour by evolving from a totally disordered initial state into a steady characean ``conveyor belt'' configuration as a consequence of the cell geometry, and discuss applicability to other classes of steadily streaming plant cells.

  18. Mitosis in Oedogonium: spindle microfilaments and the origin of the kinetochore fiber.

    PubMed

    Schibler, M J; Pickett-Heaps, J D

    1980-10-01

    New ultrastructural observations of mitosis in the closed spindle of Oedogonium cardiacum have been made using cells fixed with glutaraldehyde and tannic acid. Fine filaments 5 to 8 nm in diameter are attached to kinetochores from prophase through anaphase. Some are free in the early division nucleus while others emanate from forming kinetochores at prophase when few if any microtubules (MTs) are inside the nucleus. During prometaphase, MTs invade the nucleus from the poles and appear to interact with the microfilaments. Early in prometaphase, numerous MTs are laterally associated with kinetochores, and the kinetochore fiber is often formed first at one kinetochore of a pair. During metaphase and anaphase, the microfilaments are interspersed among the MTs of these kinetochore fibers. There also is an ill-defined matrix concentrated in the kinetochore fiber, and MTs are often coated irregularly with osmiophilic material. Live mitotic cells of Oedogonium were studied using time lapse cinematography, and we correlate these observations with the above results. We conclude that these microfilaments may constitute one structural component of the traction apparatus that moves chromosomes during metakinesis and anaphase, and that at least some (and possibly many) of the MTs of the kinetochore fiber are derived from those entering the nucleus at prometaphase.

  19. Cloned pigmented retinal epiehtlium. The role of microfilaments in the differentiation of cell shape

    PubMed Central

    1979-01-01

    3-wk-old clones of pigmented epithelial cells from chick retina can be divided into four zones on the basis of cellular morphology and pigmentation. These zones appear to represent different stages in the re-expression of differentiation: those cells with essentially no differentiated characteristics are at the outer edge and those with the greatest number are at the center. Cells of the colony exhibit three different types of movement when analyzed by time-lapse cinephotomicrography: focal contractions, extension and retraction of apical protrusions, and undulations of the lateral membranes. All the cells of the colony contain microfilaments, 4--7 nm in Diam, which are primarily arranged as apical and basal webs. In addition, less well defined filamentous networks are found in the apical protrusions and lateral interdigitations. When colonies are treated with 10 micrograms/ml of the drug cytochalasin B (CCB), the apical microfilament arrays are disrupted and movement stops. Both phenomena are reversible upon removal of the drug. During the process of redifferentiation, the cells change their shape from squamous to cuboidal, and the greatest change is found where the colony exhibits the greatest number of focal contractions. The evidence suggests that the apical microfilament arrays are directly responsible for the observed movements, particularly the focal contractions, and that focal contractions contribute to the development of the differentiated cellular shape. Possible roles for the other movements are discussed. PMID:572829

  20. Depolymerization of macrophage microfilaments prevents induction and inhibits activity of nitric oxide synthase.

    PubMed

    Fernandes, P D; Araujo, H M; Riveros-Moreno, V; Assreuy, J

    1996-12-01

    We have investigated the relationship between peritoneal murine macrophage cytoskeleton and nitric oxide (NO) synthase (NOS). Activation of the cells with lipopolysaccharide plus interferon-gamma (LI) induced iNOS, detected by nitrite or by labeled L-citrulline production and by a specific antibody against macrophage iNOS. Addition of cytochalasin B (a microfilament-depolymerizing agent) caused a dose-dependent inhibition in NO production by macrophages, whereas colchicine (a microtubule depolymerizing agent) inhibited it only by 20% and not dose-dependently. Addition of cytochalasin B together with LI abolished nitrite and L-citrulline accumulation as well as the amount of iNOS antigen in activated macrophage. Moreover, addition of cytochalasin B 6 or 12 h after stimulus, also decreased the nitrite and L-citrulline production by macrophages although iNOS antigen content by Western blot was the same in the presence or in the absence of cytochalasin B added 12 h after activation. Since cytochalasin B failed to inhibit iNOS activity directly, its inhibitory effects on NO production by macrophages is likely to be indirect, through microfilament network in central regions of cells, but not in filaments seen at pseudopodia or edging processes. Our findings demonstrate that disruption of microfilaments but not of microtubules prevents the iNOS induction process and inhibits its enzymatic activity in activated macrophages.

  1. [Study of a lysis medium stabilizing microfilaments and microtubules in vitro and in vivo].

    PubMed

    Foucault, G; Raymond, M N; Coffe, G; Pudles, J

    1984-01-01

    Determination of experimental conditions which allow the evaluation of the variations in the ratio of non polymerized and polymerized forms of actin and tubulin during the reorganization of the cytoskeletal cell system is of most valuable importance. In order to prepare cell homogenates which would reflect the in vivo situation, we tested in vitro a lysis medium which stabilized both microfilaments and microtubules, which were determined by DNase inhibition assays and colchicine binding assays respectively. This lysis medium containing 10 mM potassium phosphate, 1mM magnesium chloride, 5 mM EGTA, 1 M hexylene glycol, 1% Triton X-100, pH 6.4, used at 4 degrees C a) diffused rapidly into the cells; b) did not denature actin and tubulin; c) did not displace the equilibrium between non polymerized and polymerized forms of actin and tubulin, allowing biochemical assays on cell homogenates; d) blocked the evolution of the cytoskeletal system and permitted structural studies; e) and allowed the decoration of microfilaments by heavy meromyosin.

  2. Microfilament-organizing centers in areas of cell contact: cytoskeletal interactions during cell attachment and locomotion

    PubMed Central

    Geiger, B.; Avnur, Z.; Rinnerthaler, G.; Hinssen, H.; Small, V. J.

    1984-01-01

    In this article we discuss three aspects of cell contact formation: (a) the molecular architecture of the cytomatrix in cell-to-substrate focal contacts, (b) the dynamic properties of membrane- and microfilament-associated proteins in the contact areas, and (c) the involvement of microtubules in the coordinated and directed formation of new substrate contacts during cell locomotion. We show that different microfilament-associated proteins exhibit distinct patterns of association with focal contacts: some proteins are specifically associated with focal contacts (vinculin and talin); alpha-actinin is enriched in the contact areas but also is present along the stress fibers and in the lamellipodium; actin and filamin are detected throughout the contact areas but in apparently reduced amounts compared with the associated stress fibers; and tropomyosin, myosin, and spectrin are either absent from the endofacial surfaces of contact areas or are present in only very small amounts. Fluorescence photobleaching recovery analyses performed with living cells microinjected with fluorescently labeled actin, vinculin, and alpha-actinin indicate that each of these proteins maintains a dynamic equilibrium between a soluble cytoplasmic pool and a membrane-bound fraction. Correlation of the distribution of vinculin and tubulin in motile fibroblasts to local movements of the leading edge of the same cells indicates that free-end microtubules extend into actively ruffling areas along the lamellipodium and that new vinculin-containing contacts are preferentially formed in these protruding regions. PMID:6430912

  3. Microfilament Orientation Constrains Vesicle Flow and Spatial Distribution in Growing Pollen Tubes

    PubMed Central

    Kroeger, Jens H.; Daher, Firas Bou; Grant, Martin; Geitmann, Anja

    2009-01-01

    Abstract The dynamics of cellular organelles reveals important information about their functioning. The spatio-temporal movement patterns of vesicles in growing pollen tubes are controlled by the actin cytoskeleton. Vesicle flow is crucial for morphogenesis in these cells as it ensures targeted delivery of cell wall polysaccharides. Remarkably, the target region does not contain much filamentous actin. We model the vesicular trafficking in this area using as boundary conditions the expanding cell wall and the actin array forming the apical actin fringe. The shape of the fringe was obtained by imposing a steady state and constant polymerization rate of the actin filaments. Letting vesicle flux into and out of the apical region be determined by the orientation of the actin microfilaments and by exocytosis was sufficient to generate a flux that corresponds in magnitude and orientation to that observed experimentally. This model explains how the cytoplasmic streaming pattern in the apical region of the pollen tube can be generated without the presence of actin microfilaments. PMID:19804712

  4. Evolution of laser microfilaments in the wake of a femtosecond driving pulse

    NASA Astrophysics Data System (ADS)

    Romanov, D. A.; Levis, R. J.

    2013-06-01

    A theoretical model for subnanosecond evolution of a nonequilibrium, inhomogeneous free-electron gas in a laser filament or microfilament wake channel is presented. The spatial distributions of electron density and temperature calculated in axially symmetric geometry as a function of time reveal dynamics on the picosecond time scale that is principally driven by a combination of thermal conduction in the electron gas and impact ionization of residual neutral atoms. At high laser intensity, the electron density evolves into a widened distribution with a sharp edge while the temperature distribution evolves to a central peak surrounded by a wide plateau. At low laser intensity, little change is seen in the electron density while the temperature again evolves to a wide plateau. The calculations show that the homogeneous electron-density approximation becomes progressively invalid at higher laser intensity. Pump-probe experiments addressing Fraunhofer diffraction patterns, four-wave mixing, and dynamic Rabi sidebands are proposed for experimental verification of the results.

  5. The association of peroxisomes with the developing cell plate in dividing onion root cells depends on actin microfilaments and myosin.

    PubMed

    Collings, David A; Harper, John D I; Vaughn, Kevin C

    2003-12-01

    We have investigated changes in the distribution of peroxisomes through the cell cycle in onion ( Allium cepa L.) root meristem cells with immunofluorescence and electron microscopy, and in leek ( Allium porrum L.) epidermal cells with immunofluorescence and peroxisomal-targeted green fluorescent protein. During interphase and mitosis, peroxisomes distribute randomly throughout the cytoplasm, but beginning late in anaphase, they accumulate at the division plane. Initially, peroxisomes occur within the microtubule phragmoplast in two zones on either side of the developing cell plate. However, as the phragmoplast expands outwards to form an annulus, peroxisomes redistribute into a ring immediately inside the location of the microtubules. Peroxisome aggregation depends on actin microfilaments and myosin. Peroxisomes first accumulate in the division plane prior to the formation of the microtubule phragmoplast, and throughout cytokinesis, always co-localise with microfilaments. Microfilament-disrupting drugs (cytochalasin and latrunculin), and a putative inhibitor of myosin (2,3-butanedione monoxime), inhibit aggregation. We propose that aggregated peroxisomes function in the formation of the cell plate, either by regulating hydrogen peroxide production within the developing cell plate, or by their involvement in recycling of excess membranes from secretory vesicles via the beta-oxidation pathway. Differences in aggregation, a phenomenon which occurs in onion, some other monocots and to a lesser extent in tobacco BY-2 suspension cells, but which is not obvious in the roots of Arabidopsis thaliana (L.) Heynh., may reflect differences within the primary cell walls of these plants.

  6. MicroFilament Analyzer identifies actin network organizations in epidermal cells of Arabidopsis thaliana roots

    PubMed Central

    Jacques, Eveline; Lewandowski, Michal; Buytaert, Jan; Fierens, Yves; Verbelen, Jean-Pierre; Vissenberg, Kris

    2013-01-01

    The plant cytoskeleton plays a crucial role in the cells’ growth and development during different developmental stages and it undergoes many rearrangements. In order to describe the arrangements of the F-actin cytoskeleton in root epidermal cells of Arabidopsis thaliana, the recently developed software MicroFilament Analyzer (MFA) was exploited. This software enables high-throughput identification and quantification of the orientation of filamentous structures on digital images in a highly standardized and fast way. Using confocal microscopy and transgenic GFP-FABD2-GFP plants the actin cytoskeleton was visualized in the root epidermis. MFA analysis revealed that during the early stages of cell development F-actin is organized in a mainly random pattern. As the cells grow, they preferentially adopt a longitudinal organization, a pattern that is also preserved in the largest cells. In the evolution from young to old cells, an approximately even distribution of transverse, oblique or combined orientations is always present besides the switch from random to a longitudinal oriented actin cytoskeleton. PMID:23656865

  7. Two classes of actin microfilaments are associated with the inner cytoskeleton of axons

    PubMed Central

    1988-01-01

    The distribution and length of actin microfilaments (MF) was determined in axoplasm extruded from the giant axons of the squid (Loligo pealeii). Extruded axoplasm that was separated from the axonal cortex contains approximately 92% of the total axonal actin, and 60% of this actin is polymerized (Morris, J., and R. Lasek. 1984. J. Cell Biol. 98:2064-2076). Localization of MF with rhodamine-phalloidin indicated that the MF were organized in fine columns oriented longitudinally within the axoplasm. In the electron microscope, MF were surrounded by a dense matrix and they were associated with the microtubule domains of the axoplasm. The surrounding matrix tended to obscure the MF which may explain why MF have rarely been recognized before in the inner regions of the axon. The axoplasmic MF are relatively short (number average length of 0.55 micron). Length measurements of MF prepared either in the presence or absence of the actin-filament stabilizing drug phalloidin indicate that axoplasm contains two populations of MF: stable MF (number average length of 0.79 micron) and metastable MF (number average length of 0.41 micron). Although individual axonal MF are much shorter than axonal microtubules, the combined length of the total MF is twice that of the total microtubules. Apparently, these numerous short MF have an important structural role in the architecture of the inner axonal cytoskeleton. PMID:3417765

  8. The Role of Microfilaments in Early Meiotic Maturation of Mouse Oocytes

    NASA Astrophysics Data System (ADS)

    Calarco, Patricia G.

    2005-04-01

    Mouse oocyte microfilaments (MF) were perturbed by depolymerization (cytochalasin B) or stabilization (jasplakinolide) and correlated meiotic defects examined by confocal microscopy. MF, microtubules, and mitochondria were vitally stained; centrosomes ([gamma]-tubulin), after fixation. MF depolymerization by cytochalasin in culture medium did not affect central migration of centrosomes, mitochondria, or nuclear breakdown (GVBD); some MF signal was localized around the germinal vesicle (GV). In maturation-blocking medium (containing IBMX), central movement was curtailed and cortical MF aggregations made the plasma membrane wavy. Occasional long MF suggested that not all MF were depolymerized. MF stabilization by jasplakinolide led to MF aggregations throughout the cytoplasm. GVBD occurred (unless IBMX was present) but no spindle formed. Over time, most oocytes constricted creating a dumbbell shape with MF concentrated under one-half of the oocyte cortex and on either side of the constriction. In IBMX medium, the MF-containing half of the dumbbell over time sequestered the GV, MF, mitochondria, and one to two large cortical centrosomes; the non-MF half appeared empty. Cumulus processes contacted the oocyte surface (detected by microtubule content) and mirrored MF distribution. Results demonstrated that MF play an essential role in meiosis, primarily through cortically mediated events, including centrosome localization, spindle (or GV) movement to the periphery, activation of (polar body) constriction, and establishment of oocyte polarity. The presence of a cortical “organizing pole” is hypothesized.

  9. Cytoplasmic streaming in plant cells emerges naturally by microfilament self-organization.

    PubMed

    Woodhouse, Francis G; Goldstein, Raymond E

    2013-08-27

    Many cells exhibit large-scale active circulation of their entire fluid contents, a process termed cytoplasmic streaming. This phenomenon is particularly prevalent in plant cells, often presenting strikingly regimented flow patterns. The driving mechanism in such cells is known: myosin-coated organelles entrain cytoplasm as they process along actin filament bundles fixed at the periphery. Still unknown, however, is the developmental process that constructs the well-ordered actin configurations required for coherent cell-scale flow. Previous experimental works on streaming regeneration in cells of Characean algae, whose longitudinal flow is perhaps the most regimented of all, hint at an autonomous process of microfilament self-organization driving the formation of streaming patterns during morphogenesis. Working from first principles, we propose a robust model of streaming emergence that combines motor dynamics with both microscopic and macroscopic hydrodynamics to explain how several independent processes, each ineffectual on its own, can reinforce to ultimately develop the patterns of streaming observed in the Characeae and other streaming species.

  10. Microfilament regulatory protein MENA increases activity of RhoA and promotes metastasis of hepatocellular carcinoma.

    PubMed

    Lin, Ling; Yang, Xiao-Mei; Li, Jun; Zhang, Yan-Li; Qin, Wenxin; Zhang, Zhi-Gang

    2014-09-10

    Mammalian enabled (MENA), usually known as a direct regulator of microfilament polymerization and bundling, promotes metastasis in various cancers. Here we focus on the role of MENA in hepatocellular carcinoma (HCC) metastasis and the relevant mechanism from the view of RhoA activity regulation. By HCC tissue microarray analysis, we found that MENA expression was positively associated with satellite lesions (P<0.01) and vascular invasion (P<0.01). Cases with membrane reinforcement of MENA staining in HCC tissues had significantly higher rates of early recurrence in the intermediate MENA expression group. Knockdown of MENA significantly suppressed HCC cell migration and invasion in vitro, as well as their intrahepatic and distant metastasis in vivo. Knockdown of MENA also decreased filopodia and stress fibers in SMMC-7721 cells. Furthermore, a decrease of RhoA activity was detected by a pull-down assay in SMMC-7721-shMENA cells. The ROCK inhibitor, Y-27632, suppressed migration of both MENA knockdown SMMC-7721 cells and control cells, but diminished their difference. Thus, our findings suggest that MENA promotes HCC cell motility by activating RhoA.

  11. Microtubules and Microfilaments in Fixed and Permeabilized Cells are Selectively Decorated by Nerve Growth Factor

    NASA Astrophysics Data System (ADS)

    Nasi, S.; Cirillo, D.; Naldini, L.; Marchisio, P. C.; Calissano, P.

    1982-02-01

    A specific antibody against nerve growth factor (NGF) and indirect immunofluorescence microscopy have been used to follow the in vitro binding of NGF to cells made permeable to large molecules. All cells tested, both target (sensory neurons and PC12 cells) and nontarget (3T3, BKH 2I, C6 glioma cells), revealed a decoration of cytoskeletal structures which on the basis of their form, reactivity with antibodies, and sensitivity to specific drugs may be identified as microtubules (MTs) and microfilaments (MFs). The decoration of either structure depends on the fixation and permeabilization conditions: MFs, in the form of stress fibers, are stained by NGF when the plasma membrane is permeabilized with methanol/acetone; MTs become intensely stained when the plasma membrane is solubilized with a nonionic detergent in the presence of a MT-stabilizing medium. The two procedures do not affect the staining of these structures with specific antibodies. Binding of 125I-labeled NGF to PC12 cells was not competitively inhibited by a 100-fold excess of several positively charged proteins but it was markedly decreased in the presence of DNase I. 125I-Labeled NGF interacted with MTs and F-actin (fixed with paraformaldehyde) in a range of concentrations similar to that used for their cellular localization with NGF-anti-NGF. Our studies show that the specificity and affinity of NGF binding to MTs and MFs is in the range of that of antibodies against tubulin and actin. The possible relevance of these findings to the mechanism of action of NGF in target cells is discussed.

  12. Ezrin: a regulator of actin microfilaments in cell junctions of the rat testis

    PubMed Central

    Gungor-Ordueri, N Ece; Celik-Ozenci, Ciler; Cheng, C Yan

    2015-01-01

    Ezrin, radixin, moesin and merlin (ERM) proteins are highly homologous actin-binding proteins that share extensive sequence similarity with each other. These proteins tether integral membrane proteins and their cytoplasmic peripheral proteins (e.g., adaptors, nonreceptor protein kinases and phosphatases) to the microfilaments of actin-based cytoskeleton. Thus, these proteins are crucial to confer integrity of the apical membrane domain and its associated junctional complex, namely the tight junction and the adherens junction. Since ectoplasmic specialization (ES) is an F-actin-rich testis-specific anchoring junction-a highly dynamic ultrastructure in the seminiferous epithelium due to continuous transport of germ cells, in particular spermatids, across the epithelium during the epithelial cycle-it is conceivable that ERM proteins are playing an active role in these events. Although these proteins were first reported almost 25 years and have since been extensively studied in multiple epithelia/endothelia, few reports are found in the literature to examine their role in the actin filament bundles at the ES. Studies have shown that ezrin is also a constituent protein of the actin-based tunneling nanotubes (TNT) also known as intercellular bridges, which are transient cytoplasmic tubular ultrastructures that transport signals, molecules and even organelles between adjacent and distant cells in an epithelium to coordinate cell events that occur across an epithelium. Herein, we critically evaluate recent data on ERM in light of recent findings in the field in particular ezrin regarding its role in actin dynamics at the ES in the testis, illustrating additional studies are warranted to examine its physiological significance in spermatogenesis. PMID:25652626

  13. A genetic screen for suppressors and enhancers of the Drosophila cdk1-cyclin B identifies maternal factors that regulate microtubule and microfilament stability.

    PubMed Central

    Ji, Jun-Yuan; Haghnia, Marjan; Trusty, Cory; Goldstein, Lawrence S B; Schubiger, Gerold

    2002-01-01

    Coordination between cell-cycle progression and cytoskeletal dynamics is important for faithful transmission of genetic information. In early Drosophila embryos, increasing maternal cyclin B leads to higher Cdk1-CycB activity, shorter microtubules, and slower nuclear movement during cycles 5-7 and delays in nuclear migration to the cortex at cycle 10. Later during cycle 14 interphase of six cycB embryos, we observed patches of mitotic nuclei, chromosome bridges, abnormal nuclear distribution, and small and large nuclei. These phenotypes indicate disrupted coordination between the cell-cycle machinery and cytoskeletal function. Using these sensitized phenotypes, we performed a dosage-sensitive genetic screen to identify maternal proteins involved in this process. We identified 10 suppressors classified into three groups: (1) gene products regulating Cdk1 activities, cdk1 and cyclin A; (2) gene products interacting with both microtubules and microfilaments, Actin-related protein 87C; and (3) gene products interacting with microfilaments, chickadee, diaphanous, Cdc42, quail, spaghetti-squash, zipper, and scrambled. Interestingly, most of the suppressors that rescue the astral microtubule phenotype also reduce Cdk1-CycB activities and are microfilament-related genes. This suggests that the major mechanism of suppression relies on the interactions among Cdk1-CycB, microtubule, and microfilament networks. Our results indicate that the balance among these different components is vital for normal early cell cycles and for embryonic development. Our observations also indicate that microtubules and cortical microfilaments antagonize each other during the preblastoderm stage. PMID:12454065

  14. Enrichment of distinct microfilament-associated and GTP-binding-proteins in membrane/microvilli fractions from lymphoid cells

    PubMed Central

    Hao, Jian-Jiang; Wang, Guanghui; Pisitkun, Trairak; Patino-Lopez, Genaro; Nagashima, Kunio; Knepper, Mark A.; Shen, Rong-Fong; Shaw, Stephen

    2008-01-01

    Summary Lymphocyte microvilli mediate initial adhesion to endothelium during lymphocyte transition from blood into tissue but their molecular organization is incompletely understood. We modified a shear-based procedure to prepare biochemical fractions enriched for membrane/microvilli (MMV) from both human peripheral blood T-lymphocytes (PBT) and a mouse pre-B lymphocyte line (300.19). Enrichment of proteins in MMV relative to post nuclear lysate was determined by LC/MS/MS analysis and label-free quantitation. Subsequent analysis emphasized the 291 proteins shared by PBT and 300.19 and estimated by MS peak area to be highest abundance. Validity of the label-free quantitation was confirmed by many internal consistencies and by comparison with Western blot analyses. The MMV fraction was enriched primarily for subsets of cytoskeletal proteins, transmembrane proteins and G-proteins, with similar patterns in both lymphoid cell types. The most enriched cytoskeletal proteins were microfilament-related proteins NHERF1, Ezrin/Radixin/Moesin (ERMs), ADF/cofilin and Myosin1G. Other microfilament proteins such as talin, gelsolin, myosin II and profilin were markedly reduced in MMV, as were intermediate filament- and microtubule-related proteins. Heterotrimeric G-proteins and some small G-proteins (especially Ras and Rap1) were enriched in the MMV preparation. Two notable general observations also emerged. There was less overlap between the two cells in their transmembrane proteins than in other classes of proteins, consistent with a special role of plasma membrane proteins in differentiation. Second, unstimulated primary T-lymphocytes have an unusually high concentration of actin and other microfilament related proteins, consistent with the singular role of actin-mediated motility in the immunological surveillance performed by these primary cells. Lymphocyte microvilli initiate adhesion to endothelium during movement from blood into tissue. Using LC/MS/MS and label

  15. Quantitative analysis of changes in actin microfilament contribution to cell plate development in plant cytokinesis

    PubMed Central

    Higaki, Takumi; Kutsuna, Natsumaro; Sano, Toshio; Hasezawa, Seiichiro

    2008-01-01

    Background Plant cells divide by the formation of new cross walls, known as cell plates, from the center to periphery of each dividing cell. Formation of the cell plate occurs in the phragmoplast, a complex structure composed of membranes, microtubules (MTs) and actin microfilaments (MFs). Disruption of phragmoplast MTs was previously found to completely inhibit cell plate formation and expansion, indicative of their crucial role in the transport of cell plate membranes and materials. In contrast, disruption of MFs only delays cell plate expansion but does not completely inhibit cell plate formation. Despite such findings, the significance and molecular mechanisms of MTs and MFs remain largely unknown. Results Time-sequential changes in MF-distribution were monitored by live imaging of tobacco BY-2 cells stably expressing the GFP-actin binding domain 2 (GFP-ABD2) fusion protein, which vitally co-stained with the endocytic tracer, FM4-64, that labels the cell plate. During cytokinesis, MFs accumulated near the newly-separated daughter nuclei towards the emerging cell plate, and subsequently approached the expanding cell plate edges. Treatment with an actin polymerization inhibitor caused a decrease in the cell plate expansion rate, which was quantified using time-lapse imaging and regression analysis. Our results demonstrated time-sequential changes in the contribution of MFs to cell plate expansion; MF-disruption caused about a 10% decrease in the cell plate expansion rate at the early phase of cytokinesis, but about 25% at the late phase. MF-disruption also caused malformation of the emerging cell plate at the early phase, indicative of MF involvement in early cell plate formation and expansion. The dynamic movement of endosomes around the cell plate was also inhibited by treatment with an actin polymerization inhibitor and a myosin ATPase inhibitor, respectively. Furthermore, time-lapse imaging of the endoplasmic reticulum (ER) revealed that MFs were involved in

  16. A stochastic thermostat algorithm for coarse-grained thermomechanical modeling of large-scale soft matters: Theory and application to microfilaments

    SciTech Connect

    Li, Tong; Gu, YuanTong

    2014-04-15

    As all-atom molecular dynamics method is limited by its enormous computational cost, various coarse-grained strategies have been developed to extend the length scale of soft matters in the modeling of mechanical behaviors. However, the classical thermostat algorithm in highly coarse-grained molecular dynamics method would underestimate the thermodynamic behaviors of soft matters (e.g. microfilaments in cells), which can weaken the ability of materials to overcome local energy traps in granular modeling. Based on all-atom molecular dynamics modeling of microfilament fragments (G-actin clusters), a new stochastic thermostat algorithm is developed to retain the representation of thermodynamic properties of microfilaments at extra coarse-grained level. The accuracy of this stochastic thermostat algorithm is validated by all-atom MD simulation. This new stochastic thermostat algorithm provides an efficient way to investigate the thermomechanical properties of large-scale soft matters.

  17. Effects of Phorbol Esters and Lipopolysaccharide on Endothelial Cell Microfilaments: Laser Scanning Confocal Microscopy and Quantitative Morphometry of Dose Dependent Changes

    DTIC Science & Technology

    1988-11-29

    the same ECmo (1-5 nM) for both biochemical and morphological processes. -PDB was less potent in inducing the disruption of microfilament structure...but the agent was less potent than PMA, with an ECmo of about 80 nM. The agent 4a-phorbol, which is not a tumor-promoter, had no effect on the

  18. A novel anti-microfilament antibody, anti-135 kD, is associated with Raynaud's disease, undifferentiated connective tissue disease and systemic autoimmune diseases.

    PubMed

    Girard, D; Senécal, J L

    1996-01-01

    We report herein the characterization of a human IgG antibody reactive with a nonmuscle 135 kD microfilament-associated protein, anti-135 kD. Using nonmuscle epithelial PtK2 cells as substrate in indirect immunofluorescence, we identified a distinctive pattern of reactivity with microfilaments in sera from 12 of 165 (7.3%) patients investigated for systemic autoimmune diseases and in only 2 of 171 (1.2%) normal and rheumatic disease controls (P < 0.006, 95% Cl 1.46 to 30.1). An association between anti-135 kD and Raynaud's phenomenon (n = 12/14, 85.7%) with or without an associated systemic autoimmune disease was noted. The anti-135 kD specificity was established by several criteria. (1) The fluorescence was periodically distributed along microfilaments and concentrated at focal adhesions for all sera (n = 14). (2) On immunoblots, the 14 sera reacted with a PtK2 polypeptide of 135 kD. (3) IgG purified by blot-affinity from the 135 kD band (alpha-135) reproduced the fluorescent pattern of the original sera while IgG purified from other bands did not. (4) Double immunofluorescence with alpha-135 and anti-alpha-actinin mAb indicated absence of antibody fluorescence at ruffling membranes where a-actinin was distributed. (5) IgG subclass analysis of anti-135 kD revealed that 12 (85.7%) sera are of IgG3 isotype and 2 (14.3%) are of IgG1 isotype while the light chain expression was kappa restricted. This is the first report of an antibody to a 135 kD microfilament protein. Anti-135 kD expand the repertoire of anti-microfilament and anticytoskeletal antibodies in human sera.

  19. The mammalian G protein rhoC is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilaments in Vero cells.

    PubMed

    Chardin, P; Boquet, P; Madaule, P; Popoff, M R; Rubin, E J; Gill, D M

    1989-04-01

    Clostridium botulinum C3 is a recently discovered exoenzyme that ADP-ribosylates a eukaryotic GTP-binding protein of the ras superfamily. We show now that the bacterially-expressed product of the human rhoC gene is ADP-ribosylated by C3 and corresponds in size, charge and behavior to the dominant C3 substrate of eukaryotic cells. C3 treatment of Vero cells results in the disappearance of microfilaments and in actinomorphic shape changes without any apparent direct effect upon actin. Thus the ADP-ribosylation of a rho protein seems to be responsible for microfilament disassembly and we infer that the unmodified form of a rho protein may be involved in cytoskeletal control.

  20. The force induced by organelles' weight in the microfilament is in the range of 0.1-1 pN

    NASA Astrophysics Data System (ADS)

    Yang, Chun; Wei, Dong; Zhuang, Feng Y.

    It has been well documented that a microgravity environment can bring about many changes in cell metabolism. Can mammalian cells feel the gravity directly? At present, arguments surrounding the problem are difficult to be answered through experiments. However, using finite element simulation to estimate the force exerted on the microfilament meshwork model, we demonstrated a possible way through which gravity acts on the cytoskeleton system. This system, which includes microfilaments, microtubules, and intermediate filaments, is responsible for the retention of cell shape and plays a role in many aspects related to cell proliferation and function. Many organelles, such as ribosomes and nucleus, are deposited, hinged, or attached on the cytoskeleton system. The weight of organelles can deform the cytoskeleton system and can induce force in it. Simulation results showed that the force induced by organelles' weight in the microfilament is in the range of 0.1-1 pN. The magnitude of the force is near the single Van der Waals bond force between the proteins, which is large enough to influence the hinge motion of proteins.

  1. Single microfilaments mediate the early steps of microtubule bundling during preprophase band formation in onion cotyledon epidermal cells.

    PubMed

    Takeuchi, Miyuki; Karahara, Ichirou; Kajimura, Naoko; Takaoka, Akio; Murata, Kazuyoshi; Misaki, Kazuyo; Yonemura, Shigenobu; Staehelin, L Andrew; Mineyuki, Yoshinobu

    2016-06-01

    The preprophase band (PPB) is a cytokinetic apparatus that determines the site of cell division in plants. It originates as a broad band of microtubules (MTs) in G2 and narrows to demarcate the future division site during late prophase. Studies with fluorescent probes have shown that PPBs contain F-actin during early stages of their development but become actin depleted in late prophase. Although this suggests that actins contribute to the early stages of PPB formation, how actins contribute to PPB-MT organization remains unsolved. To address this question, we used electron tomography to investigate the spatial relationship between microfilaments (MFs) and MTs at different stages of PPB assembly in onion cotyledon epidermal cells. We demonstrate that the PPB actins observed by fluorescence microscopy correspond to short, single MFs. A majority of the MFs are bound to MTs, with a subset forming MT-MF-MT bridging structures. During the later stages of PPB assembly, the MF-mediated links between MTs are displaced by MT-MT linkers as the PPB MT arrays mature into tightly packed MT bundles. On the basis of these observations, we propose that the primary function of actins during PPB formation is to mediate the initial bundling of the PPB MTs.

  2. VLN2 Regulates Plant Architecture by Affecting Microfilament Dynamics and Polar Auxin Transport in Rice[OPEN

    PubMed Central

    Wu, Shengyang; Xie, Yurong; Guo, Xiuping; Sheng, Peike; Wang, Juan; Wu, Chuanyin; Wang, Haiyang; Wan, Jianmin

    2015-01-01

    As a fundamental and dynamic cytoskeleton network, microfilaments (MFs) are regulated by diverse actin binding proteins (ABPs). Villins are one type of ABPs belonging to the villin/gelsolin superfamily, and their function is poorly understood in monocotyledonous plants. Here, we report the isolation and characterization of a rice (Oryza sativa) mutant defective in VILLIN2 (VLN2), which exhibits malformed organs, including twisted roots and shoots at the seedling stage. Cellular examination revealed that the twisted phenotype of the vln2 mutant is mainly caused by asymmetrical expansion of cells on the opposite sides of an organ. VLN2 is preferentially expressed in growing tissues, consistent with a role in regulating cell expansion in developing organs. Biochemically, VLN2 exhibits conserved actin filament bundling, severing and capping activities in vitro, with bundling and stabilizing activity being confirmed in vivo. In line with these findings, the vln2 mutant plants exhibit a more dynamic actin cytoskeleton network than the wild type. We show that vln2 mutant plants exhibit a hypersensitive gravitropic response, faster recycling of PIN2 (an auxin efflux carrier), and altered auxin distribution. Together, our results demonstrate that VLN2 plays an important role in regulating plant architecture by modulating MF dynamics, recycling of PIN2, and polar auxin transport. PMID:26486445

  3. Single microfilaments mediate the early steps of microtubule bundling during preprophase band formation in onion cotyledon epidermal cells

    PubMed Central

    Takeuchi, Miyuki; Karahara, Ichirou; Kajimura, Naoko; Takaoka, Akio; Murata, Kazuyoshi; Misaki, Kazuyo; Yonemura, Shigenobu; Staehelin, L. Andrew; Mineyuki, Yoshinobu

    2016-01-01

    The preprophase band (PPB) is a cytokinetic apparatus that determines the site of cell division in plants. It originates as a broad band of microtubules (MTs) in G2 and narrows to demarcate the future division site during late prophase. Studies with fluorescent probes have shown that PPBs contain F-actin during early stages of their development but become actin depleted in late prophase. Although this suggests that actins contribute to the early stages of PPB formation, how actins contribute to PPB-MT organization remains unsolved. To address this question, we used electron tomography to investigate the spatial relationship between microfilaments (MFs) and MTs at different stages of PPB assembly in onion cotyledon epidermal cells. We demonstrate that the PPB actins observed by fluorescence microscopy correspond to short, single MFs. A majority of the MFs are bound to MTs, with a subset forming MT-MF-MT bridging structures. During the later stages of PPB assembly, the MF-mediated links between MTs are displaced by MT-MT linkers as the PPB MT arrays mature into tightly packed MT bundles. On the basis of these observations, we propose that the primary function of actins during PPB formation is to mediate the initial bundling of the PPB MTs. PMID:27053663

  4. Inhibition of myosin/moesin phosphatase by expression of the phosphoinhibitor protein CPI-17 alters microfilament organization and retards cell spreading.

    PubMed

    Eto, M; Wong, L; Yazawa, M; Brautigan, D L

    2000-07-01

    Cell migration and cytokinesis require reorganization of the cytoskeleton, involving phosphorylation and dephosphorylation of proteins such as myosin II and moesin. Myosin and moesin bind directly to a regulatory subunit of myosin/moesin phosphatase (MMP) that contains a protein type-1 phosphatase (PP1) catalytic subunit. Here we examined the role of MMP in cytoskeletal dynamics using a phosphorylation-dependent inhibitor protein specific for MMP, called CPI-17. Fibroblasts do not express CPI-17, making them a null background to study effects of expression. Wild type CPI-17 in rat embryo fibroblasts caused (1) abnormal accumulation of cortical F-actin fibers, distinct from the stress fibers induced by expression of active RhoA; (2) progressive contraction of cell area, leaving behind filamentous extensions that stained for F-actin and moesin, but not myosin; and (3) significantly retarded spreading of fibroblasts on fibronectin with elevated myosin II light chain phosphorylation. A phosphorylation site mutant CPI-17(T38A) and inhibitor-2 (Inh2), another PP1-specific inhibitor protein, served as controls and did not elicit these same responses when expressed at the same level as CPI-17. Inhibition of myosin light chain kinase by ML-9 prevented the abnormal accumulation of cortical microfilaments by CPI-17, but did not reverse shrinkage in area, whereas kinase inhibitors HA1077 and H7 prevented CPI-17-induced changes in microfilament distribution and cell contraction. These results highlight the physiological importance of myosin/moesin phosphatase regulation to dynamic remodeling of the cytoskeleton.

  5. The P6 protein of Cauliflower mosaic virus interacts with CHUP1, a plant protein which moves chloroplasts on actin microfilaments.

    PubMed

    Angel, Carlos A; Lutz, Lindy; Yang, Xiaohua; Rodriguez, Andres; Adair, Adam; Zhang, Yu; Leisner, Scott M; Nelson, Richard S; Schoelz, James E

    2013-09-01

    The gene VI product, protein 6 (P6), of Cauliflower mosaic virus (CaMV) assembles into large, amorphous inclusion bodies (IBs) that are considered sites for viral protein synthesis and viral genome replication and encapsidation. P6 IBs align with microfilaments and require them for intracellular trafficking, a result implying that P6 IBs function to move virus complexes or virions within the cell to support virus physiology. Through a yeast two-hybrid screen we determined that CHUP1, a plant protein allowing chloroplast transport through an interaction with chloroplast and microfilament, interacts with P6. The interaction between CHUP1 and P6 was confirmed through colocalization in vivo and co-immunoprecipitation assays. A truncated CHUP1 fused with enhanced cyan fluorescent protein, unable to transport chloroplasts, inhibited intracellular movement of P6-Venus inclusions. Silencing of CHUP1 in N. edwardsonii impaired the ability of CaMV to infect plants. The findings suggest that CHUP1 supports CaMV infection through an interaction with P6.

  6. The Cauliflower Mosaic Virus Protein P6 Forms Motile Inclusions That Traffic along Actin Microfilaments and Stabilize Microtubules1[W][OA

    PubMed Central

    Harries, Phillip A.; Palanichelvam, Karuppaiah; Yu, Weichang; Schoelz, James E.; Nelson, Richard S.

    2009-01-01

    The gene VI product (P6) of Cauliflower mosaic virus (CaMV) is a multifunctional protein known to be a major component of cytoplasmic inclusion bodies formed during CaMV infection. Although these inclusions are known to contain virions and are thought to be sites of translation from the CaMV 35S polycistronic RNA intermediate, the precise role of these bodies in the CaMV infection cycle remains unclear. Here, we examine the functionality and intracellular location of a fusion between P6 and GFP (P6-GFP). We initially show that the ability of P6-GFP to transactivate translation is comparable to unmodified P6. Consequently, our work has direct application for the large body of literature in which P6 has been expressed ectopically and its functions characterized. We subsequently found that P6-GFP forms highly motile cytoplasmic inclusion bodies and revealed through fluorescence colocalization studies that these P6-GFP bodies associate with the actin/endoplasmic reticulum network as well as microtubules. We demonstrate that while P6-GFP inclusions traffic along microfilaments, those associated with microtubules appear stationary. Additionally, inhibitor studies reveal that the intracellular movement of P6-GFP inclusions is sensitive to the actin inhibitor, latrunculin B, which also inhibits the formation of local lesions by CaMV in Nicotiana edwardsonii leaves. The motility of P6 along microfilaments represents an entirely new property for this protein, and these results imply a role for P6 in intracellular and cell-to-cell movement of CaMV. PMID:19028879

  7. A single-cell correlative nanoelectromechanosensing approach to detect cancerous transformation: monitoring the function of F-actin microfilaments in the modulation of the ion channel activity

    NASA Astrophysics Data System (ADS)

    AbdolahadThe Authors With Same Contributions., Mohammad; Saeidi, Ali; Janmaleki, Mohsen; Mashinchian, Omid; Taghinejad, Mohammad; Taghinejad, Hossein; Azimi, Soheil; Mahmoudi, Morteza; Mohajerzadeh, Shams

    2015-01-01

    Cancerous transformation may be dependent on correlation between electrical disruptions in the cell membrane and mechanical disruptions of cytoskeleton structures. Silicon nanotube (SiNT)-based electrical probes, as ultra-accurate signal recorders with subcellular resolution, may create many opportunities for fundamental biological research and biomedical applications. Here, we used this technology to electrically monitor cellular mechanosensing. The SiNT probe was combined with an electrically activated glass micropipette aspiration system to achieve a new cancer diagnostic technique that is based on real-time correlation between mechanical and electrical behaviour of single cells. Our studies demonstrated marked changes in the electrical response following increases in the mechanical aspiration force in healthy cells. In contrast, such responses were extremely weak for malignant cells. Confocal microscopy results showed the impact of actin microfilament remodelling on the reduction of the electrical response for aspirated cancer cells due to the significant role of actin in modulating the ion channel activity in the cell membrane.Cancerous transformation may be dependent on correlation between electrical disruptions in the cell membrane and mechanical disruptions of cytoskeleton structures. Silicon nanotube (SiNT)-based electrical probes, as ultra-accurate signal recorders with subcellular resolution, may create many opportunities for fundamental biological research and biomedical applications. Here, we used this technology to electrically monitor cellular mechanosensing. The SiNT probe was combined with an electrically activated glass micropipette aspiration system to achieve a new cancer diagnostic technique that is based on real-time correlation between mechanical and electrical behaviour of single cells. Our studies demonstrated marked changes in the electrical response following increases in the mechanical aspiration force in healthy cells. In contrast, such

  8. Actin microfilaments participate in the regulation of the COL1A1 promoter activity in ROS17/2.8 cells under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Dai, Zhongquan; Li, Yinghui; Ding, Bai; Zhang, Xiaoyou; Tan, Yingjun; Wan, Yumin

    2006-01-01

    IntroductionMicrogravity is thought to decrease osteoblastic activity and induce osteoporosis during spaceflight, but the mechanisms, particularly the attendant changes in gene expression, are not well understood. It is suspected that the cytoskeletal system is involved in the manifold changes of cell shape, function, and signaling under microgravity conditions. MethodsWe constructed cell lines stably transfected with pJI36EGFP and pJI23EGFP, which contained a 3.6 and a 2.3 kb fragment, respectively, of the α1(I) collagen gene (COL1A1) promoter fused with the enhanced green fluorescence protein (EGFP) reporter gene. We then developed a semi-quantitative analysis of EGFP fluorescence intensity to evaluate the effects of clinorotation and/or cytochalasin B on the activity of the COL1A1 promoter. Simultaneously, we assessed the collagen type I protein content versus total protein content in clinorotated or control osteoblasts, using immunocytochemistry and the Bradford method, respectively. ResultsThe fluorescence intensity analysis revealed that the expression of COL1A1-EGFP increased in GFP-ROS cells clinorotated for 24 or 48 h, as compared with stationary control cultures. We observed a similar trend in collagen type I content, as assessed by immunocytochemistry. We found that the osteoblast microfilaments tended to disassemble and show a reduction in stress fibers under space flight and clinorotation. Treatment with cytochalasin B in normal gravity resulted in a dose-dependent increase of EGFP fluorescence intensity, indicating that disruption of the actin system was associated with increased activity of the COL1A1 promoter. ConclusionOur study demonstrates that disrupting the actin cytoskeleton by treatment with cytochalasin B and real or simulated microgravity conditions led to altered COL1A1 promoter activity. Together, these results suggest that actin may participate in the regulation of the COL1A1 promoter activity under microgravity conditions.

  9. Trapping and wiggling: elastohydrodynamics of driven microfilaments.

    PubMed Central

    Wiggins, C H; Riveline, D; Ott, A; Goldstein, R E

    1998-01-01

    We present an analysis of the planar motion of single semiflexible filaments subject to viscous drag or point forcing. These are the relevant forces in dynamic experiments designed to measure biopolymer bending moduli. By analogy with the "Stokes problems" in hydrodynamics (motion of a viscous fluid induced by that of a wall bounding the fluid), we consider the motion of a polymer, one end of which is moved in an impulsive or oscillatory way. Analytical solutions for the time-dependent shapes of such moving polymers are obtained within an analysis applicable to small-amplitude deformations. In the case of oscillatory driving, particular attention is paid to a characteristic length determined by the frequency of oscillation, the polymer persistence length, and the viscous drag coefficient. Experiments on actin filaments manipulated with optical traps confirm the scaling law predicted by the analysis and provide a new technique for measuring the elastic bending modulus. Exploiting this model, we also present a reanalysis of several published experiments on microtubules. PMID:9533717

  10. Trapping and wiggling: elastohydrodynamics of driven microfilaments.

    PubMed

    Wiggins, C H; Riveline, D; Ott, A; Goldstein, R E

    1998-02-01

    We present an analysis of the planar motion of single semiflexible filaments subject to viscous drag or point forcing. These are the relevant forces in dynamic experiments designed to measure biopolymer bending moduli. By analogy with the "Stokes problems" in hydrodynamics (motion of a viscous fluid induced by that of a wall bounding the fluid), we consider the motion of a polymer, one end of which is moved in an impulsive or oscillatory way. Analytical solutions for the time-dependent shapes of such moving polymers are obtained within an analysis applicable to small-amplitude deformations. In the case of oscillatory driving, particular attention is paid to a characteristic length determined by the frequency of oscillation, the polymer persistence length, and the viscous drag coefficient. Experiments on actin filaments manipulated with optical traps confirm the scaling law predicted by the analysis and provide a new technique for measuring the elastic bending modulus. Exploiting this model, we also present a reanalysis of several published experiments on microtubules.

  11. Microfilament-coordinated adhesion dynamics drives single cell migration and shapes whole tissues

    PubMed Central

    Aguilar-Cuenca, Rocio; Llorente-Gonzalez, Clara; Vicente, Carlos; Vicente-Manzanares, Miguel

    2017-01-01

    Cell adhesion to the substratum and/or other cells is a crucial step of cell migration. While essential in the case of solitary migrating cells (for example, immune cells), it becomes particularly important in collective cell migration, in which cells maintain contact with their neighbors while moving directionally. Adhesive coordination is paramount in physiological contexts (for example, during organogenesis) but also in pathology (for example, tumor metastasis). In this review, we address the need for a coordinated regulation of cell-cell and cell-matrix adhesions during collective cell migration. We emphasize the role of the actin cytoskeleton as an intracellular integrator of cadherin- and integrin-based adhesions and the emerging role of mechanics in the maintenance, reinforcement, and turnover of adhesive contacts. Recent advances in understanding the mechanical regulation of several components of cadherin and integrin adhesions allow us to revisit the adhesive clutch hypothesis that controls the degree of adhesive engagement during protrusion. Finally, we provide a brief overview of the major impact of these discoveries when using more physiological three-dimensional models of single and collective cell migration. PMID:28299195

  12. The role of host microfilaments and microtubules during opsonin-independent interactions of Cryptococcus neoformans with mammalian lung cells.

    PubMed

    Choo, K K; Chong, P P; Ho, A S H; Yong, P V C

    2015-12-01

    The purpose of this investigation was to characterise the interactions of Cryptococcus neoformans with mammalian host alveolar epithelial cells and alveolar macrophages, with emphasis on the roles of the cryptococcal capsule and the host cell cytoskeletons. The adherence and internalisation of C. neoformans into mammalian lung cells and the roles of host cell cytoskeletons in host-pathogen interactions were studied using in vitro models coupled with a differential fluorescence assay, fluorescence staining, immunofluorescence and drug inhibition of actin and microtubule polymerisation. Under conditions devoid of opsonin and macrophage activation, C. neoformans has a high affinity towards MH-S alveolar macrophages, yet associated poorly to A549 alveolar epithelial cells. Acapsular C. neoformans adhered to and internalised into the mammalian cells more effectively compared to encapsulated cryptococci. Acapsular C. neoformans induced prominent actin reorganisation at the host-pathogen interface in MH-S alveolar macrophages, but minimally affected actin reorganisation in A549 alveolar epithelial cells. Acapsular C. neoformans also induced localisation of microtubules to internalised cryptococci in MH-S cells. Drug inhibition of actin and microtubule polymerisation both reduced the association of acapsular C. neoformans to alveolar macrophages. The current study visualises and confirms the interactions of C. neoformans with mammalian alveolar cells during the establishment of infection in the lungs. The acapsular form of C. neoformans effectively adhered to and internalised into alveolar macrophages by inducing localised actin reorganisation, relying on the host's actin and microtubule activities.

  13. Holding back the microfilament--structural insights into actin and the actin-monomer-binding proteins of apicomplexan parasites.

    PubMed

    Olshina, Maya A; Wong, Wilson; Baum, Jake

    2012-05-01

    Parasites from the phylum Apicomplexa are responsible for several major diseases of man, including malaria and toxoplasmosis. These highly motile protozoa use a conserved actomyosin-based mode of movement to power tissue traversal and host cell invasion. The mode termed as 'gliding motility' relies on the dynamic turnover of actin, whose polymerisation state is controlled by a markedly limited number of identifiable regulators when compared with other eukaryotic cells. Recent studies of apicomplexan actin regulator structure-in particular those of the core triad of monomer-binding proteins, actin-depolymerising factor/cofilin, cyclase-associated protein/Srv2, and profilin-have provided new insights into possible mechanisms of actin regulation in parasite cells, highlighting divergent structural features and functions to regulators from other cellular systems. Furthermore, the unusual nature of apicomplexan actin itself is increasingly coming into the spotlight. Here, we review recent advances in understanding of the structure and function of actin and its regulators in apicomplexan parasites. In particular we explore the paradox between there being an abundance of unpolymerised actin, its having a seemingly increased potential to form filaments relative to vertebrate actin, and the apparent lack of visible, stable filaments in parasite cells.

  14. The control of cellular shape and motility. Mg2+ and tropomyosin regulate the formation and the dissociation of microfilament bundles.

    PubMed Central

    Grazi, E; Cuneo, P; Cataldi, A

    1992-01-01

    At pH 7.14 and 37 degrees C, in 7.2% (w/v) poly(ethylene glycol) 6000, tropomyosin-regulated actin filaments are converted into filament bundles by increasing the free Mg2+ concentration to 1.7-2.0 mM. When free Mg2+ concentration is decreased below 1.7 mM, bundles dissociate back into tropomyosin-regulated actin filaments. Pure actin filaments are insensitive to this mechanism of control and are found as filament bundles in all the range of free Mg2+ concentrations tested (1.37-2.2 mM). The mechanism of regulation described above is likely to operate in the cell, where the concentration of free Mg2+ is linked to the energy charge of the adenine nucleotide system. Images Fig. 3. PMID:1471985

  15. The Tobacco etch virus P3 protein forms mobile inclusions via the early secretory pathway and traffics along actin microfilaments.

    PubMed

    Cui, Xiaoyan; Wei, Taiyun; Chowda-Reddy, R V; Sun, Guangyu; Wang, Aiming

    2010-02-05

    Plant potyviruses encode two membrane proteins, 6K and P3. The 6K protein has been shown to induce virus replication vesicles. However, the function of P3 remains unclear. In this study, subcellular localization of the Tobacco etch virus (TEV) P3 protein was investigated in Nicotiana benthamiana leaf cells. The TEV P3 protein localized on the endoplasmic reticulum (ER) membrane and formed punctate inclusions in association with the Golgi apparatus. The trafficking of P3 to the Golgi was mediated by the early secretory pathway. The Golgi-associated punctate structures originated from the ER exit site (ERES). Deletion analyses identified P3 domains required for the retention of P3 at the Golgi. Moreover, the P3 punctate structure was found to traffic along the actin filaments and colocalize with the 6K-containing replication vesicles. Taken together, these data support previous suggestions that P3 may play dual roles in virus movement and replication.

  16. Poly(A) RNA codistribution with microfilaments: evaluation by in situ hybridization and quantitative digital imaging microscopy

    PubMed Central

    1992-01-01

    The distribution of poly(A) RNA has been visualized in single cells using high-resolution fluorescent in situ hybridization. Digital imaging microscopy was used to quantitate the signal in various cellular compartments. Most of the poly(A) signal remained associated with the cellular filament systems after solubilization of membranes with Triton, dissociation of ribosomes with puromycin, and digestion of non-poly(A) RNA with ribonuclease A and T1. The actin filaments were shown to be the predominant cellular structural elements associating with the poly(A) because low doses of cytochalasin released about two- thirds of the poly(A). An approach to assess the extent of colocalization of two images was devised using in situ hybridization to poly(A) in combination with probes for ribosomes, membranes, or F- actin. Digital imaging microscopy showed that most poly(A) spatially distributes most significantly with ribosomes, slightly less with F- actin, and least of all with membranes. The results suggest a mechanism for anchoring (and perhaps moving) much of the cellular mRNA utilizing the interaction between actin filaments and poly(A). PMID:1360014

  17. Linking microfilaments to intracellular membranes: the actin-binding and vesicle-associated protein comitin exhibits a mannose-specific lectin activity.

    PubMed Central

    Jung, E; Fucini, P; Stewart, M; Noegel, A A; Schleicher, M

    1996-01-01

    Comitin is a 24 kDa actin-binding protein from Dictyostelium discoideum that is located primarily on Golgi and vesicle membranes. We have probed the molecular basis of comitin's interaction with both actin and membranes using a series of truncation mutants obtained by expressing the appropriate cDNA in Escherichia coli. Comitin dimerizes in solution; its principle actin-binding activity is located between residues 90 and 135. The N-terminal 135 'core' residues of comitin contain a 3-fold sequence repeat that is homologous to several monocotyledon lectins and which retains key residues that determine these lectins' three-dimensional structure and mannose binding. These repeats of comitin appear to mediate its interaction with mannose residues in glycoproteins or glycolipids on the cytoplasmic surface of membrane vesicles from D.discoideum, and comitin can be released from membranes with mannose. Our data indicate that comitin binds to vesicle membranes via mannose residues and, by way of its interaction with actin, links these membranes to the cytoskeleton. Images PMID:8635456

  18. [Development and differentiation of the rat epididymis. II: histochemical aspects of the peritubular zone].

    PubMed

    Francavilla, F; Santiemma, V; Francavilla, S; Forcella, G; Moscardelli, S; Properzi, G

    1979-07-15

    Development of the contractile peritubular structures of rat testis, from birth to full maturation, was investigated by histochemical evaluation of alkaline phosphatase activity (A.P.A.) at 0, 16, 22 e 35 days of age. A.P.A. appeared at 6 days, age of appearance also of the cytoplasmic microfilaments of peritubular cells. The correlation between cytoplasmic microfilaments and A.P.A. was confirmed by the pattern of A.P.A. positivity at 6 degree day, when the inner peritubular cells layer, in which the microfilaments are present, are more positive than the outer layer in which the microfilaments are not yet present. These findings give further support to the belief that the cytoplasmic microfilaments of peritubular cells are contractile structures.

  19. New Clue Found to Growth Factor Action.

    ERIC Educational Resources Information Center

    Hoffman, Michelle

    1991-01-01

    Discussed is the discovery which may help to explain epidermal growth factor effects on the cell skeleton. The role of a protein called profilin in the regulation of the microfilament system is described. (CW)

  20. Formins: Actin nucleators that regulate cytoskeletal dynamics during spermatogenesis

    PubMed Central

    Li, Nan; Mruk, Dolores D; Tang, Elizabeth I; Wong, Chris KC; Lee, Will M; Silvestrini, Bruno; Cheng, C Yan

    2015-01-01

    Formins are a growing class of actin nucleation proteins that promote the polymerization of actin microfilaments, forming long stretches of actin microfilaments to confer actin filament bundling in mammalian cells. As such, microfilament bundles can be formed in specific cellular domains, in particular in motile mammalian cells, such as filopodia. Since ectoplasmic specialization (ES), a testis-specific adherens junction (AJ), at the Sertoli cell-cell and Sertoli-spermatid interface is constituted by arrays of actin microfilament bundles, it is likely that formins are playing a significant physiological role on the homeostasis of ES during the epithelial cycle of spermatogenesis. In this Commentary, we provide a timely discussion on formin 1 which was recently shown to be a crucial regulator of actin microfilaments at the ES in the rat testis (Li N et al. Endocrinology, 2015, in press; DOI: 10.1210/en.2015-1161, PMID:25901598). We also highlight research that is needed to unravel the functional significance of formins in spermatogenesis. PMID:26413414

  1. Secretory mechanism of fibroin, a silk protein, in the posterior silk gland cells of Bombyx mori.

    PubMed

    Sasaki, S; Nakagaki, I

    1980-01-01

    There are two microtubule-microfilament systems in the posterior silk gland cells of Bombyx mori. One is a radial microtubule system; the other is a circular microtubule-microfilament system. These two systems are presumably concerned with the intracellular transport of secretory granules of fibroin and the secretion of fibroin into the lumen, respectively. Conventional and scanning electron microscopic observations of the two microtubule-microfilament systems in the posterior silk gland cells are reported. Scanning electron micrographs showed that a number of parallel linear cytoplasmic processes ran circularly on the luminal surface of the posterior silk gland cells. These processes were assumed to correspond to the circular microtubule-microfilament systems. The effects of cytochalasin (B or D), a secretion stimulating agent of fibroin, on the intracellular recording of membrane potential from the posterior silk gland cells are also reported. Exposure to cytochalasin resulted in depolarization of the membrane potential of the gland cells. Possible functional roles of the two microtubule-microfilament systems in the secretory mechanism of fibroin are discussed with reference to the effects of antimitotic reagents and cytochalasin on these two systems.

  2. Characterization and dynamics of cytoplasmic F-actin in higher plant endosperm cells during interphase, mitosis, and cytokinesis

    PubMed Central

    1987-01-01

    We have identified an F-actin cytoskeletal network that remains throughout interphase, mitosis, and cytokinesis of higher plant endosperm cells. Fluorescent labeling was obtained using actin monoclonal antibodies and/or rhodamine-phalloidin. Video-enhanced microscopy and ultrastructural observations of immunogold-labeled preparations illustrated microfilament-microtubule co-distribution and interactions. Actin was also identified in cell crude extract with Western blotting. During interphase, microfilament and microtubule arrays formed two distinct networks that intermingled. At the onset of mitosis, when microtubules rearranged into the mitotic spindle, microfilaments were redistributed to the cell cortex, while few microfilaments remained in the spindle. During mitosis, the cortical actin network remained as an elastic cage around the mitotic apparatus and was stretched parallel to the spindle axis during poleward movement of chromosomes. This suggested the presence of dynamic cross-links that rearrange when they are submitted to slow and regular mitotic forces. At the poles, the regular network is maintained. After midanaphase, new, short microfilaments invaded the equator when interzonal vesicles were transported along the phragmoplast microtubules. Colchicine did not affect actin distribution, and cytochalasin B or D did not inhibit chromosome transport. Our data on endosperm cells suggested that plant cytoplasmic actin has an important role in the cell cortex integrity and in the structural dynamics of the poorly understood cytoplasm- mitotic spindle interface. F-actin may contribute to the regulatory mechanisms of microtubule-dependent or guided transport of vesicles during mitosis and cytokinesis in higher plant cells. PMID:3680376

  3. Formins: Actin nucleators that regulate cytoskeletal dynamics during spermatogenesis.

    PubMed

    Li, Nan; Mruk, Dolores D; Tang, Elizabeth I; Wong, Chris Kc; Lee, Will M; Silvestrini, Bruno; Cheng, C Yan

    2015-01-01

    Formins are a growing class of actin nucleation proteins that promote the polymerization of actin microfilaments, forming long stretches of actin microfilaments to confer actin filament bundling in mammalian cells. As such, microfilament bundles can be formed in specific cellular domains, in particular in motile mammalian cells, such as filopodia. Since ectoplasmic specialization (ES), a testis-specific adherens junction (AJ), at the Sertoli cell-cell and Sertoli-spermatid interface is constituted by arrays of actin microfilament bundles, it is likely that formins are playing a significant physiological role on the homeostasis of ES during the epithelial cycle of spermatogenesis. In this Commentary, we provide a timely discussion on formin 1 which was recently shown to be a crucial regulator of actin microfilaments at the ES in the rat testis (Li N et al. Endocrinology, 2015, in press; DOI: 10.1210/en.2015-1161, PMID:25901598). We also highlight research that is needed to unravel the functional significance of formins in spermatogenesis.

  4. Influence of marihuana on cellular structures and biochemical activities.

    PubMed

    Tahir, S K; Zimmerman, A M

    1991-11-01

    Cannabinoids are known to affect a number of cellular systems and functions, but the basis for their action is unclear. In this paper we review the current evidence describing cannabinoid effects on various levels of cellular structure and activity and we present our current studies on the influence of delta-9-tetrahydrocannabinol, cannabidiol and cannabinol on one cellular system, the cytoskeleton. The organization of two cytoskeletal structures, microtubules and microfilaments, were examined and the mRNA levels of tubulin and actin, the major protein components of microtubules and microfilaments, respectively, were analysed.

  5. Induction of Plant Curvature by Magnetophoresis and Cytoskeletal Changes during Root Graviresponse

    NASA Technical Reports Server (NTRS)

    Hasenstein, Karl H.; Kuznetsov, Oleg A.; Blancaflor, Eilson B.

    1996-01-01

    High gradient magnetic fields (HGMF) induce curvature in roots and shoots. It is considered that this response is likely to be based on the intracellular displacement of bulk starch (amyloplasts) by the ponderomotive force generated by the HGMF. This process is called magnetophoresis. The differential elongation during the curvature along the concave and convex flanks of growing organs may be linked to the microtubular and/or microfilament cytoskeleton. The possible existence of an effect of the HGMF on the cytoskeleton was tested for, but none was found. The application of cytoskeletal stabilizers or depolymerizers showed that neither microtubules, nor microfilaments, are involved in the graviresponse.

  6. Actin cytoskeleton rearrangements in Arabidopsis roots under stress and during gravitropic response

    NASA Astrophysics Data System (ADS)

    Pozhvanov, Gregory; Medvedev, Sergei; Suslov, Dmitry; Demidchik, Vadim

    Among environmental factors, gravity vector is the only one which is constant in direction and accompanies the whole plant ontogenesis. That said, gravity vector can be considered as an essential factor for correct development of plants. Gravitropism is a plant growth response against changing its position relative to the gravity vector. It is well estableshed that gravitropism is directed by auxin redistribution across the gravistimulated organ. In addition to auxin, actin cytoskeleton was shown to be involved in gravitropism at different stages: gravity perception, signal transduction and gravitropic bending formation. However, the relationship between IAA and actin is still under discussion. In this work we studied rearrangements of actin cytoskeleton during root gravitropic response. Actin microfilaments were visualized in vivo in GFP-fABD2 transgenic Arabidopsis plants, and their angle distribution was acquired from MicroFilament Analyzer software. The curvature of actin microfilaments in root elongation zone was shown to be increased within 30-60 min of gravistimulation, the fraction of axially oriented microfilaments decreased with a concomitant increase in the fraction of oblique and transversally oriented microfilaments. In particular, the fraction of transversally oriented microfilaments (i.e. parallel to the gravity vector) increased 3-5 times. Under 10 min of sub-lethal salt stress impact, actin microfilament orientations widened from an initial axial orientation to a set of peaks at 15(°) , 45(°) and 90(°) . We conclude that the actin cytoskeleton rearrangements observed are associated with the regulation of basic mechanisms of cell extension growth by which the gravitropic bending is formed. Having common stress-related features, gravity-induced actin cytoskeleton rearrangement is slower but results in higher number of g-vector-parallel microfilaments when compared to salt stress-induced rearrangement. Also, differences in gravistimulated root

  7. Aberrant Vimentin DNA Methylation in Stool — EDRN Public Portal

    Cancer.gov

    The VIM gene encodes a member of the intermediate filament family. VIM proteins are class-III intermediate filaments found in various non-epithelial cells, especially mesenchymal cells. These intermediate filaments, along with microtubules and actin microfilaments, make up the cytoskeleton.

  8. Motility and centrosomal organization during sea urchin and mouse fertilization

    NASA Technical Reports Server (NTRS)

    Schatten, Heide; Schatten, Gerald

    1986-01-01

    It is noted that microfilaments are essential for incorporation of sperm in sea urchins and for pronuclear apposition in mice. The ability of sea urchin sperm to fertilize eggs is lowered by latrunculin, giving evidence that acrosomal microfilaments are of importance to the process of fertilization. Due to the uncertainty regarding the presence of microfilaments in various mammalian sperm, it is interesting that latrunculin does not noticeably affect the ability of mouse sperm to fertilize oocytes. The movements of the sperm and egg nuclei at the time of sea urchin fertilization are dependent on microtubules arranged into a radial monastral array (the sperm aster). In the mouse egg, microtubule activity is also required during pronuclear apposition, but they are arranged by a number of egg cytoplasmic sites. Results of the investigations show that both microtubules and microfilaments are necessary for the successful completion of fertilization in both mice and sea urchins, but at different stages. Also, it is demonstrated that centrosomes are contributed by the sperm in the process of sea urchin fertilization, but in mammals they may be inherited maternally.

  9. Low dose radiation-induced endothelial cell retraction.

    PubMed

    Kantak, S S; Diglio, C A; Onoda, J M

    1993-09-01

    We characterized in vitro the effects of gamma-radiation (12.5-100 cGy) on pulmonary microvascular endothelial cell (PMEC) morphology and F-actin organization. Cellular retraction was documented by phase-contrast microscopy and the organization of actin microfilaments was determined by immunofluorescence. Characterization included radiation dose effects, their temporal duration and reversibility of the effects. A dose-dependent relationship between the level of exposure (12.5-100 cGy) and the rate and extent of endothelial retraction was observed. Moreover, analysis of radiation-induced depolymerization of F-actin microfilament stress fibres correlated positively with the changes in PMEC morphology. The depolymerization of the stress fibre bundles was dependent on radiation dose and time. Cells recovered from exposure to reform contact inhibited monolayers > or = 24 h post-irradiation. Concomitantly, the depolymerized microfilaments reorganized to their preirradiated state as microfilament stress fibres arrayed parallel to the boundaries of adjacent contact-inhibited cells. The data presented here are representative of a series of studies designed to characterize low-dose radiation effects on pulmonary microvascular endothelium. Our data suggest that post-irradiation lung injuries (e.g. oedema) may be induced with only a single fraction of therapeutic radiation, and thus microscopic oedema may initiate prior to the lethal effects of radiation on the microvascular endothelium, and much earlier than would be suggested by the time course for clinically-detectable oedema.

  10. New dynamics in an old friend: dynamic tubular vacuoles radiate through the cortical cytoplasm of red onion epidermal cells.

    PubMed

    Wiltshire, Elizabeth J; Collings, David A

    2009-10-01

    The textbook image of the plant vacuole sitting passively in the centre of the cell is not always correct. We observed vacuole dynamics in the epidermal cells of red onion (Allium cepa) bulbs, using confocal microscopy to detect autofluorescence from the pigment anthocyanin. The central vacuole was penetrated by highly mobile transvacuolar strands of cytoplasm, which were also visible in concurrent transmitted light images. Tubular vacuoles also extended from the large central vacuole and radiated through the cortical cytoplasm. These tubules were thin, having a diameter of about 1.5 microm, and were connected to the central vacuole as shown by fluorescence recovery after photobleaching (FRAP) experiments. The tubules were bounded by the tonoplast, as revealed by transient expression of green fluorescent protein (GFP) targeted to the vacuolar membrane and through labeling with the dye MDY-64. Expression of endoplasmic reticulum-targeted GFP demonstrated that the vacuolar tubules were distinct from the cortical endoplasmic reticulum. Movement of the tubular vacuoles depended on actin microfilaments, as microfilament disruption blocked tubule movement and caused their collapse into minivacuoles. The close association of the tubules with GFP-tagged actin microfilaments suggests that the tubules are associated with myosin, and that tubules likely move along microfilaments. Tubular vacuoles do not require anthocyanin for their formation, as tubules were also present in white onion cells that lack anthocyanin. The function of these tubular vacuoles remains unknown, but as they greatly increase the surface area of the tonoplast, they might increase transport rates between the cytoplasm and vacuole.

  11. The terminal web of the duodenal enterocyte.

    PubMed

    Leeson, T S

    1982-06-01

    The terminal web-brush border complex of rodent duodenal enterocytes has been studied by electron microscopy to investigate its structure in relation to currently accepted models of motility in this region. The main adherens zone is composed chiefly of a fine feltwork of 5 to 7 nm filaments, some of which originate in zonulae adherentes. In some cells, this is not a complete layer or sheet. Passing into it from its deep aspect are 10 nm tonofilaments, which also form the basal zone. The filament density in the basal zone is less than that of the adherens zone, and many of the tonofilaments are associated with spot desmosomes. The apical zone contains a loose meshwork of 5 to 7 nm filaments with more filaments lying adjacent to plasmalemmae of the zonula occludens. The core of each microvillus contains a bundle of 17 to 48 microfilaments, 5-7 nm in diameter, apparently attached to the apical plasmalemma and with some slender cross filaments between core filaments and the plasmalemma. In the main, these core bundles of microfilaments pass deeply into and often through the adherens zone of the terminal web where they terminate abruptly. Filaments of the terminal web appear to interconnect microfilaments of adjacent core bundles but without positive evidence of 'splaying' of microfilaments of a core bundle within the adherens zone. These findings are discussed in relation to movement of microvilli.

  12. Actin- and myosin-like filaments in rat brain pericytes.

    PubMed

    Le Beux, Y J; Willemot, J

    1978-04-01

    Heavy meromyosin (HMM) labeling was used to identify the nature of the filaments which form bundles in the cytoplasm of the pericytes in brain tissue. Rat brain tissue pieces were incubated in glycerol solutions at 4 degrees and then transferred into buffer (pH 7.0), (1) without HMM, (2) with HMM, (3) with HMM + 5 mM ATP, and (4) with HMM + 2.5 mM Na+ pyrophosphate. In pericytes from untreated tissue, smooth-surfaced microfilaments, averaging 6 nm in diameter, appear to branch and anastomose and to anchor on the plasma membrane. After exposure to HMM, the number and the density of the microfilaments are strikingly increased. These tightly-packed microfilaments are now heavily coated with exogeneous HMM thus increasing in width to 18-20 mm. They intertwine in closely-woven networks. After incubation in HMM solutions containing ATP or Na+ phosphate, they are no longer coated with thick sidearms. It can thus be concluded that these microfilaments are of actin-like nature. In addition, after incubation in ATP, they are intermingled with, and converge onto the surfaces of, thick, tapered filaments, which we have tentatively identified as of myosin-like nature. Thus, it appears that certain of the major elements necessary for contraction are present in brain pericytes.

  13. Effect of the meiotic inhibitor cilostamide on resumption of meiosis and cytoskeletal distribution in buffalo oocytes.

    PubMed

    Li, Qing-Yang; Lou, Juan; Yang, Xiao-Gan; Lu, Yang-Qing; Lu, Sheng-Sheng; Lu, Ke-Huan

    2016-11-01

    Improving the quality of in vitro maturated buffalo oocytes is essential for embryo production. We report here the effects on microtubules and microfilaments in oocytes and embryo development that result from treating buffalo oocytes with the phosphodiesterase 3 (PDE3) inhibitor cilostamide. Addition of 20μM or 50μM cilostamide for 24h during in vitro maturation showed no differences in the percentage of oocytes arrested at the germinal vesicle (GV) stage. When 20μM cilostamide was added to the pre-maturation culture for 6h, 12h or 24h and continued for another 24h without cilostamide, oocytes resumed meiosis, but with significantly lower (P<0.01) maturation rates in the 24h group than that in the other two groups. During oocyte maturation in vitro, no microtubules were detected before GV breakdown (GVBD). After GVBD, microtubules combined with condensed chromatin to form the meiotic metaphase spindle. Microfilaments covered a thick area around the cellular cortex and overlying chromosomes. Cilostamide had no effects on microtubules and microfilaments in metaphase II oocytes, and there were no significant differences in the rates of cleavage, blastocyst formation and number of blastocyst cells between oocytes treated pre-maturation with inhibitor for 6h and those of the control group (P>0.05). In summary, cilostamide reversibly arrested the resumption of meiosis without any adverse impact on the dynamic changes in microtubules and microfilaments in buffalo oocytes and their in vitro developmental capacity.

  14. Cytoskeletal abnormalities in relation with meiotic competence and ageing in porcine and bovine oocytes during in vitro maturation.

    PubMed

    Somfai, T; Kikuchi, K; Kaneda, M; Akagi, S; Watanabe, S; Mizutani, E; Haraguchi, S; Dang-Nguyen, T Q; Inaba, Y; Geshi, M; Nagai, T

    2011-10-01

    We investigated the frequencies of cytoskeletal anomalies in metaphase-II (M-II) and incompetent [arrested at an immature metaphase (IM) stage] porcine and bovine oocytes during in vitro maturation (IVM) in relation with ageing by immunostaining and confocal microscopy. In porcine oocytes, meiotic arrest at the IM stage was associated with abnormalities of cortical actin but not with abnormal spindles. Prolongation of IVM culture to 52 h did not affect microfilament and spindle abnormalities, but reduced the microfilament-rich area overlaying the spindle. Meiotic arrest of bovine oocytes at the IM stage was associated with degenerations of microfilaments, and the frequencies of abnormal spindles were also higher than those of M-II oocytes. Ageing of bovine oocytes (IVM for 30 h) did not affect cortical microfilaments but increased the frequency of spindle alterations in both M-II and IM bovine oocytes. These results suggest that, in both species, altered ability of oocytes to polymerize F-actin might be a possible reason for the failure of polar body extrusion during IVM. Also, there seem to be differences between the two species in the sensitivity of oocytes to suffer ageing-related spindle damages.

  15. The Molecules of the Cell Matrix.

    ERIC Educational Resources Information Center

    Weber, Klaus; Osborn, Mary

    1985-01-01

    Cytoplasmic proteins form a highly structured yet changeable matrix that affects cell shape, division, motion, and transport of vesicles and organelles. Types of microfilaments, research techniques, actin and myosin, tumor cells, and other topics are addressed. Evidence indicates that the cell matrix might have a bearing on metabolism. (DH)

  16. Inside the Cell: The New Frontier of Medical Science. Series: A New Medical Science for the 21st Century.

    ERIC Educational Resources Information Center

    Pines, Maya

    Provides information on cellular morphology and physiology, including general cell characteristics, the nucleus, ribosomes, endoplasmic reticulum, Golgi apparatus, lysosomes, mitochondria, microtubules, microfilaments, and membranes. Focuses on membranes which are postulated to play an important role in many aspects of health and disease.…

  17. [What is your diagnosis? A "fat arm". Onchocerciasis].

    PubMed

    Bousquet, A; Larréché, S; Elhadji Toumane, C; Dupin, M; Avignant, J; Mérens, A; Maccari, F

    2014-01-01

    We report a case of edema of the right forearm with pruriginous papules and eosinophilia in the blood. The patient had lived in a forested area of Cameroon. The clinical, laboratory, and geographical findings led to a diagnosis of onchocerciasis, despite the absence of microfilaments on skin biopsy samples. The patient was successfully treated with ivermectin and doxycycline.

  18. Ultrastructure of the embryonic stem cells of the 8-day pig blastocyst before and after in vitro manipulation: development of junctional apparatus and the lethal effects of PBS mediated cell-cell dissociation.

    PubMed

    Talbot, N C; Garrett, W M

    2001-09-01

    Ultrastructural examination of 8-day hatched pig blastocysts (large and small), their cultured inner cell mass (ICM), and cultured epiblast tissue (embryonic stem cells) was undertaken to assess the development of epiblast cell junctions and cytoskeletal elements. In small blastocysts, epiblast cells had no desmosomes or tight junction (TJ) connections and few organized microfilament bundles, whereas in large blastocysts the epiblast cells were connected by TJ and desmosomes with associated microfilaments. ICM isolation by immunodissection damaged the endoderm cells beneath the trophectoderm cells but did not appear to damage the epiblast cells or their associated endoderm cells. Epiblast cells in cultured ICMs were similar in character to those in the intact large blastocyst except that perinuclear microfilaments were observed. Isolated pig epiblasts, cultured for approximately 36 hr on STO feeder layers, formed a monolayer whose cells were connected by TJ, adherens junctions and desmosomes with prominent microfilament bundles running parallel to the apical cytoplasmic membranes. Perinuclear microfilaments were a consistent feature in the approximately 36 hr cultured epiblast cells. A feature characteristic of differentiation into notochordal cells, i.e., a solitary cilium, was also observed in the cultured epiblast. Exposure of the cultured epiblast cells to Ca(++)-Mg(++)-free phosphate buffered saline (PBS) for 5-10 min resulted in extensive cell blebbing and lysis. The results may indicate that pig epiblast cells could be more easily dissociated from early blastocysts ( approximately 400 microm in diameter) if immunodissection damage to the ICM can be avoided. It may be difficult, however, to establish them as embryonic stem cell lines because the cultured pig epiblast cells were easily lysed by standard cell-cell dissociation methods.

  19. Changes in cell migration due to the combined effects of sonodynamic therapy and photodynamic therapy on MDA-MB-231 cells

    NASA Astrophysics Data System (ADS)

    Wang, Haiping; Wang, Pan; Zhang, Kun; Wang, Xiaobing; Liu, Quanhong

    2015-03-01

    Sono-photodynamic therapy is an emerging method with an increasing amount of research having demonstrated its anti-cancer efficacy. However, the impacts of cell migration ability after sono-photodynamic therapy have seldom been reported. In this study, we identified cell migration by wound healing and transwell assays. Significant inability of cell migration was observed in combined groups accompanied by the decline of cell adhesion. Cells in combined treatment groups showed serious microfilament network collapse as well as decreased expression of matrix metalloproteinases-9. These results suggested that sono-photodynamic therapy could inhibit MDA-MB-231 cell migration and that the microfilament and matrix metalloproteinases-9 disorder might be involved.

  20. Ultrastructural localization of alpha-actinin and filamin in cultured cells with the immunogold staining (IGS) method

    PubMed Central

    1984-01-01

    Monospecific antibodies to chicken gizzard actin, alpha-actinin, and filamin have been used to localize these proteins at the ultrastructural level: secondary cultures of 14-d-old chicken embryo lung epithelial cells and chicken heart fibroblasts were briefly lysed with either a 0.5% Triton X-100/0.25% glutaraldehyde mixture, or 0.1% Triton X-100, fixed with 0.5% glutaraldehyde, and further permeabilized with 0.5% Triton X-100, to allow penetration of the gold-conjugated antibodies. After immunogold staining (De Mey, J., M. Moeremans, G. Geuens, R. Nuydens, and M. De Brabander, 1981, Cell Biol. Int. Rep. 5:889-899), the cells were postfixed in glutaraldehyde-tannic acid and further processed for embedding and thin sectioning. This approach enabled us to document the distribution of alpha-actinin and filamin either on the delicate cortical networks of the cell periphery or in the densely bundled stress fibers and polygonal nets. By using antiactin immunogold staining as a control, we were able to demonstrate the applicability of the method to the microfilament system: the label was distributed homogeneously over all areas containing recognizable microfilaments, except within very thick stress fibers, where the marker did not penetrate completely. Although alpha-actinin specific staining was homogeneously localized along loosely-organized microfilaments, it was concentrated in the dense bodies of stress fibers. The antifilamin-specific staining showed a typically spotty or patchy pattern associated with the fine cortical networks and stress fibers. This pattern occurred along all actin filaments, including the dense bodies also marked by anti-alpha-actinin antibodies. The results confirm and extend the data from light microscopic investigations and provide more information on the structural basis of the microfilament system. PMID:6207180

  1. The cytoskeleton of Drosophila-derived Schneider line-1 and Kc23 cells undergoes significant changes during long-term culture

    NASA Technical Reports Server (NTRS)

    Schatten, H.; Hedrick, J.; Chakrabarti, A.

    1998-01-01

    Insect cell cultures derived from Drosophila melanogaster are increasingly being used as an alternative system to mammalian cell cultures, as they are amenable to genetic manipulation. Although Drosophila cells are an excellent tool for the study of genes and expression of proteins, culture conditions have to be considered in the interpretation of biochemical results. Our studies indicate that significant differences occur in cytoskeletal structure during the long-term culture of the Drosophila-derived cell lines Schneider Line-1 (S1) and Kc23. Scanning, transmission-electron, and immunofluorescence microscopy studies reveal that microfilaments, microtubules, and centrosomes become increasingly different during the culture of these cells from 24 h to 7-14 days. Significant cytoskeletal changes are observed at the cell surface where actin polymerizes into microfilaments, during the elongation of long microvilli. Additionally, long protrusions develop from the cell surface; these protrusions are microtubule-based and establish contact with neighboring cells. In contrast, the microtubule network in the interior of the cells becomes disrupted after four days of culture, resulting in altered transport of mitochondria. Microtubules and centrosomes are also affected in a small percent of cells during cell division, indicating an instability of centrosomes. Thus, the cytoskeletal network of microfilaments, microtubules, and centrosomes is affected in Drosophila cells during long-term culture. This implies that gene regulation and post-translational modifications are probably different under different culture conditions.

  2. Role of the microtubule cytoskeleton in gravisensing Chara rhizoids.

    PubMed

    Braun, M; Sievers, A

    1994-04-01

    The arrangement of the microtubule cytoskeleton in tip-growing and gravisensing Chara rhizoids has been documented by immunofluorescence microscopy. Predominantly axially oriented undulating bundles of cortical microtubules were found in the basal zone of the rhizoids and colocalized with the microfilament bundles underlying the cytoplasmic streaming. Microtubules penetrate the subapical zone, forming a three-dimensional network that envelops the nucleus and organelles. Microtubules are present up to 5 to 10 microns basal from the apical cytoplasmic region containing the statoliths. No microtubules were found in the apical zone of the rhizoid which is the site of tip growth and gravitropism. Depolymerization of microtubules by application of oryzalin does not affect cytoplasmic streaming and gravitropic growth until the relatively stationary and polarly organized apical and subapical cytoplasm is converted into streaming cytoplasm. When the statoliths and the apical cytoplasm are included in the cytoplasmic streaming, tip growth and gravitropism are stopped. Oryzalin-induced disruption of the microtubule cytoskeleton also results in a rearrangement of the dense network of apical and subapical microfilaments into thicker bundles, whereas disruption of the microfilament cytoskeleton by cytochalasin D had no effect on the organization of the microtubule cytoskeleton. It is, therefore, concluded that the arrangement of microtubules is essential for the polar cytoplasmic zonation and the functionally polar organization of the actin cytoskeleton which is responsible for the motile processes in rhizoids. Microtubules are not involved in the primary events of gravitropism in Chara rhizoids.

  3. Involvement of the cytoskeleton in the movement of cortical granules during oocyte maturation, and cortical granule anchoring in mouse eggs.

    PubMed

    Connors, S A; Kanatsu-Shinohara, M; Schultz, R M; Kopf, G S

    1998-08-01

    Exocytosis of cortical granules in mouse eggs is required to produce the zona pellucida block to polyspermy. In this study, we examined the role of microfilaments and microtubules in the regulation of cortical granule movement toward the cortex during oocyte maturation and anchoring of cortical granules in the cortex. Fluorescently labeled cortical granules, microfilaments, and microtubules were visualized using laser-scanning confocal microscopy. It was observed that cortical granules migrate to the periphery of the oocyte during oocyte maturation. This movement is blocked by the treatment of oocytes with cytochalasin D, an inhibitor of microfilament polymerization, but not with nocodazole or colchicine, inhibitors of microtubule polymerization. Cortical granules, once anchored at the cortex, remained in the cortex following treatment of metaphase II-arrested eggs with each of these inhibitors; i.e., there was neither inward movement nor precocious exocytosis. Finally, the single cortical granule-free domain that normally becomes localized over the metaphase II spindle was not observed when the chromosomes become scattered following microtubule disruption with nocodazole or colchicine. In these instances a cortical granule-free domain was observed over each individual chromosome, suggesting that the chromosome or chromosome-associated material, and not the spindle, dictates the localization of the cortical granule-free domain.

  4. Pivotal and distinct role for Plasmodium actin capping protein alpha during blood infection of the malaria parasite

    PubMed Central

    Ganter, Markus; Rizopoulos, Zaira; Schüler, Herwig; Matuschewski, Kai

    2015-01-01

    Accurate regulation of microfilament dynamics is central to cell growth, motility and response to environmental stimuli. Stabilizing and depolymerizing proteins control the steady-state levels of filamentous (F-) actin. Capping protein (CP) binds to free barbed ends, thereby arresting microfilament growth and restraining elongation to remaining free barbed ends. In all CPs characterized to date, alpha and beta subunits form the active heterodimer. Here, we show in a eukaryotic parasitic cell that the two CP subunits can be functionally separated. Unlike the beta subunit, the CP alpha subunit of the apicomplexan parasite Plasmodium is refractory to targeted gene deletion during blood infection in the mammalian host. Combinatorial complementation of Plasmodium berghei CP genes with the orthologs from Plasmodium falciparum verified distinct activities of CP alpha and CP alpha/beta during parasite life cycle progression. Recombinant Plasmodium CP alpha could be produced in Escherichia coli in the absence of the beta subunit and the protein displayed F-actin capping activity. Thus, the functional separation of two CP subunits in a parasitic eukaryotic cell and the F-actin capping activity of CP alpha expand the repertoire of microfilament regulatory mechanisms assigned to CPs. PMID:25565321

  5. Cytoskeleton in Mast Cell Signaling

    PubMed Central

    Dráber, Pavel; Sulimenko, Vadym; Dráberová, Eduarda

    2012-01-01

    Mast cell activation mediated by the high affinity receptor for IgE (FcεRI) is a key event in allergic response and inflammation. Other receptors on mast cells, as c-Kit for stem cell factor and G protein-coupled receptors (GPCRs) synergistically enhance the FcεRI-mediated release of inflammatory mediators. Activation of various signaling pathways in mast cells results in changes in cell morphology, adhesion to substrate, exocytosis, and migration. Reorganization of cytoskeleton is pivotal in all these processes. Cytoskeletal proteins also play an important role in initial stages of FcεRI and other surface receptors induced triggering. Highly dynamic microtubules formed by αβ-tubulin dimers as well as microfilaments build up from polymerized actin are affected in activated cells by kinases/phosphatases, Rho GTPases and changes in concentration of cytosolic Ca2+. Also important are nucleation proteins; the γ-tubulin complexes in case of microtubules or Arp 2/3 complex with its nucleation promoting factors and formins in case of microfilaments. The dynamic nature of microtubules and microfilaments in activated cells depends on many associated/regulatory proteins. Changes in rigidity of activated mast cells reflect changes in intermediate filaments build up from vimentin. This review offers a critical appraisal of current knowledge on the role of cytoskeleton in mast cells signaling. PMID:22654883

  6. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells

    PubMed Central

    Gao, Ying; Lui, Wing-yee; Lee, Will M.; Cheng, C. Yan

    2016-01-01

    Crumbs homolog 3 (or Crumbs3, CRB3) is a polarity protein expressed by Sertoli and germ cells at the basal compartment in the seminiferous epithelium. CRB3 also expressed at the blood-testis barrier (BTB), co-localized with F-actin, TJ proteins occludin/ZO-1 and basal ES (ectoplasmic specialization) proteins N-cadherin/β-catenin at stages IV-VII only. The binding partners of CRB3 in the testis were the branched actin polymerization protein Arp3, and the barbed end-capping and bundling protein Eps8, illustrating its possible role in actin organization. CRB3 knockdown (KD) by RNAi in Sertoli cells with an established tight junction (TJ)-permeability barrier perturbed the TJ-barrier via changes in the distribution of TJ- and basal ES-proteins at the cell-cell interface. These changes were the result of CRB3 KD-induced re-organization of actin microfilaments, in which actin microfilaments were truncated, and extensively branched, thereby destabilizing F-actin-based adhesion protein complexes at the BTB. Using Polyplus in vivo-jetPEI as a transfection medium with high efficiency for CRB3 KD in the testis, the CRB3 KD testes displayed defects in spermatid and phagosome transport, and also spermatid polarity due to a disruption of F-actin organization. In summary, CRB3 is an actin microfilament regulator, playing a pivotal role in organizing actin filament bundles at the ES. PMID:27358069

  7. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    PubMed

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  8. Pivotal and distinct role for Plasmodium actin capping protein alpha during blood infection of the malaria parasite.

    PubMed

    Ganter, Markus; Rizopoulos, Zaira; Schüler, Herwig; Matuschewski, Kai

    2015-04-01

    Accurate regulation of microfilament dynamics is central to cell growth, motility and response to environmental stimuli. Stabilizing and depolymerizing proteins control the steady-state levels of filamentous (F-) actin. Capping protein (CP) binds to free barbed ends, thereby arresting microfilament growth and restraining elongation to remaining free barbed ends. In all CPs characterized to date, alpha and beta subunits form the active heterodimer. Here, we show in a eukaryotic parasitic cell that the two CP subunits can be functionally separated. Unlike the beta subunit, the CP alpha subunit of the apicomplexan parasite Plasmodium is refractory to targeted gene deletion during blood infection in the mammalian host. Combinatorial complementation of Plasmodium berghei CP genes with the orthologs from Plasmodium falciparum verified distinct activities of CP alpha and CP alpha/beta during parasite life cycle progression. Recombinant Plasmodium CP alpha could be produced in Escherichia coli in the absence of the beta subunit and the protein displayed F-actin capping activity. Thus, the functional separation of two CP subunits in a parasitic eukaryotic cell and the F-actin capping activity of CP alpha expand the repertoire of microfilament regulatory mechanisms assigned to CPs.

  9. Effects of clinorotation and microgravity on sweet clover columella cells treated with cytochalasin D

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Paulsen, A. Q.; Brown, C. S.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    The cytoskeleton of columella cells is believed to be involved in maintaining the developmental polarity of cells observed as a reproducible positioning of cellular organelles. It is also implicated in the transduction of gravitropic signals. Roots of sweet clover (Melilotus alba L.) seedlings were treated with a microfilament disrupter, cytochalasin D, on a slowly rotating horizontal clinostat (2 rpm). Electron micrographs of treated columella cells revealed several ultrastructural effects including repositioning of the nucleus and the amyloplasts and the formation of endoplasmic reticulum (ER) whorls. However, experiments performed during fast clinorotation (55 rpm) showed an accumulation (but no whorling) of a disorganized ER network at the proximal and distal pole and a random distribution of the amyloplasts. Therefore, formation of whorls depends upon the speed of clinorotation, and the overall impact of cytochalasin D suggests the necessity of microfilaments in organelle positioning. Interestingly, a similar drug treatment performed in microgravity aboard the US Space Shuttle Endeavour (STS-54, January 1993) caused a displacement of ER membranes and amyloplasts away from the distal plasma membrane. In the present study, we discuss the role of microfilaments in maintaining columella cell polarity and the utility of clinostats to simulate microgravity.

  10. Wnt5a Directs Polarized Calcium Gradients by Recruiting Cortical Endoplasmic Reticulum to the Cell Trailing Edge

    PubMed Central

    Witze, Eric S.; Connacher, Mary Katherine; Houel, Stephane; Schwartz, Michael P.; Morphew, Mary K.; Reid, Leah; Sacks, David B.; Anseth, Kristi S.; Ahn, Natalie G.

    2013-01-01

    SUMMARY Wnt5a directs the assembly of “Wnt-receptor-actin-myosin-polarity (WRAMP)” structure, which integrates cell adhesion receptors with F-actin and myosin to form a microfilament array associated with multivesicular bodies. The WRAMP structure is polarized to the cell posterior, where it directs tail-end membrane retraction, driving forward translocation of the cell body. Here, we define constituents of the WRAMP proteome, including regulators of microfilament and microtubule dynamics, protein interactions, and enzymatic activity. IQGAP1, a scaffold for F-actin nucleation and crosslinking, is necessary for WRAMP structure formation, potentially bridging microfilaments and MVBs. Vesicle coat proteins, including coatomer-I subunits, localize to and are required for the WRAMP structure. Electron microscopy and live imaging demonstrate movement of ER to the WRAMP structure and plasma membrane, followed by elevation of intracellular Ca2+. Thus, Wnt5a controls directional movement by recruiting cortical ER to mobilize a rear-directed, localized Ca2+ signal, activating actomyosin contraction and adhesion disassembly for membrane retraction. PMID:24091015

  11. Microtubular organization in flat epitheloid and stellate process-bearing astrocytes in culture.

    PubMed

    Ciesielski-Treska, J; Bader, M F; Aunis, D

    1982-03-01

    Microtubules and microfilament patterns in cultured astrocytes were revealed by using indirect immunofluorescent microscopy in conjunction with anti-tubulin immune serum and anti-actin immunoglobulins respectively. In flat epitheloid astroglial cells (either polygonal or elongated) colchicine-sensitive immunofluorescent fibres, which correspond to bundles of microtubules, extend from the perinuclear cytoplasm into the cell periphery by running for long distances through the different focal planes. These patterns of organization differ markedly from the patterns of organization of microfilaments which are arranged in fibres parallel to each other and often oriented along the cell boundary. In response to the combined treatments of serum withdrawal and administration of dBcAMP, flat epitheloid astrocytes adopt a morphology similar to that of the mature astrocytes in situ in the CNS, that is of stellate process-bearing cells. This is prevented or is reverted by the administration of colchicine at the appropriate times. There are strong suggestions indicating that during cell processes formation the microtubular network is reorganized and microtubules assembled into dense bundles which are oriented along the axis of the cell processes. In view of these results, we suggest that, in contrast to microfilaments, microtubules are not determinant for the maintenance of cellular shape in elongated or polygonal flat epitheloid astroglial cells but they are required for both the formation and maintenance of processes in stellate astrocytes.

  12. Cytoskeletal filament assembly and the control of cell spreading and function by extracellular matrix

    NASA Technical Reports Server (NTRS)

    Mooney, D. J.; Langer, R.; Ingber, D. E.

    1995-01-01

    This study was undertaken to analyze how cell binding to extracellular matrix produces changes in cell shape. We focused on the initial process of cell spreading that follows cell attachment to matrix and, thus, cell 'shape' changes are defined here in terms of alterations in projected cell areas, as determined by computerized image analysis. Cell spreading kinetics and changes in microtubule and actin microfilament mass were simultaneously quantitated in hepatocytes plated on different extracellular matrix substrata. The initial rate of cell spreading was highly dependent on the matrix coating density and decreased from 740 microns 2/h to 50 microns 2/h as the coating density was lowered from 1000 to 1 ng/cm2. At approximately 4 to 6 hours after plating, this initial rapid spreading rate slowed and became independent of the matrix density regardless of whether laminin, fibronectin, type I collagen or type IV collagen was used for cell attachment. Analysis of F-actin mass revealed that cell adhesion to extracellular matrix resulted in a 20-fold increase in polymerized actin within 30 minutes after plating, before any significant change in cell shape was observed. This was followed by a phase of actin microfilament disassembly which correlated with the most rapid phase of cell extension and ended at about 6 hours; F-actin mass remained relatively constant during the slow matrix-independent spreading phase. Microtubule mass increased more slowly in spreading cells, peaking at 4 hours, the time at which the transition between rapid and slow spreading rates was observed. However, inhibition of this early rise in microtubule mass using either nocodazole or cycloheximide did not prevent this transition. Use of cytochalasin D revealed that microfilament integrity was absolutely required for hepatocyte spreading whereas interference with microtubule assembly (using nocodazole or taxol) or protein synthesis (using cycloheximide) only partially suppressed cell extension. In

  13. Fourier imaging correlation spectroscopy: Technique development and application to colloidal thin films and intracellular mitochondrial transport

    NASA Astrophysics Data System (ADS)

    Knowles, Michelle Kay

    2003-10-01

    Understanding fluid dynamics is fundamentally intriguing and relevant to many areas of applied science, including polymer materials and cellular transport. Many complex fluids are difficult to study using traditional methods, which are limited in sensitivity, dynamic range or spatial information. In this work, a new technique, Fourier Imaging Correlation Spectroscopy (FICS), is developed in order to measure the dynamics of complex fluids over a broad dynamic range with high sensitivity. FICS measures complex fluid structure one length scale at a time and allows for direct calculation of the intermediate scattering function; a function that describes how the system is changing on a given length scale as a function of time. The sensitivity of FICS allows for study of materials with intrinsically low signals, such as thin films. Colloidal thin film measurements provided a proof-of-principle of FICS by comparing the intermediate scattering function calculated from FICS data to results from an established technique, digital video microscopy. FICS is an ideal method for obtaining information about mitochondrial transport within living cells. Mitochondrial dynamics are strongly influenced by interactions with cytoskeletal filaments and their associated motor proteins. This leads to complex multi-exponential relaxations occurring over a wide range of spatial and temporal scales. The cytoskeleton consists of an interconnected polymer network whose primary components are microfilaments and microtubules. Cytoskeletal filaments work with motor proteins to traffic organelles within the cell. Components of the cytoskeleton were selectively destabilized and the resulting mitochondrial dynamics measured using FICS and digital video microscopy. These studies show that both microfilaments and microtubules are necessary for transport of the mitochondrial reticulum. FICS measurements reveal that microfilaments control short-range (0.8--1.6 mum) dynamics and microtubules are

  14. Pigment granule translocation in red ovarian chromatophores from the palaemonid shrimp Macrobrachium olfersi (Weigmann, 1836): functional roles for the cytoskeleton and its molecular motors.

    PubMed

    Milograna, Sarah Ribeiro; Ribeiro, Márcia Regina; Baqui, Munira Muhammad Abdel; McNamara, John Campbell

    2014-12-01

    The binding of red pigment concentrating hormone (RPCH) to membrane receptors in crustacean chromatophores triggers Ca²⁺/cGMP signaling cascades that activate cytoskeletal motors, driving pigment granule translocation. We investigate the distributions of microfilaments and microtubules and their associated molecular motors, myosin and dynein, by confocal and transmission electron microscopy, evaluating a functional role for the cytoskeleton in pigment translocation using inhibitors of polymer turnover and motor activity in vitro. Microtubules occupy the chromatophore cell extensions whether the pigment granules are aggregated or dispersed. The inhibition of microtubule turnover by taxol induces pigment aggregation and inhibits re-dispersion. Phalloidin-FITC actin labeling, together with tannic acid fixation and ultrastructural analysis, reveals that microfilaments form networks associated with the pigment granules. Actin polymerization induced by jasplaquinolide strongly inhibits RPCH-induced aggregation, causes spontaneous pigment dispersion, and inhibits pigment re-dispersion. Inhibition of actin polymerization by latrunculin-A completely impedes pigment aggregation and re-dispersion. Confocal immunocytochemistry shows that non-muscle myosin II (NMMII) co-localizes mainly with pigment granules while blebbistatin inhibition of NMMII strongly reduces the RPCH response, also inducing spontaneous pigment dispersion. Myosin II and dynein also co-localize with the pigment granules. Inhibition of dynein ATPase by erythro-9-(2-hydroxy-3-nonyl) adenine induces aggregation, inhibits RPCH-triggered aggregation, and inhibits re-dispersion. Granule aggregation and dispersion depend mainly on microfilament integrity although microtubules may be involved. Both cytoskeletal polymers are functional only when subunit turnover is active. Myosin and dynein may be the molecular motors that drive pigment aggregation. These mechanisms of granule translocation in crustacean

  15. A Role for Cytoskeletal Elements in the Light-Driven Translocation of Proteins in Rod Photoreceptors

    PubMed Central

    Peterson, James J.; Orisme, Wilda; Fellows, Jonathan; McDowell, J. Hugh; Shelamer, Charles L.; Dugger, Donald R.; Clay Smith, W.

    2006-01-01

    PURPOSE. Light-driven protein translocation is responsible for the dramatic redistribution of some proteins in vertebrate rod photoreceptors. In this study, the involvement of microtubules and microfilaments in the light-driven translocation of arrestin and transducin was investigated. METHODS. Pharmacologic reagents were applied to native and transgenic Xenopus tadpoles, to disrupt the microtubules (thiabendazole) and microfilaments (cytochalasin D and latrunculin B) of the rod photoreceptors. Quantitative confocal imaging was used to assess the impact of these treatments on arrestin and transducin translocation. A series of transgenic tadpoles expressing arrestin truncations were also created to identify portions of arrestin that enable arrestin to translocate. RESULTS. Application of cytochalasin D or latrunculin B to disrupt the microfilament organization selectively slowed only transducin movement from the inner to the outer segments. Perturbation of the microtubule cytoskeleton with thiabendazole slowed the translocation of both arrestin and transducin, but only in moving from the outer to the inner segments. Transgenic Xenopus expressing fusions of green fluorescent protein (GFP) with portions of arrestin implicates the C terminus of arrestin as an important portion of the molecule for promoting translocation. This C-terminal region can be used independently to promote translocation of GFP in response to light. CONCLUSIONS. The results show that disruption of the cytoskeletal network in rod photoreceptors has specific effects on the translocation of arrestin and transducin. These effects suggest that the light-driven translocation of visual proteins at least partially relies on an active motor-driven mechanism for complete movement of arrestin and transducin. PMID:16249472

  16. Formin 1 Regulates Ectoplasmic Specialization in the Rat Testis Through Its Actin Nucleation and Bundling Activity

    PubMed Central

    Li, Nan; Mruk, Dolores D.; Wong, Chris K. C.; Han, Daishu; Lee, Will M.

    2015-01-01

    During spermatogenesis, developing spermatids and preleptotene spermatocytes are transported across the adluminal compartment and the blood-testis barrier (BTB), respectively, so that spermatids line up near the luminal edge to prepare for spermiation, whereas preleptotene spermatocytes enter the adluminal compartment to differentiate into late spermatocytes to prepare for meiosis I/II. These cellular events involve actin microfilament reorganization at the testis-specific, actin-rich Sertoli-spermatid and Sertoli-Sertoli cell junction called apical and basal ectoplasmic specialization (ES). Formin 1, an actin nucleation protein known to promote actin microfilament elongation and bundling, was expressed at the apical ES but limited to stage VII of the epithelial cycle, whereas its expression at the basal ES/BTB stretched from stage III to stage VI, diminished in stage VII, and was undetectable in stage VIII tubules. Using an in vitro model of studying Sertoli cell BTB function by RNA interference and biochemical assays to monitor actin bundling and polymerization activity, a knockdown of formin 1 in Sertoli cells by approximately 70% impeded the tight junction-permeability function. This disruptive effect on the tight junction barrier was mediated by a loss of actin microfilament bundling and actin polymerization capability mediated by changes in the localization of branched actin-inducing protein Arp3 (actin-related protein 3), and actin bundling proteins Eps8 (epidermal growth factor receptor pathway substrate 8) and palladin, thereby disrupting cell adhesion. Formin 1 knockdown in vivo was found to impede spermatid adhesion, transport, and polarity, causing defects in spermiation in which elongated spermatids remained embedded into the epithelium in stage IX tubules, mediated by changes in the spatiotemporal expression of Arp3, Eps8, and palladin. In summary, formin 1 is a regulator of ES dynamics. PMID:25901598

  17. Radiation induced endothelial cell retraction in vitro: correlation with acute pulmonary edema.

    PubMed

    Onoda, J M; Kantak, S S; Diglio, C A

    1999-01-01

    We determined the effects of low dose radiation (<200 cGy) on the cell-cell integrity of confluent monolayers of pulmonary microvascular endothelial cells (PMEC). We observed dose- and time-dependent reversible radiation induced injuries to PMEC monolayers characterized by retraction (loss of cell-cell contact) mediated by cytoskeletal F-actin reorganization. Radiation induced reorganization of F-actin microfilament stress fibers was observed > or =30 minutes post irradiation and correlated positively with loss of cell-cell integrity. Cells of irradiated monolayers recovered to form contact inhibited monolayers > or =24 hours post irradiation; concomitantly, the depolymerized microfilaments organized to their pre-irradiated state as microfilament stress fibers arrayed parallel to the boundaries of adjacent contact-inhibited cells. Previous studies by other investigators have measured slight but significant increases in mouse lung wet weight >1 day post thoracic or whole body radiation (> or =500 cGy). Little or no data is available concerning time intervals <1 day post irradiation, possibly because of the presumption that edema is mediated, at least in part, by endothelial cell death or irreversible loss of barrier permeability functions which may only arise 1 day post irradiation. However, our in vitro data suggest that loss of endothelial barrier function may occur rapidly and at low dose levels (< or =200 cGy). Therefore, we determined radiation effects on lung wet weight and observed significant increases in wet weight (standardized per dry weight or per mouse weight) in < or =5 hours post thoracic exposure to 50 200 cGy x-radiation. We suggest that a single fraction of radiation even at low dose levels used in radiotherapy, may induce pulmonary edema by a reversible loss of endothelial cell-cell integrity and permeability barrier function.

  18. Regulation of PGE(2) and PGI(2) release from human umbilical vein endothelial cells by actin cytoskeleton

    NASA Technical Reports Server (NTRS)

    Sawyer, S. J.; Norvell, S. M.; Ponik, S. M.; Pavalko, F. M.

    2001-01-01

    Disruption of microfilaments in human umbilical vein endothelial cells (HUVEC) with cytochalasin D (cytD) or latrunculin A (latA) resulted in a 3.3- to 5.7-fold increase in total synthesis of prostaglandin E(2) (PGE(2)) and a 3.4- to 6.5-fold increase in prostacyclin (PGI(2)) compared with control cells. Disruption of the microtubule network with nocodazole or colchicine increased synthesis of PGE(2) 1.7- to 1.9-fold and PGI(2) 1.9- to 2.0-fold compared with control cells. Interestingly, however, increased release of PGE(2) and PGI(2) from HUVEC into the media occurred only when microfilaments were disrupted. CytD treatment resulted in 6.7-fold more PGE(2) and 3.8-fold more PGI(2) released from HUVEC compared with control cells; latA treatment resulted in 17.7-fold more PGE(2) and 11.2-fold more PGI(2) released compared with control cells. Both increased synthesis and release of prostaglandins in response to all drug treatments were completely inhibited by NS-398, a specific inhibitor of cyclooxygenase-2 (COX-2). Disruption of either microfilaments using cytD or latA or of microtubules using nocodazole or colchicine resulted in a significant increase in COX-2 protein levels, suggesting that the increased synthesis of prostaglandins in response to drug treatments may result from increased activity of COX-2. These results, together with studies demonstrating a vasoprotective role for prostaglandins, suggest that the cytoskeleton plays an important role in maintenance of endothelial barrier function by regulating prostaglandin synthesis and release from HUVEC.

  19. Cytoskeletal dynamics in rabbit synovial fibroblasts: II. Reformation of stress fibers in cells rounded by treatment with collagenase-inducing agents.

    PubMed

    Aggeler, J

    1990-01-01

    Modulation of the synthesis and secretion of extracellular matrix proteins and matrix-degrading metalloproteases by rabbit synovial fibroblasts is an important model system for studying the control of tissue-specific gene expression. Induction of collagenase expression is correlated with changes in cell shape and actin filament distribution, but the role of the cellular cytoskeleton in the sustained synthesis and secretion of metalloproteases has not been closely examined. When cells were allowed to respread after rounding by trypsin or cytochalasin, two known metalloprotease inducers, reformation of stress fibers was observed within 2 h in the presence of serum. In the absence of serum, trypsin-treated cells did not respread substantially, even after 24 h in culture. In contrast, cytochalasin-treated cells recovered almost as rapidly in the absence as in the presence of serum, showing reformation of well-formed microfilament bundles within 30 min of drug removal, especially at the spreading cell edges. High resolution electron-microscopic views of detergent-extracted cytoskeletons confirmed the rapid rebundling of peripheral microfilaments. Acrylamide-treated cells fell between these two extremes, spreading slowly in the absence of serum, but almost as rapidly as cytochalasin-treated cells in its presence. Reestablishment of normal intermediate filament distribution generally lagged slightly behind actin for all treatments, and intermediate filaments always appeared to spread back into the cellular cytoplasm within the confines of the reforming peripheral microfilament bundles. No obvious interaction between these two cytoskeletal elements was observed after any treatment, and no specific role for intermediate filaments in modulating gene expression in these cells is suggested by these results. The serum dependence displayed after trypsin or acrylamide treatment may be due to the disturbances in fibronectin synthesis observed in these cells and is consistent with

  20. Ability of Escherichia coli isolates that cause meningitis in newborns to invade epithelial and endothelial cells.

    PubMed Central

    Meier, C; Oelschlaeger, T A; Merkert, H; Korhonen, T K; Hacker, J

    1996-01-01

    Escherichia coli isolates that cause meningitis in newborns are able to invade the circulation and subsequently cross the blood-brain barrier. One mechanism for traversing the blood-brain barrier might involve transcytosis through the endothelial cells. The ability of the meningitis isolate E. coli IHE3034, of serotype 018:K1:H7, to invade epithelial (T24) and endothelial (EA-hy926) cells was investigated by the standard gentamicin survival assay and by electron microscopy. Human bladder epithelial and endothelial cells were efficiently invaded by strain IHE3034, whereas epithelial human colon Caco-2 cells, canine kidney MDCK cells, and the opossum [correction of opposum] epithelial kidney cell line OK were not invaded. The ability to invade human epithelial cells of the bladder could also be demonstrated for several other newborn meningitis E. coli strains and one septicemic E. coli strain. Studies utilizing inhibitors which act on eukaryotic cells revealed a dependence on microfilaments as well as on microtubules in the process of E. coli IHE3034 entry into T24 and EA-hy926 cells. These results indicated that cell cytoskeletal rearrangements are involved in bacterial uptake and suggest that there are either two pathways (microtubule dependent and microfilament dependent) or one complex pathway involving both microtubules and microfilaments. The intracellular IHE3034 organisms were contained in a host-membrane-confined compartment mainly as single microorganisms. Intracellular replication of 1HE3034 was not detected, nor did the number of intracellular bacteria decrease significantly during a 48-h period. The ability of E. coli O18:K1 to invade and survive within certain eukaryotic cells may be another virulence factor of meningitis-associated E. coli. PMID:8698457

  1. Regulation of PTHrP expression by cyclic mechanical strain in postnatal growth plate chondrocytes.

    PubMed

    Xu, Tao; Yang, Kaixiang; You, Hongbo; Chen, Anmin; Wang, Jiang; Xu, Kai; Gong, Chen; Shao, Jingfan; Ma, Zhongxi; Guo, Fengjing; Qi, Jun

    2013-10-01

    Mechanical loading has been widely considered to be a crucial regulatory factor for growth plate development, but the exact mechanisms of this regulation are still not completely understood. In the growth plate, parathyroid hormone-related protein (PTHrP) regulates chondrocyte differentiation and longitudinal growth. Cyclic mechanical strain has been demonstrated to influence growth plate chondrocyte differentiation and metabolism, whereas the relationship between cyclic mechanical strain and PTHrP expression is not clear. The objective of this study was to investigate whether short-term cyclic tensile strain regulates PTHrP expression in postnatal growth plate chondrocytes in vitro and to explore whether the organization of cytoskeletal F-actin microfilaments is involved in this process. To this end, we obtained growth plate chondrocytes from 2-week-old Sprague-Dawley rats and sorted prehypertrophic and hypertrophic chondrocytes using immunomagnetic beads coated with anti-CD200 antibody. The sorted chondrocytes were subjected to cyclic tensile strain of varying magnitude and duration at a frequency of 0.5 Hz. We found that cyclic strain regulates PTHrP expression in a magnitude- and time-dependent manner. Incubation of chondrocytes with cytochalasin D, an actin microfilament-disrupting reagent, blocked the induction of PTHrP expression in response to strain. The results suggest that short-term cyclic tensile strain induces PTHrP expression in postnatal growth plate prehypertrophic and hypertrophic chondrocytes and that PTHrP expression by these chondrocytes may subsequently affect growth plate development. The results also support the idea that the organization of cytoskeletal F-actin microfilaments plays an important role in mechanotransduction.

  2. Beta1B integrin interferes with matrix assembly but not with confluent monolayer polarity, and alters some morphogenetic properties of FRT epithelial cells.

    PubMed

    Calí, G; Retta, S F; Negri, R; Damiano, I; Gentile, R; Tarone, G; Nitsch, L; Garbi, C

    1998-02-01

    Beta1B is a beta1 integrin splice variant that differs from the ubiquitous beta1A in the terminal portion of the cytosolic tail. The expression of this variant in CHO cells results in reduced fibroblast adhesion and motility (Balzac, E et al., J. Cell Biol. 127, 557-565 (1994)). We have evaluated the phenotypic changes induced by the expression of beta1B in the FRT epithelial cell line. Stable transfectants of FRT cells expressing beta1B or beta1A human integrins were obtained. The transfected integrins associated with the endogenous alpha subunits and were delivered to the plasma membrane. Beta1B expressing cells attached less efficiently and spread less on fibronectin, laminin or type IV collagen coated dishes. A great reduction of fibronectin fibrils associated to the basal membrane of non-confluent beta1B transfected cells was observed. This was paralleled by the disappearance of microfilament bundles and loss of basally located focal adhesions. On the contrary, upon beta1A transfection, a higher amount of fibronectin fibrils, together with microfilament bundles and focal adhesions, was observed. Expression of beta1B did not significantly modify the ability to manifest the polarized phenotype when cells were grown to confluence on filters in two-chamber-systems. Beta1B-transfected cells showed reduced motile properties when embedded as aggregates in type I collagen gels. Moreover, formation of polarized cysts in suspension culture was impaired. The results show that beta1B, by interfering with focal adhesion organization, microfilament and fibronectin assembly, cell spreading and migration, affects some morphogenetic properties of FRT epithelial cells.

  3. Differential Regulation of Disheveled in a Novel Vegetal Cortical Domain in Sea Urchin Eggs and Embryos: Implications for the Localized Activation of Canonical Wnt Signaling

    PubMed Central

    Peng, ChiehFu Jeff; Wikramanayake, Athula H.

    2013-01-01

    Pattern formation along the animal-vegetal (AV) axis in sea urchin embryos is initiated when canonical Wnt (cWnt) signaling is activated in vegetal blastomeres. The mechanisms that restrict cWnt signaling to vegetal blastomeres are not well understood, but there is increasing evidence that the egg’s vegetal cortex plays a critical role in this process by mediating localized “activation” of Disheveled (Dsh). To investigate how Dsh activity is regulated along the AV axis, sea urchin-specific Dsh antibodies were used to examine expression, subcellular localization, and post-translational modification of Dsh during development. Dsh is broadly expressed during early sea urchin development, but immunolocalization studies revealed that this protein is enriched in a punctate pattern in a novel vegetal cortical domain (VCD) in the egg. Vegetal blastomeres inherit this VCD during embryogenesis, and at the 60-cell stage Dsh puncta are seen in all cells that display nuclear β-catenin. Analysis of Dsh post-translational modification using two-dimensional Western blot analysis revealed that compared to Dsh pools in the bulk cytoplasm, this protein is differentially modified in the VCD and in the 16-cell stage micromeres that partially inherit this domain. Dsh localization to the VCD is not directly affected by disruption of microfilaments and microtubules, but unexpectedly, microfilament disruption led to degradation of all the Dsh pools in unfertilized eggs over a period of incubation suggesting that microfilament integrity is required for maintaining Dsh stability. These results demonstrate that a pool of differentially modified Dsh in the VCD is selectively inherited by the vegetal blastomeres that activate cWnt signaling in early embryos, and suggests that this domain functions as a scaffold for localized Dsh activation. Localized cWnt activation regulates AV axis patterning in many metazoan embryos. Hence, it is possible that the VCD is an evolutionarily conserved

  4. N terminus is essential for tropomyosin functions: N-terminal modification disrupts stress fiber organization and abolishes anti-oncogenic effects of tropomyosin-1.

    PubMed

    Bharadwaj, Shantaram; Hitchcock-DeGregori, Sarah; Thorburn, Andrew; Prasad, G L

    2004-04-02

    Down-regulation of several key actin-binding proteins, such as alpha-actinin, vinculin, gelsolin, and tropomyosins (TMs), is considered to contribute to the disorganized cytoskeleton present in many neoplastic cells. TMs stabilize actin filaments against the gel severing actions of proteins such as cofilin. Among multiple TMs expressed in non-muscle cells, tropomyosin-1 (TM1) isoform induces stress fibers and functions as a suppressor of malignant transformation. However, the molecular mechanisms of TM1-mediated cytoskeletal effects and tumor suppression remain poorly understood. We have hypothesized that the ability of TM1 to stabilize microfilaments is crucial for tumor suppression. In this study, by employing a variant TM1, which contains an N-terminal hemagglutinin epitope tag, we demonstrate that the N terminus is a key determinant of tropomyosin-1 function. Unlike the wild type TM1, the modified protein fails to restore stress fibers and inhibit anchorage-independent growth in transformed cells. Furthermore, the N-terminal modification of TM1 disorganizes the cytoskeleton and delays cytokinesis in normal cells, abolishes binding to F-actin, and disrupts the dimeric associations in vivo. The functionally defective TM1 allows the association of cofilin to stress fibers and disorganizes the microfilaments, whereas wild type TM1 appears to restrict the binding of cofilin to stress fibers. TM1-induced cytoskeletal reorganization appears to be mediated through preventing cofilin interaction with microfilaments. Our studies provide in vivo functional evidence that the N terminus is a critical determinant of TM1 functions, which in turn determines the organization of stress fibers.

  5. Synthetic peptides that cause F-actin bundling and block actin depolymerization

    DOEpatents

    Sederoff, Heike [Raleigh, NC; Huber, Steven C [Savoy, IL; Larabell, Carolyn A [Berkeley, CA

    2011-10-18

    Synthetic peptides derived from sucrose synthase, and having homology to actin and actin-related proteins, sharing a common motif, useful for causing acting bundling and preventing actin depolymerization. Peptides exhibiting the common motif are described, as well as specific synthetic peptides which caused bundled actin and inhibit actin depolymerization. These peptides can be useful for treating a subject suffering from a disease characterized by cells having neoplastic growth, for anti-cancer therapeutics, delivered to subjects solely, or concomitantly or sequentially with other known cancer therapeutics. These peptides can also be used for stabilizing microfilaments in living cells and inhibiting growth of cells.

  6. Arterioles in the swimming muscles of the leatherjacket Parika scaber (Pisces: Balistidae).

    PubMed

    Davison, W

    1987-06-01

    The leatherjacket (Parika scaber) is a balistiform fish which swims using its dorsal and anal median fins. The muscles controlling these fins are well vascularised, with control of blood flow effected by arterioles. These arterioles are long with a single layer of smooth muscle surrounding the endothelium, although the amount of contractile material is sparse, probably a consequence of the low blood pressure. The endothelial cells contain microfilaments, probably contractile, running along the length of the arteriole. The function of this material is unknown.

  7. Cytoplasmic streaming in Chara rhizoids: studies in a reduced gravitational field during parabolic flights of rockets.

    PubMed

    Buchen, B; Hejnowicz, Z; Braun, M; Sievers, A

    1991-01-01

    In-vivo videomicroscopy of Chara rhizoids under 10(-4)g demonstrated that gravity affected the velocities of cytoplasmic streaming. Both, the acropetal and basipetal streaming velocities increased on the change to microgravity. The endogenous difference in the velocities of the oppositely directed cytoplasmic streams was maintained under microgravity, yet the difference was diminished as the basipetal streaming velocity increased more than the acropetal streaming velocity. Direction and structure of microfilaments labeled by rhodamine-phalloidin had not changed after 6 min of microgravity.

  8. A NEW CRYSTAL-CONTAINING CELL IN HUMAN ADRENAL CORTEX

    PubMed Central

    Magalhães, Maria C.

    1972-01-01

    Electron microscope examination of the adrenal cortex from three male human subjects revealed a special type of cell occurring in periendothelial spaces, in all adrenal cortex zones. It is a clear, spindle-shaped cell the principal cytoplasmic features of which are crystalline inclusions with a structure similar to that of the Reinke crystals of human testicular interstitial cells and an abundance of microfilaments. Enzymatic digestions with pronase, pepsin, and ribonuclease were performed, and no digestion of the crystals was obtained. The crystals had no peroxidase or acid phosphatase activities. This cell appears to be exclusive to human males and it may be related to adrenal androgen secretion. PMID:4347248

  9. Effects of inhibitors on 1-methyladenine induced maturation of starfish oocytes

    NASA Astrophysics Data System (ADS)

    Lee, Harold H.; Xu, Quanhan

    1986-12-01

    1-methladenine (1-MA) induces starfish oocytes maturation via surface reaction followed by the appearance of a cytoplasmic maturation factor which in turn induces germinal vesicle breakdown (GVBD) to resume meiosis. Cellular mechanisms involved in GVBD were investigated by microinjection of metabolic inhibitors. Colchicine (Co) inhibited maturation, cytochalasin-B (CB) delayed GVBD and actinomycin-D-(Act-D) and puromycin (Pu) had no effect. It appears that the microtubule and the microfilament systems are associated with the nuclear membrane dissolution during the process of oocyte maturation of starfish.

  10. Para-hydrogen narrow filament evaporation at low temperature

    NASA Astrophysics Data System (ADS)

    Elizarova, T. G.; Gogolin, A. A.; Montero, S.

    2012-11-01

    Undercooling of liquid para-hydrogen (pH2) below its freezing point at equilibrium (13.8 K) has been shown recently in flowing micro-filaments evaporating in low density background gas [M. Kühnel et al, Phys. Rev. Lett. 106, 245301 (2011)]. An hydrodynamical model accounting for this process is reported here. Analytical expressions for the local temperature T of a filament, averaged over its cross section, are obtained as a function of distance z to the nozzle. Comparison with the experiment is shown. It is shown also that the thermocapillary forces induce a parabolic profile of velocity across the jet.

  11. Synthesis of antimicrofilament marine macrolides: synthesis and configurational assignment of a C5-C16 degradation fragment of reidispongiolide A.

    PubMed

    Paterson, Ian; Britton, Robert; Ashton, Kate; Knust, Henner; Stafford, Jonathan

    2004-08-17

    Reidispongiolide A is a representative member of the sphinxolide/reidispongiolide group of cytotoxic 26-membered macrolides of marine origin. By interacting with actin in the cell cytoskeleton, the reidispongiolides and sphinxolides are potent microfilament destabilizing agents that represent a promising mechanism of action for developing novel anticancer drugs. An aldol-based synthesis of a library of diastereomers of C(8)-C(16) and C(5)-C(16) fragments and detailed NMR comparison with a reported degradation fragment enabled a configurational assignment for a major part of the reidispongiolide macrocyclic core, thus setting a solid foundation for ongoing synthetic efforts.

  12. Exploring the human mesenchymal stem cell tubule communication network through electron microscopy.

    PubMed

    Valente, Sabrina; Rossi, Roberta; Resta, Leonardo; Pasquinelli, Gianandrea

    2015-04-01

    Cells use several mechanisms to transfer information to other cells. In this study, we describe micro/nanotubular connections and exosome-like tubule fragments in multipotent mesenchymal stem cells (MSCs) from human arteries. Scanning and transmission electron microscopy allowed characterization of sinusoidal microtubular projections (700 nm average size, 200 µm average length, with bulging mitochondria and actin microfilaments); short, uniform, variously shaped nanotubular projections (100 nm, bidirectional communication); and tubule fragments (50 nm). This is the first study demonstrating that MSCs from human arteries constitutively interact through an articulate and dynamic tubule network allowing long-range cell to cell communication.

  13. Texture sensing of cytoskeletal dynamics in cell migration

    NASA Astrophysics Data System (ADS)

    Das, Satarupa; Lee, Rachel; Hourwitz, Matthew J.; Sun, Xiaoyu; Parent, Carole; Fourkas, John T.; Losert, Wolfgang

    Migrating cells can be directed towards a target by gradients in properties such as chemical concentration or mechanical properties of the surrounding microenvironment. In previous studies we have shown that micro/nanotopographical features on scales comparable to those of natural collagen fibers can guide fast migrating amoeboid cells by aligning actin polymerization waves to such nanostructures. We find that actin microfilaments and microtubules are aligned along the nanoridge topographies, modulating overall cell polarity and directional migration in epithelial cells. This work shows that topographic features on a biologically relevant length scale can modulate migration outcomes by affecting the texture sensing property of the cytoskeleton.

  14. Method for localized deposition of noble metal catalysts with control of morphology

    DOEpatents

    Ricco, Antonio J.; Manginell, Ronald P.; Huber, Robert J.

    1998-01-01

    A combustible gas sensor that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac).sub.2 onto microfilaments resistively heated to approximately 500 .degree. C.; Pt deposits only on the hot filament. The filaments tested to date are 2 .mu.m thick .times.10 .mu.m wide .times.100, 250, 500, or 1000 .mu.m-long polycrystalline Si; some are overcoated with a 0.25 .mu.m-thick protective CVD Si.sub.3 N.sub.4 layer.

  15. F5-peptide induces aspermatogenesis by disrupting organization of actin- and microtubule-based cytoskeletons in the testis

    PubMed Central

    Gao, Ying; Mruk, Dolores D.; Lui, Wing-yee; Lee, Will M.; Cheng, C. Yan

    2016-01-01

    During the release of sperm at spermiation, a biologically active F5-peptide, which can disrupt the Sertoli cell tight junction (TJ) permeability barrier, is produced at the site of the degenerating apical ES (ectoplasmic specialization). This peptide coordinates the events of spermiation and blood-testis barrier (BTB) remodeling at stage VIII of the epithelial cycle, creating a local apical ES-BTB axis to coordinate cellular events across the epithelium. The mechanism(s) by which F5-peptide perturbs BTB restructuring, and its involvement in apical ES dynamics remain unknown. F5-peptide, besides perturbing BTB integrity, was shown to induce germ cell release from the epithelium following its efficient in vivo overexpression in the testis. Overexpression of F5-peptide caused disorganization of actin- and microtubule (MT)-based cytoskeletons, mediated by altering the spatiotemporal expression of actin binding/regulatory proteins in the seminiferous epithelium. F5-peptide perturbed the ability of actin microfilaments and/or MTs from converting between their bundled and unbundled/defragmented configuration, thereby perturbing adhesion between spermatids and Sertoli cells. Since apical ES and basal ES/BTB are interconnected through the underlying cytoskeletal networks, this thus provides an efficient and novel mechanism to coordinate different cellular events across the epithelium during spermatogenesis through changes in the organization of actin microfilaments and MTs. These findings also illustrate the potential of F5-peptide being a male contraceptive peptide for men. PMID:27611949

  16. Phosphorylation of the growth arrest-specific protein Gas2 is coupled to actin rearrangements during Go-->G1 transition in NIH 3T3 cells

    PubMed Central

    1994-01-01

    Growth arrest-specific (Gas2) protein has been shown to be a component of the microfilament system, that is highly expressed in growth arrested mouse and human fibroblasts and is hyperphosphorylated upon serum stimulation of quiescent cells. (Brancolini, C., S. Bottega, and C. Schneider. 1992. J. Cell Biol. 117:1251-1261). In this study we demonstrate that the kinetics of Gas2 phosphorylation, during Go-->G1 transition, as induced by addition of 20% FCS to serum starved NIH 3T3 cells, is temporally coupled to the reorganization of actin cytoskeleton. To better dissect the relationship between Gas2 phosphorylation and the modification of the microfilament architecture we used specific stimuli for both membrane ruffling (PDGF and PMA) and stress fiber formation (L-alpha-lysophosphatidic acid LPA) (Ridley, A. J., and A. Hall. 1992. Cell. 70:389-399). All of them, similarly to 20% FCS, are able to downregulate Gas2 biosynthesis. PDGF and PMA induce Gas2 hyperphosphorylation that is temporally coupled with the appearance of membrane ruffling where Gas2 localizes. On the other hand LPA, a specific stimulus for stress fiber formation, fails to induce a detectable Gas2 hyperphosphorylation. Thus, Gas2 hyperphosphorylation is specifically correlated with the formation of membrane ruffling possibly implying a role of Gas2 in this process. PMID:8120096

  17. The organelle of differentiation in embryos: the cell state splitter.

    PubMed

    Gordon, Natalie K; Gordon, Richard

    2016-03-10

    The cell state splitter is a membraneless organelle at the apical end of each epithelial cell in a developing embryo. It consists of a microfilament ring and an intermediate filament ring subtending a microtubule mat. The microtubules and microfilament ring are in mechanical opposition as in a tensegrity structure. The cell state splitter is bistable, perturbations causing it to contract or expand radially. The intermediate filament ring provides metastability against small perturbations. Once this snap-through organelle is triggered, it initiates signal transduction to the nucleus, which changes gene expression in one of two readied manners, causing its cell to undergo a step of determination and subsequent differentiation. The cell state splitter also triggers the cell state splitters of adjacent cells to respond, resulting in a differentiation wave. Embryogenesis may be represented then as a bifurcating differentiation tree, each edge representing one cell type. In combination with the differentiation waves they propagate, cell state splitters explain the spatiotemporal course of differentiation in the developing embryo. This review is excerpted from and elaborates on "Embryogenesis Explained" (World Scientific Publishing, Singapore, 2016).

  18. Association of actin filaments with axonal microtubule tracts.

    PubMed

    Bearer, E L; Reese, T S

    1999-02-01

    Axoplasmic organelles move on actin as well as microtubules in vitro and axons contain a large amount of actin, but little is known about the organization and distribution of actin filaments within the axon. Here we undertake to define the relationship of the microtubule bundles typically found in axons to actin filaments by applying three microscopic techniques: laser-scanning confocal microscopy of immuno-labeled squid axoplasm; electronmicroscopy of conventionally prepared thin sections; and electronmicroscopy of touch preparations-a thin layer of axoplasm transferred to a specimen grid and negatively stained. Light microscopy shows that longitudinal actin filaments are abundant and usually coincide with longitudinal microtubule bundles. Electron microscopy shows that microfilaments are interwoven with the longitudinal bundles of microtubules. These bundles maintain their integrity when neurofilaments are extracted. Some, though not all microfilaments decorate with the S1 fragment of myosin, and some also act as nucleation sites for polymerization of exogenous actin, and hence are definitively identified as actin filaments. These actin filaments range in minimum length from 0.5 to 1.5 microm with some at least as long as 3.5 microm. We conclude that the microtubule-based tracks for fast organelle transport also include actin filaments. These actin filaments are sufficiently long and abundant to be ancillary or supportive of fast transport along microtubules within bundles, or to extend transport outside of the bundle. These actin filaments could also be essential for maintaining the structural integrity of the microtubule bundles.

  19. Altered osteoblast structure and function in parabolic flight

    NASA Astrophysics Data System (ADS)

    Zhong-Quan, Dai; Ying-Hui, Li; Fen, Yang; Bai, Ding; Ying-Jun, Tan

    Introduction Bone loss has a significant impact on astronauts during spaceflight being one of the main obstacles preventing interplanetary missions However the exact mechanism is not well understood In the present study we investigated the effects of acute gravitational changes generated by parabolic flight on the structure and function of osteoblasts ROS17 2 8 carried by airbus A300 Methods The alteration of microfilament cytoskeleton was observed by the Texas red conjugated Phalloidin and Alexa Fluor 488 conjugated DNase I immunofluorescence stain ALP activity and expression COL1A1 expression osteocalcin secrete which presenting the osteoblast function were detected by modified calcium and cobalt method RT-PCR and radioimmunity methods respectively Results The changed gravity induced the reorganization of microfilament cytoskeleton of osteoblast After 3 hours parabolic flight F-actin of osteoblast cytoskeleton became more thickness and directivity whereas G-actin reduced and relatively concentrated at the edge of nucleus observed by confocal fluorescence microscopy This phenomenon is identical with structure alternation observed in hypergravity but the osteoblast function decrease The excretion of osteocalcin the activity and mRNA expression of ALP decrease but the COL1A1 expression has no changes These results were similar to the changes in simulated or real microgravity Conclusion Above results suggest that short time gravity alternative change induce osteoblast structure and function

  20. F-actin distribution and function during sexual development in Eimeria maxima.

    PubMed

    Frölich, Sonja; Wallach, Michael

    2015-06-01

    To determine the involvement of the actin cytoskeleton in macrogametocyte growth and oocyst wall formation, freshly purified macrogametocytes and oocysts were stained with Oregon Green 514 conjugated phalloidin to visualize F-actin microfilaments, while Evans blue staining was used to detect type 1 wall forming bodies (WFB1s) and the outer oocyst wall. The double-labelled parasites were then analysed at various stages of sexual development using three-dimensional confocal microscopy. The results showed F-actin filaments were distributed throughout the entire cytoplasm of mature Eimeria maxima macrogametocytes forming a web-like meshwork of actin filaments linking the type 1 WFBs together into structures resembling 'beads on a string'. At the early stages of oocyst wall formation, F-actin localization changed in alignment with the egg-shaped morphology of the forming oocysts with F-actin microfilaments making direct contact with the WFB1s. In tissue oocysts, the labelled actin cytoskeleton was situated underneath the forming outer layer of the oocyst wall. Treatment of macrogametocytes in vitro with the actin depolymerizing agents, Cytochalasin D and Latrunculin, led to a reduction in the numbers of mature WFB1s in the cytoplasm of the developing macrogametocytes, indicating that the actin plays an important role in WFB1 transport and oocyst wall formation in E. maxima.

  1. Effects of parabolic flight on the cytoskeleton in cultured cardiac myocytes

    NASA Astrophysics Data System (ADS)

    Yang, F.; Li, Y. H.; Dai, Z. Q.; Nie, J. L.; Tan, Y. J.; Yu, J. R.

    As intracellular load-bearing structure cytoskeleton is hypothesized to play a crucial role in gravity perception and transduction of cells Recent data show that the cytoskeleton including actin microfilaments and microtubules is involved in modulating both the electrical activity and mechanical activity of myocardium Using fluorescence-labeling of cells with specific antibodies or agentsLwe found discontinued abruption of microtubules and enhanced polymerization of filamentous F actin in neonatal rat cardiac myocytes after exposure to the acute gravitational changes micro- and hyper-gravity in parabolic flight By staining of globular monomeric G actin and F-actin with Alexa Fluor conjugated DNase I and Texas red-phalloidin respectively confocal microscopy demonstrated more prominent structure of F-actin and decreased cytosolic G-actin in flight cells implying a shift in the F G equilibrium in favor of F-actin Using specific antibody against phosphorylated activated forms of extracellular signal-regulated kinase ERK and focal adhesion kinase FAK we found that active ERK is co-localized with reorganized F-actin in flight cells while active FAK did not show evident collateral distribution with actin cytoskeleton indicating that ERK but not FAK might be involved in parabolic flight-induced polymerization of F-actin These results suggest that gravitational changes induced by parabolic flight substantially affected the distribution and organization of the actin microfilaments and microtubules in cultured cardiac myocytes and ERK might participate in the

  2. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin.

    PubMed Central

    Bernardini, M L; Mounier, J; d'Hauteville, H; Coquis-Rondon, M; Sansonetti, P J

    1989-01-01

    The capacity of Shigella to spread within the cytosol of infected epithelial cells and to infect adjacent cells is critical for the development of infection foci, which lead to mucosal abscesses. Shigella is a nonmotile microorganism that appears to utilize host cell microfilaments to generate intra- as well as intercellular movements, since this movement was inhibited by cytochalasin D and involvement of F-actin was demonstrated by direct labeling of infected cells with the specific dye N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)phallacidin. Such movements led to the formation of extracellular protrusions, which may explain cell to cell spread. icsA, a locus necessary for intra- and intercellular spread, was identified on the Shigella flexneri virulence plasmid pWR100. This locus was cloned and shown to express a 120-kDa outer membrane protein, which plays an important role in the interactions established between host cell microfilaments and the bacterial surface, thus leading to intracellular movement. Images PMID:2542950

  3. Mammalian cells exposed to ionizing radiation: Structural and biochemical aspects.

    PubMed

    Sabanero, Myrna; Azorín-Vega, Juan Carlos; Flores-Villavicencio, Lérida Liss; Castruita-Dominguez, J Pedro; Vallejo, Miguel Angel; Barbosa-Sabanero, Gloria; Cordova-Fraga, Teodoro; Sosa-Aquino, Modesto

    2016-02-01

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv/year) and subsequently exposure to high doses produces greater effects in people. It has been reported that people who have been exposed to low doses of radiation (less than 50 mSv/year) and subsequently are exposed to high doses, have greater effects. However, at a molecular and biochemical level, it is an unknown alteration. This study, analyzes the susceptibility of a biological system (HeLa ATCC CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/90 s). Our research considers multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin microfilaments), nuclei (DAPI), and genomic DNA. The results indicate, that cells exposed to ionizing radiation show structural alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin microfilaments. Similar alterations were observed in cells treated with a genotoxic agent (200 μM H2O2/1h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between various line cells. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation.

  4. New cell motility model observed in parasitic cnidarian Sphaerospora molnari (Myxozoa:Myxosporea) blood stages in fish.

    PubMed

    Hartigan, A; Estensoro, I; Vancová, M; Bílý, T; Patra, S; Eszterbauer, E; Holzer, A S

    2016-12-16

    Cellular motility is essential for microscopic parasites, it is used to reach the host, migrate through tissues, or evade host immune reactions. Many cells employ an evolutionary conserved motor protein- actin, to crawl or glide along a substrate. We describe the peculiar movement of Sphaerospora molnari, a myxozoan parasite with proliferating blood stages in its host, common carp. Myxozoa are highly adapted parasitic cnidarians alternately infecting vertebrates and invertebrates. S. molnari blood stages (SMBS) have developed a unique "dancing" behaviour, using the external membrane as a motility effector to rotate and move the cell. SMBS movement is exceptionally fast compared to other myxozoans, non-directional and constant. The movement is based on two cytoplasmic actins that are highly divergent from those of other metazoans. We produced a specific polyclonal actin antibody for the staining and immunolabelling of S. molnari's microfilaments since we found that neither commercial antibodies nor phalloidin recognised the protein or microfilaments. We show the in situ localization of this actin in the parasite and discuss the importance of this motility for evasion from the cellular host immune response in vitro. This new type of motility holds key insights into the evolution of cellular motility and associated proteins.

  5. Role of cytoskeleton network in anisosmotic volume changes of intact and permeabilized A549 cells.

    PubMed

    Platonova, Alexandra; Ponomarchuk, Olga; Boudreault, Francis; Kapilevich, Leonid V; Maksimov, Georgy V; Grygorczyk, Ryszard; Orlov, Sergei N

    2015-10-01

    Recently we found that cytoplasm of permeabilized mammalian cells behaves as a hydrogel displaying intrinsic osmosensitivity. This study examined the role of microfilaments and microtubules in the regulation of hydrogel osmosensitivity, volume-sensitive ion transporters, and their contribution to volume modulation of intact cells. We found that intact and digitonin-permeabilized A549 cells displayed similar rate of shrinkage triggered by hyperosmotic medium. It was significantly slowed-down in both cell preparations after disruption of actin microfilaments by cytochalasin B, suggesting that rapid water release by intact cytoplasmic hydrogel contributes to hyperosmotic shrinkage. In hyposmotic swelling experiments, disruption of microtubules by vinblastine attenuated the maximal amplitude of swelling in intact cells and completely abolished it in permeabilized cells. The swelling of intact cells also triggered ~10-fold elevation of furosemide-resistant (86)Rb+ (K+) permeability and the regulatory volume decrease (RVD), both of which were abolished by Ba2+. Interestingly, RVD and K+ permeability remained unaffected in cytocholasin/vinblastine treated cells demonstrating that cytoskeleton disruption has no direct impact on Ba2+-sensitive K+-channels involved in RVD. Our results show, for the first time, that the cytoskeleton network contributes directly to passive cell volume adjustments in anisosmotic media via the modulation of the water retained by the cytoplasmic hydrogel.

  6. Gravity sensing mechanisms in plant cells.

    PubMed

    Sievers, A

    1991-07-01

    Sensing of gravity is essential for the survival of plant seedlings. Therefore it is understandable that gravistimulation of only 0.5 sec-duration causes a graviresponse. The earliest graviresponses could be measured within seconds as alterations in membrane potentials of the statocytes in the root cap. Root statocytes are polarly organized. From a 6-day microgravity (10(-3) - 10(-4) g) experiment in the Spacelab D1 Mission it has been concluded that the observed polar differentiation is a result of a genetically prepatterned developmental program. Statoliths, the sedimentable organelles of statocytes, are surrounded by actin filaments which partly keep them in position. Under 6 min of microgravity during parabolic flights of rockets it could be demonstrated that the statoliths moved in the opposite direction to the initial gravity vector. It is concluded that shearing forces are exerted by microfilaments. It is supposed that the change of the position of statoliths is transmitted to gravisensitive structures of the statocytes (ER, plasma membrane) via microfilaments. As graviperception is influenced by calcium ions, it is suggested that these interactions regulate the activity of ion channels and/or pumps in the membranes thus initiating the graviresponse chain. In the case of cytoplasmic streaming in Chara rhizoids, the endogenous difference between the opposing streaming directions is diminished under microgravity during the flights of rockets. Possibly, shear stresses are affected by gravity, thus inducing gravity-related differences in the streaming velocities via actin filaments.

  7. Chirality of the cytoskeleton in the origins of cellular asymmetry.

    PubMed

    Satir, Peter

    2016-12-19

    Self-assembly of two important components of the cytoskeleton of eukaryotic cells, actin microfilaments and microtubules (MTs) results in polar filaments of one chirality. As is true for bacterial flagella, in actin microfilaments, screw direction is important for assembly processes and motility. For MTs, polar orientation within the cell is paramount. The alignment of these elements in the cell cytoplasm gives rise to emergent properties, including the potential for cell differentiation and specialization. Complex MTs with a characteristic chirality are found in basal bodies and centrioles; this chirality is preserved in cilia. In motile cilia, it is reflected in the direction of the effective stroke. The positioning of the basal body or cilia on the cell surface depends on polarity proteins. In evolution, survival depends on global polarity information relayed to the cell in part by orientation of the MT and actin filament cytoskeletons and the chirality of the basal body to determine left and right coordinates within a defined anterior-posterior cell and tissue axis.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.

  8. A Rho-signaling pathway mediates cortical granule translocation in the sea urchin oocyte.

    PubMed

    Covián-Nares, Fernando; Martínez-Cadena, Guadalupe; López-Godínez, Juana; Voronina, Ekaterina; Wessel, Gary M; García-Soto, Jesús

    2004-03-01

    Cortical granules are secretory vesicles of the egg that play a fundamental role in preventing polyspermy at fertilization. In the sea urchin egg, they localize directly beneath the plasma membrane forming a compact monolayer and, upon fertilization, undergo a Ca(2+)-dependent exocytosis. Cortical granules form during early oogenesis and, during maturation, translocate from the cytosol to the oocyte cortex in a microfilament-mediated process. We tested the hypothesis that these cortical granule dynamics were regulated by Rho, a GTPase of the Ras superfamily. We observed that Rho is synthesized early in oogenesis, mainly in a soluble form. At the end of maturation, however, Rho associates with cortical granules. Inhibition of Rho with the C3 transferase from C. botulinum blocks cortical granule translocation and microfilaments undergo a significant disorganization. A similar effect is observed by GGTI-286, a geranylgeranyl transferase inhibitor, suggesting that the association of Rho with the cortical granules is indispensable for its function. In contrast, the anchorage of the cortical granules in the cortex, as well as their fusion at fertilization, are Rho-independent processes. We conclude that Rho association with the cortical granules is a critical regulatory step in their translocation to the egg cortex.

  9. Protein Kinases Possibly Mediate Hypergravity-Induced Changes in F-Actin Expression by Endothelial Cells

    NASA Technical Reports Server (NTRS)

    Love, Felisha D.; Melhado, Caroline D.; Bosah, Francis N.; Harris-Hooker, Sandra A.; Sanford, Gary L.

    1998-01-01

    Basic cellular functions such as electrolyte concentration, cell growth rate, glucose utilization, bone formation, response to growth stimulation, and exocytosis are modified in microgravity. These studies indicate that microgravity affects a number of physiological systems and included in this are cell signaling mechanisms. Rijken and coworkers performed growth factor studies that showed PKC signaling and actin microfilament organization appears to be sensitive to microgravity, suggesting that the inhibition of signal transduction by microgravity may be related to alterations in actin microfilament organization. However, similar studies have not been done for vascular cells. Vascular endothelial cells play critical roles in providing nutrients to organ and tissues and in wound repair. The major deterrent to ground-based microgravity studies is that it is impossible to achieved true microgravity for longer than a few minutes on earth. Hence, it has not been possible to conduct prolonged microgravity studies except for two models that simulate certain aspects of microgravity. However, hypergravity is quite easily achieved. Several researchers have shown that hypergravity will increase the proliferation of several different cell lines while decreasing cell motility and slowing liver regeneration following partial hepatectomy, These studies indicate the hypergravity also alters the behavior of most cells. Several investigators have shown that hypergravity affects the activation of several protein kinases (PKs) in cells. In this study, we investigated whether hypergravity alters the expression of f-actin by bovine aortic endothelial cells (BAECs) and the role of PK's (calmodulin 11 dependent, PKA and PKC) as mediators of these effects.

  10. Single-molecule imaging of beta-actin mRNAs in the cytoplasm of a living cell.

    PubMed

    Yamagishi, Mai; Ishihama, Yo; Shirasaki, Yoshitaka; Kurama, Hideki; Funatsu, Takashi

    2009-04-15

    Beta-actin mRNA labeled with an MS2-EGFP fusion protein was expressed in chicken embryo fibroblasts and its localization and movement were analyzed by single-molecule imaging. Most beta-Actin mRNAs localized to the leading edge, while some others were observed in the perinuclear region. Singe-molecule tracking of individual mRNAs revealed that the majority of mRNAs were in unrestricted Brownian motion at the leading edge and in restricted Brownian motion in the perinuclear region. The macroscopic diffusion coefficient of mRNA (D(MACRO)) at the leading edge was 0.3 microm(2)/s. On the other hand, D(MACRO) in the perinuclear region was 0.02 microm(2)/s. The destruction of microfilaments with cytochalasin D, which is known to delocalize beta-actin mRNAs, led to an increase in D(MACRO) to 0.2 microm(2)/s in the perinuclear region. These results suggest that the microstructure, composed of microfilaments, serves as a barrier for the movement of beta-actin mRNA.

  11. Triggering signaling pathways using F-actin self-organization

    PubMed Central

    Colin, A.; Bonnemay, L.; Gayrard, C.; Gautier, J.; Gueroui, Z.

    2016-01-01

    The spatiotemporal organization of proteins within cells is essential for cell fate behavior. Although it is known that the cytoskeleton is vital for numerous cellular functions, it remains unclear how cytoskeletal activity can shape and control signaling pathways in space and time throughout the cell cytoplasm. Here we show that F-actin self-organization can trigger signaling pathways by engineering two novel properties of the microfilament self-organization: (1) the confinement of signaling proteins and (2) their scaffolding along actin polymers. Using in vitro reconstitutions of cellular functions, we found that both the confinement of nanoparticle-based signaling platforms powered by F-actin contractility and the scaffolding of engineered signaling proteins along actin microfilaments can drive a signaling switch. Using Ran-dependent microtubule nucleation, we found that F-actin dynamics promotes the robust assembly of microtubules. Our in vitro assay is a first step towards the development of novel bottom-up strategies to decipher the interplay between cytoskeleton spatial organization and signaling pathway activity. PMID:27698406

  12. Ceramic nanoparticle assemblies with tailored shapes and tailored chemistries via biosculpting and shape-preserving inorganic conversion.

    PubMed

    Dickerson, M B; Naik, R R; Sarosi, P M; Agarwal, G; Stone, M O; Sandhage, K H

    2005-01-01

    A novel biosynthetic paradigm is introduced for fabricating three-dimensional (3-D) ceramic nanoparticle assemblies with tailored shapes and tailored chemistries: biosculpting and shape-preserving inorganic conversion (BaSIC). Biosculpting refers to the use of biomolecules that direct the precipitation of ceramic nanoparticles to form a continuous 3-D structure with a tailored shape. We used a peptide derived from a diatom (a type of unicellular algae) to biosculpt silica nanoparticle based assemblies that, in turn, were converted into a new (nonsilica) composition via a shape-preserving gas/silica displacement reaction. Interwoven, microfilamentary silica structures were prepared by exposing a peptide, derived from the silaffin-1A protein of the diatom Cylindrotheca fusiformis, to a tetramethylorthosilicate solution under a linear shear flow condition. Subsequent exposure of the silica microfilaments to magnesium gas at 900 degrees C resulted in conversion into nanocrystalline magnesium oxide microfilaments with a retention of fine (submicrometer) features. Fluid(gas or liquid)/silica displacement reactions leading to a variety of other oxides have also been identified. This hybrid (biogenic/synthetic) approach opens the door to biosculpted ceramic microcomponents with multifarious tailored shapes and compositions for a wide range of environmental, aerospace, biomedical, chemical, telecommunications, automotive, manufacturing, and defense applications.

  13. Actin depolymerization affects stress-induced translational activity of potato tuber tissue

    PubMed

    Morelli; Zhou; Yu; Lu; Vayda

    1998-04-01

    Changes in polymerized actin during stress conditions were correlated with potato (Solanum tuberosum L.) tuber protein synthesis. Fluorescence microscopy and immunoblot analyses indicated that filamentous actin was nearly undetectable in mature, quiescent aerobic tubers. Mechanical wounding of postharvest tubers resulted in a localized increase of polymerized actin, and microfilament bundles were visible in cells of the wounded periderm within 12 h after wounding. During this same period translational activity increased 8-fold. By contrast, low-oxygen stress caused rapid reduction of polymerized actin coincident with acute inhibition of protein synthesis. Treatment of aerobic tubers with cytochalasin D, an agent that disrupts actin filaments, reduced wound-induced protein synthesis in vivo. This effect was not observed when colchicine, an agent that depolymerizes microtubules, was used. Neither of these drugs had a significant effect in vitro on run-off translation of isolated polysomes. However, cytochalasin D did reduce translational competence in vitro of a crude cellular fraction containing both polysomes and cytoskeletal elements. These results demonstrate the dependence of wound-induced protein synthesis on the integrity of microfilaments and suggest that the dynamics of the actin cytoskeleton may affect translational activity during stress conditions.

  14. Heavy metal effects on cellular shape changes, cleavage, and larval development of the marine gastropod mollusk, (Ilyanassa obsoleta Say)

    SciTech Connect

    Conrad, G.W.

    1988-07-01

    The spawning areas for many marine invertebrates are in intertidal zones which can be exposed to surface water run-off containing heavy metals. The cellular shape changes and cleavage patterns of Ilyanassa embryos greatly resemble those of bivalve mollusks, such as Mytilus edulis, that occur in the same intertidal areas. Determining the concentrations of heavy metals tolerated by the molluscan embryos inhabiting such clam and mussel beds therefore is of some economic significance. Moreover, such research may providedata on the heavy metal effects on the cytoskeleton. There is increasing evidence that components of the cytoskeleton, directly or indirectly, are targets for toxic agents. Polar lobe formation is a cellular shape change that resembles cytokinesis. It is seen in the fertilized eggs of many marine mollusks. Recent data with inorganic and organic Ca/sup 2 +/ antagonists suggest that both polar lobe formation and cytokinesis utilize Ca/sup 2 +/ released from sequestered, intracellular sites. Both of these cellular constrictions are associated with microfilaments and are preceded by activation steps requiring microtubules. The data presented below suggest that several heavy metals affect the microfilament-dependent steps.

  15. Regulation of vacuolar H{sup +}-ATPase in microglia by RANKL

    SciTech Connect

    Serrano, Eric M.; Ricofort, Ryan D.; Zuo, Jian; Ochotny, Noelle; Manolson, Morris F.; Holliday, L. Shannon

    2009-11-06

    Vacuolar H{sup +}-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor {kappa}B-ligand (RANKL). We found that Receptor Activator of Nuclear Factor {kappa}B (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.

  16. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43

    NASA Astrophysics Data System (ADS)

    Li, Nan; Mruk, Dolores D.; Chen, Haiqi; Wong, Chris K. C.; Lee, Will M.; Cheng, C. Yan

    2016-07-01

    Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction.

  17. Contact-dependent cytopathogenic mechanisms of Trichomonas vaginalis

    SciTech Connect

    Krieger, J.N.; Ravdin, J.I.; Rein, M.F.

    1985-12-01

    The cytopathogenic mechanisms of Trichomonas vaginalis have been debated since the 1940s. We examined the following three proposed pathogenic mechanisms: contact-dependent extracellular killing, cytophagocytosis, and extracellular cytotoxins. Serial observations of Chinese hamster ovary (CHO) cell monolayers exposed to trichomonads revealed that (i) trichomonads form clumps, (ii) the clumps adhere to cells in culture, and (iii) monolayer destruction occurs only in areas of contact with T. vaginalis. Kinetic analysis of target cell killing by trichomonads revealed that the probability of CHO cell death was related to the probability of contact with T. vaginalis, supporting the observation by microscopy that trichomonads kill cells only by direct contact. Simultaneous studies of /sup 111/indium oxine label release from CHO cells and trypan blue dye exclusion demonstrated that T. vaginalis kills target cells without phagocytosis. Filtrates of trichomonad cultures or from media in which trichomonads were killing CHO cells had no effect on CHO cell monolayers, indicating that trichomonads do not kill cells by a cell-free or secreted cytotoxin. The microfilament inhibitor cytochalasin D (10 micrograms/ml) inhibited trichomonad killing of CHO cell monolayers by 80% (P less than 0.0001). In contrast, the microtubule inhibitor vinblastine (10(-6) M) caused only 17% inhibition of trichomonad destruction of CHO cell monolayers (P less than 0.020), whereas colchicine (10(-6) M) had no effect. T. vaginalis kills target cells by direct contact without phagocytosis. This event requires intact trichomonad microfilament function; microtubule function appears not to be essential.

  18. Effects of hypergravity on adipose-derived stem cell morphology, mechanical property and proliferation.

    PubMed

    Tavakolinejad, Alireza; Rabbani, Mohsen; Janmaleki, Mohsen

    2015-08-21

    Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation was assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells.

  19. Transport of Motor Proteins along Microtubules: A Study by Optical Trapping Method and Analysis of Data

    NASA Astrophysics Data System (ADS)

    McFarlane, Angelique

    The cellular transportation is fundamental for cell function. Under this transportation, organelles bind to motor proteins. These proteins, then move along cellular microfilaments such as microtubules. The optical trapping technique is a method that allows us to monitor the movement of molecular motors along their tracks. In this method, motor proteins are absorbed by micro-sized beads. The beads are captured by the laser and placed close to the microfilaments. Consequently, the motor proteins bind to the track and move along them. This motion can be recorded and analyzed. In this work, we have analyzed many produced trajectories resulted from the motion of a single kinesin along microtubules. We present the design of the experiment, the method of recording and extracting data, as well as the factors that need to be considered to obtain accurate results. Finally, we calculated some of the physical properties resulted from kinesin movement in our experiment. Our outcomes are compatible with previously reported results. I acknowledge the support of NJSGC 2016 during this project. This work was conducted under the supervision of Dr. Mitra Feizabadi.

  20. Basal epithelial cells of human prostate gland are not myoepithelial cells. A comparative immunohistochemical and ultrastructural study with the human salivary gland.

    PubMed Central

    Srigley, J. R.; Dardick, I.; Hartwick, R. W.; Klotz, L.

    1990-01-01

    The hypothesis that basal epithelial cells of the human prostate are of myoepithelial origin was investigated using immunohistochemical and ultrastructural methodologies. The immunohistologic analyses show significant phenotypic differences between prostatic basal cells and myoepithelial cells of the salivary gland. Although both cell types stain intensely with the 312C8-1 monoclonal antibody, only true myoepithelial cells demonstrated significant amounts of muscle-specific actin as decorated by the HHF35 monoclonal antibody. Furthermore, using double-labeling experiments, the prostatic basal cells were strongly decorated with a fluorescein-tagged basal cell-specific keratin but were negative with the rhodamine-tagged phalloidin, a chemical that binds specifically to actin microfilaments. Ultrastructural studies also showed an absence of thin microfilament bundles, dense bodies, and micropinocytotic vesicles in the prostatic basal cells. The current investigations show that the prostatic acini do not have a basal myoepithelium. Although some authors have suggested a stem cell role for prostatic basal cells, the weight of experimental work argues against this hypothesis. The exact role of the basal epithelial cells of the prostate is not known, although they may serve endocrine, paracrine, or other regulatory functions and may be involved in modulating signals between prostatic stroma and epithelium. Images Figure 3 Figure 1 Figure 2 Figure 4 PMID:1691595

  1. Actin Polymerization Is Essential for Pollen Tube GrowthV⃞

    PubMed Central

    Vidali, Luis; McKenna, Sylvester T.; Hepler, Peter K.

    2001-01-01

    Actin microfilaments, which are prominent in pollen tubes, have been implicated in the growth process; however, their mechanism of action is not well understood. In the present work we have used profilin and DNAse I injections, as well as latrunculin B and cytochalasin D treatments, under quantitatively controlled conditions, to perturb actin microfilament structure and assembly in an attempt to answer this question. We found that a ∼50% increase in the total profilin pool was necessary to half-maximally inhibit pollen tube growth, whereas a ∼100% increase was necessary for half-maximal inhibition of cytoplasmic streaming. DNAse I showed a similar inhibitory activity but with a threefold more pronounced effect on growth than streaming. Latrunculin B, at only 1–4 nM in the growth medium, has a similar proportion of inhibition of growth over streaming to that of profilin. The fact that tip growth is more sensitive than streaming to the inhibitory substances and that there is no correlation between streaming and growth rates suggests that tip growth requires actin assembly in a process independent of cytoplasmic streaming. PMID:11514633

  2. Nematic Liquid Crystal Alignment Behaviors between Crossed Stretched Miropolymer Filaments with Anchoring Effects

    NASA Astrophysics Data System (ADS)

    Fujikake, Hideo; Murashige, Takeshi; Sato, Hiroto; Kikuchi, Hiroshi; Kurita, Taiichiro; Sato, Fumio

    2006-04-01

    We observed the molecular alignment of a liquid crystal (LC) induced by crossing two stretched micropolymer filaments between glass substrates and confirmed its light modulation property. The two microfilaments, which were extracted from a cellulose cloth by stretching it in advance, had surface molecular alignment and stabilized nematic LC alignment between the microfilaments crossed with a small angle. In the fabricated LC cell, a spatially-uniform LC planar alignment is achieved in the area of a filament interval of less than 60 μm. By polarizing microscopy observation of the isotropic-to-nematic wetting transition of the LC material between the polymer filaments, it was confirmed that the stable LC alignment area is formed by the surface anchoring of the filaments. When external voltages were applied to the obtained uniformed alignment LC area, a characteristic periodic electrooptic property was confirmed on the basis of electrically-controlled birefringence under the alignment control of the in-plane anchoring of the filaments.

  3. New cell motility model observed in parasitic cnidarian Sphaerospora molnari (Myxozoa:Myxosporea) blood stages in fish

    PubMed Central

    Hartigan, A.; Estensoro, I.; Vancová, M.; Bílý, T.; Patra, S.; Eszterbauer, E.; Holzer, A. S.

    2016-01-01

    Cellular motility is essential for microscopic parasites, it is used to reach the host, migrate through tissues, or evade host immune reactions. Many cells employ an evolutionary conserved motor protein– actin, to crawl or glide along a substrate. We describe the peculiar movement of Sphaerospora molnari, a myxozoan parasite with proliferating blood stages in its host, common carp. Myxozoa are highly adapted parasitic cnidarians alternately infecting vertebrates and invertebrates. S. molnari blood stages (SMBS) have developed a unique “dancing” behaviour, using the external membrane as a motility effector to rotate and move the cell. SMBS movement is exceptionally fast compared to other myxozoans, non-directional and constant. The movement is based on two cytoplasmic actins that are highly divergent from those of other metazoans. We produced a specific polyclonal actin antibody for the staining and immunolabelling of S. molnari’s microfilaments since we found that neither commercial antibodies nor phalloidin recognised the protein or microfilaments. We show the in situ localization of this actin in the parasite and discuss the importance of this motility for evasion from the cellular host immune response in vitro. This new type of motility holds key insights into the evolution of cellular motility and associated proteins. PMID:27982057

  4. The pesticide malathion induces alterations in actin cytoskeleton and in cell adhesion of cultured breast carcinoma cells.

    PubMed

    Cabello, G; Galaz, S; Botella, L; Calaf, G; Pacheco, M; Stockert, J C; Villanueva, A; Cañete, M; Juarranz, A

    2003-09-01

    We have studied the effects of the organophosphorous pesticide malathion on cell viability, actin cytoskeleton, cell adhesion complex E-cadherin/beta-catenin, and Rho and Rac1 GTPases from the human mammary carcinoma cell line MCF-7. Malathion induced cell lethality, determined by the MTT assay, depending on the treatment conditions. Cells incubated with low concentrations of malathion, 16-32 microg/ml, showed high survival rates (>95%) at any evaluated time (1-5 days), whereas complete cell lethality was found using 512 microg/ml and 5 days of treatment. Deep morphological changes were induced with high doses of 64 and 128 microg/ml, and long incubation time (5 days); cells showed perinuclear vacuoles, rounding, shrinkage, and a gradual loss of adhesion. These changes were related to a decrease in the expression of the adhesion molecules, E-cadherin and beta-catenin, and to the distribution and reactivity of actin microfilaments to TRITC-phalloidin. Disruption of microfilaments, accompanied by the collapse of actin to perinuclear region, were characteristic of cells with loss of adhesion. At lower concentrations, some cells presented deformations on the plasma membrane as lamellipodia-like structures, which were particularly evident from 32 to 128 microg/ml. Conversely, we observed an increase in the expression of Rho and Rac1 GTPases, modulators of actin cytoskeleton and cell adhesion.

  5. Establishment of a Functional Human Immunodeficiency Virus Type 1 (HIV-1) Reverse Transcription Complex Involves the Cytoskeleton

    PubMed Central

    Bukrinskaya, Alissa; Brichacek, Beda; Mann, Angela; Stevenson, Mario

    1998-01-01

    After interaction of human immunodeficiency virus type 1 (HIV-1) virions with cell surface receptors, a series of poorly characterized events results in establishment of a viral reverse transcription complex in the host cell cytoplasm. This process is coordinated in such a way that reverse transcription is initiated shortly after formation of the viral reverse transcription complex. However, the mechanism through which virus entry and initiation of reverse transcription are coordinated and how these events are compartmentalized in the infected cell are not known. In this study, we demonstrate that viral reverse transcription complexes associate rapidly with the host cell cytoskeleton during HIV-1 infection and that reverse transcription occurs almost entirely in the cytoskeletal compartment. Interruption of actin polymerization before virus infection reduced association of viral reverse transcription complexes with the cytoskeleton. In addition, efficient reverse transcription was dependent on intact actin microfilaments. The localization of reverse transcription to actin microfilaments was mediated by the interaction of a reverse transcription complex component (gag MA) with actin but not vimentin (intermediate filaments) or tubulin (microtubules). In addition, fusion, but not endocytosis-mediated HIV-1 infectivity, was impaired when actin depolymerizing agents were added to target cells before infection but not when added after infection. These results point to a previously unsuspected role for the host cell cytoskeleton in HIV-1 entry and suggest that components of the cytoskeleton promote establishment of the reverse transcription complex in the host cell and also the process of reverse transcription within this complex. PMID:9841925

  6. Single-molecule imaging of {beta}-actin mRNAs in the cytoplasm of a living cell

    SciTech Connect

    Yamagishi, Mai; Ishihama, Yo; Shirasaki, Yoshitaka; Kurama, Hideki; Funatsu, Takashi

    2009-04-15

    {beta}-Actin mRNA labeled with an MS2-EGFP fusion protein was expressed in chicken embryo fibroblasts and its localization and movement were analyzed by single-molecule imaging. Most {beta}-Actin mRNAs localized to the leading edge, while some others were observed in the perinuclear region. Singe-molecule tracking of individual mRNAs revealed that the majority of mRNAs were in unrestricted Brownian motion at the leading edge and in restricted Brownian motion in the perinuclear region. The macroscopic diffusion coefficient of mRNA (D{sub MACRO}) at the leading edge was 0.3 {mu}m{sup 2}/s. On the other hand, D{sub MACRO} in the perinuclear region was 0.02 {mu}m{sup 2}/s. The destruction of microfilaments with cytochalasin D, which is known to delocalize {beta}-actin mRNAs, led to an increase in D{sub MACRO} to 0.2 {mu}m{sup 2}/s in the perinuclear region. These results suggest that the microstructure, composed of microfilaments, serves as a barrier for the movement of {beta}-actin mRNA.

  7. Distribution of cytoskeletal structures and organelles of the host cell during evolution of the intracellular parasitism by Trypanosoma cruzi.

    PubMed

    Carvalho, T M; Ferreira, A G; Coimbra, E S; Rosestolato, C T; De Souza, W

    1999-07-01

    The distribution of microtubules, microfilaments, mitochondria, Golgi complex and endosomes/lysosomes was analyzed in Vero cells allowed to interact for different periods of time with the pathogenic protozoan Trypanosoma cruzi and observed by confocal laser scanning microscopy. Microtubules were revealed using a mouse monoclonal anti-alpha-tubulin antibody. Actin filaments were revealed using phalloidin-rhodamine. To identify mitochondria, endosomes/lysosomes and the Golgi complex the cells were labelled with Rhodamine 123, Lucifer yellow and C6-NBD-ceramide, respectively. During cell invasion actin filaments concentrate at the site of parasite penetration in some, but not in all cells, probably depending upon the mechanism used by the trypomastigote form to penetrate into the host cells. Following internalization the trypomastigote form gradually changes into the amastigote form, disruption of the parasitophorous vacuole membrane takes place and the amastigote form enters in direct contact with host cell structures and organelles, and starts to divide. The presence of the parasite in the cytoplasm of the host cell did not induce significant changes in the distribution of actin filaments, microtubules, the Golgi complex, mitochondria and endosomes/lysosomes during the first 48 h of infection. Amastigote forms were seen close to the microtubules. After 72 h of interaction, the number of microtubules and microfilaments around the parasites was reduced and lysosomes and mitochondria were seen in between the parasites.

  8. Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking

    PubMed Central

    Wilson, Carlos; González-Billault, Christian

    2015-01-01

    A proper balance between chemical reduction and oxidation (known as redox balance) is essential for normal cellular physiology. Deregulation in the production of oxidative species leads to DNA damage, lipid peroxidation and aberrant post-translational modification of proteins, which in most cases induces injury, cell death and disease. However, physiological concentrations of oxidative species are necessary to support important cell functions, such as chemotaxis, hormone synthesis, immune response, cytoskeletal remodeling, Ca2+ homeostasis and others. Recent evidence suggests that redox balance regulates actin and microtubule dynamics in both physiological and pathological contexts. Microtubules and actin microfilaments contain certain amino acid residues that are susceptible to oxidation, which reduces the ability of microtubules to polymerize and causes severing of actin microfilaments in neuronal and non-neuronal cells. In contrast, inhibited production of reactive oxygen species (ROS; e.g., due to NOXs) leads to aberrant actin polymerization, decreases neurite outgrowth and affects the normal development and polarization of neurons. In this review, we summarize emerging evidence suggesting that both general and specific enzymatic sources of redox species exert diverse effects on cytoskeletal dynamics. Considering the intimate relationship between cytoskeletal dynamics and trafficking, we also discuss the potential effects of redox balance on intracellular transport via regulation of the components of the microtubule and actin cytoskeleton as well as cytoskeleton-associated proteins, which may directly impact localization of proteins and vesicles across the soma, dendrites and axon of neurons. PMID:26483635

  9. Plant toxin β-ODAP activates integrin β1 and focal adhesion: A critical pathway to cause neurolathyrism

    PubMed Central

    Tan, Rui-Yue; Xing, Geng-Yan; Zhou, Guang-Ming; Li, Feng-Min; Hu, Wen-Tao; Lambein, Fernand; Xiong, Jun-Lan; Zhang, Sheng-Xiang; Kong, Hai-Yan; Zhu, Hao; Li, Zhi-Xiao; Xiong, You-Cai

    2017-01-01

    Neurolathyrism is a unique neurodegeneration disease caused by β-N-oxalyl-L-α, β- diaminopropionic (β-ODAP) present in grass pea seed (Lathyrus stativus L.) and its pathogenetic mechanism is unclear. This issue has become a critical restriction to take full advantage of drought-tolerant grass pea as an elite germplasm resource under climate change. We found that, in a human glioma cell line, β-ODAP treatment decreased mitochondrial membrane potential, leading to outside release and overfall of Ca2+ from mitochondria to cellular matrix. Increased Ca2+ in cellular matrix activated the pathway of ECM, and brought about the overexpression of β1 integrin on cytomembrane surface and the phosphorylation of focal adhesion kinase (FAK). The formation of high concentration of FA units on the cell microfilaments further induced overexpression of paxillin, and then inhibited cytoskeleton polymerization. This phenomenon turned to cause serious cell microfilaments distortion and ultimately cytoskeleton collapse. We also conducted qRT-PCR verification on RNA-sequence data using 8 randomly chosen genes of pathway enrichment, and confirmed that the data was statistically reliable. For the first time, we proposed a relatively complete signal pathway to neurolathyrism. This work would help open a new window to cure neurolathyrism, and fully utilize grass pea germplasm resource under climate change. PMID:28094806

  10. Proteomic analysis of differentiating neuroblastoma cells treated with sub-lethal neurite inhibitory concentrations of diazinon: Identification of novel biomarkers of effect

    SciTech Connect

    Harris, W.; Sachana, M.; Flaskos, J.; Hargreaves, A.J.

    2009-10-15

    In previous work we showed that sub-lethal levels of diazinon inhibited neurite outgrowth in differentiating N2a neuroblastoma cells. Western blotting analysis targeted at proteins involved in axon growth and stress responses, revealed that such exposure led to a reduction in the levels of neurofilament heavy chain, microtubule associated protein 1 B (MAP 1B) and HSP-70. The aim of this study was to apply the approach of 2 dimensional polyacrylamide gel electrophoresis and mass spectrometry to identify novel biomarkers of effect. A number of proteins were found to be up-regulated compared to the control on silver-stained gels. These were classified in to 3 main groups of proteins: cytosolic factors, chaperones and the actin-binding protein cofilin, all of which are involved in cell differentiation, survival or metabolism. The changes observed for cofilin were further confirmed by quantitative Western blotting analysis with anti-actin and anti-cofilin antibodies. Indirect immunofluorescence staining with the same antibodies indicated that the microfilament network was disrupted in diazinon-treated cells. Our data suggest that microfilament organisation is disrupted by diazinon exposure, which may be related to increased cofilin expression.

  11. Fascin, an Actin-bundling Protein, Induces Membrane Protrusions and Increases Cell Motility of Epithelial Cells

    PubMed Central

    Yamashiro, Shigeko; Yamakita, Yoshihiko; Ono, Shoichiro; Matsumura, Fumio

    1998-01-01

    Fascin is an actin-bundling protein that is found in membrane ruffles, microspikes, and stress fibers. The expression of fascin is greatly increased in many transformed cells, as well as in specialized normal cells including neuronal cells and antigen-presenting dendritic cells. A morphological characteristic common to these cells expressing high levels of fascin is the development of many membrane protrusions in which fascin is predominantly present. To examine whether fascin contributes to the alterations in microfilament organization at the cell periphery, we have expressed fascin in LLC-PK1 epithelial cells to levels as high as those found in transformed cells and in specialized normal cells. Expression of fascin results in large changes in morphology, the actin cytoskeleton, and cell motility: fascin-transfected cells form an increased number of longer and thicker microvilli on apical surfaces, extend lamellipodia-like structures at basolateral surfaces, and show disorganization of cell–cell contacts. Cell migration activity is increased by 8–17 times when assayed by modified Boyden chamber. Microinjection of a fascin protein into LLC-PK1 cells causes similar morphological alterations including the induction of lamellipodia at basolateral surfaces and formation of an increased number of microvilli on apical surfaces. Furthermore, microinjection of fascin into REF-52 cells, normal fibroblasts, induces the formation of many lamellipodia at all regions of cell periphery. These results together suggest that fascin is directly responsible for membrane protrusions through reorganization of the microfilament cytoskeleton at the cell periphery. PMID:9571235

  12. Mitochondrial dynamics and optical conformation changes in DsRed as studied by Fourier imaging correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Senning, Eric Nicolas

    Novel experiments that probe the dynamics of intracellular species, including the center-of-mass displacements and internal conformational transitions of biological macromolecules, have the potential to reveal the complex biochemical mechanisms operating within the cell. This work presents the implementation and development of Fourier imaging correlation spectroscopy (FICS), a phase-selective approach to fluorescence spectroscopy that measures the collective coordinate fluctuations of fluorescently labeled microscopic particles. In FICS experiments, a spatially modulated optical grating excites a fluorescently labeled sample. Phase-synchronous detection of the fluorescence, with respect to the phase of the exciting optical grating, can be used to monitor the fluctuations of partially averaged spatial coordinates. These data are then analyzed by two-point and four-point time correlation functions to provide a statistically meaningful understanding of the dynamics under observation. FICS represents a unique route to elevate signal levels, while acquiring detailed information about molecular coordinate trajectories. Mitochondria of mammalian cells are known to associate with cytoskeletal proteins, and their motions are affected by the stability of microtubules and microfilaments. Within the cell it is possible to fluorescently label the mitochondria and study its dynamic behavior with FICS. The dynamics of S. cerevisiae yeast mitochondria are characterized at four discrete length scales (ranging from 0.6--1.19 mum) and provide detailed information about the influence of specific cytoskeletal elements. Using the microtubule and microfilament destabilizing agents, Nocodazole and Latrunculin A, it is determined that microfilaments are required for normal yeast mitochondrial motion while microtubules have no effect. Experiments with specific actin mutants revealed that actin is responsible for enhanced mobility on length scales greater than 0.6 mum. The versatility of

  13. Interrogating the Bioactive Pharmacophore of the Latrunculin Chemotype by Investigating the Metabolites of Two Taxonomically Unrelated Sponges

    PubMed Central

    Amagata, Taro; Johnson, Tyler A.; Cichewicz, Robert H.; Tenney, Karen; Mooberry, Susan L.; Media, Joseph; Edelstein, Matthew; Valeriote, Frederick A.; Crews, Phillip

    2009-01-01

    This study involved a campaign to isolate and study additional latrunculin analogs from two taxonomically unrelated sponges, Cacospongia mycofijiensis and Negombata magnifica. A total of 13 latrunculin analogs were obtained by four different ways, reisolation (1–4), our repository (5–6), new derivatives (7–12), and a synthetic analog (7a). The structures of the new metabolites were elucidated based on a combination of comprehensive 1D and 2D NMR analysis, application of DFT calculations, and the preparation of acetonide derivative 7a. The cytotoxicities against both murine and human cancer cell lines observed for 1, 2, 7, 7a, 8, 9, and 12 were significant and the IC50 value range was 0.5–10 μM. Among the cytotoxic derivatives, compound 9 did not exhibit microfilament-disrupting activity at 5 μM. The implications of this observation and the value of further therapeutic study on key latrunculin derivatives are discussed. PMID:18942825

  14. Nanocapillarity-mediated magnetic assembly of nanoparticles into ultraflexible filaments and reconfigurable networks

    PubMed Central

    Bharti, Bhuvnesh; Fameau, Anne-Laure; Rubinstein, Michael; Velev, Orlin D.

    2016-01-01

    The fabrication of multifunctional materials with tunable structure and properties requires programmed binding of their building blocks1,2. For example, particles organized in long-ranged structures by external fields3,4 can be bound permanently into stiff chains through electrostatic or van der Waals attraction4,5, or into flexible chains through soft molecular linkers such as surface-grafted DNA or polymers6–11. Here, we show that capillarity-mediated binding between magnetic nanoparticles coated with a liquid lipid shell can be used for the assembly of ultraflexible microfilaments and network structures. These filaments can be magnetically regenerated on mechanical damage, owing to the fluidity of the capillary bridges between nanoparticles and their reversible binding on contact. Nanocapillary forces offer opportunities for assembling dynamically reconfigurable multifunctional materials that could find applications as micromanipulators, microbots with ultrasoft joints, or magnetically self-repairing gels. PMID:26237128

  15. Mechanisms of polar lobe formation in fertilized eggs of molluscs.

    PubMed

    Conrad, G W; Schantz, A R; Patron, R R

    1990-01-01

    Polar lobe formation in the marine mudsnail, Ilyanassa obsoleta, involves formation of a microtubule-, microfilament-dependent furrow that constricts at two rates, then stops and relaxes. Some artificial seawater mixtures allow relatively normal development, facilitate insertion of microelectrode tips, and prevent artifactual bleb formation during such punctures. Membrane events may affect formation of polar lobe constrictions: (1) Brief treatment with digitonin prevents constrictions, but not cytokinesis per se, and the suppression of constrictions is permanent. Tomatine (but not tomatidine) and filipin act similarly, although filipin often also stops cytokinesis as well. (2) Responses to digitonin, tomatine, and filipin occur with little change in membrane potential. (3) Adhesion to substrata in response to brief treatment at low pH prevents both constrictions and cytokinesis. (4) Adhesion to substrata via polylysine allows both constrictions and cytokinesis, but embryos are smaller in volume and develop abnormally. Formation of lobe constrictions may be sensitive to perturbations of the plasma membrane.

  16. Parvovirus particles and movement in the cellular cytoplasm and effects of the cytoskeleton

    SciTech Connect

    Lyi, Sangbom Michael; Tan, Min Jie Alvin Parrish, Colin R.

    2014-05-15

    Cell infection by parvoviruses requires that capsids be delivered from outside the cell to the cytoplasm, followed by genome trafficking to the nucleus. Here we microinject capsids into cells that lack receptors and followed their movements within the cell over time. In general the capsids remained close to the positions where they were injected, and most particles did not move to the vicinity of or enter the nucleus. When 70 kDa-dextran was injected along with the capsids that did not enter the nucleus in significant amounts. Capsids conjugated to peptides containing the SV40 large T-antigen nuclear localization signal remained in the cytoplasm, although bovine serum albumen conjugated to the same peptide entered the nucleus rapidly. No effects of disruption of microfilaments, intermediate filaments, or microtubules on the distribution of the capsids were observed. These results suggest that movement of intact capsids within cells is primarily associated with passive processes.

  17. Perversions with a twist

    PubMed Central

    Silva, Pedro E. S.; Trigueiros, Joao L.; Trindade, Ana C.; Simoes, Ricardo; Dias, Ricardo G.; Godinho, Maria Helena; de Abreu, Fernao Vistulo

    2016-01-01

    Perversions connecting two helices with symmetric handedness are a common occurrence in nature, for example in tendrils. These defects can be found in our day life decorating ribbon gifts or when plants use tendrils to attach to a support. Perversions arise when clamped elastic filaments coil into a helical shape but have to conserve zero overall twist. We investigate whether other types of perversions exist and if they display different properties. Here we show mathematically and experimentally that a continuous range of different perversions can exist and present different geometries. Experimentally, different perversions were generated using micro electrospun fibres. Our experimental results also confirm that these perversions behave differently upon release and adopt different final configurations. These results also demonstrate that it is possible to control on demand the formation and shape of microfilaments, in particular, of electrospun fibres by using ultraviolet light. PMID:27025549

  18. Interaction of microtubules with the actin cytoskeleton via cross-talk of EB1-containing +TIPs and γ-actin in epithelial cells

    PubMed Central

    Dugina, Vera; Alieva, Irina; Khromova, Natalya; Kireev, Igor; Gunning, Peter W.; Kopnin, Pavel

    2016-01-01

    Actin microfilaments and microtubules are both highly dynamic cytoskeleton components implicated in a wide range of intracellular processes as well as cell-cell and cell-substrate interactions. The interactions of actin filaments with the microtubule system play an important role in the assembly and maintenance of 3D cell structure. Here we demonstrate that cytoplasmic actins are differentially distributed in relation to the microtubule system. LSM, 3D-SIM, proximity ligation assay (PLA) and co-immunoprecipitation methods applied in combination with selective depletion of β- or γ-cytoplasmic actins revealed a selective interaction between microtubules and γ-, but not β-cytoplasmic actin via the microtubule +TIPs protein EB1. EB1-positive comet distribution analysis and quantification have shown more effective microtubule growth in the absence of β-actin. Our data represent the first demonstration that microtubule +TIPs protein EB1 interacts mainly with γ-cytoplasmic actin in epithelial cells. PMID:27683037

  19. Interaction of microtubules with the actin cytoskeleton via cross-talk of EB1-containing +TIPs and γ-actin in epithelial cells.

    PubMed

    Dugina, Vera; Alieva, Irina; Khromova, Natalya; Kireev, Igor; Gunning, Peter W; Kopnin, Pavel

    2016-11-08

    Actin microfilaments and microtubules are both highly dynamic cytoskeleton components implicated in a wide range of intracellular processes as well as cell-cell and cell-substrate interactions. The interactions of actin filaments with the microtubule system play an important role in the assembly and maintenance of 3D cell structure. Here we demonstrate that cytoplasmic actins are differentially distributed in relation to the microtubule system. LSM, 3D-SIM, proximity ligation assay (PLA) and co-immunoprecipitation methods applied in combination with selective depletion of β- or γ-cytoplasmic actins revealed a selective interaction between microtubules and γ-, but not β-cytoplasmic actin via the microtubule +TIPs protein EB1. EB1-positive comet distribution analysis and quantification have shown more effective microtubule growth in the absence of β-actin. Our data represent the first demonstration that microtubule +TIPs protein EB1 interacts mainly with γ-cytoplasmic actin in epithelial cells.

  20. Role of Intermediate Filaments in Vesicular Traffic

    PubMed Central

    Margiotta, Azzurra; Bucci, Cecilia

    2016-01-01

    Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway. PMID:27120621

  1. Intracellular and intercellular transport of many germ cell mRNAs is mediated by the DNA- and RNA-binding protein, testis-brain-RNA-binding protein (TB-RBP).

    PubMed

    Hecht, N B

    2000-06-01

    Functions ranging from RNA transport and translational regulation to DNA rearrangement and repair have been proposed for the DNA- and RNA-binding protein, testis-brain-RNA-binding protein (TB-RBP). TB-RBP is primarily in the nuclei of male germ cells during meiosis and in the cytoplasm of male cells after metaphase I of meiosis. Based on its shift in subcellular locations as germ cells differentiate and its binding to microtubules and microfilaments, a model is presented proposing an involvement of TB-RBP in mRNA transport from nucleus to cytoplasm and in the sharing of mRNAs transcribed from the sex chromosomes by movement through intercellular bridges of germ cells.

  2. Cytoskeletal components of Beta vulgaris root hairs in altered gravity fields

    NASA Astrophysics Data System (ADS)

    Shevchenko, G. V.

    Root hairs of Beta vulgaris are protrusions from rhizodermal cells and are characterised by plagiotropic growth. The roles of the cytoskeleton and of gravity in this growth process are being studied with the help of a clinostat. Through the use of immunocytochemical and fluorescent staining methods which reveal microtubules (MTs) and microfilaments (MFs), it was found that these cytoskeletal components of the root hairs of 4-day-old seedlings of B. vulgaris were affected by clinorotation at 2 r.p.m. In control conditions, MTs were found to be distributed evenly throughout the root hair, and an intense fluorescence due to MFs was observed at the tip of the hairs. With clinorotation, however, MTs became distributed at random, though no redistribution of MFs was observed. The latter finding conforms to the idea that MFs are responsible for tip growth. That MTs are more sensitive to altered gravity conditions is presently being tested.

  3. Metabolic and cytoskeletal modulation of transferrin receptor mobility in mitogen-activated human lymphocytes.

    PubMed Central

    Galbraith, G M; Galbraith, R M

    1980-01-01

    The transferrin receptors which appear on mitogen-activated human peripheral blood lymphocytes were found by the use of immunofluorescence techniques to display temperature-dependent patching and capping reactions upon binding of transferrin. Lateral mobility of ligand-occupied membrane sites was accompanied by both shedding and endocytosis of receptor-transferrin complexes. In the presence of sodium azide or the microfilament inhibitor cytochalasin B, cap formation and shedding were markedly inhibited. In contrast, endocytosis of patched receptor-ligand complexes was inhibited by azide and microtubule inhibitors, including colchicine, vinblastine and vincristine. Co-capping experiments performed to elucidate further the alterations in membrane configuration involved in these reactions failed to reveal any topographical relationship between transferrin receptors and lectin-binding sites in these cells. These studied indicate that temperature-dependent mobility of transferrin receptors upon mitogen-activated peripheral blood lymphocytes is dependent upon the integrity of the cytoskeletal system and metabolic function of the cell. PMID:6258830

  4. JVG9, a benzimidazole derivative, alters the surface and cytoskeleton of Trypanosoma cruzi bloodstream trypomastigotes

    PubMed Central

    Díaz-Chiguer, Dylan L; Hernández-Luis, Francisco; Nogueda-Torres, Benjamín; Castillo, Rafael; Reynoso-Ducoing, Olivia; Hernández-Campos, Alicia; Ambrosio, Javier R

    2014-01-01

    Trypanosoma cruzi has a particular cytoskeleton that consists of a subpellicular network of microtubules and actin microfilaments. Therefore, it is an excellent target for the development of new anti-parasitic drugs. Benzimidazole 2-carbamates, a class of well-known broad-spectrum anthelmintics, have been shown to inhibit the in vitro growth of many protozoa. Therefore, to find efficient anti-trypanosomal (trypanocidal) drugs, our group has designed and synthesised several benzimidazole derivatives. One, named JVG9 (5-chloro-1H-benzimidazole-2-thiol), has been found to be effective against T. cruzi bloodstream trypomastigotes under both in vitro and in vivo conditions. Here, we present the in vitro effects observed by laser scanning confocal and scanning electron microscopy on T. cruzi trypomastigotes. Changes in the surface and the distribution of the cytoskeletal proteins are consistent with the hypothesis that the trypanocidal activity of JVG9 involves the cytoskeleton as a target. PMID:25317703

  5. Initial stem cell adhesion on porous silicon surface: molecular architecture of actin cytoskeleton and filopodial growth

    NASA Astrophysics Data System (ADS)

    Collart-Dutilleul, Pierre-Yves; Panayotov, Ivan; Secret, Emilie; Cunin, Frédérique; Gergely, Csilla; Cuisinier, Frédéric; Martin, Marta

    2014-10-01

    The way cells explore their surrounding extracellular matrix (ECM) during development and migration is mediated by lamellipodia at their leading edge, acting as an actual motor pulling the cell forward. Lamellipodia are the primary area within the cell of actin microfilaments (filopodia) formation. In this work, we report on the use of porous silicon (pSi) scaffolds to mimic the ECM of mesenchymal stem cells from the dental pulp (DPSC) and breast cancer (MCF-7) cells. Our atomic force microscopy (AFM), fluorescence microscopy, and scanning electron microscopy (SEM) results show that pSi promoted the appearance of lateral filopodia protruding from the DPSC cell body and not only in the lamellipodia area. The formation of elongated lateral actin filaments suggests that pores provided the necessary anchorage points for protrusion growth. Although MCF-7 cells displayed a lower presence of organized actin network on both pSi and nonporous silicon, pSi stimulated the formation of extended cell protrusions.

  6. Spata6 is required for normal assembly of the sperm connecting piece and tight head-tail conjunction.

    PubMed

    Yuan, Shuiqiao; Stratton, Clifford J; Bao, Jianqiang; Zheng, Huili; Bhetwal, Bhupal P; Yanagimachi, Ryuzo; Yan, Wei

    2015-02-03

    "Pinhead sperm," or "acephalic sperm," a type of human teratozoospermia, refers to the condition in which ejaculate contains mostly sperm flagella without heads. Family clustering and homogeneity of this syndrome suggests a genetic basis, but the causative genes remain largely unknown. Here we report that Spata6, an evolutionarily conserved testis-specific gene, encodes a protein required for formation of the segmented columns and the capitulum, two major structures of the sperm connecting piece essential for linking the developing flagellum to the head during late spermiogenesis. Inactivation of Spata6 in mice leads to acephalic spermatozoa and male sterility. Our proteomic analyses reveal that SPATA6 is involved in myosin-based microfilament transport through interaction with myosin subunits (e.g., MYL6).

  7. Fine structure and RNA synthesis of Tetrahymena during cytochalasin B inhibition of phagocytosis.

    PubMed

    Nilsson, J R

    1977-01-01

    Cytochalasin B inhibits the formation of normal-sized food vacuoles in Tetrahymena but the cells do not starve. Treated cells differ from starved cells in that they retain a high rate of incorporation of tritiated uridine. Large numbers of smaller vacuoles, about 1 micrometer in diameter, are formed, presumably by pinocytic activity of the cytopharyngeal membrane. This effect may perhaps be due to interference with the mechanism by which food vacuoles are sealed off at the cytostome, in which microfilaments may participate. Inhibited organisms may form tubes continuous with the cytopharynx instead of separate food vacuoles. It is not clear, however, why the formation of the small vacuoles is resistant to the drug.

  8. Neuronal migration in the murine rostral migratory stream requires serum response factor

    PubMed Central

    Alberti, Siegfried; Krause, Sven M.; Kretz, Oliver; Philippar, Ulrike; Lemberger, Thomas; Casanova, Emilio; Wiebel, Franziska F.; Schwarz, Heinz; Frotscher, Michael; Schütz, Günther; Nordheim, Alfred

    2005-01-01

    The central nervous system is fundamentally dependent on guided cell migration, both during development and in adulthood. We report an absolute requirement of the transcription factor serum response factor (SRF) for neuronal migration in the mouse forebrain. Conditional, late-prenatal deletion of Srf causes neurons to accumulate ectopically at the subventricular zone (SVZ), a prime neurogenic region in the brain. SRF-deficient cells of the SVZ exhibit impaired tangential chain migration along the rostral migratory stream into the olfactory bulb. SVZ explants display retarded chain migration in vitro. Regarding target genes, SRF deficiency impairs expression of the β-actin and gelsolin genes, accompanied by reduced cytoskeletal actin fiber density. At the posttranslational level, cofilin, a key regulator of actin dynamics, displays dramatically elevated inhibitory phosphorylation at Ser-3. Our studies indicate that SRF-controlled gene expression directs both the structure and dynamics of the actin microfilament, thereby determining cell-autonomous neuronal migration. PMID:15837932

  9. PLEC — EDRN Public Portal

    Cancer.gov

    Plectin is a prominent member of an important family of structurally and in part functionally related proteins, termed plakins or cytolinkers, that are capable of interlinking different elements of the cytoskeleton. PLEC1 interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. It could also bind muscle proteins such as actin to membrane complexes in muscle. There is evidence that PLEC1 may be involved not only in the cross-linking and stabilization of cytoskeletal intermediate filaments network, but also in the regulation of their dynamics. Defects in PLEC1 are the cause of several severe skin and muscle disorders (epidermolysis bullosa simplex with pyloric atresia, epidermolysis bullosa simplex with muscular dystrophy, and epidermolysis bullosa simplex Ogna type). PLEC1 is Widely expressed, with highest levels in muscle, heart, placenta and spinal cord.

  10. Actin organization and gene expression in Beta vulgaris seedlings under clinorotation

    NASA Astrophysics Data System (ADS)

    Kozeko, L. Y.; Shevchenko, G. V.; Artemenko, O. A.; Martyn, G. G.; Kordyum, E. L.

    2005-08-01

    Actin microfilaments (MFs) as highly dynamic structure respond by rapid reorganization to different external influences, including gravity. The object of our experiments was to examine both the actin organization and actin gene expression during growth and differentiation of root cells under clinorotation. It was shown that MFs acted as the indicator of changes caused by altered gravity in distal elongation zone (DEZ) cells, particularly actin cytoskeleton is enhanced in cortex cells. The data testify stable actin expression under altered gravity. The F-actin MFs enhancement in cortex cells of the DEZ occurred under clinorotation at the same level of the total actin content as in the stationary conditions is suggested to be caused by transformation of G-actin into F-actin.

  11. Actin dynamics in mouse fibroblasts in microgravity

    NASA Astrophysics Data System (ADS)

    Moes, Maarten J. A.; Bijvelt, Jose J.; Boonstra, Johannes

    2007-09-01

    After stimulating with the growth factor PDGF, cells exhibit abundant membrane ruffling and other morphological changes under normal gravity conditions. These morphological changes are largely determined by the actin microfilament system. Now these actin dynamics were studied under microgravity conditions in mouse fibroblasts during the DELTA mission. The aim of the present study was to describe the actin morphology in detail, to establish the effect of PDGF on actin morphology and to study the role of several actin-interacting proteins involved in introduced actin dynamics in microgravity. Identical experiments were conducted at 1G on earth as a reference. No results in microgravity were obtained due to a combination of malfunctioning hardware and unfulfilled temperature requirements.

  12. Mesothelial glandular structures within pseudosarcomatous proliferative funiculitis--a diagnostic pitfall: report of 17 cases.

    PubMed

    Michal, Michal; Hes, Ondrej; Kazakov, Dmitry V

    2008-01-01

    We describe 17 cases of distinct benign pseudomalignant mesothelial proliferations, involving the spermatic cord. All cases revealed necrosis. The areas adjacent to the necrotic tissue comprised a cellular spindle cell proliferation with a haphazard arrangement of the myofibroblasts that in many areas revealed transitions into plump oval epithelioid cells and into cells with genuine epithelial appearances arranged in linear cords and often luminized into small microcysts. These epithelial cells formed isolated groups with glandular structures arising on the myofibroblastic background. Glandular structures were often situated deeply in the stroma of the spermatic cords. All cellular elements were strongly positive with AE1/AE3 antibody. All myofibroblasts stained with SM-actin antibody. Ultrastructurally, the spindle cells displayed features of myofibroblasts including actin microfilaments, as did the plump epithelioid cells that, additionally, had desmosomes, and the cords of the epithelial cells including those forming glandular structures had characteristics of mesothelias including the characteristic microvilli.

  13. In vitro phagocytosis and intracellular survival of Campylobacter jejuni with phagocytes

    SciTech Connect

    Kiehlbauch, J.A.

    1986-01-01

    In vitro phagocytosis and intracellular survival of Campylobacter jejuni was studied using three types of mononuclear phagocytes: a J774G8 peritoneal macrophage line, resident BABL/c peritoneal macrophages and human peripheral blood monocytes. In phagocytosis assays using CFU determinations, phagocytosis increased steadily over an 8 hr time period. Results obtained using a /sup 51/Cr assay indicated no consistent significant difference between phagocytosis of C. jejuni between the three mononuclear phagocytes or PMN's and that maximum infection occurred prior to 0.5 hr and maintained throughout the 4 hr assay. Further investigation of the mechanism of attachment and entry of C. jejuni revealed this process required the expenditure of energy by the phagocyte, but was not inhibited by inhibitors of microfilament functions. In addition, phagocytosis was enhanced by the presence of 20% FCS,

  14. Two Molecules of Lobophorolide Cooperate to Stabilize an Actin Dimer Using Both Their 'Ring' and 'Tail' Region

    SciTech Connect

    Blain, J.; Mok, Y; Kubanek, J; Allingham, J

    2010-01-01

    Actin filament-disrupting marine macrolides are promising templates from which to design therapeutics against cancer and other diseases that co-opt the actin cytoskeleton. Typically, these macrolides form either a 1:1 or 2:1 actin-macrolide complex where their aliphatic side chain, or 'tail', has been reported to convey the major determinant of cytotoxicity. We now report the structure of the marine macrolide lobophorolide bound to actin with a unique 2:2 stoichiometry in which two lobophorolide molecules cooperate to form a dimerization interface that is composed entirely of the macrolide 'ring' region, and each molecule of lobophorolide interacts with both actin subunits via their ring and tail regions to tether the subunits together. This binding mode imposes multiple barriers against microfilament stability and holds important implications for development of actin-targeting drugs and the evolution of macrolide biosynthetic enzymes.

  15. Parvovirus particles and movement in the cellular cytoplasm and effects of the cytoskeleton.

    PubMed

    Lyi, Sangbom Michael; Tan, Min Jie Alvin; Parrish, Colin R

    2014-05-01

    Cell infection by parvoviruses requires that capsids be delivered from outside the cell to the cytoplasm, followed by genome trafficking to the nucleus. Here we microinject capsids into cells that lack receptors and followed their movements within the cell over time. In general the capsids remained close to the positions where they were injected, and most particles did not move to the vicinity of or enter the nucleus. When 70 kDa-dextran was injected along with the capsids that did not enter the nucleus in significant amounts. Capsids conjugated to peptides containing the SV40 large T-antigen nuclear localization signal remained in the cytoplasm, although bovine serum albumen conjugated to the same peptide entered the nucleus rapidly. No effects of disruption of microfilaments, intermediate filaments, or microtubules on the distribution of the capsids were observed. These results suggest that movement of intact capsids within cells is primarily associated with passive processes.

  16. Action of cytochalasin D on DNA synthesis in cells in culture

    SciTech Connect

    Glushankova, N.A.

    1986-10-01

    To solve the problem of the effect of changes in the actin cytoskeleton on DNA replication during the action of cytochalasins, the effect of long-term incubation of normal cells with cytochalasin D (CCD), which selectively destroys the microfilament system but does not affect transport of sugars, was investigated. Incorporation of labeled thymidine into mononuclear and binuclear cells in the presence of CCD and after its removal by rinsing also was studied separately. To investigate DNA synthesis the method of autoradiography with /sup 3/H-thymidine was used. A culture of mouse fibroblasts of the BALB/3T3 line and a secondary culture of fibroblasts obtained by trypsinization of mouse embryos (MEF) were used. On incubation of MEF and 3T3 cells, gradual inhibition of DNA synthesis is observed. The results obtained indicate that structural changes in the active cytoskeleton can abruptly and reversibly disturb passage of the normal cell through the cycle.

  17. Structure of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum.

    PubMed

    Ksiazek, Dorota; Brandstetter, Hans; Israel, Lars; Bourenkov, Gleb P; Katchalova, Galina; Janssen, Klaus-Peter; Bartunik, Hans D; Noegel, Angelika A; Schleicher, Michael; Holak, Tad A

    2003-09-01

    Cyclase-associated proteins (CAPs) are widely distributed and highly conserved proteins that regulate actin remodeling in response to cellular signals. The N termini of CAPs play a role in Ras signaling and bind adenylyl cyclase; the C termini bind to G-actin and thereby alter the dynamic rearrangements of the microfilament system. We report here the X-ray structure of the core of the N-terminal domain of the CAP from Dictyostelium discoideum, which comprises residues 51-226, determined by a combination of single isomorphous replacement with anomalous scattering (SIRAS). The overall structure of this fragment is an alpha helix bundle composed of six antiparallel helices. Results from gel filtration and crosslinking experiments for CAP(1-226), CAP(255-464), and the full-length protein, together with the CAP N-terminal domain structure and the recently determined CAP C-terminal domain structure, provide evidence that the functional structure of CAP is multimeric.

  18. NMR structural characterization of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum.

    PubMed

    Mavoungou, Chrystelle; Israel, Lars; Rehm, Till; Ksiazek, Dorota; Krajewski, Marcin; Popowicz, Grzegorz; Noegel, Angelika A; Schleicher, Michael; Holak, Tad A

    2004-05-01

    Cyclase-associated proteins (CAPs) are highly conserved, ubiquitous actin binding proteins that are involved in microfilament reorganization. The N-termini of CAPs play a role in Ras signaling and bind adenylyl cyclase; the C-termini bind to G-actin. We report here the NMR characterization of the amino-terminal domain of CAP from Dictyostelium discoideum (CAP(1-226)). NMR data, including the steady state (1)H-(15)N heteronuclear NOE experiments, indicate that the first 50 N-terminal residues are unstructured and that this highly flexible serine-rich fragment is followed by a stable, folded core starting at Ser 51. The NMR structure of the folded core is an alpha-helix bundle composed of six antiparallel helices, in a stark contrast to the recently determined CAP C-terminal domain structure, which is solely built by beta-strands.

  19. Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts

    NASA Technical Reports Server (NTRS)

    Eckes, B.; Dogic, D.; Colucci-Guyon, E.; Wang, N.; Maniotis, A.; Ingber, D.; Merckling, A.; Langa, F.; Aumailley, M.; Delouvee, A.; Koteliansky, V.; Babinet, C.; Krieg, T.

    1998-01-01

    Loss of a vimentin network due to gene disruption created viable mice that did not differ overtly from wild-type littermates. Here, primary fibroblasts derived from vimentin-deficient (-/-) and wild-type (+/+) mouse embryos were cultured, and biological functions were studied in in vitro systems resembling stress situations. Stiffness of -/- fibroblasts was reduced by 40% in comparison to wild-type cells. Vimentin-deficient cells also displayed reduced mechanical stability, motility and directional migration towards different chemo-attractive stimuli. Reorganization of collagen fibrils and contraction of collagen lattices were severely impaired. The spatial organization of focal contact proteins, as well as actin microfilament organization was disturbed. Thus, absence of a vimentin filament network does not impair basic cellular functions needed for growth in culture, but cells are mechanically less stable, and we propose that therefore they are impaired in all functions depending upon mechanical stability.

  20. Contraction of isolated brush borders from the intestinal epithelium

    PubMed Central

    1976-01-01

    Brush borders isolated from epithelial cells from the small intestine of neonatal rats are able to contract in the presence of ATP and Mg2+; Ca2+ is not required. Contraction is characterized by a pinching-in of the plasma membrane in the region of the zonula adherens and a subsequent rounding of the brush borders. No movement or consistent shortening of the microvilli is observed. The contraction appears to involve the 5- to 7-nm diameter microfilaments in the terminal web which associate with the zonula adherens. These filaments bind heavy meromyosin as do the actin core filaments of the microvilli. A model for contraction is presented in which, in the intact cell, terminal web filaments and core filaments interact to produce shortening of the microvilli. PMID:783170

  1. Myosin superfamily: The multi-functional and irreplaceable factors in spermatogenesis and testicular tumors.

    PubMed

    Li, Yan-Ruide; Yang, Wan-Xi

    2016-01-15

    Spermatogenesis is a fundamental process in sexual development and reproduction, in which the diploid spermatogonia transform into haploid mature spermatozoa. This process is under the regulation of multiple factors and pathway. Myosin has been implicated in various aspects during spermatogenesis. Myosins constitute a diverse superfamily of actin-based molecular motors that translocate along microfilament in an ATP-dependent manner, and six kinds of myosins have been proved that function during spermatogenesis. In mitosis and meiosis, myosins play an important role in spindle assembly and positioning, karyokinesis and cytokinesis. During spermiogenesis, myosins participate in acrosomal formation, nuclear morphogenesis, mitochondrial translocation and spermatid individualization. In this review, we summarize current understanding of the functions of myosin in spermatogenesis and some reproductive system diseases such as testicular tumors and prostate cancer, and discuss the roles of possible upstream molecules which regulate myosin in these processes.

  2. Gravity and the cell: Intracellular structures and Stokes sedimentation

    NASA Technical Reports Server (NTRS)

    Todd, P.

    1977-01-01

    Plant and certain animal embryos appear to be responsive to the gravity vector during early stages of development. The convection of particle sedimentation as the basis for the sensing of gravity is investigated using the cells of wheat seedlings, amphibian embryos, and mammals. Exploration of the mammalian cell for sedimenting particles reveals that their existence is unlikely, especially in the presence of a network of microtubules and microfilaments considered to be responsible for intracellular organization. Destruction of these structures renders the cell susceptible to accelerations several times g. Large dense particles, such as chromosomes, nucleoli, and cytoplasmic organelles are acted upon by forces much larger than that due to gravity, and their positions in the cell appear to be insensitive to gravity.

  3. Physical properties of cytoplasmic intermediate filaments.

    PubMed

    Block, Johanna; Schroeder, Viktor; Pawelzyk, Paul; Willenbacher, Norbert; Köster, Sarah

    2015-11-01

    Intermediate filaments (IFs) constitute a sophisticated filament system in the cytoplasm of eukaryotes. They form bundles and networks with adapted viscoelastic properties and are strongly interconnected with the other filament types, microfilaments and microtubules. IFs are cell type specific and apart from biochemical functions, they act as mechanical entities to provide stability and resilience to cells and tissues. We review the physical properties of these abundant structural proteins including both in vitro studies and cell experiments. IFs are hierarchical structures and their physical properties seem to a large part be encoded in the very specific architecture of the biopolymers. Thus, we begin our review by presenting the assembly mechanism, followed by the mechanical properties of individual filaments, network and structure formation due to electrostatic interactions, and eventually the mechanics of in vitro and cellular networks. This article is part of a Special Issue entitled: Mechanobiology.

  4. The effect of length and diameter on the resistivity of bromine intercalated graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1989-01-01

    The resistivity of bromine intercalated graphite fibers has been shown to vary with both the diameter and the length of the fibers. This is due to bromine depletion from the fiber surface. Model calculations assuming a 1.0 micron bromine depletion zone for P-100, and 3.0 microns for vapor-grown graphite fibers fit the respective diameter dependence of their resistivities quite well. Length dependence data imply a bromine depletion zone along the length of P-100 fibers which is also a few microns, but that of vapor grown fibers appears to be as large as 300 microns. Despite these values, microfilaments, which are much smaller than the expected depletion zones, do form residual bromine intercalation compounds with resistivities about one-half of their pristine value.

  5. Adhesion to and invasion of cultured human cells by Bartonella bacilliformis.

    PubMed Central

    Hill, E M; Raji, A; Valenzuela, M S; Garcia, F; Hoover, R

    1992-01-01

    Bartonella bacilliformis was tested for its ability to adhere to and invade tissue culture cell monolayers. The parasite was able to efficiently bind and penetrate human dermal fibroblasts, human laryngeal epithelium, and human umbilical vein endothelial cells. Exposure of the organism to immune serum prepared against a crude Bartonella extract containing cell wall and membranous material resulted in decreased ability of the parasite to invade host cells. There was also an overall reduction in the invasiveness of bartonellae and total host cell association when human laryngeal epithelial cells and human umbilical vein endothelial cells were preexposed to cytochalasin D, indicating an active involvement of host cells in the uptake of bartonellae. Transmission electron microscopy revealed the presence of bartonellae inside and outside intracellular vacuoles. These data suggest that a surface-associated factor is involved in the invasion process and that internalization of the parasite by host cells involves a microfilament-dependent process similar to phagocytosis. Images PMID:1398917

  6. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758).

    PubMed

    Murray, Fiona; Cowie, Phillip Rhys

    2011-06-01

    The aim of this study was to determine the extent Nephrops consumes plastics in the Clyde Sea and if this intake occurs through their diet. Plastic contamination was found to be high in Nephrops, 83% of the animals sampled contained plastics (predominately filaments) in their stomachs. Tightly tangled balls of plastic strands were found in 62% of the animals studied but were least prevalent in animals which had recently moulted. No significant difference in plastic load was observed between males and females. Raman spectroscopy indicated that some of the microfilaments identified from gut contents could be sourced to fishing waste. Nephrops fed fish seeded with strands of polypropylene rope were found to ingest but not to excrete the strands. The fishery for Norway lobster, Nephrops norvegicus, is the most valuable in Scotland and the high prevalence of plastics in Nephrops may have implications for the health of the stock.

  7. Nanocapillarity-mediated magnetic assembly of nanoparticles into ultraflexible filaments and reconfigurable networks

    NASA Astrophysics Data System (ADS)

    Bharti, Bhuvnesh; Fameau, Anne-Laure; Rubinstein, Michael; Velev, Orlin D.

    2015-11-01

    The fabrication of multifunctional materials with tunable structure and properties requires programmed binding of their building blocks. For example, particles organized in long-ranged structures by external fields can be bound permanently into stiff chains through electrostatic or van der Waals attraction, or into flexible chains through soft molecular linkers such as surface-grafted DNA or polymers. Here, we show that capillarity-mediated binding between magnetic nanoparticles coated with a liquid lipid shell can be used for the assembly of ultraflexible microfilaments and network structures. These filaments can be magnetically regenerated on mechanical damage, owing to the fluidity of the capillary bridges between nanoparticles and their reversible binding on contact. Nanocapillary forces offer opportunities for assembling dynamically reconfigurable multifunctional materials that could find applications as micromanipulators, microbots with ultrasoft joints, or magnetically self-repairing gels.

  8. Mechanotransduction across the cell surface and through the cytoskeleton

    NASA Technical Reports Server (NTRS)

    Wang, N.; Butler, J. P.; Ingber, D. E.

    1993-01-01

    Mechanical stresses were applied directly to cell surface receptors with a magnetic twisting device. The extracellular matrix receptor, integrin beta 1, induced focal adhesion formation and supported a force-dependent stiffening response, whereas nonadhesion receptors did not. The cytoskeletal stiffness (ratio of stress to strain) increased in direct proportion to the applied stress and required intact microtubules and intermediate filaments as well as microfilaments. Tensegrity models that incorporate mechanically interdependent struts and strings that reorient globally in response to a localized stress mimicked this response. These results suggest that integrins act as mechanoreceptors and transmit mechanical signals to the cytoskeleton. Mechanotransduction, in turn, may be mediated simultaneously at multiple locations inside the cell through force-induced rearrangements within a tensionally integrated cytoskeleton.

  9. Characterization of Glass Fiber Separator Material for Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Subbarao, S.; Frank, H.

    1984-01-01

    Characterization studies were carried out on a glass fiber paper that is currently employed as a separator material for some LiSOCl2 primary cells. The material is of the non-woven type made from microfilaments of E-type glass and contains an ethyl acrylate binder. Results from extraction studies and tensile testing revealed that the binder content and tensile strength of the paper were significantly less than values specified by the manufacturer. Scanning electron micrographs revealed the presence of clusters of impurities many of which were high in iron content. Results of emission spectroscopy revealed high overall levels of iron and leaching, followed by atomic absorption measurements, revealed that essentially all of this iron is soluble in SOCl2.

  10. Mena-GRASP65 interaction couples actin polymerization to Golgi ribbon linking.

    PubMed

    Tang, Danming; Zhang, Xiaoyan; Huang, Shijiao; Yuan, Hebao; Li, Jie; Wang, Yanzhuang

    2016-01-01

    In mammalian cells, the Golgi reassembly stacking protein 65 (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers through the N-terminal GRASP domain. Because the GRASP domain is globular and relatively small, but the gaps between stacks are large and heterogeneous, it remains puzzling how GRASP65 physically links Golgi stacks into a ribbon. To explore the possibility that other proteins may help GRASP65 in ribbon linking, we used biochemical methods and identified the actin elongation factor Mena as a novel GRASP65-binding protein. Mena is recruited onto the Golgi membranes through interaction with GRASP65. Depleting Mena or disrupting actin polymerization resulted in Golgi fragmentation. In cells, Mena and actin were required for Golgi ribbon formation after nocodazole washout; in vitro, Mena and microfilaments enhanced GRASP65 oligomerization and Golgi membrane fusion. Thus Mena interacts with GRASP65 to promote local actin polymerization, which facilitates Golgi ribbon linking.

  11. Acrolein-Induced Oxidative Stress and Cell Death Exhibiting Features of Apoptosis in the Yeast Saccharomyces cerevisiae Deficient in SOD1.

    PubMed

    Kwolek-Mirek, Magdalena; Zadrąg-Tęcza, Renata; Bednarska, Sabina; Bartosz, Grzegorz

    2015-04-01

    The yeast Saccharomyces cerevisiae is a useful eukaryotic model to study the toxicity of acrolein, an important environmental toxin and endogenous product of lipid peroxidation. The study was aimed at elucidation of the cytotoxic effect of acrolein on the yeast deficient in SOD1, Cu, Zn-superoxide dismutase which is hypersensitive to aldehydes. Acrolein generated within the cell from its precursor allyl alcohol caused growth arrest and cell death of the yeast cells. The growth inhibition involved an increase in production of reactive oxygen species and high level of protein carbonylation. DNA condensation and fragmentation, exposition of phosphatidylserine at the cell surface as well as decreased dynamic of actin microfilaments and mitochondria disintegration point to the induction of apoptotic-type cell death besides necrotic cell death.

  12. Rho-Signaling-Directed YAP/TAZ Activity Underlies the Long-Term Survival and Expansion of Human Embryonic Stem Cells.

    PubMed

    Ohgushi, Masatoshi; Minaguchi, Maki; Sasai, Yoshiki

    2015-10-01

    Human embryonic stem cells (hESCs) can survive and proliferate for an extended period of time in culture, but unlike that of tumor-derived cells, this form of cellular immortality does not depend on genomic aberrations. In this study, we sought to elucidate the molecular basis of this long-term growth property of hESCs. We found that the survival of hESCs depends on the small GTPase Rho and its activator AKAP-Lbc. We show that AKAP-Lbc/Rho signaling sustains the nuclear function of the transcriptional cofactors YAP and TAZ by modulating actin microfilament organization. By inducing reprogramming and differentiation, we found that dependency on this Rho signaling pathway is associated with the pluripotent state. Thus, our findings show that the capacity of hESCs to undergo long-term expansion in vitro is intrinsically coupled to their cellular identity through interconnected molecular circuits that link cell survival to pluripotency.

  13. Controlled drop emission by wetting properties in driven liquid filaments.

    PubMed

    Ledesma-Aguilar, R; Nistal, R; Hernández-Machado, A; Pagonabarraga, I

    2011-05-01

    The controlled formation of micrometre-sized drops is of great importance to many technological applications. Here we present a wetting-based destabilization mechanism of forced microfilaments on either hydrophilic or hydrophobic stripes that leads to the periodic emission of droplets. The drop emission mechanism is triggered above the maximum critical forcing at which wetting, capillarity, viscous friction and gravity can balance to sustain a stable driven contact line. The corresponding critical filament velocity is predicted as a function of the static wetting angle, which can be tuned through the substrate behaviour, and shows a strong dependence on the filament size. This sensitivity explains the qualitative difference in the critical velocity between hydrophilic and hydrophobic stripes, and accounts for previous experimental results of splashing solids. We demonstrate that this mechanism can be used to control independently the drop size and emission period, opening the possibility of highly monodisperse and flexible drop production techniques in open microfluidic geometries.

  14. [ALPHA-ACTININS AND SIGNAL TRANSDUCTION PATHWAYS].

    PubMed

    Panyushev, N V; Tentler, D G

    2015-01-01

    Involvement of actin cytoskeleton proteins in signal transduction from cell surface to the nucleus, including regulation of transcription factors activity, has now been supported by a lot of experimental data. Here-with, cytoskeletal proteins may have different functions than ones they execute in the cytoplasm. Particularly, alpha-actinin 4 stabilizing actin microfilaments in the cytoplasm can translocate to the nucleus and change the activity of several transcription factors. Despite the lack of nuclear import signal and DNA binding domain, alpha-actinin 4 can bind to promoter sequences, and co-activate NF-κB-dependent transcription. Selective regulation of NF-κB gene targets may indicate involvement of alpha-actinin 4 in determining the specificity of cell response to NF-κB activation in cells of different types.

  15. Action of cytochalasin D on cells of established lines. III. Zeiosis and movements at the cell surface.

    PubMed

    Godman, G C; Miranda, A F; Deitch, A D; Tanenbaum, S W

    1975-03-01

    The projection of knobby protuberances at the cell surface (zeiosis) is a general cellular response to cytochalasin D (CD), resulting from herniation of endoplasm through undefended places of the cortex during cell contractions and displacement of microfilaments induced by CD. Zeiosis is prevented by agents that interfere with the contractile response to CD, such as inhibitors of energy metabolism or cyclic AMP. The developed protrusions, which remain relatively stable in the presence of CD, contain chiefly mono- or subribosomes, and occasionally other organelles normally resident in endoplasm; compact microfilament felt occupies their bases and extends into their proximal stalks. Protein synthesis in the knobs is less than half of that in the polyribosome-containing endoplasm residual in the main body of the cell. Knobs first protrude singly near the margin of the contracting cells and rapidly cluster into small groups in the periphery even at lower temperature. The clusters then migrate centripetally and coalesce into a large aggregate near the apex of the immobilized and retracted cell: this movement is energy- and temperature-dependent. Aggregation is more prominent and stable in cell lines of epithelial derivation than in fibroblastic or other lines in which nuclear extrusion occurs more readily. The latter is regarded as a special manifestation of zeiosis. Macromarkers, such as latex spherules, migrate like the zeiotic knobs on the cell surfaces in the presence of CD. The aggregated knobs, although persistent for days in the presence of CD, are rapidly recessed after withdrawal of the agent as ruffling is resumed and the cells spread. These movements are discussed in terms of current concepts of mobility of the cell membrane.

  16. Altered Actin Dynamics and Functions of Osteoblast-Like Cells in Parabolic Flight may Involve ERK1/2

    NASA Astrophysics Data System (ADS)

    Dai, Zhongquan; Tan, Yingjun; Yang, Fen; Qu, Lina; Zhang, Hongyu; Wan, Yumin; Li, Yinghui

    2011-01-01

    Osteoblasts are sensitive to mechanical stressors such as gravity and alter their cytoskeletons and functions to adapt; however, the contribution of gravity to this phenomenon is not well understood. In this study, we investigated the effects of acute gravitational changes on the structure and function of osteoblast ROS17/2.8 as generated by parabolic flight. The changes in microfilament cytoskeleton was observed by immunofluorescence stain of Texas red conjugated Phalloidin and Alexa Fluor 488 conjugated DNase I for F-actin and G-actin, respectively. To examine osteoblast function, ALP (alkaline phosphatase) activity, osteocalcin secretions and the expression of ALP, COL1A1 (collagen type I alpha 1 chain) and osteocalcin were detected by modified Gomori methods, radioimmunity and RT-PCR, respectively. Double fluorescence staining of phosphorylated p44/42 and F-actin were performed to observe their colocalization relationship. The established semi-quantitative analysis method of fluorescence intensity of EGFP was used to detect the activity changes of COL1A1 promoter in EGFP-ROS cells with MAPK inhibitor PD98059 or F-actin inhibitor cytochalasin B. Results indicate that the altered gravity induced the reorganization of microfilament cytoskeletons of osteoblasts. After 3 h parabolic flight, F-actin of osteoblast cytoskeleton became thicker and directivity, whereas G-actin shrunk and became more concentrated at the edge of nucleus. The excretion of osteocalcin, the activity of ALP and the expression of mRNA decreased. Colocalization analysis indicated that phosphorylated p44/42 MAPK was coupled with F-actin. Inhibitor PD98059 and cytochalasin B decreased the fluorescence intensity of EGFP-ROS cells. Above results suggest that short time gravity variations induce the adjustment of osteoblast structure and functional and ERK1/2 signaling maybe involve these responses. We believe that it is an adaptive method of the osteoblasts to gravity alteration that structure

  17. Antiproliferative and antimetastatic action of quercetin on A549 non-small cell lung cancer cells through its effect on the cytoskeleton.

    PubMed

    Klimaszewska-Wiśniewska, Anna; Hałas-Wiśniewska, Marta; Izdebska, Magdalena; Gagat, Maciej; Grzanka, Alina; Grzanka, Dariusz

    2017-03-01

    To our knowledge, this study is the first to investigate the effect of the dietary flavonoid quercetin on the main cytoskeletal elements, namely microfilaments, microtubules and vimentin intermediate filaments, as well as cytoskeleton-driven processes in A549 non-small cell lung cancer cells. The methyl-thiazol-diphenyl-tetrazolium assay, annexin V/propidium iodide test, electron microscopic examination, cell cycle analysis based on DNA content, real-time PCR assays, in vitro scratch wound-healing assay, fluorescence staining of F-actin, β-tubulin and vimentin were performed to assess the effects of quercetin on A549 cells. Our results showed that quercetin triggered BCL2/BAX-mediated apoptosis, as well as necrosis and mitotic catastrophe, and inhibited the migratory potential of A549 cells. The disassembling effect of quercetin on microfilaments, microtubules and vimentin filaments along with its inhibitory impact on vimentin and N-cadherin expression might account for the decreased migration of A549 cells in response to quercetin treatment. We also suggest that the possible mechanism underlying quercetin-induced mitotic catastrophe involves the perturbation of mitotic microtubules leading to monopolar spindle formation, and, consequently, to the failure of cytokinesis. We further propose that cytokinesis failure could also be a result of the depletion of actin filaments by quercetin. These findings are important to our further understanding of the detailed mechanism of the antitumor activity of quercetin and render this flavonoid a potentially useful candidate for combination therapy with conventional antimicrotubule drugs, nucleic acid-directed agents or novel cytoskeletal-directed agents.

  18. Structures linking the myonemes, endoplasmic reticulum, and surface membranes in the contractile ciliate Vorticella.

    PubMed

    Allen, R D

    1973-02-01

    An electron microscope investigation of the interface between the myonemes of Vorticella convallaria and their associated endoplasmic reticulum (ER) has revealed structures of a complex morphology linking these two organelles. These structures are named "linkage complexes". Each complex contains a spindle-shaped midpiece which lies in a groove of the ER membrane. Microfilaments splay out from the tips of the midpiece and may come in contact with the inner alveolar sac membrane. Three to six raillike structures lie on each side of the midpiece and parallel it. The ER membrane appears to pass through the sides of the rails. In the lumen of the ER these rails are associated with a meshwork of filaments. A cradle of five rods lies within the groove under the midpiece. The ER membrane also passes through these rods which contact the same meshwork. In the scopular region and in the stalk the microfilaments from the midpiece form a bundle which passes into the lumen of modified basal bodies. These basal bodies are connected to the alveolar sac which, in the stalk, passes as a flattened tube along its length. The parts of the dissociated linkage complex are scattered throughout the spasmoneme of the stalk along membranes of the intraspasmonemal tubules. Thus, both stalk and body contractile bundles have linkage complexes that link their associated membrane systems to the microfibrils and, in turn, connect this membrane-microfibrillar interface to the pellicular membranes. The arrangement of the linkage complex suggests an involvement in the control of the transport of calcium ions between ER and microfibrils, and possibly the transfer of a message from the surface membranes to the sites of calcium release to trigger myonemal contraction.

  19. Enterocyte cytoskeleton changes are crucial for enhanced translocation of nonpathogenic Escherichia coli across metabolically stressed gut epithelia.

    PubMed

    Nazli, Aisha; Wang, Arthur; Steen, Oren; Prescott, David; Lu, Jun; Perdue, Mary H; Söderholm, Johan D; Sherman, Philip M; McKay, Derek M

    2006-01-01

    Substantial data implicate the commensal flora as triggers for the initiation of enteric inflammation or inflammatory disease relapse. We have shown that enteric epithelia under metabolic stress respond to nonpathogenic bacteria by increases in epithelial paracellular permeability and bacterial translocation. Here we assessed the structural basis of these findings. Confluent filter-grown monolayers of the human colonic T84 epithelial cell line were treated with 0.1 mM dinitrophenol (which uncouples oxidative phosphorylation) and noninvasive, nonpathogenic Escherichia coli (strain HB101, 10(6) CFU) with or without pretreatment with various pharmacological agents. At 24 h later, apoptosis, tight-junction protein expression, transepithelial resistance (TER; a marker of paracellular permeability), and bacterial internalization and translocation were assessed. Treatment with stabilizers of microtubules (i.e., colchicine), microfilaments (i.e., jasplakinolide) and clathrin-coated pit endocytosis (i.e., phenylarsine oxide) all failed to block DNP+E. coli HB101-induced reductions in TER but effectively prevented bacterial internalization and translocation. Neither the TER defect nor the enhanced bacterial translocations were a consequence of increased apoptosis. These data show that epithelial paracellular and transcellular (i.e., bacterial internalization) permeation pathways are controlled by different mechanisms. Thus, epithelia under metabolic stress increase their endocytotic activity that can result in a microtubule-, microfilament-dependent internalization and transcytosis of bacteria. We speculate that similar events in vivo would allow excess unprocessed antigen and bacteria into the mucosa and could evoke an inflammatory response by, for example, the activation of resident or recruited immune cells.

  20. PKC-dependent stimulation of EAAT3 glutamate transporter does not require the integrity of actin cytoskeleton.

    PubMed

    Bianchi, Massimiliano G; Rotoli, Bianca Maria; Dall'Asta, Valeria; Gazzola, Gian C; Gatti, Rita; Bussolati, Ovidio

    2006-04-01

    The activity and the membrane expression of EAAT3 glutamate transporter are stimulated upon PKC activation by phorbol esters in C6 rat glioma cells. To investigate the role of cytoskeleton in these effects, we have employed actin-perturbing toxins and found that the perturbation of actin cytoskeleton inhibits basal but not phorbol-stimulated EAAT3 activity and membrane trafficking. In the absence of phorbols, latrunculin A, a toxin that disassembles actin cytoskeleton, produced a rapid inhibition of EAAT3 activity, due to a decrease in transport V(max). The inhibitory effect was fully reversible and was not detected for other sodium dependent transport systems for amino acids. However, latrunculin did not prevent the increase in transport caused by phorbol esters and, moreover, cells pre-treated with phorbols were resistant to the inhibitory effect of the toxin on EAAT3 activity. Biotinylation experiments indicated that the inhibitory effect of latrunculin was attributable to a decreased expression of the carrier on the membrane, while the toxin did not suppress the PKC-dependent increase in EAAT3 membrane abundance. Latrunculin A effects on EAAT3 were shared by cytochalasin D, a toxin that disorganizes actin filaments with a distinct mechanism of action. On the contrary, a small, but significant, increase of EAAT3 activity was observed upon incubation with jasplakinolide, a drug that stabilizes actin microfilaments. Also jasplakinolide, however, did not hinder phorbol-dependent stimulation of aspartate transport. Colchicine, a toxin that disrupts microtubules, also lowered EAAT3 activity without preventing transport stimulation by phorbols, while microtubule stabilization by paclitaxel led to an increase in aspartate transport. It is concluded that, in C6 cells, the PKC-mediated stimulatory effects on EAAT3 are cytoskeleton-independent, while in the absence of phorbols, the transporter is partially inhibited by the disorganization of either actin microfilaments or

  1. Isolation and Contraction of the Stress Fiber

    PubMed Central

    Katoh, Kazuo; Kano, Yumiko; Masuda, Michitaka; Onishi, Hirofumi; Fujiwara, Keigi

    1998-01-01

    Stress fibers were isolated from cultured human foreskin fibroblasts and bovine endothelial cells, and their contraction was demonstrated in vitro. Cells in culture dishes were first treated with a low-ionic-strength extraction solution and then further extracted using detergents. With gentle washes by pipetting, the nucleus and the apical part of cells were removed. The material on the culture dish was scraped, and the freed material was forced through a hypodermic needle and fractionated by sucrose gradient centrifugation. Isolated, free-floating stress fibers stained brightly with fluorescently labeled phalloidin. When stained with anti-α-actinin or anti-myosin, isolated stress fibers showed banded staining patterns. By electron microscopy, they consisted of bundles of microfilaments, and electron-dense areas were associated with them in a semiperiodic manner. By negative staining, isolated stress fibers often exhibited gentle twisting of microfilament bundles. Focal adhesion–associated proteins were also detected in the isolated stress fiber by both immunocytochemical and biochemical means. In the presence of Mg-ATP, isolated stress fibers shortened, on the average, to 23% of the initial length. The maximum velocity of shortening was several micrometers per second. Polystyrene beads on shortening isolated stress fibers rotated, indicating spiral contraction of stress fibers. Myosin regulatory light chain phosphorylation was detected in contracting stress fibers, and a myosin light chain kinase inhibitor, KT5926, inhibited isolated stress fiber contraction. Our study demonstrates that stress fibers can be isolated with no apparent loss of morphological features and that they are truly contractile organelle. PMID:9658180

  2. Vascular smooth muscle contraction evoked by cell volume modulation: role of the cytoskeleton network.

    PubMed

    Koltsova, Svetlana V; Gusakova, Svetlana V; Anfinogenova, Yana J; Baskakov, Mikhail B; Orlov, Sergei N

    2008-01-01

    Previously, we reported that hyposmotic swelling evoked transient vascular smooth muscle cell (SMC) contraction that was completely abolished by L-type Ca(2+) channel blockers. In contrast, sustained contraction revealed in hyper- and isoosmotically-shrunken SMCs was insensitive to L-type channel blockers and was diminished in Ca(2+)-free medium by only 30-50%. Several research groups reported cell volume-dependent cytoskeleton network rearrangements. This study examines the role of cytoskeleton proteins in cell volume-dependent contraction of endothelium-denuded vascular smooth muscle rings (VSMR) from the rat thoracic aorta. Hyperosmotic shrinkage and hyposmotic swelling were triggered by modulation of medium osmolality; isosmotic shrinkage was induced by VSMR transfer from hypo- to isosmotic medium. The relative content of globular (G) and fibrillar (F) actin was estimated by fluorescence microscopy. Hyperosmotic shrinkage and hyposmotic swelling led to elevation of the F-actin/G-actin ratio by 2.5- and 1.8-fold respectively. Contraction of shrunken and swollen VSMR was insensitive to modulators of microtubules such as vinblastine, colchicine and docetaxel. Microfilament disassembly by cytochalasin B resulted in dramatic attenuation of the maximal amplitude of contraction of hyperosmotically-shrunken and hyposmotically-swollen VSMR, and almost completely abolished the contraction triggered by isosmotic shrinkage. These data suggest that both L-type Ca(2+) channel-mediated contraction of swollen vascular SMC and Ca(2+)(o)-insensitive contractions of shrunken cells are triggered by reorganization of the microfilament network caused by elevation of the F-actin/G-actin ratio.

  3. The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding

    PubMed Central

    Marchiando, Amanda M.; Shen, Le; Graham, W. Vallen; Edelblum, Karen L.; Duckworth, Carrie A.; Guan, Yanfang; Montrose, Marshall H.; Turner, Jerrold R.; Watson, Alastair J.M.

    2011-01-01

    BACKGROUND & AIMS Tumor necrosis factor (TNF) increases intestinal epithelial cell shedding and apoptosis, potentially challenging the barrier between the gastrointestinal lumen and internal tissues. We investigated the mechanism of tight junction remodeling and barrier maintenance, as well as the roles of cytoskeletal regulatory molecules during TNF-induced shedding. METHODS We studied wild-type and transgenic mice that express the fluorescent-tagged proteins enhanced green fluorescent protein–occludin or monomeric red fluorescent protein1–ZO-1. After injection of high doses of TNF (7.5µg, i.p.), laparotomies were performed and segments of small intestine were opened to visualize the mucosa by video confocal microscopy. Pharmacologic inhibitors and knockout mice were used to determine the roles of caspase activation, actomyosin, and microtubule remodeling and membrane trafficking in epithelial shedding. RESULTS Changes detected included redistribution of the tight junction proteins ZO-1 and occluding to lateral membranes of shedding cells. These proteins ultimately formed a funnel around the shedding cell that defined the site of barrier preservation. Claudins, E-cadherin, F-actin, myosin II, Rho-associated kinase (ROCK), and myosin light chain kinase (MLCK) were also recruited to lateral membranes. Caspase activity, myosin motor activity, and microtubules were required to initiate shedding, whereas completion of the process required microfilament remodeling and ROCK, MLCK, and dynamin II activities. CONCLUSIONS Maintenance of the epithelial barrier during TNF-induced cell shedding is a complex process that involves integration of microtubules, microfilaments, and membrane traffic to remove apoptotic cells. This process is accompanied by redistribution of apical junctional complex proteins to form intercellular barriers between lateral membranes and maintain mucosal function. PMID:21237166

  4. Rat alveolar myofibroblasts acquire alpha-smooth muscle actin expression during bleomycin-induced pulmonary fibrosis.

    PubMed Central

    Vyalov, S. L.; Gabbiani, G.; Kapanci, Y.

    1993-01-01

    The majority of fibroblasts in alveolar septa are characterized by the presence of cytoplasmic bundles of microfilaments that contain cytoplasmic actin isoforms; these cells have been named contractile interstitial cells or V-type myofibroblasts. In the rat, they express desmin as intermediate filament protein. In this study, we explored the possibility that modulation and replication of such septal fibroblasts result in the appearance of alpha-smooth muscle (alpha-SM) actin-positive myofibroblasts, typical of lung fibrosis. Experimental pulmonary fibrosis was produced by a unique intratracheal instillation of bleomycin to 28 rats. Eight additional rats used as controls received the equivalent volume of saline. Paraffin and frozen sections of lungs were examined at days 1, 3, 5 and 7 after treatment. Microfilaments and intermediate filaments were stained using antibodies against total actin, alpha-SM actin, desmin, vimentin, keratin, and SM myosin. Electron microscopic labeling of desmin and alpha-SM actin using immunogold technique was done on Lowicryl K4M resin-embedded specimens. alpha-SM actin appeared in desmin-positive alveolar fibroblasts as early as 24 hours after intratracheal bleomycin instillation; the modulation of alpha-SM actin in these cells was preceded by a lymphomonocytic infiltration of alveolar septa. Twenty-four hours to 3 days after bleomycin administration, a proliferation of alveolar myofibroblasts occurred. Fibrosis with laying down of collagen fibers took place after the above mentioned cellular modifications. Our results support the view that septal fibroblastic cells can modulate into typical alpha-SM actin-containing myofibroblasts during experimental bleomycin-induced pulmonary fibrosis. In such a modulation a possible role of cytokines, particularly of transforming growth factor-beta, is considered. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14

  5. Effects of hypergravity on adipose-derived stem cell morphology, mechanical property and proliferation

    SciTech Connect

    Tavakolinejad, Alireza; Rabbani, Mohsen; Janmaleki, Mohsen

    2015-08-21

    Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation was assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells. - Highlights: • Hypergravity (10 g, 20 g, 40 g and 60 g) affects on adipose derived stem cells (ADSCs). • ADSCs after exposure to the hypergravity are more slender. • The height of ADSCs increases in all test groups comparing their control group. • Hypergravity decreases ADSCs modulus of elasticity and cell actin fiber content. • Hypergravity enhances proliferation rate of ADSCs.

  6. Traffic of secondary metabolites to cell surface in the red alga Laurencia dendroidea depends on a two-step transport by the cytoskeleton.

    PubMed

    Reis, Vanessa M; Oliveira, Louisi S; Passos, Raoni M F; Viana, Nathan B; Mermelstein, Cláudia; Sant'anna, Celso; Pereira, Renato C; Paradas, Wladimir C; Thompson, Fabiano L; Amado-Filho, Gilberto M; Salgado, Leonardo T

    2013-01-01

    In Laurencia dendroidea, halogenated secondary metabolites are primarily located in the vacuole named the corps en cerise (CC). For chemical defence at the surface level, these metabolites are intracellularly mobilised through vesicle transport from the CC to the cell periphery for posterior exocytosis of these chemicals. The cell structures involved in this specific vesicle traffic as well as the cellular structures related to the positioning and anchoring of the CC within the cell are not well known. Here, we aimed to investigate the role of cytoskeletal elements in both processes. Cellular and molecular assays were conducted to i) determine the ultrastructural apparatus involved in the vesicle traffic, ii) localise cytoskeletal filaments, iii) evaluate the role of different cytoskeletal filaments in the vesicle transport, iv) identify the cytoskeletal filaments responsible for the positioning and anchoring of the CC, and v) identify the transcripts related to cytoskeletal activity and vesicle transport. Our results show that microfilaments are found within the connections linking the CC to the cell periphery, playing an essential role in the vesicle traffic at these connections, which means a first step of the secondary metabolites transport to the cell surface. After that, the microtubules work in the positioning of the vesicles along the cell periphery towards specific regions where exocytosis takes place, which corresponds to the second step of the secondary metabolites transport to the cell surface. In addition, microtubules are involved in anchoring and positioning the CC to the cell periphery. Transcriptomic analysis revealed the expression of genes coding for actin filaments, microtubules, motor proteins and cytoskeletal accessory proteins. Genes related to vesicle traffic, exocytosis and membrane recycling were also identified. Our findings show, for the first time, that actin microfilaments and microtubules play an underlying cellular role in the

  7. Immunochemical demonstration of tropomyosin in the neurofibrillary pathology of Alzheimer's disease.

    PubMed Central

    Galloway, P. G.; Mulvihill, P.; Siedlak, S.; Mijares, M.; Kawai, M.; Padget, H.; Kim, R.; Perry, G.

    1990-01-01

    The focus of research on the neurofibrillary pathology (NFP) of Alzheimer disease has been not only to determine the component forming the paired helical filaments but also to determine whether they result from abnormal processes affecting a single protein. Therefore, although these studies have lead to controversy concerning the respective contribution of components of microtubules and neurofilaments, there has been essentially no consideration of whether other cytoskeletal systems might also be involved and of what are the common features for the incorporated components. Particularly relevant to this issue is our finding that several antisera raised to either skeletal or smooth muscle tropomyosin, a microfilament component, intensely recognize NFP. These antibodies continue to recognize NFP after affinity purification to tropomyosin or paired helical filament fractions. We show that the antibodies do not recognize NFP due to cross-reactivity with the previously identified NFP components related to neurofilaments and microtubules, tau, and MAP2, or neurofilament proteins because the antisera did not recognize these proteins on immunoblots or were not adsorbable by the proteins. Ultrastructural analysis of the immunoreaction showed that tropomyosin-related epitopes were clustered rather than uniformly distributed along paired helical and straight filaments. Although the distribution suggests that tropomyosin is an NFP-associated protein, its retention by paired helical and straight filaments after detergent extraction indicates that it is an integral component strongly and specifically associated with the filaments characteristic of NFP. These findings indicate that NFP involves the three primary neuronal cytoskeletal filament systems, microtubules, neurofilaments, as well as microfilaments, and therefore that NFP probably results from the reorganization of these normal filaments that interact to comprise the cytomatrix and may continue this interaction under the

  8. Ionic imbalance, in addition to molecular crowding, abates cytoskeletal dynamics and vesicle motility during hypertonic stress.

    PubMed

    Nunes, Paula; Roth, Isabelle; Meda, Paolo; Féraille, Eric; Brown, Dennis; Hasler, Udo

    2015-06-16

    Cell volume homeostasis is vital for the maintenance of optimal protein density and cellular function. Numerous mammalian cell types are routinely exposed to acute hypertonic challenge and shrink. Molecular crowding modifies biochemical reaction rates and decreases macromolecule diffusion. Cell volume is restored rapidly by ion influx but at the expense of elevated intracellular sodium and chloride levels that persist long after challenge. Although recent studies have highlighted the role of molecular crowding on the effects of hypertonicity, the effects of ionic imbalance on cellular trafficking dynamics in living cells are largely unexplored. By tracking distinct fluorescently labeled endosome/vesicle populations by live-cell imaging, we show that vesicle motility is reduced dramatically in a variety of cell types at the onset of hypertonic challenge. Live-cell imaging of actin and tubulin revealed similar arrested microfilament motility upon challenge. Vesicle motility recovered long after cell volume, a process that required functional regulatory volume increase and was accelerated by a return of extracellular osmolality to isosmotic levels. This delay suggests that, although volume-induced molecular crowding contributes to trafficking defects, it alone cannot explain the observed effects. Using fluorescent indicators and FRET-based probes, we found that intracellular ATP abundance and mitochondrial potential were reduced by hypertonicity and recovered after longer periods of time. Similar to the effects of osmotic challenge, isovolumetric elevation of intracellular chloride concentration by ionophores transiently decreased ATP production by mitochondria and abated microfilament and vesicle motility. These data illustrate how perturbed ionic balance, in addition to molecular crowding, affects membrane trafficking.

  9. Traffic of Secondary Metabolites to Cell Surface in the Red Alga Laurencia dendroidea Depends on a Two-Step Transport by the Cytoskeleton

    PubMed Central

    Reis, Vanessa M.; Oliveira, Louisi S.; Passos, Raoni M. F.; Viana, Nathan B.; Mermelstein, Cláudia; Sant'Anna, Celso; Pereira, Renato C.; Paradas, Wladimir C.; Thompson, Fabiano L.; Amado-Filho, Gilberto M.; Salgado, Leonardo T.

    2013-01-01

    In Laurencia dendroidea, halogenated secondary metabolites are primarily located in the vacuole named the corps en cerise (CC). For chemical defence at the surface level, these metabolites are intracellularly mobilised through vesicle transport from the CC to the cell periphery for posterior exocytosis of these chemicals. The cell structures involved in this specific vesicle traffic as well as the cellular structures related to the positioning and anchoring of the CC within the cell are not well known. Here, we aimed to investigate the role of cytoskeletal elements in both processes. Cellular and molecular assays were conducted to i) determine the ultrastructural apparatus involved in the vesicle traffic, ii) localise cytoskeletal filaments, iii) evaluate the role of different cytoskeletal filaments in the vesicle transport, iv) identify the cytoskeletal filaments responsible for the positioning and anchoring of the CC, and v) identify the transcripts related to cytoskeletal activity and vesicle transport. Our results show that microfilaments are found within the connections linking the CC to the cell periphery, playing an essential role in the vesicle traffic at these connections, which means a first step of the secondary metabolites transport to the cell surface. After that, the microtubules work in the positioning of the vesicles along the cell periphery towards specific regions where exocytosis takes place, which corresponds to the second step of the secondary metabolites transport to the cell surface. In addition, microtubules are involved in anchoring and positioning the CC to the cell periphery. Transcriptomic analysis revealed the expression of genes coding for actin filaments, microtubules, motor proteins and cytoskeletal accessory proteins. Genes related to vesicle traffic, exocytosis and membrane recycling were also identified. Our findings show, for the first time, that actin microfilaments and microtubules play an underlying cellular role in the

  10. Altering the cellular mechanical force balance results in integrated changes in cell, cytoskeletal and nuclear shape

    NASA Technical Reports Server (NTRS)

    Sims, J. R.; Karp, S.; Ingber, D. E.

    1992-01-01

    Studies were carried out with capillary endothelial cells cultured on fibronectin (FN)-coated dishes in order to analyze the mechanism of cell and nuclear shape control by extracellular matrix (ECM). To examine the role of the cytoskeleton in shape determination independent of changes in transmembrane osmotic pressure, membranes of adherent cells were permeabilized with saponin (25 micrograms/ml) using a buffer that maintains the functional integrity of contractile microfilaments. Real-time videomicroscopic studies revealed that addition of 250 microM ATP resulted in time-dependent retraction and rounding of permeabilized cells and nuclei in a manner similar to that observed in intact living cells following detachment using trypsin-EDTA. Computerized image analysis confirmed that permeabilized cells remained essentially rigid in the absence of ATP and that retraction was stimulated in a dose-dependent manner as the concentration of ATP was raised from 10 to 250 microM. Maximal rounding occurred by 30 min with projected cell and nuclear areas being reduced by 69 and 41%, respectively. ATP-induced rounding was also accompanied by a redistribution of microfilaments resulting in formation of a dense net of F-actin surrounding retracted nuclei. Importantly, ATP-stimulated changes in cell, cytoskeletal, and nuclear form were prevented in permeabilized cells using a synthetic myosin peptide (IRICRKG) that has been previously shown to inhibit actomyosin filament sliding in muscle. In contrast, both the rate and extent of cell and nuclear rounding were increased in permeabilized cells exposed to ATP when the soluble FN peptide, GRGDSP, was used to dislodge immobilized FN from cell surface integrin receptors.(ABSTRACT TRUNCATED AT 250 WORDS).

  11. Rab11 and Actin Cytoskeleton Participate in Giardia lamblia Encystation, Guiding the Specific Vesicles to the Cyst Wall

    PubMed Central

    Castillo-Romero, Araceli; Leon-Avila, Gloria; Wang, Ching C.; Perez Rangel, Armando; Camacho Nuez, Minerva; Garcia Tovar, Carlos; Ayala-Sumuano, Jorge Tonatiuh; Luna-Arias, Juan Pedro; Hernandez, Jose Manuel

    2010-01-01

    Background Giardia passes through two stages during its life cycle, the trophozoite and the cyst. Cyst formation involves the synthesis of cyst wall proteins (CWPs) and the transport of CWPs into encystation-specific vesicles (ESVs). Active vesicular trafficking is essential for encystation, but the molecular machinery driving vesicular trafficking remains unknown. The Rab proteins are involved in the targeting of vesicles to several intracellular compartments through their association with cytoskeletal motor proteins. Methodology and Principal Findings In this study, we found a relationship between Rab11 and the actin cytoskeleton in CWP1 transport. Confocal microscopy showed Rab11 was distributed throughout the entire trophozoite, while in cysts it was translocated to the periphery of the cell, where it colocalized with ESVs and microfilaments. Encystation was also accompanied by changes in rab11 mRNA expression. To evaluate the role of microfilaments in encystation, the cells were treated with latrunculin A. Scanning electron microscopy showed this treatment resulted in morphological damages to encysted parasites. The intensity of fluorescence-labeled Rab11 and CWP1 in ESVs and cyst walls was reduced, and rab11 and cwp1 mRNA levels were down-regulated. Furthermore, knocking down Rab11 with a hammerhead ribozyme resulted in an up to 80% down-regulation of rab11 mRNA. Although this knockdown did not appear lethal for trophozoites and did not affect cwp1 expression during the encystation, confocal images showed CWP1 was redistributed throughout the cytosol. Conclusions and Significance Our results indicate that Rab11 participates in the early and late encystation stages by regulating CWP1 localization and the actin-mediated transport of ESVs towards the periphery. In addition, alterations in the dynamics of actin affected rab11 and cwp1 expression. Our results provide new information about the molecules involved in Giardia encystation and suggest that Rab11 and

  12. The Role of the Cytoskeleton and Myosin-Vc in the Targeting of KCa3.1 to the Basolateral Membrane of Polarized Epithelial Cells

    PubMed Central

    Farquhar, Rachel E.; Rodrigues, Ely; Hamilton, Kirk L.

    2017-01-01

    Understanding the targeting of KCa3.1 to the basolateral membrane (BLM) of polarized epithelial cells is still emerging. Here, we examined the role of the cytoskeleton (microtubules and microfilaments) and Myosin-Vc (Myo-Vc) in the targeting of KCa3.1 in Fischer rat thyroid epithelial cells. We used a pharmacological approach with immunoblot (for the BLM expression of KCa3.1), Ussing chamber (functional BLM expression of KCa3.1) and siRNA experiments. The actin cytoskeleton inhibitors cytochalasin D (10 μM, 5 h) and latrunculin A (10 μM, 5 h) reduced the targeting of KCa3.1 to the BLM by 88 ± 4 and 70 ± 5%, respectively. Colchicine (10 μM, 5 h) a microtubule inhibitor reduced targeting of KCa3.1 to the BLM by 63 ± 7% and decreased 1-EBIO-stimulated KCa3.1 K+ current by 46 ± 18%, compared with control cells. ML9 (10 μM, 5 h), an inhibitor of myosin light chain kinase, decreased targeting of the channel by 83 ± 2% and reduced K+ current by 54 ± 8% compared to control cells. Inhibiting Myo-V with 2,3-butanedione monoxime (10 mM, 5 h) reduced targeting of the channel to the BLM by 58 ± 5% and decreased the stimulated current of KCa3.1 by 48 ± 12% compared with control cells. Finally, using siRNA for Myo-Vc, we demonstrated that knockdown of Myo-Vc reduced the BLM expression of KCa3.1 by 44 ± 7% and KCa3.1 K+ current by 1.04 ± 0.14 μA compared with control cells. These data suggest that the microtubule and microfilament cytoskeleton and Myo-Vc are critical for the targeting of KCa3.1. PMID:28101059

  13. Nuclear Function of Subclass I Actin-Depolymerizing Factor Contributes to Susceptibility in Arabidopsis to an Adapted Powdery Mildew Fungus.

    PubMed

    Inada, Noriko; Higaki, Takumi; Hasezawa, Seiichiro

    2016-03-01

    Actin-depolymerizing factors (ADFs) are conserved proteins that function in regulating the structure and dynamics of actin microfilaments in eukaryotes. In this study, we present evidence that Arabidopsis (Arabidopsis thaliana) subclass I ADFs, particularly ADF4, functions as a susceptibility factor for an adapted powdery mildew fungus. The null mutant of ADF4 significantly increased resistance against the adapted powdery mildew fungus Golovinomyces orontii. The degree of resistance was further enhanced in transgenic plants in which the expression of all subclass I ADFs (i.e. ADF1-ADF4) was suppressed. Microscopic observations revealed that the enhanced resistance of adf4 and ADF1-4 knockdown plants (ADF1-4Ri) was associated with the accumulation of hydrogen peroxide and cell death specific to G. orontii-infected cells. The increased resistance and accumulation of hydrogen peroxide in ADF1-4Ri were suppressed by the introduction of mutations in the salicylic acid- and jasmonic acid-signaling pathways but not by a mutation in the ethylene-signaling pathway. Quantification by microscopic images detected an increase in the level of actin microfilament bundling in ADF1-4Ri but not in adf4 at early G. orontii infection time points. Interestingly, complementation analysis revealed that nuclear localization of ADF4 was crucial for susceptibility to G. orontii. Based on its G. orontii-infected-cell-specific phenotype, we suggest that subclass I ADFs are susceptibility factors that function in a direct interaction between the host plant and the powdery mildew fungus.

  14. Structure of the F–actin–tropomyosin complex

    PubMed Central

    von der Ecken, Julian; Müller, Mirco; Lehman, William; Manstein, Dietmar J.; Penczek, Pawel A.; Raunser, Stefan

    2015-01-01

    Filamentous actin (F-actin) is the major protein of muscle thin filaments, and actin microfilaments are the main component of the eukaryotic cytoskeleton. Mutations in different actin isoforms lead to early-onset autosomal dominant non-syndromic hearing loss1, familial thoracic aortic aneurysms and dissections2, and multiple variations of myopathies3. In striated muscle fibres, the binding of myosin motors to actin filaments is mainly regulated by tropomyosin and troponin4,5. Tropomyosin also binds to F-actin in smooth muscle and in non-muscle cells and stabilizes and regulates the filaments there in the absence of troponin6. Although crystal structures for monomeric actin (G-actin) are available7, a high-resolution structure of F-actin is still missing, hampering our understanding of how disease-causing mutations affect the function of thin muscle filaments and microfilaments. Here we report the three-dimensional structure of F-actin at a resolution of 3.7 ångstroms in complex with tropomyosin at a resolution of 6.5ångstroms, determined by electron cryomicroscopy. The structure reveals that the D-loop is ordered and acts as a central region for hydrophobic and electrostatic interactions that stabilize the F-actin filament. We clearly identify the density corresponding to ADP and Mg2+ and explain the possible effect of prominent disease-causing mutants. A comparison of F-actin with G-actin reveals the conformational changes during filament formation and identifies the D-loop as their key mediator. We also confirm that negatively charged tropomyosin interacts with a positively charged groove on F-actin. Comparison of the position of tropomyosin in F-actin–tropomyosin with its position in our previously determined actin–tropomyosin–myosin structure8 reveals a myosin-induced transition of tropomyosin. Our results allow us to understand the role of individual mutations in the genesis of actin- and tropomyosin-related diseases and will serve as a strong

  15. Some structures and processes of human epithelial cells involved in uptake of enterohemorrhagic Escherichia coli O157:H7 strains.

    PubMed Central

    Oelschlaeger, T A; Barrett, T J; Kopecko, D J

    1994-01-01

    Several enterohemorrhagic Escherichia coli (EHEC) strains of serotype O157:H7 isolated from patients with hemorrhagic colitis, ischemic colitis, or hemolytic uremic syndrome were all found to be able to invade certain human epithelial cell lines in vitro. Their ability to gain entry into epithelial cells was compared with those of known invasive Shigella flexneri and Salmonella typhi strains and the noninvasive E. coli strain HB101 in invasion assays utilizing gentamicin to kill extracellular bacteria. All EHEC strains under investigation were efficiently internalized into T24 bladder and HCT-8 ileocecal cells. In striking contrast to shigellae, the same EHEC strains were not taken up into human embryonic intestinal INT407 cells or HEp-2 cells any more than the noninvasive E. coli strain HB101. The mechanism(s) of EHEC internalization was characterized by comparing the invasion efficiencies in the absence and presence of a variety of inhibitors acting on structures and processes of prokaryotic or eukaryotic cells. Also, wild-type, plasmid-containing EHEC strains were compared with their plasmid-cured isogenic derivative strains to determine if plasmid genes affect invasion ability. Plasmid-cured EHEC invaded as well as wild-type EHEC, indicating that invasion ability is chromosomally encoded. Inhibition of bacterial protein synthesis by simultaneous addition of bacteria and chloramphenicol to the monolayer blocked EHEC uptake dramatically, suggesting the presence of an invasion protein(s) with a short half-life. Studies utilizing inhibitors which act on eukaryotic cells demonstrated a strong dependence on microfilaments in the process of uptake of all EHEC strains into both T24 and HCT-8 cells. In general, depolymerization of microtubules as well as inhibition of receptor-mediated endocytosis reduced the efficiency of EHEC invasion of T24 cells, whereas interference with endosome acidification reduced EHEC entry into only HCT-8 cells. Taxol-induced stabilization of

  16. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis

    NASA Technical Reports Server (NTRS)

    Ingber, D. E.; Prusty, D.; Sun, Z.; Betensky, H.; Wang, N.

    1995-01-01

    Capillary endothelial cells can be switched between growth and differentiation by altering cell-extracellular matrix interactions and thereby, modulating cell shape. Studies were carried out to determine when cell shape exerts its growth-regulatory influence during cell cycle progression and to explore the role of cytoskeletal structure and mechanics in this control mechanism. When G0-synchronized cells were cultured in basic fibroblast growth factor (FGF)-containing defined medium on dishes coated with increasing densities of fibronectin or a synthetic integrin ligand (RGD-containing peptide), cell spreading, nuclear extension, and DNA synthesis all increased in parallel. To determine the minimum time cells must be adherent and spread on extracellular matrix (ECM) to gain entry into S phase, cells were removed with trypsin or induced to retract using cytochalasin D at different times after plating. Both approaches revealed that cells must remain extended for approximately 12-15 h and hence, most of G1, in order to enter S phase. After this restriction point was passed, normally 'anchorage-dependent' endothelial cells turned on DNA synthesis even when round and in suspension. The importance of actin-containing microfilaments in shape-dependent growth control was confirmed by culturing cells in the presence of cytochalasin D (25-1000 ng ml-1): dose-dependent inhibition of cell spreading, nuclear extension, and DNA synthesis resulted. In contrast, induction of microtubule disassembly using nocodazole had little effect on cell or nuclear spreading and only partially inhibited DNA synthesis. Interestingly, combination of nocodazole with a suboptimal dose of cytochalasin D (100 ng ml-1) resulted in potent inhibition of both spreading and growth, suggesting that microtubules are redundant structural elements which can provide critical load-bearing functions when microfilaments are partially compromised. Similar synergism between nocodazole and cytochalasin D was observed

  17. Physalin B not only inhibits the ubiquitin-proteasome pathway but also induces incomplete autophagic response in human colon cancer cells in vitro

    PubMed Central

    Ma, Yi-ming; Han, Wei; Li, Jia; Hu, Li-hong; Zhou, Yu-bo

    2015-01-01

    Aim: To investigate the effects of physalin B insolated from Physalis divericata on human colon cancer cells in vitro and its anticancer mechanisms. Methods: Human HCT116 colon cancer cell line was tested. Cell viability and apoptosis were detected, and relevant proteins were measured using Western blot analyses. Autophagosomes were observed in stable GFP-LC3 HCT116 cells. Localization of autophagosomes and lysosomes was evaluated in GFP-LC3/RFP-LAMP1-co-transfected cells. Microtubules and F-actin microfilaments were observed with confocal microscope. Mitochondrial ROS (mito-ROS) was detected with flow cytometry in the cells stained with MitoSox dye. Results: Physalin B inhibited the viability of HCT116 cells with an IC50 value of 1.35 μmol/L. Treatment of the cells with physalin B (2.5–10 μmol/L) induced apoptosis and the cleavage of PARP and caspase-3. Meanwhile, physalin B treatment induced autophagosome formation, and accumulation of LC3-II and p62, but decreased Beclin 1 protein level. Marked changes of microtubules and F-actin microfilaments were observed in physalin B-treated cells, which led to the blockage of co-localization of autophagosomes and lysosomes. Physalin B treatment dose-dependently increased the phosphorylation of p38, ERK and JNK in the cells, whereas the p38 inhibitor SB202190, ERK inhibitor U0126 or JNK inhibitor SP600125 could partially reduce physalin B-induced PARP cleavage and p62 accumulation. Moreover, physalin B treatment dose-dependently increased mito-ROS production in the cells, whereas the ROS scavenger NAC could reverse physalin B-induced effects, including incomplete autophagic response, accumulation of ubiquitinated proteins, changes of microtubules and F-actin, activation of p38, ERK and JNK, as well as cell death and apoptosis. Conclusion: Physalin B induces mito-ROS, which not only inhibits the ubiquitin-proteasome pathway but also induces incomplete autophagic response in HCT116 cells in vitro. PMID:25832431

  18. Cellular basis of gravity resistance in plants

    NASA Astrophysics Data System (ADS)

    Hoson, Takayuki; Matsumoto, Shouhei; Inui, Kenichi; Zhang, Yan; Soga, Kouichi; Wakabayashi, Kazuyuki; Hashimoto, Takashi

    Mechanical resistance to the gravitational force is a principal gravity response in plants distinct from gravitropism. In the final step of gravity resistance, plants increase the rigidity of their cell walls via modifications to the cell wall metabolism and apoplastic environment. We studied cellular events that are related to the cell wall changes under hypergravity conditions produced by centrifugation. Hypergravity induced reorientation of cortical microtubules from transverse to longitudinal directions in epidermal cells of stem organs. In Arabidopsis tubulin mutants, the percentage of cells with longitudinal microtubules was high even at 1 g, and it was further increased by hypergravity. Hypocotyls of tubulin mutants also showed either left-handed or right-handed helical growth at 1 g, and the degree of twisting phenotype was intensified under hypergravity conditions. The left-handed helical growth mutants had right-handed microtubule arrays, whereas the right-handed mutant had left-handed arrays. There was a close correlation between the alignment angle of epidermal cell files and the alignment of cortical microtubules. Gadolinium ions suppressed both the twisting phenotype and reorientation of microtubules in tubulin mutants. These results support the hypothesis that cortical microtubules play an es-sential role in maintenance of normal growth phenotype against the gravitational force, and suggest that mechanoreceptors are involved in modifications to morphology and orientation of microtubule arrays by hypergravity. Actin microfilaments, in addition to microtubules, may be involved in gravity resistance. The nucleus of epidermal cells of azuki bean epicotyls, which is present almost in the center of the cell at 1 g, was displaced to the cell bottom by increasing the magnitude of gravity. Cytochalasin D stimulated the sedimentation by hypergravity of the nu-cleus, suggesting that the positioning of the nucleus is regulated by actin microfilaments, which is

  19. An update on the pharmacokinetics and pharmacodynamics of alisertib, a selective Aurora kinase A inhibitor.

    PubMed

    Durlacher, Cameron T; Li, Zhi-Ling; Chen, Xiao-Wu; He, Zhi-Xu; Zhou, Shu-Feng

    2016-06-01

    Human Aurora kinases, including Aurora kinase A (AURKA), B (AURKB), and C (AURKC), play an essential role in mitotic events such as monitoring of the mitotic checkpoint, creation of bipolar mitotic spindle and alignment of centrosomes on it, also regulating centrosome separation, bio-orientation of chromosomes and cytokinesis. AURKA and AURKB are key regulators of mitosis and centrosome via polymerizing microfilaments and controlling chromatid segregation. In particular, AURKA plays critical roles in the regulation of mitotic entry, centrosome function, bipolar spindle assembly, and chromosome segregation. AURKA has been found to be overexpressed in various solid and haematological cancers and has been linked with poor prognosis. Its important role in cancer initiation, growth, and metastasis has brought the focus to search for potent and selective AURKA inhibitors for cancer treatment. MLN8237, also known as alisertib, is one selective AURKA inhibitor that has shown remarkable anticancer effects in preclinical studies. Alisertib exhibits favourable pharmacokinetic properties. Alisertib has generally showed good partial response rates of 4-52% and good safety profiles in Phase I and II trials when it is solely administered as well as combined with cytotoxic chemotherapeutic drugs. Recently, the multicentre, randomized Phase III study of alisertib in patients with relapsed or refractory peripheral T-cell lymphoma has been discontinued due to unsatisfactory efficacy. The low risk of side effects, accessibility, and effectiveness of alisertib makes it a new promising anticancer therapy and further mechanistic and clinical studies are warranted.

  20. Treatment of rabbit growth plate injuries with oriented ECM scaffold and autologous BMSCs

    PubMed Central

    Li, Wenchao; Xu, Ruijiang; Huang, Jiangxiang; Bao, Xing; Zhao, Bin

    2017-01-01

    Tissue-engineered technology has provided a promising method for the repair of growth plate injuries using biocompatible and biodegradable scaffolds and appropriate cells. The aim of this study was to fabricate oriented ECM scaffolds to imitate the material and structure of a natural growth plate and to investigate whether BMSCs in a scaffold could prevent the formation of bone bridges in an injured growth plate. We developed a natural, acellular and oriented scaffold derived from a growth plate. The oriented scaffold was fabricated using new freeze-drying technology and by cross-linking the microfilaments in the growth plate. From histological examination, the scaffold contained most of the ECM components including GAG and collagen II without cell DNA fragments, and SEM revealed that oriented scaffold had a uniform aperture in the transverse plane and columnar structure in length plane. Cytotoxicity testing with MTT showed no cytotoxic effect of the scaffold extracts on BMSCs. Autogenous BMSCs in oriented scaffolds promoted the regeneration of neogenetic growth plate when repairing an injured growth plate and prevent the formation of bone bridges to reduce the angular deformity and length discrepancy in the proximal tibia in rabbits. The well-characterized ECM-derived oriented growth plate scaffold shows potential for the repair of injured growth plates in young rabbits. PMID:28266598

  1. Actin cytoskeleton demonstration in Trichomonas vaginalis and in other trichomonads.

    PubMed

    Brugerolle, G; Bricheux, G; Coffe, G

    1996-01-01

    The flagellate form of Trichomonas vaginalis (T v) transforms to amoeboid cells upon adherence to converslips. They grow and their nuclei divide without undergoing cytokinesis, yielding giant cells and a monolayer of T v F-actin was demonstrated in Trichomonas vaginalis by fluorescence microscopy using phalloidin and an anti-actin mAb which labelled the cytoplasm of both the flagellate and amoeboid forms. Comparative electrophoresis and immunoblotting established that the actin band has the same 42 kDa as muscle actin, but 2-D electrophoresis resolved the actin band into four spots; the two major spots observed were superimposable with major muscle actin isoforms. Electron microscopy demonstrated an ectoplasmic microfibrillar layer along the adhesion zone of amoeboid T v adhering to coverslips. Immunogold staining, using anti-actin monoclonal antibodies demonstrated that this layer was mainly composed of actin microfilaments. A comparative immunoblotting study comprising seven trichomonad species showed that all trichomonads studied expressed actin. The mAb Sigma A-4700 specific for an epitope on the actin C-terminal sequence labelled only actin of Trichomonas vaginalis, Tetratrichomonas gallinarum. Trichomitus batrachorum and Hypotrichomonas acosta, but not the actin of Tritrichomonas foetus, Tritrichomonas augusta and Monocercomonas sp. This discrimination between a 'trichomonas branch' and a 'tritrichomonas branch' is congruent with inferred sequence phylogeny from SSu rRNA and with classical phylogeny of trichomonads.

  2. Measuring integrated cellular mechanical stress response at focal adhesions by optical tweezers

    NASA Astrophysics Data System (ADS)

    Bordeleau, François; Bessard, Judicael; Marceau, Normand; Sheng, Yunlong

    2011-09-01

    The ability of cells to sustain mechanical stress is largely modulated by the cytoskeleton. We present a new application of optical tweezers to study cell's mechanical properties. We trap a fibronectin-coated bead attached to an adherent H4II-EC3 rat hepatoma cell in order to apply the force to the cell surface membrane. The bead position corresponding to the cell's local mechanical response at focal adhesions is measured with a quadrant detector. We assessed the cell response by tracking the evolution of the equilibrium force for 40 cells selected at random and selected a temporal window to assess the cell initial force expression at focal adhesions. The mean value of the force within this time window over 40 randomly selected bead/cell bounds was 52.3 pN. Then, we assessed the responses of the cells with modulation of the cytoskeletons, namely the ubiquitous actin-microfilaments and microtubules, plus the differentiation-dependent keratin intermediate filaments. Notably, a destabilization of the first two networks led to around 50 and 30% reductions in the mean equilibrium forces, respectively, relative to untreated cells, whereas a loss of the third one yielded a 25% increase. The differences in the forces from untreated and treated cells are resolved by the optical tweezers experiment.

  3. Thermally Driven and Cytoskeletal-Assisted Dynamics of the Mitochondrial Reticulum

    NASA Astrophysics Data System (ADS)

    Knowles, Michelle K.; Marcus, Andrew H.

    2003-05-01

    We report Fourier imaging correlation spectroscopy (FICS) and digital video fluorescence microscopy (DVFM) measurements of the dynamics of the mitochondrial reticulum in living osteosarcoma cells. Mitochondrial dynamics are strongly influenced by interactions with cytoskeletal filaments and their associated motor proteins, which lead to complex multi-exponential relaxations that occur over a wide range of spatial and temporal scales. The cytoskeleton consists of an interconnected polymer network whose primary components are microfilaments (actin) and microtubules (tubulin). These filaments work with motor proteins to translate organelles through the cell. We studied the dynamics of osteosarcoma cells labeled with red fluorescent protein in the mitochondrial matrix space using DVFM and FICS. Cells were then treated with cytoskeletal destabilizing drugs. Analysis of microscopy data allows for us to determine whether dynamic processes are diffusive or driven (by the cytoskeleton or collective dynamics). In FICS experiments, the control cells exhibit a unique pattern of dynamics that are then simplified when the cytoskeleton is depolymerized. Upon depolymerization, the dynamics of the organelle appear primarily diffusive.

  4. Actin Filaments Are Involved in the Coupling of V0-V1 Domains of Vacuolar H+-ATPase at the Golgi Complex*

    PubMed Central

    Serra-Peinado, Carla; Sicart, Adrià; Llopis, Juan; Egea, Gustavo

    2016-01-01

    We previously reported that actin-depolymerizing agents promote the alkalization of the Golgi stack and the trans-Golgi network. The main determinant of acidic pH at the Golgi is the vacuolar-type H+-translocating ATPase (V-ATPase), whose V1 domain subunits B and C bind actin. We have generated a GFP-tagged subunit B2 construct (GFP-B2) that is incorporated into the V1 domain, which in turn is coupled to the V0 sector. GFP-B2 subunit is enriched at distal Golgi compartments in HeLa cells. Subcellular fractionation, immunoprecipitation, and inversal FRAP experiments show that the actin depolymerization promotes the dissociation of V1-V0 domains, which entails subunit B2 translocation from Golgi membranes to the cytosol. Moreover, molecular interaction between subunits B2 and C1 and actin were detected. In addition, Golgi membrane lipid order disruption by d-ceramide-C6 causes Golgi pH alkalization. We conclude that actin regulates the Golgi pH homeostasis maintaining the coupling of V1-V0 domains of V-ATPase through the binding of microfilaments to subunits B and C and preserving the integrity of detergent-resistant membrane organization. These results establish the Golgi-associated V-ATPase activity as the molecular link between actin and the Golgi pH. PMID:26872971

  5. Temporal changes in cytoskeletal organisation within isolated chondrocytes quantified using a novel image analysis technique.

    PubMed

    Knight, M M; Idowu, B D; Lee, D A; Bader, D L

    2001-05-01

    This paper examines temporal changes in the organisation of the cytoskeleton within isolated articular chondrocytes cultured for up to 7 days in agarose constructs. Fluorescent labelling and confocal microscopy were employed to visualise microtubules (MT), vimentin intermediate filaments (VIF) and actin microfilaments (AMF). To quantify the degree of cytoskeletal organisation within populations of cells, a novel image analysis technique has been developed and fully characterised. Organisation was quantified in terms of an Edge Index, which reflects the density of 'edges' present within the confocal images as defined by a Sobel digital filter. This parameter was shown to be independent of image intensity and, for all three cytoskeletal components, was validated statistically against a visual assessment of organisation. Both MT and VIF exhibited fibrous networks extending throughout the cytoplasm, while AMF appeared as punctate units associated with the cell membrane. The use of the Edge Index parameter revealed statistical significant temporal variation, in particular associated with VIF and AMF. These findings indicate the possibility of cytoskeletal mediated temporal variation in many aspects of cell behaviour following isolation from the intact tissue. Furthermore, the image analysis techniques are likely to be useful for future studies aiming to quantify changes in cytoskeletal organisation.

  6. Impact of Phenylpropanoid Compounds on Heat Stress Tolerance in Carrot Cell Cultures

    PubMed Central

    Commisso, Mauro; Toffali, Ketti; Strazzer, Pamela; Stocchero, Matteo; Ceoldo, Stefania; Baldan, Barbara; Levi, Marisa; Guzzo, Flavia

    2016-01-01

    The phenylpropanoid and flavonoid families include thousands of specialized metabolites that influence a wide range of processes in plants, including seed dispersal, auxin transport, photoprotection, mechanical support and protection against insect herbivory. Such metabolites play a key role in the protection of plants against abiotic stress, in many cases through their well-known ability to inhibit the formation of reactive oxygen species (ROS). However, the precise role of specific phenylpropanoid and flavonoid molecules is unclear. We therefore investigated the role of specific anthocyanins (ACs) and other phenylpropanoids that accumulate in carrot cells cultivated in vitro, focusing on their supposed ability to protect cells from heat stress. First we characterized the effects of heat stress to identify quantifiable morphological traits as markers of heat stress susceptibility. We then fed the cultures with precursors to induce the targeted accumulation of specific compounds, and compared the impact of heat stress in these cultures and unfed controls. Data modeling based on projection to latent structures (PLS) regression revealed that metabolites containing coumaric or caffeic acid, including ACs, correlate with less heat damage. Further experiments suggested that one of the cellular targets damaged by heat stress and protected by these metabolites is the actin microfilament cytoskeleton. PMID:27713760

  7. Automorphosis of higher plants on a 3-D clinostat

    NASA Astrophysics Data System (ADS)

    Hoson, T.; Kamisaka, S.; Yamashita, M.; Masuda, Y.

    On a three-dimensional (3-D) clinostat, various plant organs developed statocytes capable of responding to the gravity vector. The graviresponse of primary roots of garden cress and maize grown on the clinostat was the same as the control roots, whereas that of maize coleoptiles was reduced. When maize seedlings were grown in the presence of 10^-4 M gibberellic acid and kinetin, the graviresponse of both roots and shoots was suppressed. The corresponding suppression of amyloplast development was observed in the clinostatted and the hormone-treated seedlings. Maize roots and shoots showed spontaneous curvatures in different portions on the 3-D clinostat. The hormone treatment did not significantly influence such an automorphic curvature. When the root cap was removed, maize roots did not curve gravitropically. However, the removal suppressed the automorphic curvatures only slightly. On the other hand, the removal of coleoptile tip did not influence its graviresponse, whereas the spontaneous curvature of decapitated coleoptiles on the clinostat was strongly suppressed. Also, cytochalasin B differently affected the gravitropic and the automorphic curvatures of maize roots and shoots. From these results it is concluded that the graviperception and the early processes of signal transmission are unnecessary for automorphoses under simulated microgravity conditions. Moreover, the results support the view that the amyloplasts act as statoliths probably via an interaction with microfilaments.

  8. Combination anti-CD74 (milatuzumab) and anti-CD20 (rituximab) monoclonal antibody therapy has in vitro and in vivo activity in mantle cell lymphoma

    PubMed Central

    Alinari, Lapo; Yu, Bo; Christian, Beth A.; Yan, Fengting; Shin, Jungook; Lapalombella, Rosa; Hertlein, Erin; Lustberg, Mark E.; Quinion, Carl; Zhang, Xiaoli; Lozanski, Gerard; Muthusamy, Natarajan; Prætorius-Ibba, Mette; O'Connor, Owen A.; Goldenberg, David M.; Byrd, John C.; Blum, Kristie A.

    2011-01-01

    Mantle cell lymphoma (MCL) is an aggressive B-cell malignancy with a median survival of 3 years despite chemoimmunotherapy. Rituximab, a chimeric anti–CD20 monoclonal antibody (mAb), has shown only modest activity as single agent in MCL. The humanized mAb milatuzumab targets CD74, an integral membrane protein linked with promotion of B-cell growth and survival, and has shown preclinical activity against B-cell malignancies. Because rituximab and milatuzumab target distinct antigens and potentially signal through different pathways, we explored a preclinical combination strategy in MCL. Treatment of MCL cell lines and primary tumor cells with immobilized milatuzumab and rituximab resulted in rapid cell death, radical oxygen species generation, and loss of mitochondrial membrane potential. Cytoskeletal distrupting agents significantly reduced formation of CD20/CD74 aggregates, cell adhesion, and cell death, highlighting the importance of actin microfilaments in rituximab/milatuzumab–mediated cell death. Cell death was independent of caspase activation, Bcl-2 family proteins or modulation of autophagy. Maximal inhibition of p65 nuclear translocation was observed with combination treatment, indicating disruption of the NF-κB pathway. Significant in vivo therapeutic activity of combination rituximab and milatuzumab was demonstrated in a preclinical model of MCL. These data support clinical evaluation of combination milatuzumab and rituximab therapy in MCL. PMID:21228331

  9. Combination anti-CD74 (milatuzumab) and anti-CD20 (rituximab) monoclonal antibody therapy has in vitro and in vivo activity in mantle cell lymphoma.

    PubMed

    Alinari, Lapo; Yu, Bo; Christian, Beth A; Yan, Fengting; Shin, Jungook; Lapalombella, Rosa; Hertlein, Erin; Lustberg, Mark E; Quinion, Carl; Zhang, Xiaoli; Lozanski, Gerard; Muthusamy, Natarajan; Prætorius-Ibba, Mette; O'Connor, Owen A; Goldenberg, David M; Byrd, John C; Blum, Kristie A; Baiocchi, Robert A

    2011-04-28

    Mantle cell lymphoma (MCL) is an aggressive B-cell malignancy with a median survival of 3 years despite chemoimmunotherapy. Rituximab, a chimeric anti-CD20 monoclonal antibody (mAb), has shown only modest activity as single agent in MCL. The humanized mAb milatuzumab targets CD74, an integral membrane protein linked with promotion of B-cell growth and survival, and has shown preclinical activity against B-cell malignancies. Because rituximab and milatuzumab target distinct antigens and potentially signal through different pathways, we explored a preclinical combination strategy in MCL. Treatment of MCL cell lines and primary tumor cells with immobilized milatuzumab and rituximab resulted in rapid cell death, radical oxygen species generation, and loss of mitochondrial membrane potential. Cytoskeletal distrupting agents significantly reduced formation of CD20/CD74 aggregates, cell adhesion, and cell death, highlighting the importance of actin microfilaments in rituximab/milatuzumab-mediated cell death. Cell death was independent of caspase activation, Bcl-2 family proteins or modulation of autophagy. Maximal inhibition of p65 nuclear translocation was observed with combination treatment, indicating disruption of the NF-κB pathway. Significant in vivo therapeutic activity of combination rituximab and milatuzumab was demonstrated in a preclinical model of MCL. These data support clinical evaluation of combination milatuzumab and rituximab therapy in MCL.

  10. Nanofiber Alignment Regulates NIH3T3 Cell Orientation and Cytoskeletal Gene Expression on Electrospun PCL+Gelatin Nanofibers

    PubMed Central

    Fee, Timothy; Surianarayanan, Swetha; Downs, Crawford; Zhou, Yong; Berry, Joel

    2016-01-01

    To examine the influence of substrate topology on the behavior of fibroblasts, tissue engineering scaffolds were electrospun from polycaprolactone (PCL) and a blend of PCL and gelatin (PCL+Gel) to produce matrices with both random and aligned nanofibrous orientations. The addition of gelatin to the scaffold was shown to increase the hydrophilicity of the PCL matrix and to increase the proliferation of NIH3T3 cells compared to scaffolds of PCL alone. The orientation of nanofibers within the matrix did not have an effect on the proliferation of adherent cells, but cells on aligned substrates were shown to elongate and align parallel to the direction of substrate fiber alignment. A microarray of cyotoskeleton regulators was probed to examine differences in gene expression between cells grown on an aligned and randomly oriented substrates. It was found that transcriptional expression of eight genes was statistically different between the two conditions, with all of them being upregulated in the aligned condition. The proteins encoded by these genes are linked to production and polymerization of actin microfilaments, as well as focal adhesion assembly. Taken together, the data indicates NIH3T3 fibroblasts on aligned substrates align themselves parallel with their substrate and increase production of actin and focal adhesion related genes. PMID:27196306

  11. Purification of the Clostridium spiroforme binary toxin and activity of the toxin on HEp-2 cells.

    PubMed Central

    Popoff, M R; Milward, F W; Bancillon, B; Boquet, P

    1989-01-01

    The two components Sa (Mr, 44,000) and Sb (Mr, 92,000) of Clostridium spiroforme toxin were identified and characterized. Serological data permitted the identification of two groups of actin ADP-ribosylating clostridial toxins. The first consists of only C. botulinum C2. The second group includes spiroforme toxin, iota toxin of C. perfringens E, and an enzyme called CDT found in one strain of C. difficile, antibodies against which cross-react with all of the members of both groups. C. spiroforme toxin acted on cells by disrupting microfilaments by ADP-ribosylation of G actin. Toxicity was not blocked by 10 or 20 mM ammonium chloride and was only moderately inhibited by 30 mM NH4Cl. Inhibition of coated-pit formation in HEp-2 cells by potassium depletion strongly protected against the effect of C. spiroforme toxin. Toxicity was not blocked by incubation of HEp-2 cells and spiroforme toxin at 15 degrees C. These results suggest that this new binary toxin enters cells via the coated-pit-coated-vesicle pathway and might reach the cytoplasm at the same time as or before transfer to early endosomes. Images PMID:2545625

  12. Myosins as fundamental components during tumorigenesis: diverse and indispensable

    PubMed Central

    Li, Yan-Ruide; Yang, Wan-Xi

    2016-01-01

    Myosin is a kind of actin-based motor protein. As the crucial functions of myosin during tumorigenesis have become increasingly apparent, the profile of myosin in the field of cancer research has also been growing. Eighteen distinct classes of myosins have been discovered in the past twenty years and constitute a diverse superfamily. Various myosins share similar structures. They all convert energy from ATP hydrolysis to exert mechanical stress upon interactions with microfilaments. Ongoing research is increasingly suggesting that at least seven kinds of myosins participate in the formation and development of cancer. Myosins play essential roles in cytokinesis failure, chromosomal and centrosomal amplification, multipolar spindle formation and DNA microsatellite instability. These are all prerequisites of tumor formation. Subsequently, myosins activate various processes of tumor invasion and metastasis development including cell migration, adhesion, protrusion formation, loss of cell polarity and suppression of apoptosis. In this review, we summarize the current understanding of the roles of myosins during tumorigenesis and discuss the factors and mechanisms which may regulate myosins in tumor progression. Furthermore, we put forward a completely new concept of “chromomyosin” to demonstrate the pivotal functions of myosins during karyokinesis and how this acts to optimize the functions of the members of the myosin superfamily. PMID:27121062

  13. Extracellular ultrathin fibers sensitive to intracellular reactive oxygen species: Formation of intercellular membrane bridges

    SciTech Connect

    Jung, Se-Hui; Park, Jin-Young; Joo, Jung-Hoon; Kim, Young-Myeong; Ha, Kwon-Soo

    2011-07-15

    Membrane bridges are key cellular structures involved in intercellular communication; however, dynamics for their formation are not well understood. We demonstrated the formation and regulation of novel extracellular ultrathin fibers in NIH3T3 cells using confocal and atomic force microscopy. At adjacent regions of neighboring cells, phorbol 12-myristate 13-acetate (PMA) and glucose oxidase induced ultrathin fiber formation, which was prevented by Trolox, a reactive oxygen species (ROS) scavenger. The height of ROS-sensitive ultrathin fibers ranged from 2 to 4 nm. PMA-induced formation of ultrathin fibers was inhibited by cytochalasin D, but not by Taxol or colchicine, indicating that ultrathin fibers mainly comprise microfilaments. PMA-induced ultrathin fibers underwent dynamic structural changes, resulting in formation of intercellular membrane bridges. Thus, these fibers are formed by a mechanism(s) involving ROS and involved in formation of intercellular membrane bridges. Furthermore, ultrastructural imaging of ultrathin fibers may contribute to understanding the diverse mechanisms of cell-to-cell communication and the intercellular transfer of biomolecules, including proteins and cell organelles.

  14. Fungal invasion of normally non-phagocytic host cells.

    PubMed

    Filler, Scott G; Sheppard, Donald C

    2006-12-01

    Many fungi that cause invasive disease invade host epithelial cells during mucosal and respiratory infection, and subsequently invade endothelial cells during hematogenous infection. Most fungi invade these normally non-phagocytic host cells by inducing their own uptake. Candida albicans hyphae interact with endothelial cells in vitro by binding to N-cadherin on the endothelial cell surface. This binding induces rearrangement of endothelial cell microfilaments, which results in the endocytosis of the organism. The capsule of Cryptococcus neoformans is composed of glucuronoxylomannan, which binds specifically to brain endothelial cells, and appears to mediate both adherence and induction of endocytosis. The mechanisms by which other fungal pathogens induce their own uptake are largely unknown. Some angioinvasive fungi, such as Aspergillus species and the Zygomycetes, invade endothelial cells from the abluminal surface during the initiation of invasive disease, and subsequently invade the luminal surface of endothelial cells during hematogenous dissemination. Invasion of normally non-phagocytic host cells has different consequences, depending on the type of invading fungus. Aspergillus fumigatus blocks apoptosis of pulmonary epithelial cells, whereas Paracoccidioides brasiliensis induces apoptosis of epithelial cells. This review summarizes the mechanisms by which diverse fungal pathogens invade normally non-phagocytic host cells and discusses gaps in our knowledge that provide opportunities for future research.

  15. The role of the microtubular system in the cell response to HGF/SF.

    PubMed

    Dugina, V B; Alexandrova, A Y; Lane, K; Bulanova, E; Vasiliev, J M

    1995-04-01

    The effects of the microtubular drugs colcemid and taxol on the morphological changes induced by hepatocyte growth factor/scatter factor (HGF/SF) in MDCK cells were studied. Dynamic changes in the area and shape of individual cells were assessed by morphometric methods whereas alterations of the cytoskeleton were assessed by immunomorphological methods. The results suggest that there are two components in the response to HGF/SF: (a) activation of the extension of lamellae leading to cell spreading; and (b) reorganization of microtubules leading to polarization of cell shape. The latter response is highly sensitive to microtubular drugs, especially taxol. HGF/SF induced spreading in taxol-treated MDCK cells but these cells retained a non-polarized discoid shape and a pattern of actin microfilament bundles characteristic of the untreated cells. Colcemid and taxol did not prevent HGF/SF-induced migration of cells in Boyden chambers but completely inhibited the outgrowth of multicellular strands and tubules from cell aggregates in collagen gels. These results show that enhanced lamella formation in response to HGF/SF without polarization of cell shape is sufficient to induce cell motility. In contrast, microtubule-dependent polarization is essential for complex morphogenetic responses such as tubulogenesis in collagen gels.

  16. Fungal Invasion of Normally Non-Phagocytic Host Cells

    PubMed Central

    Filler, Scott G; Sheppard, Donald C

    2006-01-01

    Many fungi that cause invasive disease invade host epithelial cells during mucosal and respiratory infection, and subsequently invade endothelial cells during hematogenous infection. Most fungi invade these normally non-phagocytic host cells by inducing their own uptake. Candida albicans hyphae interact with endothelial cells in vitro by binding to N-cadherin on the endothelial cell surface. This binding induces rearrangement of endothelial cell microfilaments, which results in the endocytosis of the organism. The capsule of Cryptococcus neoformans is composed of glucuronoxylomannan, which binds specifically to brain endothelial cells, and appears to mediate both adherence and induction of endocytosis. The mechanisms by which other fungal pathogens induce their own uptake are largely unknown. Some angioinvasive fungi, such as Aspergillus species and the Zygomycetes, invade endothelial cells from the abluminal surface during the initiation of invasive disease, and subsequently invade the luminal surface of endothelial cells during hematogenous dissemination. Invasion of normally non-phagocytic host cells has different consequences, depending on the type of invading fungus. Aspergillus fumigatus blocks apoptosis of pulmonary epithelial cells, whereas Paracoccidioides brasiliensis induces apoptosis of epithelial cells. This review summarizes the mechanisms by which diverse fungal pathogens invade normally non-phagocytic host cells and discusses gaps in our knowledge that provide opportunities for future research. PMID:17196036

  17. Use of fluorescent nanoparticles to investigate nutrient acquisition by developing Eimeria maxima macrogametocytes

    PubMed Central

    Frölich, Sonja; Wallach, Michael

    2016-01-01

    The enteric disease coccidiosis, caused by the unicellular parasite Eimeria, is a major and reoccurring problem for the poultry industry. While the molecular machinery driving host cell invasion and oocyst wall formation has been well documented in Eimeria, relatively little is known about the host cell modifications which lead to acquisition of nutrients and parasite growth. In order to understand the mechanism(s) by which nutrients are acquired by developing intracellular gametocytes and oocysts, we have performed uptake experiments using polystyrene nanoparticles (NPs) of 40 nm and 100 nm in size, as model NPs typical of organic macromolecules. Cytochalasin D and nocodazole were used to inhibit, respectively, the polymerization of the actin and microtubules. The results indicated that NPs entered the parasite at all stages of macrogametocyte development and early oocyst maturation via an active energy dependent process. Interestingly, the smaller NPs were found throughout the parasite cytoplasm, while the larger NPs were mainly localised to the lumen of large type 1 wall forming body organelles. NP uptake was reduced after microfilament disruption and treatment with nocodazole. These observations suggest that E. maxima parasites utilize at least 2 or more uptake pathways to internalize exogenous material during the sexual stages of development. PMID:27352801

  18. Trichosanthin-induced specific changes of cytoskeleton configuration were associated with the decreased expression level of actin and tubulin genes in apoptotic Hela cells.

    PubMed

    Wang, Ping; Li, Ji-Cheng

    2007-09-15

    Trichosanthin (TCS) possesses a broad spectrum of biological and pharmacological activities, including anti-cancer activities through apoptosis pathway. However, little is known about the effects of TCS on the cytoskeleton configuration and expression of actin and tubulin genes in Hela cell apoptosis. In the present study, apoptotic cytoskeleton structures were observed by confocal immunofluorescence microscopy, absolute amounts of actin and tubulin subunit mRNAs were determined by quantitative real-time PCR assays (QRT-PCR). Our results showed that the execution phase of cell apoptosis was a highly coordinated process of cellular reorganization, depolymerized microfilaments (MFs) accumulated in the coarsened cytoplasm and apoptotic bodies, followed by the formation of a ring microtubule (MT) structure beneath the plasma membrane. Importantly, apoptosis occurred by a suppression of actin and tubulin subunit gene expression. In particular, a rapid decrease in the amounts of gamma-actin mRNA preceded that of beta-actin; alpha- and beta-tubulin mRNAs were subsequently down-regulated in the later stage of Hela cell apoptosis. These results suggested that the execution of Hela cell apoptosis induced by TCS accompanied the specific changes of cytoskeleton configuration and, significantly, decreased the expression level of actin and tubulin subunit genes in different stages.

  19. Weightlessness influences the cytoskeleton and ROS level in SH-SY5Y neuroblastoma cells

    NASA Astrophysics Data System (ADS)

    Bo, Wang; Lina, Qu; Yingxian, Li; Qi, Li; Lei, Bi; Yinghui, Li

    During Spaceflight the nerve system of astronauts was obviously influenced To investigate how gravity effects nerve system the SH-SY5Y neuroblastoma cells were taken as research object By utilizing clinostat and parabolic flight for the model of gravity changing the level of reactive oxygen species was assayed in different time under simulated microgravity the cytomorphology and cytoskeleton of SH-SY5Y neuroblastoma cells were also observed after parabolic flight and clinostat by the conventional and the confocal laser scanning microscope The data showed that ROS level was enhanced and the cytoskeleton was damaged which microfilaments and microtubules were highly disorganized the cell shape was deteriorated under simulated microgravity indicating the relativity between the ROS level fluctuating and cytoskeleton changing It illuminates signal transduction disturbed by oxidative stress also regulates the cytoskeleton changing in SH-SY5Y cells The results suggest the cytoskeleton which is the receptor for sensing gravity was also regulated by cellular redox state which clues on the complexity of cell for self-adjusting to gravity changing

  20. Disruption of the microtubule network alters cellulose deposition and causes major changes in pectin distribution in the cell wall of the green alga, Penium margaritaceum

    PubMed Central

    Domozych, David S.

    2014-01-01

    Application of the dintroaniline compound, oryzalin, which inhibits microtubule formation, to the unicellular green alga Penium margaritaceum caused major perturbations to its cell morphology, such as swelling at the wall expansion zone in the central isthmus region. Cell wall structure was also notably altered, including a thinning of the inner cellulosic wall layer and a major disruption of the homogalacturonan (HG)-rich outer wall layer lattice. Polysaccharide microarray analysis indicated that the oryzalin treatment resulted in an increase in HG abundance in treated cells but a decrease in other cell wall components, specifically the pectin rhamnogalacturonan I (RG-I) and arabinogalactan proteins (AGPs). The ring of microtubules that characterizes the cortical area of the cell isthmus zone was significantly disrupted by oryzalin, as was the extensive peripheral network of actin microfilaments. It is proposed that the disruption of the microtubule network altered cellulose production, the main load-bearing component of the cell wall, which in turn affected the incorporation of HG in the two outer wall layers, suggesting coordinated mechanisms of wall polymer deposition. PMID:24285826

  1. Disruption of the three cytoskeletal networks in mammalian cells does not affect transcription, translation, or protein translocation changes induced by heat shock.

    PubMed Central

    Welch, W J; Feramisco, J R

    1985-01-01

    Mammalian cells show a complex series of transcriptional and translational switching events in response to heat shock treatment which ultimately lead to the production and accumulation of a small number of proteins, the so-called heat shock (or stress) proteins. We investigated the heat shock response in both qualitative and quantitative ways in cells that were pretreated with drugs that specifically disrupt one or more of the three major cytoskeletal networks. (These drugs alone, cytochalasin E and colcemid, do not result in induction of the heat shock response.) Our results indicated that disruption of the actin microfilaments, the vimentin-containing intermediate filaments, or the microtubules in living cells does not hinder the ability of the cell to undergo an apparently normal heat shock response. Even when all three networks were simultaneously disrupted (resulting in a loose, baglike appearance of the cells), the cells still underwent a complete heat shock response as assayed by the appearance of the heat shock proteins. In addition, the major induced 72-kilodalton heat shock protein was efficiently translocated from the cytoplasm into its proper location in the nucleus and nucleolus irrespective of the condition of the three cytoskeletal elements. Images PMID:4040602

  2. Sucrose esters increase drug penetration, but do not inhibit p-glycoprotein in caco-2 intestinal epithelial cells.

    PubMed

    Kiss, Lóránd; Hellinger, Éva; Pilbat, Ana-Maria; Kittel, Ágnes; Török, Zsolt; Füredi, András; Szakács, Gergely; Veszelka, Szilvia; Sipos, Péter; Ózsvári, Béla; Puskás, László G; Vastag, Monika; Szabó-Révész, Piroska; Deli, Mária A

    2014-10-01

    Sucrose fatty acid esters are increasingly used as excipients in pharmaceutical products, but few data are available on their toxicity profile, mode of action, and efficacy on intestinal epithelial models. Three water-soluble sucrose esters, palmitate (P-1695), myristate (M-1695), laurate (D-1216), and two reference absorption enhancers, Tween 80 and Cremophor RH40, were tested on Caco-2 cells. Caco-2 monolayers formed a good barrier as reflected by high transepithelial resistance and positive immunostaining for junctional proteins claudin-1, ZO-1, and β-catenin. Sucrose esters in nontoxic concentrations significantly reduced resistance and impedance, and increased permeability for atenolol, fluorescein, vinblastine, and rhodamine 123 in Caco-2 monolayers. No visible opening of the tight junctions was induced by sucrose esters assessed by immunohistochemistry and electron microscopy, but some alterations were seen in the structure of filamentous actin microfilaments. Sucrose esters fluidized the plasma membrane and enhanced the accumulation of efflux transporter ligands rhodamine 123 and calcein AM in epithelial cells, but did not inhibit the P-glycoprotein (P-gp)-mediated calcein AM accumulation in MES-SA/Dx5 cell line. These data indicate that in addition to their dissolution-increasing properties sucrose esters can enhance drug permeability through both the transcellular and paracellular routes without inhibiting P-gp.

  3. Immunohistochemical studies on the poll gland of the dromedary camel (Camelus dromedarius) during the rutting season.

    PubMed

    Ebada, Safwat; Helal, Amr; Alkafafy, Mohamed

    2012-07-01

    The poll glands are subcutaneous exocrine glands located on the back of the neck behind the ears in male camels. The function of poll glands is not well known, though they are thought to play a role during the rutting season. The presence, location and degree of immunolocalization of microfilaments and intermediate filament systems: actin and cytokeratins (Cks) and also S100 protein were studied in the poll glands in sexually mature one-humped camels during the rutting season. These proteins were variably expressed between the epithelia, perialveolar, interalveolar tissue and the periductal tissue. Strong α-smooth muscle actin (α-SMA) immunoreactivity (IR) was displayed by the perialveolar myoepithelial cells, periductal and vascular smooth muscle cells (SMCs), but not in the epithelial cells. Cytokeratin (Ck)-IR was strong in the epithelial lining of the secretory alveoli and excretory ducts, however, the apical blebs of the secretory cells were almost negative. Weak to moderate Ck-IR was observed in the perialveolar myoepithelial cells, but not in the interalveolar tissue or endothelial cells. S100 protein was expressed variably in the epithelial lining of the secretory alveoli. S100-IR was more obvious in the supranuclear region and the apical blebs. Variable reaction was observed in the perialveolar myoepithelial cells, periductal and interductal tissue and endothelial cells.

  4. Tubulin cytoskeleton in elongation zone of Arabidopsis root is affected by clinorotation

    NASA Astrophysics Data System (ADS)

    Shevchenko, G.; Kalinina, Ya.; Kordyum, E.

    Our aim is to find out how clinorotation influences root growth For this purpose we followed the dynamics of tubulin cytoskeleton cortical and endoplasmic microtubules in cells from elongation zone of Arabidopsis roots transfected with GFP-MAP4 3 day old seedlings In distal part of elongation zone in epidermal cells mainly distinct endoplasmic microtubules were observed Prominent cortical microtubules start to be evident in cells in central elongation zone Under clinorotation clusters formed by MAP4 appear in all parts of elongation zone evidencing that microtubule arrangement is somehow distorted there Application of cytochalasin D which disrupts proper functioning of actin cytoskeleton in controls affected mainly the endoplasmic microtubules in cells with isotropic growth where MAP4 was clustered Under clinorotation disruption of actin cytoskeleton by cytochalasin D caused appearance of MAP4 clusters in cells growing anisotropically In those cells cortical microtubules are affected as well as endoplasmic Due to the fact that cortical microtubules are responsible for ordered growth of plant cell and are arranged into a robust structure change of their organization under clinorotation could impact cell growth This proves that cells in elongation zone switching their growth mode from isotropic to anisotropic are rather sensitive to altered gravity The fact that more severe distortion of cortical microtubules was noted in cells with damaged actin microfilaments proves mutually related functioning of actin and tubulin cytoskeletons under clinorotation

  5. Glycolytic inhibitors 2-deoxyglucose and 3-bromopyruvate synergize with photodynamic therapy respectively to inhibit cell migration.

    PubMed

    Feng, Xiaolan; Wang, Pan; Liu, Quanhong; Zhang, Ting; Mai, Bingjie; Wang, Xiaobing

    2015-06-01

    Most cancer cells have the specially increased glycolytic phenotype, which makes this pathway become an attractive therapeutic target. Although glycolytic inhibitor 2-deoxyglucose (2-DG) has been demonstrated to potentiate the cytotoxicity of photodynamic therapy (PDT), the impacts on cell migration after the combined treatment has never been reported yet. The present study aimed to analyze the influence of glycolytic inhibitors 2-DG and 3-bromopyruvate (3-BP) combined with Ce6-PDT on cell motility of Triple Negative Breast Cancer MDA-MB-231 cells. As determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium-bromide-Tetraz-olium (MTT) assay, more decreased cell viability was observed in 2-DG + PDT and 3-BP + PDT groups when compared with either monotherapy. Under optimal conditions, synergistic potentiation on cell membrane destruction and the decline of cell adhesion and cells migratory ability were observed in both 2-DG + PDT and 3-BP + PDT by electron microscope observation (SEM), wound healing and trans-well assays. Besides, serious microfilament network collapses as well as impairment of matrix metalloproteinases-9 (MMP-9) were notably improved after the combined treatments by immunofluorescent staining. These results suggest that 2-DG and 3-BP can both significantly potentiated Ce6-PDT efficacy of cell migration inhibition.

  6. Sensor potency of the moonlighting enzyme-decorated cytoskeleton: the cytoskeleton as a metabolic sensor

    PubMed Central

    2013-01-01

    Background There is extensive evidence for the interaction of metabolic enzymes with the eukaryotic cytoskeleton. The significance of these interactions is far from clear. Presentation of the hypothesis In the cytoskeletal integrative sensor hypothesis presented here, the cytoskeleton senses and integrates the general metabolic activity of the cell. This activity depends on the binding to the cytoskeleton of enzymes and, depending on the nature of the enzyme, this binding may occur if the enzyme is either active or inactive but not both. This enzyme-binding is further proposed to stabilize microtubules and microfilaments and to alter rates of GTP and ATP hydrolysis and their levels. Testing the hypothesis Evidence consistent with the cytoskeletal integrative sensor hypothesis is presented in the case of glycolysis. Several testable predictions are made. There should be a relationship between post-translational modifications of tubulin and of actin and their interaction with metabolic enzymes. Different conditions of cytoskeletal dynamics and enzyme-cytoskeleton binding should reveal significant differences in local and perhaps global levels and ratios of ATP and GTP. The different functions of moonlighting enzymes should depend on cytoskeletal binding. Implications of the hypothesis The physical and chemical effects arising from metabolic sensing by the cytoskeleton would have major consequences on cell shape, dynamics and cell cycle progression. The hypothesis provides a framework that helps the significance of the enzyme-decorated cytoskeleton be determined. PMID:23398642

  7. Non-genomic actions of thyroid hormone in brain development.

    PubMed

    Leonard, Jack L

    2008-10-01

    Thyroid hormone (TH) is essential for neuronal migration and synaptogenesis in the developing brain. Assembly of neuronal circuits depends on guidance cues provided by the extracellular matrix. These cues are interpreted by the migrating neuron and its growing neurites through transmembrane signaling proteins anchored in place by the actin cytoskeleton. One of the best examples of a non-genomic action of thyroid hormone is its dynamic regulation of the number and quantity of actin fibers in astrocytes. Thyroxine (T4) and its transcriptionally inactive metabolite, 3',5',3-triiodothyronine (reverse T3) are responsible for modulating microfilament organization, while the transcriptional activator, 3',3,5-triiodothyronine (T3) is inert. The biological consequence of the loss of the actin filaments in astrocytes is the inability of the cell to anchor laminin, to its cell surface, and the loss of this key guidance molecule interrupts neurite pathfinding and neuronal migration. These data provide the essentials to construct a physiological pathway where TH-dependent regulation of the polymerization state of actin in the astrocyte and the developing neuron modulates the production and recognition of guidance cues--cues that if disrupted lead to abnormal neuronal migration and neuronal process formation--and lead to the morphological deficits observed in the cretinous brain.

  8. Nanomechanical properties of composite protein networks of erythroid membranes at lipid surfaces.

    PubMed

    Encinar, Mario; Casado, Santiago; Calzado-Martín, Alicia; Natale, P; San Paulo, Álvaro; Calleja, Montserrat; Vélez, Marisela; Monroy, Francisco; López-Montero, Iván

    2017-01-01

    Erythrocyte membranes have been particularly useful as a model for studies of membrane structure and mechanics. Native erythroid membranes can be electroformed as giant unilamellar vesicles (eGUVs). In the presence of ATP, the erythroid membrane proteins of eGUVs rearrange into protein networks at the microscale. Here, we present a detailed nanomechanical study of individual protein microfilaments forming the protein networks of eGUVs when spread on supporting surfaces. Using Peak Force tapping Atomic Force Microscopy (PF-AFM) in liquid environment we have obtained the mechanical maps of the composite lipid-protein networks supported on solid surface. In the absence of ATP, the protein pool was characterized by a Young's Modulus Epool≈5-15MPa whereas the complex filaments were found softer after protein supramolecular rearrangement; Efil≈0.4MPa. The observed protein softening and reassembling could be relevant for understanding the mechanisms of cytoskeleton reorganization found in pathological erythrocytes or erythrocytes that are affected by biological agents.

  9. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts

    PubMed Central

    1993-01-01

    Granulation tissue fibroblasts (myofibroblasts) develop several ultrastructural and biochemical features of smooth muscle (SM) cells, including the presence of microfilament bundles and the expression of alpha-SM actin, the actin isoform typical of vascular SM cells. Myofibroblasts have been proposed to play a role in wound contraction and in retractile phenomena observed during fibrotic diseases. We show here that the subcutaneous administration of transforming growth factor- beta 1 (TGF beta 1) to rats results in the formation of a granulation tissue in which alpha-SM actin expressing myofibroblasts are particularly abundant. Other cytokines and growth factors, such as platelet-derived growth factor and tumor necrosis factor-alpha, despite their profibrotic activity, do not induce alpha-SM actin in myofibroblasts. In situ hybridization with an alpha-SM actin probe shows a high level of alpha-SM actin mRNA expression in myofibroblasts of TGF beta 1-induced granulation tissue. Moreover, TGF beta 1 induces alpha-SM actin protein and mRNA expression in growing and quiescent cultured fibroblasts and preincubation of culture medium containing whole blood serum with neutralizing antibodies to TGF beta 1 results in a decrease of alpha-SM actin expression by fibroblasts in replicative and non-replicative conditions. These results suggest that TGF beta 1 plays an important role in myofibroblast differentiation during wound healing and fibrocontractive diseases by regulating the expression of alpha-SM actin in these cells. PMID:8314838

  10. Microminiature coaxial cable and methods of manufacture

    DOEpatents

    Bongianni, W.L.

    1983-12-29

    A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 ..mu..m thick and from 150 to 200 ..mu..m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dieleectric. Alternately the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microballoons to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion.

  11. Microminiature coaxial cable and method of manufacture

    DOEpatents

    Bongianni, W.L.

    1989-03-28

    A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 [mu]m thick and from 150 to 200 [mu]m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dielectric. Alternately, the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microspheres to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion. 2 figs.

  12. Microminiature coaxial cable and method of manufacture

    DOEpatents

    Bongianni, Wayne L.

    1989-01-01

    A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 .mu.m thick and from 150 to 200 .mu.m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dielectric. Alternately, the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microspheres to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion.

  13. Microminiature coaxial cable and methods manufacture

    DOEpatents

    Bongianni, W.L.

    1986-04-08

    A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 [mu]m thick and from 150 to 200 [mu]m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dielectric. Alternately the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microballoons to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion. 2 figs.

  14. Microminiature coaxial cable and methods manufacture

    DOEpatents

    Bongianni, Wayne L.

    1986-01-01

    A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 .mu.m thick and from 150 to 200 .mu.m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dielectric. Alternately the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microballoons to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion.

  15. Heavy metals health risk assessment for population via consumption of food crops and fruits in Owerri, South Eastern, Nigeria

    PubMed Central

    2012-01-01

    Background This study assessed lead, cadmium, and nickel level in food crops, fruits and soil samples from Ohaji and Umuagwo and Owerri in South Eastern Nigeria and estimated the potential health risks of metals. Samples were washed, oven-dried at 70–80°C for 24 h and powdered. Samples were digested with perchloric acid and nitric acid. Metals were analysed with Unicam Atomic Absorption Spectrophotometer. Result The concentration of Pb, Cd, and Ni in Ohaji exceeded the maximum allowable concentrations for agricultural soil as recommended by EU. Lead, Cd, and Ni in the food crops were highest in Oryza sativa, Glycine max, and Pentabacta microfila respectively. Highest levels of Pb, Cd, and Ni, in fruits were detected in Canarium schweinfurthii, Citrus reticulata, Ananas comosus respectively. The true lead and cadmium intake for the rice based meal were 3.53 and 0.034 g/kg respectively. Whereas the true intake of lead and cadmium for the cassava based meal were 19.42 and 0.049 g/kg respectively. Conclusion Local food stuff commonly available in South Eastern Nigeria villages may contribute to the body burden of heavy metal. This is of public health importance. PMID:22853175

  16. Rapid flow-induced responses in endothelial cells

    NASA Technical Reports Server (NTRS)

    Stamatas, G. N.; McIntire, L. V.

    2001-01-01

    Endothelial cells alter their morphology, growth rate, and metabolism in response to fluid shear stress. To study rapid flow-induced responses in the 3D endothelial cell morphology and calcium distribution, coupled fluorescence microscopy with optical sectioning, digital imaging, and numerical deconvolution techniques have been utilized. Results demonstrate that within the first minutes of flow application nuclear calcium is increasing. In the same time frame whole cell height and nuclear height are reduced by about 1 microm. Whole cell height changes may facilitate reduction of shear stress gradients on the luminal surface, whereas nuclear structural changes may be important for modulating endothelial growth rate and metabolism. To study the role of the cytoskeleton in these responses, endothelial cells have been treated with specific disrupters (acrylamide, cytochalasin D, and colchicine) of each of the cytoskeleton elements (intermediate filaments, microfilaments, and microtubules, respectively). None of these compounds had any effect on the shear-induced calcium response. Cytochalasin D and acrylamide did not affect the shear-induced nuclear morphology changes. Colchicine, however, completely abrogated the response, indicating that microtubules may be implicated in force transmission from the plasma membrane to the nucleus. A pedagogical model based on tensegrity theory principles is presented that is consistent with the results on the 3D endothelial morphology.

  17. [Contractile proteins in chemical signal transduction in plant microspores].

    PubMed

    Roshchina, V V

    2005-01-01

    Involvement of contractile components in chemical signal transduction from the cell surface to the organelles was studied using unicellular systems. Neurotransmitters dopamine and serotonin as well as active forms of oxygen hydrogen peroxide and tert-butyl peroxide were used as chemical signals. Experiments were carried out on vegetative microspores of field horsetail Equisetum arvense and generative microspores (pollen) of amaryllis Hippeastrum hybridum treated with cytochalasin B (an inhibitor of actin polymerization in microfilaments), colchicine, and vinblastine (inhibitors of tubulin polymerization in microtubules). Both types of thus treated microspores demonstrated suppressed development, particularly, for cytochalasin B treatment. At the same time, an increased typical blue fluorescence of certain cell regions (along the cell wall and around nuclei and chloroplasts) where the corresponding contractile proteins could reside was observed. In contrast to anticontractile agents, dopamine, serotonin B, and the peroxides stimulated microspore germination. Microspore pretreatment with cytochalasin B and colchicine followed by the treatment with serotonin, dopamine, or the peroxides decreased the germination rate. Involvement of actin and tubulin in chemical signal transduction from the cell surface to the nucleus is proposed.

  18. Tight junction targeting and intracellular trafficking of occludin in polarized epithelial cells.

    PubMed

    Subramanian, Veedamali S; Marchant, Jonathan S; Ye, Dongmei; Ma, Thomas Y; Said, Hamid M

    2007-11-01

    Occludin, a transmembrane (TM)-spanning protein, is an integral component of the tight junctional (TJ) complexes that regulate epithelial integrity and paracellular barrier function. However, the molecular determinants that dictate occludin targeting and delivery to the TJs remain unclear. Here, using live cell imaging of yellow fluorescent protein-labeled occludin fragments, we resolved the intracellular trafficking of occludin-fusion proteins in polarized Madin-Darby canine kidney and Caco-2 cells to delineate the regions within the occludin polypeptide that are important for occludin targeting to the TJs. Live cell confocal imaging showed that complete or partial truncation of the COOH-terminal tail of the occludin polypeptide did not prevent occludin targeting to the TJs in epithelial cell lines. Progressive truncations into the COOH-terminal tail decreased the efficiency of occludin expression; after the removal of the regions proximal to the fourth transmembrane domain (TM4), the efficiency of expression increased. However, further deletions into the TM4 abolished TJ targeting, which resulted in constructs that were retained intracellularly within the endoplasmic reticulum. The full-length occludin polypeptide trafficked to the cell surface within a heterogenous population of intracellular vesicles that delivered occludin to the plasma membrane in a microtubule- and temperature-dependent manner. In contrast, the steady-state localization of occludin at the cell surface was dependent on intact microfilaments but not microtubules.

  19. Nanosurface design of dental implants for improved cell growth and function

    NASA Astrophysics Data System (ADS)

    Pan, Hsu-An; Hung, Yao-Ching; Chiou, Jin-Chern; Tai, Shih-Ming; Chen, Hsin-Hung; Huang, G. Steven

    2012-08-01

    A strategy was proposed for the topological design of dental implants based on an in vitro survey of optimized nanodot structures. An in vitro survey was performed using nanodot arrays with dot diameters ranging from 10 to 200 nm. MG63 osteoblasts were seeded on nanodot arrays and cultured for 3 days. Cell number, percentage undergoing apoptotic-like cell death, cell adhesion and cytoskeletal organization were evaluated. Nanodots with a diameter of approximately 50 nm enhanced cell number by 44%, minimized apoptotic-like cell death to 2.7%, promoted a 30% increase in microfilament bundles and maximized cell adhesion with a 73% increase in focal adhesions. An enhancement of about 50% in mineralization was observed, determined by von Kossa staining and by Alizarin Red S staining. Therefore, we provide a complete range of nanosurfaces for growing osteoblasts to discriminate their nanoscale environment. Nanodot arrays present an opportunity to positively and negatively modulate cell behavior and maturation. Our results suggest a topological approach which is beneficial for the design of dental implants.

  20. Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons.

    PubMed

    Leshchyns'ka, Iryna; Sytnyk, Vladimir

    2016-01-01

    Cell adhesion molecules of the immunoglobulin superfamily (IgSF) including the neural cell adhesion molecule (NCAM) and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites, and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function, and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail.

  1. Expression of the proteoglycan syndecan-4 and the mechanism by which it mediates stress fiber formation in folliculostellate cells in the rat anterior pituitary gland.

    PubMed

    Horiguchi, Kotaro; Kouki, Tom; Fujiwara, Ken; Tsukada, Takehiro; Ly, Floren; Kikuchi, Motoshi; Yashiro, Takashi

    2012-08-01

    Folliculostellate (FS) cells in the anterior pituitary gland appear to have multifunctional properties. FS cells connect to each other at gap junctions and thereby form a histological and functional network. We have performed a series of studies on network formation in FS cells and recently reported that FS cells markedly prolong their cytoplasmic processes and form numerous interconnections with neighboring FS cells in the presence of laminin, an extracellular matrix (ECM) component of the basement membrane. In this study, we investigated the mechanism of this extension of FS cell cytoplasmic processes under the influence of laminin and found that laminin promoted stress fiber formation within FS cells. Next, we noted that formation of stress fibers in FS cells was mediated by syndecan-4, a transmembrane proteoglycan that binds ECM and soluble factors via their extracellular glycosaminoglycan chain. We then observed that expressions of syndecan-4 and α-actinin (a microfilament bundling protein that cross-links actin stress fibers in FS cells) were upregulated by laminin. Using specific siRNA of syndecan-4, actin polymerization of FS cells was inhibited. Our findings suggest that FS cells received a signal from laminin-syndecan-4 interaction, which resulted in morphological changes, and that the formation of a morphological and functional network in FS cells was transduced by a syndecan-4-dependent mechanism in the presence of ECM.

  2. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology

    NASA Technical Reports Server (NTRS)

    Ingber, Donald E.

    2002-01-01

    Great advances have been made in the identification of the soluble angiogenic factors, insoluble extracellular matrix (ECM) molecules, and receptor signaling pathways that mediate control of angiogenesis--the growth of blood capillaries. This review focuses on work that explores how endothelial cells integrate these chemical signals with mechanical cues from their local tissue microenvironment so as to produce functional capillary networks that exhibit specialized form as well as function. These studies have revealed that ECM governs whether an endothelial cell will switch between growth, differentiation, motility, or apoptosis programs in response to a soluble stimulus based on its ability to mechanically resist cell tractional forces and thereby produce cell and cytoskeletal distortion. Transmembrane integrin receptors play a key role in this mechanochemical transduction process because they both organize a cytoskeletal signaling complex within the focal adhesion and preferentially focus mechanical forces on this site. Molecular filaments within the internal cytoskeleton--microfilaments, microtubules, and intermediate filaments--also contribute to the cell's structural and functional response to mechanical stress through their role as discrete support elements within a tensegrity-stabilized cytoskeletal array. Importantly, a similar form of mechanical control also has been shown to be involved in the regulation of contractility in vascular smooth muscle cells and cardiac myocytes. Thus, the mechanism by which cells perform mechanochemical transduction and the implications of these findings for morphogenetic control are discussed in the wider context of vascular development and cardiovascular physiology.

  3. The knock-out of ARP3a gene affects F-actin cytoskeleton organization altering cellular tip growth, morphology and development in moss Physcomitrella patens.

    PubMed

    Finka, Andrija; Saidi, Younousse; Goloubinoff, Pierre; Neuhaus, Jean-Marc; Zrÿd, Jean-Pierre; Schaefer, Didier G

    2008-10-01

    The seven subunit Arp2/3 complex is a highly conserved nucleation factor of actin microfilaments. We have isolated the genomic sequence encoding a putative Arp3a protein of the moss Physcomitrella patens. The disruption of this ARP3A gene by allele replacement has generated loss-of-function mutants displaying a complex developmental phenotype. The loss-of function of ARP3A gene results in shortened, almost cubic chloronemal cells displaying affected tip growth and lacking differentiation to caulonemal cells. In moss arp3a mutants, buds differentiate directly from chloronemata to form stunted leafy shoots having differentiated leaves similar to wild type. Yet, rhizoids never differentiate from stem epidermal cells. To characterize the F-actin organization in the arp3a-mutated cells, we disrupted ARP3A gene in the previously described HGT1 strain expressing conditionally the GFP-talin marker. In vivo observation of the F-actin cytoskeleton during P. patens development demonstrated that loss-of-function of Arp3a is associated with the disappearance of specific F-actin cortical structures associated with the establishment of localized cellular growth domains. Finally, we show that constitutive expression of the P. patens Arp3a and its Arabidopsis thaliana orthologs efficiently complement the mutated phenotype indicating a high degree of evolutionary conservation of the Arp3 function in land plants.

  4. Both chloronemal and caulonemal cells expand by tip growth in the moss Physcomitrella patens.

    PubMed

    Menand, Benoît; Calder, Grant; Dolan, Liam

    2007-01-01

    Tip growth is a mode of cell expansion in which all growth is restricted to a small area that forms a tip in an elongating cell. In green plants, tip growth has been shown to occur in root hairs, pollen tubes, rhizoids, and caulonema. Each of these cell types has a longitudinally elongated shape, longitudinally oriented microtubules and actin microfilaments, and a characteristic cytoplasmic organization at the growing tip which is required for growth. Chloronema are elongated cylindrical shaped cells that form during the development of the moss protonema. Since there are no published reports on the precise mode of chloronema elongation and conflicting interpretations of its cytology, the mechanism of cell growth has remained unclear. To determine if chloronema elongate by tip or diffuse growth, time-lapse light microscopy was employed to follow the movement of fluorescent microspheres attached to the surface of growing cells. It is shown here that chloronemal cells elongate by a form of tip growth. However, the slower growth of chloronema compared with caulonema is probably the result of differences in cytological organization of the growing tip.

  5. α-Synuclein and Its A30P Mutant Affect Actin Cytoskeletal Structure and Dynamics

    PubMed Central

    Sousa, Vítor L.; Bellani, Serena; Giannandrea, Maila; Yousuf, Malikmohamed; Valtorta, Flavia; Meldolesi, Jacopo

    2009-01-01

    The function of α-synuclein, a soluble protein abundant in the brain and concentrated at presynaptic terminals, is still undefined. Yet, α-synuclein overexpression and the expression of its A30P mutant are associated with familial Parkinson's disease. Working in cell-free conditions, in two cell lines as well as in primary neurons we demonstrate that α-synuclein and its A30P mutant have different effects on actin polymerization. Wild-type α-synuclein binds actin, slows down its polymerization and accelerates its depolymerization, probably by monomer sequestration; A30P mutant α-synuclein increases the rate of actin polymerization and disrupts the cytoskeleton during reassembly of actin filaments. Consequently, in cells expressing mutant α-synuclein, cytoskeleton-dependent processes, such as cell migration, are inhibited, while exo- and endocytic traffic is altered. In hippocampal neurons from mice carrying a deletion of the α-synuclein gene, electroporation of wild-type α-synuclein increases actin instability during remodeling, with growth of lamellipodia-like structures and apparent cell enlargement, whereas A30P α-synuclein induces discrete actin-rich foci during cytoskeleton reassembly. In conclusion, α-synuclein appears to play a major role in actin cytoskeletal dynamics and various aspects of microfilament function. Actin cytoskeletal disruption induced by the A30P mutant might alter various cellular processes and thereby play a role in the pathogenesis of neurodegeneration. PMID:19553474

  6. The roles of actin cytoskeleton and microtubules for membrane recycling of a food vacuole in Tetrahymena thermophila.

    PubMed

    Sugita, Maki; Nakano, Kentaro; Sato, Mayuko; Toyooka, Kiminori; Numata, Osamu

    2009-07-01

    Phagocytosis is a fundamental cellular event for the uptake of nutrients from the environment in several kinds of eukaryote. Most ciliates egest waste and undigested materials in food vacuoles (FVs) through a cytoproct, which is a specific organelle for defecation. It is considered that FV egestion is initiated by fusion between the FV membrane and plasma membrane in a cytoproct and completed with retrieval of the membrane into a cytoplasmic space. In addition, electron microscopy indicated that microfilaments might be involved in the recycling process of the FV membrane in ciliates over 30 years ago; however, there is no conclusive evidence. Here we demonstrated actin organization on FV near a cytoproct in Tetrahymena thermophila by using a marker for a cytoproct. Moreover, it was revealed that cells treated with actin cytoskeletal inhibitor, Latrunculin B, might be suppressed for membrane retrieval in a cytoproct following FV egestion. On the other hand, the actin structures, likely to be the site of membrane retrieval, were frequently observed in the cells treated with cytoplasmic microtubules inhibitor, Nocodazole. We concluded that actin filaments were probably required for recycling of the FV membrane in a cytoproct although the role was not essential for FV egestion. In addition, it was possible that microtubules might be involved in transportation of recycling vesicles of FV coated with F-actin.

  7. Manufacturing of three-dimensionally microstructured nanocomposites through microfluidic infiltration.

    PubMed

    Dermanaki-Farahani, Rouhollah; Lebel, Louis Laberge; Therriault, Daniel

    2014-03-12

    Microstructured composite beams reinforced with complex three-dimensionally (3D) patterned nanocomposite microfilaments are fabricated via nanocomposite infiltration of 3D interconnected microfluidic networks. The manufacturing of the reinforced beams begins with the fabrication of microfluidic networks, which involves layer-by-layer deposition of fugitive ink filaments using a dispensing robot, filling the empty space between filaments using a low viscosity resin, curing the resin and finally removing the ink. Self-supported 3D structures with other geometries and many layers (e.g. a few hundreds layers) could be built using this method. The resulting tubular microfluidic networks are then infiltrated with thermosetting nanocomposite suspensions containing nanofillers (e.g. single-walled carbon nanotubes), and subsequently cured. The infiltration is done by applying a pressure gradient between two ends of the empty network (either by applying a vacuum or vacuum-assisted microinjection). Prior to the infiltration, the nanocomposite suspensions are prepared by dispersing nanofillers into polymer matrices using ultrasonication and three-roll mixing methods. The nanocomposites (i.e. materials infiltrated) are then solidified under UV exposure/heat cure, resulting in a 3D-reinforced composite structure. The technique presented here enables the design of functional nanocomposite macroscopic products for microengineering applications such as actuators and sensors.

  8. Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria

    PubMed Central

    Chakroun, Maissa; Banyuls, Núria; Bel, Yolanda; Escriche, Baltasar

    2016-01-01

    SUMMARY Entomopathogenic bacteria produce insecticidal proteins that accumulate in inclusion bodies or parasporal crystals (such as the Cry and Cyt proteins) as well as insecticidal proteins that are secreted into the culture medium. Among the latter are the Vip proteins, which are divided into four families according to their amino acid identity. The Vip1 and Vip2 proteins act as binary toxins and are toxic to some members of the Coleoptera and Hemiptera. The Vip1 component is thought to bind to receptors in the membrane of the insect midgut, and the Vip2 component enters the cell, where it displays its ADP-ribosyltransferase activity against actin, preventing microfilament formation. Vip3 has no sequence similarity to Vip1 or Vip2 and is toxic to a wide variety of members of the Lepidoptera. Its mode of action has been shown to resemble that of the Cry proteins in terms of proteolytic activation, binding to the midgut epithelial membrane, and pore formation, although Vip3A proteins do not share binding sites with Cry proteins. The latter property makes them good candidates to be combined with Cry proteins in transgenic plants (Bacillus thuringiensis-treated crops [Bt crops]) to prevent or delay insect resistance and to broaden the insecticidal spectrum. There are commercially grown varieties of Bt cotton and Bt maize that express the Vip3Aa protein in combination with Cry proteins. For the most recently reported Vip4 family, no target insects have been found yet. PMID:26935135

  9. In vitro toxicity evaluation of 25-nm anatase TiO2 nanoparticles in immortalized keratinocyte cells.

    PubMed

    Chan, Jin; Ying, Tang; Guang, Yang F; Lin, Li X; Kai, Tang; Fang, Zhang Y; Ting, Ye X; Xing, Lin F; Ji, Yang Y

    2011-12-01

    Titanium dioxide (TiO(2)) nanoparticles (NPs) are massively fabricated and widely used in daily life, and thus potential risk has been posed to human health. However, the mechanism of the interaction between TiO(2) NPs and cells is still unclear. In this study, the interaction of anatase TiO(2) NPs with HaCaT cells is studied in vitro with multi-techniques. The TiO(2) NPs not only insert into cells through endocytic pathway but also penetrate into the cell. The TiO(2) NPs could produce reactive oxygen species (ROS) after dispersion spontaneously. Furthermore, the interaction between TiO(2) NPs and cellular components might also generate ROS. The ROS generation could lead to cellular toxicity if the level of ROS production overwhelms the antioxidant defense. Cytoskeletal components, particularly the microfilaments and microtubules, cause modifications upon exposure to TiO(2) NPs. With all results, the toxicological effects of TiO(2) NPs on HaCaT cell can be simplified into six events.

  10. [Relation of ultrastructural changes of articular cartilage and the arthroscopic classification in osteoarthritic knee].

    PubMed

    Chai, B F

    1992-01-01

    This paper reported the ultrastructural changes found in the diseased articular cartilages of 43 osteoarthritic knee joints, which were assessed according to the "Arthroscopic classification of the articular cartilage". The electron microscopic findings and the arthroscopic classification of the articular lesions were correlated. The lesioned articular cartilage revealed two categories of pathological changes. 1. The changes on the part of the articular chondrocytes comprised (1) The nucleus showed pyknosis and karyorrhexis. (2) The cytoplasm exhibited fat droplets, glycogen granules, and/or microfilaments. Lysosomes also emerged frequently. The mitochondria swelled and the rough-surfaced endoplasmic reticulum dilated and became vesiculated. At the same time there was detachment of cell processes or of the cytoplasmic membrane. The chondrocyte underwent necrosis, contracted and eventually disintegrated into lipid debris. These changes increased in extent and degree with the lesion and the severity went parallel with the sequence of the "Arthroscopic stage classification". 2. The changes on the part of the matrix included appearance of electron-dense lipid debris and numerous, coarse and banded collagen fibrils. They resided both in the pericellular matrix and in the general matrix. Sometimes fibroblast-like cells made their appearance in the matrix. These cells also revealed degenerative changes. All these changes went parallel with the sequence of the "Arthroscopic grade classification".

  11. A dynamic podosome-like structure of epithelial cells.

    PubMed

    Spinardi, Laura; Rietdorf, Jens; Nitsch, Lucio; Bono, Maria; Tacchetti, Carlo; Way, Michael; Marchisio, Pier Carlo

    2004-05-01

    Focal contacts and hemidesmosomes are cell-matrix adhesion structures of cultured epithelial cells. While focal contacts link the extracellular matrix to microfilaments, hemidesmosomes make connections with intermediate filaments. We have analyzed hemidesmosome assembly in 804G carcinoma cells. Our data show that hemidesmosomes are organized around a core of actin filaments that appears early during cell adhesion. These actin structures look similar to podosomes described in cells of mesenchymal origin. These podosome-like structures are distinct from focal contacts and specifically contain Arp3 (Arp2/3 complex), cortactin, dynamin, gelsolin, N-WASP, VASP, Grb2 and src-like kinase(s). The integrin alpha3beta1 is localized circularly around F-actin cores and co-distributes with paxillin, vinculin, and zyxin. We also show that the maintenance of the actin core and hemidesmosomes is dependent on actin polymerization, src-family kinases, and Grb2, but not on microtubules. Video microscopy analysis reveals that assembly of hemidesmosomes is preceded by recruitment of beta4 integrin subunit to the actin core before its positioning at hemidesmosomes. When 804G cells are induced to migrate, actin cores as well as hemidesmosomes disappear and beta4 integrin subunit becomes co-localized with dynamic actin at leading edges. We show that podosome-like structures are not unique to cells of mesenchymal origin, but also appear in epithelial cells, where they seem to be related to basement membrane adhesion.

  12. Cytoskeletal proteins in gastric H/sup +/ secretion: cAMP dependent phosphorylation, immunolocalization, and protein blotting

    SciTech Connect

    Cuppoletti, J.; Sachs, G.; Malinowska, D.H.

    1986-05-01

    The rabbit gastric parietal cell is an excellent model for the study of regulation of secretion and the role of cytoskeleton in secretion. Changes in morphology (appearance of expanded secretory canaliculi lined with microvilli) accompany H/sup +/ secretion stimulated by histamine (cAMP mediated). Parietal cells contain immunoreactive tubulin and are highly enriched in F-actin at secretory canaliculi, detected with fluorescently labelled phallacidin. They have previously shown increased protein phosphorylation in histamine-stimulated purified parietal cells concommitant with increases in H/sup +/ secretion. They report here possible functions of the phosphoproteins. Four of these proteins of apparent size on SDS PAGE of 24, 30, 48 and 130 Kd were membrane associated. /sup 125/I-actin binding to three proteins (24, 30 and 48 Kd) was shown using overlays. A 130 Kd protein reacted with anti-vinculin monoclonal antibody on immunoblots, and was immunolocalized at secretory canaliculi. As a working hypothesis, parietal cells possess membrane-associated proteins which change their state of phosphorylation upon stimulation of H/sup +/. These proteins may be cytoskeletal elements involved in regulation of H/sup +/ secretion. The 130 Kd vinculin-like protein may serve a microfilament-membrane linking role.

  13. Nonspecific cytotoxic cells in fish (Ictalurus punctatus). V. Metabolic requirements of lysis.

    PubMed

    Carlson, R L; Evans, D L; Graves, S S

    1985-01-01

    The mechanisms of lysis of nonspecific cytotoxic cells (NCC) from the channel catfish (Ictalurus punctatus) were studied by determining the effects of various inhibitors of cellular metabolism on cytolysis of NC-37 human lymphoma target cells. Inhibition of NCC-mediated lysis by dinitrophenol (DNP) and sodium azide (NaN3) indicated a requirement for cellular energy metabolism. Cytochalasin B, an inhibitor of microfilaments, and monensin, an inhibitor of cellular secretion, both prevented lysis by NCC. Three microtubule inhibitors, vinblastine sulfate, colchicine, and demecolcine, all inhibited target cell lysis. Two divalent cation chelators, EDTA and EGTA, blocked NCC activity. Elimination of both Ca2+ and Mg2+ by EDTA prevented target cell binding and killing. Selective removal of Ca2+ by EGTA prevented killing but did not block target cell binding. These results indicated that nonspecific cytotoxicity in fish is an active process which requires cell movement and an intact secretory apparatus. The mechanisms of cytolysis by NCC were found (except for the requirement of microtubules) to be analogous to those of mammalian NK cells. Combined with morphological studies, these data strongly suggest that a phylogenetic relationship exists between these effector cells.

  14. Comparative proteomic analysis of human SH-SY5Y neuroblastoma cells under simulated microgravity.

    PubMed

    Zhang, Yongqian; Wang, Hongbin; Lai, Chengjun; Wang, Lu; Deng, Yulin

    2013-02-01

    Microgravity is one of the most important features in spaceflight. Previous evidence has shown that neurophysiological impairment signs occurred under microgravity. The present study was undertaken to explore the change in protein abundance in human SH-SY5Y neuroblastoma cells that were grown in a microgravity environment. The comparative proteomic method based on the (18)O labeling technique was applied to investigate the up-regulated proteins and down-regulated proteins in SH-SY5Y under simulated microgravity. Twenty-two differentially abundant proteins were quantified in human SH-SY5Y neuroblastoma cells. The cell microfilament network was disrupted under simulated microgravity, which was determined by the immunocytochemistry. The concentration of reactive oxygen species, malondialdehyde, and free Ca2+ ion significantly increased, and the level of ATP significantly decreased under simulated microgravity. However, there was no obvious cell apoptosis observed under simulated microgravity. These results provide new molecular evidence for the change in protein abundance in SH-SY5Y cells under simulated microgravity, which might unfold biological mechanisms and the development of effective countermeasures to deal with microgravity-related neurological problems. We believe that the state-of-the-art proteomic assay may be a means by which aerospace scientists will begin to understand the underlying mechanisms of space life activities at the protein level.

  15. Alpha-smooth muscle actin expression and structure integrity in chondrogenesis of human mesenchymal stem cells.

    PubMed

    Hung, Shih-Chieh; Kuo, Pei-Yin; Chang, Ching-Fang; Chen, Tain-Hsiung; Ho, Larry Low-Tone

    2006-06-01

    The expression of alpha-smooth muscle actin (SMA) by human mesenchymal stem cells (hMSCs) during chondrogenesis was investigated by the use of pellet culture. Undifferentiated hMSCs expressed low but detectable amounts of SMA and the addition of transforming growth factor beta1 (TGF-beta1) to the culture medium increased SMA expression in a dose-dependent manner. Differentiation in pellet culture was rapidly induced in the presence of TGF-beta1 and was accompanied by the development of annular layers at the surface of the pellet. These peripheral layers lacked expression of glycosaminoglycan and type II collagen during early differentiation. Progress in differentiation increased the synthesis of glycosaminoglycan and type II collagen and the expression of SMA in these layers. Double-staining for type II collagen and SMA by immunofluorescence demonstrated the differentiation of hMSCs into cells positive for these two proteins. The addition of cytochalasin D, a potent inhibitor of the polymerization of actin microfilaments, caused damage to the structural integrity and surface smoothness of the chondrogenic pellets. The SMA-positive cells in the peripheral layers of the chondrogenic pellets mimic those within the superficial layer of articular cartilage and are speculated to play a major role in cartilage development and maintenance.

  16. Structural Differences Explain Diverse Functions of Plasmodium Actins

    PubMed Central

    Vahokoski, Juha; Martinez, Silvia Muñico; Ignatev, Alexander; Lepper, Simone; Frischknecht, Friedrich; Sidén-Kiamos, Inga; Sachse, Carsten; Kursula, Inari

    2014-01-01

    Actins are highly conserved proteins and key players in central processes in all eukaryotic cells. The two actins of the malaria parasite are among the most divergent eukaryotic actins and also differ from each other more than isoforms in any other species. Microfilaments have not been directly observed in Plasmodium and are presumed to be short and highly dynamic. We show that actin I cannot complement actin II in male gametogenesis, suggesting critical structural differences. Cryo-EM reveals that Plasmodium actin I has a unique filament structure, whereas actin II filaments resemble canonical F-actin. Both Plasmodium actins hydrolyze ATP more efficiently than α-actin, and unlike any other actin, both parasite actins rapidly form short oligomers induced by ADP. Crystal structures of both isoforms pinpoint several structural changes in the monomers causing the unique polymerization properties. Inserting the canonical D-loop to Plasmodium actin I leads to the formation of long filaments in vitro. In vivo, this chimera restores gametogenesis in parasites lacking actin II, suggesting that stable filaments are required for exflagellation. Together, these data underline the divergence of eukaryotic actins and demonstrate how structural differences in the monomers translate into filaments with different properties, implying that even eukaryotic actins have faced different evolutionary pressures and followed different paths for developing their polymerization properties. PMID:24743229

  17. Primary cilia in the basal cells of equine epididymis: a serendipitous finding.

    PubMed

    Arrighi, Silvana

    2013-04-01

    Occurrence of a solitary cilium was an unexpected discovery while studying the ultrastructure of epididymal epithelium in equidae. Primary cilia were detected in epididymal basal cells of all individuals of the equines studied - horses, donkey and mules - independently from age and tract of the duct, emerging from the basal cell surface and insinuating into the intercellular spaces. More rarely solitary cilia occurred also at the luminal surface of the principal cells. The ciliary apparatus was constituted by a structurally typical basal body continuous with the finger-like ciliary shaft extending from the cell surface, and an adjacent centriole oriented at right angles to the basal body. The cilium was structured as the typical primary, non-motile cilia found in many mammalian cells, having a 9+0 microtubular pattern. The basal diplosome was randomly associated with other cellular organelles including the Golgi complex, the endoplasmic reticulum, the microfilament network, the plasma membrane, vesicles and pits. Primary ciliogenesis is a new and unexpected finding in the epididymal epithelium. A monitoring role of luminal factors and extracellular liquids might be attributed to this organelle, likely acting as chemical receptor of the luminal environment, thus modulating the epithelial function by a cell-to-cell crosstalk involving the entire epithelium.

  18. Effects of spaceflight conditions on fertilization and embryogenesis in the sea urchin Lytechinus pictus

    NASA Technical Reports Server (NTRS)

    Schatten, H.; Chakrabarti, A.; Taylor, M.; Sommer, L.; Levine, H.; Anderson, K.; Runco, M.; Kemp, R.

    1999-01-01

    Calcium loss and muscle atrophy are two of the main metabolic changes experienced by astronauts and crew members during exposure to microgravity in space. Calcium and cytoskeletal events were investigated within sea urchin embryos which were cultured in space under both microgravity and 1 g conditions. Embryos were fixed at time-points ranging from 3 h to 8 days after fertilization. Investigative emphasis was placed upon: (1) sperm-induced calcium-dependent exocytosis and cortical granule secretion, (2) membrane fusion of cortical granule and plasma membranes; (3) microfilament polymerization and microvilli elongation; and (5) embryonic development into morula, blastula, gastrula, and pluteus stages. For embryos cultured under microgravity conditions, the processes of cortical granule discharge, fusion of cortical granule membranes with the plasma membrane, elongation of microvilli and elevation of the fertilization coat were reduced in comparison with embryos cultured at 1 g in space and under normal conditions on Earth. Also, 4% of all cells undergoing division in microgravity showed abnormalities in the centrosome-centriole complex. These abnormalities were not observed within the 1 g flight and ground control specimens, indicating that significant alterations in sea urchin development processes occur under microgravity conditions. Copyright 1999 Academic Press.

  19. Human Lung Cancer Cell Line A-549 ATCC Is Differentially Affected by Supranutritional Organic and Inorganic Selenium

    PubMed Central

    Flores Villavicencio, Lérida Liss; Cruz-Jiménez, Gustavo; Barbosa-Sabanero, Gloria; Kornhauser-Araujo, Carlos; Mendoza-Garrido, M. Eugenia; de la Rosa, Guadalupe; Sabanero-López, Myrna

    2014-01-01

    The effects of organic and inorganic forms of selenium (Se) on human cells have been extensively studied for nutritional concentrations; however, to date, little is known about the potential toxicity at supranutritional levels. In the present study we determined the effects of sodium selenite (SSe) and selenomethionine (SeMet) on cell growth and intracellular structures in lung cancer cells exposed at Se concentrations between 0 and 3 mM. Our results showed that SSe affected cell growth more rapidly than SeMet (24 h and 48 h, resp.). After 24 h of cells exposure to 0.5, 1.5, and 3 mM SSe, cell growth was reduced by 10, 50, and 60%, as compared to controls. After 48 h, nuclear fragmentation was evident in cells exposed to SSe, suggesting an induction to cell death. In contrast, SeMet did not affect cell proliferation, and the cells were phenotypically similar to controls. Microtubules and microfilaments structures were also affected by both Se compounds, again SSe being more toxic than SeMet. To our knowledge, this is the first report on the differential effects of organic and inorganic Se in supranutritional levels in lung cancer cells. PMID:25477771

  20. Simultaneous Visualization of Peroxisomes and Cytoskeletal Elements Reveals Actin and Not Microtubule-Based Peroxisome Motility in Plants1[w

    PubMed Central

    Mathur, Jaideep; Mathur, Neeta; Hülskamp, Martin

    2002-01-01

    Peroxisomes were visualized in living plant cells using a yellow fluorescent protein tagged with a peroxisomal targeting signal consisting of the SKL motif. Simultaneous visualization of peroxisomes and microfilaments/microtubules was accomplished in onion (Allium cepa) epidermal cells transiently expressing the yellow fluorescent protein-peroxi construct, a green fluorescent protein-mTalin construct that labels filamentous-actin filaments, and a green fluorescent protein-microtubule-binding domain construct that labels microtubules. The covisualization of peroxisomes and cytoskeletal elements revealed that, contrary to the reports from animal cells, peroxisomes in plants appear to associate with actin filaments and not microtubules. That peroxisome movement is actin based was shown by pharmacological studies. For this analysis we used onion epidermal cells and various cell types of Arabidopsis including trichomes, root hairs, and root cortex cells exhibiting different modes of growth. In transient onion epidermis assay and in transgenic Arabidopsis plants, an interference with the actin cytoskeleton resulted in progressive loss of saltatory movement followed by the aggregation and a complete cessation of peroxisome motility within 30 min of drug application. Microtubule depolymerization or stabilization had no effect. PMID:11891258

  1. Inhibitors of receptor-mediated endocytosis block the entry of Bacillus anthracis adenylate cyclase toxin but not that of Bordetella pertussis adenylate cyclase toxin.

    PubMed Central

    Gordon, V M; Leppla, S H; Hewlett, E L

    1988-01-01

    Bordetella pertussis and Bacillus anthracis produce extracytoplasmic adenylate cyclase toxins (AC toxins) with shared features including activation by calmodulin and the ability to enter target cells and catalyze intracellular cyclic AMP (cAMP) production from host ATP. The two AC toxins were evaluated for sensitivities to a series of inhibitors of known uptake mechanisms. Cytochalasin D, an inhibitor of microfilament function, abrogated the cAMP response to B. anthracis AC toxin (93%) but not the cAMP response elicited by B. pertussis AC toxin. B. anthracis-mediated intoxication of CHO cells was completely inhibited by ammonium chloride (30 mM) and chloroquine (0.1 mM), whereas the cAMP accumulation produced by B. pertussis AC toxin remained unchanged. The block of target cell intoxication by cytochalasin D could be bypassed when cells were first treated with anthrax AC toxin and then exposed to an acidic medium. These data indicate that despite enzymatic similarities, these two AC toxins intoxicate target cells by different mechanisms, with anthrax AC toxin entering by means of receptor-mediated endocytosis into acidic compartments and B. pertussis AC toxin using a separate, and as yet undefined, mechanism. PMID:2895741

  2. Dynamic membrane-cytoskeletal interactions: specific association of integrin and talin arises in vivo after phorbol ester treatment of peripheral blood lymphocytes.

    PubMed Central

    Burn, P; Kupfer, A; Singer, S J

    1988-01-01

    Members of the family of transmembrane integral membrane proteins called integrins have been implicated in forming attachments to actin microfilaments of the cytoskeleton. These attachments are thought to involve one or more intervening peripheral membrane proteins linked to integrin. To detect such possible linkages in vivo, the integrin molecules on the surfaces of intact chicken peripheral blood lymphocytes were collected into caps by cross-linking with specific antibodies, and the capped cells were examined by double immunofluorescence to determine whether particular cytoskeletal proteins were co-collected with the integrin. With resting lymphocytes, the capping of integrin did not result in any detectable redistribution of either talin, vinculin, or alpha-actinin inside the cells. However, if the capping was carried out upon the addition of phorbol 12-myristate 13-acetate (PMA) to the cells, then talin, but not vinculin or alpha-actinin, was found associated with the integrin caps. PMA is known to activate protein kinase C. These results suggest that after, but not before, PMA stimulation of intact cells, talin becomes linked either directly or indirectly with integrin, reflecting the formation of a membrane-cytoskeletal association that is metabolically regulated. Images PMID:3124107

  3. Ultrastructural organization of contractile proteins in rat glomerular mesangial cells.

    PubMed Central

    Drenckhahn, D.; Schnittler, H.; Nobiling, R.; Kriz, W.

    1990-01-01

    Glomerular mesangial cells of the rat kidney contain actin, nonmuscle myosin, tropomyosin, and the muscular Z-line protein, alpha-actinin. This was shown for actin, myosin, and alpha-actinin by immunoblotting as well as by immunoelectron microscopy. Tropomyosin was localized in mesangial cells by immunofluorescence. In cultured mesangial cells, actin, myosin, and alpha-actinin constitute a considerable amount of the total cellular protein contents. In mesangial cells in situ actin, myosin and alpha-actinin were found to be colocalized within conspicuous microfilament bundles that traverse the cell body or major processes in various directions and project into either the tonguelike pericapillary processes, which run toward mesangial angles, or into the microvilluslike lateral extensions that abut on the perimesangial portion of the glomerular basement membrane (GBM). Thereby, the GBM of opposing mesangial angles as well as of opposing portions of the perimesangial GBM are regularly interconnected by filament bundles within mesangial cells that contain actin, myosin, and alpha-actinin. The authors suggest that the major function of actin-, myosin-, and alpha-actinin-containing filament bundles in mesangial cells is to create an isometric tension (or minute isotonic contractions) to counteract the distending forces of the rather high intracapillary hydraulic pressure and its resulting pressure gradients across the capillary wall and across the perimesangial GBM. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:2260624

  4. Microgravity effects during fertilization, cell division, development, and calcium metabolism in sea urchins

    NASA Technical Reports Server (NTRS)

    Schatten, Heide

    1996-01-01

    The overall objectives of this project are to explore the role of microgravity during fertilization, early development, cytoskeletal organization, and skeletal calcium deposition in a model development system: the sea urchin eggs and embryos. While pursuing these objectives, we have also helped to develop, test, and fly the Aquatic Research Facility (ARF) system. Cells were fixed at preselected time points to preserve the structures and organelles of interest with regards to cell biology events during development. The protocols used for the analysis of the results had been developed during the earlier part of this research and were applied for post-flight analysis using light and (immuno)fluorescence microscopy, scanning electron microscopy, and transmission electron microscopy. The structures of interest are: microtubules during fertilization, cell division, and cilia movement; microfilaments during cell surface restructuring and cell division; centrosomes and centrioles during cell division, cell differentiation, and cilia formation and movement; membranes, Golgi, endoplasmic reticulum, mitochondria, and chromosomes at all stages of development; and calcium deposits during spicule formation in late-stage embryos. In addition to further explore aspects important or living in space, several aspects of this research are also aimed at understanding diseases that affect humans on Earth which may be accelerated in space.

  5. N-glycosylated proteins are involved in efficient internalization of Klebsiella pneumoniae by cultured human epithelial cells.

    PubMed Central

    Fumagalli, O; Tall, B D; Schipper, C; Oelschlaeger, T A

    1997-01-01

    Klebsiella pneumoniae obtained from patients with urinary tract infections is able to invade cultured human epithelial cells. The internalization process is dependent upon both microfilaments and microtubules. To better understand the interaction of these invasive bacteria with the host cell receptor(s), bladder, lung, and ileocecal epithelial cells were infected with K. pneumoniae in the presence of various lectins possessing multiple glycan specificities. It was found that the N-acetylglucosamine (GlcNAc)-specific lectins concanavalin A, Datura stramonium agglutinin, and wheat germ agglutinin significantly inhibited the invasion of K. pneumoniae into these cells but did not interfere with the internalization of an invasive strain of Salmonella typhimurium. Conversely, internalization of K. pneumoniae but not S. typhimurium was also significantly inhibited when the bacteria were pretreated with GlcNAc or chitin hydrolysate, a GlcNAc polymer, prior to the gentamicin invasion assay. Other carbohydrates such as glucose, galactose, mannose, fucose, and N-acetylneuraminic acid had no inhibitory effects on K. pneumoniae uptake. Furthermore, internalization of K. pneumoniae but not S. typhimurium by HCT8 cells was also significantly inhibited when eukaryotic protein glycosylation was interrupted by tunicamycin or when host N-linked surface glycans were removed by pretreatment with N-glycosidase F. These studies suggest that a N-glycosylated protein receptor is involved in the internalization of K. pneumoniae by human epithelial cells in vitro. The results also indicate that internal GlcNAc residues might be a carbohydrate component of the receptor. PMID:9353018

  6. Plant cells on earth and in space.

    PubMed

    Braun, M; Sievers, A

    2000-09-01

    Two quite different types of plant cells are analysed with regard to transduction of the gravity stimulus: (i) Unicellular rhizoids and protonemata of characean green algae; these are tube-like, tip-growing cells which respond to the direction of gravity. (ii) Columella cells located in the center of the root cap of higher plants; these cells (statocytes) perceive gravity. The two cell types contain heavy particles or organelles (statoliths) which sediment in the field of gravity, thereby inducing the graviresponse. Both cell types were studied under microgravity conditions (10(-4) g) in sounding rockets or spacelabs. From video microscopy of living Chara cells and different experiments with both cell types it was concluded that the position of statoliths depends on the balance of two forces, i.e. the gravitational force and the counteracting force mediated by actin microfilaments. The actomyosin system may be the missing link between the gravity-dependent movement of statoliths and the gravity receptor(s); it may also function as an amplifier.

  7. Oriented movement of statoliths studied in a reduced gravitational field during parabolic flights of rockets.

    PubMed

    Volkmann, D; Buchen, B; Hejnowicz, Z; Tewinkel, M; Sievers, A

    1991-01-01

    During five rocket flights (TEXUS 18, 19, 21, 23 and 25), experiments were performed to investigate the behaviour of statoliths in rhizoids of the green alga Charo globularia Thuill. and in statocytes of cress (Lepidium sativum L.) roots, when the gravitational field changed to approx. l0(-4) g (i.e. microgravity) during the parabolic flight (lasting for 301-390 s) of the rockets. The position of statoliths was only slightly influenced by the conditions during launch, e.g. vibration, acceleration and rotation of the rocket. Within approx. 6 min of microgravity conditions the shape of the statolith complex in the rhizoids changed from a transversely oriented lens into a longitudinally oriented spindle. The center of the statolith complex moved approx. 14 micrometers and 3.6 micrometers in rhizoids and root statocytes, respectively, in the opposite direction to the originally acting gravity vector. The kinetics of statolith displacement in rhizoids demonstrate that the velocity was nearly constant under microgravity whereas it decreased remarkably after inversion of rhizoids on Earth. It can be concluded that on Earth the position of statoliths in both rhizoids and root statocytes depends on the balance of two forces, i.e. the gravitational force and the counteracting force mediated by microfilaments.

  8. Hyphal ontogeny in Neurospora crassa: a model organism for all seasons

    PubMed Central

    Riquelme, Meritxell; Martínez-Núñez, Leonora

    2016-01-01

    Filamentous fungi have proven to be a better-suited model system than unicellular yeasts in analyses of cellular processes such as polarized growth, exocytosis, endocytosis, and cytoskeleton-based organelle traffic. For example, the filamentous fungus Neurospora crassa develops a variety of cellular forms. Studying the molecular basis of these forms has led to a better, yet incipient, understanding of polarized growth. Polarity factors as well as Rho GTPases, septins, and a localized delivery of vesicles are the central elements described so far that participate in the shift from isotropic to polarized growth. The growth of the cell wall by apical biosynthesis and remodeling of polysaccharide components is a key process in hyphal morphogenesis. The coordinated action of motor proteins and Rab GTPases mediates the vesicular journey along the hyphae toward the apex, where the exocyst mediates vesicle fusion with the plasma membrane. Cytoplasmic microtubules and actin microfilaments serve as tracks for the transport of vesicular carriers as well as organelles in the tubular cell, contributing to polarization. In addition to exocytosis, endocytosis is required to set and maintain the apical polarity of the cell. Here, we summarize some of the most recent breakthroughs in hyphal morphogenesis and apical growth in N. crassa and the emerging questions that we believe should be addressed. PMID:27990280

  9. Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells.

    PubMed

    Higaki, Takumi; Kutsuna, Natsumaro; Sano, Toshio; Kondo, Noriaki; Hasezawa, Seiichiro

    2010-01-01

    Manual evaluation of cellular structures is a popular approach in cell biological studies. However, such approaches are laborious and are prone to error, especially when large quantities of image data need to be analyzed. Here, we introduce an image analysis framework that overcomes these limitations by semi-automatic quantification and clustering of cytoskeletal structures. In our framework, cytoskeletal orientation, bundling and density are quantified by measurement of newly-developed, robust metric parameters from microscopic images. Thereafter, the microscopic images are classified without supervision by clustering based on the metric patterns. Clustering allows us to collectively investigate the large number of cytoskeletal structure images without laborious inspection. Application of this framework to images of GFP-actin binding domain 2 (GFP-ABD2)-labeled actin cytoskeletons in Arabidopsis guard cells determined that microfilaments (MFs) are radially oriented and transiently bundled in the process of diurnal stomatal opening. The framework also revealed that the expression of mouse talin GFP-ABD (GFP-mTn) continuously induced MF bundling and suppressed the diurnal patterns of stomatal opening, suggesting that changes in the level of MF bundling are crucial for promoting stomatal opening. These results clearly demonstrate the utility of our image analysis framework.

  10. The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts.

    PubMed Central

    Kozma, R; Ahmed, S; Best, A; Lim, L

    1995-01-01

    The Ras-related protein Cdc42 plays a role in yeast cell budding and polarity. Two related proteins, Rac1 and RhoA, promote formation in mammalian cells of membrane ruffles and stress fibers, respectively, which contain actin microfilaments. We now show that microinjection of the related human Cdc42Hs into Swiss 3T3 fibroblasts induced the formation of peripheral actin microspikes, determined by staining with phalloidin. A proportion of these microspikes was found to be components of filopodia, as analyzed by time-lapse phase-contrast microscopy. The formation of filopodia was also found to be promoted by Cdc42Hs microinjection. This was followed by activation of Rac1-mediated membrane ruffling. Treatment with bradykinin also promoted formation of microspikes and filopodia as well as subsequent effects similar to that seen upon Cdc42Hs microinjection. These effects of bradykinin were specifically inhibited by prior microinjection of dominant negative Cdc42HsT17N, suggesting that bradykinin acts by activating cellular Cdc42Hs. Since filopodia have been ascribed an important sensory function in fibroblasts and are required for guidance of neuronal growth cones, these results indicate that Cdc42Hs plays an important role in determining mammalian cell morphology. PMID:7891688

  11. Fungal lectin of Peltigera canina induces chemotropism of compatible Nostoc cells by constriction-relaxation pulses of cyanobiont cytoskeleton

    PubMed Central

    Díaz, Eva Maria; Vicente-Manzanares, Miguel; Sacristan, Mara; Legaz, Maria-Estrella

    2011-01-01

    A glycosylated arginase acting as a fungal lectin from Peltigera canina is able to produce recruitment of cyanobiont Nostoc cells and their adhesion to the hyphal surface. This implies that the cyanobiont would develop organelles to motility toward the chemoattractant. However when visualized by transmission electron microscopy, Nostoc cells recently isolated from P. canina thallus do not reveal any motile, superficial organelles, although their surface was covered by small spindles and serrated layer related to gliding. The use of S-(3,4-dichlorobenzyl)isothiourea, blebbistatin, phalloidin and latrunculin A provide circumstantial evidence that actin microfilaments rather than MreB, the actin-like protein from prokaryota, and probably, an ATPase which develops contractile function similar to that of myosin II, are involved in cell motility. These experimental facts, the absence of superficial elements (fimbriae, pili or flagellum) related to cell movement, and the appearance of sunken cells during of after movement verified by scanning electron microscopy, support the hypothesis that the motility of lichen cyanobionts could be achieved by contraction-relaxation episodes of the cytoskeleton induced by fungal lectin act as a chemoattractant. PMID:21897128

  12. Fungal lectin of Peltigera canina induces chemotropism of compatible Nostoc cells by constriction-relaxation pulses of cyanobiont cytoskeleton.

    PubMed

    Díaz, Eva Maria; Vicente-Manzanares, Miguel; Sacristan, Mara; Vicente, Carlos; Legaz, Maria-Estrella

    2011-10-01

    A glycosylated arginase acting as a fungal lectin from Peltigera canina is able to produce recruitment of cyanobiont Nostoc cells and their adhesion to the hyphal surface. This implies that the cyanobiont would develop organelles to motility towards the chemoattractant. However when visualized by transmission electron microscopy, Nostoc cells recently isolated from P. canina thallus do not reveal any motile, superficial organelles, although their surface was covered by small spindles and serrated layer related to gliding. The use of S-(3,4-dichlorobenzyl)isothiourea, blebbistatin, phalloidin and latrunculin A provide circumstantial evidence that actin microfilaments rather than MreB, the actin-like protein from prokaryota, and, probably, an ATPase which develops contractile function similar to that of myosin II, are involved in cell motility. These experimental facts, the absence of superficial elements (fimbriae, pili or flagellum) related to cell movement, and the appearance of sunken cells during of after movement verified by scanning electron microscopy, support the hypothesis that the motility of lichen cyanobionts could be achieved by contraction-relaxation episodes of the cytoskeleton induced by fungal lectin act as a chemoattractant.

  13. Forming a tough shell via an intracellular matrix and cellular junctions in the tail epidermis of Oikopleura dioica (Chordata: Tunicata: Appendicularia)

    NASA Astrophysics Data System (ADS)

    Nakashima, Keisuke; Nishino, Atsuo; Hirose, Euichi

    2011-08-01

    A postanal tail is a major synapomorphy of the phylum Chordata, which is composed of three subphyla: Vertebrata, Cephalochordata, and Tunicata (Urochordata). Among tunicates, appendicularians are the only group that retains the tail in the adult, and the adult tail functions in locomotion and feeding in combination with a cellulose-based house structure. Given the phylogenetic position of tunicates, the appendicularian adult tail may possess ancestral features of the chordate tail. We assess the ultrastructural development of the tail epidermis of the appendicularian Oikopleura dioica. The epidermis of the larval tail is enclosed by the larval envelope, which is a thin sheet similar to the outer tunic layer of ascidian larvae. The epidermis of the adult tail seems to bear no tunic-like cellulosic integuments, and the tail fin is a simple folding of the epidermis. Every epidermal cell, except for the triangular cells at the edge of the tail fin, has a conspicuous matrix layer of fibrous content in the apical cytoplasm without enclosing membranes. The epidermis of the larval tail does not have a fibrous matrix layer, suggesting the production of the layer during larval development and metamorphosis. Zonulae adhaerentes firmly bind the epidermal cells of the adult tail to one another, and the dense microfilaments lining the cell borders constitute a mechanical support for the cell membranes. The intracellular matrix, cell junctions, and cytoskeletons probably make the tail epidermis a tough, flexible shell supporting the active beating of the oikopleuran adult tail.

  14. Forming a tough shell via an intracellular matrix and cellular junctions in the tail epidermis of Oikopleura dioica (Chordata: Tunicata: Appendicularia).

    PubMed

    Nakashima, Keisuke; Nishino, Atsuo; Hirose, Euichi

    2011-08-01

    A postanal tail is a major synapomorphy of the phylum Chordata, which is composed of three subphyla: Vertebrata, Cephalochordata, and Tunicata (Urochordata). Among tunicates, appendicularians are the only group that retains the tail in the adult, and the adult tail functions in locomotion and feeding in combination with a cellulose-based house structure. Given the phylogenetic position of tunicates, the appendicularian adult tail may possess ancestral features of the chordate tail. We assess the ultrastructural development of the tail epidermis of the appendicularian Oikopleura dioica. The epidermis of the larval tail is enclosed by the larval envelope, which is a thin sheet similar to the outer tunic layer of ascidian larvae. The epidermis of the adult tail seems to bear no tunic-like cellulosic integuments, and the tail fin is a simple folding of the epidermis. Every epidermal cell, except for the triangular cells at the edge of the tail fin, has a conspicuous matrix layer of fibrous content in the apical cytoplasm without enclosing membranes. The epidermis of the larval tail does not have a fibrous matrix layer, suggesting the production of the layer during larval development and metamorphosis. Zonulae adhaerentes firmly bind the epidermal cells of the adult tail to one another, and the dense microfilaments lining the cell borders constitute a mechanical support for the cell membranes. The intracellular matrix, cell junctions, and cytoskeletons probably make the tail epidermis a tough, flexible shell supporting the active beating of the oikopleuran adult tail.

  15. The syndecan family of proteoglycans. Novel receptors mediating internalization of atherogenic lipoproteins in vitro.

    PubMed Central

    Fuki, I V; Kuhn, K M; Lomazov, I R; Rothman, V L; Tuszynski, G P; Iozzo, R V; Swenson, T L; Fisher, E A; Williams, K J

    1997-01-01

    Cell-surface heparan sulfate proteoglycans have been shown to participate in lipoprotein catabolism, but the roles of specific proteoglycan classes have not been examined previously. Here, we studied the involvement of the syndecan proteoglycan family. First, transfection of CHO cells with expression vectors for several syndecan core proteins produced parallel increases in the cell association and degradation of lipoproteins enriched in lipoprotein lipase, a heparan-binding protein. Second, a chimeric construct, FcR-Synd1, that consists of the ectodomain of the IgG Fc receptor Ia linked to the highly conserved transmembrane and cytoplasmic domains of syndecan-1 directly mediated efficient internalization, in a process triggered by ligand clustering. Third, internalization of lipase-enriched lipoproteins via syndecan-1 and of clustered IgGs via the chimera showed identical kinetics (t1/2 = 1 h) and identical dose-response sensitivities to cytochalasin B, which disrupts microfilaments, and to genistein, which inhibits tyrosine kinases. In contrast, internalization of the receptor-associated protein, which proceeds via coated pits, showed a t1/2 < 15 min, limited sensitivity to cytochalasin B, and complete insensitivity to genistein. Thus, syndecan proteoglycans can directly mediate ligand catabolism through a pathway with characteristics distinct from coated pits, and might act as receptors for atherogenic lipoproteins and other ligands in vivo. PMID:9294130

  16. Identification of regions within the Legionella pneumophila VipA effector protein involved in actin binding and polymerization and in interference with eukaryotic organelle trafficking.

    PubMed

    Bugalhão, Joana N; Mota, Luís Jaime; Franco, Irina S

    2016-02-01

    The Legionella pneumophila effector protein VipA is an actin nucleator that co-localizes with actin filaments and early endosomes in infected macrophages and which interferes with organelle trafficking when expressed in yeast. To identify the regions of VipA involved in its subcellular localization and functions, we ectopically expressed specific VipA mutant proteins in eukaryotic cells. This indicated that the characteristic punctate distribution of VipA depends on its NH2 -terminal (amino acid residues 1-133) and central coiled-coil (amino acid residues 133-206) regions, and suggested a role for the COOH-terminal (amino acid residues 206-339) region in association with actin filaments and for the NH2 -terminal in co-localization with early endosomes. Co-immunoprecipitation and in vitro assays showed that the COOH-terminal region of VipA is necessary and sufficient to mediate actin binding, and is essential but insufficient to induce microfilament formation. Assays in yeast revealed that the NH2 and the COOH-terminal regions, and possibly an NPY motif within the NH2 region of VipA, are necessary for interference with organelle trafficking. Overall, this suggests that subversion of eukaryotic vesicular trafficking by VipA involves both its ability to associate with early endosomes via its NH2 -terminal region and its capacity to bind and polymerize actin through its COOH-terminal region.

  17. [Peculiarities of ultrastructure of excretory system in Bothrioplana semperi (Platyhelminthes, Turbellaria)].

    PubMed

    Kornakova, E E

    2010-01-01

    Ultrastructural study of morphology of cirtocytes and excretory channels was performed in the free living turbellaria Bothrioplana semperi (Turbellaria, Seriata). It has been shown that cirtocytes of this species are formed by two cells--the terminal and the proximal cells of the channel. The fan is composed of two rod rows. The external row goes out from the terminal cell, the internal one is a derivate of the channel proximal cell. Inside each rod of the external row there runs a bundle of microfilaments; it originates in the cytoplasm of the channel proximal cell distal to bases of the external rods. On the internal rod membranes there are noted small electrondense granules disposed separately or fused in the solid layer continuing into a dense "membrane" connecting rods of the external and internal rows. Rare internal leptotrichiae go out from the cirtocyte cavity bottom. External leptotrichiae are absent. The septate desmosome at the level of the terminal cell is absent, but is present in the channel proximal cell at the level of terminal of cilia. The apical surface of the channel cell carries rare short microvilli. The basement membrane of cells of excretory channels forms deep invaginations almost reaching the apical membrane. Epithelium of excretory channels is deprived of cilia. Ultrastructure of cirtocytes and excretory channels of B. semperi is similar to those in representatives of the suborder Proseriata (Seriata). The significance of ultrastructure of the Proseriata cirtocytes, especially of the order of formation of versh, for construction of phylogeny of Platyhelminthes is discussed.

  18. [Participation of the cytoskeleton in the physiology of the endometrium].

    PubMed

    Durán Reyes, G; Hicks, J J

    1995-11-01

    The cytoskeleton in the endometrium, takes part not only in all the mechanic functions of the cell, but because of movement and location of healthy organelles and proteins, it also takes part in the metabolism. The endometrial epithelium, because of its morphology and its supposed cellular homogeneity, has been studied more than the stroma. It is known that intermedium filaments show a characteristic pattern of typical distribution and expression of the cellular type. During pregnancy and pseudopregnancy, in the apical region of the epithelial cells, both, luminal and glandular, there is an abundance of keratin in the basolateral region; while the vimentin is abundant only in the luminal epithelial cells and it increases in the implantation day. In humans and rats, the desmin only expresses during the decidual response. It is considered that intermedium filaments have a role in the polarity changes of the membrane. The microfilaments (MF) are related with the regulation of the cellular morphology and movement. In the luminal epithelium the MF play a role in the transformations of the uterine surface like the microvilli. The microtubules in the endometrium and other organs play an important role in the organelles position like lysosomes, mitochondria and Golgi complex. Also it is proved that take part in the DNA synthesis, because colchicine drug inhibits it.

  19. The ability of PVX p25 to form RL structures in plant cells is necessary for its function in movement, but not for its suppression of RNA silencing.

    PubMed

    Yan, Fei; Lu, Yuwen; Lin, Lin; Zheng, Hongying; Chen, Jianping

    2012-01-01

    The p25 triple gene block protein of Potato virus X (PVX) is multifunctional, participating in viral movement and acting as a suppressor of RNA silencing. The cell-to-cell movement of PVX is known to depend on the suppression function of p25. GFP-fused p25 accumulates in rod-like (RL) structures with intense fluorescence in cells. By monitoring the location of fluorescence at different times, we have now shown that the RL structure is composed of filaments. P25 mutants without the conditional ability to recover movement function could not form RL structures while the mutants that had the ability did form the structure, suggesting that the ability of p25 to form RL structures is necessary for its function in cell-to-cell movement, but not for its suppressor function. Moreover, chemical inhibition of microfilaments in cells destroyed the formation of the complete RL structure. Additionally, TGBp2 and TGBp3 were recruited into the RL structure, suggesting a relationship between the TGBps in virus movement.

  20. Amatoxins, phallotoxins, phallolysin, and antamanide: the biologically active components of poisonous Amanita mushrooms.

    PubMed

    Wieland, T; Faulstich, H

    1978-12-01

    This review gives a comprehensive account of the molecular toxicology of the bicyclic peptides obtained from the poisonous mushrooms of the genus Amanita. The discussion of the biochemical events will be preceded by a consideration of the chemistry of the toxic peptides. The structural features essential for biological activities of both the amatoxins and the phallotoxins will be discussed, also including the most important analytical data. Similar consideration will be given to antamanide, a cyclic peptide, which counteracts phalloidin. In addition, the phallolysins, three cytolytic proteins from Amanita phalloides will be discussed. The report on the biological activity of the amatoxins will deal with the sensitivity of the different RNA-polymerases towards the toxins and with their action on various cell types. Consideration will also be given to systems in which alpha-amanitin was used and can be used as a molecular tool; in the past, many investigators used the inhibitor in molecular biology, genetics, and even in physiological research. As for the phallotoxins, discussion of the affinity of these toxins for actin is provied. Further discussion attempts to understand the course of intoxication by filling in the gap between the first molecular event, formation of microfilaments, and the various lesions in hepatocytes during the intoxication.

  1. Functional synergy of actin filament cross-linking proteins.

    PubMed

    Tseng, Yiider; Schafer, Benjamin W; Almo, Steven C; Wirtz, Denis

    2002-07-12

    The organization of filamentous actin (F-actin) in resilient networks is coordinated by various F-actin cross-linking proteins. The relative tolerance of cells to null mutations of genes that code for a single actin cross-linking protein suggests that the functions of those proteins are highly redundant. This apparent functional redundancy may, however, reflect the limited resolution of available assays in assessing the mechanical role of F-actin cross-linking/bundling proteins. Using reconstituted F-actin networks and rheological methods, we demonstrate how alpha-actinin and fascin, two F-actin cross-linking/bundling proteins that co-localize along stress fibers and in lamellipodia, could synergistically enhance the resilience of F-actin networks in vitro. These two proteins can generate microfilament arrays that "yield" at a strain amplitude that is much larger than each one of the proteins separately. F-actin/alpha-actinin/fascin networks display strain-induced hardening, whereby the network "stiffens" under shear deformations, a phenomenon that is non-existent in F-actin/fascin networks and much weaker in F-actin/alpha-actinin networks. Strain-hardening is further enhanced at high rates of deformation and high concentrations of actin cross-linking proteins. A simplified model suggests that the optimum results of the competition between the increased stiffness of bundles and their decreased density of cross-links. Our studies support a re-evaluation of the notion of functional redundancy among cytoskeletal regulatory proteins.

  2. Effects of the in vitro administered ethanol and lipopolysaccharide toxin on membrane properties, intracellular free calcium and phagocytic function of isolated rat kupffer cells

    SciTech Connect

    Victorov, A.; Smith, T.; Abril, E.; Hamlin, E.; Earnest, D. )

    1991-03-11

    Low concentrations of ethanol slightly stimulated phagocytosis of cultured Kupffer cells (KC), producing practically no effect on membrane microviscosity and cytosolic free (Ca{sup 2+}){sub i}. On the contrary, high concentrations of ethanol significantly suppressed phagocytic function, increased fluidity of membrane lipids and caused a sustained rise in (Ca{sup 2}){sub i}; above the resting level of 41-85 nM. Treatment of KC with colchicine and cytochalasin B dramatically destructurized the plasma membrane lipids. Short term preincubation of KC with high doses of alcohol stimulated the disordering effects of both drugs, suggesting direct interaction of ethanol with microtubule and microfilament structures. The authors hypothesize that ethanol impairs phagocytosis of KC by concerted actions on membrane lipid fluidity, cytosolic free Ca{sup 2+} and functioning of cytoskeleton. On the other hand, incubation of KC with low concentrations of lipopolysaccharide (LPS) produced no changes in (Ca{sup 2+}){sub i}; or plasma membrane fluidity but reduced by several fold the fluidizing effect of subsequently added ethanol. They suggested that low doses of LPS, by activating second messengers other than Ca{sup 2+}, alter the functioning of the cytoskeleton and cause reorganization of the plasma membrane thus making KC membranes more resistent to the fluidizing action of ethanol and partially restoring the phagocytic function.

  3. Staufen Recruitment into Stress Granules Does Not Affect Early mRNA Transport in Oligodendrocytes

    PubMed Central

    Thomas, María G.; Tosar, Leandro J. Martinez; Loschi, Mariela; Pasquini, Juana M.; Correale, Jorge; Kindler, Stefan; Boccaccio, Graciela L.

    2005-01-01

    Staufen is a conserved double-stranded RNA-binding protein required for mRNA localization in Drosophila oocytes and embryos. The mammalian homologues Staufen 1 and Staufen 2 have been implicated in dendritic RNA targeting in neurons. Here we show that in rodent oligodendrocytes, these two proteins are present in two independent sets of RNA granules located at the distal myelinating processes. A third kind of RNA granules lacks Staufen and contains major myelin mRNAs. Myelin Staufen granules associate with microfilaments and microtubules, and their subcellular distribution is affected by polysome-disrupting drugs. Under oxidative stress, both Staufen 1 and Staufen 2 are recruited into stress granules (SGs), which are stress-induced organelles containing transiently silenced messengers. Staufen SGs contain the poly(A)-binding protein (PABP), the RNA-binding proteins HuR and TIAR, and small but not large ribosomal subunits. Staufen recruitment into perinuclear SGs is paralleled by a similar change in the overall localization of polyadenylated RNA. Under the same conditions, the distribution of recently transcribed and exported mRNAs is not affected. Our results indicate that Staufen 1 and Staufen 2 are novel and ubiquitous SG components and suggest that Staufen RNPs are involved in repositioning of most polysomal mRNAs, but not of recently synthesized transcripts, during the stress response. PMID:15525674

  4. Stress-dependent morphogenesis: continuum mechanics and truss systems.

    PubMed

    Muñoz, José J; Conte, Vito; Miodownik, Mark

    2010-08-01

    A set of equilibrium equations is derived for the stress-controlled shape change of cells due to the remodelling and growth of their internal architecture. The approach involves the decomposition of the deformation gradient into an active and a passive component; the former is allowed to include a growth process, while the latter is assumed to be hyperelastic and mass-preserving. The two components are coupled with a control function that provides the required feedback mechanism. The balance equations for general continua are derived and, using a variational approach, we deduce the equilibrium equations and study the effects of the control function on these equations. The results are applied to a truss system whose function is to simulate the cytoskeletal network constituted by myosin microfilaments and microtubules, which are found experimentally to control shape change in cells. Special attention is paid to the conditions that a thermodynamically consistent formulation should satisfy. The model is used to simulate the multicellular shape changes observed during ventral furrow invagination of the Drosophila melanogaster embryo. The results confirm that ventral furrow invagination can be achieved through stress control alone, without the need for other regulatory or signalling mechanisms. The model also reveals that the yolk plays a distinct role in the process, which is different to its role during invagination with externally imposed strains. In stress control, the incompressibility constraint of the yolk leads, via feedback, to the generation of a pressure in the ventral zone of the epithelium that eventually eases its rise and internalisation.

  5. Nanochips of Tantalum Oxide Nanodots as artificial-microenvironments for monitoring Ovarian cancer progressiveness

    PubMed Central

    Dhawan, Udesh; Wang, Ssu-Meng; Chu, Ying Hao; Huang, Guewha S.; Lin, Yan Ren; Hung, Yao Ching; Chen, Wen Liang

    2016-01-01

    Nanotopography modulates cell characteristics and cell behavior. Nanotopological cues can be exploited to investigate the in-vivo modulation of cell characteristics by the cellular microenvironment. However, the studies explaining the modulation of tumor cell characteristics and identifying the transition step in cancer progressiveness are scarce. Here, we engineered nanochips comprising of Tantalum oxide nanodot arrays of 10, 50, 100 and 200 nm as artificial microenvironments to study the modulation of cancer cell behavior. Clinical samples of different types of Ovarian cancer at different stages were obtained, primary cultures were established and then seeded on different nanochips. Immunofluorescence (IF) was performed to compare the morphologies and cell characteristics. Indices corresponding to cell characteristics were defined. A statistical comparison of the cell characteristics in response to the nanochips was performed. The cells displayed differential growth parameters. Morphology, Viability, focal adhesions, microfilament bundles and cell area were modulated by the nanochips which can be used as a measure to study the cancer progressiveness. The ease of fabrication of nanochips ensures mass-production. The ability of the nanochips to act as artificial microenvironments and modulate cell behavior may lead to further prospects in the markerless monitoring of the progressiveness and ultimately, improving the prognosis of Ovarian cancer. PMID:27534915

  6. Microtubules regulate disassembly of epithelial apical junctions

    PubMed Central

    Ivanov, Andrei I; McCall, Ingrid C; Babbin, Brian; Samarin, Stanislav N; Nusrat, Asma; Parkos, Charles A

    2006-01-01

    Background Epithelial tight junction (TJ) and adherens junction (AJ) form the apical junctional complex (AJC) which regulates cell-cell adhesion, paracellular permeability and cell polarity. The AJC is anchored on cytoskeletal structures including actin microfilaments and microtubules. Such cytoskeletal interactions are thought to be important for the assembly and remodeling of apical junctions. In the present study, we investigated the role of microtubules in disassembly of the AJC in intestinal epithelial cells using a model of extracellular calcium depletion. Results Calcium depletion resulted in disruption and internalization of epithelial TJs and AJs along with reorganization of perijunctional F-actin into contractile rings. Microtubules reorganized into dense plaques positioned inside such F-actin rings. Depolymerization of microtubules with nocodazole prevented junctional disassembly and F-actin ring formation. Stabilization of microtubules with either docetaxel or pacitaxel blocked contraction of F-actin rings and attenuated internalization of junctional proteins into a subapical cytosolic compartment. Likewise, pharmacological inhibition of microtubule motors, kinesins, prevented contraction of F-actin rings and attenuated disassembly of apical junctions. Kinesin-1 was enriched at the AJC in cultured epithelial cells and it also accumulated at epithelial cell-cell contacts in normal human colonic mucosa. Furthermore, immunoprecipitation experiments demonstrated association of kinesin-1 with the E-cadherin-catenin complex. Conclusion Our data suggest that microtubules play a role in disassembly of the AJC during calcium depletion by regulating formation of contractile F-actin rings and internalization of AJ/TJ proteins. PMID:16509970

  7. Magnetophoretic Induction of Root Curvature

    NASA Technical Reports Server (NTRS)

    Hasenstein, Karl H.

    1997-01-01

    The last year of the grant period concerned the consolidation of previous experiments to ascertain that the theoretical premise apply not just to root but also to shoots. In addition, we verified that high gradient magnetic fields do not interfere with regular cellular activities. Previous results have established that: (1) intracellular magnetophoresis is possible; and (2) HGMF lead to root curvature. In order to investigate whether HGMF affect the assembly and/or organization of structural proteins, we examined the arrangement of microtubules in roots exposed to HGMF. The cytoskeletal investigations were performed with fomaldehyde-fixed, nonembedded tissue segments that were cut with a vibratome. Microtubules (MTs) were stained with rat anti-yeast tubulin (YOL 1/34) and DTAF-labeled antibody against rat IgG. Microfilaments (MFs) were visualized by incubation in rhodamine-labeled phalloidin. The distribution and arrangement of both components of the cytoskeleton were examined with a confocal microscope. Measurements of growth rates and graviresponse were done using a video-digitizer. Since HGMF repel diamagnetic substances including starch-filled amyloplasts and most The second aspect of the work includes studies of the effect of cytoskeletal inhibitors on MTs and MFs. The analysis of the effect of micotubular inhibitors on the auxin transport in roots showed that there is very little effect of MT-depolymerizing or stabilizing drugs on auxin transport. This is in line with observations that application of such drugs is not immediately affecting the graviresponsiveness of roots.

  8. Automated detection of whole-cell mitochondrial motility and its dependence on cytoarchitectural integrity

    PubMed Central

    Kandel, Judith; Chou, Philip; Eckmann, David M.

    2015-01-01

    Current methodologies used for mitochondrial motility analysis tend to either overlook individual mitochondrial tracks or analyze only peripheral mitochondria instead of mitochondria in all regions of the cell. Furthermore, motility analysis of an individual mitochondrion is usually quantified by establishing an arbitrary threshold for “directed” motion. In this work, we created a custom, publicly available computational algorithm based on a previously published approach (Giedt et al., 2012) in order to characterize the distribution of mitochondrial movements at the whole-cell level, while still preserving information about single mitochondria. Our technique is easy to use, robust and computationally inexpensive. Images are first pre-processed for increased resolution, and then individual mitochondria are tracked based on object connectivity in space and time. When our method is applied to microscopy fields encompassing entire cells, we reveal that the mitochondrial net distances in fibroblasts follow a lognormal distribution within a given cell or group of cells. The ability to model whole-cell mitochondrial motility as a lognormal distribution provides a new quantitative paradigm by which to compare mitochondrial motility in naïve and treated cells. We further demonstrate that microtubule and microfilament depolymerization shift the lognormal distribution in directions which indicate decreased and increased mitochondrial movement, respectively. These findings advance earlier work on neuronal axons (Morris and Hollenbeck, 1993) by relating them to a different cell type, applying them on a global scale, and automating measurement of mitochondrial motility in general. PMID:25678368

  9. A yeast two-hybrid screen reveals a strong interaction between the Legionella chaperonin Hsp60 and the host cell small heat shock protein Hsp10.

    PubMed

    Nasrallah, Gheyath K

    2015-06-01

    L. pneumophila is an intracellular bacterium that replicates inside a membrane-bound vacuole called Legionella-containing vacuole (LCV), where it plentifully liberates its HtpB chaperonin. From LCV, HtpB reaches the host cell cytoplasm, where it interacts with SAMDC, a cytoplasmic protein required for synthesis of host polyamines that are important for intracellular growth of L. pneumophila. Additionally, cytoplasmic expression of HtpB in S. cerevisiae induces pseudohyphal growth, and in mammalian cells recruits mitochondria to LCV, and modifies actin microfilaments organization. This led us to hypothesize here that HtpB recruits a protein(s) from eukaryotic cells that is involved in the emergence of the aforementioned phenotypes. To identify this protein, a commercially available HeLa cDNA library was screened using a yeast two-hybrid system. Approximately 5×10(6) yeast clones carrying HeLa cDNA library plasmid were screened. Twenty-one positive clones were identified. DNA sequence analysis revealed that all of these positive clones encoded the mammalian small heat shock protein Hsp10. Based on the fact that chaperonions are required to interact with co-chaperonins to function properly in protein folding, we believe that HtpB recruits the host cell Hsp10 to appropriately interact with SAMDC and to induce the multifunction phenotypes deemed important in L. pneumophila pathogenesis.

  10. Calorimetric gas sensor

    DOEpatents

    Ricco, Antonio J.; Hughes, Robert C.; Smith, James H.; Moreno, Daniel J.; Manginell, Ronald P.; Senturia, Stephen D.; Huber, Robert J.

    1998-01-01

    A combustible gas sensor that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 .mu.m thick.times.10 .mu.m wide.times.100, 250, 500, or 1000 .mu.m-long polycrystalline Si; some are overcoated with a 0.25 .mu.m-thick protective CVD Si.sub.3 N.sub.4 layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac).sub.2 onto microfilaments resistively heated to approximately 500.degree. C.; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300.degree. C. (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H.sub.2 concentrations between 100 ppm and 1% in an 80/20 N.sub.2 /O.sub.2 mixture. Other catalytic materials can also be used.

  11. Divergent Label-free Cell Phenotypic Pharmacology of Ligands at the Overexpressed β2-Adrenergic Receptors

    NASA Astrophysics Data System (ADS)

    Ferrie, Ann M.; Sun, Haiyan; Zaytseva, Natalya; Fang, Ye

    2014-01-01

    We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.

  12. Apoptosis-linked gene 2 promotes breast cancer growth and metastasis by regulating the cytoskeleton.

    PubMed

    Qin, Juan; Li, Dengwen; Zhou, Yunqiang; Xie, Songbo; Du, Xin; Hao, Ziwei; Liu, Ruming; Liu, Xinqi; Liu, Min; Zhou, Jun

    2017-01-10

    Breast cancer is the most prevalent cancer in women. Although it begins as local disease, breast cancer frequently metastasizes to the lymph nodes and distant organs. Therefore, novel therapeutic targets are needed for the management of this disease. Apoptosis-linked gene 2 (ALG-2) is a calcium-binding protein crucial for diverse physiological processes and has recently been implicated in cancer development. However, it remains unclear whether this protein is involved in the pathogenesis of breast cancer. Here, we demonstrate that the expression of ALG-2 is significantly upregulated in breast cancer tissues and is correlated with clinicopathological characteristics indicative of tumor malignancy. Our data further show that ALG-2 stimulates breast cancer growth and metastasis in mice. ALG-2 also promotes breast cancer cell proliferation, survival, and motility in vitro. Mechanistic data reveal that ALG-2 disrupts the localization of centrosome proteins, resulting in spindle multipolarity and chromosome missegregation. In addition, ALG-2 drives the polarization and migration of breast cancer cells by facilitating the rearrangement of microtubules and microfilaments. These findings reveal a critical role for ALG-2 in the pathogenesis of breast cancer and have important implications for its diagnosis and therapy.

  13. Endocytosis of heat-denatured albumin by cultured rat Kupffer cells

    SciTech Connect

    Brouwer, A.; Knook, D.L.

    1982-10-01

    Purified Kupffer cells were obtained by centrifugal elutriation of sinusoidal cells isolated by pronase treatment of the rat liver. The endocytosis of radioactively labeled heat-aggregated colloidal albumin (CA /sup 125/I) was investigated in maintenance cultures of the purified Kupffer cells. The endocytic capacity of the cells was studied during 4 days of culture. Maximum uptake was observed after 24 hr of culture, with a gradual decline during the following days. When the uptake was measured after incubation with increasing concentrations of CA /sup 125/I, a saturation effect was observed. This finding and the observed high rate of uptake are strong indications that receptor sites on the cell membrane are involved in the mechanism of endocytosis. The uptake of CA /sup 125/I by Kupffer cells was inhibited by the metabolic inhibitors fluoride and antimycin A, indicating that endocytosis of CA /sup 125/I is dependent on energy derived from both glycolysis and mitochondrial respiration. The mechanism of internalization may also require the action of microfilaments as well as intact microtubules, since both cytochalasin B and colchicine inhibited the uptake of CA /sup 125/I. The intracellular degradation of CA /sup 125/I by Kupffer cells was strongly inhibited by chloroquine but not by colchicine. The degradation of ingested CA /sup 125/I occurred within the Kupffer cell lysosomes.

  14. Mechanical behavior in living cells consistent with the tensegrity model

    NASA Technical Reports Server (NTRS)

    Wang, N.; Naruse, K.; Stamenovic, D.; Fredberg, J. J.; Mijailovich, S. M.; Tolic-Norrelykke, I. M.; Polte, T.; Mannix, R.; Ingber, D. E.

    2001-01-01

    Alternative models of cell mechanics depict the living cell as a simple mechanical continuum, porous filament gel, tensed cortical membrane, or tensegrity network that maintains a stabilizing prestress through incorporation of discrete structural elements that bear compression. Real-time microscopic analysis of cells containing GFP-labeled microtubules and associated mitochondria revealed that living cells behave like discrete structures composed of an interconnected network of actin microfilaments and microtubules when mechanical stresses are applied to cell surface integrin receptors. Quantitation of cell tractional forces and cellular prestress by using traction force microscopy confirmed that microtubules bear compression and are responsible for a significant portion of the cytoskeletal prestress that determines cell shape stability under conditions in which myosin light chain phosphorylation and intracellular calcium remained unchanged. Quantitative measurements of both static and dynamic mechanical behaviors in cells also were consistent with specific a priori predictions of the tensegrity model. These findings suggest that tensegrity represents a unified model of cell mechanics that may help to explain how mechanical behaviors emerge through collective interactions among different cytoskeletal filaments and extracellular adhesions in living cells.

  15. PHBV/PAM scaffolds with local oriented structure through UV polymerization for tissue engineering.

    PubMed

    Ke, Yu; Wu, Gang; Wang, Yingjun

    2014-01-01

    Locally oriented tissue engineering scaffolds can provoke cellular orientation and direct cell spread and migration, offering an exciting potential way for the regeneration of the complex tissue. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) scaffolds with locally oriented hydrophilic polyacrylamide (PAM) inside the macropores of the scaffolds were achieved through UV graft polymerization. The interpenetrating PAM chains enabled good interconnectivity of PHBV/PAM scaffolds that presented a lower porosity and minor diameter of pores than PHBV scaffolds. The pores with diameter below 100  μm increased to 82.15% of PHBV/PAM scaffolds compared with 31.5% of PHBV scaffolds. PHBV/PAM scaffold showed a much higher compressive elastic modulus than PHBV scaffold due to PAM stuffing. At 5 days of culturing, sheep chondrocytes spread along the similar direction in the macropores of PHBV/PAM scaffolds. The locally oriented PAM chains might guide the attachment and spreading of chondrocytes and direct the formation of microfilaments via contact guidance.

  16. Regulation of blood-testis barrier by actin binding proteins and protein kinases

    PubMed Central

    Li, Nan; Tang, Elizabeth I.; Cheng, C. Yan

    2016-01-01

    The blood-testis barrier (BTB) is an important ultrastructure in the testis since the onset of spermatogenesis coincides with the establishment of a functional barrier in rodents and humans. It is also noted that a delay in the assembly of a functional BTB following treatment of neonatal rats with drugs such as diethylstilbestrol or adjudin also delays the first wave of spermiation. While the BTB is one of the tightest blood-tissue barriers, it undergoes extensive remodeling, in particular at stage VIII of the epithelial cycle to facilitate the transport of preleptotene spermatocytes connected in clones across the immunological barrier. Without this timely transport of preleptotene spermatocytes derived from type B spermatogonia, meiosis will be arrested, causing aspermatogenesis. Yet the biology and regulation of the BTB remains largely unexplored since the morphological studies in the 1970s. Recent studies, however, have shed new light on the biology of the BTB. Herein, we critically evaluate some of these findings, illustrating that the Sertoli cell BTB is regulated by actin binding proteins (ABPs), likely supported by non-receptor protein kinases, to modulate the organization of actin microfilament bundles at the site. Furthermore, microtubule (MT)-based cytoskeleton is also working in concert with the actin-based cytoskeleton to confer BTB dynamics. This timely review provides an update on the unique biology and regulation of the BTB based on the latest findings in the field, focusing on the role of ABPs and non-receptor protein kinases. PMID:26628556

  17. Calorimetric gas sensor

    DOEpatents

    Ricco, A.J.; Hughes, R.C.; Smith, J.H.; Moreno, D.J.; Manginell, R.P.; Senturia, S.D.; Huber, R.J.

    1998-11-10

    A combustible gas sensor is described that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 {micro}m thick {times} 10{micro}m wide {times} 100, 250, 500, or 1000 {micro}m-long polycrystalline Si; some are overcoated with a 0.25 {micro}m-thick protective CVD Si{sub 3}N{sub 4} layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac){sub 2} onto microfilaments resistively heated to approximately 500 C; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300 C (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H{sub 2} concentrations between 100 ppm and 1% in an 80/20 N{sub 2}/O{sub 2} mixture. Other catalytic materials can also be used. 11 figs.

  18. GPCRs and actin-cytoskeleton dynamics.

    PubMed

    Vázquez-Victorio, Genaro; González-Espinosa, Claudia; Espinosa-Riquer, Zyanya P; Macías-Silva, Marina

    2016-01-01

    A multitude of physiological processes regulated by G protein-coupled receptors (GPCRs) signaling are accomplished by the participation of active rearrangements of the cytoskeleton. In general, it is common that a cross talk occurs among networks of microfilaments, microtubules, and intermediate filaments in order to reach specific cell responses. In particular, actin-cytoskeleton dynamics regulate processes such as cell shape, cell division, cell motility, and cell polarization, among others. This chapter describes the current knowledge about the regulation of actin-cytoskeleton dynamic by diverse GPCR signaling pathways, and also includes some protocols combining immunofluorescence and confocal microscopy for the visualization of the different rearrangements of the actin-cytoskeleton. We report how both the S1P-GPCR/G12/13/Rho/ROCK and glucagon-GPCR/Gs/cAMP axes induce differential actin-cytoskeleton rearrangements in epithelial cells. We also show that specific actin-binding molecules, like phalloidin and LifeAct, are very useful to analyze F-actin reorganization by confocal microscopy, and also that both molecules show similar results in fixed cells, whereas the anti-actin antibody is useful to detect both the G- and F-actin, as well as their compartmentalization. Thus, it is highly recommended to utilize different approaches to investigate the regulation of actin dynamics by GPCR signaling, with the aim to get a better picture of the phenomenon under study.

  19. Nicotine alters bovine oocyte meiosis and affects subsequent embryonic development.

    PubMed

    Liu, Ying; Li, Guang-Peng; White, Kenneth L; Rickords, Lee F; Sessions, Benjamin R; Aston, Kenneth I; Bunch, Thomas D

    2007-11-01

    The effects of nicotine on nuclear maturation and meiotic spindle dynamics of bovine oocytes and subsequent embryonic development were investigated. Maturation rates (85%-94%) derived from nicotine treatments at 0.01 to 1.0 mM were similar to the control (86%), but significantly decreased at 2.0 to 6.0 mM. Haploid complements of metaphase II oocytes in 0.01 to 1.0 mM nicotine (approximately 90%) were similar to the control, while lower (ranged from 63% to 76%, P < 0.05 or P < 0.01) haploid oocytes were observed in the 2.0 to 6.0 mM nicotine groups. The majority of the PB1-free oocytes derived from 3.0 to 6.0 mM nicotine treatments were diploidy (2n = 60). Spindle microtubules changed from characteristically being asymmetrical in the controls to being equally distributed into two separate chromosome groups in the nicotine treatments. Nicotine disorganized the microfilament organization and inhibited the movement of anaphase or telophase chromosomes to the cortical area. The inhibited two chromosome groups became two spindles that either moved close in proximity or merged entirely together resulting in diploidy within the affected oocyte. Nicotine treatment significantly reduced the rate of cleavage and blastocyst development after parthenogenetic activation. Diploidy and cell number were drastically reduced in the resultant blastocysts. In conclusion, nicotine can alter the normal process of bovine oocyte meiosis and affects subsequent embryonic development.

  20. N-WASP Is Required for Stabilization of Podocyte Foot Processes

    PubMed Central

    Schell, Christoph; Baumhakl, Lisa; Salou, Sarah; Conzelmann, Ann-Christin; Meyer, Charlotte; Helmstädter, Martin; Wrede, Christoph; Grahammer, Florian; Eimer, Stefan; Kerjaschki, Dontscho; Walz, Gerd; Snapper, Scott

    2013-01-01

    Alteration of cortical actin structures is the common final pathway leading to podocyte foot process effacement and proteinuria. The molecular mechanisms that safeguard podocyte foot process architecture and maintain the three-dimensional actin network remain elusive. Here, we demonstrate that neuronal Wiskott-Aldrich syndrome protein (N-WASP), which promotes actin nucleation, is required to stabilize podocyte foot processes. Mice lacking N-WASP specifically in podocytes were born with normal kidney function but developed significant proteinuria 3 weeks after birth, suggesting an important role for N-WASP in maintaining foot processes. In addition, inducing deletion of N-WASP in adult mice resulted in severe proteinuria and kidney failure. Electron microscopy showed an accumulation of electron-dense patches of actin and strikingly altered morphology of podocyte foot processes. Although basic actin-based processes such as cell migration were not affected, primary cultures of N-WASP–deficient podocytes revealed significant impairment of dynamic actin reorganization events, including the formation of circular dorsal ruffles. Taken together, our findings suggest that N-WASP–mediated actin nucleation of branched microfilament networks is specifically required for the maintenance of foot processes, presumably sustaining the mechanical resistance of the filtration barrier. PMID:23471198

  1. Structure and function of a G-actin sequestering protein with a vital role in malaria oocyst development inside the mosquito vector.

    PubMed

    Hliscs, Marion; Sattler, Julia M; Tempel, Wolfram; Artz, Jennifer D; Dong, Aiping; Hui, Raymond; Matuschewski, Kai; Schüler, Herwig

    2010-04-09

    Cyclase-associated proteins (CAPs) are evolutionary conserved G-actin-binding proteins that regulate microfilament turnover. CAPs have a modular structure consisting of an N-terminal adenylate cyclase binding domain, a central proline-rich segment, and a C-terminal actin binding domain. Protozoan parasites of the phylum Apicomplexa, such as Cryptosporidium and the malaria parasite Plasmodium, express small CAP orthologs with homology to the C-terminal actin binding domain (C-CAP). Here, we demonstrate by reverse genetics that C-CAP is dispensable for the pathogenic Plasmodium blood stages. However, c-cap(-) parasites display a complete defect in oocyst development in the insect vector. By trans-species complementation we show that the Cryptosporidium parvum ortholog complements the Plasmodium gene functions. Purified recombinant C. parvum C-CAP protein binds actin monomers and prevents actin polymerization. The crystal structure of C. parvum C-CAP shows two monomers with a right-handed beta-helical fold intercalated at their C termini to form the putative physiological dimer. Our results reveal a specific vital role for an apicomplexan G-actin-binding protein during sporogony, the parasite replication phase that precedes formation of malaria transmission stages. This study also exemplifies how Plasmodium reverse genetics combined with biochemical and structural analyses of orthologous proteins can offer a fast track toward systematic gene characterization in apicomplexan parasites.

  2. Cell alterations but no DNA strand breaks induced in vitro by cylindrospermopsin in CHO K1 cells.

    PubMed

    Fessard, Valérie; Bernard, Cécile

    2003-10-01

    Cylindrospermopsin has been involved in some cyanobacterial blooms associated with animal and human intoxications in different countries. Liver is the main target organ even though thymus and kidney are also affected. Its toxic effect has been shown to be induced by protein synthesis inhibition. However, further research about its toxicological potential is required, as revealed by the U.S. Unregulated Contaminant Monitoring Regulation (US UCMR) meeting in 2001. Induction of DNA damage by cylindrospermopsin has been reported by some authors either by a direct effect on DNA or by an indirect effect on associated macromolecules. This study focused on evaluating its in vitro genotoxic potential using the comet assay coupled to various cell alteration measurements. No DNA damage was detected by the alkaline comet assay on Chinese hamster ovary (CHO) K1 cells after 24 h of treatment with cylindrospermopsin concentrations of 0.5 and 1 microg mL(-1). However, inhibition of cell growth was noticed as well as cell blebbing and rounding. These morphological effects were linked to cytoskeletal reorganization (mainly microfilaments) but not to apoptosis. This study concluded that cylindrospermopsin does not obviously react directly with DNA in CHO K1 cells. But the hypothesis of its metabolization into a genotoxic product must be explored further.

  3. Association of TrkA and APP Is Promoted by NGF and Reduced by Cell Death-Promoting Agents.

    PubMed

    Canu, Nadia; Pagano, Ilaria; La Rosa, Luca Rosario; Pellegrino, Marsha; Ciotti, Maria Teresa; Mercanti, Delio; Moretti, Fabiola; Sposato, Valentina; Triaca, Viviana; Petrella, Carla; Maruyama, Ichiro N; Levi, Andrea; Calissano, Pietro

    2017-01-01

    The amyloid precursor protein (APP) interacts with the tropomyosin receptor kinase A (TrkA) in normal rat, mouse, and human brain tissue but not in Alzheimer's disease (AD) brain tissue. However, it has not been reported whether the two proteins interact directly, and if so, which domains are involved. Clarifying these points will increase our understanding of the role and regulation of the TrkA/APP interaction in normal brain functioning as well as in AD. Here we addressed these questions using bimolecular fluorescence complementation (BiFC) and the proximity ligation assay (PLA). We demonstrated that exogenously expressed APP and TrkA associate through their juxtamembrane/transmembrane domains, to form a complex that localizes mainly to the plasma membrane, endoplasmic reticulum (ER) and Golgi. Formation of the complex was inhibited by p75NTR, ShcC and Mint-2. Importantly, we demonstrated that the association between endogenous APP and TrkA in primary septal neurons were modified by NGF, or by drugs that either inhibit ER-to-Golgi transport or perturb microtubules and microfilaments. Interestingly, several agents that induce cell death [amyloid β (Aβ)-peptide, staurosporine and rapamycin], albeit via different mechanisms, all caused dissociation of APP/TrkA complexes and increased production of C-terminal fragment (β-CTF) APP fragment. These findings open new perspectives for investigating the interplay between these proteins during neurodegeneration and AD.

  4. Graviresponses in fungi

    NASA Astrophysics Data System (ADS)

    Moore, D.

    Although the orientation of mycelial hyphal growth is usually independent of the gravity vector, individual specialised hyphae can show response to gravity. This is exemplified by the sporangiophore of Phycomyces, but the most striking gravitropic reactions occur in mushroom fruit bodies. During the course of development of a mushroom different tropisms predominate at different times; the young fruit body primordium is positively phototropic, but negative gravitropism later predominates. The switch between tropisms has been associated with meiosis. The spore-bearing tissue is positively gravitropic and responds independently of the stem. Bracket polypores do not show tropisms but exhibit gravimorphogenetic responses: disturbance leads to renewal of growth producing an entirely new fruiting structure. Indications from both clinostat and space flown experiments are that the basic form of the mushroom (overall tissue arrangement of stem, cap, gills, hymenium, veil) is established independently of the gravity vector although maturation, and especially commitment to the meiosis-sporulation pathway, requires the normal gravity vector. The gravity perception mechanism is difficult to identify. The latest results suggest that disturbance of cytoskeletal microfilaments is involved in perception (with nuclei possibly being used as statoliths), and Ca^2+-mediated signal transduction may be involved in directing growth differentials.

  5. THRUMIN1 is a light-regulated actin-bundling protein involved in chloroplast motility.

    PubMed

    Whippo, Craig W; Khurana, Parul; Davis, Phillip A; DeBlasio, Stacy L; DeSloover, Daniel; Staiger, Christopher J; Hangarter, Roger P

    2011-01-11

    Chloroplast movement in response to changing light conditions optimizes photosynthetic light absorption. This repositioning is stimulated by blue light perceived via the phototropin photoreceptors and is transduced to the actin cytoskeleton. Some actin-based motility systems use filament reorganizations rather than myosin-based translocations. Recent research favors the hypothesis that chloroplast movement is driven by actin reorganization at the plasma membrane, but no proteins affecting chloroplast movements have been shown to associate with both the plasma membrane and actin filaments in vivo. Here we identified THRUMIN1 as a critical link between phototropin photoreceptor activity at the plasma membrane and actin-dependent chloroplast movements. THRUMIN1 bundles filamentous actin in vitro, and it localizes to the plasma membrane and displays light- and phototropin-dependent localization to microfilaments in vivo. These results suggest that phototropin-induced actin bundling via THRUMIN1 is important for chloroplast movement. A mammalian homolog of THRUMIN1, GRXCR1, has been implicated in auditory responses and hair cell stereocilla development as a regulator of actin architecture. Studies of THRUMIN1 will help elucidate the function of this family of eukaryotic proteins.

  6. Choice of tracks, microtubules and/or actin filaments for chloroplast photo-movement is differentially controlled by phytochrome and a blue light receptor.

    PubMed

    Sato, Y; Wada, M; Kadota, A

    2001-01-01

    Light induced chloroplast movement has been studied as a model system for photoreception and actin microfilament (MF)-based intracellular motilities in plants. Chloroplast photo-accumulation and -avoidance movement is mediated by phytochrome as well as blue light (BL) receptor in the moss Physcomitrella patens. Here we report the discovery of an involvement of a microtubule (MT)-based system in addition to an MF-based system in photorelocation of chloroplasts in this moss. In the dark, MTs provided tracks for rapid movement of chloroplasts in a longitudinal direction and MFs contributed the tracks for slow movement in any direction. We found that phytochrome responses utilized only the MT-based system, while BL responses had an alternative way of moving, either along MTs or MFs. MT-based systems were mediated by both photoreceptors, but chloroplasts showed movements with different velocity and pattern between them. No apparent difference in the behavior of chloroplast movement between the accumulation and avoidance movement was detected in phytochrome responses or BL responses, except for the direction of the movement. The results presented here demonstrate that chloroplasts use both MTs and MFs for motility and that phytochrome and a BL receptor control directional photo-movement of chloroplasts through the differential regulation of these motile systems.

  7. Morphology, behavior, and interaction of cultured epithelial cells after the antibody-induced disruption of keratin filament organization

    PubMed Central

    1983-01-01

    The organization of intermediate filaments in cultured epithelial cells was rapidly and radically affected by intracellularly injected monoclonal antikeratin filament antibodies. Different antibodies had different effects, ranging from an apparent splaying apart of keratin filament bundles to the complete disruption of the keratin filament network. Antibodies were detectable within cells for more than four days after injection. The antibody-induced disruption of keratin filament organization had no light-microscopically discernible effect on microfilament or microtubule organization, cellular morphology, mitosis, the integrity of epithelial sheets, mitotic rate, or cellular reintegration after mitosis. Cell-to-cell adhesion junctions survived keratin filament disruption. However, antibody injected into a keratinocyte-derived cell line, rich in desmosomes, brought on a superfasciculation of keratin filament bundles, which appeared to pull desmosomal junctions together, suggesting that desmosomes can move in the plane of the plasma membrane and may only be 'fixed' by their anchoring to the cytoplasmic filament network. Our observations suggest that keratin filaments are not involved in the establishment or maintenance of cell shape in cultured cells. PMID:6187752

  8. Actin binding proteins, spermatid transport and spermiation*

    PubMed Central

    Qian, Xiaojing; Mruk, Dolores D.; Cheng, Yan-Ho; Tang, Elizabeth I.; Han, Daishu; Lee, Will M.; Wong, Elissa W. P.; Cheng, C. Yan

    2014-01-01

    The transport of germ cells across the seminiferous epithelium is composed of a series of cellular events during the epithelial cycle essential to the completion of spermatogenesis. Without the timely transport of spermatids during spermiogenesis, spermatozoa that are transformed from step 19 spermatids in the rat testis fail to reach the luminal edge of the apical compartment and enter the tubule lumen at spermiation, thereby entering the epididymis for further maturation. Step 19 spermatids and/or sperms that remain in the epithelium will be removed by the Sertoli cell via phagocytosis to form phagosomes and be degraded by lysosomes, leading to subfertility and/or infertility. However, the biology of spermatid transport, in particular the final events that lead to spermiation remain elusive. Based on recent data in the field, we critically evaluate the biology of spermiation herein by focusing on the actin binding proteins (ABPs) that regulate the organization of actin microfilaments at the Sertoli-spermatid interface, which is crucial for spermatid transport during this event. The hypothesis we put forth herein also highlights some specific areas of research that can be pursued by investigators in the years to come. PMID:24735648

  9. Disruption of the actin cytoskeleton results in the promotion of gravitropism in inflorescence stems and hypocotyls of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Yamamoto, Kazuyoshi; Kiss, John Z.

    2002-01-01

    The actin cytoskeleton is hypothesized to play a major role in gravity perception and transduction mechanisms in roots of plants. To determine whether actin microfilaments (MFs) are involved in these processes in stem-like organs, we studied gravitropism in Arabidopsis inflorescence stems and hypocotyls. Localization studies using Alexa Fluor-phalloidin in conjugation with confocal microscopy demonstrated a longitudinally and transversely oriented actin MF network in endodermal cells of stems and hypocotyls. Latrunculin B (Lat-B) treatment of hypocotyls caused depolymerization of actin MFs in endodermal cells and a significant reduction of hypocotyl growth rates. Actin MFs in Lat-B-treated inflorescence stems also were disrupted, but growth rates were not affected. Despite disruption of the actin cytoskeleton in these two organs, Lat-B-treated stems and hypocotyls exhibited a promotion of gravitropic curvature in response to reorientation. In contrast, Lat-B reduced gravitropic curvature in roots but also reduced the growth rate. Thus, in contrast to prevailing hypotheses, our results suggest that actin MFs are not a necessary component of gravitropism in inflorescence stems and hypocotyls. Furthermore, this is the first study to demonstrate a prominent actin MF network in endodermal cells in the putative gravity-perceiving cells in stems.

  10. The organization of the actin cytoskeleton in vertical and graviresponding primary roots of maize

    NASA Technical Reports Server (NTRS)

    Blancaflor, E. B.; Hasenstein, K. H.

    1997-01-01

    To determine whether actin microfilament (MF) organization is correlated with differential elongation, primary roots of Zea mays cv Merit maintained vertically or reoriented horizontally for 15 to 120 min were stained with rhodamine phalloidin and examined with a confocal microscope. Root curvature was measured with a computer-controlled video digitizer. In vertical roots bundles of MFs in the elongation and maturation zone were oriented parallel to the longitudinal axis of cells. MFs in the vascular parenchyma cells were more abundant than in the cortex and epidermis. Epidermal and proendodermal cells in the meristematic region contained transverse cortical MFs. The organization of MFs of graviresponding roots was similar to that of vertical roots. Application of cytochalasin B or cytochalasin D resulted in extensive disruption of MFs in the cortex and epidermis, but only partially affected MFs in the stele. Despite the cytochalasin B-induced depolymerization of MFs, gravicurvature exceeded that of controls. In contrast, the auxin transport inhibitor N-1 naphthylphthalamic acid suppressed root curvature but had no observable effect on the integrity of the MFs. The data indicate that MFs may not be involved in the graviresponse of maize roots.

  11. MOVING MAGNETIC FEATURES AROUND AR 10930 FROM HIGH-RESOLUTION DATA OBSERVED BY HINODE/SOT

    SciTech Connect

    Li Xiaobo; Zhang Hongqi

    2013-07-01

    We investigate the origin, configuration, and evolution of moving magnetic features (MMFs) in the moat and penumbra regions of NOAA AR 10930 using Hinode/SOT filtergrams and magnetograms. We differentiate MMFs into four types in terms of the location of first appearance and the source of initial flux. The main results are summed up as follows: (1) 50% of the MMFs are produced from or within the penumbra, while 50% are produced within the moat. The MMFs formed in the penumbra normally move outward along radial directions. The MMFs formed in the moat have more dispersed directions of motion. The average speed of most MMFs decreases radially. (2) About 63% of moat fluxes are input by flux emergences. Newly emerged MMFs are normally smaller in size. In their rise phase, they gain flux by adding newly emerging flux or merging other elements, and in the decline phase they lose flux by flux cancellation or fragmentation. The MMFs that are fragments separated from penumbra or other magnetic elements usually have larger flux and longer lifetime. They start their decay process once they are formed. Frequent merging and flux cancellation between MMFs are the dominant factors in MMFs' evolution. (3) Cancellations between opposite-polarity magnetic elements are responsible for most of the low chromospheric bright points. Bipole emergence and MMFs' severance from the penumbra also produce bright points. Elongated or horn-shaped micro-filaments may appear during the separation or cancellation process between magnetic elements.

  12. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure

    NASA Technical Reports Server (NTRS)

    Maniotis, A. J.; Chen, C. S.; Ingber, D. E.

    1997-01-01

    We report here that living cells and nuclei are hard-wired such that a mechanical tug on cell surface receptors can immediately change the organization of molecular assemblies in the cytoplasm and nucleus. When integrins were pulled by micromanipulating bound microbeads or micropipettes, cytoskeletal filaments reoriented, nuclei distorted, and nucleoli redistributed along the axis of the applied tension field. These effects were specific for integrins, independent of cortical membrane distortion, and were mediated by direct linkages between the cytoskeleton and nucleus. Actin microfilaments mediated force transfer to the nucleus at low strain; however, tearing of the actin gel resulted with greater distortion. In contrast, intermediate filaments effectively mediated force transfer to the nucleus under both conditions. These filament systems also acted as molecular guy wires to mechanically stiffen the nucleus and anchor it in place, whereas microtubules acted to hold open the intermediate filament lattice and to stabilize the nucleus against lateral compression. Molecular connections between integrins, cytoskeletal filaments, and nuclear scaffolds may therefore provide a discrete path for mechanical signal transfer through cells as well as a mechanism for producing integrated changes in cell and nuclear structure in response to changes in extracellular matrix adhesivity or mechanics.

  13. Dichloromethane-methanol extract from Borassus aethiopumn mart. (Arecaceae) induces apoptosis of human colon cancer HT-29 cells.

    PubMed

    Sakandé, J; Rouet-benzineb, P; Devaud, H; Nikiema, J B; Lompo, M; Nacoulma, O G; Guissou, I P; Bado, A

    2011-05-15

    Borassus aetihiopum MART (Arecaceae) is a plant used in traditional herbal medicine for the treatment of various diseases (bronchitis, laryngitis, antiseptic). In particular, their male inflorcscences were reported to exhibit cicatrizing, antiseptic and fungicidal properties. In the present study, the biological activity of E2F2, an apolar extract from Borassus aethiopum male inflorescence was investigated on colon cancer HT29 cells. Phytochemical screening was carried according to methodology for chemical analysis for vegetable drugs. Cells proliferation was determined by the MTT assay and cells cycle distribution was analysed by using laser flow cytometer (Beckman coulter). The cytoskeleton organisation was examined under a laser scanning confocal microscope (Zess). Preliminary phytochemical analysis of E2F2 extract revealed the presence of sterols, triterpenes and saponosids. E2F2 extract (1 microg and 100 microg mL(-1)) significantly inhibited cell proliferation by blocking cell population in G0/G1 phase. Flow Cytometric analysis of E2F2-treated HT29 cells showed that hypoploïd cell population (sub G1 phase) increased with processing time exposures. Immunofluorescence confocal analysis revealed a disrupt actin microfilaments network in E2F2 treated-cells with a significant reduction in actin stress fibres and appearance of a random, non-oriented distribution of focal adhesion sites. These data indicate that E2F2 extract has anti-proliferative and pro-apoptotic activities. Further studies are required to unravel the mechanisms of action of E2F2 extract.

  14. Aurigamonas solis n. gen., n. sp., a soil-dwelling predator with unusual helioflagellate organisation and belonging to a novel clade within the Cercozoa.

    PubMed

    Vickerman, Keith; Appleton, Paul L; Clarke, Ken J; Moreira, David

    2005-11-01

    A flagellate predator, Aurigamonas solis n. gen., n. sp., with numerous radiating axopodia-like appendages, has been isolated in culture from soils. Despite its heliozoan-like appearance, Aurigamonas is not a sit-and-wait predator but a mobile hunter and its stiff appendages are not microtubule-supported axopodia but elongate haptopodia, each supported by a cylindrical core of microfilaments and bearing at its capitate tip a single extrusome-like body (haptosome). Prey flagellates are trapped on the sticky tips of the haptopodia and a large funnel-shaped pseudopodium then emerges to engulf the prey or suck out part of it for internal digestion. Pseudopodial contact is accompanied by killing, possibly as a result of the injection of spicules by the predator. Cytoplasmic haptosomes appear to induce formation of a haptopodium on making contact with the plasma membrane. Propulsion of the organism along the substratum is effected by beating of a long trailing flagellum, the short and inconspicuous second flagellum lacks motility. Small subunit rDNA sequencing shows that Aurigamonas arose within the Cercozoa. Its closest relatives are Cercobodo agilis and several flagellates currently known only as environmental sequences. This conclusion is supported further by the presence of only a single amino acid insertion in the polyubiquitin sequence of Aurigamonas solis.

  15. Functional properties of sodium channels do not depend on the cytoskeleton integrity.

    PubMed

    Moran, O; Tammaro, P; Nizzari, M; Conti, F

    2000-09-16

    Several observations suggest an interaction of the sodium channel alpha-subunit with the cytoskeletal structures. However, there is a wide variability in the results of experiments of heterologous expression in Xenopus oocytes and studies on mammalian cells are sometimes contradictory. In general, there has been no direct demonstration that ad hoc large perturbations of the cytoskeleton modify the intrinsic properties of the sodium channels expressed endogenously or heterologously in plasma membranes. We have studied in CHO cells transfected with the rat muscle sodium channel alpha-subunit the effects of two substances expected to produce drastic perturbations of the cytoskeletal structure: Cytochalasin-D, which depolymerizes microfilaments, and Colchicine, which inhibits the microtubules polymerization. We observed no significant differences in the voltage dependence, kinetic parameters and surface density of the expressed sodium channels after treatment of the cells with these substances. We conclude that the two known main components of the cytoskeleton do not interfere directly with the sodium channel function or with the heterologous expression of channels in the cell membrane.

  16. Cytotoxic Effects of Tropodithietic Acid on Mammalian Clonal Cell Lines of Neuronal and Glial Origin

    PubMed Central

    Wichmann, Heidi; Vocke, Farina; Brinkhoff, Thorsten; Simon, Meinhard; Richter-Landsberg, Christiane

    2015-01-01

    The marine metabolite tropodithietic acid (TDA), produced by several Roseobacter clade bacteria, is known for its broad antimicrobial activity. TDA is of interest not only as a probiotic in aquaculture, but also because it might be of use as an antibacterial agent in non-marine or non-aquatic environments, and thus the potentially cytotoxic influences on eukaryotic cells need to be evaluated. The present study was undertaken to investigate its effects on cells of the mammalian nervous system, i.e., neuronal N2a cells and OLN-93 cells as model systems for nerve cells and glia. The data show that in both cell lines TDA exerted morphological changes and cytotoxic effects at a concentration of 0.3–0.5 µg/mL (1.4–2.4 µM). Furthermore, TDA caused a breakdown of the mitochondrial membrane potential, the activation of extracellular signal-regulated kinases ERK1/2, and the induction of the small heat shock protein HSP32/HO-1, which is considered as a sensor of oxidative stress. The cytotoxic effects were accompanied by an increase in intracellular Ca2+-levels, the disturbance of the microtubule network, and the reorganization of the microfilament system. Hence, mammalian cells are a sensitive target for the action of TDA and react by the activation of a stress response resulting in cell death. PMID:26633426

  17. Cytoskeletal and mitochondrial properties of bovine oocytes obtained by Ovum Pick-Up: the effects of follicle stimulation and in vitro maturation.

    PubMed

    Somfai, Tamás; Matoba, Satoko; Inaba, Yasushi; Nakai, Michiko; Imai, Kei; Nagai, Takashi; Geshi, Masaya

    2015-12-01

    Follicle stimulation by follicular stimulating hormone (FSH) is known to improve developmental competence of bovine oocytes obtained by Ovum Pick-Up (OPU); however, the exact factors in oocytes affected by this treatment have remained unclear. We compared in vitro matured (IVM) oocytes obtained at the immature stage from cows by OPU either without or with stimulation with FSH (non-stimulated and stimulated OPU, respectively) to those obtained by superstimulation and in vivo maturation in terms of cytoskeleton morphology, mitochondrial distribution, intracellular adenosine triphosphate (ATP) content and H2 O2 levels at the metaphase-II stage and intracellular Ca(2+) levels after in vitro fertilization (IVF). Confocal microscopy after immunostaining revealed reduced size of the meiotic spindle, associated with increased tendencies of microfilament degradation and insufficient mitochondrial re-distribution in non-stimulated OPU-derived IVM oocytes compared with those collected by stimulated OPU, which in turn resembled in vivo matured oocytes. However, there was no difference in mitochondrial functions between oocytes obtained by stimulated or non-stimulated OPU in terms of ATP content, cytoplasmic H2 O2 levels, base Ca(2+) levels and the frequencies and amplitudes of Ca(2+) oscillations after IVF. Larger size of metaphase spindles in oocytes obtained by stimulated OPU may reflect and potentially contribute to their high developmental competence.

  18. Differential Effects of Caldesmon on the Intermediate Conformational States of Polymerizing Actin*

    PubMed Central

    Huang, Renjian; Grabarek, Zenon; Wang, Chih-Lueh Albert

    2010-01-01

    The actin-binding protein caldesmon (CaD) reversibly inhibits smooth muscle contraction. In non-muscle cells, a shorter CaD isoform co-exists with microfilaments in the stress fibers at the quiescent state, but the phosphorylated CaD is found at the leading edge of migrating cells where dynamic actin filament remodeling occurs. We have studied the effect of a C-terminal fragment of CaD (H32K) on the kinetics of the in vitro actin polymerization by monitoring the fluorescence of pyrene-labeled actin. Addition of H32K or its phosphorylated form either attenuated or accelerated the pyrene emission enhancement, depending on whether it was added at the early or the late phase of actin polymerization. However, the CaD fragment had no effect on the yield of sedimentable actin, nor did it affect the actin ATPase activity. Our findings can be explained by a model in which nascent actin filaments undergo a maturation process that involves at least two intermediate conformational states. If present at early stages of actin polymerization, CaD stabilizes one of the intermediate states and blocks the subsequent filament maturation. Addition of CaD at a later phase accelerates F-actin formation. The fact that CaD is capable of inhibiting actin filament maturation provides a novel function for CaD and suggests an active role in the dynamic reorganization of the actin cytoskeleton. PMID:19889635

  19. Actin Filaments Are Involved in the Coupling of V0-V1 Domains of Vacuolar H+-ATPase at the Golgi Complex.

    PubMed

    Serra-Peinado, Carla; Sicart, Adrià; Llopis, Juan; Egea, Gustavo

    2016-04-01

    We previously reported that actin-depolymerizing agents promote the alkalization of the Golgi stack and thetrans-Golgi network. The main determinant of acidic pH at the Golgi is the vacuolar-type H(+)-translocating ATPase (V-ATPase), whose V1domain subunitsBandCbind actin. We have generated a GFP-tagged subunitB2construct (GFP-B2) that is incorporated into the V1domain, which in turn is coupled to the V0sector. GFP-B2 subunit is enriched at distal Golgi compartments in HeLa cells. Subcellular fractionation, immunoprecipitation, and inversal FRAP experiments show that the actin depolymerization promotes the dissociation of V1-V0domains, which entails subunitB2translocation from Golgi membranes to the cytosol. Moreover, molecular interaction between subunitsB2andC1and actin were detected. In addition, Golgi membrane lipid order disruption byd-ceramide-C6 causes Golgi pH alkalization. We conclude that actin regulates the Golgi pH homeostasis maintaining the coupling of V1-V0domains of V-ATPase through the binding of microfilaments to subunitsBandCand preserving the integrity of detergent-resistant membrane organization. These results establish the Golgi-associated V-ATPase activity as the molecular link between actin and the Golgi pH.

  20. Automated detection of whole-cell mitochondrial motility and its dependence on cytoarchitectural integrity.

    PubMed

    Kandel, Judith; Chou, Philip; Eckmann, David M

    2015-07-01

    Current methodologies used for mitochondrial motility analysis tend to either overlook individual mitochondrial tracks or analyze only peripheral mitochondria instead of mitochondria in all regions of the cell. Furthermore, motility analysis of an individual mitochondrion is usually quantified by establishing an arbitrary threshold for "directed" motion. In this work, we created a custom, publicly available computational algorithm based on a previously published approach (Giedt et al., 2012. Ann Biomed Eng 40:1903-1916) in order to characterize the distribution of mitochondrial movements at the whole-cell level, while still preserving information about single mitochondria. Our technique is easy to use, robust, and computationally inexpensive. Images are first pre-processed for increased resolution, and then individual mitochondria are tracked based on object connectivity in space and time. When our method is applied to microscopy fields encompassing entire cells, we reveal that the mitochondrial net distances in fibroblasts follow a lognormal distribution within a given cell or group of cells. The ability to model whole-cell mitochondrial motility as a lognormal distribution provides a new quantitative paradigm for comparing mitochondrial motility in naïve and treated cells. We further demonstrate that microtubule and microfilament depolymerization shift the lognormal distribution in directions which indicate decreased and increased mitochondrial movement, respectively. These findings advance earlier work on neuronal axons (Morris and Hollenbeck, 1993. J Cell Sci 104:917-927) by relating them to a different cell type, applying them on a global scale, and automating measurement of mitochondrial motility in general.

  1. Nanochips of Tantalum Oxide Nanodots as artificial-microenvironments for monitoring Ovarian cancer progressiveness

    NASA Astrophysics Data System (ADS)

    Dhawan, Udesh; Wang, Ssu-Meng; Chu, Ying Hao; Huang, Guewha S.; Lin, Yan Ren; Hung, Yao Ching; Chen, Wen Liang

    2016-08-01

    Nanotopography modulates cell characteristics and cell behavior. Nanotopological cues can be exploited to investigate the in-vivo modulation of cell characteristics by the cellular microenvironment. However, the studies explaining the modulation of tumor cell characteristics and identifying the transition step in cancer progressiveness are scarce. Here, we engineered nanochips comprising of Tantalum oxide nanodot arrays of 10, 50, 100 and 200 nm as artificial microenvironments to study the modulation of cancer cell behavior. Clinical samples of different types of Ovarian cancer at different stages were obtained, primary cultures were established and then seeded on different nanochips. Immunofluorescence (IF) was performed to compare the morphologies and cell characteristics. Indices corresponding to cell characteristics were defined. A statistical comparison of the cell characteristics in response to the nanochips was performed. The cells displayed differential growth parameters. Morphology, Viability, focal adhesions, microfilament bundles and cell area were modulated by the nanochips which can be used as a measure to study the cancer progressiveness. The ease of fabrication of nanochips ensures mass-production. The ability of the nanochips to act as artificial microenvironments and modulate cell behavior may lead to further prospects in the markerless monitoring of the progressiveness and ultimately, improving the prognosis of Ovarian cancer.

  2. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells

    NASA Technical Reports Server (NTRS)

    Chen, J.; Fabry, B.; Schiffrin, E. L.; Wang, N.; Ingber, D. E. (Principal Investigator)

    2001-01-01

    A magnetic twisting stimulator was developed based on the previously published technique of magnetic twisting cytometry. Using ligand-coated ferromagnetic microbeads, this device can apply mechanical stresses with varying amplitudes, duration, frequencies, and waveforms to specific cell surface receptors. Biochemical and biological responses of the cells to the mechanical stimulation can be assayed. Twisting integrin receptors with RGD (Arg-Gly-Asp)-containing peptide-coated beads increased endothelin-1 (ET-1) gene expression by >100%. In contrast, twisting scavenger receptors with acetylated low-density lipoprotein-coated beads or twisting HLA antigen with anti-HLA antibody-coated beads did not lead to alterations in ET-1 gene expression. In situ hybridization showed that the increase in ET-1 mRNA was localized in the cells that were stressed with the RGD-coated beads. Blocking stretch-activated ion channels with gadolinium, chelating Ca2+ with EGTA, or inhibiting tyrosine phosphorylation with genistein abolished twist-induced ET-1 mRNA elevation. Abolishing cytoskeletal tension with an inhibitor of the myosin ATPase, with an inhibitor of myosin light chain kinase, or with an actin microfilament disrupter blocked twisted-induced increases in ET-1 expression. Our results are consistent with the hypothesis that the molecular structural linkage of integrin-cytoskeleton is an important pathway for stress-induced ET-1 gene expression.

  3. Human macrophage hemoglobin-iron metabolism in vitro

    SciTech Connect

    Custer, G.; Balcerzak, S.; Rinehart, J.

    1982-01-01

    An entirely in vitro technique was employed to characterize hemoglobin-iron metabolism by human macrophages obtained by culture of blood monocytes and pulmonary alveolar macrophages. Macrophages phagocytized about three times as many erythrocytes as monocytes and six times as many erythrocytes as pulmonary alveolar macrophages. The rate of subsequent release of /sup 59/Fe to the extracellular transferrin pool was two- to fourfold greater for macrophages as compared to the other two cell types. The kinetics of /sup 59/Fe-transferrin release were characterized by a relatively rapid early phase (hours 1-4) followed by a slow phase (hours 4-72) for all three cell types. Intracellular movement of iron was characterized by a rapid shift from hemoglobin to ferritin that was complete with the onset of the slow phase of extracellular release. A transient increase in /sup 59/Fe associated with an intracellular protein eluting with transferrin was also observed within 1 hour after phagocytosis. The process of hemoglobin-iron release to extracellular transferrin was inhibited at 4 degrees C but was unaffected by inhibitory of protein synthesis, glycolysis, microtubule function, and microfilament function. These data emphasize the rapidity of macrophage hemoglobin iron metabolism, provide a model for characterization of this process in vitro, and in general confirm data obtained utilizing in vivo animal models.

  4. Yeast mitochondria contain ATP-sensitive, reversible actin-binding activity.

    PubMed Central

    Lazzarino, D A; Boldogh, I; Smith, M G; Rosand, J; Pon, L A

    1994-01-01

    Sedimentation assays were used to demonstrate and characterize binding of isolated yeast mitochondria to phalloidin-stabilized yeast F-actin. These actin-mitochondrial interactions are ATP sensitive, saturable, reversible, and do not depend upon mitochondrial membrane potential. Protease digestion of mitochondrial outer membrane proteins or saturation of myosin-binding sites on F-actin with the S1 subfragment of skeletal myosin block binding. These observations indicate that a protein (or proteins) on the mitochondrial surface mediates ATP-sensitive, reversible binding of mitochondria to the lateral surface of microfilaments. Actin copurifies with mitochondria during subcellular fractionation and is released from the organelle upon treatment with ATP. Thus, actin-mitochondrial interactions resembling those observed in vitro may also exist in intact yeast cells. Finally, a yeast mutant bearing a temperature-sensitive mutation in the actin-encoding ACT1 gene (act1-3) displays temperature-dependent defects in transfer of mitochondria from mother cells to newly developed buds during yeast cell mitosis. Images PMID:7812049

  5. Human smooth muscle autoantibody. Its identification as antiactin antibody and a study of its binding to "nonmuscular" cells.

    PubMed

    Gabbiani, G; Ryan, G B; Lamelin, J P; Vassalli, P; Majno, G; Bouvier, C A; Cruchaud, A; Lüscher, E F

    1973-09-01

    When human serum containing smooth muscle autoantibodies (SMA) is incubated with extracts containing thrombosthenin (the contractile material of platelets) or thrombosthenin-A (the actin-like moiety of thrombosthenin), it loses its ability to bind to smooth muscle. Such binding is also diminished when SMA serum is incubated with lysed platelets; this effect is not seen if the SMA serum is incubated with intact platelets. The incubation of other autoantibodies (such as antimitochondrial or antinuclear antibodies) with thrombosthenin does not affect their binding to the specific antigens. It appears that SMA is directed against the actin fraction of thrombosthenin-ie, SMA is an antiactin antibody. Hence the name of antiactin autoantibody (AAA) seems more appropriate than smooth muscle autoantibody (SMA). A study of the distribution of antiactin autoantibody binding in rat, rabbit and man shows that several "nonmuscular" structures contain actin under normal conditions; these include megakaryocytes and platelets, normal rat hepatocytes, the brush borders of renal tubules, the periphery of epithelial cells of the intestine, polymorphs and lymphocytes in lymph nodes (but not thymic cortical lymphocytes). In addition, certain cell types (such as granulation tissue fibroblasts, cultivated fibroblasts, hepatocytes or regenerating liver and epidermal cells growing over a skin wound) can reversibly acquire a massive network of actin-containing microfilaments resembling those in smooth muscle.

  6. Long-distance communication by specialized cellular projections during pigment pattern development and evolution

    PubMed Central

    Eom, Dae Seok; Bain, Emily J; Patterson, Larissa B; Grout, Megan E; Parichy, David M

    2015-01-01

    Changes in gene activity are essential for evolutionary diversification. Yet, elucidating the cellular behaviors that underlie modifications to adult form remains a profound challenge. We use neural crest-derived adult pigmentation of zebrafish and pearl danio to uncover cellular bases for alternative pattern states. We show that stripes in zebrafish require a novel class of thin, fast cellular projection to promote Delta-Notch signaling over long distances from cells of the xanthophore lineage to melanophores. Projections depended on microfilaments and microtubules, exhibited meandering trajectories, and stabilized on target cells to which they delivered membraneous vesicles. By contrast, the uniformly patterned pearl danio lacked such projections, concomitant with Colony stimulating factor 1-dependent changes in xanthophore differentiation that likely curtail signaling available to melanophores. Our study reveals a novel mechanism of cellular communication, roles for differentiation state heterogeneity in pigment cell interactions, and an unanticipated morphogenetic behavior contributing to a striking difference in adult form. DOI: http://dx.doi.org/10.7554/eLife.12401.001 PMID:26701906

  7. HHF35, a muscle-actin-specific monoclonal antibody. I. Immunocytochemical and biochemical characterization.

    PubMed

    Tsukada, T; Tippens, D; Gordon, D; Ross, R; Gown, A M

    1987-01-01

    A monoclonal antibody to muscle cell actin isotypes was produced and characterized. Immunocytochemical analysis of methanol-Carnoy's-fixed, paraffin-embedded human tissue revealed that this antibody, termed HHF35, reacts with skeletal muscle cells, cardiac muscle cells, smooth muscle cells, pericytes, and myoepithelial cells, but is nonreactive with endothelial, epithelial, neural, or connective tissue cells. When assayed by indirect immunofluorescence, HHF35 reacts with microfilament bundles from various cultured mammalian smooth muscle cells, but does not react with cultured human dermal fibroblasts or various epithelial tumor cell lines. In one-dimensional gel electrophoresis immunoblot experiments this antibody detects a 42-kd polypeptide from tissue extracts of uterus, ileum, aorta, diaphragm, and heart and extract from smooth muscle cells. The antibody also reacts with a comigrating 42-kd band of highly purified rabbit skeletal muscle actin. HHF35 is nonreactive on immunoblots of extracts from all tested nonmuscle cell extracts. Immunoelectrophoresis followed by immunoblotting performed in the presence of urea and reducing agents reveals recognition of the alpha isoelectrophoretic variant of actin from skeletal, cardiac, and smooth muscle sources and of the gamma variant from smooth muscle sources. Because HHF35 reacts with virtually all muscle cells, it will be useful as a marker for muscle and muscle-derived cells.

  8. Acetylcholine receptors and concanavalin A-binding sites on cultured Xenopus muscle cells: electrophoresis, diffusion, and aggregation [corrected and republished article originally printed in J Cell Biol 1988 May;106(5):1723-34

    PubMed Central

    1988-01-01

    Using digitally analyzed fluorescence videomicroscopy, we have examined the behavior of acetylcholine receptors and concanavalin A binding sites in response to externally applied electric fields. The distributions of these molecules on cultured Xenopus myoballs were used to test a simple model which assumes that electrophoresis and diffusion are the only important processes involved. The model describes the distribution of concanavalin A sites quite well over a fourfold range of electric field strengths; the results suggest an average diffusion constant of approximately 2.3 X 10(-9) cm2/s. At higher electric field strengths, the asymmetry seen is substantially less than that predicted by the model. Acetylcholine receptors subjected to electric fields show distributions substantially different from those predicted on the basis of simple electrophoresis and diffusion, and evidence a marked tendency to aggregate. Our results suggest that this aggregation is due to lateral migration of surface acetylcholine receptors, and is dependent on surface interactions, rather than the rearrangement of microfilaments or microtubules. The data are consistent with a diffusion-trap mechanism of receptor aggregation, and suggest that the event triggering receptor localization is a local increase in the concentration of acetylcholine receptors, or the electrophoretic concentration of some other molecular species. These observations suggest that, whatever mechanism(s) trigger initial clustering events in vivo, the accumulation of acetylcholine receptors can be substantially enhanced by passive, diffusion-mediated aggregation. PMID:3170634

  9. Hyphal ontogeny in Neurospora crassa: a model organism for all seasons.

    PubMed

    Riquelme, Meritxell; Martínez-Núñez, Leonora

    2016-01-01

    Filamentous fungi have proven to be a better-suited model system than unicellular yeasts in analyses of cellular processes such as polarized growth, exocytosis, endocytosis, and cytoskeleton-based organelle traffic. For example, the filamentous fungus Neurospora crassa develops a variety of cellular forms. Studying the molecular basis of these forms has led to a better, yet incipient, understanding of polarized growth. Polarity factors as well as Rho GTPases, septins, and a localized delivery of vesicles are the central elements described so far that participate in the shift from isotropic to polarized growth. The growth of the cell wall by apical biosynthesis and remodeling of polysaccharide components is a key process in hyphal morphogenesis. The coordinated action of motor proteins and Rab GTPases mediates the vesicular journey along the hyphae toward the apex, where the exocyst mediates vesicle fusion with the plasma membrane. Cytoplasmic microtubules and actin microfilaments serve as tracks for the transport of vesicular carriers as well as organelles in the tubular cell, contributing to polarization. In addition to exocytosis, endocytosis is required to set and maintain the apical polarity of the cell. Here, we summarize some of the most recent breakthroughs in hyphal morphogenesis and apical growth in N. crassa and the emerging questions that we believe should be addressed.

  10. Safety and Utility of Quantitative Sensory Testing among Adults with Sickle Cell Disease: Indicators of Neuropathic Pain?

    PubMed Central

    Ezenwa, Miriam O.; Molokie, Robert E.; Wang, Zaijie Jim; Yao, Yingwei; Suarez, Marie L.; Pullum, Cherese; Schlaeger, Judith M.; Fillingim, Roger B.; Wilkie, Diana J.

    2014-01-01

    Objectives Pain is the hallmark symptom of sickle cell disease (SCD), yet the types of pain that these patients experience, and the underlying mechanisms, have not been well characterized. The study purpose was to determine the safety and utility of a mechanical and thermal quantitative sensory testing (QST) protocol and the feasibility of utilizing neuropathic pain questionnaires among adults with SCD. Methods A convenience sample (N=25, 18 women, mean age 38.5 ± 12.5 [20–58 years]) completed self-report pain and quality-of-life tools. Subjects also underwent testing with the TSA-II NeuroSensory Analyzer and calibrated von Frey microfilaments. Results We found that the QST protocol was safe and did not stimulate a SCD pain crisis. There was evidence of central sensitization (n=15), peripheral sensitization (n=1), a mix of central and peripheral sensitization (n=8), or no sensitization (n=1). The neuropathic pain self-report tools were feasible with evidence of construct validity; 40% of the subjects reported S-LANSS scores that were indicative of neuropathic pain and had evidence of central, peripheral or mixed sensitization. Discussion The QST protocol can be safely conducted in adults with SCD and provides evidence of central or peripheral sensitization, which is consistent with a neuropathic component to SCD pain. These findings are novel, warrant a larger confirmatory study, and indicate the need for normative QST data from African American adults and older adults. PMID:25581383

  11. Interactions of Aspergillus fumigatus with endothelial cells: internalization, injury, and stimulation of tissue factor activity.

    PubMed

    Lopes Bezerra, Leila M; Filler, Scott G

    2004-03-15

    Invasive aspergillosis causes significant mortality among patients with hematologic malignancies. This infection is characterized by vascular invasion and thrombosis. To study the pathogenesis of invasive aspergillosis, we investigated the interactions of Aspergillus fumigatus conidia and hyphae with endothelial cells in vitro. We found that both forms of the organism induced endothelial cell microfilament rearrangement and subsequent endocytosis. Conidia were endocytosed 2-fold more avidly than hyphae, and endocytosis was independent of fungal viability. Endocytosed conidia and hyphae caused progressive endothelial cell injury after 4 hours of infection. Live conidia induced more endothelial cell injury than did live hyphae. However, endothelial cell injury caused by conidia was dependent on fungal viability, whereas injury caused by hyphae was not, indicating that conidia and hyphae injure endothelial cells by different mechanisms. Neither live nor killed conidia increased tissue factor activity of endothelial cells. In contrast, both live and killed hyphae stimulated significant endothelial cell tissue factor activity, as well as the expression of tissue factor antigen on the endothelial cell surface. These results suggest that angioinvasion and thrombosis caused by A fumigatus hyphae in vivo may be due in part to endothelial cell invasion, induction of injury, and stimulation of tissue factor activity.

  12. RhoA/ROCK pathway activity is essential for the correct localization of the germ plasm mRNAs in zebrafish embryos.

    PubMed

    Miranda-Rodríguez, Jerónimo Roberto; Salas-Vidal, Enrique; Lomelí, Hilda; Zurita, Mario; Schnabel, Denhi

    2017-01-01

    Zebrafish germ plasm is composed of mRNAs such as vasa and nanos and of proteins such as Bucky ball, all of which localize symmetrically in four aggregates at the distal region of the first two cleavage furrows. The coordination of actin microfilaments, microtubules and kinesin is essential for the correct localization of the germ plasm. Rho-GTPases, through their effectors, coordinate cytoskeletal dynamics. We address the participation of RhoA and its effector ROCK in germ plasm localization during the transition from two- to eight-cell embryos. We found that active RhoA is enriched along the cleavage furrow during the first two division cycles, whereas ROCK localizes at the distal region of the cleavage furrows in a similar pattern as the germ plasm mRNAs. Specific inhibition of RhoA and ROCK affected microtubules organization at the cleavage furrow; these caused the incorrect localization of the germ plasm mRNAs. The incorrect localization of the germ plasm led to a dramatic change in the number of germ cells during the blastula and 24hpf embryo stages without affecting any other developmental processes. We demonstrate that the Rho/ROCK pathway is intimately related to the determination of germ cells in zebrafish embryos.

  13. LIGHT-INDUCED OIL GLOBULE MIGRATION IN HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE).

    PubMed

    Peled, Ehud; Pick, Uri; Zarka, Aliza; Shimoni, Eyal; Leu, Stefan; Boussiba, Sammy

    2012-10-01

    Astaxanthin-rich oil globules in Haematococcus pluvialis display rapid light-induced peripheral migration that is unique to this organism and serves to protect the photosynthetic system from excessive light. We observed rapid light-induced peripheral migration that is associated with chlorophyll fluorescence quenching, whereas the recovery was slow. A simple assay to follow globule migration, based on chlorophyll fluorescence level has been developed. Globule migration was induced by high intensity blue light, but not by high intensity red light. The electron transport inhibitor dichlorophenyl-dimethylurea did not inhibit globule migration, whereas the quinone analog (dibromo-methyl-isopropylbenzoquinone), induced globule migration even at low light. Actin microfilament-directed toxins, such as cytochalasin B and latrunculin A, inhibited the light-induced globule migration, whereas toxins against microtubules were ineffective. Electron microscopic (EM) imaging confirmed the cytoplasmic localization and peripheral migration of globules upon exposure to very high light (VHL). Scanning EM of freeze-fractured cells also revealed globules within cytoplasmic bridges traversing the chloroplast, presumably representing the pathway of migration. Close alignments of globules with endoplasmic reticulum (ER) membranes were also observed following VHL illumination. We propose that light-induced globule migration is regulated by the redox state of the photosynthetic electron transport system. Possible mechanisms of actin-based globule migration are discussed.

  14. The Drosophila formin Fhos is a primary mediator of sarcomeric thin-filament array assembly

    PubMed Central

    Shwartz, Arkadi; Dhanyasi, Nagaraju; Schejter, Eyal D; Shilo, Ben-Zion

    2016-01-01

    Actin-based thin filament arrays constitute a fundamental core component of muscle sarcomeres. We have used formation of the Drosophila indirect flight musculature for studying the assembly and maturation of thin-filament arrays in a skeletal muscle model system. Employing GFP-tagged actin monomer incorporation, we identify several distinct phases in the dynamic construction of thin-filament arrays. This sequence includes assembly of nascent arrays after an initial period of intensive microfilament synthesis, followed by array elongation, primarily from filament pointed-ends, radial growth of the arrays via recruitment of peripheral filaments and continuous barbed-end turnover. Using genetic approaches we have identified Fhos, the single Drosophila homolog of the FHOD sub-family of formins, as a primary and versatile mediator of IFM thin-filament organization. Localization of Fhos to the barbed-ends of the arrays, achieved via a novel N-terminal domain, appears to be a critical aspect of its sarcomeric roles. DOI: http://dx.doi.org/10.7554/eLife.16540.001 PMID:27731794

  15. Microinjected fluorescent phalloidin in vivo reveals the F-actin dynamics and assembly in higher plant mitotic cells.

    PubMed Central

    Schmit, A C; Lambert, A M

    1990-01-01

    Endosperm mitotic cells microinjected with fluorescent phalloidin enabled us to follow the in vivo dynamics of the F-actin cytoskeleton. The fluorescent probe immediately bound to plant microfilaments. First, we investigated the active rearrangement of F-actin during chromosome migration, which appeared to be slowed down in the presence of phalloidin. These findings were compared with the actin patterns observed in mitotic cells fixed at different stages. Our second aim was to determine the origin of the actin filaments that appear at the equator during anaphase-telophase transition. It is not clear whether this F-actin is newly assembled at the end of mitosis and could control plant cytokinesis or whether it corresponds to a passive redistribution of broken polymers in response to microtubule dynamics. We microinjected the same cells twice, first in metaphase with rhodamine-phalloidin and then in late anaphase with fluorescein isothiocyanate-phalloidin. This technique enabled us to visualize two F-actin populations that are not co-localized, suggesting that actin is newly assembled during cell plate development. These in vivo data shed new light on the role of actin in plant mitosis and cytokinesis. PMID:2136631

  16. Pharmacological targeting of actin-dependent dynamin oligomerization ameliorates chronic kidney disease in diverse animal models

    PubMed Central

    Schiffer, Mario; Teng, Beina; Gu, Changkyu; Shchedrina, Valentina A.; Kasaikina, Marina; Pham, Vincent A.; Hanke, Nils; Rong, Song; Gueler, Faikah; Schroder, Patricia; Tossidou, Irini; Park, Joon-Keun; Staggs, Lynne; Haller, Hermann; Erschow, Sergej; Hilfiker-Kleiner, Denise; Wei, Changli; Chen, Chuang; Tardi, Nicholas; Hakroush, Samy; Selig, Martin K.; Vasilyev, Aleksandr; Merscher, Sandra; Reiser, Jochen; Sever, Sanja

    2015-01-01

    Dysregulation of the actin cytoskeleton in podocytes represents a common pathway in the pathogenesis of proteinuria across a spectrum of chronic kidney diseases (CKD). The GTPase dynamin has been implicated in the maintenance of cellular architecture in podocytes through its direct interaction with actin. Furthermore, the propensity of dynamin to oligomerize into higher-order structures in an actin-dependent manner and to crosslink actin microfilaments into higher order structures have been correlated with increased actin polymerization and global organization of the actin cytoskeleton in the cell. We found that use of the small molecule Bis-T-23, which promotes actin-dependent dynamin oligomerization and thus increased actin polymerization in injured podocytes, was sufficient to improve renal health in diverse models of both transient kidney disease and of CKD. In particular, administration of Bis-T-23 in these renal disease models restored the normal ultrastructure of podocyte foot processes, lowered proteinuria, lowered collagen IV deposits in the mesangial matrix, diminished mesangial matrix expansion and extended lifespan. These results further establish that alterations in the actin cytoskeleton of kidney podocytes is a common hallmark of CKD, while also underscoring the significant regenerative potential of injured glomeruli and that targeting the oligomerization cycle of dynamin represents an attractive potential therapeutic target to treat CKD. PMID:25962121

  17. Ultraviolet A radiation transiently disrupts gap junctional communication in human keratinocytes.

    PubMed

    Provost, Nicolas; Moreau, Marielle; Leturque, Armelle; Nizard, Carine

    2003-01-01

    Ultraviolet A (UVA) (320-400 nm) radiation is known to cause cutaneous aging and skin cancer. We studied the effect of UVA (365 nm) radiation on the human epidermis by focusing on keratinocyte gap junction-mediated intercellular communication (GJIC). We observed a dose-dependent 10-fold decrease in GJIC induced by UVA in normal human keratinocytes. This decrease in GJIC was associated with time-dependent internalization of connexin43 (Cx43). UVA radiation also damaged the actin cytoskeleton, as shown by microfilament disappearance. Importantly, the decrease in GJIC was transient when keratinocytes were irradiated with 10 J/cm(2) UVA, with a return to baseline values after 8 h. Concomitantly, Cx43 was relocalized and the actin cytoskeleton was restored. UVA irradiation and 12-O-tetradecanoylphorbol 13-acetate (TPA) treatment activated protein kinase C and reduced GJIC. However, Cx43 localization and phosphorylation were differently regulated by the two treatments. This suggests that at least two different pathways may mediate the observed fall in GJIC. These findings identify keratinocyte GJIC as a new UVA target that might sensitize human skin to photoaging and cancer formation.

  18. Effects of colchicine, vinblastine and nocodazole on polarity, motility, chemotaxis and cAMP levels of human polymorphonuclear leukocytes.

    PubMed

    Keller, H U; Naef, A; Zimmermann, A

    1984-07-01

    We present evidence for intrinsic polymorphonuclear leukocyte (PMN) polarity manifested in presence of microtubule-disrupting drugs. Polarization in response to colchicine correlated with the known dose-dependent effects of this drug on microtubule disassembly. The response to 10(-5) M colchicine, 10(-5) M vinblastine and 10(-6) M nocodazole was associated with stimulated motility and random locomotion. Responses elicited by microtubule-disrupting drugs differed from f-Met-Leu-Phe (fMLP)-induced polarization by functional and morphological criteria. Polarization, motility and orthokinesis responses were much weaker. Furthermore, ruffling was almost absent in PMNs polarized in response to colchicine, vinblastine or nocodazole. The response was inhibited by cytochalasin B, indicating that it is microfilament-dependent. We suggest that microtubule-disrupting drugs induce motility via structural changes in the cytoskeleton which act as signals for the motor apparatus. The intrinsic polarity manifested in the presence of microtubule-disrupting drugs could be reversed by an extracellular chemotactic gradient. Stimulated locomotion and motility in response to microtubule-disrupting drugs was only observed with initially spherical PMNs but not with initially motile cells. The findings provide an explanation for the numerous conflicting statements on the chemokinetic activities of these drugs. The role of cAMP in stimulated polarization and motility has been studied. Colchicine, vinblastine and nocodazole elicited a transient elevation of cAMP levels within 1 min of stimulation. cAMP elevation and stimulated motility were not quantitatively correlated.

  19. Nuclear actin-binding proteins as modulators of gene transcription.

    PubMed

    Gettemans, Jan; Van Impe, Katrien; Delanote, Veerle; Hubert, Thomas; Vandekerckhove, Joël; De Corte, Veerle

    2005-10-01

    Dynamic transformations in the organization of the cellular microfilament system are the driving force behind fundamental biological processes such as cellular motility, cytokinesis, wound healing and secretion. Eukaryotic cells express a plethora of actin-binding proteins (ABPs) allowing cells to control the organization of the actin cytoskeleton in a flexible manner. These structural proteins were, not surprisingly, originally described as (major) constituents of the cytoplasm. However, in recent years, there has been a steady flow of reports detailing not only translocation of ABPs into and out of the nucleus but also describing their role in the nuclear compartment. This review focuses on recent developments pertaining to nucleocytoplasmic transport of ABPs, including their mode of translocation and nuclear function. In particular, evidence that structurally and functionally unrelated cytoplasmic ABPs regulate transcription activation by various nuclear (steroid hormone) receptors is steadily accruing. Furthermore, the recent finding that actin is a necessary component of the RNA polymerase II-containing preinitiation complex opens up new opportunities for nuclear ABPs in gene transcription regulation.

  20. Effect of blood plasma collected after adrenocorticotropic hormone administration during the preovulatory period in the sow on oocyte in vitro maturation.

    PubMed

    González, R; Sjunnesson, Y C B

    2013-10-01

    Reproduction may be affected by stressful events changing the female endocrine or metabolic profile. An altered environment during oocyte development could influence the delicate process of oocyte maturation. Here, the effect of simulated stress by media supplementation with blood plasma from sows after adrenocorticotropic hormone (ACTH) administration during the preovulatory period was assessed. Oocytes were matured for 46 hours in the presence of plasma from ACTH-treated sows, or plasma from NaCl-treated control sows, or medium without plasma (BSA group). The plasma used had been collected at 36 and 12 hours (±2 hours) before ovulation (for the first 24 hours + last 22 hours of maturation, respectively). Subsequent fertilization and embryo development were evaluated. Actin cytoskeleton and mitochondrial patterns were studied by confocal microscopy both in the oocytes and the resulting blastocysts. Nuclear maturation did not differ between treatments. Subtle differences were observed in the actin microfilaments in oocytes; however, mitochondrial patterns were associated with the treatment (P < 0.001). These differences in mitochondrial patterns were not reflected by in vitro outcomes, which were similar in all groups. In conclusion, an altered hormonal environment provided by a brief exposure to plasma from ACTH-treated sows during in vitro oocyte maturation could induce alterations in actin cytoskeleton and mitochondrial patterns in oocytes. However, these changes might not hamper the subsequent in vitro embryo development.

  1. Fast Shape Evolution of Laser Filaments in the Wake of Femtosecond Driving Pulse

    NASA Astrophysics Data System (ADS)

    Romanov, Dmitri; Levis, Robert

    2013-05-01

    A theoretical model is developed for subnanosecond evolution of highly nonequilibrium, inhomogeneous free-electron gas in a laser filament/microfilament wake channel. The evolution is driven by two interrelated mechanisms: (i) impact ionization of residual neutral atoms inside the channel and on its surface, and (ii) thermal conduction in the electron gas. The simulation results for the cases of weak and moderate initial ionization show crucial importance of incorporating the spread effects, especially as regards the electron temperature. The calculated evolution patterns determine the transient optical and electronic properties of filament wake channels. Accordingly, we propose tracing the wake channel evolution via linear and nonlinear light-scattering experiments. The evolving shape of the electron density distribution can be extracted from longitudinal and/or transverse Fraunhofer diffraction patterns. Complementarily, the evolving temperature distribution may be deduced either from angular-resolved four-wave-mixing experiments or from the spatial-spectral patterns of giant Rabi sidebands. Medium-specific estimates are made for atmospheric-pressure argon gas. In molecular-gas cases, the model can be straightforwardly augmented to incorporate the processes of dissociative recombination and vibrational excitations. Support from the Air Force Office of Scientific Research, Grant No. N00014-10-0293, is gratefully acknowledged.

  2. Persistent Noggin arrests cardiomyocyte morphogenesis and results in early in utero lethality

    PubMed Central

    Simmons, Olga; Snider, Paige; Wang, Jain; Schwartz, Robert J.; Chen, YiPing; Conway, Simon J.

    2014-01-01

    Background Multiple BMP genes are expressed in the developing heart from the initiation to late-differentiation stages, and play pivotal roles in cardiovascular development. In this study, we investigated the requirement of BMP activity in heart development by transgenic over-expression of extracellular BMP antagonist Noggin. Results Using Nkx2.5-Cre to drive lineage-restricted Noggin within cardiomyocyte progenitors, we show persistent Noggin arrests cardiac development at the linear heart stage. This is coupled with a significantly reduced cell proliferation rate, subsequent cardiomyocyte programmed cell death and reduction of downstream intracellular pSMAD1/5/8 expression. Noggin mutants exhibit reduced heartbeat which likely results in subsequent fully penetrant in utero lethality. Significantly, confocal and electron micrographic examination revealed considerably fewer contractile elements, as well as a lack of maturation of actin-myosin microfilaments. Molecular analysis demonstrated that ectopic Noggin-expressing regions in the early heart’s pacemaker region, failed to express the potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 4 (Hcn4), resulting in an overall decrease in Hcn4 levels. Conclusions Combined, our results reveal a novel role for BMP signaling in the progression of heart development from the tubular heart stage to the looped stage via regulation of proliferation and promotion of maturation of the in utero heart’s contractile apparatus and pacemaker. PMID:25428115

  3. Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria.

    PubMed

    Chakroun, Maissa; Banyuls, Núria; Bel, Yolanda; Escriche, Baltasar; Ferré, Juan

    2016-06-01

    Entomopathogenic bacteria produce insecticidal proteins that accumulate in inclusion bodies or parasporal crystals (such as the Cry and Cyt proteins) as well as insecticidal proteins that are secreted into the culture medium. Among the latter are the Vip proteins, which are divided into four families according to their amino acid identity. The Vip1 and Vip2 proteins act as binary toxins and are toxic to some members of the Coleoptera and Hemiptera. The Vip1 component is thought to bind to receptors in the membrane of the insect midgut, and the Vip2 component enters the cell, where it displays its ADP-ribosyltransferase activity against actin, preventing microfilament formation. Vip3 has no sequence similarity to Vip1 or Vip2 and is toxic to a wide variety of members of the Lepidoptera. Its mode of action has been shown to resemble that of the Cry proteins in terms of proteolytic activation, binding to the midgut epithelial membrane, and pore formation, although Vip3A proteins do not share binding sites with Cry proteins. The latter property makes them good candidates to be combined with Cry proteins in transgenic plants (Bacillus thuringiensis-treated crops [Bt crops]) to prevent or delay insect resistance and to broaden the insecticidal spectrum. There are commercially grown varieties of Bt cotton and Bt maize that express the Vip3Aa protein in combination with Cry proteins. For the most recently reported Vip4 family, no target insects have been found yet.

  4. Robust formulation for the design of tissue engineering scaffolds: A comprehensive study on structural anisotropy, viscoelasticity and degradation of 3D scaffolds fabricated with customized desktop robot based rapid prototyping (DRBRP) system.

    PubMed

    Hoque, M Enamul

    2017-03-01

    This study investigates the scaffolds' structural anisotropy (i.e. the effect of loading direction), viscoelasticity (i.e. the effect of cross head speed or strain rate), and the influence of simulated physiological environment (PBS solution at 37°C) on the mechanical properties. Besides, the in vitro degradation study has also been performed that evaluates the effect of variation in material and lay-down pattern on the scaffolds' degradation kinetics in terms of mass loss, and change in morphological and mechanical properties. Porous three dimensional (3D) scaffolds of polycarprolactone (PCL) and polycarprolactone-polyethylene glycol (PCL-PEG) were developed by laying down the microfilaments directionally layer-by-layer using an in-house built computer-controlled extrusion and deposition process, called desktop robot based rapid prototyping (DRBRP) system. The loading direction, strain rate and physiological environment directly influenced the mechanical properties of the scaffolds. In vitro degradation study demonstrated that both PCL and PCL-PEG scaffolds realized homogeneous hydrolytic degradation via surface erosion resulting in a consistent and predictable mass loss. The linear mass loss caused uniform and linear increase in porosity that accordingly led to the decrease in mechanical properties. The synthetic polymer had the potential to modulate hydrophilicity and/or degradability and consequently, the biomechanical properties of the scaffolds by varying the polymer constituents.

  5. Ultrastructural analysis of contractile cell development in lung microvessels in hyperoxic pulmonary hypertension. Fibroblasts and intermediate cells selectively reorganize nonmuscular segments.

    PubMed Central

    Jones, R.

    1992-01-01

    The current study traces the development of contractile cells in the nonmuscular segments of rat lung microvessels in hyperoxic pulmonary hypertension. New intimal cells first develop into a well-defined layer beneath the endothelium and internal to an elastic lamina. Ultrastructurally, these cells are found to be 1) fibroblasts recruited to the vessel wall from the interstitium and 2) intermediate cells, a population of preexisting vascular cells (structurally between a smooth muscle cell and a pericyte). Early in hyperoxia (days 3 through 7), interstitial fibroblasts migrate and align around the smallest vessels in which an elastic lamina is either absent or fragmentary. These cells then are incorporated into the vessel wall by tropoelastin secretion and the formation of an elastic lamina along their abluminal margin. After day 7, the new mural fibroblasts acquire the features of contractile cells, namely a basal lamina, extensive microfilaments, and dense bodies. In other vessels, as early as day 3 of hyperoxia, intermediate cells within the vessel intima begin to acquire the additional filaments and dense bodies of contractile cells. As hyperoxia continues, each cell pathway gives rise to vessels with distinct intimal or medial layers of contractile cells. In this way, thick-walled 'newly muscularized' vessel segments form adjacent to the capillary bed. Images Figure 1 Figure 5 Figure 6 Figure 7 p1500-a Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 PMID:1466406

  6. Resistance of African Green Monkey Kidney Cell Lines to Actinomycin D: Drug Uptake in 37 RC Cells After Persistent Inhibition of Transcription

    PubMed Central

    Benedetto, Arrigo; Cassone, Antonio; Delfini, Carlo

    1979-01-01

    37 RC cells, a cultured line derived from African green monkey kidneys, survived long treatments with actinomycin D (AMD; 0.1 to 0.5 μg/ml) under strong inhibition of ribonucleic acid synthesis and blocking of cell division. One aspect of the complex cellular response to this treatment was a progressive lowering of the influx rate of AMD and, consequently, of its endocellular concentration, leading to a late resurgence of transcription. Overall protein synthesis decreased in AMD-treated cells, but more of the residual protein was exported to the cell surface, a fact associated with the development of numerous strands of endoplasmic reticulum and Golgi bodies in the cytoplasm. The lowering of AMD influx during the treatment was not simply due to the decay of protein synthesis, and there was no evidence for a carrier-mediated transport of the drug. It was paralleled by, but seemingly not related to, modifications in cellular microtubules and microfilaments. The rate of AMD influx was restored to levels comparable to those of untreated cells by short exposure to ethylenediaminetetraacetic acid and trypsin. It is concluded that the changes in plasma membrane of 37 RC cells, creating an obstacle to the influx of AMD after long treatment with this drug, probably consist of an accumulation and/or a different distribution of glycoproteins or other surface components on the cell surface. Images PMID:106777

  7. Galectin-3-induced cell spreading and motility relies on distinct signaling mechanisms compared to fibronectin.

    PubMed

    More, Shyam K; Chiplunkar, Shubhada V; Kalraiya, Rajiv D

    2016-05-01

    Secreted galectin-3 often gets incorporated into extracellular matrix and is utilized by cancer cells for spreading, movement, and metastatic dissemination. Here we investigate molecular mechanisms by which galectin-3 brings about these effects and compare it with fibronectin. Imaging of cells spread on fibronectin showed stress fibers throughout cell body, however, galectin-3-induced formation of parallel actin bundles in the lamellipodial region resulting in unique morphological features. FRAP analysis showed that the actin turnover in the lamellipodial region was much higher in cells spread on galectin-3 as compared to that on fibronectin. Rac1 activation is correlated with lamellipodial organization on both the substrates. Activation of Akt and Rac1, the regulators of actin dynamics, show inverse correlation with each other on both galectin-3 and fibronectin. Activation of Erk however, remained similar. Further, inhibition of activation of Akt and Erk inhibited spreading and motility of cells on galectin-3 but not on fibronectin. The results very comprehensively demonstrate distinct signaling pathways that regulate microfilament organization, lamellipodial structures, spreading, and movement of cells plated on galectin-3 as opposed to fibronectin.

  8. RAB-10 Promotes EHBP-1 Bridging of Filamentous Actin and Tubular Recycling Endosomes

    PubMed Central

    Wang, Yu; Liu, Ou; Zhang, Jing; Gleason, Adenrele; Yang, Zhenrong; Wang, Hui; Shi, Anbing; Grant, Barth D.

    2016-01-01

    EHBP-1 (Ehbp1) is a conserved regulator of endocytic recycling, acting as an effector of small GTPases including RAB-10 (Rab10). Here we present evidence that EHBP-1 associates with tubular endosomal phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] enriched membranes through an N-terminal C2-like (NT-C2) domain, and define residues within the NT-C2 domain that mediate membrane interaction. Furthermore, our results indicate that the EHBP-1 central calponin homology (CH) domain binds to actin microfilaments in a reaction that is stimulated by RAB-10(GTP). Loss of any aspect of this RAB-10/EHBP-1 system in the C. elegans intestinal epithelium leads to retention of basolateral recycling cargo in endosomes that have lost their normal tubular endosomal network (TEN) organization. We propose a mechanism whereby RAB-10 promotes the ability of endosome-bound EHBP-1 to also bind to the actin cytoskeleton, thereby promoting endosomal tubulation. PMID:27272733

  9. Columella cells revisited: novel structures, novel properties, and a novel gravisensing model

    NASA Technical Reports Server (NTRS)

    Staehelin, L. A.; Zheng, H. Q.; Yoder, T. L.; Smith, J. D.; Todd, P.

    2000-01-01

    A hundred years of research has not produced a clear understanding of the mechanism that transduces the energy associated with the sedimentation of starch-filled amyloplast statoliths in root cap columella cells into a growth response. Most models postulate that the statoliths interact with microfilaments (MF) to transmit signals to the plasma membrane (or ER), or that sedimentation onto these organelles produces the signals. However, no direct evidence for statolith-MF links has been reported, and no asymmetric structures of columella cells have been identified that might explain how a root turned by 90 degrees knows which side is up. To address these and other questions, we have (1) quantitatively examined the effects of microgravity on the size, number, and spatial distribution of statoliths; (2) re-evaluated the ultrastructure of columella cells in high-pressure frozen/freeze-substituted roots; and (3) followed the sedimentation dynamics of statolith movements in reoriented root tips. The findings have led to the formulation of a new model for the gravity-sensing apparatus of roots, which envisages the cytoplasm pervaded by an actin-based cytoskeletal network. This network is denser in the ER-devoid central region of the cell than in the ER-rich cell cortex and is coupled to receptors in the plasma membrane. Statolith sedimentation is postulated to disrupt the network and its links to receptors in some regions of the cell cortex, while allowing them to reform in other regions and thereby produce a directional signal.

  10. Induction of neuron-specific tropomyosin mRNAs by nerve growth factor is dependent on morphological differentiation

    PubMed Central

    1993-01-01

    We have examined the expression of brain-specific tropomyosins during neuronal differentiation. Both TmBr-1 and TmBr-3 were shown to be neuron specific. TmBr-1 and TmBr-3 mRNA levels increased during the most active phase of neurite outgrowth in the developing rat cerebellum. In PC12 cells stimulated by nerve growth factor (NGF) to differentiate to the neuronal phenotype, TmBr-1 and TmBr-3 levels increased with an increasing degree of morphological differentiation. Induction of TmBr-1 and TmBr-3 expression only occurred under conditions where PC12 cells were permitted to extend neurites. NGF was unable to maintain levels of TmBr-1 and TmBr-3 with the loss of neuronal phenotype by resuspension of differentiated PC12 cells. The unique cellular expression and regulation in vivo and in vitro of TmBr- 1 and TmBr-3 strongly suggests a critical role of these tropomyosins in neuronal microfilament function. The findings reveal that the induction and maintenance of the neuronal tropomyosins is dependent on morphological differentiation and the maintenance of the neuronal phenotype. PMID:8416988

  11. Modulation of alpha smooth muscle actin and desmin expression in perisinusoidal cells of normal and diseased human livers.

    PubMed Central

    Schmitt-Gräff, A.; Krüger, S.; Bochard, F.; Gabbiani, G.; Denk, H.

    1991-01-01

    It has been suggested that perisinusoidal liver cells (PSC) play a pivotal role in the pathogenesis of fibrocontractive changes. Using light and electron microscopic immunolocalization techniques, a series of 207 normal and pathologic human liver specimens were evaluated for the expression of alpha smooth muscle (SM) actin and desmin in this and other nonparenchymal cell types. In normal adult liver tissue, PSCs were practically devoid of desmin and exceptionally stained for alpha-SM actin, whereas this actin isoform frequently was encountered in PSCs from the embryonic to the adolescent period. A broad spectrum of pathologic conditions was accompanied by the presence of alpha-SM actin containing PSCs; these were detected preferentially in periportal or perivenular zones according to the predominant location of the underlying hepatocellular damage. The occurrence of this PSC phenotype generally was associated with fibrogenesis and was in some cases detected earlier than overt collagen accumulation. Fibrous bands subdividing liver tissue in cirrhosis and focal nodular hyperplasia, as well as desmoplastic reaction to malignant tumors, contained alpha-SM actin-rich cells admixed with variable proportions of cells coexpressing desmin. In end stages, this population was less numerous than in active fibrotic or cirrhotic processes. Using immunogold electron microscopy, alpha-SM actin was localized in microfilament bundles of typical PSCs. Our results are compatible with the assumption that the appearance of alpha-SM actin and desmin-expressing myofibroblasts results at least in part from a phenotypic modulation of PSCs. Images Figure 1 Figure 2 PMID:2024709

  12. Serum non-organ specific autoantibodies in human immunodeficiency virus 1 infection.

    PubMed Central

    Cassani, F; Baffoni, L; Raise, E; Selleri, L; Monti, M; Bonazzi, L; Gritti, F M; Bianchi, F B

    1991-01-01

    Serum samples from 66 seropositive subjects (56 with a history of intravenous drug abuse), including asymptomatic carriers and patients with persistent generalised lymphadenopathy (PGL), AIDS related complex (ARC), and AIDS, were tested by indirect immunofluorescence on rat tissue sections and HEp-2 cells for the presence of antibodies to nuclei, smooth muscle, intermediate filaments (anti-IMF) and microfilaments (anti-MF). Counterimmunoelectrophoresis was also used to detect antibodies to extractable nuclear antigens. Smooth muscle antibodies with the V pattern or antinuclear antibodies, mainly of the speckled type, or anti-IMF, occurred in 35 cases, being widely distributed in all groups. Such an autoantibody response resembles the "viral" autoimmunity described in various infectious diseases and in particular that of non-A, non-B post-transfusion hepatitis. Autoantibodies may be of some prognostic relevance, as the prevalence of smooth muscle antibodies V increased as the disease progressed (asymptomatic carriers 20%, those with PGL 29%, those with ARC 47%, and those with AIDS 63%. In the PGL group autoantibody positivity correlated with the presence of skin anergy. The fact that autoantibodies were more frequently detected in patients with circulating immune complexes suggests that these can contain autoantibodies and the corresponding autoantigens. Images PMID:1671787

  13. Cell-to-cell herniae in the arterial wall. I. The pathogenesis of vacuoles in the normal media.

    PubMed Central

    Joris, I.; Majno, G.

    1977-01-01

    Vacuoles were observed by light microscopy in the smooth muscle cells of the media in normal rat arteries. By electron microscopy these vacuoles were limited by two membranes; they usually contained myelin figures, a few organelles (especially mitochondria and microfilaments), and an amorphous background material that varied greatly in density. Morphologic evidence indicates that these structures arise by herniation of one smooth muscle cell into another; it is presumed that herniation occurs during contraction at weak points corresponding to areas where adjacent cells come in close contact. Such cell-to-cell herniae were mostly seen in small arteries (arterioles) with a diameter of 0.4 to 0.2 mm; however, none was found in coronary arteries of this size. This discrepancy suggests that the pathogenesis of cell-to-cell herniae is correlated not only with the caliber of the artery but also with functional demands. (Am J Pathol 87:375-398). Images Figure 9 Figure 1 Figure 10 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:557903

  14. Complement-induced equine neutrophil adhesiveness and aggregation.

    PubMed

    Slauson, D O; Skrabalak, D S; Neilsen, N R; Zwahlen, R D

    1987-05-01

    Equine neutrophils (PMN) were isolated from citrated normal blood by density gradient separation on Ficoll-Hypaque to greater than 96% purity and 98% viability and an average of 3.78 x 10(7) PMN/ml. The agonist C5a des Arg was used in serial dilutions of whole zymosan-activated equine plasma (ZAP) or was partially purified from ZAP by column chromatography. Purified equine PMN exhibited rapid aggregation following incubation with C5a des Arg which was further dependent on the availability of divalent cations, especially Mg++. The microfilament disruptive agent cytochalasin B (5 micrograms/50 microliters) greatly augmented aggregation responses to C5a des Arg. Subaggregating doses of C5a des Arg promoted PMN adhesiveness as assayed on 0.5 x 10 cm borosilicate glass columns containing a 2.0 cm bed of Sephadex G-25. This C5a des Arg-induced increased adhesiveness was inhibitable by prior incubation of the PMN with either non-steroidal (0.065 M phenylbutazone) or steroidal (0.005 M dexamethasone) anti-inflammatory agents. Ultrastructural studies correlated well with functional assays and revealed marked organelle-free lamellipodia formation without PMN-PMN contact at subaggregating doses of the agonist and progressive PMN-PMN contact at aggregating doses. Equine PMN are responsive to C5a des Arg, and induced adhesiveness responses can be manipulated by anti-inflammatory agents.

  15. Role of cytoskeleton in differentiation of gravisensitive root sites in simulated microgravity

    NASA Astrophysics Data System (ADS)

    Shevchenko, G.; Kordyum, E.

    Cytoskeleton is known to be one of the elements participating in signaling reactions caused by altered gravity in plant cells. Up to date actin microfilaments (MFs) are considered mainly in respect of their involvement in statolith movement and tubulin microtubules (MTs) are investigated in respect of their participation in gravitropic plant growth response (root bending). But there are numerous data evidencing that the role of cytoskeleton in plant gravisensing is far more complex. To contribute to the issue the novel approach is proposed. In particular, since gravity is persistent factor through plant evolution it is suggested to compare the arrangement of cytoskeletal elements at the consequent developmental stages of graviperceiving (root cap) and gravireacting (cell in elongation zone) root sites both in stationary control and simulated microgravity. Special emphasis is given to MF dynamics in the process of statocyte differentiation and establishing statocyte polarity while developing from cells of root cap meristem. MTs are going to be elucidated in epidermal and cortex root cell lines originating from meristem of proper root. Root of Beta vulgaris seedling is used as an object. Methods of cytoskeleton immunohistochemistry, cytoskeleton inhibitors, plant mutant on cytoskeleton genes as well as blockers of auxin transport are intended to be applied. It is anticipated that data will be collected on the influence caused by simulated microgravity on cytoskeleton involvement in the development of plant gravisensing organs. Such an approach will not only widen our knowledge about cytoskeleton role in plant development but also in plant gravireaction.

  16. Mena associates with Rac1 and modulates connexin 43 remodeling in cardiomyocytes.

    PubMed

    Ram, Rashmi; Wescott, Andrew P; Varandas, Katherine; Dirksen, Robert T; Blaxall, Burns C

    2014-01-01

    Mena, a member of the Ena/VASP family of actin regulatory proteins, modulates microfilaments and interacts with cytoskeletal proteins associated with heart failure. Mena is localized at the intercalated disc (ICD) of adult cardiac myocytes, colocalizing with numerous cytoskeletal proteins. Mena's role in the maintainence of mechanical myocardial stability at the cardiomyocyte ICD remains unknown. We hypothesized that Mena may modulate signals from the sarcolemma to the actin cytoskeleton at the ICD to regulate the expression and localization of connexin 43 (Cx43). The small GTPase Rac1 plays a pivotal role in the regulation of actin cytoskeletal reorganization and mediating morphological and transcriptional changes in cardiomyocytes. We found that Mena is associated with active Rac1 in cardiomyocytes and that RNAi knockdown of Mena increased Rac1 activity significantly. Furthermore, Mena knockdown increased Cx43 expression and altered Cx43 localization and trafficking at the ICD, concomitant with faster intercellular communication, as assessed by dye transfer between cardiomyocyte pairs. In mice overexpressing constitutively active Rac1, left ventricular Mena expression was increased significantly, concomitant with lateral redistribution of Cx43. These results suggest that Mena is a critical regulator of the ICD and is required for normal localization of Cx43 in part via regulation of Rac1.

  17. Statistics of active transport in Xenopus melanophores cells.

    SciTech Connect

    Snezhko, A.; Barlan, K.; Aranson, I. S.; Gelfand, V. I.; Materials Science Division; Northwestern Univ.

    2010-11-01

    The transport of cell cargo, such as organelles and protein complexes in the cytoplasm, is determined by cooperative action of molecular motors stepping along polar cytoskeletal elements. Analysis of transport of individual organelles generated useful information about the properties of the motor proteins and underlying cytoskeletal elements. In this work, for the first time (to our knowledge), we study collective movement of multiple organelles using Xenopus melanophores, pigment cells that translocate several thousand of pigment granules (melanosomes), spherical organelles of a diameter of {approx} 1 {micro}m. These cells disperse melanosomes in the cytoplasm in response to high cytoplasmic cAMP, while at low cAMP melanosomes cluster at the cell center. Obtained results suggest spatial and temporal organization, characterized by strong correlations between movement of neighboring organelles, with correlation length of {approx} 4 {micro}m and pair lifetime {approx} 5 s. Furthermore, velocity statistics revealed strongly non-Gaussian velocity distribution with high velocity tails demonstrating exponential behavior suggestive of strong velocity correlations. Depolymerization of vimentin intermediate filaments using a dominant-negative vimentin mutant or actin with cytochalasin B reduced correlation of behavior of individual particles. Based on our analysis, we concluded that steric repulsion is dominant, but both intermediate filaments and actin microfilaments are involved in dynamic cross-linking organelles in the cytoplasm.

  18. A Tensegrity Model of Cell Reorientation on Cyclically Stretched Substrates.

    PubMed

    Xu, Guang-Kui; Li, Bo; Feng, Xi-Qiao; Gao, Huajian

    2016-10-04

    Deciphering the mechanisms underlying the high sensitivity of cells to mechanical microenvironments is crucial for understanding many physiological and pathological processes, e.g., stem cell differentiation and cancer cell metastasis. Here, a cytoskeletal tensegrity model is proposed to study the reorientation of polarized cells on a substrate under biaxial cyclic deformation. The model consists of four bars, representing the longitudinal stress fibers and lateral actin network, and eight strings, denoting the microfilaments. It is found that the lateral bars in the tensegrity, which have been neglected in most of the existing models, can play a vital role in regulating the cellular orientation. The steady orientation of cells can be quantitatively determined by the geometric dimensions and elastic properties of the tensegrity elements, as well as the frequency and biaxial ratio of the cyclic stretches. It is shown that this tensegrity model can reproduce all available experimental observations. For example, the dynamics of cell reorientation is captured by an exponential scaling law with a characteristic time that is independent of the loading frequency at high frequencies and scales inversely with the square of the strain amplitude. This study suggests that tensegrity type models may be further developed to understand cellular responses to mechanical microenvironments and provide guidance for engineering delicate cellular mechanosensing systems.

  19. Wasp, the Drosophila Wiskott-Aldrich Syndrome Gene Homologue, Is Required for Cell Fate Decisions Mediated by Notch Signaling

    PubMed Central

    Ben-Yaacov, Sari; Le Borgne, Roland; Abramson, Irit; Schweisguth, Francois; Schejter, Eyal D.

    2001-01-01

    Wiskott-Aldrich syndrome proteins, encoded by the Wiskott-Aldrich syndrome gene family, bridge signal transduction pathways and the microfilament-based cytoskeleton. Mutations in the Drosophila homologue, Wasp (Wsp), reveal an essential requirement for this gene in implementation of cell fate decisions during adult and embryonic sensory organ development. Phenotypic analysis of Wsp mutant animals demonstrates a bias towards neuronal differentiation, at the expense of other cell types, resulting from improper execution of the program of asymmetric cell divisions which underlie sensory organ development. Generation of two similar daughter cells after division of the sensory organ precursor cell constitutes a prominent defect in the Wsp sensory organ lineage. The asymmetric segregation of key elements such as Numb is unaffected during this division, despite the misassignment of cell fates. The requirement for Wsp extends to additional cell fate decisions in lineages of the embryonic central nervous system and mesoderm. The nature of the Wsp mutant phenotypes, coupled with genetic interaction studies, identifies an essential role for Wsp in lineage decisions mediated by the Notch signaling pathway. PMID:11149916

  20. Roles for kinesin and myosin during cytokinesis.

    PubMed Central

    Hepler, Peter K; Valster, Aline; Molchan, Tasha; Vos, Jan W

    2002-01-01

    Cytokinesis in higher plants involves the phragmoplast, a complex cytoplasmic structure that consists of microtubules (MTs), microfilaments (MFs) and membrane elements. Both MTs and MFs are essential for cell plate formation, although it is not clear which motor proteins are involved. Some candidate processes for motor proteins include transport of Golgi vesicles to the plane of the cell plate and the spatiotemporal organization of the cytoskeletal elements in order to achieve proper deposition and alignment of the cell plate. We have focused on the kinesin-like calmodulin binding protein (KCBP) and, more broadly, on myosins. Using an antibody that constitutively activates KCBP, we find that this MT motor, which is minus-end directed, contributes to the organization of the spindle and phragmoplast MTs. It does not participate in vesicle transport; rather, because of the orientation of the phragmoplast MTs, it is supposed that plus-end kinesins fill this role. Myosins, on the other hand, based on their inhibition with 2,3-butanedione monoxime and 1-(5-iodonaphthalene-1-sulphonyl)-1H-hexahydro-1,4-diazepine (ML-7), are associated with the process of post-mitotic spindle/phragmoplast alignment and with late lateral expansion of the cell plate. They are also not the principal motors involved in vesicle transport. PMID:12079671

  1. Microtubules restrict plastid sedimentation in protonemata of the moss Ceratodon

    NASA Technical Reports Server (NTRS)

    Schwuchow, J.; Sack, F. D.

    1994-01-01

    Apical cells of protonemata of the moss Ceratodon purpureus are unusual among plant cells with sedimentation in that only some amyloplasts sediment and these do not fall completely to the bottom of vertical cells. To determine whether the cytoskeleton restricts plastid sedimentation, the effects of amiprophos-methyl (APM) and cytochalasin D (CD) on plastid position were quantified. APM treatments of 30-60 min increased the plastid sedimentation that is normally seen along the length of untreated or control cells. Longer APM treatments often resulted in more dramatic plastid sedimentation, and in some cases almost all plastids sedimented to the lowermost point in the cell. In contrast, the microfilament inhibitor CD did not affect longitudinal plastid sedimentation compared to untreated cells, although it did disturb or eliminate plastid zonation in the tip. These data suggest that microtubules restrict the sedimentation of plastids along the length of the cell and that microtubules are load-bearing for all the plastids in the apical cell. This demonstrates the importance of the cytoskeleton in maintaining organelle position and cell organization against the force of gravity.

  2. Perspectives on low voltage transmission electron microscopy as applied to cell biology.

    PubMed

    Bendayan, Moise; Paransky, Eugene

    2014-12-01

    Low voltage transmission electron microscopy (LVTEM) with accelerating voltages as low as 5 kV was applied to cell biology. To take advantage of the increased contrast given by LVTEM, tissue preparation was modified omitting all heavy metals such as osmium, uranium, and lead from the fixation, on block staining and counterstaining. Nonstained ultra-thin tissue sections (40 nm thick) generated highly contrasted images. While the aspect of the cells remains similar to that obtained by conventional TEM, some new substructures were revealed. The pancreatic acinar cells granules present a heterogeneous matrix with partitions corresponding to segregation of their different secretory proteins. Microvilli display their core of microfilaments anchored to the dense top membrane. Mitochondria revealed the presence of distinct particles along their cristea membranes that may correspond to the ATP synthase complexes or oxysomes. The dense nuclear chromatin displays a honey-comb appearance while distinct beads aligned along thin threads were seen in the dispersed chromatin. These new features revealed by LVTEM correlate with structures described or predicted through other approaches. Masking effects due to thickness of the tissue sections and to the presence of heavy metals must have prevented their observation by conventional TEM. Furthermore, the immunogold was adapted to LVTEM revealing nuclear lamin-A at the edge of the dense chromatin ribbons. Combining cytochemistry with LVTEM brings additional advantages to this new approach in cell biology.

  3. Sub-lethal concentrations of CdCl2 disrupt cell migration and cytoskeletal proteins in cultured mouse TM4 Sertoli cells.

    PubMed

    Egbowon, Biola F; Harris, Wayne; Arnott, Gordon; Mills, Chris Lloyd; Hargreaves, Alan J

    2016-04-01

    The aims of this study were to examine the effects of CdCl2 on the viability, migration and cytoskeleton of cultured mouse TM4 Sertoli cells. Time- and concentration-dependent changes were exhibited by the cells but 1 μM CdCl2 was sub-cytotoxic at all time-points. Exposure to 1 and 12 μM CdCl2 for 4 h resulted in disruption of the leading edge, as determined by chemical staining. Cell migration was inhibited by both 1 and 12 μM CdCl2 in a scratch assay monitored by live cell imaging, although exposure to the higher concentration was associated with cell death. Western blotting and immunofluorescence staining indicated that CdCl2 caused a concentration dependent reduction in actin and tubulin levels. Exposure to Cd(2+) also resulted in significant changes in the levels and/or phosphorylation status of the microtubule and microfilament destabilising proteins cofilin and stathmin, suggesting disruption of cytoskeletal dynamics. Given that 1-12 μM Cd(2+) is attainable in vivo, our findings are consistent with the possibility that Cd(2+) induced impairment of testicular development and reproductive health may involve a combination of reduced Sertoli cell migration and impaired Sertoli cell viability depending on the timing, level and duration of exposure.

  4. The Presynaptic Microtubule Cytoskeleton in Physiological and Pathological Conditions: Lessons from Drosophila Fragile X Syndrome and Hereditary Spastic Paraplegias

    PubMed Central

    Bodaleo, Felipe J.; Gonzalez-Billault, Christian

    2016-01-01

    The capacity of the nervous system to generate neuronal networks relies on the establishment and maintenance of synaptic contacts. Synapses are composed of functionally different presynaptic and postsynaptic compartments. An appropriate synaptic architecture is required to provide the structural basis that supports synaptic transmission, a process involving changes in cytoskeletal dynamics. Actin microfilaments are the main cytoskeletal components present at both presynaptic and postsynaptic terminals in glutamatergic synapses. However, in the last few years it has been demonstrated that microtubules (MTs) transiently invade dendritic spines, promoting their maturation. Nevertheless, the presence and functions of MTs at the presynaptic site are still a matter of debate. Early electron microscopy (EM) studies revealed that MTs are present in the presynaptic terminals of the central nervous system (CNS) where they interact with synaptic vesicles (SVs) and reach the active zone. These observations have been reproduced by several EM protocols; however, there is empirical heterogeneity in detecting presynaptic MTs, since they appear to be both labile and unstable. Moreover, increasing evidence derived from studies in the fruit fly neuromuscular junction proposes different roles for MTs in regulating presynaptic function in physiological and pathological conditions. In this review, we summarize the main findings that support the presence and roles of MTs at presynaptic terminals, integrating descriptive and biochemical analyses, and studies performed in invertebrate genetic models. PMID:27504085

  5. Computational model for the cell-mechanical response of the osteocyte cytoskeleton based on self-stabilizing tensegrity structures.

    PubMed

    Kardas, Dieter; Nackenhorst, Udo; Balzani, Daniel

    2013-01-01

    The mechanism by which mechanical stimulation on osteocytes results in biochemical signals that initiate the remodeling process inside living bone tissue is largely unknown. Even the type of stimulation acting on these cells is not yet clearly identified. However, the cytoskeleton of osteocytes is suggested to play a major role in the mechanosensory process due to the direct connection to the nucleus. In this paper, a computational approach to model and simulate the cell structure of osteocytes based on self-stabilizing tensegrity structures is suggested. The computational model of the cell consists of the major components with respect to mechanical aspects: the integrins that connect the cell with the extracellular bone matrix, and different types of protein fibers (microtubules and intermediate filaments) that form the cytoskeleton, the membrane-cytoskeleton (microfilaments), the nucleus and the centrosome. The proposed geometrical cell models represent the cell in its physiological environment which is necessary in order to give a statement on the cell behavior in vivo. Studies on the mechanical response of osteocytes after physiological loading and in particular the mechanical response of the nucleus show that the load acting on the nucleus is rising with increasing deformation applied to the integrins.

  6. Function of osteocytes in bone.

    PubMed

    Aarden, E M; Burger, E H; Nijweide, P J

    1994-07-01

    Although the structural design of cellular bone (i.e., bone containing osteocytes that are regularly spaced throughout the bone matrix) dates back to the first occurrence of bone as a tissue in evolution, and although osteocytes represent the most abundant cell type of bone, we know as yet little about the role of the osteocyte in bone metabolism. Osteocytes descend from osteoblasts. They are formed by the incorporation of osteoblasts into the bone matrix. Osteocytes remain in contact with each other and with cells on the bone surface via gap junction-coupled cell processes passing through the matrix via small channels, the canaliculi, that connect the cell body-containing lacunae with each other and with the outside world. During differentiation from osteoblasts to mature osteocyte the cells lose a large part of their cell organelles. Their cell processes are packed with microfilaments. In this review we discuss the various theories on osteocyte function that have taken in consideration these special features of osteocytes. These are 1) osteocytes are actively involved in bone turnover; 2) the osteocyte network is through its large cell-matrix contact surface involved in ion exchange; and 3) osteocytes are the mechanosensory cells of bone and play a pivotal role in functional adaptation of bone. In our opinion, especially the last theory offers an exciting concept for which some biomechanical, biochemical, and cell biological evidence is already available and which fully warrants further investigations.

  7. Altered expression of glomerular heat shock protein 27 in experimental nephrotic syndrome.

    PubMed Central

    Smoyer, W E; Gupta, A; Mundel, P; Ballew, J D; Welsh, M J

    1996-01-01

    Although nephrotic syndrome is a very common kidney disease, little is known about the molecular changes occurring within glomerular capillary loops during development of disease. The characteristic histologic change is retraction (effacement) of the distal "foot" processes of glomerular epithelial cells (GEC) which surround the capillary loops. The GEC foot processes are an essential part of the kidney's filtration barrier, and their structure is regulated primarily by actin microfilaments, cytoskeletal proteins present in high concentrations in foot processes. Actin polymerization has been reported to be regulated via phosphorylation of the low molecular weight heat shock protein, hsp27. We localized hsp27 within normal rat GECs using immunofluorescence and immunoelectron microscopy. Induction of nephrotic syndrome and GEC foot process effacement using the puromycin aminonucleoside rat model resulted in significant increases in: (a) renal cortical hsp27 mRNA expression (826 +/- 233%, x +/- SEM, P < 0.01 vs. control); (b) glomerular hsp27 protein expression (87 +/- 2%, P < 0.001 vs. control); and (c) glomerular hsp27 phosphorylation (101 +/- 32%, P < 0.05 vs. control). These findings support the hypothesis that hsp27, by regulating GEC foot process actin polymerization, may be important in maintaining normal foot process structure, and regulating pathophysiologic GEC cytoskeletal changes during development of nephrotic syndrome. PMID:8675679

  8. Activation of 5-HT7 receptor stimulates neurite elongation through mTOR, Cdc42 and actin filaments dynamics.

    PubMed

    Speranza, Luisa; Giuliano, Teresa; Volpicelli, Floriana; De Stefano, M Egle; Lombardi, Loredana; Chambery, Angela; Lacivita, Enza; Leopoldo, Marcello; Bellenchi, Gian C; di Porzio, Umberto; Crispino, Marianna; Perrone-Capano, Carla

    2015-01-01

    Recent studies have indicated that the serotonin receptor subtype 7 (5-HT7R) plays a crucial role in shaping neuronal morphology during embryonic and early postnatal life. Here we show that pharmacological stimulation of 5-HT7R using a highly selective agonist, LP-211, enhances neurite outgrowth in neuronal primary cultures from the cortex, hippocampus and striatal complex of embryonic mouse brain, through multiple signal transduction pathways. All these signaling systems, involving mTOR, the Rho GTPase Cdc42, Cdk5, and ERK, are known to converge on the reorganization of cytoskeletal proteins that subserve neurite outgrowth. Indeed, our data indicate that neurite elongation stimulated by 5-HT7R is modulated by drugs affecting actin polymerization. In addition, we show, by 2D Western blot analyses, that treatment of neuronal cultures with LP-211 alters the expression profile of cofilin, an actin binding protein involved in microfilaments dynamics. Furthermore, by using microfluidic chambers that physically separate axons from the soma and dendrites, we demonstrate that agonist-dependent activation of 5-HT7R stimulates axonal elongation. Our results identify for the first time several signal transduction pathways, activated by stimulation of 5-HT7R, that converge to promote cytoskeleton reorganization and consequent modulation of axonal elongation. Therefore, the activation of 5-HT7R might represent one of the key elements regulating CNS connectivity and plasticity during development.

  9. Neutrophil-mediated cytotoxicity triggered by immune complexes: the role of reactive oxygen metabolites.

    PubMed Central

    Geffner, J R; Giordano, M; Palermo, M S; Prat, A; Serebrinsky, G P; Isturiz, M A

    1987-01-01

    Normal human neutrophils triggered by precipitating immune complexes (IC), soluble IC (sIC) or heat-aggregated IgG (HAIgG) displayed low levels of cytotoxicity towards nonsensitized target cells. Catalase, but not heated catalase, completely impaired this nonspecific cytotoxicity (NSC), suggesting a key role for hydrogen peroxide (H2O2) in the lysis of target cells. Superoxide dismutase (SOD) and certain HO. and 1O2 scavengers were unable to exert significant effects. Three haem-enzyme inhibitors, sodium azide, sodium cyanide and 3-amino-1,2,4-triazole did not decrease neutrophil NSC, but markedly enhanced it. This data suggest that the mechanism involved was not dependent upon myeloperoxidase (MPO). The analysis of neutrophil-mediated ADCC indicates that oxygen-dependent but MPO-independent mechanisms appeared to be operative in this system. It was also found that the microfilament disrupting agents, cytochalasin B (CB) and dihydrocytochalasin B (dhCB), as well as the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP), significantly enhanced NSC. In contrast, these compounds partially inhibited ADCC. This cytotoxic system provides a suitable model to study events that may occur during the course of immune complex diseases and also permits the evaluation of alternative lytic mechanisms triggered through neutrophil Fc gamma receptors. PMID:2822303

  10. Structural Analysis of Alterations in Zebrafish Muscle Differentiation Induced by Simvastatin and Their Recovery with Cholesterol

    PubMed Central

    Campos, Laise M.; Rios, Eduardo A.; Midlej, Victor; Atella, Georgia C.; Herculano-Houzel, Suzana; Benchimol, Marlene; Mermelstein, Claudia; Costa, Manoel Luís

    2015-01-01

    In vitro studies show that cholesterol is essential to myogenesis. We have been using zebrafish to overcome the limitations of the in vitro approach and to study the sub-cellular structures and processes involved during myogenesis. We use simvastatin—a drug widely used to prevent high levels of cholesterol and cardiovascular disease—during zebrafish skeletal muscle formation. Simvastatin is an efficient inhibitor of cholesterol synthesis that has various myotoxic consequences. Here, we employed simvastatin concentrations that cause either mild or severe morphological disturbances to observe changes in the cytoskeleton (intermediate filaments and microfilaments), extracellular matrix and adhesion markers by confocal microscopy. With low-dose simvastatin treatment, laminin was almost normal, and alpha-actinin was reduced in the myofibrils. With high simvastatin doses, laminin and vinculin were reduced and appeared discontinuous along the septa, with almost no myofibrils, and small amounts of desmin accumulating close to the septa. We also analyzed sub-cellular alterations in the embryos by electron microscopy, and demonstrate changes in embryo and somite size, septa shape, and in myofibril structure. These effects could be reversed by the addition of exogenous cholesterol. These results contribute to the understanding of the mechanisms of action of simvastatin in muscle cells in particular, and in the study of myogenesis in general. PMID:25786435

  11. Association of TrkA and APP Is Promoted by NGF and Reduced by Cell Death-Promoting Agents

    PubMed Central

    Canu, Nadia; Pagano, Ilaria; La Rosa, Luca Rosario; Pellegrino, Marsha; Ciotti, Maria Teresa; Mercanti, Delio; Moretti, Fabiola; Sposato, Valentina; Triaca, Viviana; Petrella, Carla; Maruyama, Ichiro N.; Levi, Andrea; Calissano, Pietro

    2017-01-01

    The amyloid precursor protein (APP) interacts with the tropomyosin receptor kinase A (TrkA) in normal rat, mouse, and human brain tissue but not in Alzheimer’s disease (AD) brain tissue. However, it has not been reported whether the two proteins interact directly, and if so, which domains are involved. Clarifying these points will increase our understanding of the role and regulation of the TrkA/APP interaction in normal brain functioning as well as in AD. Here we addressed these questions using bimolecular fluorescence complementation (BiFC) and the proximity ligation assay (PLA). We demonstrated that exogenously expressed APP and TrkA associate through their juxtamembrane/transmembrane domains, to form a complex that localizes mainly to the plasma membrane, endoplasmic reticulum (ER) and Golgi. Formation of the complex was inhibited by p75NTR, ShcC and Mint-2. Importantly, we demonstrated that the association between endogenous APP and TrkA in primary septal neurons were modified by NGF, or by drugs that either inhibit ER-to-Golgi transport or perturb microtubules and microfilaments. Interestingly, several agents that induce cell death [amyloid β (Aβ)-peptide, staurosporine and rapamycin], albeit via different mechanisms, all caused dissociation of APP/TrkA complexes and increased production of C-terminal fragment (β-CTF) APP fragment. These findings open new perspectives for investigating the interplay between these proteins during neurodegeneration and AD. PMID:28197073

  12. Gravisensing in single-celled systems: characean rhizoids and protonemata

    NASA Astrophysics Data System (ADS)

    Braun, M.

    Gravitropically tip-growing cell types are attractive unicellular model systems for investigating the mechanisms and the regulation of gravitropism. Especially useful for studying the mechanisms of positive and negative gravitropic tip-growth are characean rhizoids and protonemata. They originate from the same cell type, show the same overall cell shape, cytoplasmic zonation, arrangement of actin and microtubule cytoskeleton, use statoliths for gravisensing, but show opposite gravitropism. In both cell types, actin microfilaments are complexly organized in the apical dome, where a dense spherical actin array is colocalized with spectrin-like epitopes and a unique endoplasmic reticulum aggregate, the structural center of the Spitzenkörper. The opposite gravitropic responses seem to be based on differences in the actin-organized anchorage of the Spitzenkörper and the actin-mediated transport of statoliths. In negatively gravitropic (upward bending) protonemata, the statoliths-induced drastic upward shift of the cell tip is preceded by a relocalization of dihydropyridine-binding calcium channels and of the apical calcium gradient to the upper flank (bending by bulging). Such relocalizations have not been observed in positively gravitropically responding (downward growing) rhizoids in which statoliths sedimentation is followed by differential flank growth (bending by bowing). This paper reviews the current knowledge and hypotheses on the mechanisms of the opposite gravitropic responses in characean rhizoids and protonemata.

  13. A novel culture morphology resulting from applied mechanical strain

    NASA Technical Reports Server (NTRS)

    Grymes, R. A.; Sawyer, C.

    1997-01-01

    To demonstrate that cells both perceive and respond to external force, a strain/relaxation regimen was applied to normal human fetal and aged dermal fibroblasts cultured as monolayers on flexible membranes. The precisely controlled protocol of stretch (20% elongation of the culture membrane) at 6.67 cycles/min caused a progressive change in the monolayers, such that the original randomly distributed pattern of cells became a symmetric, radial distribution as the cell bodies aligned parallel to the applied force. High cell density interfered with the success of re-alignment in the fetal cell cultures observed, which may reflect a preference in this cell strain for cell-cell over cell-matrix contacts. The chronologically aged cells observed did not demonstrate this feature, aligning efficiently at all seeding densities examined. The role of microfilaments in force perception and transmission was investigated through the addition of cytochalasin D in graded doses. Both intercellular interactions and cytoskeletal integrity mediate the morphological response to mechanical strain.

  14. Stress-activated protein kinases are negatively regulated by cell density.

    PubMed Central

    Lallemand, D; Ham, J; Garbay, S; Bakiri, L; Traincard, F; Jeannequin, O; Pfarr, C M; Yaniv, M

    1998-01-01

    Stimulation by UV irradiation, TNFalpha, as well as PDGF or EGF activates the JNK/SAPK signalling pathway in mouse fibroblasts. This results in the phosphorylation of the N-terminal domain of c-Jun, increasing its transactivation potency. Using an antibody that specifically recognizes c-Jun phosphorylated at Ser63, we show that culture confluency drastically inhibited c-Jun N-terminal phosphorylation due to the inhibition of the JNK/SAPK pathway. Transfection experiments demonstrate that the inhibition occurs at the same level as, or upstream of, the small G-proteins cdc42 and Rac1. In contrast, the classical MAPK pathway was insensitive to confluency. The inhibition of JNK/SAPK activation depended on the integrity of the actin microfilament network. These results were confirmed and extended in monolayer wounding experiments. After PDGF, EGF or UV stimulation, c-Jun was predominantly phosphorylated in cells bordering the wound, which are the cells that move to occupy the wounded area. Thus, modulation of the stress-dependent signal cascade by confluency will restrict c-Jun N-terminal phosphorylation in response to mitogenic or chemotactic agents to cells that border a wounded area. PMID:9755162

  15. Regulation of Intracellular Structural Tension by Talin in the Axon Growth and Regeneration.

    PubMed

    Dingyu, Wang; Fanjie, Meng; Zhengzheng, Ding; Baosheng, Huang; Chao, Yang; Yi, Pan; Huiwen, Wu; Jun, Guo; Gang, Hu

    2016-09-01

    Intracellular tension is the most important characteristic of neuron polarization as well as the growth and regeneration of axons, which can be generated by motor proteins and conducted along the cytoskeleton. To better understand this process, we created Förster resonance energy transfer (FRET)-based tension probes that can be incorporated into microfilaments to provide a real-time measurement of forces in neuron cytoskeletons. We found that our probe could be used to assess the structural tension of neuron polarity. Nerve growth factor (NGF) upregulated structural forces, whereas the glial-scar inhibitors chondroitin sulfate proteoglycan (CSPG) and aggrecan weakened such forces. Notably, the tension across axons was distributed uniformly and remarkably stronger than that in the cell body in NGF-stimulated neurons. The mechanosensors talin/vinculin could antagonize the effect of glial-scar inhibitors via structural forces. However, E-cadherin was closely associated with glial-scar inhibitor-induced downregulation of structural forces. Talin/vinculin was involved in the negative regulation of E-cadherin transcription through the nuclear factor-kappa B pathway. Collectively, this study clarified the mechanism underlying intracellular tension in the growth and regeneration of axons which, conversely, can be regulated by talin and E-cadherin.

  16. Phosphoinositides differentially regulate alpha-actinin flexibility and function.

    PubMed

    Corgan, Anne Marie; Singleton, CoreyAyne; Santoso, Cynthia B; Greenwood, Jeffrey A

    2004-03-15

    Alpha-actinin is a cell-adhesion and cytoskeletal protein that bundles actin microfilaments and links these filaments directly to integrin-adhesion receptors. Phosphoinositides bind to and regulate the interaction of a-actinin with actin filaments and integrin receptors. In the present study, we demonstrate that PtdIns(3,4,5)P3 inhibits and disrupts a-actinin-bundling activity, whereas PtdIns(4,5)P2 can only inhibit activity. In addition, a protease-sensitivity assay was developed to examine the flexibility of the linker region between the actin-binding domain and the spectrin repeats of a-actinin. Both phosphoinositides influenced the extent of proteolysis and the cleavage sites. PtdIns(4,5)P2 binding decreased the proteolysis of a-actinin, suggesting a role in stabilizing the structure of the protein. In contrast, PtdIns(3,4,5)P3 binding enhanced a-actinin proteolysis, indicating an increase in the flexibility of the protein. Furthermore, phosphoinositide binding influenced the proteolysis of the N- and C-terminal domains of a-actinin, indicating regulation of structure within both domains. These results support the hypothesis that PtdIns(4,5)P2 and PtdIns(3,4,5)P3 differentially regulate a-actinin function by modulating the structure and flexibility of the protein.

  17. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion

    SciTech Connect

    Ben Abdeljelil, Nawel; Rochette, Pierre-Alexandre; Pearson, Angela

    2013-09-15

    Mutations in UL24 of herpes simplex virus type 1 can lead to a syncytial phenotype. We hypothesized that UL24 affects the sub-cellular distribution of viral glycoproteins involved in fusion. In non-immortalized human foreskin fibroblasts (HFFs) we detected viral glycoproteins B (gB), gD, gH and gL present in extended blotches throughout the cytoplasm with limited nuclear membrane staining; however, in HFFs infected with a UL24-deficient virus (UL24X), staining for the viral glycoproteins appeared as long, thin streaks running across the cell. Interestingly, there was a decrease in co-localized staining of gB and gD with F-actin at late times in UL24X-infected HFFs. Treatment with chemical agents that perturbed the actin cytoskeleton hindered the formation of UL24X-induced syncytia in these cells. These data support a model whereby the UL24 syncytial phenotype results from a mislocalization of viral glycoproteins late in infection. - Highlights: • UL24 affects the sub-cellular distribution of viral glycoproteins required for fusion. • Sub-cellular distribution of viral glycoproteins varies in cell-type dependent manner. • Drugs targeting actin microfilaments affect formation of UL24-related syncytia in HFFs.

  18. Regulation of blood-testis barrier by actin binding proteins and protein kinases.

    PubMed

    Li, Nan; Tang, Elizabeth I; Cheng, C Yan

    2016-03-01

    The blood-testis barrier (BTB) is an important ultrastructure in the testis, since the onset of meiosis and spermiogenesis coincides with the establishment of a functional barrier in rodents and humans. It is also noted that a delay in the assembly of a functional BTB following treatment of neonatal rats with drugs such as diethylstilbestrol or adjudin also delays the first wave of spermiation. While the BTB is one of the tightest blood-tissue barriers, it undergoes extensive remodeling, in particular, at stage VIII of the epithelial cycle to facilitate the transport of preleptotene spermatocytes connected in clones across the immunological barrier. Without this timely transport of preleptotene spermatocytes derived from type B spermatogonia, meiosis will be arrested, causing aspermatogenesis. Yet the biology and regulation of the BTB remains largely unexplored since the morphological studies in the 1970s. Recent studies, however, have shed new light on the biology of the BTB. Herein, we critically evaluate some of these findings, illustrating that the Sertoli cell BTB is regulated by actin-binding proteins (ABPs), likely supported by non-receptor protein kinases, to modulate the organization of actin microfilament bundles at the site. Furthermore, microtubule-based cytoskeleton is also working in concert with the actin-based cytoskeleton to confer BTB dynamics. This timely review provides an update on the unique biology and regulation of the BTB based on the latest findings in the field, focusing on the role of ABPs and non-receptor protein kinases.

  19. Phosphorylation Regulates Interaction of 210-kDa Myosin Light Chain Kinase N-terminal Domain with Actin Cytoskeleton.

    PubMed

    Vilitkevich, E L; Khapchaev, A Y; Kudryashov, D S; Nikashin, A V; Schavocky, J P; Lukas, T J; Watterson, D M; Shirinsky, V P

    2015-10-01

    High molecular weight myosin light chain kinase (MLCK210) is a multifunctional protein involved in myosin II activation and integration of cytoskeletal components in cells. MLCK210 possesses actin-binding regions both in the central part of the molecule and in its N-terminal tail domain. In HeLa cells, mitotic protein kinase Aurora B was suggested to phosphorylate MLCK210 N-terminal tail at serine residues (Dulyaninova, N. G., and Bresnick, A. R. (2004) Exp. Cell Res., 299, 303-314), but the functional significance of the phosphorylation was not established. We report here that in vitro, the N-terminal actin-binding domain of MLCK210 is located within residues 27-157 (N27-157, avian MLCK210 sequence) and is phosphorylated by cAMP-dependent protein kinase (PKA) and Aurora B at serine residues 140/149 leading to a decrease in N27-157 binding to actin. The same residues are phosphorylated in a PKA-dependent manner in transfected HeLa cells. Further, in transfected cells, phosphomimetic mutants of N27-157 showed reduced association with the detergent-stable cytoskeleton, whereas in vitro, the single S149D mutation reduced N27-157 association with F-actin to a similar extent as that achieved by N27-157 phosphorylation. Altogether, our results indicate that phosphorylation of MLCK210 at distinct serine residues, mainly at S149, attenuates the interaction of MLCK210 N-terminus with the actin cytoskeleton and might serve to regulate MLCK210 microfilament cross-linking activity in cells.

  20. Calcium and actin in the saga of awakening oocytes

    SciTech Connect

    Santella, Luigia Limatola, Nunzia; Chun, Jong T.

    2015-04-24

    The interaction of the spermatozoon with the egg at fertilization remains one of the most fascinating mysteries of life. Much of our scientific knowledge on fertilization comes from studies on sea urchin and starfish, which provide plenty of gametes. Large and transparent, these eggs have served as excellent model systems for studying egg activation and embryo development in seawater, a plain natural medium. Starfish oocytes allow the study of the cortical, cytoplasmic and nuclear changes during the meiotic maturation process, which can also be triggered in vitro by hormonal stimulation. These morphological and biochemical changes ensure successful fertilization of the eggs at the first metaphase. On the other hand, sea urchin eggs are fertilized after the completion of meiosis, and are particularly suitable for the study of sperm–egg interaction, early events of egg activation, and embryonic development, as a large number of mature eggs can be fertilized synchronously. Starfish and sea urchin eggs undergo abrupt changes in the cytoskeleton and ion fluxes in response to the fertilizing spermatozoon. The plasma membrane and cortex of an egg thus represent “excitable media” that quickly respond to the stimulus with the Ca{sup 2+} swings and structural changes. In this article, we review some of the key findings on the rapid dynamic rearrangements of the actin cytoskeleton in the oocyte/egg cortex upon hormonal or sperm stimulation and their roles in the modulation of the Ca{sup 2+} signals and in the control of monospermic fertilization. - Highlights: • Besides microtubules, microfilaments may anchor the nucleus to oocyte surface. • The cortical Ca{sup 2+} flash and wave at fertilization mirror electrical membrane change. • Artificial egg activation lacks microvilli extension in the perivitelline space. • Calcium is necessary but not sufficient for cortical granules exocytosis. • Actin cytoskeleton modulates Ca{sup 2+} release at oocyte maturation

  1. Modification of Experimental Protocols for a Space Shuttle Flight and Applications for the Analysis of Cytoskeletal Structures During Fertilization, Cell Division , and Development in Sea Urchin Embryos

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Amitabha; Stoecker, Andrew; Schatten, Heide

    1995-01-01

    To explore the role of microgravity on cytoskeletal organization and skeletal calcium deposition during fertilization, cell division, and early development, the sea urchin was chosen as a model developmental system. Methods were developed to employ light, immunofluorescence, and electron microscopy on cultures being prepared for flight on the Space Shuttle. For analysis of microfilaments, microtubules, centrosomes, and calcium-requiring events, our standard laboratory protocols had to be modified substantially for experimentation on the Space Shuttle. All manipulations were carried out in a closed culture chamber containing 35 ml artificial sea water as a culture fluid. Unfertilized eggs stored for 24 hours in these chambers were fertilized with sperm diluted in sea water and fixed with concentrated fixatives for final fixation in formaldehyde, taxol, EGTA, and MgCl2(exp -6)H2O for 1 cell to 16 cell stages to preserve cytoskeletal structures for simultaneous analysis with light, immunofluorescence, and electron microscopy, and 1.5 percent glutaraldehyde and 0.4 percent formaldehyde for blastula and plueus stages. The fixed samples wre maintained in chambers without degradation for up to two weeks after which the specimens were processed and analyzed with routine methods. Since complex manipulations are not possible in the closed chambers, the fertilization coat was removed from fixation using 0.5 percent freshly prepared sodium thioglycolate solution at pH 10.0 which provided reliable immunofluorescence staining for microtubules. Sperm/egg fusion, mitosis, cytokinesis, and calcium deposition during spicule formatin in early embryogenesis were found to be without artificial alterations when compared to cells fixed fresh and processed with conventional methods.

  2. Interaction between the human papillomavirus 16 E7 oncoprotein and gelsolin ignites cancer cell motility and invasiveness.

    PubMed

    Matarrese, Paola; Abbruzzese, Claudia; Mileo, Anna Maria; Vona, Rosa; Ascione, Barbara; Visca, Paolo; Rollo, Francesca; Benevolo, Maria; Malorni, Walter; Paggi, Marco G

    2016-08-09

    The viral oncoprotein E7 from the "high-risk" Human Papillomavirus 16 (HPV16) strain is able, when expressed in human keratinocytes, to physically interact with the actin severing protein gelsolin (GSN). In a previous work it has been suggested that this protein-protein interaction can hinder GSN severing function, thus leading to actin network remodeling. In the present work we investigated the possible implications of this molecular interaction in cancer cell metastatic potential by analyzing two different human CC cell lines characterized by low or high expression levels of HPV16 DNA (SiHa and CaSki, respectively). In addition, a HPV-null CC cell line (C-33A), transfected in order to express the HPV16 E7 oncoprotein as well as two different deletion mutants, was also analyzed. We found that HPV16 E7 expression level was directly related with cervical cancer migration and invasion capabilities and that these HPV16 E7-related features were associated with Epithelial to Mesenchymal Transition (EMT) processes. These effects appeared as strictly attributable to the physical interaction of HPV16 E7 with GSN, since HPV16 E7 deletion mutants unable to bind to GSN were also unable to modify microfilament assembly dynamics and, therefore, cell movements and invasiveness. Altogether, these data profile the importance of the physical interaction between HPV16 E7 and GSN in the acquisition of the metastatic phenotype by CC cells, underscoring the role of HPV16 intracellular load as a risk factor in cancer.

  3. Interaction between the human papillomavirus 16 E7 oncoprotein and gelsolin ignites cancer cell motility and invasiveness

    PubMed Central

    Vona, Rosa; Ascione, Barbara; Visca, Paolo; Rollo, Francesca; Benevolo, Maria; Malorni, Walter; Paggi, Marco G.

    2016-01-01

    The viral oncoprotein E7 from the “high-risk” Human Papillomavirus 16 (HPV16) strain is able, when expressed in human keratinocytes, to physically interact with the actin severing protein gelsolin (GSN). In a previous work it has been suggested that this protein-protein interaction can hinder GSN severing function, thus leading to actin network remodeling. In the present work we investigated the possible implications of this molecular interaction in cancer cell metastatic potential by analyzing two different human CC cell lines characterized by low or high expression levels of HPV16 DNA (SiHa and CaSki, respectively). In addition, a HPV-null CC cell line (C-33A), transfected in order to express the HPV16 E7 oncoprotein as well as two different deletion mutants, was also analyzed. We found that HPV16 E7 expression level was directly related with cervical cancer migration and invasion capabilities and that these HPV16 E7-related features were associated with Epithelial to Mesenchymal Transition (EMT) processes. These effects appeared as strictly attributable to the physical interaction of HPV16 E7 with GSN, since HPV16 E7 deletion mutants unable to bind to GSN were also unable to modify microfilament assembly dynamics and, therefore, cell movements and invasiveness. Altogether, these data profile the importance of the physical interaction between HPV16 E7 and GSN in the acquisition of the metastatic phenotype by CC cells, underscoring the role of HPV16 intracellular load as a risk factor in cancer. PMID:27072581

  4. Neural tube defects: pathogenesis and folate metabolism.

    PubMed

    Pulikkunnel, Scaria T; Thomas, S V

    2005-02-01

    Neural tube defects (NTDs) are a group of congenital malformations with worldwide distribution and complex aetio-pathogenesis. Animal studies indicate that there may be four sites of initiation of neural tube closure (NTC). Selective involvement of these sites may lead to defects varying from anencephaly to spina bifida. The NTC involves formation of medial and dorsolateral hinge points, convergent extension and a zipper release process. Proliferation and migration of neuroectodermal cells and its morphological changes brought about by microfilaments and other cytoskeletal proteins mediate NTC. Genetic, nutritional and teratogenic mechanisms have been implicated in the pathogenesis of NTDs. Folate is an important component in one carbon metabolism that provides active moieties for synthesis of nucleic acids and proteins. Several gene defects affecting enzymes and proteins involved in transport and metabolism of folate have been associated with NTDs. It may be possible in future, to identify individuals at higher risk of NTDs by genetic studies. Epidemiological and clinical studies have shown that dietary supplementation or food fortification with folic acid would reduce the incidence of NTDs. The protective effect of folic acid may be by overcoming these metabolic blocks through unidentified mechanisms. Genetic and biochemical studies on foetal cells may supplement currently available prenatal tests to diagnose NTDs. Antiepileptic drugs (AEDs), particularly valproate and carbamazepine have been shown to increase the risk of NTDs by possibly increasing the oxidative stress and deranging the folate metabolism. Accordingly, it is recommended that all women taking AEDs may use 1-5 mg folic acid daily in the pre conception period and through pregnancy.

  5. Characterization, cloning and immunolocalization of a coronin homologue in Trichomonas vaginalis.

    PubMed

    Bricheux, G; Coffe, G; Bayle, D; Brugerolle, G

    2000-06-01

    On adhesion to host cells the flagellate Trichomonas vaginalis switches to an amoeboid form rich in actin microfilaments. We have undertaken the identification of actin-associated proteins that regulate actin dynamics. A monoclonal antibody 4C12 raised against a cytoskeletal fraction of T. vaginalis labeled a protein doublet at circa 50 kDa. These two bands were recognized by the antibody against Dictyostelium discoideum coronin. During cell extraction and actin polymerization, T. vaginalis coronin cosedimented with F-actin. By two-dimensional gel electrophoresis, the protein doublet was separated into two sets of isoforms covering two Ip zones around 6 and 7. By screening a T. vaginalis library with 4C12, two clones Cor 1 and Cor 2 were isolated. This gene duplicity is a particularity among unicellular organisms examined. The complete sequence of the gene Cor 1 encodes a 435-residue protein with a calculated molecular mass of 48 kDa and Ip of 5.58. The incomplete sequence Cor 2 was very similar but with a more basic calculated Ip than Cor 1 on the same region. T. vaginalis coronin had 50% similarity with the coronin family, possessing the five WD-repeats and a leucine zipper in its C-terminal part. Double immunofluorescence labeling showed that coronin mainly colocalized with actin at the periphery of the adherent amoeboid cells. However, coronin labeling displayed patches within a reticular array. Immunogold electron microscopy confirmed the coronin labeling in the actin-rich microfilamentous fringe beneath the plasma membrane, with accumulation in phagocytic zones and pseudopodial extensions. In T. vaginalis, one of the first emerging lineage of eukaryotes, coronin seems to play an important role in actin dynamics and may be a downstream target of a signaling mechanism for the cytoskeleton reorganization.

  6. The dynamic state of heat shock proteins in chicken embryo fibroblasts

    PubMed Central

    1986-01-01

    Subcellular fractionation and immunofluorescence microscopy have been used to study the intracellular distributions of the major heat shock proteins, hsp 89, hsp 70, and hsp 24, in chicken embryo fibroblasts stressed by heat shock, allowed to recover and then restressed. Hsp 89 was localized primarily to the cytoplasm except during the restress when a portion of this protein concentrated in the nuclear region. Under all conditions, hsp 89 was readily extracted from cells by detergent. During stress and restress, significant amounts of hsp 70 moved to the nucleus and became resistant to detergent extraction. Some of this hsp 70 was released from the insoluble form in an ATP-dependent reaction. Hsp 24 was confined to the cytoplasm and, during restress, aggregated to detergent-insoluble perinuclear phase-dense granules. These granules dissociated during recovery and hsp 24 could be solubilized by detergent. The nuclear hsps reappeared in the cytoplasm in cells allowed to recover at normal temperatures. Sodium arsenite also induces hsps and their distributions were similar to that observed after a heat shock, except for hsp 89, which remained cytoplasmic. We also examined by immunofluorescence the cytoskeletal systems of chicken embryo fibroblasts subjected to heat shock and found no gross morphological changes in cytoplasmic microfilaments or microtubules. However, the intermediate filament network was very sensitive and collapsed around the nucleus very shortly after a heat shock. The normal intermediate filament morphology reformed when cells were allowed to recover from the stress. Inclusion of actinomycin D during the heat shock--a condition that prevents synthesis of the hsps--did not affect the intermediate filament collapse, but recovery of the normal morphology did not occur. We suggest that an hsp(s) may aid in the formation of the intermediate filament network after stress. PMID:3533955

  7. Bundle formation of smooth muscle desmin intermediate filaments by calponin and its binding site on the desmin molecule.

    PubMed

    Fujii, T; Takagi, H; Arimoto, M; Ootani, H; Ueeda, T

    2000-03-01

    Smooth muscle basic calponin, a major actin-, tropomyosin-, and calmodulin-binding protein, has been examined for its ability to interact with desmin intermediate filaments from smooth muscle cells using sedimentation analysis, turbidity changes, chemical cross-linking, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI TOF/MS), and electron microscopic observations. Calponin interacted with desmin intermediate filaments in a concentration-dependent manner in vitro. The binding of calponin to desmin produced dense aggregates at 30 degrees C. The dense aggregates were observed by electron microscopy to be composed of large anisotropic bundles of desmin filaments, indicating that calponin forms bundles of desmin filaments. The addition of calmodulin or S100 to the mixture of calponin and desmin caused the removal of calponin from the desmin filaments and inhibited bundle formation in the presence of Ca(2+), but not in the presence of EGTA. Calponin-related proteins including G-actin, tropomyosin, and SM22, had little effect on the binding of calponin to desmin filaments, whereas tubulin weakly inhibited the binding. Desmin had little influence on the calponin-actin and calponin-tubulin interactions using the zero-length cross-linker, EDC. Domain mapping with chymotryptic digestion showed that the binding site of calponin resides within the central a-helical rod domain of the desmin molecule. The chemical cross-linked products of calponin and synthetic peptides (TQ27, TNEKVELQELNDRFANYIEKVRFLEQQ; EE24, EEELRELRRQVDALTGQRARVEVE) derived from the rod domain were detected by MALDI TOF/MS. Furthermore, the calponin-desmin interaction was significantly inhibited by the addition of EE24, but only slightly by TQ27. These results suggest that calponin may act as a cross-linking protein between desmin filaments as well as among intermediate filaments, microfilaments and microtubules in smooth muscle cells.

  8. Involvement of oxidative stress and cytoskeletal disruption in microcystin-induced apoptosis in CIK cells.

    PubMed

    Huang, Xiao; Chen, Liang; Liu, Wanjing; Qiao, Qin; Wu, Kang; Wen, Jing; Huang, Cuihong; Tang, Rong; Zhang, Xuezhen

    2015-08-01

    The outbreak of cyanobacterial blooms induces the production and release of microcystins (MCs) into water, representing a health hazard to aquatic organisms and even humans. Some recent studies have suggested that kidney is another important target organ of MCs except liver, however, the potential toxicity mechanisms are still unclear. In this study, we first investigated the collaborative effect of oxidative stress and cytoskeletal disruption in microcystin-induced apoptosis in CIK (Ctenopharyngodon idellus kidney) cells in vitro. CIK cells were treated with 0, 1, 10, and 100μg/L microcystin-LR (MC-LR) for 24 and 48h. Cell viability was increased by MC-LR in 1μg/L group, while decreased in 100μg/L group at 48h. Cell cycle assay showed that 1 and 10μg/L MC-LR induced cell cycle through G1 into S and G2/M phases, while 100μg/L MC-LR reduced G2/M phase population. MC-LR markedly induced apoptosis in 10 and 100μg/L groups. Elevated reactive oxygen species (ROS) production, increased malondialdehyde (MDA) contents, decreased glutathione (GSH) levels, and modulated antioxidant enzymes including catalase (CAT) and superoxide dismutase (SOD) were observed in CIK cells exposed to MC-LR. These alterations were more pronounced at higher doses (10 and 100μg/L), indicating that oxidative stress was induced by MC-LR. Laser scanning confocal microscope observation showed aggregation and collapse of microfilaments (MFs) and microtubules (MTs) in CIK cells, and even loss of some cytoskeleton structure. Moreover, transcriptional changes of cytoskeletal genes (β-actin, lc3a, and keratin) were also determined, which have a high probability with cytoskeleton structure damage. Our data suggest that oxidative stress and cytoskeletal disruption may interact with each other and jointly lead to apoptosis and renal toxicity induced by MCs.

  9. Endothelial cells proactively form microvilli-like membrane projections upon intercellular adhesion molecule 1 engagement of leukocyte LFA-1.

    PubMed

    Carman, Christopher V; Jun, Chang-Duk; Salas, Azucena; Springer, Timothy A

    2003-12-01

    Specific leukocyte/endothelial interactions are critical for immunity and inflammation, yet the molecular details of this interaction interface remain poorly understood. Thus, we investigated, with confocal microscopy, the distribution dynamics of the central adhesion molecules ICAM-1 and LFA-1 in this context. Monolayers of activated HUVECs stained with fluorescent anti-ICAM-1 Fabs or Chinese hamster ovary-K1 cells expressing ICAM-1-green fluorescent protein were allowed to bind LFA-1-bearing monocytes, neutrophils, or K562 LFA-1 transfectants. ICAM-1 was rapidly relocalized to newly formed microvilli-like membrane projections in response to binding LFA-1 on leukocytes. These ICAM-1-enriched projections encircled the leukocytes extending up their sides and clustered LFA-1 underneath into linear tracks. Projections formed independently of VCAM-1/very late Ag 4 interactions, shear, and proactive contributions from the LFA-1-bearing cells. In the ICAM-1-bearing endothelial cells, projections were enriched in actin but not microtubules, required intracellular calcium, and intact microfilament and microtubule cytoskeletons and were independent of Rho/Rho kinase signaling. Disruption of these projections with cytochalasin D, colchicine, or BAPTA-AM had no affect on firm adhesion. These data show that in response to LFA-1 engagement the endothelium proactively forms an ICAM-1-enriched cup-like structure that surrounds adherent leukocytes but is not important for firm adhesion. This finding leaves open a possible role in leukocyte transendothelial migration, which would be consistent with the geometry and kinetics of formation of the cup-like structure.

  10. Altered Lipid Homeostasis in Sertoli Cells Stressed by Mild Hyperthermia

    PubMed Central

    Vallés, Ana S.; Aveldaño, Marta I.; Furland, Natalia E.

    2014-01-01

    Spermatogenesis is known to be vulnerable to temperature. Exposures of rat testis to moderate hyperthermia result in loss of germ cells with survival of Sertoli cells (SC). Because SC provide structural and metabolic support to germ cells, our aim was to test the hypothesis that these exposures affect SC functions, thus contributing to germ cell damage. In vivo, regularly repeated exposures (one of 15 min per day, once a day during 5 days) of rat testes to 43°C led to accumulation of neutral lipids. This SC-specific lipid function took 1–2 weeks after the last of these exposures to be maximal. In cultured SC, similar daily exposures for 15 min to 43°C resulted in significant increase in triacylglycerol levels and accumulation of lipid droplets. After incubations with [3H]arachidonate, the labeling of cardiolipin decreased more than that of other lipid classes. Another specifically mitochondrial lipid metabolic function, fatty acid oxidation, also declined. These lipid changes suggested that temperature affects SC mitochondrial physiology, which was confirmed by significantly increased degrees of membrane depolarization and ROS production. This concurred with reduced expression of two SC-specific proteins, transferrin, and Wilms' Tumor 1 protein, markers of SC secretion and differentiation functions, respectively, and with an intense SC cytoskeletal perturbation, evident by loss of microtubule network (α-tubulin) and microfilament (f-actin) organization. Albeit temporary and potentially reversible, hyperthermia-induced SC structural and metabolic alterations may be long-lasting and/or extensive enough to respond for the decreased survival of the germ cells they normally foster. PMID:24690895

  11. Modulating the physical microenvironment to study regenerative processes in vitro using cells from mouse phalangeal elements.

    PubMed

    Lynch, Kristen M; Ahsan, Tabassum

    2013-06-01

    Epimorphic regeneration in humans of complex multitissue structures is primarily limited to the digit tip. In a comparable mouse model, the response is level-specific in that regeneration occurs after amputation at the distal end of the terminal phalanx, but not more proximally. Recent isolation of stromal cells from CD1 murine phalangeal elements two and three (P2 and P3) allow for comparative studies of cells prevalent at the amputation plane of a more proximal region (considered nonregenerative) and a more distal region (considered regenerative), respectively. This study used adherent, suspension, and collagen gel cultures to investigate cellular processes relevant to the initial response to injury. Overall, P2 cells were both more migratory and able to compact collagen gels to a greater extent compared to P3 cells. This observed increased capacity of P2 cells to generate traction forces was likely related to the higher expression of key cytoskeletal proteins (e.g., microfilament, nonkeratin intermediate filaments, and microtubules) compared to P3 cells. In contrast, P3 cells were found to be more proliferative than P2 cells under all three culture conditions and to have higher expression of keratin proteins. In addition, when cultured in suspension rather than on adherent surfaces, P3 cells were both more proliferative and had greater gene expression for matrix proteins. Together these results add to the known inherent differences in these stromal cells by characterizing responses to the physical microenvironment. Further, while compaction by P2 cells confirm that collagen gels is a useful model to study wound healing, the response of P3 cells indicate that suspension culture, in which cell-cell interactions dominate like in the blastema, may be better suited to study regeneration. Therefore, this study can help develop clinical strategies for promoting regeneration through increased understanding in the properties of cells involved in endogenous repair as well

  12. Imaging surface and submembranous structures with the atomic force microscope: a study on living cancer cells, fibroblasts and macrophages.

    PubMed

    Braet, F; Seynaeve, C; De Zanger, R; Wisse, E

    1998-06-01

    Atomic force microscopy (AFM) has been used to image a wide variety of cells. Fixed and dried-coated, wet-fixed or living cells were investigated. The major advantage of AFM over SEM is the avoidance of vacuum and electrons, whereas imaging can be done at environmental pressure and in aqueous conditions. Evidence of the successful application of AFM in biological imaging is provided by comparing results of AFM with SEM and/or TEM. In this study, we investigated surface and submembranous structures of living and glutaraldehyde-fixed colon carcinoma cells, skin fibroblasts and liver macrophages by AFM. Special attention was paid to the correct conditions for the acquisition of images of the surface of these cells, because quality SEM examinations have already been abundantly presented. AFM imaging of living cells revealed specific structures, such as the cytoskeleton, which were not observed by SEM. Membrane structures, such as ruffles, lamellipodia, microspikes and microvilli, could only clearly be observed after fixing the cells with 0.1% glutaraldehyde. AFM images of living cells were comparable to SEM images of fixed, dried and coated cells, but contained a number of artefacts due to tip-sample interaction. In addition, AFM imaging allowed the visualization of cytoplasmic submembranous structures without the necessity for further preparative steps, allowing us: (i) to follow cytoskeletal changes in fibroblasts under the influence of the microfilament disrupting agent latrunculin A; (ii) to study particle phagocytosis in macrophages. Therefore, in spite of the slow image acquisition of the AFM, the instrument can be used for high-resolution real-time studies of dynamic changes in submembranous structures.

  13. Effects of bromodeoxyuridine on DNA and cytoskeleton of primitive blood cells differentiating after exposure in a chick embryo in vivo

    NASA Astrophysics Data System (ADS)

    Novotna, Bozena; Linhartova, Irena; Viklicky, Vladimir

    1997-12-01

    Three-day-old chick embryos were exposed intra-amniotically to bromodeoxyuridine within the range of teratogenic doses. Using comet assay, a significant damage of DNA was demonstrated in blood cells 3 h after the treatment. While the damage seemed to be partially repaired within 12 h, new peak of DNA fragmentation detected on incubation day 4 implied an apoptotic elimination of impaired cells. More frequent occurrence of macrophages in blood samples from BrdU treated embryos supports this assumption. The differentiating blood cells, however, did not exhibit any remarkable injury of cytoskeleton biogenesis. Nevertheless, an improved experimental procedure revealed the existence of intermediate 'wreath' stage preceding the consolidation of tubulin bundles into marginal band of chicken erythroblasts already within the course of embryonic period. The more, even the mature cells of primitive erhthroid series retained the visible bundles of radial microtubules attached to MTOC. Actin labeling disclosed in many primitive erythroblasts the special lace arrangement of microfilaments growing from nucleus surface while the rest of cells exhibited only a diffuse staining through cytoplasm, concentrated sometimes in area of marginal band. Such distribution was characteristic for mature form of primitive and definitive erythrocytes. The expression of vimentin in erythroid cells was very weak and quite different from patterns of adult definitive erythrocytes. The labeling was noticed only around the nucleus till incubation day 10 when implication of fiber growth through cytoplasm was detected. Conventional hematological analysis performed on incubation day 10 revealed in blood of BrdU treated embryos the lower incidence of definitive erythrocytes in favor of immature forms resulting probably from death of cells in consequence of primary DNA damage. Such effect could be associated with development of myelodysplastic syndrome in later life.

  14. Simulated Microgravity Alters Actin Cytoskeleton and Integrin-Mediated Focal Adhesions of Cultured Human Mesenchymal Stromal Cells

    NASA Astrophysics Data System (ADS)

    Gershovich, P. M.; Gershovic, J. G.; Buravkova, L. B.

    2008-06-01

    Cytoskeletal alterations occur in several cell types including lymphocytes, glial cells, and osteoblasts, during spaceflight and under simulated microgravity (SMG) (3, 4). One potential mechanism for cytoskeletal gravisensitivity is disruption of extracellular matrix (ECM) and integrin interactions. Focal adhesions are specialized sites of cell-matrix interaction composed of integrins and the diversity of focal adhesion-associated cytoplasmic proteins including vinculin, talin, α-actinin, and actin filaments (4, 5). Integrins produce signals essential for proper cellular function, survival and differentiation. Therefore, we investigated the effects of SMG on F-actin cytoskeleton structure, vinculin focal adhesions, expression of some integrin subtypes and cellular adhesion molecules (CAMs) in mesenchymal stem cells derived from human bone marrow (hMSCs). Simulated microgravity was produced by 3D-clinostat (Dutch Space, Netherlands). Staining of actin fibers with TRITC-phalloidin showed reorganization even after 30 minutes of simulated microgravity. The increasing of cells number with abnormal F-actin was observed after subsequent terms of 3D-clinorotation (6, 24, 48, 120 hours). Randomization of gravity vector altered dimensional structure of stress fibers and resulted in remodeling of actin fibers inside the cells. In addition, we observed vinculin redistribution inside the cells after 6 hours and prolonged terms of clinorotation. Tubulin fibers in a contrast with F-actin and vinculin didn't show any reorganization even after long 3Dclinorotation (120 hours). The expression of integrin α2 increased 1,5-6-fold in clinorotated hMSCs. Also we observed decrease in number of VCAM-1-positive cells and changes in expression of ICAM-1. Taken together, our findings indicate that SMG leads to microfilament and adhesion alterations of hMSCs most probably associated with involvement of some integrin subtypes.

  15. Statin-induced impairment of monocyte migration is gender-related.

    PubMed

    Ruggieri, Anna; Gambardella, Lucrezia; Maselli, Angela; Vona, Rosa; Anticoli, Simona; Panusa, Alessia; Malorni, Walter; Matarrese, Paola

    2014-12-01

    Statins, widely used for treatment of hypercholesterolemia, have been demonstrated to exert pleiotropic beneficial effects independently of their cholesterol-lowering action, such as anti-inflammatory activity. A gender disparity has been observed in their cholesterol lowering activity as well as in response to these "off label" effects. Monocytes play a central role in atherosclerotic disease and, more in general, in inflammatory responses, through their chemotactic function and cytokine production. On these bases, in the present work, we examined the effect of statins on homeostasis and migration properties of freshly isolated monocytes from male and female healthy donors. Two prototypic natural and synthetic statins with different polarity, that is, type 1 and type 2 statins, have been considered: simvastatin and atorvastatin. Freshly isolated monocytes from peripheral blood of male and female healthy donors were treated with these drugs in the absence or presence of lipopolysaccharide (LPS) stimulation. Results obtained indicated that the polar statin efficiently inhibited chemotaxis of monocytes more than the apolar statin and that this effect was more significantly induced in cells from females than in cells from males. Dissecting the mechanisms involved, we found that these results could mainly be due to differential effects on: (i) the release of key cytokines, for example, MCP-1 and TNF-α; (ii) the maintenance of the redox homeostasis; (iii) a target activity on microfilament network integrity and function. All in all these results could suggest a reappraisal of "off-label" effects of statins taking into account either their chemical structure, that is, molecular polarity, or the gender issue.

  16. Structural complexity of filaments formed from the actin and tubulin folds

    PubMed Central

    Jiang, Shimin; Ghoshdastider, Umesh; Narita, Akihiro; Popp, David

    2016-01-01

    ABSTRACT From yeast to man, an evolutionary distance of 1.3 billion years, the F-actin filament structure has been conserved largely in line with the 94% sequence identity. The situation is entirely different in bacteria. In comparison to eukaryotic actins, the bacterial actin-like proteins (ALPs) show medium to low levels of sequence identity. This is extreme in the case of the ParM family of proteins, which often display less than 20% identity. ParMs are plasmid segregation proteins that form the polymerizing motors that propel pairs of plasmids to the extremities of a cell prior to cell division, ensuring faithful inheritance of the plasmid. Recently, exotic ParM filament structures have been elucidated that show ParM filament geometries are not limited to the standard polar pair of strands typified by actin. Four-stranded non-polar ParM filaments existing as open or closed nanotubules are found in Clostridium tetani and Bacillus thuringiensis, respectively. These diverse architectures indicate that the actin fold is capable of forming a large variety of filament morphologies, and that the conception of the “actin” filament has been heavily influenced by its conservation in eukaryotes. Here, we review the history of the structure determination of the eukaryotic actin filament to give a sense of context for the discovery of the new ParM filament structures. We describe the novel ParM geometries and predict that even more complex actin-like filaments may exist in bacteria. Finally, we compare the architectures of filaments arising from the actin and tubulin folds and conclude that the basic units possess similar properties that can each form a range of structures. Thus, the use of the actin fold in microfilaments and the tubulin fold for microtubules likely arose from a wider range of filament possibilities, but became entrenched as those architectures in early eukaryotes. PMID:28042378

  17. Cytoplasmic asters are required for progression past the first cell cycle in cloned mouse embryos.

    PubMed

    Miki, Hiromi; Inoue, Kimiko; Ogonuki, Narumi; Mochida, Keiji; Nagashima, Hiroshi; Baba, Tadashi; Ogura, Atsuo

    2004-12-01

    Unlike the oocytes of most other animal species, unfertilized murine oocytes contain cytoplasmic asters, which act as microtubule-organizing centers following fertilization. This study examined the role of asters during the first cell cycle of mouse nuclear transfer (NT) embryos. NT was performed by intracytoplasmic injection of cumulus cells. Cytoplasmic asters were localized by staining with an anti-alpha-tubulin antibody. Enucleation of MII oocytes caused no significant change in the number of cytoplasmic asters. The number of asters decreased after transfer of the donor nuclei into these enucleated oocytes, probably because some of the asters participated in the formation of the spindle that anchors the donor chromosomes. The cytoplasmic asters became undetectable within 2 h of oocyte activation, irrespective of the presence or absence of the donor chromosomes. After the standard NT protocol, a spindle-like structure persisted between the pseudopronuclei of these oocytes throughout the pronuclear stage. The asters reappeared shortly before the first mitosis and formed the mitotic spindle. When the donor nucleus was transferred into preactivated oocytes (delayed NT) that were devoid of free asters, the microtubules and microfilaments were distributed irregularly in the ooplasm and formed dense bundles within the cytoplasm. Thereafter, all of the delayed NT oocytes underwent fragmentation and arrested development. Treatment of these delayed NT oocytes with Taxol, which is a microtubule-assembling agent, resulted in the formation of several aster-like structures and reduced fragmentation. Some Taxol-treated oocytes completed the first cell cycle and developed further. This study demonstrates that cytoplasmic asters play a crucial role during the first cell cycle of murine NT embryos. Therefore, in mouse NT, the use of MII oocytes as recipients is essential, not only for chromatin reprogramming as previously reported, but also for normal cytoskeletal organization

  18. Mitochondria as Sub-cellular Targets of Space Radiation

    NASA Astrophysics Data System (ADS)

    Hei, Tom; Zhang, Bo; Davidson, Mercy

    High linear energy transfer (LET) radiation including alpha particles and heavy ions is the major type of radiation find in space and is considered a potential health risk for astronauts. Even though the chance that these high LET particles traversing through the cytoplasm of cells is higher than that through the nuclei, the contribution of targeted cytoplasmic irradiation, to the induction of genomic instability and other chromosomal damages induced by high LET radiation is not known. Mitochondria are the sole energy center of a cell and normal mitochondria are highly dynamic organelles that move along microtubules or microfilaments and continuously fuse and divide in healthy cells. A balance between mitochondrial fusion and fission is essential to maintain normal mitochondrial function. Targeted cytoplasmic irradiation by high LET alpha particles induced DNA oxidative damage and double strand breaks in wild type rho+ human small airway epithelial (SAE) cells. Furthermore, there was a significant increase in autophagy and micronuclei, which is an indication of genomic instability, together with the activation of nuclear factor kappa-B (NF-kappaB) and mitochondrial inducible nitric oxide synthase (iNOS) signaling pathways in rho+ SAE cells. In contrast, SAE cells with depleted mitochondrial DNA (rho0) and, therefore, no oxidative metabolic functions, exhibited a significantly lower response to these same endpoints examined after cytoplasmic irradiation with high LET alpha particles. The results indicate that normal mitochondrial function is essential in mediating radiation induced genotoxic damages in mammalian cells. Furthermore, the findings may shed some light in the design of countermeasures for space radiation protection.

  19. Fluorescence microscopy study on the cytoskeletal displacements during sperm differentiation in the bush-cricket Tylopsis liliifolia (Fabricius) (Orthoptera: Tettigoniidae).

    PubMed

    Viscuso, Renata; Federico, Concetta; Saccone, Salvatore; Bonaccorsi, Bianca; Vitale, Danilo G M

    2016-02-01

    A study by fluorescence microscopy has been carried out on male gametes from testicular follicles, seminal vesicles, spermatophores, and seminal receptacles of the bush-cricket Tylopsis liliifolia, focusing the attention on localization and movements of F-actin and α-tubulin during sperm differentiation, since data in this respect are lacking in the Orthoptera. F-actin and α-tubulin positivity was detected in the testicular follicles, in particular at the bridges connecting spermatids of a same clone and around their nucleus, during the first differentiation stages. During the following differentiation stages in the testes, F-actin was found at one of the spermatid poles and then, during nucleus elongation, at the whole acrosomal region. A peculiar F-actin-positivity was found at the flagellum, more markedly immediately posterior to the nucleus, at the basal body region of the gametes from the testicular follicles and from the other examined districts. Other interesting data from our investigations concerns the α-tubulin displacements during the differentiation stages of the spermatid and a constant absence of α-tubulin-positivity where the centrioles are located. No positivity was also found for both α-tubulin and nuclear markers at the anterior region of the gamete, where the acrosomal wings are localized. Our results, compared with what is so far known in literature for the insects, lead us to assert that microfilaments and microtubules undergo gradual displacements, markedly in the testicular follicles, during the morphogenesis of the male gamete of T. liliifolia aimed to its organization and motility and probably also to its interaction with the female gamete.

  20. FGF2 antagonizes aberrant TGFβ regulation of tropomyosin: role for posterior capsule opacity.

    PubMed

    Kubo, Eri; Shibata, Shinsuke; Shibata, Teppei; Kiyokawa, Etsuko; Sasaki, Hiroshi; Singh, Dhirendra P

    2016-12-15

    Transforming growth factor (TGF) β2 and fibroblast growth factor (FGF) 2 are involved in regulation of posterior capsule opacification (PCO) and other processes of epithelial-mesenchymal transition (EMT) such as cancer progression, wound healing and tissue fibrosis as well as normal embryonic development. We previously used an in vivo rodent PCO model to show the expression of tropomyosin (Tpm) 1/2 was aberrantly up-regulated in remodelling the actin cytoskeleton during EMT. In this in vitro study, we show the Tpms family of cytoskeleton proteins are involved in regulating and stabilizing actin microfilaments (F-actin) and are induced by TGFβ2 during EMT in lens epithelial cells (LECs). Importantly, we found TGFβ2 and FGF2 played contrasting roles. Stress fibre formation and up-regulation of α-smooth muscle actin (αSMA) induced by TGFβ2 could be reversed by Tpm1/2 knock-down by siRNA. Expression of Tpm1/2 and stress fibre formation induced by TGFβ2 could be reversed by FGF2. Furthermore, FGF2 delivery to TGFβ-treated LECs perturbed EMT by reactivating the mitogen-activated protein kinase (MAPK)/ extracellular signal-regulated kinase (ERK) pathway and subsequently enhanced EMT. Conversely, MEK inhibitor (PD98059) abated the FGF2-mediated Tpm1/2 and αSMA suppression. However, we found that normal LECs which underwent EMT showed enhanced migration in response to combined TGFβ and FGF2 stimulation. These findings may help clarify the mechanism reprogramming the actin cytoskeleton during morphogenetic EMT cell proliferation and fibre regeneration in PCO. We propose that understanding the physiological link between levels of FGF2, Tpm1/2 expression and TGFβs-driven EMT orchestration may provide clue(s) to develop therapeutic strategies to treat PCO based on Tpm1/2.

  1. Elevated tropomyosin expression is associated with epithelial-mesenchymal transition of lens epithelial cells.

    PubMed

    Kubo, Eri; Hasanova, Nailia; Fatma, Nigar; Sasaki, Hiroshi; Singh, Dhirendra P

    2013-01-01

    Injury to lens epithelial cells (LECs) leads to epithelial-mesenchymal transition (EMT) with resultant fibrosis. The tropomyosin (Tpm) family of cytoskeleton proteins is involved in regulating and stabilizing actin microfilaments. Aberrant expression of Tpms leads to abnormal morphological changes with disintegration of epithelial integrity. The EMT of LECs has been proposed as a major cause of posterior capsule opacification (PCO) after cataract surgery. Using in vivo rodent PCO and human cataractous LECs, we demonstrated that the aberrant expression of rat Tpm and human Tpm1α/2β suggested their association in remodelling of the actin cytoskeleton during EMT of LECs. Expression analysis from abnormally growing LECs after lens extraction revealed elevated expression of α-smooth muscle actin (α-SMA), a marker for EMT. Importantly, these cells displayed increased expression of Tpm1α/2β following EMT/PCO formation. Expression of Tpm1α/2β was up-regulated in LECs isolated from cataractous lenses of Shumiya Cataract Rats (SCRs), compared with non-cataractous lenses. Also, LECs from human patients with nuclear cataract and anterior subcapsular fibrosis (ASF) displayed significantly increased expression of Tpm2β mRNA, suggesting that similar signalling invokes the expression of these molecules in LECs of cataractous SCR and human lenses. EMT was observed in LECs overexpressed with Tpm1α/2β, as evidenced by increased expression of α-SMA. These conditions were correlated with remodelling of actin filaments, possibly leading to EMT/PCO and ASF. The present findings may help clarify the condition of the actin cytoskeleton during morphogenetic EMT, and may contribute to development of Tpm-based inhibitors for postponing PCO and cataractogenesis.

  2. Cytoplasmic Bulk Flow Propels Nuclei in Mature Hyphae of Neurospora crassa▿ †

    PubMed Central

    Ramos-García, Silvia L.; Roberson, Robert W.; Freitag, Michael; Bartnicki-García, Salomón; Mouriño-Pérez, Rosa R.

    2009-01-01

    We used confocal microscopy to evaluate nuclear dynamics in mature, growing hyphae of Neurospora crassa whose nuclei expressed histone H1-tagged green fluorescent protein (GFP). In addition to the H1-GFP wild-type (WT) strain, we examined nuclear displacement (passive transport) in four mutants deficient in microtubule-related motor proteins (ro-1, ro-3, kin-1, and a ro-1 kin-1 double mutant). We also treated the WT strain with benomyl and cytochalasin A to disrupt microtubules and actin microfilaments, respectively. We found that the degree of nuclear displacement in the subapical regions of all strains correlated with hyphal elongation rate. The WT strain and that the ro-1 kin-1 double mutant showed the highest correlation between nuclear movement and hyphal elongation. Although most nuclei seemed to move forward passively, presumably carried by the cytoplasmic bulk flow, a small proportion of the movement detected was either retrograde or accelerated anterograde. The absence of a specific microtubule motor in the mutants ro-1, ro-3, or kin-1 did not prevent the anterograde and retrograde migration of nuclei; however, in the ro-1 kin-1 double mutant retrograde migration was absent. In the WT strain, almost all nuclei were elongated, whereas in all other strains a majority of nuclei were nearly spherical. With only one exception, a sizable exclusion zone was maintained between the apex and the leading nucleus. The ro-1 mutant showed the largest nucleus exclusion zone; only the treatment with cytochalasin A abolished the exclusion zone. In conclusion, the movement and distribution of nuclei in mature hyphae appear to be determined by a combination of forces, with cytoplasmic bulk flow being a major determinant. Motor proteins probably play an active role in powering the retrograde or accelerated anterograde migrations of nuclei and may also contribute to passive anterograde displacement by binding nuclei to microtubules. PMID:19684281

  3. Viral morphogenesis and morphological changes in human neuronal cells following Tioman and Menangle virus infection.

    PubMed

    Yaiw, K C; Hyatt, A; Vandriel, R; Crameri, S G; Eaton, B; Wong, M H; Wang, L F; Ng, M L; Bingham, J; Shamala, D; Wong, K T

    2008-01-01

    Tioman virus (TioPV) and Menangle virus (MenPV) are two antigenically and genetically related paramyxoviruses (genus: Rubulavirus, family: Paramyxoviridae) isolated from Peninsular Malaysia (2001) and Australia (1997), respectively. Both viruses are potential zoonotic agents. In the present study, the infectivity, growth kinetics, morphology and morphogenesis of these two paramyxoviruses in a human neuronal cell (SK-N-SH) line were investigated. Sub-confluent SK-N-SH cells were infected with TioPV and MenPV at similar multiplicity of infection. These cells were examined by conventional and immunoelectron microscopy, and virus titres in the supernatants were assayed. Syncytia were observed for both infections in SK-N-SH cells and were more pronounced during the early stages of TioPV infection. The TioPV titre increased consistently (10(1)) every 12 h after infection. In MenPV-infected cells, cellular material was frequently observed within budding virions, and microfilaments and microtubules were abundant. Viral budding was common, and extracellular MenPVs tended to be more pleomorphic compared to TioPVs, which appeared to be more spherical in appearance. The MenPV cytoplasmic viral inclusion appeared to be comparatively smaller, loose and interspersed with randomly scattered circle-like particles, whereas huge tubule-like cytoplasmic inclusions were observed in TioPV-infected cells. Both viruses also displayed different cellular pathology in the SK-N-SH cells. The intracellular ultrastructural characteristics of these two viruses in infected neuronal cells may allow them to be differentiated by electron microscopy.

  4. Different Dose-Dependent Mechanisms Are Involved in Early Cyclosporine A-Induced Cholestatic Effects in HepaRG Cells

    PubMed Central

    Sharanek, Ahmad; Azzi, Pamela Bachour-El; Al-Attrache, Houssein; Savary, Camille C.; Humbert, Lydie; Rainteau, Dominique; Guguen-Guillouzo, Christiane; Guillouzo, André

    2014-01-01

    Mechanisms involved in drug-induced cholestasis in humans remain poorly understood. Although cyclosporine A (CsA) and tacrolimus (FK506) share similar immunosuppressive properties, only CsA is known to cause dose-dependent cholestasis. Here, we have investigated the mechanisms implicated in early cholestatic effects of CsA using the differentiated human HepaRG cell line. Inhibition of efflux and uptake of taurocholate was evidenced as early as 15 min and 1 h respectively after addition of 10μM CsA; it peaked at around 2 h and was reversible. These early effects were associated with generation of oxidative stress and deregulation of cPKC pathway. At higher CsA concentrations (≥50μM) alterations of efflux and uptake activities were enhanced and became irreversible, pericanalicular F-actin microfilaments were disorganized and bile canaliculi were constricted. These changes were associated with induction of endoplasmic reticulum stress that preceded generation of oxidative stress. Concentration-dependent changes were observed on total bile acid disposition, which were characterized by an increase and a decrease in culture medium and cells, respectively, after a 24-h treatment with CsA. Accordingly, genes encoding hepatobiliary transporters and bile acid synthesis enzymes were differently deregulated depending on CsA concentration. By contrast, FK506 induced limited effects only at 25–50μM and did not alter bile canaliculi. Our data demonstrate involvement of different concentration-dependent mechanisms in CsA-induced cholestasis and point out a critical role of endoplasmic reticulum stress in the occurrence of the major cholestatic features. PMID:24973091

  5. Phorbol diesters and transferrin modulate lymphoblastoid cell transferrin receptor expression by two different mechanisms

    SciTech Connect

    Alcantara, O.; Phillips, J.L.; Boldt, D.H.

    1986-12-01

    Expression of transferrin receptors (TfR) by activated lymphocytes is necessary for lymphocyte DNA synthesis and proliferation. Regulation of TfR expression, therefore, is a mechanism by which the lymphocyte's proliferative potential may be directed and controlled. The authors studied mechanisms by which lymphoblastoid cells modulate TfR expression during treatment with phorbol diesters or iron transferrin (FeTf), agents which cause downregulation of cell surface TfR. Phorbol diester-induced TfR downregulation occurred rapidly, being detectable at 2 min and reaching maximal decreases of 50% by 15 min. It was inhibited by cold but not by agents that destabilize cytoskeletal elements. Furthermore, this downregulation was reversed rapidly by washing or by treatment with the membrane interactive agent, chlorpromazine. In contrast, FeTf-induced TfR downregulation occurred slowly. Decreased expression of TfR was detectable only after 15 min and maximal downregulation was achieved after 60 min. Although FeTf-induced downregulation also was inhibited by cold, it was inhibited in addition by a group of microtubule destabilizing agents (colchicine, vinblastine, podophyllotoxin) or cytochalasin B, a microfilament inhibitor. Furthermore, FeTf-induced downregulation was not reversed readily by washing or by treatment with chlorpromazine. Phorbol diesters cause TfR downregulation by a cytoskeleton-independent mechanism. These data indicate that TfR expression is regulated by two independent mechanisms in lymphoblastoid cells, and they provide the possibility that downregulation of TfR by different mechanisms may result in different effects in these cells.

  6. Monocytic Cells Become Less Compressible but More Deformable upon Activation

    PubMed Central

    Ravetto, Agnese; Wyss, Hans M.; Anderson, Patrick D.; den Toonder, Jaap M. J.; Bouten, Carlijn V. C.

    2014-01-01

    Aims Monocytes play a significant role in the development of atherosclerosis. During the process of inflammation, circulating monocytes become activated in the blood stream. The consequent interactions of the activated monocytes with the blood flow and endothelial cells result in reorganization of cytoskeletal proteins, in particular of the microfilament structure, and concomitant changes in cell shape and mechanical behavior. Here we investigate the full elastic behavior of activated monocytes in relation to their cytoskeletal structure to obtain a better understanding of cell behavior during the progression of inflammatory diseases such as atherosclerosis. Methods and Results The recently developed Capillary Micromechanics technique, based on exposing a cell to a pressure difference in a tapered glass microcapillary, was used to measure the deformation of activated and non-activated monocytic cells. Monitoring the elastic response of individual cells up to large deformations allowed us to obtain both the compressive and the shear modulus of a cell from a single experiment. Activation by inflammatory chemokines affected the cytoskeletal organization and increased the elastic compressive modulus of monocytes with 73–340%, while their resistance to shape deformation decreased, as indicated by a 25–88% drop in the cell’s shear modulus. This decrease in deformability is particularly pronounced at high strains, such as those that occur during diapedesis through the vascular wall. Conclusion Overall, monocytic cells become less compressible but more deformable upon activation. This change in mechanical response under different modes of deformation could be important in understanding the interplay between the mechanics and function of these cells. In addition, our data are of direct relevance for computational modeling and analysis of the distinct monocytic behavior in the circulation and the extravascular space. Lastly, an understanding of the changes of monocyte

  7. Flavone-resistant Leishmania donovani overexpresses LdMRP2 transporter in the parasite and activates host MRP2 on macrophages to circumvent the flavone-mediated cell death.

    PubMed

    Chowdhury, Sayan; Mukhopadhyay, Rupkatha; Saha, Sourav; Mishra, Amartya; Sengupta, Souvik; Roy, Syamal; Majumder, Hemanta K

    2014-06-06

    In parasites, ATP-binding cassette (ABC) transporters represent an important family of proteins related to drug resistance and other biological activities. Resistance of leishmanial parasites to therapeutic drugs continues to escalate in developing countries, and in many instances, it is due to overexpressed ABC efflux pumps. Progressively adapted baicalein (BLN)-resistant parasites (pB(25)R) show overexpression of a novel ABC transporter, which was classified as ABCC2 or Leishmania donovani multidrug resistance protein 2 (LdMRP2). The protein is primarily localized in the flagellar pocket region and in internal vesicles. Overexpressed LdABCC2 confers substantial BLN resistance to the parasites by rapid drug efflux. The BLN-resistant promastigotes when transformed into amastigotes in macrophage cells cannot be cured by treatment of macrophages with BLN. Amastigote resistance is concomitant with the overexpression of macrophage MRP2 transporter. Reporter analysis and site-directed mutagenesis assays demonstrated that antioxidant response element 1 is activated upon infection. The expression of this phase II detoxifying gene is regulated by NFE2-related factor 2 (Nrf2)-mediated antioxidant response element activation. In view of the fact that the signaling pathway of phosphoinositol 3-kinase controls microfilament rearrangement and translocation of actin-associated proteins, the current study correlates with the intricate pathway of phosphoinositol 3-kinase-mediated nuclear translocation of Nrf2, which activates MRP2 expression in macrophages upon infection by the parasites. In contrast, phalloidin, an agent that prevents depolymerization of actin filaments, inhibits Nrf2 translocation and Mrp2 gene activation by pB(25)R infection. Taken together, these results provide insight into the mechanisms by which resistant clinical isolates of L. donovani induce intracellular events relevant to drug resistance.

  8. Flavone-resistant Leishmania donovani Overexpresses LdMRP2 Transporter in the Parasite and Activates Host MRP2 on Macrophages to Circumvent the Flavone-mediated Cell Death*

    PubMed Central

    Chowdhury, Sayan; Mukhopadhyay, Rupkatha; Saha, Sourav; Mishra, Amartya; Sengupta, Souvik; Roy, Syamal; Majumder, Hemanta K.

    2014-01-01

    In parasites, ATP-binding cassette (ABC) transporters represent an important family of proteins related to drug resistance and other biological activities. Resistance of leishmanial parasites to therapeutic drugs continues to escalate in developing countries, and in many instances, it is due to overexpressed ABC efflux pumps. Progressively adapted baicalein (BLN)-resistant parasites (pB25R) show overexpression of a novel ABC transporter, which was classified as ABCC2 or Leishmania donovani multidrug resistance protein 2 (LdMRP2). The protein is primarily localized in the flagellar pocket region and in internal vesicles. Overexpressed LdABCC2 confers substantial BLN resistance to the parasites by rapid drug efflux. The BLN-resistant promastigotes when transformed into amastigotes in macrophage cells cannot be cured by treatment of macrophages with BLN. Amastigote resistance is concomitant with the overexpression of macrophage MRP2 transporter. Reporter analysis and site-directed mutagenesis assays demonstrated that antioxidant response element 1 is activated upon infection. The expression of this phase II detoxifying gene is regulated by NFE2-related factor 2 (Nrf2)-mediated antioxidant response element activation. In view of the fact that the signaling pathway of phosphoinositol 3-kinase controls microfilament rearrangement and translocation of actin-associated proteins, the current study correlates with the intricate pathway of phosphoinositol 3-kinase-mediated nuclear translocation of Nrf2, which activates MRP2 expression in macrophages upon infection by the parasites. In contrast, phalloidin, an agent that prevents depolymerization of actin filaments, inhibits Nrf2 translocation and Mrp2 gene activation by pB25R infection. Taken together, these results provide insight into the mechanisms by which resistant clinical isolates of L. donovani induce intracellular events relevant to drug resistance. PMID:24706751

  9. Human decay-accelerating factor and CEACAM receptor-mediated internalization and intracellular lifestyle of Afa/Dr diffusely adhering Escherichia coli in epithelial cells.

    PubMed

    Guignot, Julie; Hudault, Sylvie; Kansau, Imad; Chau, Ingrid; Servin, Alain L

    2009-01-01

    We used transfected epithelial CHO-B2 cells as a model to identify the mechanism mediating internalization of Afa/Dr diffusely adhering Escherichia coli. We provide evidence that neither the alpha5 or beta1 integrin subunits nor alpha5beta1 integrin functioned as a receptor mediating the adhesion and/or internalization of Dr or Afa-III fimbria-positive bacteria. We also demonstrated that (i) whether or not the AfaD or DraD invasin subunits were present, there was no difference in the cell association and entry of bacteria and that (ii) DraE or AfaE-III adhesin subunits are necessary and sufficient to promote the receptor-mediated bacterial internalization into epithelial cells expressing human decay-accelerating factor (DAF), CEACAM1, CEA, or CEACAM6. Internalization of Dr fimbria-positive E. coli within CHO-DAF, CHO-CEACAM1, CHO-CEA, or CHO-CEACAM6 cells occurs through a microfilament-independent, microtubule-dependent, and lipid raft-dependent mechanism. Wild-type Dr fimbria-positive bacteria survived better within cells expressing DAF than bacteria internalized within CHO-CEACAM1, CHO-CEA, or CHO-CEACAM6 cells. In DAF-positive cells, internalized Dr fimbria-positive bacteria were located in vacuoles that contained more than one bacterium, displaying some of the features of late endosomes, including the presence of Lamp-1 and Lamp-2, and some of the features of CD63 proteins, but not of cathepsin D, and were acidic. No interaction between Dr fimbria-positive-bacterium-containing vacuoles and the autophagic pathway was observed.

  10. The Adherent/Invasive Escherichia coli Strain LF82 Invades and Persists in Human Prostate Cell Line RWPE-1, Activating a Strong Inflammatory Response

    PubMed Central

    Aleandri, Marta; Marazzato, Massimiliano; Conte, Antonietta L.; Ambrosi, Cecilia; Nicoletti, Mauro; Zagaglia, Carlo; Gambara, Guido; Palombi, Fioretta; De Cesaris, Paola; Ziparo, Elio; Palamara, Anna T.; Riccioli, Anna

    2016-01-01

    Adherent/invasive Escherichia coli (AIEC) strains have recently been receiving increased attention because they are more prevalent and persistent in the intestine of Crohn's disease (CD) patients than in healthy subjects. Since AIEC strains show a high percentage of similarity to extraintestinal pathogenic E. coli (ExPEC), neonatal meningitis-associated E. coli (NMEC), and uropathogenic E. coli (UPEC) strains, here we compared AIEC strain LF82 with a UPEC isolate (strain EC73) to assess whether LF82 would be able to infect prostate cells as an extraintestinal target. The virulence phenotypes of both strains were determined by using the RWPE-1 prostate cell line. The results obtained indicated that LF82 and EC73 are able to adhere to, invade, and survive within prostate epithelial cells. Invasion was confirmed by immunofluorescence and electron microscopy. Moreover, cytochalasin D and colchicine strongly inhibited bacterial uptake of both strains, indicating the involvement of actin microfilaments and microtubules in host cell invasion. Moreover, both strains belong to phylogenetic group B2 and are strong biofilm producers. In silico analysis reveals that LF82 shares with UPEC strains several virulence factors: namely, type 1 pili, the group II capsule, the vacuolating autotransporter toxin, four iron uptake systems, and the pathogenic island (PAI). Furthermore, compared to EC73, LF82 induces in RWPE-1 cells a marked increase of phosphorylation of mitogen-activated protein kinases (MAPKs) and of NF-κB already by 5 min postinfection, thus inducing a strong inflammatory response. Our in vitro data support the hypothesis that AIEC strains might play a role in prostatitis, and, by exploiting host-cell signaling pathways controlling the innate immune response, likely facilitate bacterial multiplication and dissemination within the male genitourinary tract. PMID:27600504

  11. An actin-binding protein, LlLIM1, mediates calcium and hydrogen regulation of actin dynamics in pollen tubes.

    PubMed

    Wang, Huei-Jing; Wan, Ai-Ru; Jauh, Guang-Yuh

    2008-08-01

    Actin microfilaments are crucial for polar cell tip growth, and their configurations and dynamics are regulated by the actions of various actin-binding proteins (ABPs). We explored the function of a lily (Lilium longiflorum) pollen-enriched LIM domain-containing protein, LlLIM1, in regulating the actin dynamics in elongating pollen tube. Cytological and biochemical assays verified LlLIM1 functioning as an ABP, promoting filamentous actin (F-actin) bundle assembly and protecting F-actin against latrunculin B-mediated depolymerization. Overexpressed LlLIM1 significantly disturbed pollen tube growth and morphology, with multiple tubes protruding from one pollen grain and coaggregation of FM4-64-labeled vesicles and Golgi apparatuses at the subapex of the tube tip. Moderate expression of LlLIM1 induced an oscillatory formation of asterisk-shaped F-actin aggregates that oscillated with growth period but in different phases at the subapical region. These results suggest that the formation of LlLIM1-mediated overstabilized F-actin bundles interfered with endomembrane trafficking to result in growth retardation. Cosedimentation assays revealed that the binding affinity of LlLIM1 to F-actin was simultaneously regulated by both pH and Ca(2+): LlLIM1 showed a preference for F-actin binding under low pH and low Ca(2+) concentration. The potential functions of LlLIM1 as an ABP sensitive to pH and calcium in integrating endomembrane trafficking, oscillatory pH, and calcium circumstances to regulate tip-focused pollen tube growth are discussed.

  12. Variants of BALB/c 3T3 cells lacking complex gangliosides retain a fibronectin matrix and spread normally on fibronectin-coated substrates

    PubMed Central

    1986-01-01

    Evidence has accumulated that di- and trisialogangliosides are involved in the interaction of cells with fibronectin. We have therefore tested the ability of variants of BALB/c 3T3 deficient in such gangliosides to organize a fibronectin matrix and to spread on fibronectin-coated substrates. Whereas BALB/c 3T3 cells contained gangliosides GM3, GM1, and GD1a, direct chemical analysis showed that five out of six variants isolated contained no detectable GD1a. By the overlaying of thin layer chromatograms of cellular gangliosides with 125I-cholera toxin, these variants were also found to lack ganglioside GM1. In contrast, the sialogalactoprotein profile of these cells, analyzed using an 125I- ricin/SDS polyacrylamide gel overlay technique, was similar to that of the parent cell line. All variants organized an extensive fibronectin matrix comparable to that of BALB/c 3T3, as shown using either immunofluorescence or lactoperoxidase-catalyzed iodination. The variants could also spread on fibronectin-coated substrates and adopt a morphology similar to that of BALB/c 3T3 cells, with little or no difference in the concentration of fibronectin required for 50% cell spreading. Cell spreading of the variants was accompanied by the formation of focal contacts and microfilament bundles, in a manner closely resembling that seen with BALB/c 3T3 cells. Treatment of BALB/c 3T3 cells with neuraminidase, which converts much of the cellular GD1a to GM1, did not affect cell spreading on fibronectin. The results clearly demonstrate that complex gangliosides are not essential for retention of a fibronectin matrix or for spreading on fibronectin- coated substrates. PMID:2935542

  13. Invasion of endothelial cells and arthritogenic potential of endocarditis-associated Corynebacterium diphtheriae.

    PubMed

    Peixoto, Renata Stavracakis; Pereira, Gabriela Andrade; Sanches dos Santos, Louisy; Rocha-de-Souza, Cláudio Marcos; Gomes, Débora Leandro Rama; Silva Dos Santos, Cintia; Werneck, Lucia Maria Correa; Dias, Alexandre Alves de Souza de Oliveira; Hirata, Raphael; Nagao, Prescilla Emy; Mattos-Guaraldi, Ana Luíza

    2014-03-01

    Although infection by Corynebacterium diphtheriae is a model of extracellular mucosal pathogenesis, different clones have been also associated with invasive infections such as sepsis, endocarditis, septic arthritis and osteomyelitis. The mechanisms that promote C. diphtheriae infection and haematogenic dissemination need further investigation. In this study we evaluated the association and invasion mechanisms with human umbilical vein endothelial cells (HUVECs) and experimental arthritis in mice of endocarditis-associated strains and control non-invasive strains. C. diphtheriae strains were able to adhere to and invade HUVECs at different levels. The endocarditis-associated strains displayed an aggregative adherence pattern and a higher number of internalized viable cells in HUVECs. Transmission electron microscopy (TEM) analysis revealed intracellular bacteria free in the cytoplasm and/or contained in a host-membrane-confined compartment as single micro-organisms. Data showed bacterial internalization dependent on microfilament and microtubule stability and involvement of protein phosphorylation in the HUVEC signalling pathway. A high number of affected joints and high arthritis index in addition to the histopathological features indicated a strain-dependent ability of C. diphtheriae to cause severe polyarthritis. A correlation between the arthritis index and increased systemic levels of IL-6 and TNF-α was observed for endocarditis-associated strains. In conclusion, higher incidence of potential mechanisms by which C. diphtheriae may access the bloodstream through the endothelial barrier and stimulate the production of pro-inflammatory cytokines such as IL-6 and TNF-α, in addition to the ability to affect the joints and induce arthritis through haematogenic spread are thought to be related to the pathogenesis of endocarditis-associated strains.

  14. Self-assembly and photocatalytic activity of branched silicatein/silintaphin filaments decorated with silicatein-synthesized TiO2 nanoparticles.

    PubMed

    Gardères, Johan; Elkhooly, Tarek A; Link, Thorben; Markl, Julia S; Müller, Werner E G; Renkel, Jochen; Korzhev, Michael; Wiens, Matthias

    2016-09-01

    The fundamental mechanisms of biomineralization and their translation into innovative synthetic approaches have yielded promising perspectives for the fabrication of biomimetic and bioinspired organic-inorganic hybrid materials. In siliceous sponges, the enzyme silicatein catalyzes the polycondensation of molecular precursors to nano-structured SiO2 that is deposited on self-assembled filaments consisting of the two silicatein isoforms (silicatein-α and -β) and the scaffold protein silintaphin-1. Due to its broad substrate specificity silicatein is also able to convert in vitro various other precursors to non-biogenic materials (e.g., hydrolysis of titanium bis(ammonium lactato)-dihydroxide [TiBALDH] and subsequent polycondensation to titania [TiO2]). In the present approach, silicatein was bioengineered to carry a protein tag (Arg-tag) that confers binding affinity to TiO2. Then, by combining Arg-tagged silicatein-α with silicatein-β and silintaphin-1, self-assembled branched hybrid protein microfilaments were fabricated. Upon subsequent incubation with TiBALDH the filaments were decorated with TiO2 and assayed for photocatalytic activity through photodegradation of the dye methylene blue. This is the first approach that considers concomitant application of two silicatein isoforms for the synthesis of bioinspired organic-inorganic hybrid materials. It is also the first time that the biocatalytic activity of the enzymes has been combined with both the structure-providing properties of silintaphin-1 and a TiO2 affinity protein tag to fabricate self-assembled branched protein filaments as template for a silicatein-synthesized TiO2 photocatalyst. The TiO2-decorated filaments might be explored as a practical alternative to approaches where biotemplates have to be laboriously isolated from their original biological source prior to TiO2 immobilization.

  15. Arabidopsis RhoGDIs Are Critical for Cellular Homeostasis of Pollen Tubes1[OPEN

    PubMed Central

    Feng, Qiang-Nan; Kang, Hui; Song, Shi-Jian; Ge, Fu-Rong; Zhang, Yu-Ling; Li, En; Li, Sha

    2016-01-01

    Rhos of plants (ROPs) play a key role in plant cell morphogenesis, especially in tip-growing pollen tubes and root hairs, by regulating an array of intracellular activities such as dynamic polymerization of actin microfilaments. ROPs are regulated by guanine nucleotide exchange factors (RopGEFs), GTPase activating proteins (RopGAPs), and guanine nucleotide dissociation inhibitors (RhoGDIs). RopGEFs and RopGAPs play evolutionarily conserved function in ROP signaling. By contrast, although plant RhoGDIs regulate the membrane extraction and cytoplasmic sequestration of ROPs, less clear are their positive roles in ROP signaling as do their yeast and metazoan counterparts. We report here that functional loss of all three Arabidopsis (Arabidopsis thaliana) GDIs (tri-gdi) significantly reduced male transmission due to impaired pollen tube growth in vitro and in vivo. We demonstrate that ROPs were ectopically activated at the lateral plasma membrane of the tri-gdi pollen tubes. However, total ROPs were reduced posttranslationally in the tri-gdi mutant, resulting in overall dampened ROP signaling. Indeed, a ROP5 mutant that was unable to interact with GDIs failed to induce growth, indicating the importance of the ROP-GDI interaction for ROP signaling. Functional loss of GDIs impaired cellular homeostasis, resulting in excess apical accumulation of wall components in pollen tubes, similar to that resulting from ectopic phosphatidylinositol 4,5-bisphosphate signaling. GDIs and phosphatidylinositol 4,5-bisphosphate may antagonistically coordinate to maintain cellular homeostasis during pollen tube growth. Our results thus demonstrate a more complex role of GDIs in ROP-mediated pollen tube growth. PMID:26662604

  16. LMO2 Enhances Lamellipodia/Filopodia Formation in Basal-Type Breast Cancer Cells by Mediating ARP3-Profilin1 Interaction

    PubMed Central

    Liu, Ye; Wu, Chao; Zhu, Tianhui; Sun, Wei

    2017-01-01

    Background The human LMO2 gene was first cloned from an acute T lymphocytic leukemia patient; it is primarily expressed in hematopoietic and vascular endothelial systems, and functions as a pivotal transcriptional regulator during embryonic hematopoiesis and angiogenesis. However, some recent reports indicated that LMO2 is widely expressed in many tissues and tumors, predominantly in cytoplasm, and revealed complicated functions on tumor behaviors in a variety of cancer types. As an adaptor molecule, binding partners and function details of LMO2 in these solid tumors need to be further investigated. Material/Methods In this study, we used yeast two-hybrid method to screen potential LMO2 interacting partners, MBP-pulldown, and co-immunoprecipitation assay to confirm protein-protein interactions, and confocal microscopy to reveal the subcellular localization of relevant proteins and actin cytoskeleton changes in relevant cells. Results We found that ARP3 and profilin1 were 2 binding partners of LMO2, primarily in cytoplasm. LMO2. Functionally, LMO2 mediated the assembly of a complex including ARP3, profilin1, and actin monomer, increased actin monomer binding to profilin1, and promoted lamellipodia/filopodia formation in basal-type breast cancer cells. Conclusions Our data indicate a novel functional mechanism of LMO2 in facilitating the delivery of actin monomers to the branched microfilament and increasing lamellipodia/filopodia formation in basal-type breast cancer cells, suggesting a cancer-promoting role of LMO2 in a subtype-dependent manner and its potential as a subtype-specific biomarker for clinical treatment of breast cancers. PMID:28170369

  17. Microtopography and flow modulate the direction of endothelial cell migration.

    PubMed

    Uttayarat, P; Chen, M; Li, M; Allen, F D; Composto, R J; Lelkes, P I

    2008-02-01

    The migration of vascular endothelial cells under flow can be modulated by the addition of chemical or mechanical stimuli. The aim of this study was to investigate how topographic cues derived from a substrate containing three-dimensional microtopography interact with fluid shear stress in directing endothelial cell migration. Subconfluent bovine aortic endothelial cells were seeded on fibronectin-coated poly(dimethylsiloxane) substrates patterned with a combinatorial array of parallel and orthogonal microgrooves ranging from 2 to 5 microm in width at a constant depth of 1 microm. During a 4-h time-lapse observation in the absence of flow, the majority of the prealigned cells migrated parallel to the grooves with the distribution of their focal adhesions (FAs) depending on the groove width. No change in this migratory pattern was observed after the cells were exposed to moderate shear stress (13.5 dyn/cm(2)), irrespective of groove direction with respect to flow. After 4-h exposure to high shear stress (58 dyn/cm(2)) parallel to the grooves, the cells continued to migrate in the direction of both grooves and flow. By contrast, when microgrooves were oriented perpendicular to flow, most cells migrated orthogonal to the grooves and downstream with flow. Despite the change in the migration direction of the cells under high shear stress, most FAs and actin microfilaments maintained their original alignment parallel to the grooves, suggesting that topographic cues were more effective than those derived from shear stress in guiding the orientation of cytoskeletal and adhesion proteins during the initial exposure to flow.

  18. Processus and recessus adhaerentes: giant adherens cell junction systems connect and attract human mesenchymal stem cells.

    PubMed

    Wuchter, Patrick; Boda-Heggemann, Judit; Straub, Beate K; Grund, Christine; Kuhn, Caecilia; Krause, Ulf; Seckinger, Anja; Peitsch, Wiebke K; Spring, Herbert; Ho, Anthony D; Franke, Werner W

    2007-06-01

    Substrate-adherent cultured cells derived from human bone marrow or umbilical cord blood ("mesenchymal stem cells") are of special interest for regenerative medicine. We report that such cells, which can display considerable heterogeneity with respect to their cytoskeletal protein complement, are often interconnected by special tentacle-like cell processes contacting one or several other cells. These processus adhaerentes, studded with many (usually small) puncta adhaerentia and varying greatly in length (up to more than 400 microm long), either contact each other in the intercellular space ("ET touches") or insert in a tight-fitting manner into deep plasma membrane invaginations (recessus adhaerentes), thus forming a novel kind of long (up to 50 microm) continuous cuff-like junction (manubria adhaerentia). The cell processes contain an actin microfilament core that is stabilized with ezrin, alpha-actinin, and myosin and accompanied by microtubules, and their adhering junctions are characterized by a molecular complement comprising the transmembrane glycoproteins N-cadherin and cadherin-11, in combination with the cytoplasmic plaque proteins alpha- and beta-catenin, together with p120(ctn), plakoglobin, and afadin. The processes are also highly dynamic and rapidly foreshorten as cell colonies approach a denser state of cell packing. These structures are obviously able to establish cell-cell connections, even over long distances, and can form deep-rooted and tight cell-cell adhesions. The possible relationship to similar cell processes in the embryonic primary mesenchyme and their potential in cell sorting and tissue formation processes in the body are discussed.

  19. Acceptance of embryonic stem cells by a wide developmental range of mouse tetraploid embryos.

    PubMed

    Lin, Chih-Jen; Amano, Tomokazu; Zhang, Jifeng; Chen, Yuqing Eugene; Tian, X Cindy

    2010-08-01

    Tetraploid (4N) complementation assay is regard as the most stringent characterization test for the pluripotency of embryonic stem (ES) cells. The technology can generate mice fully derived from the injected ES cell (ES-4N) with 4N placentas. However, it remains a very inefficient procedure owing to a lack of information on the optimal conditions for ES incorporation into the 4N embryos. In the present study, we injected ES cells from embryos of natural fertilization (fES) and somatic cell nuclear transfer (ntES) into 4N embryos at various stages of development to determine the optimal stage of ES cells integration by comparing the efficiency of full-term ES-4N mouse generation. Our results demonstrate that fES/ntES cells can be incorporated into 4N embryos at 2-cell, 4-cell and blastocyst stages and full-term mice can be generated. Interestingly, ntES cells injected into the 4-cell group resulted in the lowest efficiency (5.6%) compared to the 2-cell (13.8%, P > 0.05) and blastocyst (16.7%, P < 0.05) stages. Because 4N embryos start to form compacted morulae at the 4-cell stage, we investigated whether the lower efficiency at this stage was due to early compaction by injecting ntES cells into artificially de-compacted embryos treated with calcium free medium. Although the treatment changed the embryonic morphology, it did not increase the efficiency of ES-4N mice generation. Immunochemistry of the cytoskeleton displayed microtubule and microfilament polarization at the late 4-cell stage in 4N embryos, which suggests that de-compaction treatment cannot reverse the polarization process. Taken together, we show here that a wide developmental range of 4N embryos can be used for 4N complementation and embryo polarization and compaction may restrict incorporation of ES cells into 4N embryos.

  20. The Adherent/Invasive Escherichia coli Strain LF82 Invades and Persists in Human Prostate Cell Line RWPE-1, Activating a Strong Inflammatory Response.

    PubMed

    Conte, Maria P; Aleandri, Marta; Marazzato, Massimiliano; Conte, Antonietta L; Ambrosi, Cecilia; Nicoletti, Mauro; Zagaglia, Carlo; Gambara, Guido; Palombi, Fioretta; De Cesaris, Paola; Ziparo, Elio; Palamara, Anna T; Riccioli, Anna; Longhi, Catia

    2016-11-01

    Adherent/invasive Escherichia coli (AIEC) strains have recently been receiving increased attention because they are more prevalent and persistent in the intestine of Crohn's disease (CD) patients than in healthy subjects. Since AIEC strains show a high percentage of similarity to extraintestinal pathogenic E. coli (ExPEC), neonatal meningitis-associated E. coli (NMEC), and uropathogenic E. coli (UPEC) strains, here we compared AIEC strain LF82 with a UPEC isolate (strain EC73) to assess whether LF82 would be able to infect prostate cells as an extraintestinal target. The virulence phenotypes of both strains were determined by using the RWPE-1 prostate cell line. The results obtained indicated that LF82 and EC73 are able to adhere to, invade, and survive within prostate epithelial cells. Invasion was confirmed by immunofluorescence and electron microscopy. Moreover, cytochalasin D and colchicine strongly inhibited bacterial uptake of both strains, indicating the involvement of actin microfilaments and microtubules in host cell invasion. Moreover, both strains belong to phylogenetic group B2 and are strong biofilm producers. In silico analysis reveals that LF82 shares with UPEC strains several virulence factors: namely, type 1 pili, the group II capsule, the vacuolating autotransporter toxin, four iron uptake systems, and the pathogenic island (PAI). Furthermore, compared to EC73, LF82 induces in RWPE-1 cells a marked increase of phosphorylation of mitogen-activated protein kinases (MAPKs) and of NF-κB already by 5 min postinfection, thus inducing a strong inflammatory response. Our in vitro data support the hypothesis that AIEC strains might play a role in prostatitis, and, by exploiting host-cell signaling pathways controlling the innate immune response, likely facilitate bacterial multiplication and dissemination within the male genitourinary tract.

  1. Toxicants target cell junctions in the testis: Insights from the indazole-carboxylic acid model

    PubMed Central

    Cheng, C Yan

    2014-01-01

    There are numerous types of junctions in the seminiferous epithelium which are integrated with, and critically dependent on the Sertoli cell cytoskeleton. These include the basal tight junctions between Sertoli cells that form the main component of the blood–testis barrier, the basal ectoplasmic specializations (basal ES) and basal tubulobulbar complexes (basal TBC) between Sertoli cells; as well as apical ES and apical TBC between Sertoli cells and the developing spermatids that orchestrate spermiogenesis and spermiation. These junctions, namely TJ, ES, and TBC interact with actin microfilament-based cytoskeleton, which together with the desmosomal junctions that interact with the intermediate filament-based cytoskeleton plus the highly polarized microtubule-based cytoskeleton are working in concert to move spermatocytes and spermatids between the basal and luminal aspect of the seminiferous epithelium. In short, these various junctions are structurally complexed with the actin- and microtubule-based cytoskeleton or intermediate filaments of the Sertoli cell. Studies have shown toxicants (e.g., cadmium, bisphenol A (BPA), perfluorooctanesulfonate (PFOS), phthalates, and glycerol), and some male contraceptives under development (e.g., adjudin, gamendazole), exert their effects, at least in part, by targeting cell junctions in the testis. The disruption of Sertoli–Sertoli cell and Sertoli–germ cell junctions, results in the loss of germ cells from the seminiferous epithelium. Adjudin, a potential male contraceptive under investigation in our laboratory, produces loss of spermatids from the seminiferous tubules through disruption of the Sertoli cell spermatid junctions and disruption of the Sertoli cell cytoskeleton. The molecular and structural changes associated with adjudin administration are described, to provide an example of the profile of changes caused by disturbance of Sertoli-germ cell and also Sertoli cell-cell junctions. PMID:26413399

  2. Physiological pulsatile flow culture conditions to generate functional endothelium on a sulfated silk fibroin nanofibrous scaffold.

    PubMed

    Gong, Xianghui; Liu, Haifeng; Ding, Xili; Liu, Meili; Li, Xiaoming; Zheng, Lisha; Jia, Xiaoling; Zhou, Gang; Zou, Yuanwen; Li, Jinchuan; Huang, Xuejin; Fan, Yubo

    2014-06-01

    Many studies have demonstrated that in vitro shear stress conditioning of endothelial cell-seeded small-diameter vascular grafts can improve cell retention and function. However, the laminar flow and pulsatile flow conditions which are commonly used in vascular tissue engineering and hemodynamic studies are quite different from the actual physiological pulsatile flow which is pulsatile in nature with typical pressure and flow waveforms. The actual physiological pulsatile flow leading to temporal and spatial variations of the wall shear stress may result in different phenotypes and functions of ECs. Thus, the aim of this study is to find out the best in vitro dynamic culture conditions to generate functional endothelium on sulfated silk fibroin nanofibrous scaffolds for small-diameter vascular tissue engineering. Rat aortic endothelial cells (RAECs) were seeded on sulfated silk fibroin nanofibrous scaffolds and cultured under three different patterns of flow conditioning, e.g., steady laminar flow (SLF), sinusoidal flow (SF), or physiological pulsatile flow (PPF) representative of a typical femoral distal pulse wave in vivo for up to 24 h. Cell morphology, cytoskeleton alignment, fibronectin assembly, apoptosis, and retention on the scaffolds were investigated and were compared between three different patterns of flow conditioning. The results showed that ECs responded differentially to different exposure time and different flow patterns. The actual PPF conditioning demonstrated excellent EC retention on sulfated silk fibroin scaffolds in comparison with SLF and SF, in addition to the alignment of cells in the direction of fluid flow, the formation of denser and regular F-actin microfilament bundles in the same direction, the assembly of thicker and highly crosslinked fibronectin, and the significant inhibition of cell apoptosis. Therefore, the actual PPF conditioning might contribute importantly to the generation of functional endothelium on a sulfated silk

  3. Fibrillar, fibril-associated and basement membrane collagens of the arterial wall: architecture, elasticity and remodeling under stress.

    PubMed

    Osidak, M S; Osidak, E O; Akhmanova, M A; Domogatsky, S P; Domogatskaya, A S

    2015-01-01

    The ability of a human artery to pass through 150 million liters of blood sustaining 2 billion pulsations of blood pressure with minor deterioration depends on unique construction of the arterial wall. Viscoelastic properties of this construction enable to re-seal the occuring damages apparently without direct immediate participance of the constituent cells. Collagen structures are considered to be the elements that determine the mechanoelastic properties of the wall in parallel with elastin responsible for elasticity and resilience. Collagen scaffold architecture is the function-dependent dynamic arrangement of a dozen different collagen types composing three distinct interacting forms inside the extracellular matrix of the wall. Tightly packed molecules of collagen types I, III, V provide high tensile strength along collagen fibrils but toughness of the collagen scaffold as a whole depends on molecular bonds between distinct fibrils. Apart of other macromolecules in the extracellular matrix (ECM), collagen-specific interlinks involve microfilaments of collagen type VI, meshwork-organized collagen type VIII, and FACIT collagen type XIV. Basement membrane collagen types IV, XV, XVIII and cell-associated collagen XIII enable transmission of mechanical signals between cells and whole artery matrix. Collagen scaffold undergoes continuous remodeling by decomposition promoted with MMPs and reconstitution from newly produced collagen molecules. Pulsatile stress-strain load modulates both collagen synthesis and MMP-dependent collagen degradation. In this way the ECM structure becomes adoptive to mechanical challenges. The mechanoelastic properties of the arterial wall are changed in atherosclerosis concomitantly with collagen turnover both type-specific and dependent on the structure. Improving the feedback could be another approach to restore sufficient blood circulation.

  4. R-(+)-perillyl alcohol-induced cell cycle changes, altered actin cytoskeleton, and decreased ras and p34(cdc2) expression in colonic adenocarcinoma SW480 cells.

    PubMed

    Cerda, S R; Wilkinson, J; Thorgeirsdottir, S; Broitman, S A

    1999-01-01

    Monoterpenes as S-(-)-perillyl alcohol (PA) have been shown to inhibit the isoprenylation of such growth regulatory proteins as ras. In this study, we investigated the effects of the R-(+) enantiomer of PA on cell cycle, signaling, and cytoskeletal control in the colonic adenocarcinoma cell line SW480, which carries a K-ras mutation. Cell cycle analysis by flow cytometry of SW480 cells treated with 1 mM PA for 24 hours demonstrated an increase in the number of cells in G0/G1 with a decrease in S phase, compared with untreated control cells. These cell cycle changes correlated with an inhibition of protein isoprenylation from (14)C-mevalonate and decreased expression of the cell cycle regulatory kinase p34(cdc2). Additionally, PA-treated cells acquired a flattened morphology with a condensation of cytoskeletal actin spikes to the periphery. This was in contrast to treatment with 15 microM mevinolin (MVN), a direct mevalonate synthesis inhibitor, which imparted to SW480 cells a more rounded and spindly morphology, associated with the depolymerization of actin microfilaments. Together, these data suggest that fluctuations in mevalonate and isoprenoid pools may involve different morphologic phenomenon. Because ras mediated signaling is related to the organization of the actin cytoskeleton, we investigated the effects of PA on the isoprenylation of ras. Although MVN treatment inhibited ras farnesylation, PA treatment decreased the expression of total ras protein. In summary, R-(+)-PA-induced cell signaling events correlated with alterations in the organization of cytoskeletal actin and decreased protein expression of growth regulatory proteins, such as ras and cdc2 kinase. These effects may contribute to the growth inhibitory activity of R-(+)-PA.

  5. LINGO-1 Regulates Oligodendrocyte Differentiation through the Cytoplasmic Gelsolin Signaling Pathway.

    PubMed

    Shao, Zhaohui; Lee, Xinhua; Huang, Guanrong; Sheng, Guoqing; Henderson, Christopher E; Louvard, Daniel; Sohn, Jiho; Pepinsky, Blake; Mi, Sha

    2017-03-22

    Differentiation and maturation of oligodendrocyte progenitor cells (OPCs) involve the assembly and disassembly of actin microfilaments. However, how actin dynamics are regulated during this process remains poorly understood. Leucine-rich repeat and Ig-like domain-containing Nogo receptor interacting protein 1 (LINGO-1) is a negative regulator of OPC differentiation. We discovered that anti-LINGO-1 antibody-promoted OPC differentiation was accompanied by upregulation of cytoplasmic gelsolin (cGSN), an abundant actin-severing protein involved in the depolymerization of actin filaments. Treating rat OPCs with cGSN siRNA reduced OPC differentiation, whereas overexpression of cGSN promoted OPC differentiation in vitro and remyelination in vivo Furthermore, coexpression of cGSN and LINGO-1 blocked the inhibitory effect of LINGO-1. Our study demonstrates that cGSN works downstream of LINGO-1 signaling pathway, which enhances actin dynamics and is essential for OPC morphogenesis and differentiation. This finding may lead to novel therapeutic approaches for the treatment of demyelinating diseases such as multiple sclerosis (MS).SIGNIFICANCE STATEMENT Myelin loss and subsequent axon degeneration contributes to a variety of neurological diseases, such as multiple sclerosis (MS). Understanding the regulation of myelination by oligodendrocytes is therefore critical for developing therapies for the treatment of MS. We previously demonstrated that leucine-rich repeat and Ig-like domain-containing Nogo receptor interacting protein 1 (LINGO-1) is a negative regulator of oligodendrocyte differentiation and that anti-LINGO-1 promotes remyelination in preclinical animal models for MS and in a phase II acute optic neuritis clinical trial (RENEW). The mechanism by which LINGO-1 regulates oligodendrocyte differentiation is unknown. Here, we demonstrate that LINGO-1 regulates oligodendrocyte differentiation and maturation through the cytoplasmic gelsolin signaling pathway, providing new

  6. Transferrin receptors on the surfaces of retinal pigment epithelial cells are associated with the cytoskeleton.

    PubMed

    Hunt, R C; Dewey, A; Davis, A A

    1989-04-01

    Retinal pigment epithelial cells, derived from human donor eyes, have been grown in culture as monolayers on membrane filters or plastic surfaces and shown to possess transferrin receptors with a monomeric molecular mass of 93,000. These receptors internalize 125I-labelled transferrin and recycle it to the surrounding medium in a similar manner to other cell types. Scatchard analyses show that there are about 100,000 high-affinity receptors on the surface of each cell and most of these receptors are associated with the cytoskeleton. In total cell extracts, there are additional low-affinity binding sites that do not appear to be strongly associated with the cytoskeleton. The apparent interaction of transferrin receptors with the cytoskeleton was confirmed in two ways: first, using 200 kV electron microscopy for stereo analyses, skeleton-associated transferrin receptors were detected by a monoclonal anti-receptor antibody and a colloidal gold-conjugated second antibody after Triton X-100 extraction of pigment epithelial cells grown directly on laminin-coated gold grids; and, second, when cell surface receptors were labelled with radioiodinated transferrin and then incubated for various periods of time, the labelled transferrin was observed to move from a Triton X-100-insoluble fraction (a putative cytoskeletal compartment) to a Triton-soluble compartment that was not associated with the cytoskeleton. Using either horseradish peroxidase or colloidal gold-labelled transferrin, it has been shown that basolateral and apical surface-located receptors participate in receptor-mediated endocytosis via clathrin-coated pits, endosomes and tubular structures. Initially, transferrin internalized from the apical surface is observed in small endosomes that often appear to be embedded in an apical layer of microfilaments. From these peripheral regions of the cells, the labelled receptors move to larger endosomes and multivesicular bodies deeper in the cytoplasm. These structures

  7. Transcutaneous electrical nerve stimulator of 5000 Hz frequency provides better analgesia than that of 100 Hz frequency in mice muscle pain model.

    PubMed

    Hsiao, Hung-Tsung; Chien, Hsiao-Jung; Lin, Ya-Chi; Liu, Yen-Chin

    2017-04-01

    Transcutaneous electrical nerve stimulators (TENSs) have been proved to be effective in muscle pain management for several decades. However, there is no consensus for the optimal TENS program. Previous research demonstrated that a 100 Hz TENS (L-TENS) provided better analgesia than a conventional TENS (< 5 Hz). However, no research compared a higher-frequency (> 100 Hz) TENS with a 100 Hz TENS. We used a 5000 Hz (5 kHz) frequency TENS (M-TENS) and an L-TENS to compare analgesic effect on a mice skin/muscle incision retraction model. Three groups of mice were used (sham, L-TENS, and M-TENS) and applied with different TENS programs on Day 4 after the mice skin/muscle incision retraction model; TENS therapy was continued as 20 min/d for 3 days. Mice analgesic effects were measured via Von Frey microfilaments with the up-down method. After therapy, mice spinal cord dorsal horn and dorsal root ganglion (DRG) were harvested for cytokine evaluation (tumor necrosis factor-α and interleukin-1β) with the Western blotting method. Our data demonstrated that the M-TENS produced better analgesia than the L-TENS. Cytokine in the spinal cord or DRG all expressed lower than that of the sham group. However, there is no difference in both cytokine levels between TENSs of different frequencies in the spinal cord and DRG. We concluded that the M-TENS produced faster and better mechanical analgesia than the L-TENS in the mice skin/muscle incision retraction model. Those behavior differences were not in accordance with cytokine changes in the spinal cord or DRG.

  8. Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation*

    PubMed Central

    Borovok, Natalia; Nesher, Elimelech; Levin, Yishai; Reichenstein, Michal; Pinhasov, Albert

    2016-01-01

    Spatial memory depends on the hippocampus, which is particularly vulnerable to aging. This vulnerability has implications for the impairment of navigation capacities in older people, who may show a marked drop in performance of spatial tasks with advancing age. Contemporary understanding of long-term memory formation relies on molecular mechanisms underlying long-term synaptic plasticity. With memory acquisition, activity-dependent changes occurring in synapses initiate multiple signal transduction pathways enhancing protein turnover. This enhancement facilitates de novo synthesis of plasticity related proteins, crucial factors for establishing persistent long-term synaptic plasticity and forming memory engrams. Extensive studies have been performed to elucidate molecular mechanisms of memory traces formation; however, the identity of plasticity related proteins is still evasive. In this study, we investigated protein turnover in mouse hippocampus during long-term spatial memory formation using the reference memory version of radial arm maze (RAM) paradigm. We identified 1592 proteins, which exhibited a complex picture of expression changes during spatial memory formation. Variable linear decomposition reduced significantly data dimensionality and enriched three principal factors responsible for variance of memory-related protein levels at (1) the initial phase of memory acquisition (165 proteins), (2) during the steep learning improvement (148 proteins), and (3) the final phase of the learning curve (123 proteins). Gene ontology and signaling pathways analysis revealed a clear correlation between memory improvement and learning phase-curbed expression profiles of proteins belonging to specific functional categories. We found differential enrichment of (1) neurotrophic factors signaling pathways, proteins regulating synaptic transmission, and actin microfilament during the first day of the learning curve; (2) transcription and translation machinery, protein

  9. Zinc deficiency during in vitro maturation of porcine oocytes causes meiotic block and developmental failure.

    PubMed

    Jeon, Yubyeol; Yoon, Junchul David; Cai, Lian; Hwang, Seon-Ung; Kim, Eunhye; Zheng, Zhong; Jeung, Euibae; Lee, Eunsong; Hyun, Sang-Hwan

    2015-10-01

    The present study investigated the effects of zinc deficiency during in vitro maturation (IVM) of porcine oocytes. Zinc deficiency was induced by administering the membrane‑permeable zinc chelator N,N,N',N'‑tetrakis‑(2‑pyridylmethyl)‑ethylendiamine (TPEN). First, the effects of zinc deficiency during IVM on a TPEN‑treated group and a TPEN+zinc-treated group compared with a control group were assessed. The oocyte maturation rates and subsequent embryonic developmental competence of the TPEN+zinc‑treated oocytes were similar to those of the control oocytes (metaphase II [MII] rate, 93.0 and 92.7%, respectively, and blastocyst [BL] formation rate, 42.0 and 40.0%, respectively). These results were significantly different from those obtained for the TPEN‑treated oocytes (MII rate, 0.61%; BL formation rate, 0%). Although the TPEN‑treated oocytes were arrested at metaphase I (MI), the distribution of microtubules was normal. However, microfilament formation was abnormal in the TPEN‑treated oocytes. Furthermore, the effect of a temporary zinc deficiency during IVM on oocyte maturation and subsequent embryonic development was assessed. TPEN (10 µM) was added to the IVM medium for 0, 7, 15 or 22 h. The 0 h‑treated oocytes showed an 83.9% MII rate, while the 7 h‑treated oocytes had a significantly lower MII rate (44.8%). Most of the 15- and 22 h‑treated oocytes were arrested at MI (MI rate: 98.0 and 97.2%, respectively; MII rate, 0% in both groups). Reductions in the BL formation were dependent on the TPEN treatment duration (29.3, 9.2, 0, and 0% after 0, 7, 15 and 22 h, respectively). In conclusion, zinc is an essential element for successful oocyte maturation and embryonic development in pigs. Zinc deficiency caused a meiotic block and had lasting effects on early embryonic development.

  10. Effect of nicotine on in vitro maturation of bovine oocytes.

    PubMed

    Liu, Ying; Li, Guang-Peng; Rickords, Lee F; White, Kenneth L; Sessions, Benjamin R; Aston, Kenneth I; Bunch, Thomas D

    2008-01-15

    The putative effect of nicotine on maturation and the chromosomal complement of bovine oocytes were investigated in the present study. Cumulus-enclosed oocytes were incubated in maturation medium with 0, 0.5, 1.0, 2.5, 5.0, and 10.0 mmol concentrations of nicotine. The results indicated that: (1) nicotine affected cumulus cell expansion in a dose-dependent manner and the perivitelline space failed to form when concentrations were equal to or greater than 5.0 mmol; (2) oocytes treated with 0.5 and 1.0 mmol nicotine concentrations resulted in maturation rates (83.3% and 85.9%, respectively) which was similar to the control (86.2%), whereas treatment with 2.5 and 5.0 mmol concentrations significantly decreased maturation rates to 70.2% and 26.7%, respectively; (3) nicotine at or over 2.5 mmol caused extremely irregular meiotic spindles and interrupted microfilament organization; (4) chromosomal analyses of oocytes with PB1 showed that oocytes derived from 0.5 and 1.0 mmol nicotine groups had haploid complements similar to the control (87-90%), but when the concentrations were increased to 2.5 and 5.0 mmol the haploid state was significantly reduced to around 70%; (5) oocytes at GVBD (germinal vesicle breakdown) and metaphase I stages were less affected by nicotine at 5.0 and 10.0 mmol concentrations than GV-stage oocytes; (6) maturation rates of the short-term nicotine-treated oocytes could be improved when subsequently incubated in normal maturation medium. Prolonged culture of nicotine-pretreated oocytes resulted in self-activation and some oocytes formed 1 or 2 pronuclei. In conclusion, nicotine affects bovine oocyte cumulus cell expansion, maturation rate, and chromosomal complement in a dose-dependent and an oocyte-stage-dependent manner.

  11. Biotechnological aspects of cytoskeletal regulation in plants.

    PubMed

    Komis, George; Luptovciak, Ivan; Doskocilova, Anna; Samaj, Jozef

    2015-11-01

    The cytoskeleton is a protein-based intracellular superstructure that evolved early after the appearance of bacterial prokaryotes. Eventually cytoskeletal proteins and their macromolecular assemblies were established in eukaryotes and assumed critical roles in cell movements, intracellular organization, cell division and cell differentiation. In biomedicine the small-molecules targeting cytoskeletal elements are in the frontline of anticancer research with plant-derived cytoskeletal drugs such as Vinca alkaloids and toxoids, being routinely used in the clinical practice. Moreover, plants are also major material, food and energy resources for human activities ranging from agriculture, textile industry, carpentry, energy production and new material development to name some few. Most of these inheritable traits are associated with cell wall synthesis and chemical modification during primary and secondary plant growth and inevitably are associated with the dynamics, organization and interactions of the plant cytoskeleton. Taking into account the vast intracellular spread of microtubules and actin microfilaments the cytoskeleton collectively assumed central roles in plant growth and development, in determining the physical stance of plants against the forces of nature and becoming a battleground between pathogenic invaders and the defense mechanisms of plant cells. This review aims to address the role of the plant cytoskeleton in manageable features of plants including cellulose biosynthesis with implications in wood and fiber properties, in biofuel production and the contribution of plant cytoskeletal elements in plant defense responses against pathogens or detrimental environmental conditions. Ultimately the present work surveys the potential of cytoskeletal proteins as platforms of plant genetic engineering, nominating certain cytoskeletal proteins as vectors of favorable traits in crops and other economically important plants.

  12. The Drosophila Stubble-stubbloid gene encodes an apparent transmembrane serine protease required for epithelial morphogenesis.

    PubMed Central

    Appel, L F; Prout, M; Abu-Shumays, R; Hammonds, A; Garbe, J C; Fristrom, D; Fristrom, J

    1993-01-01

    The Stubble-stubbloid (Sb-sbd) gene is required for hormone-dependent epithelial morphogenesis of imaginal discs of Drosophila, including the formation of bristles, legs, and wings. The gene has been cloned by using Sb-sbd-associated DNA lesions in a 20-kilobase (kb) region of a 263-kb genomic walk. The region specifies an approximately 3.8-kb transcript that is induced by the steroid hormone 20-hydroxyecdysone in imaginal discs cultured in vitro. The conceptually translated protein is an apparent 786-residue type II transmembrane protein (N terminus in, C terminus out), including an intracellular N-terminal domain of at least 35 residues and an extracellular C-terminal trypsin-like serine protease domain of 244 residues. Sequence analyses indicate that the Sb-sbd-encoded protease could activate itself by proteolytic cleavage. Consistent with the cell-autonomous nature of the Sb-sbd bristle phenotype, a disulfide bond between cysteine residues in the noncatalytic N-terminal fragment and the C-terminal catalytic fragment could tether the protease to the membrane after activation. Both dominant Sb and recessive sbd mutations affect the organization of microfilament bundles during bristle morphogenesis. We propose that the Sb-sbd product has a dual function. (i) It acts through its proteolytic extracellular domain to detach imaginal disc cells from extracellular matrices, and (ii) it transmits an outside-to-inside signal to its intracellular domain to modify the cytoskeleton and facilitate cell shape changes underlying morphogenesis. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7685111

  13. Lysophosphatidic acids. Influence on platelet aggregation and intracellular calcium flux.

    PubMed Central

    Gerrard, J. M.; Kindom, S. E.; Peterson, D. A.; Peller, J.; Krantz, K. E.; White, J. G.

    1979-01-01

    Decanoyl-, palmitoyl-, and oleoyl-lysophosphatidic acid (LPA) were studied for their effects on platelet aggregation and intracellular calcium flux. Palmitoyl-LPA and oleoyl-LPA both caused a concentration-dependent aggregation of human blood platelets at concentrations of 12--300 microM. Aggregation by adenosine diphosphate (ADP) was enhanced at slightly lower concentrations. First-wave aggregation induced by these LPAs was not blocked by aspirin, indomethacin, or heparin, suggesting similarities to ADP aggregation. However, in washed platelets with a high calcium concentration, no serotonin secretion was observed, even though full aggregation occurred, suggesting that aggregation was not due to released ADP. This concept was supported by studies of platelets deficient in the storage pool of ADP and serotonin, which had a normal first-wave aggregation response to palmitoyl-LPA. Aggregation induced by palmitoyl LPA was inhibited by prostaglandin E1 (PGE1), theophylline, and ethylenediaminotetraacetate (EDTA), though in the presence of EDTA shape change occurred. Aggregation stimulated by palmitoyl-LPA or oleoyl-LPA was characterized by changes in the shape of the platelets with development of pseudopods and centralization of granules closely surrounded by contractile microfilaments and supporting microtubules. The addition of palmitoyl-LPA and oleoyl-LPA, but not decanoyl-LPA, caused the release of calcium from a platelet membrane fraction that contains elements of the intracellular calcium storage system and actively concentrates this cation in the presence of adenosine triphosphate (ATP) and magnesium. It is suggested that LPAs cause aggregation by stimulating the release of calcium intracellularly. Images Figure 1 Figure 2 Figure 3 Figure 4 Text-Figure 6 PMID:112871

  14. Identification of a cyclase-associated protein (CAP) homologue in Dictyostelium discoideum and characterization of its interaction with actin.

    PubMed

    Gottwald, U; Brokamp, R; Karakesisoglou, I; Schleicher, M; Noegel, A A

    1996-02-01

    In search for novel actin binding proteins in Dictyostelium discoideum we have isolated a cDNA clone coding for a protein of approximately 50 kDa that is highly homologous to the class of adenylyl cyclase-associated proteins (CAP). In Saccharomyces cerevisiae the amino-terminal part of CAP is involved in the regulation of the adenylyl cyclase whereas the loss of the carboxyl-terminal domain results in morphological and nutritional defects. To study the interaction of Dictyostelium CAP with actin, the complete protein and its amino-terminal and carboxyl-terminal domains were expressed in Escherichia coli and used in actin binding assays. CAP sequestered actin in a Ca2+ independent way. This activity was localized to the carboxyl-terminal domain. CAP and its carboxyl-terminal domain led to a fluorescence enhancement of pyrene-labeled G-actin up to 50% indicating a direct interaction, whereas the amino-terminal domain did not enhance. In polymerization as well as in viscometric assays the ability of the carboxyl-terminal domain to sequester actin and to prevent F-actin formation was approximately two times higher than that of intact CAP. The sequestering activity of full length CAP could be inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2), whereas the activity of the carboxyl-terminal domain alone was not influenced, suggesting that the amino-terminal half of the protein is required for the PIP2 modulation of the CAP function. In profilin-minus cells the CAP concentration is increased by approximately 73%, indicating that CAP may compensate some profilin functions in vivo. In migrating D. discoideum cells CAP was enriched at anterior and posterior plasma membrane regions. Only a weak staining of the cytoplasm was observed. In chemotactically stimulated cells the protein was very prominent in leading fronts. The data suggest an involvement of D. discoideum CAP in microfilament reorganization near the plasma membrane in a PIP2-regulated manner.

  15. Nuanced but significant: how ethanol perturbs avian cranial neural crest cell actin cytoskeleton, migration and proliferation.

    PubMed

    Oyedele, Olusegun O; Kramer, Beverley

    2013-08-01

    Children with fetal alcohol syndrome (FAS) display striking craniofacial abnormalities. These features are proposed to result from perturbations in the morphology and function of cranial neural crest cells (cNCCs), which contribute significantly to the craniofacial complex. While certain pathways by which this may occur have been suggested, precise teratogenic mechanisms remain intensely investigated, as does the question of the teratogenic dose. The present study focused on examining how avian cNCC actin cytoskeleton, migratory distance, and proliferation are affected ex vivo by exposure to ethanol concentrations that simulate maternal intoxication. Chick cNCCs were cultured in 0.2% and 0.4% v/v ethanol. Distances migrated by both ethanol-treated and control cells at 24 and 48 h were recorded. Following phalloidin immunocytochemistry, treated and control cNCCs were compared morphologically and quantitatively. Apoptosis and proliferation in control versus treated cNCCs were also studied. Chick cNCCs cultured in ethanol lost their spindle-like shapes and their ordered cytoskeleton. There was a significant stage-dependent effect on cNCC migration at 24 h (p = 0.035), which was greatest at stage 10 (HH). Ethanol treatment for 48 h revealed a significant main effect for ethanol, chiefly at the 0.4% level. There was also an interaction effect between ethanol dose and stage of development (stage 9 HH). Actin microfilament disruption was quantitatively increased by ethanol at the doses studied while cNCC proliferation was increased but not significantly. Ethanol had no effect on cNCC apoptosis. At ethanol levels likely to induce human FAS, avian cNCCs exhibit various subtle, potentially significant changes in morphology, migration, and proliferation, with possible consequences for fated structures.

  16. Characterization of Amoeboaphelidium protococcarum, an algal parasite new to the cryptomycota isolated from an outdoor algal pond used for the production of biofuel.

    PubMed

    Letcher, Peter M; Lopez, Salvador; Schmieder, Robert; Lee, Philip A; Behnke, Craig; Powell, Martha J; McBride, Robert C

    2013-01-01

    Mass culture of algae for the production of biofuels is a developing technology designed to offset the depletion of fossil fuel reserves. However, large scale culture of algae in open ponds can be challenging because of incidences of infestation with algal parasites. Without knowledge of the identity of the specific parasite and how to control these pests, algal-based biofuel production will be limited. We have characterized a eukaryotic parasite of Scenedesmus dimorphus growing in outdoor ponds used for biofuel production. We demonstrated that as the genomic DNA of parasite FD01 increases, the concentration of S. dimorphus cells decreases; consequently, this is a highly destructive pathogen. Techniques for culture of the parasite and host were developed, and the endoparasite was identified as the Aphelidea, Amoeboaphelidium protococcarum. Phylogenetic analysis of ribosomal sequences revealed that parasite FD01 placed within the recently described Cryptomycota, a poorly known phylum based on two species of Rozella and environmental samples. Transmission electron microscopy demonstrated that aplanospores of the parasite produced filose pseudopodia, which contained fine fibers the diameter of actin microfilaments. Multiple lipid globules clustered and were associated with microbodies, mitochondria and a membrane cisternae, an arrangement characteristic of the microbody-lipid globule complex of chytrid zoospores. After encystment and attachment to the host cells, the parasite injected its protoplast into the host between the host cell wall and plasma membrane. At maturity the unwalled parasite occupied the entire host cell. After cleavage of the protoplast into aplanospores, a vacuole and lipids remained in the host cell. Amoeboaphelidium protococcarum isolate FD01 is characteristic of the original description of this species and is different from strain X-5 recently characterized. Our results help put a face on the Cryptomycota, revealing that the phylum is more

  17. AKAP-independent localization of type-II protein kinase A to dynamic actin microspikes.

    PubMed

    Rivard, Robert L; Birger, Monique; Gaston, Kara J; Howe, Alan K

    2009-09-01

    Regulation of the cyclic AMP-dependent protein kinase (PKA) in subcellular space is required for cytoskeletal dynamics and chemotaxis. Currently, spatial regulation of PKA is thought to require the association of PKA regulatory (R) subunits with A-kinase anchoring proteins (AKAPs). Here, we show that the regulatory RIIalpha subunit of PKA associates with dynamic actin microspikes in an AKAP-independent manner. Both endogenous RIIalpha and a GFP-RIIalpha fusion protein co-localize with F-actin in microspikes within hippocampal neuron growth cones and the leading edge lamellae of NG108-15 cells. Live-cell imaging demonstrates that RIIalpha-associated microspikes are highly dynamic and that the coupling of RIIalpha to actin is tight, as the movement of both actin and RIIalpha are immediately and coincidently stopped by low-dose cytochalasin D. Importantly, co-localization of RIIalpha and actin in these structures is resistant to displacement by a cell-permeable disrupter of PKA-AKAP interactions. Biochemical fractionation confirms that a substantial pool of PKA RIIalpha is associated with the detergent-insoluble cytoskeleton and is resistant to extraction by a peptide inhibitor of AKAP interactions. Finally, mutation of the AKAP-binding domain of RIIalpha fails to disrupt its association with actin microspikes. These data provide the first demonstration of the physical association of a kinase with such dynamic actin structures, as well as the first demonstration of the ability of type-II PKA to localize to discrete subcellular structures independently of canonical AKAP function. This association is likely to be important for microfilament dynamics and cell migration and may prime the investigation of novel mechanisms for localizing PKA activity.

  18. Nitric oxide modulates the influx of extracellular Ca2+ and actin filament organization during cell wall construction in Pinus bungeana pollen tubes.

    PubMed

    Wang, Yuhua; Chen, Tong; Zhang, Chunyang; Hao, Huaiqing; Liu, Peng; Zheng, Maozhong; Baluška, František; Šamaj, Jozef; Lin, Jinxing

    2009-06-01

    Nitric oxide (NO) plays a key role in many physiological processes in plants, including pollen tube growth. Here, effects of NO on extracellular Ca(2+) flux and microfilaments during cell wall construction in Pinus bungeana pollen tubes were investigated. Extracellular Ca(2+) influx, the intracellular Ca(2+) gradient, patterns of actin organization, vesicle trafficking and cell wall deposition upon treatment with the NO donor S-nitroso-N-acetylpenicillamine (SNAP), the NO synthase (NOS) inhibitor N(omega)-nitro-L-arginine (L-NNA) or the NO scavenger 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) were analyzed. SNAP enhanced pollen tube growth in a dose-dependent manner, while L-NNA and cPTIO inhibited NO production and arrested pollen tube growth. Noninvasive detection and microinjection of a Ca(2+) indicator revealed that SNAP promoted extracellular Ca(2+) influx and increased the steepness of the tip-focused Ca(2+) gradient, while cPTIO and L-NNA had the opposite effect. Fluorescence labeling indicated that SNAP, cPTIO and L-NNA altered actin organization, which subsequently affected vesicle trafficking. Finally, the configuration and/or distribution of cell wall components such as pectins and callose were significantly altered in response to L-NNA. Fourier transform infrared (FTIR) microspectroscopy confirmed the changes in the chemical composition of walls. Our results indicate that NO affects the configuration and distribution of cell wall components in pollen tubes by altering extracellular Ca(2+) influx and F-actin organization.

  19. Intermediate-sized filaments of the prekeratin type in myoepithelial cells

    PubMed Central

    1980-01-01

    Myoepithelial cells from mammary glands, the modified sweat glands of bovine muzzle, and salivary glands have been studied by electron microscopy and by immunofluorescence microscopy in frozen sections in an attempt to further characterize the type of intermediate-sized filaments present in these cells. Electron microscopy has shown that all myoepithelial cells contain extensive meshworks of intermediate- sized (7--11-nm) filaments, many of which are anchored at typical desmosomes or hemidesmosomes. The intermediate-sized filaments are also intimately associated with masses of contractile elements, identified as bundles of typical 5--6-nm microfilaments and with characteristically spaced dense bodies. This organization resembles that described for various smooth muscle cells. In immunofluorescence microscopy, using antibodies specific for the various classes of intermediate-sized filaments, the myoepithelial cells are strongly decorated by antibodies to prekeratin. They are not specifically stained by antibodies to vimentin, which stain mesenchymal cells, nor by antibodies to chick gizzard desmin, which decorate fibrils in smooth muscle Z bands and intercalated disks in skeletal and cardiac muscle of mammals. Myoepithelial cells are also strongly stained by antibodies to actin. The observations show (a) that the epithelial character, as indicated by the presence of intermediate-sized filaments of the prekeratin type, is maintained in the differentiated contractile myoepithelial cell, and (b) that desmin and desmin-containing filaments are not generally associated with musclelike cell specialization for contraction but are specific to myogenic differentiation. The data also suggest that in myoepithelial cells prekeratin filaments are arranged-- and might function--in a manner similar to the desmin filaments in smooth muscle cells. PMID:6153658

  20. Exploring the Stability Limits of Actin and Its Suprastructures

    PubMed Central

    Rosin, Christopher; Erlkamp, Mirko; Ecken, Julian von der; Raunser, Stefan; Winter, Roland

    2014-01-01

    Actin is the main component of the microfilament system in eukaryotic cells and can be found in distinct morphological states. Global (G)-actin is able to assemble into highly organized, supramolecular cellular structures known as filamentous (F)-actin and bundled (B)-actin. To evaluate the structure and stability of G-, F-, and B-actin over a wide range of temperatures and pressures, we used Fourier transform infrared spectroscopy in combination with differential scanning and pressure perturbation calorimetry, small-angle x-ray scattering, laser confocal scanning microscopy, and transmission electron microscopy. Our analysis was designed to provide new (to our knowledge) insights into the stabilizing forces of actin self-assembly and to reveal the stability of the actin polymorphs, including in conditions encountered in extreme environments. In addition, we sought to explain the limited pressure stability of actin self-assembly observed in vivo. G-actin is not only the least temperature-stable but also the least pressure-stable actin species. Under abyssal conditions, where temperatures as low as 1–4°C and pressures up to 1 kbar are reached, G-actin is hardly stable. However, the supramolecular assemblies of actin are stable enough to withstand the extreme conditions usually encountered on Earth. Beyond ∼3–4 kbar, filamentous structures disassemble, and beyond ∼4 kbar, complete dissociation of F-actin structures is observed. Between ∼1 and 2 kbar, some disordering of actin assemblies commences, in agreement with in vivo observations. The limited pressure stability of the monomeric building block seems to be responsible for the suppression of actin assembly in the kbar pressure range. PMID:25517163

  1. Serum-induced neurite retraction in CAD cells--involvement of an ATP-actin retractile system and the lack of microtubule-associated proteins.

    PubMed

    Chesta, María E; Carbajal, Agustín; Arce, Carlos A; Bisig, Carlos G

    2014-11-01

    Cultured catecholamine-differentiated cells [which lack the microtubule-associated proteins (MAPs): MAP1B, MAP2, Tau, STOP, and Doublecortin] proliferate in the presence of fetal bovine serum, and, in its absence, cease dividing and generate processes similar to the neurites of normal neurons. The reintroduction of serum induces neurite retraction, and proliferation resumes. The neurite retraction process in catecholamine-differentiated cells was partially characterized in this study. Microtubules in the cells were found to be in a highly dynamic state, and tubulin in the microtubules consisted primarily of the tyrosinated and deacetylated isotypes. Increased levels of acetylated or Δ2-tubulin (which are normally absent) did not prevent serum-induced neurite retraction. Treatment of differentiated cells with lysophosphatidic acid or adenosine deaminase induced neurite retraction. Inhibition of Rho-associated protein kinase, ATP depletion and microfilament disruption each (individually) blocked serum-induced neurite retraction, suggesting that an ATP-dependent actomyosin system underlies the mechanism of neurite retraction. Nocodazole treatment induced neurite retraction, but this effect was blocked by pretreatment with the microtubule-stabilizing drug paclitaxel (Taxol). Paclitaxel did not prevent serum-induced or lysophosphatidic acid-induced retraction, suggesting that integrity of microtubules (despite their dynamic state) is necessary to maintain neurite elongation, and that paclitaxel-induced stabilization alone is not sufficient to resist the retraction force induced by serum. Transfection with green fluorescent protein-Tau conferred resistance to retraction caused by serum. We hypothesize that, in normal neurons (cultured or in vivo), MAPs are necessary not only to stabilize microtubules, but also to establish interactions with other cytoskeletal or membrane components to form a stable structure capable of resisting the retraction force.

  2. Microarray Analysis of Natural Socially-Regulated Plasticity in Circadian Rhythms of Honey Bees

    PubMed Central

    Rodriguez-Zas, Sandra L.; Southey, Bruce R.; Shemesh, Yair; Rubin, Elad B.; Cohen, Mira; Robinson, Gene E.; Bloch, Guy

    2012-01-01

    Honey bee workers care for ("nurse") the brood around the clock without circadian rhythmicity, but then they forage outside with strong circadian rhythms and a consolidated nightly rest. This chronobiological plasticity is associated with variation in the expression of the canonical “clock genes” that regulate the circadian clock: nurse bees show no brain rhythms of expression, while foragers do. These results suggest that the circadian system is organized differently in nurses and foragers. Nurses switch to activity with circadian rhythms shortly after removed from the hive suggesting that at least some clock cells in their brain continue to measure time while in the hive. We performed a microarray genome-wide survey to determine general patterns of brain gene expression in nurses and foragers sampled around the clock. We found 160 and 541 transcripts that exhibited significant sinusoidal oscillations in nurses and foragers, respectively, with peaks of expression distributed throughout the day in both task groups. Consistent with earlier studies, transcripts of genes involved in circadian rhythms, including Clockwork Orange that has not been studied before in bees, oscillated in foragers but not in nurses. The oscillating transcripts also were enriched for genes involved in the visual system, “development” and “response to stimuli” (foragers), “muscle contraction” and “microfilament motor gene expression” (nurses), and “generation of precursor metabolites” and “energy” (both). Transcripts of genes encoding P450 enzymes oscillated in both nurses and foragers but with a different phase. This study identified new putative clock-controlled genes in the honey bee and suggests that some brain functions show circadian rhythmicity even in nurse bees that are active around the clock. PMID:22306970

  3. Oocyte maturation in Xenopus laevis is blocked by the hormonal herbicide, 2,4-dichlorophenoxy acetic acid.

    PubMed

    Stebbins-Boaz, Barbara; Fortner, Katherine; Frazier, Jessie; Piluso, Suzanne; Pullen, Samuel; Rasar, Melissa; Reid, William; Sinclair, Kristin; Winger, Elisa

    2004-02-01

    Oocyte maturation is dependent on a complex program of morphological, ultrastructural, and biochemical signaling events, and if disrupted could lead to decreased fertility and population decline. The in vitro sensitivity of amphibian oocytes and oocyte maturation to plant growth factor and widely used hormonal herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), was examined in this study to determine its potential impact on early development and possible contribution to the global amphibian decline. Progesterone, which acts through a membrane receptor, triggers meiotic maturation in full grown (stage VI) Xenopus oocytes, characterized by cytoskeletal reorganization, nuclear dissolution, chromosome condensation, and spindle formation. Biochemically, the Mos/MAPK/MPF signaling pathway is activated, in part dependent on translational activation of specific maternal mRNAs such as c-Mos. Light microscopy revealed unusual asymmetric morphotypes in oocytes exposed to 2,4-D alone characterized by a white spot and bulge, termed coning, in the animal pole where the germinal vesicle (nucleus) persisted intact. Treatment of oocytes with cytochalasin B, a microfilament inhibitor, blocked these morphotypes but nocodazole, a microtubule depolymerizing agent, did not. Confocal microscopy showed that 2,4-D, itself, caused substantial depolymerization of perinuclear microtubules. Importantly, 2,4-D blocked progesterone-induced maturation as measured by the lack of nuclear breakdown, confirmed by the lack of Mos expression, MPF activation, and cytoplasmic polyadenylation of cyclin B1 mRNA. However, Western blot analysis and U0126 inhibitor studies showed that 2,4-D, either alone or in the presence of progesterone, induced MAPK phosphorylation through MAPKK. These results show that 2,4-D disrupts oocyte cytoskeletal organization and blocks maturation while stimulating an independent MAPK signaling pathway.

  4. Plant acoustics: in the search of a sound mechanism for sound signaling in plants.

    PubMed

    Mishra, Ratnesh Chandra; Ghosh, Ritesh; Bae, Hanhong

    2016-08-01

    Being sessile, plants continuously deal with their dynamic and complex surroundings, identifying important cues and reacting with appropriate responses. Consequently, the sensitivity of plants has evolved to perceive a myriad of external stimuli, which ultimately ensures their successful survival. Research over past centuries has established that plants respond to environmental factors such as light, temperature, moisture, and mechanical perturbations (e.g. wind, rain, touch, etc.) by suitably modulating their growth and development. However, sound vibrations (SVs) as a stimulus have only started receiving attention relatively recently. SVs have been shown to increase the yields of several crops and strengthen plant immunity against pathogens. These vibrations can also prime the plants so as to make them more tolerant to impending drought. Plants can recognize the chewing sounds of insect larvae and the buzz of a pollinating bee, and respond accordingly. It is thus plausible that SVs may serve as a long-range stimulus that evokes ecologically relevant signaling mechanisms in plants. Studies have suggested that SVs increase the transcription of certain genes, soluble protein content, and support enhanced growth and development in plants. At the cellular level, SVs can change the secondary structure of plasma membrane proteins, affect microfilament rearrangements, produce Ca(2+) signatures, cause increases in protein kinases, protective enzymes, peroxidases, antioxidant enzymes, amylase, H(+)-ATPase / K(+) channel activities, and enhance levels of polyamines, soluble sugars and auxin. In this paper, we propose a signaling model to account for the molecular episodes that SVs induce within the cell, and in so doing we uncover a number of interesting questions that need to be addressed by future research in plant acoustics.

  5. Modulation of the Myxoma Virus Plaque Phenotype by Vaccinia Virus Protein F11

    PubMed Central

    Irwin, Chad R.

    2012-01-01

    Vaccinia virus (VACV) produces large plaques consisting of a rapidly expanding ring of infected cells surrounding a lytic core, whereas myxoma virus (MYXV) produces small plaques that resemble a focus of transformed cells. This is odd, because bioinformatics suggests that MYXV carries homologs of nearly all of the genes regulating Orthopoxvirus attachment, entry, and exit. So why does MYXV produce foci? One notable difference is that MYXV-infected cells produce few of the actin microfilaments that promote VACV exit and spread. This suggested that although MYXV carries homologs of the required genes (A33R, A34R, A36R, and B5R), they are dysfunctional. To test this, we produced MYXV recombinants expressing these genes, but we could not enhance actin projectile formation even in cells expressing all four VACV proteins. Another notable difference between these viruses is that MYXV lacks a homolog of the F11L gene. F11 inhibits the RhoA-mDia signaling that maintains the integrity of the cortical actin layer. We constructed an MYXV strain encoding F11L and observed that, unlike wild-type MYXV, the recombinant virus disrupted actin stress fibers and produced plaques up to 4-fold larger than those of controls, and these plaques expanded ∼6-fold faster. These viruses also grew to higher titers in multistep growth conditions, produced higher levels of actin projectiles, and promoted infected cell movement, although neither process was to the extent of that observed in VACV-infected cells. Thus, one reason for why MYXV produces small plaques is that it cannot spread via actin filaments, although the reason for this deficiency remains obscure. A second reason is that leporipoxviruses lack vaccinia's capacity to disrupt cortical actin. PMID:22514354

  6. Modulation of the myxoma virus plaque phenotype by vaccinia virus protein F11.

    PubMed

    Irwin, Chad R; Evans, David H

    2012-07-01

    Vaccinia virus (VACV) produces large plaques consisting of a rapidly expanding ring of infected cells surrounding a lytic core, whereas myxoma virus (MYXV) produces small plaques that resemble a focus of transformed cells. This is odd, because bioinformatics suggests that MYXV carries homologs of nearly all of the genes regulating Orthopoxvirus attachment, entry, and exit. So why does MYXV produce foci? One notable difference is that MYXV-infected cells produce few of the actin microfilaments that promote VACV exit and spread. This suggested that although MYXV carries homologs of the required genes (A33R, A34R, A36R, and B5R), they are dysfunctional. To test this, we produced MYXV recombinants expressing these genes, but we could not enhance actin projectile formation even in cells expressing all four VACV proteins. Another notable difference between these viruses is that MYXV lacks a homolog of the F11L gene. F11 inhibits the RhoA-mDia signaling that maintains the integrity of the cortical actin layer. We constructed an MYXV strain encoding F11L and observed that, unlike wild-type MYXV, the recombinant virus disrupted actin stress fibers and produced plaques up to 4-fold larger than those of controls, and these plaques expanded ∼6-fold faster. These viruses also grew to higher titers in multistep growth conditions, produced higher levels of actin projectiles, and promoted infected cell movement, although neither process was to the extent of that observed in VACV-infected cells. Thus, one reason for why MYXV produces small plaques is that it cannot spread via actin filaments, although the reason for this deficiency remains obscure. A second reason is that leporipoxviruses lack vaccinia's capacity to disrupt cortical actin.

  7. In Vivo, Villin Is Required for Ca2+-Dependent F-Actin Disruption in Intestinal Brush Borders

    PubMed Central

    Ferrary, Evelyne; Cohen-Tannoudji, Michel; Pehau-Arnaudet, Gérard; Lapillonne, Alexandre; Athman, Rafika; Ruiz, Tereza; Boulouha, Lilia; El Marjou, Fatima; Doye, Anne; Fontaine, Jean-Jacques; Antony, Claude; Babinet, Charles; Louvard, Daniel; Jaisser, Frédéric; Robine, Sylvie

    1999-01-01

    Villin is an actin-binding protein localized in intestinal and kidney brush borders. In vitro, villin has been demonstrated to bundle and sever F-actin in a Ca2+-dependent manner. We generated knockout mice to study the role of villin in vivo. In villin-null mice, no noticeable changes were observed in the ultrastructure of the microvilli or in the localization and expression of the actin-binding and membrane proteins of the intestine. Interestingly, the response to elevated intracellular Ca2+ differed significantly between mutant and normal mice. In wild-type animals, isolated brush borders were disrupted by the addition of Ca2+, whereas Ca2+ had no effect in villin-null isolates. Moreover, increase in intracellular Ca2+ by serosal carbachol or mucosal Ca2+ ionophore A23187 application abolished the F-actin labeling only in the brush border of wild-type animals. This F-actin disruption was also observed in physiological fasting/refeeding experiments. Oral administration of dextran sulfate sodium, an agent that causes colonic epithelial injury, induced large mucosal lesions resulting in a higher death probability in mice lacking villin, 36 ± 9.6%, compared with wild-type mice, 70 ± 8.8%, at day 13. These results suggest that in vivo, villin is not necessary for the bundling of F-actin microfilaments, whereas it is necessary for the reorganization elicited by various signals. We postulate that this property might be involved in cellular plasticity related to cell injury. PMID:10459016

  8. Interaction of Prevotella intermedia strain 17 leucine-rich repeat domain protein AdpF with eukaryotic cells promotes bacterial internalization.

    PubMed

    Sengupta, Dipanwita; Kang, Dae-Joong; Anaya-Bergman, Cecilia; Wyant, Tiana; Ghosh, Arnab K; Miyazaki, Hiroshi; Lewis, Janina P

    2014-06-01

    Prevotella intermedia is an oral bacterium implicated in a variety of oral diseases. Although internalization of this bacterium by nonphagocytic host cells is well established, the molecular players mediating the process are not well known. Here, the properties of a leucine-rich repeat (LRR) domain protein, designated AdpF, are described. This protein contains a leucine-rich region composed of 663 amino acid residues, and molecular modeling shows that it folds into a classical curved solenoid structure. The cell surface localization of recombinant AdpF (rAdpF) was confirmed by electron and confocal microscopy analyses. The recombinant form of this protein bound fibronectin in a dose-dependent manner. Furthermore, the protein was internalized by host cells, with the majority of the process accomplished within 30 min. The internalization of rAdpF was inhibited by nystatin, cytochalasin, latrunculin, nocodazole, and wortmannin, indicating that microtubules, microfilaments, and signal transduction are required for the invasion. It is noteworthy that preincubation of eukaryotic cells with AdpF increased P. intermedia 17 internalization by 5- and 10-fold for HeLa and NIH 3T3 fibroblast cell lines, respectively. The addition of the rAdpF protein was also very effective in induc