Sample records for microfluidic architectures enabled

  1. Microfluidic multiplexing of solid-state nanopores

    NASA Astrophysics Data System (ADS)

    Jain, Tarun; Rasera, Benjamin C.; Guerrero, Ricardo Jose S.; Lim, Jong-Min; Karnik, Rohit

    2017-12-01

    Although solid-state nanopores enable electronic analysis of many clinically and biologically relevant molecular structures, there are few existing device architectures that enable high-throughput measurement of solid-state nanopores. Herein, we report a method for microfluidic integration of multiple solid-state nanopores at a high density of one nanopore per (35 µm2). By configuring microfluidic devices with microfluidic valves, the nanopores can be rinsed from a single fluid input while retaining compatibility for multichannel electrical measurements. The microfluidic valves serve the dual purpose of fluidic switching and electric switching, enabling serial multiplexing of the eight nanopores with a single pair of electrodes. Furthermore, the device architecture exhibits low noise and is compatible with electroporation-based in situ nanopore fabrication, providing a scalable platform for automated electronic measurement of a large number of integrated solid-state nanopores.

  2. Microchannel cross load array with dense parallel input

    DOEpatents

    Swierkowski, Stefan P.

    2004-04-06

    An architecture or layout for microchannel arrays using T or Cross (+) loading for electrophoresis or other injection and separation chemistry that are performed in microfluidic configurations. This architecture enables a very dense layout of arrays of functionally identical shaped channels and it also solves the problem of simultaneously enabling efficient parallel shapes and biasing of the input wells, waste wells, and bias wells at the input end of the separation columns. One T load architecture uses circular holes with common rows, but not columns, which allows the flow paths for each channel to be identical in shape, using multiple mirror image pieces. Another T load architecture enables the access hole array to be formed on a biaxial, collinear grid suitable for EDM micromachining (square holes), with common rows and columns.

  3. K-Channel: A Multifunctional Architecture for Dynamically Reconfigurable Sample Processing in Droplet Microfluidics.

    PubMed

    Doonan, Steven R; Bailey, Ryan C

    2017-04-04

    By rapidly creating libraries of thousands of unique, miniaturized reactors, droplet microfluidics provides a powerful method for automating high-throughput chemical analysis. In order to engineer in-droplet assays, microfluidic devices must add reagents into droplets, remove fluid from droplets, and perform other necessary operations, each typically provided by a unique, specialized geometry. Unfortunately, modifying device performance or changing operations usually requires re-engineering the device among these specialized geometries, a time-consuming and costly process when optimizing in-droplet assays. To address this challenge in implementing droplet chemistry, we have developed the "K-channel," which couples a cross-channel flow to the segmented droplet flow to enable a range of operations on passing droplets. K-channels perform reagent injection (0-100% of droplet volume), fluid extraction (0-50% of droplet volume), and droplet splitting (1:1-1:5 daughter droplet ratio). Instead of modifying device dimensions or channel configuration, adjusting external conditions, such as applied pressure and electric field, selects the K-channel process and tunes its magnitude. Finally, interfacing a device-embedded magnet allows selective capture of 96% of droplet-encapsulated superparamagnetic beads during 1:1 droplet splitting events at ∼400 Hz. Addition of a second K-channel for injection (after the droplet splitting K-channel) enables integrated washing of magnetic beads within rapidly moving droplets. Ultimately, the K-channel provides an exciting opportunity to perform many useful droplet operations across a range of magnitudes without requiring architectural modifications. Therefore, we envision the K-channel as a versatile, easy to use microfluidic component enabling diverse, in-droplet (bio)chemical manipulations.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, Erika J.; Huang, Chao; Hamilton, Julie

    Here, a major advantage of microfluidic devices is the ability to manipulate small sample volumes, thus reducing reagent waste and preserving precious sample. However, to achieve robust sample manipulation it is necessary to address device integration with the macroscale environment. To realize repeatable, sensitive particle separation with microfluidic devices, this protocol presents a complete automated and integrated microfluidic platform that enables precise processing of 0.15–1.5 ml samples using microfluidic devices. Important aspects of this system include modular device layout and robust fixtures resulting in reliable and flexible world to chip connections, and fully-automated fluid handling which accomplishes closed-loop sample collection,more » system cleaning and priming steps to ensure repeatable operation. Different microfluidic devices can be used interchangeably with this architecture. Here we incorporate an acoustofluidic device, detail its characterization, performance optimization, and demonstrate its use for size-separation of biological samples. By using real-time feedback during separation experiments, sample collection is optimized to conserve and concentrate sample. Although requiring the integration of multiple pieces of equipment, advantages of this architecture include the ability to process unknown samples with no additional system optimization, ease of device replacement, and precise, robust sample processing.« less

  5. Accessing microfluidics through feature-based design software for 3D printing.

    PubMed

    Shankles, Peter G; Millet, Larry J; Aufrecht, Jayde A; Retterer, Scott T

    2018-01-01

    Additive manufacturing has been a cornerstone of the product development pipeline for decades, playing an essential role in the creation of both functional and cosmetic prototypes. In recent years, the prospects for distributed and open source manufacturing have grown tremendously. This growth has been enabled by an expanding library of printable materials, low-cost printers, and communities dedicated to platform development. The microfluidics community has embraced this opportunity to integrate 3D printing into the suite of manufacturing strategies used to create novel fluidic architectures. The rapid turnaround time and low cost to implement these strategies in the lab makes 3D printing an attractive alternative to conventional micro- and nanofabrication techniques. In this work, the production of multiple microfluidic architectures using a hybrid 3D printing-soft lithography approach is demonstrated and shown to enable rapid device fabrication with channel dimensions that take advantage of laminar flow characteristics. The fabrication process outlined here is underpinned by the implementation of custom design software with an integrated slicer program that replaces less intuitive computer aided design and slicer software tools. Devices are designed in the program by assembling parameterized microfluidic building blocks. The fabrication process and flow control within 3D printed devices were demonstrated with a gradient generator and two droplet generator designs. Precise control over the printing process allowed 3D microfluidics to be printed in a single step by extruding bridge structures to 'jump-over' channels in the same plane. This strategy was shown to integrate with conventional nanofabrication strategies to simplify the operation of a platform that incorporates both nanoscale features and 3D printed microfluidics.

  6. Accessing microfluidics through feature-based design software for 3D printing

    PubMed Central

    Shankles, Peter G.; Millet, Larry J.; Aufrecht, Jayde A.

    2018-01-01

    Additive manufacturing has been a cornerstone of the product development pipeline for decades, playing an essential role in the creation of both functional and cosmetic prototypes. In recent years, the prospects for distributed and open source manufacturing have grown tremendously. This growth has been enabled by an expanding library of printable materials, low-cost printers, and communities dedicated to platform development. The microfluidics community has embraced this opportunity to integrate 3D printing into the suite of manufacturing strategies used to create novel fluidic architectures. The rapid turnaround time and low cost to implement these strategies in the lab makes 3D printing an attractive alternative to conventional micro- and nanofabrication techniques. In this work, the production of multiple microfluidic architectures using a hybrid 3D printing-soft lithography approach is demonstrated and shown to enable rapid device fabrication with channel dimensions that take advantage of laminar flow characteristics. The fabrication process outlined here is underpinned by the implementation of custom design software with an integrated slicer program that replaces less intuitive computer aided design and slicer software tools. Devices are designed in the program by assembling parameterized microfluidic building blocks. The fabrication process and flow control within 3D printed devices were demonstrated with a gradient generator and two droplet generator designs. Precise control over the printing process allowed 3D microfluidics to be printed in a single step by extruding bridge structures to ‘jump-over’ channels in the same plane. This strategy was shown to integrate with conventional nanofabrication strategies to simplify the operation of a platform that incorporates both nanoscale features and 3D printed microfluidics. PMID:29596418

  7. A microfluidic platform for precision small-volume sample processing and its use to size separate biological particles with an acoustic microdevice [Precision size separation of biological particles in small-volume samples by an acoustic microfluidic system

    DOE PAGES

    Fong, Erika J.; Huang, Chao; Hamilton, Julie; ...

    2015-11-23

    Here, a major advantage of microfluidic devices is the ability to manipulate small sample volumes, thus reducing reagent waste and preserving precious sample. However, to achieve robust sample manipulation it is necessary to address device integration with the macroscale environment. To realize repeatable, sensitive particle separation with microfluidic devices, this protocol presents a complete automated and integrated microfluidic platform that enables precise processing of 0.15–1.5 ml samples using microfluidic devices. Important aspects of this system include modular device layout and robust fixtures resulting in reliable and flexible world to chip connections, and fully-automated fluid handling which accomplishes closed-loop sample collection,more » system cleaning and priming steps to ensure repeatable operation. Different microfluidic devices can be used interchangeably with this architecture. Here we incorporate an acoustofluidic device, detail its characterization, performance optimization, and demonstrate its use for size-separation of biological samples. By using real-time feedback during separation experiments, sample collection is optimized to conserve and concentrate sample. Although requiring the integration of multiple pieces of equipment, advantages of this architecture include the ability to process unknown samples with no additional system optimization, ease of device replacement, and precise, robust sample processing.« less

  8. Materials and microfluidics: enabling the efficient isolation and analysis of circulating tumour cells.

    PubMed

    Jackson, Joshua M; Witek, Małgorzata A; Kamande, Joyce W; Soper, Steven A

    2017-07-17

    We present a critical review of microfluidic technologies and material effects on the analyses of circulating tumour cells (CTCs) selected from the peripheral blood of cancer patients. CTCs are a minimally invasive source of clinical information that can be used to prognose patient outcome, monitor minimal residual disease, assess tumour resistance to therapeutic agents, and potentially screen individuals for the early diagnosis of cancer. The performance of CTC isolation technologies depends on microfluidic architectures, the underlying principles of isolation, and the choice of materials. We present a critical review of the fundamental principles used in these technologies and discuss their performance. We also give context to how CTC isolation technologies enable downstream analysis of selected CTCs in terms of detecting genetic mutations and gene expression that could be used to gain information that may affect patient outcome.

  9. 3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs.

    PubMed

    Singh, Manjot; Tong, Yuxin; Webster, Kelly; Cesewski, Ellen; Haring, Alexander P; Laheri, Sahil; Carswell, Bill; O'Brien, Timothy J; Aardema, Charles H; Senger, Ryan S; Robertson, John L; Johnson, Blake N

    2017-07-25

    The ability to interface microfluidic devices with native complex biological architectures, such as whole organs, has the potential to shift the paradigm for the study and analysis of biological tissue. Here, we show 3D printing can be used to fabricate bio-inspired conformal microfluidic devices that directly interface with the surface of whole organs. Structured-light scanning techniques enabled the 3D topographical matching of microfluidic device geometry to porcine kidney anatomy. Our studies show molecular species are spontaneously transferred from the organ cortex to the conformal microfluidic device in the presence of fluid flow through the organ-conforming microchannel. Large animal studies using porcine kidneys (n = 32 organs) revealed the profile of molecular species in the organ-conforming microfluidic stream was dependent on the organ preservation conditions. Enzyme-linked immunosorbent assay (ELISA) studies revealed conformal microfluidic devices isolate clinically relevant metabolic and pathophysiological biomarkers from whole organs, including heat shock protein 70 (HSP-70) and kidney injury molecule-1 (KIM-1), which were detected in the microfluidic device as high as 409 and 12 pg mL -1 , respectively. Overall, these results show conformal microfluidic devices enable a novel minimally invasive 'microfluidic biopsy' technique for isolation and profiling of biomarkers from whole organs within a clinically relevant interval. This achievement could shift the paradigm for whole organ preservation and assessment, thereby helping to relieve the organ shortage crisis through increased availability and quality of donor organs. Ultimately, this work provides a major advance in microfluidics through the design and manufacturing of organ-conforming microfluidic devices and a novel technique for microfluidic-based analysis of whole organs.

  10. A microfluidic fuel cell with flow-through porous electrodes.

    PubMed

    Kjeang, Erik; Michel, Raphaelle; Harrington, David A; Djilali, Ned; Sinton, David

    2008-03-26

    A microfluidic fuel cell architecture incorporating flow-through porous electrodes is demonstrated. The design is based on cross-flow of aqueous vanadium redox species through the electrodes into an orthogonally arranged co-laminar exit channel, where the waste solutions provide ionic charge transfer in a membraneless configuration. This flow-through architecture enables improved utilization of the three-dimensional active area inside the porous electrodes and provides enhanced rates of convective/diffusive transport without increasing the parasitic loss required to drive the flow. Prototype fuel cells are fabricated by rapid prototyping with total material cost estimated at 2 USD/unit. Improved performance as compared to previous microfluidic fuel cells is demonstrated, including power densities at room temperature up to 131 mW cm-2. In addition, high overall energy conversion efficiency is obtained through a combination of relatively high levels of fuel utilization and cell voltage. When operated at 1 microL min-1 flow rate, the fuel cell produced 20 mW cm-2 at 0.8 V combined with an active fuel utilization of 94%. Finally, we demonstrate in situ fuel and oxidant regeneration by running the flow-through architecture fuel cell in reverse.

  11. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices.

    PubMed

    Alapan, Yunus; Hasan, Muhammad Noman; Shen, Richang; Gurkan, Umut A

    2015-05-01

    Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing.

  12. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices

    PubMed Central

    Shen, Richang; Gurkan, Umut A.

    2016-01-01

    Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing. PMID:27512530

  13. A PDMS membrane microvalve with one-dimensional line valve seat for robust microfluidics

    NASA Astrophysics Data System (ADS)

    Park, Chin-Sung; Hwang, Kyu-Youn; Jung, Wonjong; Namkoong, Kak; Chung, Wonseok; Kim, Joon-Ho; Huh, Nam

    2014-02-01

    We have developed a monolithic polydimethylsiloxane (PDMS) membrane microvalve with an isotropically etched valve seat for robust microfluidics. In order to avoid bonding or sticking of the PDMS membrane to the valve seat during the bonding process, the valve seat was wet-etched to be a one-dimensional line instead of a plane. The simple wet-etching technique allowed for the fabrication of an anti-bonding architecture in a scalable manner, and it intrinsically prevented contact between the PDMS membrane and valve seat when no external force was applied (i.e., normally open). This approach enables the permanent device assembly so that the microfluidic chip can be operable in a wide range of fluid pressures (e.g., over 200 kPa) without any leakage and sticking problems.

  14. Multi-depth valved microfluidics for biofilm segmentation

    NASA Astrophysics Data System (ADS)

    Meyer, M. T.; Subramanian, S.; Kim, Y. W.; Ben-Yoav, H.; Gnerlich, M.; Gerasopoulos, K.; Bentley, W. E.; Ghodssi, R.

    2015-09-01

    Bacterial biofilms present a societal challenge, as they occur in the majority of infections but are highly resistant to both immune mechanisms and traditional antibiotics. In the pursuit of better understanding biofilm biology for developing new treatments, there is a need for streamlined, controlled platforms for biofilm growth and evaluation. We leverage advantages of microfluidics to develop a system in which biofilms are formed and sectioned, allowing parallel assays on multiple sections of one biofilm. A microfluidic testbed with multiple depth profiles was developed to accommodate biofilm growth and sectioning by hydraulically actuated valves. In realization of the platform, a novel fabrication technique was developed for creating multi-depth microfluidic molds using sequentially patterned photoresist separated and passivated by conformal coatings using atomic layer deposition. Biofilm thickness variation within three separately tested devices was less than 13% of the average thickness in each device, while variation between devices was 23% of the average thickness. In a demonstration of parallel experiments performed on one biofilm within one device, integrated valves were used to trisect the uniform biofilms with one section maintained as a control, and two sections exposed to different concentrations of sodium dodecyl sulfate. The technology presented here for multi-depth microchannel fabrication can be used to create a host of microfluidic devices with diverse architectures. While this work focuses on one application of such a device in biofilm sectioning for parallel experimentation, the tailored architectures enabled by the fabrication technology can be used to create devices that provide new biological information.

  15. High-sensitivity microfluidic calorimeters for biological and chemical applications.

    PubMed

    Lee, Wonhee; Fon, Warren; Axelrod, Blake W; Roukes, Michael L

    2009-09-08

    High-sensitivity microfluidic calorimeters raise the prospect of achieving high-throughput biochemical measurements with minimal sample consumption. However, it has been challenging to realize microchip-based calorimeters possessing both high sensitivity and precise sample-manipulation capabilities. Here, we report chip-based microfluidic calorimeters capable of characterizing the heat of reaction of 3.5-nL samples with 4.2-nW resolution. Our approach, based on a combination of hard- and soft-polymer microfluidics, provides both exceptional thermal response and the physical strength necessary to construct high-sensitivity calorimeters that can be scaled to automated, highly multiplexed array architectures. Polydimethylsiloxane microfluidic valves and pumps are interfaced to parylene channels and reaction chambers to automate the injection of analyte at 1 nL and below. We attained excellent thermal resolution via on-chip vacuum encapsulation, which provides unprecedented thermal isolation of the minute microfluidic reaction chambers. We demonstrate performance of these calorimeters by resolving measurements of the heat of reaction of urea hydrolysis and the enthalpy of mixing of water with methanol. The device structure can be adapted easily to enable a wide variety of other standard calorimeter operations; one example, a flow calorimeter, is described.

  16. Recent developments in microfluidic large scale integration.

    PubMed

    Araci, Ismail Emre; Brisk, Philip

    2014-02-01

    In 2002, Thorsen et al. integrated thousands of micromechanical valves on a single microfluidic chip and demonstrated that the control of the fluidic networks can be simplified through multiplexors [1]. This enabled realization of highly parallel and automated fluidic processes with substantial sample economy advantage. Moreover, the fabrication of these devices by multilayer soft lithography was easy and reliable hence contributed to the power of the technology; microfluidic large scale integration (mLSI). Since then, mLSI has found use in wide variety of applications in biology and chemistry. In the meantime, efforts to improve the technology have been ongoing. These efforts mostly focus on; novel materials, components, micromechanical valve actuation methods, and chip architectures for mLSI. In this review, these technological advances are discussed and, recent examples of the mLSI applications are summarized. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Development of a high-throughput microfluidic integrated microarray for the detection of chimeric bioweapons.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppod, Timothy; Satterfield, Brent; Hukari, Kyle W.

    2006-10-01

    The advancement of DNA cloning has significantly augmented the potential threat of a focused bioweapon assault, such as a terrorist attack. With current DNA cloning techniques, toxin genes from the most dangerous (but environmentally labile) bacterial or viral organism can now be selected and inserted into robust organism to produce an infinite number of deadly chimeric bioweapons. In order to neutralize such a threat, accurate detection of the expressed toxin genes, rather than classification on strain or genealogical decent of these organisms, is critical. The development of a high-throughput microarray approach will enable the detection of unknowns chimeric bioweapons. Themore » development of a high-throughput microarray approach will enable the detection of unknown bioweapons. We have developed a unique microfluidic approach to capture and concentrate these threat genes (mRNA's) upto a 30 fold concentration. These captured oligonucleotides can then be used to synthesize in situ oligonucleotide copies (cDNA probes) of the captured genes. An integrated microfluidic architecture will enable us to control flows of reagents, perform clean-up steps and finally elute nanoliter volumes of synthesized oligonucleotides probes. The integrated approach has enabled a process where chimeric or conventional bioweapons can rapidly be identified based on their toxic function, rather than being restricted to information that may not identify the critical nature of the threat.« less

  18. Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing.

    PubMed

    Flachsbart, Bruce R; Wong, Kachuen; Iannacone, Jamie M; Abante, Edward N; Vlach, Robert L; Rauchfuss, Peter A; Bohn, Paul W; Sweedler, Jonathan V; Shannon, Mark A

    2006-05-01

    The design and fabrication of a multilayered polymer micro-nanofluidic chip is described that consists of poly(methylmethacrylate) (PMMA) layers that contain microfluidic channels separated in the vertical direction by polycarbonate (PC) membranes that incorporate an array of nanometre diameter cylindrical pores. The materials are optically transparent to allow inspection of the fluids within the channels in the near UV and visible spectrum. The design architecture enables nanofluidic interconnections to be placed in the vertical direction between microfluidic channels. Such an architecture allows microchannel separations within the chip, as well as allowing unique operations that utilize nanocapillary interconnects: the separation of analytes based on molecular size, channel isolation, enhanced mixing, and sample concentration. Device fabrication is made possible by a transfer process of labile membranes and the development of a contact printing method for a thermally curable epoxy based adhesive. This adhesive is shown to have bond strengths that prevent leakage and delamination and channel rupture tests exceed 6 atm (0.6 MPa) under applied pressure. Channels 100 microm in width and 20 microm in depth are contact printed without the adhesive entering the microchannel. The chip is characterized in terms of resistivity measurements along the microfluidic channels, electroosmotic flow (EOF) measurements at different pH values and laser-induced-fluorescence (LIF) detection of green-fluorescent protein (GFP) plugs injected across the nanocapillary membrane and into a microfluidic channel. The results indicate that the mixed polymer micro-nanofluidic multilayer chip has electrical characteristics needed for use in microanalytical systems.

  19. Microfluidic liquid chromatography system for proteomic applications and biomarker screening.

    PubMed

    Lazar, Iulia M; Trisiripisal, Phichet; Sarvaiya, Hetal A

    2006-08-01

    A microfluidic liquid chromatography (LC) system for proteomic investigations that integrates all the necessary components for stand-alone operation, i.e., pump, valve, separation column, and electrospray interface, is described in this paper. The overall size of the LC device is small enough to enable the integration of two fully functional separation systems on a 3 in. x 1 in. glass microchip. A multichannel architecture that uses electroosmotic pumping principles provides the necessary functionality for eluent propulsion and sample valving. The flow rates generated within these chips are fully consistent with the requirements of nano-LC platforms that are routinely used in proteomic applications. The microfluidic device was evaluated for the analysis of a protein digest obtained from the MCF7 breast cancer cell line. The cytosolic protein extract was processed according to a shotgun protocol, and after tryptic digestion and prefractionation using strong cation exchange chromatography (SCX), selected sample subfractions were analyzed with conventional and microfluidic LC platforms. Using similar experimental conditions, the performance of the microchip LC was comparable to that obtained with benchtop instrumentation, providing an overlap of 75% in proteins that were identified by more than two unique peptides. The microfluidic LC analysis of a protein-rich SCX fraction enabled the confident identification of 77 proteins by using conventional data filtering parameters, of 39 proteins with p < 0.001, and of 5 proteins that are known to be cancer-specific biomarkers, demonstrating thus the potential applicability of these chips for future high-throughput biomarker screening applications.

  20. Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis.

    PubMed

    Wen, Na; Zhao, Zhan; Fan, Beiyuan; Chen, Deyong; Men, Dong; Wang, Junbo; Chen, Jian

    2016-07-05

    This article reviews recent developments in droplet microfluidics enabling high-throughput single-cell analysis. Five key aspects in this field are included in this review: (1) prototype demonstration of single-cell encapsulation in microfluidic droplets; (2) technical improvements of single-cell encapsulation in microfluidic droplets; (3) microfluidic droplets enabling single-cell proteomic analysis; (4) microfluidic droplets enabling single-cell genomic analysis; and (5) integrated microfluidic droplet systems enabling single-cell screening. We examine the advantages and limitations of each technique and discuss future research opportunities by focusing on key performances of throughput, multifunctionality, and absolute quantification.

  1. Liposome production by microfluidics: potential and limiting factors

    PubMed Central

    Carugo, Dario; Bottaro, Elisabetta; Owen, Joshua; Stride, Eleanor; Nastruzzi, Claudio

    2016-01-01

    This paper provides an analysis of microfluidic techniques for the production of nanoscale lipid-based vesicular systems. In particular we focus on the key issues associated with the microfluidic production of liposomes. These include, but are not limited to, the role of lipid formulation, lipid concentration, residual amount of solvent, production method (including microchannel architecture), and drug loading in determining liposome characteristics. Furthermore, we propose microfluidic architectures for the mass production of liposomes with a view to potential industrial translation of this technology. PMID:27194474

  2. Liposome production by microfluidics: potential and limiting factors.

    PubMed

    Carugo, Dario; Bottaro, Elisabetta; Owen, Joshua; Stride, Eleanor; Nastruzzi, Claudio

    2016-05-19

    This paper provides an analysis of microfluidic techniques for the production of nanoscale lipid-based vesicular systems. In particular we focus on the key issues associated with the microfluidic production of liposomes. These include, but are not limited to, the role of lipid formulation, lipid concentration, residual amount of solvent, production method (including microchannel architecture), and drug loading in determining liposome characteristics. Furthermore, we propose microfluidic architectures for the mass production of liposomes with a view to potential industrial translation of this technology.

  3. Packaging of electro-microfluidic devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.

    2003-04-15

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  4. Packaging of electro-microfluidic devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Watson, Robert D.

    2002-01-01

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  5. A reversibly sealed, easy access, modular (SEAM) microfluidic architecture to establish in vitro tissue interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abhyankar, Vinay V.; Wu, Meiye; Koh, Chung -Yan

    Microfluidic barrier tissue models have emerged as advanced in vitro tools to explore interactions with external stimuli such as drug candidates, pathogens, or toxins. However, the procedures required to establish and maintain these systems can be challenging to implement for end users, particularly those without significant in-house engineering expertise. Here we present a module-based approach that provides an easy-to-use workflow to establish, maintain, and analyze microscale tissue constructs. Our approach begins with a removable culture insert that is magnetically coupled, decoupled, and transferred between standalone, prefabricated microfluidic modules for simplified cell seeding, culture, and downstream analysis. The modular approach allowsmore » several options for perfusion including standard syringe pumps or integration with a self-contained gravity-fed module for simple cell maintenance. As proof of concept, we establish a culture of primary human microvascular endothelial cells (HMVEC) and report combined surface protein imaging and gene expression after controlled apical stimulation with the bacterial endotoxin lipopolysaccharide (LPS). We also demonstrate the feasibility of incorporating hydrated biomaterial interfaces into the microfluidic architecture by integrating an ultra-thin (< 1 μm), self-assembled hyaluronic acid/peptide amphiphile culture membrane with brain-specific Young’s modulus (~ 1kPa). To highlight the importance of including biomimetic interfaces into microscale models we report multi-tiered readouts from primary rat cortical cells cultured on the self-assembled membrane and compare a panel of mRNA targets with primary brain tissue signatures. As a result, we anticipate that the modular approach and simplified operational workflows presented here will enable a wide range of research groups to incorporate microfluidic barrier tissue models into their work.« less

  6. A reversibly sealed, easy access, modular (SEAM) microfluidic architecture to establish in vitro tissue interfaces

    DOE PAGES

    Abhyankar, Vinay V.; Wu, Meiye; Koh, Chung -Yan; ...

    2016-05-26

    Microfluidic barrier tissue models have emerged as advanced in vitro tools to explore interactions with external stimuli such as drug candidates, pathogens, or toxins. However, the procedures required to establish and maintain these systems can be challenging to implement for end users, particularly those without significant in-house engineering expertise. Here we present a module-based approach that provides an easy-to-use workflow to establish, maintain, and analyze microscale tissue constructs. Our approach begins with a removable culture insert that is magnetically coupled, decoupled, and transferred between standalone, prefabricated microfluidic modules for simplified cell seeding, culture, and downstream analysis. The modular approach allowsmore » several options for perfusion including standard syringe pumps or integration with a self-contained gravity-fed module for simple cell maintenance. As proof of concept, we establish a culture of primary human microvascular endothelial cells (HMVEC) and report combined surface protein imaging and gene expression after controlled apical stimulation with the bacterial endotoxin lipopolysaccharide (LPS). We also demonstrate the feasibility of incorporating hydrated biomaterial interfaces into the microfluidic architecture by integrating an ultra-thin (< 1 μm), self-assembled hyaluronic acid/peptide amphiphile culture membrane with brain-specific Young’s modulus (~ 1kPa). To highlight the importance of including biomimetic interfaces into microscale models we report multi-tiered readouts from primary rat cortical cells cultured on the self-assembled membrane and compare a panel of mRNA targets with primary brain tissue signatures. As a result, we anticipate that the modular approach and simplified operational workflows presented here will enable a wide range of research groups to incorporate microfluidic barrier tissue models into their work.« less

  7. Graphene-based microfluidics for serial crystallography.

    PubMed

    Sui, Shuo; Wang, Yuxi; Kolewe, Kristopher W; Srajer, Vukica; Henning, Robert; Schiffman, Jessica D; Dimitrakopoulos, Christos; Perry, Sarah L

    2016-08-02

    Microfluidic strategies to enable the growth and subsequent serial crystallographic analysis of micro-crystals have the potential to facilitate both structural characterization and dynamic structural studies of protein targets that have been resistant to single-crystal strategies. However, adapting microfluidic crystallization platforms for micro-crystallography requires a dramatic decrease in the overall device thickness. We report a robust strategy for the straightforward incorporation of single-layer graphene into ultra-thin microfluidic devices. This architecture allows for a total material thickness of only ∼1 μm, facilitating on-chip X-ray diffraction analysis while creating a sample environment that is stable against significant water loss over several weeks. We demonstrate excellent signal-to-noise in our X-ray diffraction measurements using a 1.5 μs polychromatic X-ray exposure, and validate our approach via on-chip structure determination using hen egg white lysozyme (HEWL) as a model system. Although this work is focused on the use of graphene for protein crystallography, we anticipate that this technology should find utility in a wide range of both X-ray and other lab on a chip applications.

  8. Field-programmable lab-on-a-chip based on microelectrode dot array architecture.

    PubMed

    Wang, Gary; Teng, Daniel; Lai, Yi-Tse; Lu, Yi-Wen; Ho, Yingchieh; Lee, Chen-Yi

    2014-09-01

    The fundamentals of electrowetting-on-dielectric (EWOD) digital microfluidics are very strong: advantageous capability in the manipulation of fluids, small test volumes, precise dynamic control and detection, and microscale systems. These advantages are very important for future biochip developments, but the development of EWOD microfluidics has been hindered by the absence of: integrated detector technology, standard commercial components, on-chip sample preparation, standard manufacturing technology and end-to-end system integration. A field-programmable lab-on-a-chip (FPLOC) system based on microelectrode dot array (MEDA) architecture is presented in this research. The MEDA architecture proposes a standard EWOD microfluidic component called 'microelectrode cell', which can be dynamically configured into microfluidic components to perform microfluidic operations of the biochip. A proof-of-concept prototype FPLOC, containing a 30 × 30 MEDA, was developed by using generic integrated circuits computer aided design tools, and it was manufactured with standard low-voltage complementary metal-oxide-semiconductor technology, which allows smooth on-chip integration of microfluidics and microelectronics. By integrating 900 droplet detection circuits into microelectrode cells, the FPLOC has achieved large-scale integration of microfluidics and microelectronics. Compared to the full-custom and bottom-up design methods, the FPLOC provides hierarchical top-down design approach, field-programmability and dynamic manipulations of droplets for advanced microfluidic operations.

  9. Method Of Packaging And Assembling Electro-Microfluidic Devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.

    2004-11-23

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  10. Integrated bioassays in microfluidic devices: botulinum toxin assays.

    PubMed

    Mangru, Shakuntala; Bentz, Bryan L; Davis, Timothy J; Desai, Nitin; Stabile, Paul J; Schmidt, James J; Millard, Charles B; Bavari, Sina; Kodukula, Krishna

    2005-12-01

    A microfluidic assay was developed for screening botulinum neurotoxin serotype A (BoNT-A) by using a fluorescent resonance energy transfer (FRET) assay. Molded silicone microdevices with integral valves, pumps, and reagent reservoirs were designed and fabricated. Electrical and pneumatic control hardware were constructed, and software was written to automate the assay protocol and data acquisition. Detection was accomplished by fluorescence microscopy. The system was validated with a peptide inhibitor, running 2 parallel assays, as a feasibility demonstration. The small footprint of each bioreactor cell (0.5 cm2) and scalable fluidic architecture enabled many parallel assays on a single chip. The chip is programmable to run a dilution series in each lane, generating concentration-response data for multiple inhibitors. The assay results showed good agreement with the corresponding experiments done at a macroscale level. Although the system has been developed for BoNT-A screening, a wide variety of assays can be performed on the microfluidic chip with little or no modification.

  11. A microfluidic platform with integrated arrays for immunologic assays for biological pathogen detection

    NASA Astrophysics Data System (ADS)

    Klemm, Richard; Becker, Holger; Hlawatsch, Nadine; Julich, Sandra; Miethe, Peter; Moche, Christian; Schattschneider, Sebastian; Tomaso, Herbert; Gärtner, Claudia

    2014-05-01

    The ability to integrate complete assays on a microfluidic chip helps to greatly simplify instrument requirements and allows the use of lab-on-a-chip technology in the field. A core application for such field-portable systems is the detection of pathogens in a CBRN scenario such as permanent monitoring of airborne pathogens, e.g. in subway stations or hospitals etc. An immunological assay was chosen as method for the pathogen identification. The conceptual approach was its realization as a lab-on-a-chip system, enabling an easy handling of the sample in an automated manner. The immunological detection takes place on an antibody array directly implemented in the microfluidic network. Different immobilization strategies will be presented showing the performance of the system. Central elements of the disposable microfluidic device like fluidic interface, turning valves, liquid introduction and waste storage, as well as the architecture of measurement and control fluidic network, will be introduced. Overall process times of about 30 minutes were achieved and assays for the detection of Francisella tularensis and Yersinia pestis are presented. An important feature of the integrated lab-on-a-chip approach is that all waste liquids remain on-chip and contamination risks can be avoided.

  12. Fabrication, Metrology, and Transport Characteristics of Single Polymeric Nanopores in Three-Dimensional Hybrid Microfluidic/Nanofluidic Devices

    ERIC Educational Resources Information Center

    King, Travis L.

    2009-01-01

    The incorporation of nanofluidic elements between microfluidic channels to form hybrid microfluidic/nanofluidic architectures allows the extension of microfluidic systems into the third dimension, thus removing the constraints imposed by planarity. Measuring and understanding the behavior of these devices creates new analytical challenges due to…

  13. Fabrication of microfluidic architectures for optimal flow rate and concentration measurement for lab on chip application

    NASA Astrophysics Data System (ADS)

    Adam, Tijjani; Hashim, U.

    2017-03-01

    Optimum flow in micro channel for sensing purpose is challenging. In this study, The optimizations of the fluid sample flows are made through the design and characterization of the novel microfluidics' architectures to achieve the optimal flow rate in the micro channels. The biocompatibility of the Polydimetylsiloxane (Sylgard 184 silicon elastomer) polymer used to fabricate the device offers avenue for the device to be implemented as the universal fluidic delivery system for bio-molecules sensing in various bio-medical applications. The study uses the following methodological approaches, designing a novel microfluidics' architectures by integrating the devices on a single 4 inches silicon substrate, fabricating the designed microfluidic devices using low-cost solution soft lithography technique, characterizing and validating the flow throughput of urine samples in the micro channels by generating pressure gradients through the devices' inlets. The characterization on the urine samples flow in the micro channels have witnessed the constant flow throughout the devices.

  14. An integrated design and fabrication strategy for entirely soft, autonomous robots.

    PubMed

    Wehner, Michael; Truby, Ryan L; Fitzgerald, Daniel J; Mosadegh, Bobak; Whitesides, George M; Lewis, Jennifer A; Wood, Robert J

    2016-08-25

    Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots.

  15. Comparison of roll-to-roll replication approaches for microfluidic and optical functions in lab-on-a-chip diagnostic devices

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Baum, Christoph; Bastuck, Thomas

    2015-03-01

    Economically advantageous microfabrication technologies for lab-on-a-chip diagnostic devices substituting commonly used glass etching or injection molding processes are one of the key enablers for the emerging market of microfluidic devices. On-site detection in fields of life sciences, point of care diagnostics and environmental analysis requires compact, disposable and highly functionalized systems. Roll-to-roll production as a high volume process has become the emerging fabrication technology for integrated, complex high technology products within recent years (e.g. fuel cells). Differently functionalized polymer films enable researchers to create a new generation of lab-on-a-chip devices by combining electronic, microfluidic and optical functions in multilayer architecture. For replication of microfluidic and optical functions via roll-to-roll production process competitive approaches are available. One of them is to imprint fluidic channels and optical structures of micro- or nanometer scale from embossing rollers into ultraviolet (UV) curable lacquers on polymer substrates. Depending on dimension, shape and quantity of those structures there are alternative manufacturing technologies for the embossing roller. Ultra-precise diamond turning, electroforming or casting polymer materials are used either for direct structuring or manufacturing of roller sleeves. Mastering methods are selected for application considering replication quality required and structure complexity. Criteria for the replication quality are surface roughness and contour accuracy. Structure complexity is evaluated by shapes producible (e.g. linear, circular) and aspect ratio. Costs for the mastering process and structure lifetime are major cost factors. The alternative replication approaches are introduced and analyzed corresponding to the criteria presented. Advantages and drawbacks of each technology are discussed and exemplary applications are presented.

  16. 3D nanofabrication inside rapid prototyped microfluidic channels showcased by wet-spinning of single micrometre fibres.

    PubMed

    Lölsberg, Jonas; Linkhorst, John; Cinar, Arne; Jans, Alexander; Kuehne, Alexander J C; Wessling, Matthias

    2018-05-01

    Microfluidics is an established multidisciplinary research domain with widespread applications in the fields of medicine, biotechnology and engineering. Conventional production methods of microfluidic chips have been limited to planar structures, preventing the exploitation of truly three-dimensional architectures for applications such as multi-phase droplet preparation or wet-phase fibre spinning. Here the challenge of nanofabrication inside a microfluidic chip is tackled for the showcase of a spider-inspired spinneret. Multiphoton lithography, an additive manufacturing method, was used to produce free-form microfluidic masters, subsequently replicated by soft lithography. Into the resulting microfluidic device, a three-dimensional spider-inspired spinneret was directly fabricated in-chip via multiphoton lithography. Applying this unprecedented fabrication strategy, the to date smallest printed spinneret nozzle is produced. This spinneret resides tightly sealed, connecting it to the macroscopic world. Its functionality is demonstrated by wet-spinning of single-digit micron fibres through a polyacrylonitrile coagulation process induced by a water sheath layer. The methodology developed here demonstrates fabrication strategies to interface complex architectures into classical microfluidic platforms. Using multiphoton lithography for in-chip fabrication adopts a high spatial resolution technology for improving geometry and thus flow control inside microfluidic chips. The showcased fabrication methodology is generic and will be applicable to multiple challenges in fluid control and beyond.

  17. In-air microfluidics: Drop and jet coalescence enables rapid multi-phase 3D printing

    NASA Astrophysics Data System (ADS)

    Visser, Claas Willem; Kamperman, Tom; Lohse, Detlef; Karperien, Marcel; University of Twente Collaboration

    2016-11-01

    For the first time, we connect and integrate the fields of microfluidics and additive manufacturing, by presenting a unifying technology that we call In-air microfluidics (IAMF). We impact two liquid jets or a jet and a droplet train while flying in-air, and control their coalescence and solidification. This approach enables producing monodisperse emulsions, particles, and fibers with controlled shape and size (10 to 300 µm) and production rates 100x higher than droplet microfluidics. A single device is sufficient to process a variety of materials, and to produce different particle or fiber shapes, in marked contrast to current microfluidic devices or printers. In-air microfluidics also enables rapid deposition onto substrates, for example to form 3D printed (bio)materials which are partly-liquid but still shape-stable.

  18. A novel microfluidic microplate as the next generation assay platform for enzyme linked immunoassays (ELISA).

    PubMed

    Kai, Junhai; Puntambekar, Aniruddha; Santiago, Nelson; Lee, Se Hwan; Sehy, David W; Moore, Victor; Han, Jungyoup; Ahn, Chong H

    2012-11-07

    In this work we introduce a novel microfluidic enzyme linked immunoassays (ELISA) microplate as the next generation assay platform for unparalleled assay performances. A combination of microfluidic technology with standard SBS-configured 96-well microplate architecture, in the form of microfluidic microplate technology, allows for the improvement of ELISA workflows, conservation of samples and reagents, improved reaction kinetics, and the ability to improve the sensitivity of the assay by multiple analyte loading. This paper presents the design and characterization of the microfluidic microplate, and its application in ELISA.

  19. CMOS Enabled Microfluidic Systems for Healthcare Based Applications.

    PubMed

    Khan, Sherjeel M; Gumus, Abdurrahman; Nassar, Joanna M; Hussain, Muhammad M

    2018-04-01

    With the increased global population, it is more important than ever to expand accessibility to affordable personalized healthcare. In this context, a seamless integration of microfluidic technology for bioanalysis and drug delivery and complementary metal oxide semiconductor (CMOS) technology enabled data-management circuitry is critical. Therefore, here, the fundamentals, integration aspects, and applications of CMOS-enabled microfluidic systems for affordable personalized healthcare systems are presented. Critical components, like sensors, actuators, and their fabrication and packaging, are discussed and reviewed in detail. With the emergence of the Internet-of-Things and the upcoming Internet-of-Everything for a people-process-data-device connected world, now is the time to take CMOS-enabled microfluidics technology to as many people as possible. There is enormous potential for microfluidic technologies in affordable healthcare for everyone, and CMOS technology will play a major role in making that happen. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Self-contained microfluidic systems: a review.

    PubMed

    Boyd-Moss, Mitchell; Baratchi, Sara; Di Venere, Martina; Khoshmanesh, Khashayar

    2016-08-16

    Microfluidic systems enable rapid diagnosis, screening and monitoring of diseases and health conditions using small amounts of biological samples and reagents. Despite these remarkable features, conventional microfluidic systems rely on bulky expensive external equipment, which hinders their utility as powerful analysis tools outside of research laboratories. 'Self-contained' microfluidic systems, which contain all necessary components to facilitate a complete assay, have been developed to address this limitation. In this review, we provide an in-depth overview of self-contained microfluidic systems. We categorise these systems based on their operating mechanisms into three major groups: passive, hand-powered and active. Several examples are provided to discuss the structure, capabilities and shortcomings of each group. In particular, we discuss the self-contained microfluidic systems enabled by active mechanisms, due to their unique capability for running multi-step and highly controllable diagnostic assays. Integration of self-contained microfluidic systems with the image acquisition and processing capabilities of smartphones, especially those equipped with accessory optical components, enables highly sensitive and quantitative assays, which are discussed. Finally, the future trends and possible solutions to expand the versatility of self-contained, stand-alone microfluidic platforms are outlined.

  1. Surface acoustic wave microfluidics

    PubMed Central

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S.; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2014-01-01

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering, and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting, and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next. PMID:23900527

  2. Biomimetic engineering of a generic cell-on-membrane architecture by microfluidic engraving for on-chip bioassays.

    PubMed

    Lee, Sang-Wook; Noh, Ji-Yoon; Park, Seung Chul; Chung, Jin-Ho; Lee, Byoungho; Lee, Sin-Doo

    2012-05-22

    We develop a biomimetic cell-on-membrane architecture in close-volume format which allows the interfacial biocompatibility and the reagent delivery capability for on-chip bioassays. The key concept lies in the microfluidic engraving of lipid membranes together with biological cells on a supported substrate with topographic patterns. The simultaneous engraving process of a different class of fluids is promoted by the front propagation of an air-water interface inside a flow-cell. This highly parallel, microfluidic cell-on-membrane approach opens a door to the natural biocompatibility in mimicking cellular stimuli-response behavior essential for diverse on-chip bioassays that can be precisely controlled in the spatial and temporal manner.

  3. Cytopathological image analysis using deep-learning networks in microfluidic microscopy.

    PubMed

    Gopakumar, G; Hari Babu, K; Mishra, Deepak; Gorthi, Sai Siva; Sai Subrahmanyam, Gorthi R K

    2017-01-01

    Cytopathologic testing is one of the most critical steps in the diagnosis of diseases, including cancer. However, the task is laborious and demands skill. Associated high cost and low throughput drew considerable interest in automating the testing process. Several neural network architectures were designed to provide human expertise to machines. In this paper, we explore and propose the feasibility of using deep-learning networks for cytopathologic analysis by performing the classification of three important unlabeled, unstained leukemia cell lines (K562, MOLT, and HL60). The cell images used in the classification are captured using a low-cost, high-throughput cell imaging technique: microfluidics-based imaging flow cytometry. We demonstrate that without any conventional fine segmentation followed by explicit feature extraction, the proposed deep-learning algorithms effectively classify the coarsely localized cell lines. We show that the designed deep belief network as well as the deeply pretrained convolutional neural network outperform the conventionally used decision systems and are important in the medical domain, where the availability of labeled data is limited for training. We hope that our work enables the development of a clinically significant high-throughput microfluidic microscopy-based tool for disease screening/triaging, especially in resource-limited settings.

  4. Nano/microfluidics for diagnosis of infectious diseases in developing countries

    PubMed Central

    Lee, Won Gu; Kim, Yun-Gon; Chung, Bong Geun; Demirci, Utkan; Khademhosseini, Ali

    2010-01-01

    Nano/microfluidic technologies are emerging as powerful enabling tools for diagnosis and monitoring of infectious diseases in both developed and developing countries. Miniaturized nano/microfluidic platforms that precisely manipulate small fluid volumes can be used to enable medical diagnosis in a more rapid and accurate manner. In particular, these nano/microfluidic diagnostic technologies are potentially applicable to global health applications, because they are disposable, inexpensive, portable, and easy-to-use for detection of infectious diseases. In this paper, we review recent developments in nano/microfluidic technologies for clinical point-of-care applications at resource-limited settings in developing countries. PMID:19954755

  5. Design of portable ultraminiature flow cytometers for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Leary, James F.

    2018-02-01

    Design of portable microfluidic flow/image cytometry devices for measurements in the field (e.g. initial medical diagnostics) requires careful design in terms of power requirements and weight to allow for realistic portability. True portability with high-throughput microfluidic systems also requires sampling systems without the need for sheath hydrodynamic focusing both to avoid the need for sheath fluid and to enable higher volumes of actual sample, rather than sheath/sample combinations. Weight/power requirements dictate use of super-bright LEDs with top-hat excitation beam architectures and very small silicon photodiodes or nanophotonic sensors that can both be powered by small batteries. Signal-to-noise characteristics can be greatly improved by appropriately pulsing the LED excitation sources and sampling and subtracting noise in between excitation pulses. Microfluidic cytometry also requires judicious use of small sample volumes and appropriate statistical sampling by microfluidic cytometry or imaging for adequate statistical significance to permit real-time (typically in less than 15 minutes) initial medical decisions for patients in the field. This is not something conventional cytometry traditionally worries about, but is very important for development of small, portable microfluidic devices with small-volume throughputs. It also provides a more reasonable alternative to conventional tubes of blood when sampling geriatric and newborn patients for whom a conventional peripheral blood draw can be problematical. Instead one or two drops of blood obtained by pin-prick should be able to provide statistically meaningful results for use in making real-time medical decisions without the need for blood fractionation, which is not realistic in the doctor's office or field.

  6. Microfluidics-Enabled Diagnostic Systems: Markets, Challenges, and Examples.

    PubMed

    Becker, Holger; Gärtner, Claudia

    2017-01-01

    Microfluidics has become an important tool for the commercial product development in diagnostics. This article will focus on current technical demands during the development process such as material and integration challenges. Furthermore, we present data on the diagnostics market as well as examples of microfluidics-enabled systems currently under commercial development or already on the market.

  7. Differentially photo-crosslinked polymers enable self-assembling microfluidics

    PubMed Central

    Jamal, Mustapha; Zarafshar, Aasiyeh M.; Gracias, David H.

    2012-01-01

    An important feature of naturally self-assembled systems such as leaves and tissues is that they are curved and have embedded fluidic channels that enable the transport of nutrients to, or removal of waste from, specific three-dimensional (3D) regions. Here, we report the self-assembly of photopatterned polymers, and consequently microfluidic devices, into curved geometries. We discovered that differentially photo-crosslinked SU-8 films spontaneously and reversibly curved upon film de-solvation and re-solvation. Photolithographic patterning of the SU-8 films enabled the self-assembly of cylinders, cubes, and bidirectionally folded sheets. We integrated polydimethylsiloxane (PDMS) microfluidic channels with these SU-8 films to self-assemble curved microfluidic networks. PMID:22068594

  8. Principles, Techniques, and Applications of Tissue Microfluidics

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called tissue microfluidics because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets. The proposed principles represent a paradigm shift in microfluidic technology in three important ways: Microfluidic devices are to be directly integrated with, onto, or around tissue samples, in contrast to the conventional method of off-chip sample extraction followed by sample insertion in microfluidic devices. Architectural and operational principles of microfluidic devices are to be subordinated to suit specific tissue structure and needs, in contrast to the conventional method of building devices according to fluidic function alone and without regard to tissue structure. Sample acquisition from tissue is to be performed on-chip and is to be integrated with the diagnostic measurement within the same device, in contrast to the conventional method of off-chip sample prep and subsequent insertion into a diagnostic device. A more advanced form of tissue integration with microfluidics is tissue encapsulation, wherein the sample is completely encapsulated within a microfluidic device, to allow for full surface access. The immediate applications of these approaches lie with diagnostics of tissue slices and biopsy samples e.g. for cancer but the approaches would also be very useful in comparative genomics and other areas of fundamental research involving heterogeneous tissue samples.

  9. A Combined Fabrication and Instrumentation Platform for Sample Preparation.

    PubMed

    Guckenberger, David J; Thomas, Peter C; Rothbauer, Jacob; LaVanway, Alex J; Anderson, Meghan; Gilson, Dan; Fawcett, Kevin; Berto, Tristan; Barrett, Kevin; Beebe, David J; Berry, Scott M

    2014-06-01

    While potentially powerful, access to molecular diagnostics is substantially limited in the developing world. Here we present an approach to reduced cost molecular diagnostic instrumentation that has the potential to empower developing world communities by reducing costs through streamlining the sample preparation process. In addition, this instrument is capable of producing its own consumable devices on demand, reducing reliance on assay suppliers. Furthermore, this instrument is designed with an "open" architecture, allowing users to visually observe the assay process and make modifications as necessary (as opposed to traditional "black box" systems). This open environment enables integration of microfluidic fabrication and viral RNA purification onto an easy-to-use modular system via the use of interchangeable trays. Here we employ this system to develop a protocol to fabricate microfluidic devices and then use these devices to isolate viral RNA from serum for the measurement of human immunodeficiency virus (HIV) viral load. Results obtained from this method show significantly reduced error compared with similar nonautomated sample preparation processes. © 2014 Society for Laboratory Automation and Screening.

  10. High-content screening in microfluidic devices.

    PubMed

    Cheong, Raymond; Paliwal, Saurabh; Levchenko, Andre

    2010-08-01

    Miniaturization is the key to advancing the state of the art in high-content screening (HCS) in order to enable dramatic cost savings through reduced usage of expensive biochemical reagents and to enable large-scale screening on primary cells. Microfluidic technology offers the potential to enable HCS to be performed with an unprecedented degree of miniaturization. This perspective highlights a real-world example from the authors’ work of HCS assays implemented in a highly miniaturized microfluidic format. The advantages of this technology are discussed, including cost savings, high-throughput screening on primary cells, improved accuracy, the ability to study complex time-varying stimuli, and ease of automation, integration and scaling. The reader will understand the capabilities of anew microfluidics-based platform for HCS and the advantages it provides over conventional plate-based HCS. Microfluidics technology will drive significant advancements and broader usage and applicability of HCS in drug discovery.

  11. Microfluidics for food, agriculture and biosystems industries.

    PubMed

    Neethirajan, Suresh; Kobayashi, Isao; Nakajima, Mitsutoshi; Wu, Dan; Nandagopal, Saravanan; Lin, Francis

    2011-05-07

    Microfluidics, a rapidly emerging enabling technology has the potential to revolutionize food, agriculture and biosystems industries. Examples of potential applications of microfluidics in food industry include nano-particle encapsulation of fish oil, monitoring pathogens and toxins in food and water supplies, micro-nano-filtration for improving food quality, detection of antibiotics in dairy food products, and generation of novel food structures. In addition, microfluidics enables applications in agriculture and animal sciences such as nutrients monitoring and plant cells sorting for improving crop quality and production, effective delivery of biopesticides, simplified in vitro fertilization for animal breeding, animal health monitoring, vaccination and therapeutics. Lastly, microfluidics provides new approaches for bioenergy research. This paper synthesizes information of selected microfluidics-based applications for food, agriculture and biosystems industries. © The Royal Society of Chemistry 2011

  12. Open-source, community-driven microfluidics with Metafluidics.

    PubMed

    Kong, David S; Thorsen, Todd A; Babb, Jonathan; Wick, Scott T; Gam, Jeremy J; Weiss, Ron; Carr, Peter A

    2017-06-07

    Microfluidic devices have the potential to automate and miniaturize biological experiments, but open-source sharing of device designs has lagged behind sharing of other resources such as software. Synthetic biologists have used microfluidics for DNA assembly, cell-free expression, and cell culture, but a combination of expense, device complexity, and reliance on custom set-ups hampers their widespread adoption. We present Metafluidics, an open-source, community-driven repository that hosts digital design files, assembly specifications, and open-source software to enable users to build, configure, and operate a microfluidic device. We use Metafluidics to share designs and fabrication instructions for both a microfluidic ring-mixer device and a 32-channel tabletop microfluidic controller. This device and controller are applied to build genetic circuits using standard DNA assembly methods including ligation, Gateway, Gibson, and Golden Gate. Metafluidics is intended to enable a broad community of engineers, DIY enthusiasts, and other nontraditional participants with limited fabrication skills to contribute to microfluidic research.

  13. Free-surface microfluidics for detection of airborne explosives

    NASA Astrophysics Data System (ADS)

    Meinhart, Carl; Piorek, Brian; Banerjee, Sanjoy; Lee, Seung Joon; Moskovits, Martin

    2008-11-01

    A novel microfluidic, remote-sensing, chemical detection platform has been developed for real-time sensing of airborne agents. The key enabling technology is a newly developed concept termed Free-Surface Fluidics (FSF), where one or more fluidic surfaces of a microchannel flow are confined by surface tension and exposed to the surrounding atmosphere. The result is a unique open channel flow environment that is driven by pressure through surface tension, and not subject to body forces, such as gravity. Evaporation and flow rates are controlled by microchannel geometry, surface chemistry and precisely-controlled temperature profiles. The free-surface fluidic architecture is combined with Surface-Enhanced Raman Spectroscopy (SERS) to allow for real-time profiling of atmospheric species and detection of airborne agents. The aggregation of SERS nanoparticles is controlled using microfluidics, to obtain dimer nanoparticle clusters at known streamwise positions in the microchannel. These dimers form SERS hot-spots, which amplify the Raman signal by 8 -- 10 orders of magnitude. Results indicate that explosive agents such as DNT, TNT, RDX, TATP and picric acid in the surrounding atmosphere can be readily detected by the SERS system. Due to the amplification of the SERS system, explosive molecules with concentrations of parts per trillion can be detected, even in the presence of interferent molecules having six orders of magnitude higher concentration.

  14. A Fully Automated Microfluidic Femtosecond Laser Axotomy Platform for Nerve Regeneration Studies in C. elegans

    PubMed Central

    Gokce, Sertan Kutal; Guo, Samuel X.; Ghorashian, Navid; Everett, W. Neil; Jarrell, Travis; Kottek, Aubri; Bovik, Alan C.; Ben-Yakar, Adela

    2014-01-01

    Femtosecond laser nanosurgery has been widely accepted as an axonal injury model, enabling nerve regeneration studies in the small model organism, Caenorhabditis elegans. To overcome the time limitations of manual worm handling techniques, automation and new immobilization technologies must be adopted to improve throughput in these studies. While new microfluidic immobilization techniques have been developed that promise to reduce the time required for axotomies, there is a need for automated procedures to minimize the required amount of human intervention and accelerate the axotomy processes crucial for high-throughput. Here, we report a fully automated microfluidic platform for performing laser axotomies of fluorescently tagged neurons in living Caenorhabditis elegans. The presented automation process reduces the time required to perform axotomies within individual worms to ∼17 s/worm, at least one order of magnitude faster than manual approaches. The full automation is achieved with a unique chip design and an operation sequence that is fully computer controlled and synchronized with efficient and accurate image processing algorithms. The microfluidic device includes a T-shaped architecture and three-dimensional microfluidic interconnects to serially transport, position, and immobilize worms. The image processing algorithms can identify and precisely position axons targeted for ablation. There were no statistically significant differences observed in reconnection probabilities between axotomies carried out with the automated system and those performed manually with anesthetics. The overall success rate of automated axotomies was 67.4±3.2% of the cases (236/350) at an average processing rate of 17.0±2.4 s. This fully automated platform establishes a promising methodology for prospective genome-wide screening of nerve regeneration in C. elegans in a truly high-throughput manner. PMID:25470130

  15. Principles, Techniques, and Applications of Tissue Microfluidics

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called "tissue microfluidics" because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets.

  16. High content screening in microfluidic devices

    PubMed Central

    Cheong, Raymond; Paliwal, Saurabh; Levchenko, Andre

    2011-01-01

    Importance of the field Miniaturization is key to advancing the state-of-the-art in high content screening (HCS), in order to enable dramatic cost savings through reduced usage of expensive biochemical reagents and to enable large-scale screening on primary cells. Microfluidic technology offers the potential to enable HCS to be performed with an unprecedented degree of miniaturization. Areas covered in this review This perspective highlights a real-world example from the authors’ work of HCS assays implemented in a highly miniaturized microfluidic format. Advantages of this technology are discussed, including cost savings, high throughput screening on primary cells, improved accuracy, the ability to study complex time-varying stimuli, and ease of automation, integration, and scaling. What the reader will gain The reader will understand the capabilities of a new microfluidics-based platform for HCS, and the advantages it provides over conventional plate-based HCS. Take home message Microfluidics technology will drive significant advancements and broader usage and applicability of HCS in drug discovery. PMID:21852997

  17. DNA Bipedal Motor Achieves a Large Number of Steps Due to Operation Using Microfluidics-Based Interface.

    PubMed

    Tomov, Toma E; Tsukanov, Roman; Glick, Yair; Berger, Yaron; Liber, Miran; Avrahami, Dorit; Gerber, Doron; Nir, Eyal

    2017-04-25

    Realization of bioinspired molecular machines that can perform many and diverse operations in response to external chemical commands is a major goal in nanotechnology, but current molecular machines respond to only a few sequential commands. Lack of effective methods for introduction and removal of command compounds and low efficiencies of the reactions involved are major reasons for the limited performance. We introduce here a user interface based on a microfluidics device and single-molecule fluorescence spectroscopy that allows efficient introduction and removal of chemical commands and enables detailed study of the reaction mechanisms involved in the operation of synthetic molecular machines. The microfluidics provided 64 consecutive DNA strand commands to a DNA-based motor system immobilized inside the microfluidics, driving a bipedal walker to perform 32 steps on a DNA origami track. The microfluidics enabled removal of redundant strands, resulting in a 6-fold increase in processivity relative to an identical motor operated without strand removal and significantly more operations than previously reported for user-controlled DNA nanomachines. In the motor operated without strand removal, redundant strands interfere with motor operation and reduce its performance. The microfluidics also enabled computer control of motor direction and speed. Furthermore, analysis of the reaction kinetics and motor performance in the absence of redundant strands, made possible by the microfluidics, enabled accurate modeling of the walker processivity. This enabled identification of dynamic boundaries and provided an explanation, based on the "trap state" mechanism, for why the motor did not perform an even larger number of steps. This understanding is very important for the development of future motors with significantly improved performance. Our universal interface enables two-way communication between user and molecular machine and, relying on concepts similar to that of solid-phase synthesis, removes limitations on the number of external stimuli. This interface, therefore, is an important step toward realization of reliable, processive, reproducible, and useful externally controlled DNA nanomachines.

  18. Enhanced biocompatibility of neural probes by integrating microstructures and delivering anti-inflammatory agents via microfluidic channels

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Kim, Eric; Meggo, Anika; Gandhi, Sachin; Luo, Hao; Kallakuri, Srinivas; Xu, Yong; Zhang, Jinsheng

    2017-04-01

    Objective. Biocompatibility is a major issue for chronic neural implants, involving inflammatory and wound healing responses of neurons and glial cells. To enhance biocompatibility, we developed silicon-parylene hybrid neural probes with open architecture electrodes, microfluidic channels and a reservoir for drug delivery to suppress tissue responses. Approach. We chronically implanted our neural probes in the rat auditory cortex and investigated (1) whether open architecture electrode reduces inflammatory reaction by measuring glial responses; and (2) whether delivery of antibiotic minocycline reduces inflammatory and tissue reaction. Four weeks after implantation, immunostaining for glial fibrillary acid protein (astrocyte marker) and ionizing calcium-binding adaptor molecule 1 (macrophages/microglia cell marker) were conducted to identify immunoreactive astrocyte and microglial cells, and to determine the extent of astrocytes and microglial cell reaction/activation. A comparison was made between using traditional solid-surface electrodes and newly-designed electrodes with open architecture, as well as between deliveries of minocycline and artificial cerebral-spinal fluid diffused through microfluidic channels. Main results. The new probes with integrated micro-structures induced minimal tissue reaction compared to traditional electrodes at 4 weeks after implantation. Microcycline delivered through integrated microfluidic channels reduced tissue response as indicated by decreased microglial reaction around the neural probes implanted. Significance. The new design will help enhance the long-term stability of the implantable devices.

  19. Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method.

    PubMed

    Thompson, Brandon L; Ouyang, Yiwen; Duarte, Gabriela R M; Carrilho, Emanuel; Krauss, Shannon T; Landers, James P

    2015-06-01

    We describe a technique for fabricating microfluidic devices with complex multilayer architectures using a laser printer, a CO2 laser cutter, an office laminator and common overhead transparencies as a printable substrate via a laser print, cut and laminate (PCL) methodology. The printer toner serves three functions: (i) it defines the microfluidic architecture, which is printed on the overhead transparencies; (ii) it acts as the adhesive agent for the bonding of multiple transparency layers; and (iii) it provides, in its unmodified state, printable, hydrophobic 'valves' for fluidic flow control. By using common graphics software, e.g., CorelDRAW or AutoCAD, the protocol produces microfluidic devices with a design-to-device time of ∼40 min. Devices of any shape can be generated for an array of multistep assays, with colorimetric detection of molecular species ranging from small molecules to proteins. Channels with varying depths can be formed using multiple transparency layers in which a CO2 laser is used to remove the polyester from the channel sections of the internal layers. The simplicity of the protocol, availability of the equipment and substrate and cost-effective nature of the process make microfluidic devices available to those who might benefit most from expedited, microscale chemistry.

  20. Current Trends in Ubiquitous Biosensing

    DTIC Science & Technology

    2013-08-01

    fundamental advances have been made in the synergistic combination of research in the fields of microfluidics and optics, coined “optofluidics” [24-26...microfabrication and clean-room techniques for the development of microfluidic devices [27]. Advances in the rapid fabrication of nano- and microfluidic ...Transduction Microfluidic Processing Sample Introduction Optofluidics Enabled Bio-Sensing A B C Figure 4: (A) Schematic diagram of optofluidic tomography

  1. In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials

    PubMed Central

    Visser, Claas Willem; Kamperman, Tom; Karbaat, Lisanne P.; Lohse, Detlef; Karperien, Marcel

    2018-01-01

    Microfluidic chips provide unparalleled control over droplets and jets, which have advanced all natural sciences. However, microfluidic applications could be vastly expanded by increasing the per-channel throughput and directly exploiting the output of chips for rapid additive manufacturing. We unlock these features with in-air microfluidics, a new chip-free platform to manipulate microscale liquid streams in the air. By controlling the composition and in-air impact of liquid microjets by surface tension–driven encapsulation, we fabricate monodisperse emulsions, particles, and fibers with diameters of 20 to 300 μm at rates that are 10 to 100 times higher than chip-based droplet microfluidics. Furthermore, in-air microfluidics uniquely enables module-based production of three-dimensional (3D) multiscale (bio)materials in one step because droplets are partially solidified in-flight and can immediately be printed onto a substrate. In-air microfluidics is cytocompatible, as demonstrated by additive manufacturing of 3D modular constructs with tailored microenvironments for multiple cell types. Its in-line control, high throughput and resolution, and cytocompatibility make in-air microfluidics a versatile platform technology for science, industry, and health care. PMID:29399628

  2. Microfluidic fuel cell systems

    NASA Astrophysics Data System (ADS)

    Ho, Bernard; Kjeang, Erik

    2011-06-01

    A microfluidic fuel cell is a microfabricated device that produces electrical power through electrochemical reactions involving a fuel and an oxidant. Microfluidic fuel cell systems exploit co-laminar flow on the microscale to separate the fuel and oxidant species, in contrast to conventional fuel cells employing an ion exchange membrane for this function. Since 2002 when the first microfluidic fuel cell was invented, many different fuels, oxidants, and architectures have been investigated conceptually and experimentally. In this mini-review article, recent advancements in the field of microfluidic fuel cell systems are documented, with particular emphasis on design, operation, and performance. The present microfluidic fuel cell systems are categorized by the fluidic phases of the fuel and oxidant streams, featuring gaseous/gaseous, liquid/gaseous, and liquid/liquid systems. The typical cell configurations and recent contributions in each category are analyzed. Key research challenges and opportunities are highlighted and recommendations for further work are provided.

  3. Lifespan-on-a-chip: microfluidic chambers for performing lifelong observation of C. elegans†

    PubMed Central

    Hulme, S. Elizabeth; Shevkoplyas, Sergey S.; McGuigan, Alison P.; Apfeld, Javier; Fontana, Walter

    2011-01-01

    This article describes the fabrication of a microfluidic device for the liquid culture of many individual nematode worms (Caenorhabditis elegans) in separate chambers. Each chamber houses a single worm from the fourth larval stage until death, and enables examination of a population of individual worms for their entire adult lifespans. Adjacent to the chambers, the device includes microfluidic worm clamps, which enable periodic, temporary immobilization of each worm. The device made it possible to track changes in body size and locomotion in individual worms throughout their lifespans. This ability to perform longitudinal measurements within the device enabled the identification of age-related phenotypic changes that correlate with lifespan in C. elegans. PMID:20162234

  4. Dielectrophoresis-based microfluidic platforms for cancer diagnostics.

    PubMed

    Chan, Jun Yuan; Ahmad Kayani, Aminuddin Bin; Md Ali, Mohd Anuar; Kok, Chee Kuang; Yeop Majlis, Burhanuddin; Hoe, Susan Ling Ling; Marzuki, Marini; Khoo, Alan Soo-Beng; Ostrikov, Kostya Ken; Ataur Rahman, Md; Sriram, Sharath

    2018-01-01

    The recent advancement of dielectrophoresis (DEP)-enabled microfluidic platforms is opening new opportunities for potential use in cancer disease diagnostics. DEP is advantageous because of its specificity, low cost, small sample volume requirement, and tuneable property for microfluidic platforms. These intrinsic advantages have made it especially suitable for developing microfluidic cancer diagnostic platforms. This review focuses on a comprehensive analysis of the recent developments of DEP enabled microfluidic platforms sorted according to the target cancer cell. Each study is critically analyzed, and the features of each platform, the performance, added functionality for clinical use, and the types of samples, used are discussed. We address the novelty of the techniques, strategies, and design configuration used in improving on existing technologies or previous studies. A summary of comparing the developmental extent of each study is made, and we conclude with a treatment of future trends and a brief summary.

  5. Synthesis and supramolecular assembly of biomimetic polymers

    NASA Astrophysics Data System (ADS)

    Marciel, Amanda Brittany

    A grand challenge in materials chemistry is the synthesis of macromolecules and polymers with precise shapes and architectures. Polymer microstructure and architecture strongly affect the resulting functionality of advanced materials, yet understanding the static and dynamic properties of these complex macromolecules in bulk has been difficult due to their inherit polydispersity. Single molecule studies have provided a wealth of information on linear flexible and semi-flexible polymers in dilute solutions. However, few investigations have focused on industrially relevant complex topologies (e.g., star, comb, hyperbranched polymers) in industrially relevant solution conditions (e.g., semi-dilute, concentrated). Therefore, from this perspective there is a strong need to synthesize precision complex architectures for bulk studies as well as complex architectures compatible with current single molecule techniques to study static and dynamic polymer properties. In this way, we developed a hybrid synthetic strategy to produce branched polymer architectures based on chemically modified DNA. Overall, this approach enables control of backbone length and flexibility, as well as branch grafting density and chemical identity. We utilized a two-step scheme based on enzymatic incorporation of non-natural nucleotides containing bioorthogonal dibenzocyclooctyne (DBCO) functional groups along the main polymer backbone, followed by copper-free "click" chemistry to graft synthetic polymer branches or oligonucleotide branches to the DNA backbone, thereby allowing for the synthesis of a variety of polymer architectures, including three-arm stars, H-polymers, graft block copolymers, and comb polymers for materials assembly and single molecule studies. Bulk materials properties are also affected by industrial processing conditions that alter polymer morphology. Therefore, in an alternative strategy we developed a microfluidic-based approach to assemble highly aligned synthetic oligopeptides nanostructures using microscale extensional flows. This strategy enabled reproducible, reliable fabrication of aligned hierarchical constructs that do not form spontaneously in solution. In this way, fluidic-directed assembly of supramolecular structures allows for unprecedented manipulation at the nano- and mesoscale, which has the potential to provide rapid and efficient control of functional materials properties.

  6. Desktop aligner for fabrication of multilayer microfluidic devices.

    PubMed

    Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping

    2015-07-01

    Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm(-1). To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices.

  7. Desktop aligner for fabrication of multilayer microfluidic devices

    PubMed Central

    Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping

    2015-01-01

    Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm−1. To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices. PMID:26233409

  8. Automation of Silica Bead-based Nucleic Acid Extraction on a Centrifugal Lab-on-a-Disc Platform

    NASA Astrophysics Data System (ADS)

    Kinahan, David J.; Mangwanya, Faith; Garvey, Robert; Chung, Danielle WY; Lipinski, Artur; Julius, Lourdes AN; King, Damien; Mohammadi, Mehdi; Mishra, Rohit; Al-Ofi, May; Miyazaki, Celina; Ducrée, Jens

    2016-10-01

    We describe a centrifugal microfluidic ‘Lab-on-a-Disc’ (LoaD) technology for DNA purification towards eventual integration into a Sample-to-Answer platform for detection of the pathogen Escherichia coli O157:H7 from food samples. For this application, we use a novel microfluidic architecture which combines ‘event-triggered’ dissolvable film (DF) valves with a reaction chamber gated by a centrifugo-pneumatic siphon valve (CPSV). This architecture permits comprehensive flow control by simple changes in the speed of the platform innate spindle motor. Even before method optimisation, characterisation by DNA fluorescence reveals an extraction efficiency of 58%, which is close to commercial spin columns.

  9. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    PubMed Central

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  10. Microfluidic devices for cell cultivation and proliferation

    PubMed Central

    Tehranirokh, Masoomeh; Kouzani, Abbas Z.; Francis, Paul S.; Kanwar, Jagat R.

    2013-01-01

    Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell culture in microperfusion systems to deliver continuous nutrient supplies for long term cell culture. It offers many opportunities to mimic the cell-cell and cell-extracellular matrix interactions of tissues by creating gradient concentrations of biochemical signals such as growth factors, chemokines, and hormones. Other applications of cell cultivation in microfluidic systems include high resolution cell patterning on a modified substrate with adhesive patterns and the reconstruction of complicated tissue architectures. In this review, recent advances in microfluidic platforms for cell culturing and proliferation, for both simple monolayer (2D) cell seeding processes and 3D configurations as accurate models of in vivo conditions, are examined. PMID:24273628

  11. Direct integration of MEMS, dielectric pumping and cell manipulation with reversibly bonded gecko adhesive microfluidics

    NASA Astrophysics Data System (ADS)

    Warnat, S.; King, H.; Wasay, A.; Sameoto, D.; Hubbard, T.

    2016-09-01

    We present an approach to form a microfluidic environment on top of MEMS dies using reversibly bonded microfluidics. The reversible polymeric microfluidics moulds bond to the MEMS die using a gecko-inspired gasket architecture. In this study the formed microchannels are demonstrated in conjunction with a MEMS mechanical single cell testing environment for BioMEMS applications. A reversible microfluidics placement technique with an x-y and rotational accuracy of  ±2 µm and 1° respectively on a MEMS die was developed. No leaks were observed during pneumatic pumping of common cell media (PBS, sorbitol, water, seawater) through the fluidic channels. Thermal chevron actuators were successful operated inside this fluidic environment and a performance deviation of ~15% was measured compared to an open MEMS configuration. Latex micro-spheres were pumped using traveling wave di-electrophoresis and compared to an open (no-microfluidics) configuration with velocities of 24 µm s-1 and 20 µm s-1.

  12. In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles.

    PubMed

    Ozcelikkale, Altug; Moon, Hye-Ran; Linnes, Michael; Han, Bumsoo

    2017-09-01

    Advances in nanotechnology have enabled numerous types of nanoparticles (NPs) to improve drug delivery to tumors. While many NP systems have been proposed, their clinical translation has been less than anticipated primarily due to failure of current preclinical evaluation techniques to adequately model the complex interactions between the NP and physiological barriers of tumor microenvironment. This review focuses on microfluidic tumor models for characterization of delivery efficacy and toxicity of cancer nanomedicine. Microfluidics offer significant advantages over traditional macroscale cell cultures by enabling recapitulation of tumor microenvironment through precise control of physiological cues such as hydrostatic pressure, shear stress, oxygen, and nutrient gradients. Microfluidic systems have recently started to be adapted for screening of drugs and NPs under physiologically relevant settings. So far the two primary application areas of microfluidics in this area have been high-throughput screening using traditional culture settings such as single cells or multicellular tumor spheroids, and mimicry of tumor microenvironment for study of cancer-related cell-cell and cell-matrix interactions. These microfluidic technologies are also useful in modeling specific steps in NP delivery to tumor and characterize NP transport properties and outcomes by systematic variation of physiological conditions. Ultimately, it will be possible to design drug-screening platforms uniquely tailored for individual patient physiology using microfluidics. These in vitro models can contribute to development of precision medicine by enabling rapid and patient-specific evaluation of cancer nanomedicine. WIREs Nanomed Nanobiotechnol 2017, 9:e1460. doi: 10.1002/wnan.1460 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  13. Centrifugal microfluidic platforms: advanced unit operations and applications.

    PubMed

    Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-10-07

    Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as liquid transport, metering, mixing and valving. The available unit operations cover the entire range of automated liquid handling requirements and enable efficient miniaturization, parallelization, and integration of assays.

  14. High spatial and temporal resolution cell manipulation techniques in microchannels.

    PubMed

    Novo, Pedro; Dell'Aica, Margherita; Janasek, Dirk; Zahedi, René P

    2016-03-21

    The advent of microfluidics has enabled thorough control of cell manipulation experiments in so called lab on chips. Lab on chips foster the integration of actuation and detection systems, and require minute sample and reagent amounts. Typically employed microfluidic structures have similar dimensions as cells, enabling precise spatial and temporal control of individual cells and their local environments. Several strategies for high spatio-temporal control of cells in microfluidics have been reported in recent years, namely methods relying on careful design of the microfluidic structures (e.g. pinched flow), by integration of actuators (e.g. electrodes or magnets for dielectro-, acousto- and magneto-phoresis), or integrations thereof. This review presents the recent developments of cell experiments in microfluidics divided into two parts: an introduction to spatial control of cells in microchannels followed by special emphasis in the high temporal control of cell-stimulus reaction and quenching. In the end, the present state of the art is discussed in line with future perspectives and challenges for translating these devices into routine applications.

  15. Commercialization of microfluidic devices.

    PubMed

    Volpatti, Lisa R; Yetisen, Ali K

    2014-07-01

    Microfluidic devices offer automation and high-throughput screening, and operate at low volumes of consumables. Although microfluidics has the potential to reduce turnaround times and costs for analytical devices, particularly in medical, veterinary, and environmental sciences, this enabling technology has had limited diffusion into consumer products. This article analyzes the microfluidics market, identifies issues, and highlights successful commercialization strategies. Addressing niche markets and establishing compatibility with existing workflows will accelerate market penetration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Microfluidic multiplexed partitioning enables flexible and effective utilization of magnetic sensor arrays.

    PubMed

    Bechstein, Daniel J B; Ng, Elaine; Lee, Jung-Rok; Cone, Stephanie G; Gaster, Richard S; Osterfeld, Sebastian J; Hall, Drew A; Weaver, James A; Wilson, Robert J; Wang, Shan X

    2015-11-21

    We demonstrate microfluidic partitioning of a giant magnetoresistive sensor array into individually addressable compartments that enhances its effective use. Using different samples and reagents in each compartment enables measuring of cross-reactive species and wide dynamic ranges on a single chip. This compartmentalization technique motivates the employment of high density sensor arrays for highly parallelized measurements in lab-on-a-chip devices.

  17. Automated quantitative cytological analysis using portable microfluidic microscopy.

    PubMed

    Jagannadh, Veerendra Kalyan; Murthy, Rashmi Sreeramachandra; Srinivasan, Rajesh; Gorthi, Sai Siva

    2016-06-01

    In this article, a portable microfluidic microscopy based approach for automated cytological investigations is presented. Inexpensive optical and electronic components have been used to construct a simple microfluidic microscopy system. In contrast to the conventional slide-based methods, the presented method employs microfluidics to enable automated sample handling and image acquisition. The approach involves the use of simple in-suspension staining and automated image acquisition to enable quantitative cytological analysis of samples. The applicability of the presented approach to research in cellular biology is shown by performing an automated cell viability assessment on a given population of yeast cells. Further, the relevance of the presented approach to clinical diagnosis and prognosis has been demonstrated by performing detection and differential assessment of malaria infection in a given sample. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Monodisperse Polyethylene Glycol Diacrylate Hydrogel Microsphere Formation by Oxygen-Controlled Photopolymerization in a Microfluidic Device

    PubMed Central

    Krutkramelis, K.; Xia, B.; Oakey, J.

    2016-01-01

    PEG-based hydrogels have become widely used as drug delivery and tissue scaffolding materials. Common among PEG hydrogel-forming polymers are photopolymerizable acrylates such as polyethylene glycol diacrylate (PEGDA). Microfluidics and microfabrication technologies have recently enabled the miniaturization of PEGDA structures, thus enabling many possible applications for nano- and micro- structured hydrogels. The presence of oxygen, however, dramatically inhibits the photopolymerization of PEGDA, which in turn frustrates hydrogel formation in environments of persistently high oxygen concentration. Using PEGDA that has been emulsified in fluorocarbon oil via microfluidic flow focusing within polydimethylsiloxane (PDMS) devices, we show that polymerization is completely inhibited below critical droplet diameters. By developing an integrated model incorporating reaction kinetics and oxygen diffusion, we demonstrate that the critical droplet diameter is largely determined by the oxygen transport rate, which is dictated by the oxygen saturation concentration of the continuous oil phase. To overcome this fundamental limitation, we present a nitrogen micro-jacketed microfluidic device to reduce oxygen within the droplet, enabling the continuous on-chip photopolymerization of microscale PEGDA particles. PMID:26987384

  19. Digital biology and chemistry.

    PubMed

    Witters, Daan; Sun, Bing; Begolo, Stefano; Rodriguez-Manzano, Jesus; Robles, Whitney; Ismagilov, Rustem F

    2014-09-07

    This account examines developments in "digital" biology and chemistry within the context of microfluidics, from a personal perspective. Using microfluidics as a frame of reference, we identify two areas of research within digital biology and chemistry that are of special interest: (i) the study of systems that switch between discrete states in response to changes in chemical concentration of signals, and (ii) the study of single biological entities such as molecules or cells. In particular, microfluidics accelerates analysis of switching systems (i.e., those that exhibit a sharp change in output over a narrow range of input) by enabling monitoring of multiple reactions in parallel over a range of concentrations of signals. Conversely, such switching systems can be used to create new kinds of microfluidic detection systems that provide "analog-to-digital" signal conversion and logic. Microfluidic compartmentalization technologies for studying and isolating single entities can be used to reconstruct and understand cellular processes, study interactions between single biological entities, and examine the intrinsic heterogeneity of populations of molecules, cells, or organisms. Furthermore, compartmentalization of single cells or molecules in "digital" microfluidic experiments can induce switching in a range of reaction systems to enable sensitive detection of cells or biomolecules, such as with digital ELISA or digital PCR. This "digitizing" offers advantages in terms of robustness, assay design, and simplicity because quantitative information can be obtained with qualitative measurements. While digital formats have been shown to improve the robustness of existing chemistries, we anticipate that in the future they will enable new chemistries to be used for quantitative measurements, and that digital biology and chemistry will continue to provide further opportunities for measuring biomolecules, understanding natural systems more deeply, and advancing molecular and cellular analysis. Microfluidics will impact digital biology and chemistry and will also benefit from them if it becomes massively distributed.

  20. Emerging Technologies for Assembly of Microscale Hydrogels

    PubMed Central

    Kavaz, Doga; Demirel, Melik C.; Demirci, Utkan

    2013-01-01

    Assembly of cell encapsulating building blocks (i.e., microscale hydrogels) has significant applications in areas including regenerative medicine, tissue engineering, and cell-based in vitro assays for pharmaceutical research and drug discovery. Inspired by the repeating functional units observed in native tissues and biological systems (e.g., the lobule in liver, the nephron in kidney), assembly technologies aim to generate complex tissue structures by organizing microscale building blocks. Novel assembly technologies enable fabrication of engineered tissue constructs with controlled properties including tunable microarchitectural and predefined compositional features. Recent advances in micro- and nano-scale technologies have enabled engineering of microgel based three dimensional (3D) constructs. There is a need for high-throughput and scalable methods to assemble microscale units with a complex 3D micro-architecture. Emerging assembly methods include novel technologies based on microfluidics, acoustic and magnetic fields, nanotextured surfaces, and surface tension. In this review, we survey emerging microscale hydrogel assembly methods offering rapid, scalable microgel assembly in 3D, and provide future perspectives and discuss potential applications. PMID:23184717

  1. On-chip dilution in nanoliter droplets.

    PubMed

    Thakur, Raviraj; Amin, Ahmed M; Wereley, Steve

    2015-09-07

    Droplet microfluidics is enabling reactions at nano- and picoliter scale, resulting in faster and cheaper biological and chemical analyses. However, varying concentrations of samples on a drop-to-drop basis is still a challenging task in droplet microfluidics, primarily limited due to lack of control over individual droplets. In this paper, we report an on-chip microfluidic droplet dilution strategy using three-valve peristaltic pumps.

  2. Buckling of Dielectric Elastomeric Plates for Electrically Active Microfludic Pumps

    NASA Astrophysics Data System (ADS)

    Holmes, Douglas; Tavakol, Behrouz; Bozlar, Michael; Froehlicher, Guillaume; Stone, Howard; Aksay, Ilhan

    2013-11-01

    Fluid flow can be directed and controlled by a variety of mechanisms within industrial and biological environments. Advances in microfluidic technology have required innovative ways to control fluid flow on a small scale, and the ability to actively control fluid flow within microfluidic devices is crucial for advancements in nanofluidics, biomedical fluidic devices, and digital microfluidics. In this work, we present a means for microfluidic control via the electrical actuation of thin, flexible valves within microfluidic channels. These structures consist of a dielectric elastomer confined between two compliant electrodes that can be actively and reversibly buckle out of plane to pump fluids from an applied voltage. The out-of-plane deformation can be quantified using two parameters: net change in surface area and the shape of deformation. Change in surface area depends on the voltage, while the deformation shape, which significantly affects the flow rate, is a function of voltage, and the pressure and volume of the chambers on each side of the thin plate. The use of solid electrodes enables a robust and reversible pumping mechanism that will have will enable advancements in rapid microfluidic diagnostics, adaptive materials, and artificial muscles.

  3. A modular microfluidic architecture for integrated biochemical analysis.

    PubMed

    Shaikh, Kashan A; Ryu, Kee Suk; Goluch, Edgar D; Nam, Jwa-Min; Liu, Juewen; Thaxton, C Shad; Chiesl, Thomas N; Barron, Annelise E; Lu, Yi; Mirkin, Chad A; Liu, Chang

    2005-07-12

    Microfluidic laboratory-on-a-chip (LOC) systems based on a modular architecture are presented. The architecture is conceptualized on two levels: a single-chip level and a multiple-chip module (MCM) system level. At the individual chip level, a multilayer approach segregates components belonging to two fundamental categories: passive fluidic components (channels and reaction chambers) and active electromechanical control structures (sensors and actuators). This distinction is explicitly made to simplify the development process and minimize cost. Components belonging to these two categories are built separately on different physical layers and can communicate fluidically via cross-layer interconnects. The chip that hosts the electromechanical control structures is called the microfluidic breadboard (FBB). A single LOC module is constructed by attaching a chip comprised of a custom arrangement of fluid routing channels and reactors (passive chip) to the FBB. Many different LOC functions can be achieved by using different passive chips on an FBB with a standard resource configuration. Multiple modules can be interconnected to form a larger LOC system (MCM level). We demonstrated the utility of this architecture by developing systems for two separate biochemical applications: one for detection of protein markers of cancer and another for detection of metal ions. In the first case, free prostate-specific antigen was detected at 500 aM concentration by using a nanoparticle-based bio-bar-code protocol on a parallel MCM system. In the second case, we used a DNAzyme-based biosensor to identify the presence of Pb(2+) (lead) at a sensitivity of 500 nM in <1 nl of solution.

  4. A simple method for the evaluation of microfluidic architecture using flow quantitation via a multiplexed fluidic resistance measurement.

    PubMed

    Leslie, Daniel C; Melnikoff, Brett A; Marchiarullo, Daniel J; Cash, Devin R; Ferrance, Jerome P; Landers, James P

    2010-08-07

    Quality control of microdevices adds significant costs, in time and money, to any fabrication process. A simple, rapid quantitative method for the post-fabrication characterization of microchannel architecture using the measurement of flow with volumes relevant to microfluidics is presented. By measuring the mass of a dye solution passed through the device, it circumvents traditional gravimetric and interface-tracking methods that suffer from variable evaporation rates and the increased error associated with smaller volumes. The multiplexed fluidic resistance (MFR) measurement method measures flow via stable visible-wavelength dyes, a standard spectrophotometer and common laboratory glassware. Individual dyes are used as molecular markers of flow for individual channels, and in channel architectures where multiple channels terminate at a common reservoir, spectral deconvolution reveals the individual flow contributions. On-chip, this method was found to maintain accurate flow measurement at lower flow rates than the gravimetric approach. Multiple dyes are shown to allow for independent measurement of multiple flows on the same device simultaneously. We demonstrate that this technique is applicable for measuring the fluidic resistance, which is dependent on channel dimensions, in four fluidically connected channels simultaneously, ultimately determining that one chip was partially collapsed and, therefore, unusable for its intended purpose. This method is thus shown to be widely useful in troubleshooting microfluidic flow characteristics.

  5. Magnet-assisted device-level alignment for the fabrication of membrane-sandwiched polydimethylsiloxane microfluidic devices

    NASA Astrophysics Data System (ADS)

    Lu, J.-C.; Liao, W.-H.; Tung, Y.-C.

    2012-07-01

    Polydimethylsiloxane (PDMS) microfluidic device is one of the most essential techniques that advance microfluidics research in recent decades. PDMS is broadly exploited to construct microfluidic devices due to its unique and advantageous material properties. To realize more functionalities, PDMS microfluidic devices with multi-layer architectures, especially those with sandwiched membranes, have been developed for various applications. However, existing alignment methods for device fabrication are mainly based on manual observations, which are time consuming, inaccurate and inconsistent. This paper develops a magnet-assisted alignment method to enhance device-level alignment accuracy and precision without complicated fabrication processes. In the developed alignment method, magnets are embedded into PDMS layers at the corners of the device. The paired magnets are arranged in symmetric positions at each PDMS layer, and the magnetic attraction force automatically pulls the PDMS layers into the aligned position during assembly. This paper also applies the method to construct a practical microfluidic device, a tunable chaotic micromixer. The results demonstrate the successful operation of the device without failure, which suggests the accurate alignment and reliable bonding achieved by the method. Consequently, the fabrication method developed in this paper is promising to be exploited to construct various membrane-sandwiched PDMS microfluidic devices with more integrated functionalities to advance microfluidics research.

  6. Inhibition of Breast Cancer Progression by Blocking Heterocellular Contact Between Epithelial Cells and Fibroblasts

    DTIC Science & Technology

    2013-04-01

    by employing a microfluidic -based compartmentalized 3D co-culture platform enabling both contact-free and contact-associated co-cultures. 15...SUBJECT TERMS Heterocellular contact between cancer cells and stromal fibroblasts, Microfluidics , 3D 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...and human mammary fibroblasts (HMFs) in breast cancer progression by employing a microfluidic - based compartmentalized 3D co-culture platform

  7. Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones.

    PubMed

    Yang, Ke; Peretz-Soroka, Hagit; Liu, Yong; Lin, Francis

    2016-03-21

    Portable electronic devices and wireless communication systems enable a broad range of applications such as environmental and food safety monitoring, personalized medicine and healthcare management. Particularly, hybrid smartphone and microfluidic devices provide an integrated solution for the new generation of mobile sensing applications. Such mobile sensing based on microfluidic devices (broadly defined) and smartphones (MS(2)) offers a mobile laboratory for performing a wide range of bio-chemical detection and analysis functions such as water and food quality analysis, routine health tests and disease diagnosis. MS(2) offers significant advantages over traditional platforms in terms of test speed and control, low cost, mobility, ease-of-operation and data management. These improvements put MS(2) in a promising position in the fields of interdisciplinary basic and applied research. In particular, MS(2) enables applications to remote in-field testing, homecare, and healthcare in low-resource areas. The marriage of smartphones and microfluidic devices offers a powerful on-chip operating platform to enable various bio-chemical tests, remote sensing, data analysis and management in a mobile fashion. The implications of such integration are beyond telecommunication and microfluidic-related research and technology development. In this review, we will first provide the general background of microfluidic-based sensing, smartphone-based sensing, and their integration. Then, we will focus on several key application areas of MS(2) by systematically reviewing the important literature in each area. We will conclude by discussing our perspectives on the opportunities, issues and future directions of this emerging novel field.

  8. Novel Developments of Mobile Sensing Based on the Integration of Microfluidic Devices and Smartphone

    PubMed Central

    Yang, Ke; Peretz-Soroka, Hagit; Liu, Yong; Lin, Francis

    2016-01-01

    Portable electronic devices and wireless communication systems enable a broad range of applications such as environmental and food safety monitoring, personalized medicine and healthcare management. Particularly, hybrid smartphone and microfluidic devices provide an integrated solution for the new generation of mobile sensing applications. Such mobile sensing based on microfluidic devices (broadly defined) and smartphones (MS2) offers a mobile laboratory for performing a wide range of bio-chemical detection and analysis functions such as water and food quality analysis, routine health tests and disease diagnosis. MS2 offers significant advantages over traditional platforms in terms of test speed and control, low cost, mobility, ease-of-operation and data management. These improvements put MS2 in a promising position in the fields of interdisciplinary basic and applied research. In particular, MS2 enables applications to remote infield testing, homecare, and healthcare in low-resource areas. The marriage of smartphones and microfluidic devices offers a powerful on-chip operating platform to enable various bio-chemical tests, remote sensing, data analysis and management in a mobile fashion. The implications of such integration are beyond telecommunication and microfluidic-related research and technology development. In this review, we will first provide the general background of microfluidic-based sensing, smartphone-based sensing, and their integration. Then, we will focus on several key application areas of MS2 by systematically reviewing the important literature in each area. We will conclude by discussing our perspectives on the opportunities, issues and future directions of this emerging novel field. PMID:26899264

  9. Cost-effective rapid prototyping and assembly of poly(methyl methacrylate) microfluidic devices.

    PubMed

    Matellan, Carlos; Del Río Hernández, Armando E

    2018-05-03

    The difficulty in translating conventional microfluidics from laboratory prototypes to commercial products has shifted research efforts towards thermoplastic materials for their higher translational potential and amenability to industrial manufacturing. Here, we present an accessible method to fabricate and assemble polymethyl methacrylate (PMMA) microfluidic devices in a "mask-less" and cost-effective manner that can be applied to manufacture a wide range of designs due to its versatility. Laser micromachining offers high flexibility in channel dimensions and morphology by controlling the laser properties, while our two-step surface treatment based on exposure to acetone vapour and low-temperature annealing enables improvement of the surface quality without deformation of the device. Finally, we demonstrate a capillarity-driven adhesive delivery bonding method that can produce an effective seal between PMMA devices and a variety of substrates, including glass, silicon and LiNbO 3 . We illustrate the potential of this technique with two microfluidic devices, an H-filter and a droplet generator. The technique proposed here offers a low entry barrier for the rapid prototyping of thermoplastic microfluidics, enabling iterative design for laboratories without access to conventional microfabrication equipment.

  10. Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications

    NASA Astrophysics Data System (ADS)

    Barako, Michael T.; Gambin, Vincent; Tice, Jesse

    2018-04-01

    Nanomaterials will play a disruptive role in next-generation thermal management for high power electronics in aerospace platforms. These high power and high frequency devices have been experiencing a paradigm shift toward designs that favor extreme integration and compaction. The reduction in form factor amplifies the intensity of the thermal loads and imposes extreme requirements on the thermal management architecture for reliable operation. In this perspective, we introduce the opportunities and challenges enabled by rationally integrating nanomaterials along the entire thermal resistance chain, beginning at the high heat flux source up to the system-level heat rejection. Using gallium nitride radio frequency devices as a case study, we employ a combination of viewpoints comprised of original research, academic literature, and industry adoption of emerging nanotechnologies being used to construct advanced thermal management architectures. We consider the benefits and challenges for nanomaterials along the entire thermal pathway from synthetic diamond and on-chip microfluidics at the heat source to vertically-aligned copper nanowires and nanoporous media along the heat rejection pathway. We then propose a vision for a materials-by-design approach to the rational engineering of complex nanostructures to achieve tunable property combinations on demand. These strategies offer a snapshot of the opportunities enabled by the rational design of nanomaterials to mitigate thermal constraints and approach the limits of performance in complex aerospace electronics.

  11. Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications.

    PubMed

    Barako, Michael T; Gambin, Vincent; Tice, Jesse

    2018-04-02

    Nanomaterials will play a disruptive role in next-generation thermal management for high power electronics in aerospace platforms. These high power and high frequency devices have been experiencing a paradigm shift toward designs that favor extreme integration and compaction. The reduction in form factor amplifies the intensity of the thermal loads and imposes extreme requirements on the thermal management architecture for reliable operation. In this perspective, we introduce the opportunities and challenges enabled by rationally integrating nanomaterials along the entire thermal resistance chain, beginning at the high heat flux source up to the system-level heat rejection. Using gallium nitride radio frequency devices as a case study, we employ a combination of viewpoints comprised of original research, academic literature, and industry adoption of emerging nanotechnologies being used to construct advanced thermal management architectures. We consider the benefits and challenges for nanomaterials along the entire thermal pathway from synthetic diamond and on-chip microfluidics at the heat source to vertically-aligned copper nanowires and nanoporous media along the heat rejection pathway. We then propose a vision for a materials-by-design approach to the rational engineering of complex nanostructures to achieve tunable property combinations on demand. These strategies offer a snapshot of the opportunities enabled by the rational design of nanomaterials to mitigate thermal constraints and approach the limits of performance in complex aerospace electronics.

  12. An Automated Microfluidic Multiplexer for Fast Delivery of C. elegans Populations from Multiwells

    PubMed Central

    Ghorashian, Navid; Gökçe, Sertan Kutal; Guo, Sam Xun; Everett, William Neil; Ben-Yakar, Adela

    2013-01-01

    Automated biosorter platforms, including recently developed microfluidic devices, enable and accelerate high-throughput and/or high-resolution bioassays on small animal models. However, time-consuming delivery of different organism populations to these systems introduces a major bottleneck to executing large-scale screens. Current population delivery strategies rely on suction from conventional well plates through tubing periodically exposed to air, leading to certain disadvantages: 1) bubble introduction to the sample, interfering with analysis in the downstream system, 2) substantial time drain from added bubble-cleaning steps, and 3) the need for complex mechanical systems to manipulate well plate position. To address these concerns, we developed a multiwell-format microfluidic platform that can deliver multiple distinct animal populations from on-chip wells using multiplexed valve control. This Population Delivery Chip could operate autonomously as part of a relatively simple setup that did not require any of the major mechanical moving parts typical of plate-handling systems to address a given well. We demonstrated automatic serial delivery of 16 distinct C. elegans worm populations to a single outlet without introducing any bubbles to the samples, causing cross-contamination, or damaging the animals. The device achieved delivery of more than 90% of the population preloaded into a given well in 4.7 seconds; an order of magnitude faster than delivery modalities in current use. This platform could potentially handle other similarly sized model organisms, such as zebrafish and drosophila larvae or cellular micro-colonies. The device’s architecture and microchannel dimensions allow simple expansion for processing larger numbers of populations. PMID:24069313

  13. Electrostatic actuators for portable microfluidic systems

    NASA Astrophysics Data System (ADS)

    Tice, Joshua

    Both developed and developing nations have an urgent need to diagnose disease cheaply, reliably, and independently of centralized facilities. Microfulidic platforms are well-positioned to address the need for portable diagnostics, mainly due to their obvious advantage in size. However, most microfluidic methods rely on equipment outside of the chip either for driving fluid flow (e.g., syringe pumps) or for taking measurements (e.g., lasers or microscopes). The energy and space requirements of the whole system inhibit portability and contribute to costs. To capitalize on the strengths of microfluidic platforms and address the serious needs of society, system components need to be miniaturized. Also, miniaturization should be accomplished as simply as possible, considering that simplicity is usually requisite for achieving truly transformative technology. Herein, I attempt to address the issue of controlling fluid flow in portable microfluidic systems. I focus on systems that are driven by elastomer-based membrane valves, since these valves are inherently simple, yet they are capable of sophisticated fluid manipulation. Others have attempted to modify pneumatic microvalves for portable applications, e.g., by transitioning to electromagnetic, thermopneumatic, or piezoelectric actuation principles. However, none of these strategies maintain the proper balance of simplicity, functionality, and ease of integration. My research centers on electrostatic actuators, due to their conceptual simplicity and the efficacy of electrostatic forces on the microscale. To ensure easy integration with polymer-based systems, and to maintain simplicity in the fabrication procedure, the actuators were constructed solely from poly(dimethylsiloxane) and multi-walled carbon nanotubes. In addition, the actuators were fabricated exclusively with soft-lithographic techniques. A mathematical model was developed to identify actuator parameters compatible with soft-lithography, and also to minimize actuation potentials while eliminating stiction. Two strategies were developed to overcome challenges with electrode screening in the presence of aqueous fluids. First, instead of using the electrostatic actuators to interact directly with aqueous solutions, the actuators were used to regulate pressurized control lines for pneumatic microvalves. Secondly, by adopting a normally-closed architecture, the actuators were converted into microvalves capable of directly interacting with aqueous solutions. The two strategies are complementary, and together should enable sophisticated microfluidic systems for applications ranging from point-of-care diagnostics to portable chemical detection. To conclude the dissertation, I demonstrate a proof-of-principle microfluidic system that contained sixteen independently-operated electrostatic valves, operated with battery-operated electrical ancillaries in a hand-held format.

  14. Microfluidic interconnects

    DOEpatents

    Benett, William J.; Krulevitch, Peter A.

    2001-01-01

    A miniature connector for introducing microliter quantities of solutions into microfabricated fluidic devices. The fluidic connector, for example, joins standard high pressure liquid chromatography (HPLC) tubing to 1 mm diameter holes in silicon or glass, enabling ml-sized volumes of sample solutions to be merged with .mu.l-sized devices. The connector has many features, including ease of connect and disconnect; a small footprint which enables numerous connectors to be located in a small area; low dead volume; helium leak-tight; and tubing does not twist during connection. Thus the connector enables easy and effective change of microfluidic devices and introduction of different solutions in the devices.

  15. Molecular Imaging Probe Development using Microfluidics

    PubMed Central

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Wu, Anna M.; Tomlinson, James S.; Shen, Clifton K.-F.

    2012-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional systems. Numerous chemical reactions have been successfully performed in micro-reactors and the results convincingly demonstrate with great benefits to aid synthetic procedures, such as purer products, higher yields, shorter reaction times compared to the corresponding batch/macroscale reactions, and more benign reaction conditions. Several ‘proof-of-principle’ examples of molecular imaging probe syntheses using microfluidics, along with basics of device architecture and operation, and their potential limitations are discussed here. PMID:22977436

  16. Stack air-breathing membraneless glucose microfluidic biofuel cell

    NASA Astrophysics Data System (ADS)

    Galindo-de-la-Rosa, J.; Moreno-Zuria, A.; Vallejo-Becerra, V.; Arjona, N.; Guerra-Balcázar, M.; Ledesma-García, J.; Arriaga, L. G.

    2016-11-01

    A novel stacked microfluidic fuel cell design comprising re-utilization of the anodic and cathodic solutions on the secondary cell is presented. This membraneless microfluidic fuel cell employs porous flow-through electrodes in a “V”-shape cell architecture. Enzymatic bioanodic arrays based on glucose oxidase were prepared by immobilizing the enzyme onto Toray carbon paper electrodes using tetrabutylammonium bromide, Nafion and glutaraldehyde. These electrodes were characterized through the scanning electrochemical microscope technique, evidencing a good electrochemical response due to the electronic transference observed with the presence of glucose over the entire of the electrode. Moreover, the evaluation of this microfluidic fuel cell with an air-breathing system in a double-cell mode showed a performance of 0.8951 mWcm-2 in a series connection (2.2822mAcm-2, 1.3607V), and 0.8427 mWcm-2 in a parallel connection (3.5786mAcm-2, 0.8164V).

  17. Mimosa Origami: A nanostructure-enabled directional self-organization regime of materials

    PubMed Central

    Wong, William S. Y.; Li, Minfei; Nisbet, David R.; Craig, Vincent S. J.; Wang, Zuankai; Tricoli, Antonio

    2016-01-01

    One of the innate fundamentals of living systems is their ability to respond toward distinct stimuli by various self-organization behaviors. Despite extensive progress, the engineering of spontaneous motion in man-made inorganic materials still lacks the directionality and scale observed in nature. We report the directional self-organization of soft materials into three-dimensional geometries by the rapid propagation of a folding stimulus along a predetermined path. We engineer a unique Janus bilayer architecture with superior chemical and mechanical properties that enables the efficient transformation of surface energy into directional kinetic and elastic energies. This Janus bilayer can respond to pinpoint water stimuli by a rapid, several-centimeters-long self-assembly that is reminiscent of the Mimosa pudica’s leaflet folding. The Janus bilayers also shuttle water at flow rates up to two orders of magnitude higher than traditional wicking-based devices, reaching velocities of 8 cm/s and flow rates of 4.7 μl/s. This self-organization regime enables the ease of fabricating curved, bent, and split flexible channels with lengths greater than 10 cm, demonstrating immense potential for microfluidics, biosensors, and water purification applications. PMID:28861471

  18. Mimosa Origami: A nanostructure-enabled directional self-organization regime of materials.

    PubMed

    Wong, William S Y; Li, Minfei; Nisbet, David R; Craig, Vincent S J; Wang, Zuankai; Tricoli, Antonio

    2016-06-01

    One of the innate fundamentals of living systems is their ability to respond toward distinct stimuli by various self-organization behaviors. Despite extensive progress, the engineering of spontaneous motion in man-made inorganic materials still lacks the directionality and scale observed in nature. We report the directional self-organization of soft materials into three-dimensional geometries by the rapid propagation of a folding stimulus along a predetermined path. We engineer a unique Janus bilayer architecture with superior chemical and mechanical properties that enables the efficient transformation of surface energy into directional kinetic and elastic energies. This Janus bilayer can respond to pinpoint water stimuli by a rapid, several-centimeters-long self-assembly that is reminiscent of the Mimosa pudica 's leaflet folding. The Janus bilayers also shuttle water at flow rates up to two orders of magnitude higher than traditional wicking-based devices, reaching velocities of 8 cm/s and flow rates of 4.7 μl/s. This self-organization regime enables the ease of fabricating curved, bent, and split flexible channels with lengths greater than 10 cm, demonstrating immense potential for microfluidics, biosensors, and water purification applications.

  19. Electrogates for stop-and-go control of liquid flow in microfluidics

    NASA Astrophysics Data System (ADS)

    Arango, Y.; Temiz, Y.; Gökçe, O.; Delamarche, E.

    2018-04-01

    Diagnostics based on microfluidic devices necessitate specific reagents, flow conditions, and kinetics for optimal performance. Such an optimization is often achieved using assay-specific microfluidic chip designs or systems with external liquid pumps. Here, we present "electrogates" for stop-and-go control of flow of liquids in capillary-driven microfluidic chips by combining liquid pinning and electrowetting. Electrogates are simple to fabricate and efficient: a sample pipetted to a microfluidic chip flows autonomously in 15-μm-deep hydrophilic channels until the liquid meniscus is pinned at the edge of a 1.5-μm-deep trench patterned at the bottom of a rectangular microchannel. The flow can then be resumed by applying a DC voltage between the liquid and the trench via integrated electrodes. Using a trench geometry with a semicircular shape, we show that retention times longer than 30 min are achieved for various aqueous solutions such as biological buffers, artificial urine, and human serum. We studied the activation voltage and activation delay of electrogates using a chip architecture having 6 independent flow paths and experimentally showed that the flow can be resumed in less than 1 s for voltages smaller than 10 V, making this technique compatible with low-power and portable microfluidic systems. Electrogates therefore can make capillary-driven microfluidic chips very versatile by adding flow control in microfluidic channels in a flexible manner.

  20. Microfluidic resonant waveguide grating biosensor system for whole cell sensing

    NASA Astrophysics Data System (ADS)

    Zaytseva, Natalya; Miller, William; Goral, Vasily; Hepburn, Jerry; Fang, Ye

    2011-04-01

    We report on a fluidic resonant waveguide grating (RWG) biosensor system that enables medium throughput measurements of cellular responses under microfluidics in a 32-well format. Dynamic mass redistribution assays under microfluidics differentiate the cross-desensitization process between the β2-adrenoceptor agonist epinephrine and the adenylate cyclase activator forskolin mediated signaling. This system opens new possibility to study cellular processes that are otherwise difficult to achieve using conventional RWG configurations.

  1. Design of pressure-driven microfluidic networks using electric circuit analogy.

    PubMed

    Oh, Kwang W; Lee, Kangsun; Ahn, Byungwook; Furlani, Edward P

    2012-02-07

    This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.

  2. Universal microfluidic automaton for autonomous sample processing: application to the Mars Organic Analyzer.

    PubMed

    Kim, Jungkyu; Jensen, Erik C; Stockton, Amanda M; Mathies, Richard A

    2013-08-20

    A fully integrated multilayer microfluidic chemical analyzer for automated sample processing and labeling, as well as analysis using capillary zone electrophoresis is developed and characterized. Using lifting gate microfluidic control valve technology, a microfluidic automaton consisting of a two-dimensional microvalve cellular array is fabricated with soft lithography in a format that enables facile integration with a microfluidic capillary electrophoresis device. The programmable sample processor performs precise mixing, metering, and routing operations that can be combined to achieve automation of complex and diverse assay protocols. Sample labeling protocols for amino acid, aldehyde/ketone and carboxylic acid analysis are performed automatically followed by automated transfer and analysis by the integrated microfluidic capillary electrophoresis chip. Equivalent performance to off-chip sample processing is demonstrated for each compound class; the automated analysis resulted in a limit of detection of ~16 nM for amino acids. Our microfluidic automaton provides a fully automated, portable microfluidic analysis system capable of autonomous analysis of diverse compound classes in challenging environments.

  3. Tissue culture on a chip: Developmental biology applications of self-organized capillary networks in microfluidic devices.

    PubMed

    Miura, Takashi; Yokokawa, Ryuji

    2016-08-01

    Organ culture systems are used to elucidate the mechanisms of pattern formation in developmental biology. Various organ culture techniques have been used, but the lack of microcirculation in such cultures impedes the long-term maintenance of larger tissues. Recent advances in microfluidic devices now enable us to utilize self-organized perfusable capillary networks in organ cultures. In this review, we will overview past approaches to organ culture and current technical advances in microfluidic devices, and discuss possible applications of microfluidics towards the study of developmental biology. © 2016 Japanese Society of Developmental Biologists.

  4. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing.

    PubMed

    Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou

    2016-11-23

    Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications.

  5. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis.

    PubMed

    Frey, Olivier; Misun, Patrick M; Fluri, David A; Hengstler, Jan G; Hierlemann, Andreas

    2014-06-30

    Integration of multiple three-dimensional microtissues into microfluidic networks enables new insights in how different organs or tissues of an organism interact. Here, we present a platform that extends the hanging-drop technology, used for multi-cellular spheroid formation, to multifunctional complex microfluidic networks. Engineered as completely open, 'hanging' microfluidic system at the bottom of a substrate, the platform features high flexibility in microtissue arrangements and interconnections, while fabrication is simple and operation robust. Multiple spheroids of different cell types are formed in parallel on the same platform; the different tissues are then connected in physiological order for multi-tissue experiments through reconfiguration of the fluidic network. Liquid flow is precisely controlled through the hanging drops, which enable nutrient supply, substance dosage and inter-organ metabolic communication. The possibility to perform parallelized microtissue formation on the same chip that is subsequently used for complex multi-tissue experiments renders the developed platform a promising technology for 'body-on-a-chip'-related research.

  6. Microfluidic Remote Loading for Rapid Single-Step Liposomal Drug Preparation

    PubMed Central

    Hood, R.R.; Vreeland, W. N.; DeVoe, D.L.

    2014-01-01

    Microfluidic-directed formation of liposomes is combined with in-line sample purification and remote drug loading for single step, continuous-flow synthesis of nanoscale vesicles containing high concentrations of stably loaded drug compounds. Using an on-chip microdialysis element, the system enables rapid formation of large transmembrane pH and ion gradients, followed by immediate introduction of amphipathic drug for real-time remote loading into the liposomes. The microfluidic process enables in-line formation of drug-laden liposomes with drug:lipid molar ratios of up to 1.3, and a total on-chip residence time of approximately 3 min, representing a significant improvement over conventional bulk-scale methods which require hours to days for combined liposome synthesis and remote drug loading. The microfluidic platform may be further optimized to support real-time generation of purified liposomal drug formulations with high concentrations of drugs and minimal reagent waste for effective liposomal drug preparation at or near the point of care. PMID:25003823

  7. Single-cell analysis and sorting using droplet-based microfluidics.

    PubMed

    Mazutis, Linas; Gilbert, John; Ung, W Lloyd; Weitz, David A; Griffiths, Andrew D; Heyman, John A

    2013-05-01

    We present a droplet-based microfluidics protocol for high-throughput analysis and sorting of single cells. Compartmentalization of single cells in droplets enables the analysis of proteins released from or secreted by cells, thereby overcoming one of the major limitations of traditional flow cytometry and fluorescence-activated cell sorting. As an example of this approach, we detail a binding assay for detecting antibodies secreted from single mouse hybridoma cells. Secreted antibodies are detected after only 15 min by co-compartmentalizing single mouse hybridoma cells, a fluorescent probe and single beads coated with anti-mouse IgG antibodies in 50-pl droplets. The beads capture the secreted antibodies and, when the captured antibodies bind to the probe, the fluorescence becomes localized on the beads, generating a clearly distinguishable fluorescence signal that enables droplet sorting at ∼200 Hz as well as cell enrichment. The microfluidic system described is easily adapted for screening other intracellular, cell-surface or secreted proteins and for quantifying catalytic or regulatory activities. In order to screen ∼1 million cells, the microfluidic operations require 2-6 h; the entire process, including preparation of microfluidic devices and mammalian cells, requires 5-7 d.

  8. Single-cell analysis and sorting using droplet-based microfluidics

    PubMed Central

    Mazutis, Linas; Gilbert, John; Ung, W Lloyd; Weitz, David A; Griffiths, Andrew D; Heyman, John A

    2014-01-01

    We present a droplet-based microfluidics protocol for high-throughput analysis and sorting of single cells. compartmentalization of single cells in droplets enables the analysis of proteins released from or secreted by cells, thereby overcoming one of the major limitations of traditional flow cytometry and fluorescence-activated cell sorting. as an example of this approach, we detail a binding assay for detecting antibodies secreted from single mouse hybridoma cells. secreted antibodies are detected after only 15 min by co-compartmentalizing single mouse hybridoma cells, a fluorescent probe and single beads coated with anti-mouse IgG antibodies in 50-pl droplets. the beads capture the secreted antibodies and, when the captured antibodies bind to the probe, the fluorescence becomes localized on the beads, generating a clearly distinguishable fluorescence signal that enables droplet sorting at ~200 Hz as well as cell enrichment. the microfluidic system described is easily adapted for screening other intracellular, cell-surface or secreted proteins and for quantifying catalytic or regulatory activities. In order to screen ~1 million cells, the microfluidic operations require 2–6 h; the entire process, including preparation of microfluidic devices and mammalian cells, requires 5–7 d. PMID:23558786

  9. Advances in microfluidics for drug discovery.

    PubMed

    Lombardi, Dario; Dittrich, Petra S

    2010-11-01

    Microfluidics is considered as an enabling technology for the development of unconventional and innovative methods in the drug discovery process. The concept of micrometer-sized reaction systems in the form of continuous flow reactors, microdroplets or microchambers is intriguing, and the versatility of the technology perfectly fits with the requirements of drug synthesis, drug screening and drug testing. In this review article, we introduce key microfluidic approaches to the drug discovery process, highlighting the latest and promising achievements in this field, mainly from the years 2007 - 2010. Despite high expectations of microfluidic approaches to several stages of the drug discovery process, up to now microfluidic technology has not been able to significantly replace conventional drug discovery platforms. Our aim is to identify bottlenecks that have impeded the transfer of microfluidics into routine platforms for drug discovery and show some recent solutions to overcome these hurdles. Although most microfluidic approaches are still applied only for proof-of-concept studies, thanks to creative microfluidic research in the past years unprecedented novel capabilities of microdevices could be demonstrated, and general applicable, robust and reliable microfluidic platforms seem to be within reach.

  10. Advances in Microfluidic Platforms for Analyzing and Regulating Human Pluripotent Stem Cells

    PubMed Central

    Qian, Tongcheng; Shusta, Eric V.; Palecek, Sean P.

    2015-01-01

    Microfluidic devices employ submillimeter length scale control of flow to achieve high-resolution spatial and temporal control over the microenvironment, providing powerful tools to elucidate mechanisms of human pluripotent stem cell (hPSC) regulation and to elicit desired hPSC fates. In addition, microfluidics allow control of paracrine and juxtracrine signaling, thereby enabling fabrication of microphysiological systems comprised of multiple cell types organized into organs-on-a-chip. Microfluidic cell culture systems can also be integrated with actuators and sensors, permitting construction of high-density arrays of cell-based biosensors for screening applications. This review describes recent advances in using microfluidics to understand mechanisms by which the microenvironment regulates hPSC fates and applications of microfluidics to realize the potential of hPSCs for in vitro modeling and screening applications. PMID:26313850

  11. Micro-Organ Devices

    NASA Technical Reports Server (NTRS)

    Gonda, Steven R.; Leslie, Julia; Chang, Robert C.; Starly, Binil; Sun, Wei; Culbertson, Christopher; Holtorf, Heidi

    2009-01-01

    Micro-organ devices (MODs) are being developed to satisfy an emerging need for small, lightweight, reproducible, biological-experimentati on apparatuses that are amenable to automated operation and that imp ose minimal demands for resources (principally, power and fluids). I n simplest terms, a MOD is a microfluidic device containing a variety of microstructures and assemblies of cells, all designed to mimic a complex in vivo microenvironment by replicating one or more in vivo micro-organ structures, the architectures and composition of the extr acellular matrices in the organs of interest, and the in vivo fluid flows. In addition to microscopic flow channels, a MOD contains one or more micro-organ wells containing cells residing in microscopic e xtracellular matrices and/or scaffolds, the shapes and compositions o f which enable replication of the corresponding in vivo cell assembl ies and flows.

  12. Microfluidic routing of aqueous and organic flows at high pressures: fabrication and characterization of integrated polymer microvalve elements.

    PubMed

    Kirby, Brian J; Reichmuth, David S; Renzi, Ronald F; Shepodd, Timothy J; Wiedenman, Boyd J

    2005-02-01

    This paper presents the first systematic engineering study of the impact of chemical formulation and surface functionalization on the performace of free-standing microfluidic polymer elements used for high-pressure fluid control in glass microsystems. System design, chemical wet-etch processes, and laser-induced polymerization techniques are described, and parametric studies illustrate the effects of polymer formulation, glass surface modification, and geometric constraints on system performance parameters. In particular, this study shows that highly crosslinked and fluorinated polymers can overcome deficiencies in previously-reported microvalve architectures, particularly limited solvent compatibility. Substrate surface modification is shown effective in reducing the friction of the polymer-glass interface and thereby facilitating valve actuation. A microchip one-way valve constructed using this architecture shows a 2 x 10(8) ratio of forward and backward flow rates at 7 MPa. This valve architecture is integrated on chip with minimal dead volumes (70 pl), and should be applicable to systems (including chromatography and chemical synthesis devices) requiring high pressures and solvents of varying polarity.

  13. Microfluidics in microbiology: putting a magnifying glass on microbes.

    PubMed

    Siddiqui, Sanya; Tufenkji, Nathalie; Moraes, Christopher

    2016-09-12

    Microfluidic technologies enable unique studies in the field of microbiology to facilitate our understanding of microorganisms. Using miniaturized and high-throughput experimental capabilities in microfluidics, devices with controlled microenvironments can be created for microbial studies in research fields such as healthcare and green energy. In this research highlight, we describe recently developed tools for diagnostic assays, high-throughput mutant screening, and the study of human disease development as well as a future outlook on microbes for renewable energy.

  14. Microfluidic-based mini-metagenomics enables discovery of novel microbial lineages from complex environmental samples.

    PubMed

    Yu, Feiqiao Brian; Blainey, Paul C; Schulz, Frederik; Woyke, Tanja; Horowitz, Mark A; Quake, Stephen R

    2017-07-05

    Metagenomics and single-cell genomics have enabled genome discovery from unknown branches of life. However, extracting novel genomes from complex mixtures of metagenomic data can still be challenging and represents an ill-posed problem which is generally approached with ad hoc methods. Here we present a microfluidic-based mini-metagenomic method which offers a statistically rigorous approach to extract novel microbial genomes while preserving single-cell resolution. We used this approach to analyze two hot spring samples from Yellowstone National Park and extracted 29 new genomes, including three deeply branching lineages. The single-cell resolution enabled accurate quantification of genome function and abundance, down to 1% in relative abundance. Our analyses of genome level SNP distributions also revealed low to moderate environmental selection. The scale, resolution, and statistical power of microfluidic-based mini-metagenomics make it a powerful tool to dissect the genomic structure of microbial communities while effectively preserving the fundamental unit of biology, the single cell.

  15. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.

    PubMed

    Cesewski, Ellen; Haring, Alexander P; Tong, Yuxin; Singh, Manjot; Thakur, Rajan; Laheri, Sahil; Read, Kaitlin A; Powell, Michael D; Oestreich, Kenneth J; Johnson, Blake N

    2018-06-13

    Three-dimensional (3D) printing now enables the fabrication of 3D structural electronics and microfluidics. Further, conventional subtractive manufacturing processes for microelectromechanical systems (MEMS) relatively limit device structure to two dimensions and require post-processing steps for interface with microfluidics. Thus, the objective of this work is to create an additive manufacturing approach for fabrication of 3D microfluidic-based MEMS devices that enables 3D configurations of electromechanical systems and simultaneous integration of microfluidics. Here, we demonstrate the ability to fabricate microfluidic-based acoustofluidic devices that contain orthogonal out-of-plane piezoelectric sensors and actuators using additive manufacturing. The devices were fabricated using a microextrusion 3D printing system that contained integrated pick-and-place functionality. Additively assembled materials and components included 3D printed epoxy, polydimethylsiloxane (PDMS), silver nanoparticles, and eutectic gallium-indium as well as robotically embedded piezoelectric chips (lead zirconate titanate (PZT)). Electrical impedance spectroscopy and finite element modeling studies showed the embedded PZT chips exhibited multiple resonant modes of varying mode shape over the 0-20 MHz frequency range. Flow visualization studies using neutrally buoyant particles (diameter = 0.8-70 μm) confirmed the 3D printed devices generated bulk acoustic waves (BAWs) capable of size-selective manipulation, trapping, and separation of suspended particles in droplets and microchannels. Flow visualization studies in a continuous flow format showed suspended particles could be moved toward or away from the walls of microfluidic channels based on selective actuation of in-plane or out-of-plane PZT chips. This work suggests additive manufacturing potentially provides new opportunities for the design and fabrication of acoustofluidic and microfluidic devices.

  16. Multi-step Variable Height Photolithography for Valved Multilayer Microfluidic Devices.

    PubMed

    Brower, Kara; White, Adam K; Fordyce, Polly M

    2017-01-27

    Microfluidic systems have enabled powerful new approaches to high-throughput biochemical and biological analysis. However, there remains a barrier to entry for non-specialists who would benefit greatly from the ability to develop their own microfluidic devices to address research questions. Particularly lacking has been the open dissemination of protocols related to photolithography, a key step in the development of a replica mold for the manufacture of polydimethylsiloxane (PDMS) devices. While the fabrication of single height silicon masters has been explored extensively in literature, fabrication steps for more complicated photolithography features necessary for many interesting device functionalities (such as feature rounding to make valve structures, multi-height single-mold patterning, or high aspect ratio definition) are often not explicitly outlined. Here, we provide a complete protocol for making multilayer microfluidic devices with valves and complex multi-height geometries, tunable for any application. These fabrication procedures are presented in the context of a microfluidic hydrogel bead synthesizer and demonstrate the production of droplets containing polyethylene glycol (PEG diacrylate) and a photoinitiator that can be polymerized into solid beads. This protocol and accompanying discussion provide a foundation of design principles and fabrication methods that enables development of a wide variety of microfluidic devices. The details included here should allow non-specialists to design and fabricate novel devices, thereby bringing a host of recently developed technologies to their most exciting applications in biological laboratories.

  17. Blood Perfusion in Microfluidic Models of Pulmonary Capillary Networks: Role of Geometry and Hematocrit

    NASA Astrophysics Data System (ADS)

    Stauber, Hagit; Waisman, Dan; Sznitman, Josue; Technion-IIT Team; Department of Neonatology Carmel Medical Center; Faculty of Medicine-Technion IIT Collaboration

    2015-11-01

    Microfluidic platforms are increasingly used to study blood microflows at true physiological scale due to their ability to overcome manufacturing obstacle of complex anatomical morphologies, such as the organ-specific architectures of the microcirculation. In the present work, we utilize microfluidic platforms to devise in vitro models of the underlying pulmonary capillary networks (PCN), where capillary lengths and diameters are similar to the size of RBCs (~ 5-10 μm). To better understand flow characteristics and dispersion of red blood cells (RBCs) in PCNs, we have designed microfluidic models of alveolar capillary beds inspired by the seminal ``sheet flow'' model of Fung and Sobin (1969). Our microfluidic PCNs feature confined arrays of staggered pillars with diameters of ~ 5,7 and 10 μm, mimicking the dense structure of pulmonary capillary meshes. The devices are perfused with suspensions of RBCs at varying hematocrit levels under different flow rates. Whole-field velocity patterns using micro-PIV and single-cell tracking using PTV are obtained with fluorescently-labelled RBCs and discussed. Our experiments deliver a real-scale quantitative description of RBC perfusion characteristics across the pulmonary capillary microcirculation.

  18. 3D Printed Multimaterial Microfluidic Valve.

    PubMed

    Keating, Steven J; Gariboldi, Maria Isabella; Patrick, William G; Sharma, Sunanda; Kong, David S; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  19. Towards an integrated optofluidic system for highly sensitive detection of antibiotics in seawater incorporating bimodal waveguide photonic biosensors and complex, active microfluidics

    NASA Astrophysics Data System (ADS)

    Szydzik, C.; Gavela, A. F.; Roccisano, J.; Herranz de Andrés, S.; Mitchell, A.; Lechuga, L. M.

    2016-12-01

    We present recent results on the realisation and demonstration of an integrated optofluidic lab-on-a-chip measurement system. The system consists of an integrated on-chip automated microfluidic fluid handling subsystem, coupled with bimodal nano-interferometer waveguide technology, and is applied in the context of detection of antibiotics in seawater. The bimodal waveguide (BMWG) is a highly sensitive label-free biosensor. Integration of complex microfluidic systems with bimodal waveguide technology enables on-chip sample handling and fluid processing capabilities and allows for significant automation of experimental processes. The on-chip fluid-handling subsystem is realised through the integration of pneumatically actuated elastomer pumps and valves, enabling high temporal resolution sample and reagent delivery and facilitating multiplexed detection processes.

  20. Microfluidic PMMA interfaces for rectangular glass capillaries

    NASA Astrophysics Data System (ADS)

    Evander, Mikael; Tenje, Maria

    2014-02-01

    We present the design and fabrication of a polymeric capillary fluidic interface fabricated by micro-milling. The design enables the use of glass capillaries with any kind of cross-section in complex microfluidic setups. We demonstrate two different designs of the interface; a double-inlet interface for hydrodynamic focusing and a capillary interface with integrated pneumatic valves. Both capillary interfaces are presented together with examples of practical applications. This communication shows the design optimization and presents details of the fabrication process. The capillary interface opens up for the use of complex microfluidic systems in single-use glass capillaries. They also enable simple fabrication of glass/polymer hybrid devices that can be beneficial in many research fields where a pure polymer chip negatively affects the device's performance, e.g. acoustofluidics.

  1. Reactions in Droplets in Microfluidic Channels

    PubMed Central

    Song, Helen; Chen, Delai L.; Ismagilov, Rustem F.

    2006-01-01

    Fundamental and applied research in chemistry and biology benefits from opportunities provided by droplet-based microfluidic systems. These systems enable the miniaturization of reactions by compartmentalizing reactions in droplets of femoliter to microliter volumes. Compartmentalization in droplets provides rapid mixing of reagents, control of the timing of reactions on timescales from milliseconds to months, control of interfacial properties, and the ability to synthesize and transport solid reagents and products. Droplet-based microfluidics can help to enhance and accelerate chemical and biochemical screening, protein crystallization, enzymatic kinetics, and assays. Moreover, the control provided by droplets in microfluidic devices can lead to new scientific methods and insights. PMID:17086584

  2. Finger-triggered portable PDMS suction cup for equipment-free microfluidic pumping

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyun; Kim, Hojin; Lee, Wonhyung; Kim, Joonwon

    2018-12-01

    This study presents a finger-triggered portable polydimethylsiloxane suction cup that enables equipment-free microfluidic pumping. The key feature of this method is that its operation only involves a "pressing-and-releasing" action for the cup placed at the outlet of a microfluidic device, which transports the fluid at the inlet toward the outlet through a microchannel. This method is simple, but effective and powerful. The cup is portable and can easily be fabricated from a three-dimensional printed mold, used without any pre-treatment, reversibly bonded to microfluidic devices without leakage, and applied to various material-based microfluidic devices. The effect of the suction cup geometry and fabrication conditions on the pumping performance was investigated. Furthermore, we demonstrated the practical applications of the suction cup by conducting an equipment-free pumping of thermoplastic-based microfluidic devices and water-in-oil droplet generation.

  3. Pumps for microfluidic cell culture.

    PubMed

    Byun, Chang Kyu; Abi-Samra, Kameel; Cho, Yoon-Kyoung; Takayama, Shuichi

    2014-02-01

    In comparison to traditional in vitro cell culture in Petri dishes or well plates, cell culture in microfluidic-based devices enables better control over chemical and physical environments, higher levels of experimental automation, and a reduction in experimental materials. Over the past decade, the advantages associated with cell culturing in microfluidic-based platforms have garnered significant interest and have led to a plethora of studies for high throughput cell assays, organs-on-a-chip applications, temporal signaling studies, and cell sorting. A clear concern for performing cell culture in microfluidic-based devices is deciding on a technique to deliver and pump media to cells that are encased in a microfluidic device. In this review, we summarize recent advances in pumping techniques for microfluidic cell culture and discuss their advantages and possible drawbacks. The ultimate goal of our review is to distill the large body of information available related to pumps for microfluidic cell culture in an effort to assist current and potential users of microfluidic-based devices for advanced in vitro cellular studies. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Flexible opto-electronics enabled microfluidics systems with cloud connectivity for point-of-care micronutrient analysis.

    PubMed

    Lee, Stephen; Aranyosi, A J; Wong, Michelle D; Hong, Ji Hyung; Lowe, Jared; Chan, Carol; Garlock, David; Shaw, Scott; Beattie, Patrick D; Kratochvil, Zachary; Kubasti, Nick; Seagers, Kirsten; Ghaffari, Roozbeh; Swanson, Christina D

    2016-04-15

    In developing countries, the deployment of medical diagnostic technologies remains a challenge because of infrastructural limitations (e.g. refrigeration, electricity), and paucity of health professionals, distribution centers and transportation systems. Here we demonstrate the technical development and clinical testing of a novel electronics enabled microfluidic paper-based analytical device (EE-μPAD) for quantitative measurement of micronutrient concentrations in decentralized, resource-limited settings. The system performs immune-detection using paper-based microfluidics, instrumented with flexible electronics and optoelectronic sensors in a mechanically robust, ultrathin format comparable in size to a credit card. Autonomous self-calibration, plasma separation, flow monitoring, timing and data storage enable multiple devices to be run simultaneously. Measurements are wirelessly transferred to a mobile phone application that geo-tags the data and transmits it to a remote server for real time tracking of micronutrient deficiencies. Clinical tests of micronutrient levels from whole blood samples (n=95) show comparable sensitivity and specificity to ELISA-based tests. These results demonstrate instantaneous acquisition and global aggregation of diagnostics data using a fully integrated point of care system that will enable rapid and distributed surveillance of disease prevalence and geographical progression. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Paper Capillary Enables Effective Sampling for Microfluidic Paper Analytical Devices.

    PubMed

    Shangguan, Jin-Wen; Liu, Yu; Wang, Sha; Hou, Yun-Xuan; Xu, Bi-Yi; Xu, Jing-Juan; Chen, Hong-Yuan

    2018-06-06

    Paper capillary is introduced to enable effective sampling on microfluidic paper analytical devices. By coupling mac-roscale capillary force of paper capillary and microscale capillary forces of native paper, fluid transport can be flexibly tailored with proper design. Subsequently, a hybrid-fluid-mode paper capillary device was proposed, which enables fast and reliable sampling in an arrayed form, with less surface adsorption and bias for different components. The resulting device thus well supports high throughput, quantitative, and repeatable assays all by hands operation. With all these merits, multiplex analysis of ions, proteins, and microbe have all been realized on this platform, which has paved the way to level-up analysis on μPADs.

  6. Detection and classification of ebola on microfluidic chips

    NASA Astrophysics Data System (ADS)

    Lin, Xue; Jin, Xiangyu; Fan, Yunqian; Huang, Qin; Kou, Yue; Zu, Guo; Huang, Shiguang; Liu, Xiaosheng; Huang, Guoliang

    2016-10-01

    Point-of-care testing (POCT) for an infectious diseases is the prerequisite to control of the disease and limitation of its spread. A microfluidic chip for detection and classification of four strains of Ebola virus was developed and evaluated. This assay was based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) and specific primers for Ebola Zaire virus, Ebola Sudan virus, Ebola Tai Forest virus and Ebola Bundibugyo virus were designed. The sensitivity of the microfluidic chip was under 103 copies per milliliter, as determined by ten repeated tests. This assay is unique in its ability to enable diagnosis of the Ebola infections and simultaneous typing of Ebola virus on a single chip. It offers short reaction time, ease of use and high specificity. These features should enable POCT in remote area during outbreaks of Ebola virus.

  7. 3D Printed Multimaterial Microfluidic Valve

    PubMed Central

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  8. Microfluidic Serial Dilution Circuit

    PubMed Central

    Paegel, Brian M.; Grover, William H.; Skelley, Alison M.; Mathies, Richard A.; Joyce, Gerald F.

    2008-01-01

    In vitro evolution of RNA molecules requires a method for executing many consecutive serial dilutions. To solve this problem, a microfluidic circuit has been fabricated in a three-layer glass-PDMS-glass device. The 400-nL serial dilution circuit contains five integrated membrane valves: three two-way valves arranged in a loop to drive cyclic mixing of the diluent and carryover, and two bus valves to control fluidic access to the circuit through input and output channels. By varying the valve placement in the circuit, carryover fractions from 0.04 to 0.2 were obtained. Each dilution process, which is comprised of a diluent flush cycle followed by a mixing cycle, is carried out with no pipeting, and a sample volume of 400 nL is sufficient for conducting an arbitrary number of serial dilutions. Mixing is precisely controlled by changing the cyclic pumping rate, with a minimum mixing time of 22 s. This microfluidic circuit is generally applicable for integrating automated serial dilution and sample preparation in almost any microfluidic architecture. PMID:17073422

  9. Microfluidics for Positron Emission Tomography (PET) Imaging Probe Development

    PubMed Central

    Wang, Ming-Wei; Lin, Wei-Yu; Liu, Kan; Masterman-Smith, Michael; Shen, Clifton Kwang-Fu

    2012-01-01

    Due to increased needs for Positron Emission Tomography (PET) scanning, high demands for a wide variety of radiolabeled compounds will have to be met by exploiting novel radiochemistry and engineering technologies to improve the production and development of PET probes. The application of microfluidic reactors to perform radiosyntheses is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional labeling systems. Microfluidic-based radiochemistry can lead to the use of smaller quantities of precursors, accelerated reaction rates and easier purification processes with greater yield and higher specific activity of desired probes. Several ‘proof-of-principle’ examples, along with basics of device architecture and operation, and potential limitations of each design are discussed here. Along with the concept of radioisotope distribution from centralized cyclotron facilities to individual imaging centers and laboratories (“decentralized model”), an easy-to-use, standalone, flexible, fully-automated radiochemical microfluidic platform can open up to simpler and more cost-effective procedures for molecular imaging using PET. PMID:20643021

  10. Enabling liquid solvent structure analysis using hard x-ray absorption spectroscopy with a transferrable microfluidic reactor.

    PubMed

    Zheng, Jian; Zhang, Wei; Wang, Feng; Yu, Xiao-Ying

    2018-05-10

    In this paper, a vacuum compatible microfluidic device, system for analysis at the liquid vacuum interface, is integrated to hard x-ray absorption spectroscopy to obtain the local structure of K 3 [Fe(CN) 6 ] in aqueous solutions with three concentrations of 0.5 M, 0.05 M, and 0.005 M. The solutions were sealed in a microchannel 500 µm wide and 300 µm deep in a portable microfluidic device. The Fe K-edge x-ray absorption spectra indicate a presence of Fe(III) in the complex in water, with an octahedral geometry coordinated with 6 C atoms in the first shell with a distance of ~1.92 Å and 6 N atoms in the second shell with a distance of ~3.10 Å. Varying the concentration has no observable influence on the structure of K 3 [Fe(CN) 6 ]. Our results demonstrate the feasibility of using microfluidic based liquid cells in large synchrotron facilities. Using portable microfludic reactors provides a viable approach to enable multifaceted measurements of liquids in the future.

  11. Enabling liquid solvent structure analysis using hard x-ray absorption spectroscopy with a transferrable microfluidic reactor

    NASA Astrophysics Data System (ADS)

    Zheng, Jian; Zhang, Wei; Wang, Feng; Yu, Xiao-Ying

    2018-05-01

    In this paper, a vacuum compatible microfluidic device, system for analysis at the liquid vacuum interface, is integrated to hard x-ray absorption spectroscopy to obtain the local structure of K3[Fe(CN)6] in aqueous solutions with three concentrations of 0.5 M, 0.05 M, and 0.005 M. The solutions were sealed in a microchannel 500 µm wide and 300 µm deep in a portable microfluidic device. The Fe K-edge x-ray absorption spectra indicate a presence of Fe(III) in the complex in water, with an octahedral geometry coordinated with 6 C atoms in the first shell with a distance of ~1.92 Å and 6 N atoms in the second shell with a distance of ~3.10 Å. Varying the concentration has no observable influence on the structure of K3[Fe(CN)6]. Our results demonstrate the feasibility of using microfluidic based liquid cells in large synchrotron facilities. Using portable microfludic reactors provides a viable approach to enable multifaceted measurements of liquids in the future.

  12. Enabling liquid solvent structure analysis using hard x-ray absorption spectroscopy with a transferrable microfluidic reactor

    DOE PAGES

    Zheng, Jian; Zhang, Wei; Wang, Feng; ...

    2018-04-11

    In this study, a vacuum compatible microfluidic device, system for analysis at the liquid vacuum interface, is integrated to hard x-ray absorption spectroscopy to obtain the local structure of K 3[Fe(CN) 6] in aqueous solutions with three concentrations of 0.5 M, 0.05 M, and 0.005 M. The solutions were sealed in a microchannel 500 µm wide and 300 µm deep in a portable microfluidic device. The Fe K-edge x-ray absorption spectra indicate a presence of Fe(III) in the complex in water, with an octahedral geometry coordinated with 6 C atoms in the first shell with a distance of ~1.92 Åmore » and 6 N atoms in the second shell with a distance of ~3.10 Å. Varying the concentration has no observable influence on the structure of K 3[Fe(CN) 6]. Our results demonstrate the feasibility of using microfluidic based liquid cells in large synchrotron facilities. Using portable microfludic reactors provides a viable approach to enable multifaceted measurements of liquids in the future.« less

  13. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing

    PubMed Central

    Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou

    2016-01-01

    Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications. PMID:27886051

  14. Enabling liquid solvent structure analysis using hard x-ray absorption spectroscopy with a transferrable microfluidic reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jian; Zhang, Wei; Wang, Feng

    In this study, a vacuum compatible microfluidic device, system for analysis at the liquid vacuum interface, is integrated to hard x-ray absorption spectroscopy to obtain the local structure of K 3[Fe(CN) 6] in aqueous solutions with three concentrations of 0.5 M, 0.05 M, and 0.005 M. The solutions were sealed in a microchannel 500 µm wide and 300 µm deep in a portable microfluidic device. The Fe K-edge x-ray absorption spectra indicate a presence of Fe(III) in the complex in water, with an octahedral geometry coordinated with 6 C atoms in the first shell with a distance of ~1.92 Åmore » and 6 N atoms in the second shell with a distance of ~3.10 Å. Varying the concentration has no observable influence on the structure of K 3[Fe(CN) 6]. Our results demonstrate the feasibility of using microfluidic based liquid cells in large synchrotron facilities. Using portable microfludic reactors provides a viable approach to enable multifaceted measurements of liquids in the future.« less

  15. Enabling liquid solvent structure analysis using hard x-ray absorption spectroscopy with a transferrable microfluidic reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jian; Zhang, Wei; Wang, Feng

    In this paper, a vacuum compatible microfluidic device, System for Analysis at the Liquid Vacuum Interface (SALVI), is integrated to hard x-ray absorption spectroscopy (XAS) to obtain the local structure of K3[Fe(CN)6] in aqueous solutions with three concentrations of 0.5 M, 0.05 M, and 0.005 M. The solutions were sealed in a microchannel of 500 μm wide and 300 µm deep in a portable microfluidic device. The Fe K-edge x-ray absorption spectra show that the complex in water is Fe(III). The complex is present with octahedral geometry coordinated with 6 C atoms in the first shell with a distance ofmore » ~1.92 Å and 6 N atoms in the second shell with a distance of ~3.10 Å. Varying the concentration has no observable influence on the structure of K3[Fe(CN)6]. Our results demonstrate the feasibility of using microfluidic based liquid cells in large synchrotron facilities and it is a viable approach to enable multifaceted measurements of liquids in the future.« less

  16. Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyubimov, Artem Y.; Stanford University, Stanford, CA 94305; Stanford University, Stanford, CA 94305

    A microfluidic platform has been developed for the capture and X-ray analysis of protein microcrystals, affording a means to improve the efficiency of XFEL and synchrotron experiments. X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressablemore » points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat for conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.« less

  17. Design and development of a microfluidic platform for use with colorimetric gold nanoprobe assays

    NASA Astrophysics Data System (ADS)

    Bernacka-Wojcik, Iwona

    Due to the importance and wide applications of the DNA analysis, there is a need to make genetic analysis more available and more affordable. As such, the aim of this PhD thesis is to optimize a colorimetric DNA biosensor based on gold nanoprobes developed in CEMOP by reducing its price and the needed volume of solution without compromising the device sensitivity and reliability, towards the point of care use. Firstly, the price of the biosensor was decreased by replacing the silicon photodetector by a low cost, solution processed TiO2 photodetector. To further reduce the photodetector price, a novel fabrication method was developed: a cost-effective inkjet printing technology that enabled to increase TiO2 surface area. Secondly, the DNA biosensor was optimized by means of microfluidics that offer advantages of miniaturization, much lower sample/reagents consumption, enhanced system performance and functionality by integrating different components. In the developed microfluidic platform, the optical path length was extended by detecting along the channel and the light was transmitted by optical fibres enabling to guide the light very close to the analysed solution. Microfluidic chip of high aspect ratio ( 13), smooth and nearly vertical sidewalls was fabricated in PDMS using a SU-8 mould for patterning. The platform coupled to the gold nanoprobe assay enabled detection of Mycobacterium tuberculosis using 3 mul on DNA solution, i.e. 20 times less than in the previous state-of-the-art. Subsequently, the bio-microfluidic platform was optimized in terms of cost, electrical signal processing and sensitivity to colour variation, yielding 160% improvement of colorimetric AuNPs analysis. Planar microlenses were incorporated to converge light into the sample and then to the output fibre core increasing 6 times the signal-to-losses ratio. The optimized platform enabled detection of single nucleotide polymorphism related with obesity risk (FTO) using target DNA concentration below the limit of detection of the conventionally used microplate reader (i.e. 15 ng/mul) with 10 times lower solution volume (3 mul). The combination of the unique optical properties of gold nanoprobes with microfluidic platform resulted in sensitive and accurate sensor for single nucleotide polymorphism detection operating using small volumes of solutions and without the need for substrate functionalization or sophisticated instrumentation. Simultaneously, to enable on chip reagents mixing, a PDMS micromixer was developed and optimized for the highest efficiency, low pressure drop and short mixing length. The optimized device shows 80% of mixing efficiency at Re = 0.1 in 2.5 mm long mixer with the pressure drop of 6 Pa, satisfying requirements for the application in the microfluidic platform for DNA analysis.

  18. Smooth muscle architecture within cell-dense vascular tissues influences functional contractility.

    PubMed

    Win, Zaw; Vrla, Geoffrey D; Steucke, Kerianne E; Sevcik, Emily N; Hald, Eric S; Alford, Patrick W

    2014-12-01

    The role of vascular smooth muscle architecture in the function of healthy and dysfunctional vessels is poorly understood. We aimed at determining the relationship between vascular smooth muscle architecture and contractile output using engineered vascular tissues. We utilized microcontact printing and a microfluidic cell seeding technique to provide three different initial seeding conditions, with the aim of influencing the cellular architecture within the tissue. Cells seeded in each condition formed confluent and aligned tissues but within the tissues, the cellular architecture varied. Tissues with a more elongated cellular architecture had significantly elevated basal stress and produced more contractile stress in response to endothelin-1 stimulation. We also found a correlation between the contractile phenotype marker expression and the cellular architecture, contrary to our previous findings in non-confluent tissues. Taken with previous results, these data suggest that within cell-dense vascular tissues, smooth muscle contractility is strongly influenced by cell and tissue architectures.

  19. Carbon nanotube sensors integrated inside a microfluidic channel for water quality monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Li, Xinghui; Dokmeci, Mehmet R.; Wang, Ming L.

    2011-04-01

    Single-walled carbon nanotubes (SWNTs) with their unique electrical properties and large surface area are remarkable materials for detecting low concentration of toxic and hazardous chemicals (both from the gaseous and liquid phases). Ionic adsorbates in water will attach on to SWNTs and drastically alter their electrical properties. Several SWNTs based pH and chemical sensors have been demonstrated. However, most of them require external components to test and analyze the response of SWNTs to ions inside the liquid samples. Here, we report a water quality monitoring sensor composed of SWNTs integrated inside microfluidic channels and on-chip testing components with a wireless transmission board. To detect multiple analytes in water requires the functionalization of SWNTs with different chemistries. In addition, microfluidic channels are used to guide liquid samples to individual nanotube sensors in an efficient manner. Furthermore, the microfluidic system enables sample mixing and separation before testing. To realize the nanosensors, first microelectrodes were fabricated on an oxidized silicon substrate. Next, PDMS micro channels were fabricated and bonded on the substrate. These channels can be incorporated with a microfluidic system which can be designed to manipulate different analytes for specific molecule detection. Low temperature, solution based Dielectrophoretic (DEP) assembly was conducted inside this microfluidic system which successfully bridged SWNTs between the microelectrodes. The SWNTs sensors were next characterized with different pH buffer solutions. The resistance of SWNTs had a linearly increase as the pH values ranged from 5 to 8. The nanosensor incorporated within the microfluidic system is a versatile platform and can be utilized to detect numerous water pollutants, including toxic organics and microorganisms down to low concentrations. On-chip processing and wireless transmission enables the realization of a full autonomous system for real time monitoring of water quality.

  20. A Fiber-Tip Label-Free Biological Sensing Platform: A Practical Approach toward In-Vivo Sensing

    PubMed Central

    François, Alexandre; Reynolds, Tess; Monro, Tanya M.

    2015-01-01

    The platform presented here was devised to address the unmet need for real time label-free in vivo sensing by bringing together a refractive index transduction mechanism based on Whispering Gallery Modes (WGM) in dye doped microspheres and Microstructured Optical Fibers. In addition to providing remote excitation and collection of the WGM signal, the fiber provides significant practical advantages such as an easy manipulation of the microresonator and the use of this sensor in a dip sensing architecture, alleviating the need for a complex microfluidic interface. Here, we present the first demonstration of the use of this approach for biological sensing and evaluate its limitation in a sensing configuration deprived of liquid flow which is most likely to occur in an in vivo setting. We also demonstrate the ability of this sensing platform to be operated above its lasing threshold, enabling enhanced device performance. PMID:25585104

  1. Droplet microfluidic technology for single-cell high-throughput screening.

    PubMed

    Brouzes, Eric; Medkova, Martina; Savenelli, Neal; Marran, Dave; Twardowski, Mariusz; Hutchison, J Brian; Rothberg, Jonathan M; Link, Darren R; Perrimon, Norbert; Samuels, Michael L

    2009-08-25

    We present a droplet-based microfluidic technology that enables high-throughput screening of single mammalian cells. This integrated platform allows for the encapsulation of single cells and reagents in independent aqueous microdroplets (1 pL to 10 nL volumes) dispersed in an immiscible carrier oil and enables the digital manipulation of these reactors at a very high-throughput. Here, we validate a full droplet screening workflow by conducting a droplet-based cytotoxicity screen. To perform this screen, we first developed a droplet viability assay that permits the quantitative scoring of cell viability and growth within intact droplets. Next, we demonstrated the high viability of encapsulated human monocytic U937 cells over a period of 4 days. Finally, we developed an optically-coded droplet library enabling the identification of the droplets composition during the assay read-out. Using the integrated droplet technology, we screened a drug library for its cytotoxic effect against U937 cells. Taken together our droplet microfluidic platform is modular, robust, uses no moving parts, and has a wide range of potential applications including high-throughput single-cell analyses, combinatorial screening, and facilitating small sample analyses.

  2. Attractive design: an elution solvent optimization platform for magnetic-bead-based fractionation using digital microfluidics and design of experiments.

    PubMed

    Lafrenière, Nelson M; Mudrik, Jared M; Ng, Alphonsus H C; Seale, Brendon; Spooner, Neil; Wheeler, Aaron R

    2015-04-07

    There is great interest in the development of integrated tools allowing for miniaturized sample processing, including solid phase extraction (SPE). We introduce a new format for microfluidic SPE relying on C18-functionalized magnetic beads that can be manipulated in droplets in a digital microfluidic platform. This format provides the opportunity to tune the amount (and potentially the type) of stationary phase on-the-fly, and allows the removal of beads after the extraction (to enable other operations in same device-space), maintaining device reconfigurability. Using the new method, we employed a design of experiments (DOE) operation to enable automated on-chip optimization of elution solvent composition for reversed phase SPE of a model system. Further, conditions were selected to enable on-chip fractionation of multiple analytes. Finally, the method was demonstrated to be useful for online cleanup of extracts from dried blood spot (DBS) samples. We anticipate this combination of features will prove useful for separating a wide range of analytes, from small molecules to peptides, from complex matrices.

  3. Microfluidic-based mini-metagenomics enables discovery of novel microbial lineages from complex environmental samples

    PubMed Central

    Yu, Feiqiao Brian; Blainey, Paul C; Schulz, Frederik; Woyke, Tanja; Horowitz, Mark A; Quake, Stephen R

    2017-01-01

    Metagenomics and single-cell genomics have enabled genome discovery from unknown branches of life. However, extracting novel genomes from complex mixtures of metagenomic data can still be challenging and represents an ill-posed problem which is generally approached with ad hoc methods. Here we present a microfluidic-based mini-metagenomic method which offers a statistically rigorous approach to extract novel microbial genomes while preserving single-cell resolution. We used this approach to analyze two hot spring samples from Yellowstone National Park and extracted 29 new genomes, including three deeply branching lineages. The single-cell resolution enabled accurate quantification of genome function and abundance, down to 1% in relative abundance. Our analyses of genome level SNP distributions also revealed low to moderate environmental selection. The scale, resolution, and statistical power of microfluidic-based mini-metagenomics make it a powerful tool to dissect the genomic structure of microbial communities while effectively preserving the fundamental unit of biology, the single cell. DOI: http://dx.doi.org/10.7554/eLife.26580.001 PMID:28678007

  4. Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry.

    PubMed

    Zhou, Xiao-Ming; Shimanovich, Ulyana; Herling, Therese W; Wu, Si; Dobson, Christopher M; Knowles, Tuomas P J; Perrett, Sarah

    2015-06-23

    Amyloid fibrils represent a generic class of protein structure associated with both pathological states and with naturally occurring functional materials. This class of protein nanostructure has recently also emerged as an excellent foundation for sophisticated functional biocompatible materials including scaffolds and carriers for biologically active molecules. Protein-based materials offer the potential advantage that additional functions can be directly incorporated via gene fusion producing a single chimeric polypeptide that will both self-assemble and display the desired activity. To succeed, a chimeric protein system must self-assemble without the need for harsh triggering conditions which would damage the appended functional protein molecule. However, the micrometer to nanoscale patterning and morphological control of protein-based nanomaterials has remained challenging. This study demonstrates a general approach for overcoming these limitations through the microfluidic generation of enzymatically active microgels that are stabilized by amyloid nanofibrils. The use of scaffolds formed from biomaterials that self-assemble under mild conditions enables the formation of catalytic microgels while maintaining the integrity of the encapsulated enzyme. The enzymatically active microgel particles show robust material properties and their porous architecture allows diffusion in and out of reactants and products. In combination with microfluidic droplet trapping approaches, enzymatically active microgels illustrate the potential of self-assembling materials for enzyme immobilization and recycling, and for biological flow-chemistry. These design principles can be adopted to create countless other bioactive amyloid-based materials with diverse functions.

  5. Automated Microfluidic Instrument for Label-Free and High-Throughput Cell Separation.

    PubMed

    Zhang, Xinjie; Zhu, Zhixian; Xiang, Nan; Long, Feifei; Ni, Zhonghua

    2018-03-20

    Microfluidic technologies for cell separation were reported frequently in recent years. However, a compact microfluidic instrument enabling thoroughly automated cell separation is still rarely reported until today due to the difficult hybrid between the macrosized fluidic control system and the microsized microfluidic device. In this work, we propose a novel and automated microfluidic instrument to realize size-based separation of cancer cells in a label-free and high-throughput manner. Briefly, the instrument is equipped with a fully integrated microfluidic device and a set of robust fluid-driven and control units, and the instrument functions of precise fluid infusion and high-throughput cell separation are guaranteed by a flow regulatory chip and two cell separation chips which are the key components of the microfluidic device. With optimized control programs, the instrument is successfully applied to automatically sort human breast adenocarcinoma cell line MCF-7 from 5 mL of diluted human blood with a high recovery ratio of ∼85% within a rapid processing time of ∼23 min. We envision that our microfluidic instrument will be potentially useful in many biomedical applications, especially cell separation, enrichment, and concentration for the purpose of cell culture and analysis.

  6. Microfluidic inertial focusing fundamentals, limitations and applications for biomedical sample processing

    NASA Astrophysics Data System (ADS)

    Reece, Amy E.

    The microfabrication of microfluidic control systems and advances in molecular amplification tools has enabled the miniaturization of single cell analytical platforms for the efficient, highly selective enumeration and molecular characterization of rare and diseased cells from clinical samples. In many cases, the high-throughput nature of microfluidic inertial focusing has enabled the popularization of this new class of Lab-on-a-Chip devices that exhibit numerous advantages over conventional methods as prognostic and diagnostic tools. Inertial focusing is the passive, sheathless alignment of particles and cells to precise spatiotemporal equilibrium positions that arise from a force balance between opposing inertial lift forces and hydrodynamic repulsions. The applicability of inertial focusing to a spectrum of filtration, separation and encapsulation challenges places heavy emphasis upon the accurate description of the hydrodynamic forces responsible for predictable inertial focusing behavior. These inertial focusing fundamentals, limitations and their applications are studied extensively throughout this work.

  7. Microfluidic LC Device with Orthogonal Sample Extraction for On-Chip MALDI-MS Detection

    PubMed Central

    Lazar, Iulia M.; Kabulski, Jarod L.

    2013-01-01

    A microfluidic device that enables on-chip matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) detection for liquid chromatography (LC) separations is described. The device comprises an array of functional elements to carry out LC separations, integrates a novel microchip-MS interface to facilitate the orthogonal transposition of the microfluidic LC channel into an array of reservoirs, and enables sensitive MALDI-MS detection directly from the chip. Essentially, the device provides a snapshot MALDI-MS map of the content of the separation channel present on the chip. The detection of proteins with biomarker potential from MCF10A breast epithelial cell extracts, and detection limits in the low fmol range, are demonstrated. In addition, the design of the novel LC-MALDI-MS chip entices the promotion of a new concept for performing sample separations within the limited time-frame that accompanies the dead-volume of a separation channel. PMID:23592150

  8. Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics

    NASA Astrophysics Data System (ADS)

    Weiss, Marian; Frohnmayer, Johannes Patrick; Benk, Lucia Theresa; Haller, Barbara; Janiesch, Jan-Willi; Heitkamp, Thomas; Börsch, Michael; Lira, Rafael B.; Dimova, Rumiana; Lipowsky, Reinhard; Bodenschatz, Eberhard; Baret, Jean-Christophe; Vidakovic-Koch, Tanja; Sundmacher, Kai; Platzman, Ilia; Spatz, Joachim P.

    2018-01-01

    Compartments for the spatially and temporally controlled assembly of biological processes are essential towards cellular life. Synthetic mimics of cellular compartments based on lipid-based protocells lack the mechanical and chemical stability to allow their manipulation into a complex and fully functional synthetic cell. Here, we present a high-throughput microfluidic method to generate stable, defined sized liposomes termed `droplet-stabilized giant unilamellar vesicles (dsGUVs)’. The enhanced stability of dsGUVs enables the sequential loading of these compartments with biomolecules, namely purified transmembrane and cytoskeleton proteins by microfluidic pico-injection technology. This constitutes an experimental demonstration of a successful bottom-up assembly of a compartment with contents that would not self-assemble to full functionality when simply mixed together. Following assembly, the stabilizing oil phase and droplet shells are removed to release functional self-supporting protocells to an aqueous phase, enabling them to interact with physiologically relevant matrices.

  9. Microfluidic interconnects

    DOEpatents

    Benett, William J.; Krulevitch, Peter A.

    2001-01-01

    A miniature connector for introducing microliter quantities of solutions into microfabricated fluidic devices, and which incorporates a molded ring or seal set into a ferrule cartridge, with or without a compression screw. The fluidic connector, for example, joins standard high pressure liquid chromatography (HPLC) tubing to 1 mm diameter holes in silicon or glass, enabling ml-sized volumes of sample solutions to be merged with .mu.l-sized devices. The connector has many features, including ease of connect and disconnect; a small footprint which enables numerous connectors to be located in a small area; low dead volume; helium leak-tight; and tubing does not twist during connection. Thus the connector enables easy and effective change of microfluidic devices and introduction of different solutions in the devices.

  10. Bio-microfluidics: biomaterials and biomimetic designs.

    PubMed

    Domachuk, Peter; Tsioris, Konstantinos; Omenetto, Fiorenzo G; Kaplan, David L

    2010-01-12

    Bio-microfluidics applies biomaterials and biologically inspired structural designs (biomimetics) to microfluidic devices. Microfluidics, the techniques for constraining fluids on the micrometer and sub-micrometer scale, offer applications ranging from lab-on-a-chip to optofluidics. Despite this wealth of applications, the design of typical microfluidic devices imparts relatively simple, laminar behavior on fluids and is realized using materials and techniques from silicon planar fabrication. On the other hand, highly complex microfluidic behavior is commonplace in nature, where fluids with nonlinear rheology flow through chaotic vasculature composed from a range of biopolymers. In this Review, the current state of bio-microfluidic materials, designs and applications are examined. Biopolymers enable bio-microfluidic devices with versatile functionalization chemistries, flexibility in fabrication, and biocompatibility in vitro and in vivo. Polymeric materials such as alginate, collagen, chitosan, and silk are being explored as bulk and film materials for bio-microfluidics. Hydrogels offer options for mechanically functional devices for microfluidic systems such as self-regulating valves, microlens arrays and drug release systems, vital for integrated bio-microfluidic devices. These devices including growth factor gradients to study cell responses, blood analysis, biomimetic capillary designs, and blood vessel tissue culture systems, as some recent examples of inroads in the field that should lead the way in a new generation of microfluidic devices for bio-related needs and applications. Perhaps one of the most intriguing directions for the future will be fully implantable microfluidic devices that will also integrate with existing vasculature and slowly degrade to fully recapitulate native tissue structure and function, yet serve critical interim functions, such as tissue maintenance, drug release, mechanical support, and cell delivery.

  11. Papers Based Electrochemical Biosensors: From Test Strips to Paper-Based Microfluidics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bingwen; Du, Dan; Hua, Xin

    2014-05-08

    Papers based biosensors such as lateral flow test strips and paper-based microfluidic devices (or paperfluidics) are inexpensive, rapid, flexible, and easy-to-use analytical tools. An apparent trend in their detection is to interpret sensing results from qualitative assessment to quantitative determination. Electrochemical detection plays an important role in quantification. This review focuses on electrochemical (EC) detection enabled biosensors. The first part provides detailed examples in paper test strips. The second part gives an overview of paperfluidics engaging EC detections. The outlook and recommendation of future directions of EC enabled biosensors are discussed in the end.

  12. Recent developments in microfluidics for cell studies.

    PubMed

    Xiong, Bin; Ren, Kangning; Shu, Yiwei; Chen, Yin; Shen, Bo; Wu, Hongkai

    2014-08-20

    As a technique for precisely manipulating fluid at the micrometer scale, the field of microfluidics has experienced an explosive growth over the past two decades, particularly owing to the advances in device design and fabrication. With the inherent advantages associated with its scale of operation, and its flexibility in being incorporated with other microscale techniques for manipulation and detection, microfluidics has become a major enabling technology, which has introduced new paradigms in various fields involving biological cells. A microfluidic device is able to realize functions that are not easily imaginable in conventional biological analysis, such as highly parallel, sophisticated high-throughput analysis, single-cell analysis in a well-defined manner, and tissue engineering with the capability of manipulation at the single-cell level. Major advancements in microfluidic device fabrication and the growing trend of implementing microfluidics in cell studies are presented, with a focus on biological research and clinical diagnostics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications.

    PubMed

    Daniele, Michael A; Boyd, Darryl A; Adams, André A; Ligler, Frances S

    2015-01-07

    Fiber-based materials provide critical capabilities for biomedical applications. Microfluidic fiber fabrication has recently emerged as a very promising route to the synthesis of polymeric fibers at the micro and nanoscale, providing fine control over fiber shape, size, chemical anisotropy, and biological activity. This Progress Report summarizes advanced microfluidic methods for the fabrication of both microscale and nanoscale fibers and illustrates how different methods are enabling new biomedical applications. Microfluidic fabrication methods and resultant materials are explained from the perspective of their microfluidic device principles, including co-flow, cross-flow, and flow-shaping designs. It is then detailed how the microchannel design and flow parameters influence the variety of synthesis chemistries that can be utilized. Finally, the integration of biomaterials and microfluidic strategies is discussed to manufacture unique fiber-based systems, including cell scaffolds, cell encapsulation, and woven tissue matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A compact disk-like centrifugal microfluidic system for high-throughput nanoliter-scale protein crystallization screening.

    PubMed

    Li, Gang; Chen, Qiang; Li, Junjun; Hu, Xiaojian; Zhao, Jianlong

    2010-06-01

    A centrifuge-based microfluidic system has been developed that enables automated high-throughput and low-volume protein crystallizations. In this system, protein solution was automatically and accurately metered and dispensed into nanoliter-sized multiple reaction chambers, and it was mixed with various types of precipitants using a combination of capillary effect and centrifugal force. It has the advantages of simple fabrication, easy operation, and extremely low waste. To demonstrate the feasibility of this system, we constructed a chip containing 24 units and used it to perform lysozyme and cyan fluorescent protein (CyPet) crystallization trials. The results demonstrate that high-quality crystals can be grown and harvested from such a nanoliter-volume microfluidic system. Compared to other microfluidic technologies for protein crystallization, this microfluidic system allows zero waste, simple structure and convenient operation, which suggests that our microfluidic disk can be applied not only to protein crystallization, but also to the miniaturization of various biochemical reactions requiring precise nanoscale control.

  15. Flexible packaging of solid-state integrated circuit chips with elastomeric microfluidics

    PubMed Central

    Zhang, Bowei; Dong, Quan; Korman, Can E.; Li, Zhenyu; Zaghloul, Mona E.

    2013-01-01

    A flexible technology is proposed to integrate smart electronics and microfluidics all embedded in an elastomer package. The microfluidic channels are used to deliver both liquid samples and liquid metals to the integrated circuits (ICs). The liquid metals are used to realize electrical interconnects to the IC chip. This avoids the traditional IC packaging challenges, such as wire-bonding and flip-chip bonding, which are not compatible with current microfluidic technologies. As a demonstration we integrated a CMOS magnetic sensor chip and associate microfluidic channels on a polydimethylsiloxane (PDMS) substrate that allows precise delivery of small liquid samples to the sensor. Furthermore, the packaged system is fully functional under bending curvature radius of one centimetre and uniaxial strain of 15%. The flexible integration of solid-state ICs with microfluidics enables compact flexible electronic and lab-on-a-chip systems, which hold great potential for wearable health monitoring, point-of-care diagnostics and environmental sensing among many other applications.

  16. Soft tubular microfluidics for 2D and 3D applications

    PubMed Central

    Xi, Wang; Kong, Fang; Yeo, Joo Chuan; Yu, Longteng; Sonam, Surabhi; Dao, Ming; Gong, Xiaobo; Lim, Chwee Teck

    2017-01-01

    Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs. PMID:28923968

  17. Soft tubular microfluidics for 2D and 3D applications

    NASA Astrophysics Data System (ADS)

    Xi, Wang; Kong, Fang; Yeo, Joo Chuan; Yu, Longteng; Sonam, Surabhi; Dao, Ming; Gong, Xiaobo; Teck Lim, Chwee

    2017-10-01

    Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs.

  18. Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array

    DOE PAGES

    Lyubimov, Artem Y.; Murray, Thomas D.; Koehl, Antoine; ...

    2015-03-27

    X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressable points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat formore » conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.« less

  19. A smartphone controlled handheld microfluidic liquid handling system.

    PubMed

    Li, Baichen; Li, Lin; Guan, Allan; Dong, Quan; Ruan, Kangcheng; Hu, Ronggui; Li, Zhenyu

    2014-10-21

    Microfluidics and lab-on-a-chip technologies have made it possible to manipulate small volume liquids with unprecedented resolution, automation and integration. However, most current microfluidic systems still rely on bulky off-chip infrastructures such as compressed pressure sources, syringe pumps and computers to achieve complex liquid manipulation functions. Here, we present a handheld automated microfluidic liquid handling system controlled by a smartphone, which is enabled by combining elastomeric on-chip valves and a compact pneumatic system. As a demonstration, we show that the system can automatically perform all the liquid handling steps of a bead-based HIV1 p24 sandwich immunoassay on a multi-layer PDMS chip without any human intervention. The footprint of the system is 6 × 10.5 × 16.5 cm, and the total weight is 829 g including battery. Powered by a 12.8 V 1500 mAh Li battery, the system consumed 2.2 W on average during the immunoassay and lasted for 8.7 h. This handheld microfluidic liquid handling platform is generally applicable to many biochemical and cell-based assays requiring complex liquid manipulation and sample preparation steps such as FISH, PCR, flow cytometry and nucleic acid sequencing. In particular, the integration of this technology with read-out biosensors may help enable the realization of the long-sought Tricorder-like handheld in vitro diagnostic (IVD) systems.

  20. Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyubimov, Artem Y.; Murray, Thomas D.; Koehl, Antoine

    X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressable points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat formore » conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.« less

  1. A Microfluidic Platform to design crosslinked Hyaluronic Acid Nanoparticles (cHANPs) for enhanced MRI

    NASA Astrophysics Data System (ADS)

    Russo, Maria; Bevilacqua, Paolo; Netti, Paolo Antonio; Torino, Enza

    2016-11-01

    Recent advancements in imaging diagnostics have focused on the use of nanostructures that entrap Magnetic Resonance Imaging (MRI) Contrast Agents (CAs), without the need to chemically modify the clinically approved compounds. Nevertheless, the exploitation of microfluidic platforms for their controlled and continuous production is still missing. Here, a microfluidic platform is used to synthesize crosslinked Hyaluronic Acid NanoParticles (cHANPs) in which a clinically relevant MRI-CAs, gadolinium diethylenetriamine penta-acetic acid (Gd-DTPA), is entrapped. This microfluidic process facilitates a high degree of control over particle synthesis, enabling the production of monodisperse particles as small as 35 nm. Furthermore, the interference of Gd-DTPA during polymer precipitation is overcome by finely tuning process parameters and leveraging the use of hydrophilic-lipophilic balance (HLB) of surfactants and pH conditions. For both production strategies proposed to design Gd-loaded cHANPs, a boosting of the relaxation rate T1 is observed since a T1 of 1562 is achieved with a 10 μM of Gd-loaded cHANPs while a similar value is reached with 100 μM of the relevant clinical Gd-DTPA in solution. The advanced microfluidic platform to synthesize intravascularly-injectable and completely biocompatible hydrogel nanoparticles entrapping clinically approved CAs enables the implementation of straightforward and scalable strategies in diagnostics and therapy applications.

  2. Successes and future outlook for microfluidics-based cardiovascular drug discovery.

    PubMed

    Skommer, Joanna; Wlodkowic, Donald

    2015-03-01

    The greatest advantage of using microfluidics as a platform for the assessment of cardiovascular drug action is its ability to finely regulate fluid flow conditions, including flow rate, shear stress and pulsatile flow. At the same time, microfluidics provide means for modifying the vessel geometry (bifurcations, stenoses, complex networks), the type of surface of the vessel walls, and for patterning cells in 3D tissue-like architecture, including generation of lumen walls lined with cells and heart-on-a-chip structures for mimicking ventricular cardiomyocyte physiology. In addition, owing to the small volume of required specimens, microfluidics is ideally suited to clinical situations whereby monitoring of drug dosing or efficacy needs to be coupled with minimal phlebotomy-related drug loss. In this review, the authors highlight potential applications for the currently existing and emerging technologies and offer several suggestions on how to close the development cycle of microfluidic devices for cardiovascular drug discovery. The ultimate goal in microfluidics research for drug discovery is to develop 'human-on-a-chip' systems, whereby several organ cultures, including the vasculature and the heart, can mimic complex interactions between the organs and body systems. This would provide in vivo-like pharmacokinetics and pharmacodynamics for drug ADMET assessment. At present, however, the great variety of available designs does not go hand in hand with their use by the pharmaceutical community.

  3. Chemical and Biological Dynamics Using Droplet-Based Microfluidics.

    PubMed

    Dressler, Oliver J; Casadevall I Solvas, Xavier; deMello, Andrew J

    2017-06-12

    Recent years have witnessed an increased use of droplet-based microfluidic techniques in a wide variety of chemical and biological assays. Nevertheless, obtaining dynamic data from these platforms has remained challenging, as this often requires reading the same droplets (possibly thousands of them) multiple times over a wide range of intervals (from milliseconds to hours). In this review, we introduce the elemental techniques for the formation and manipulation of microfluidic droplets, together with the most recent developments in these areas. We then discuss a wide range of analytical methods that have been successfully adapted for analyte detection in droplets. Finally, we highlight a diversity of studies where droplet-based microfluidic strategies have enabled the characterization of dynamic systems that would otherwise have remained unexplorable.

  4. Flexible metal patterning in glass microfluidic structures using femtosecond laser direct-write ablation followed by electroless plating

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Midorikawa, Katsumi; Sugioka, Koji

    2014-03-01

    A simple and flexible technique for integrating metal micropatterns into glass microfluidic structures based on threedimensional femtosecond laser microfabrication is presented. Femtosecond laser direct writing followed by thermal treatment and successive chemical etching allows us to fabricate three-dimensional microfluidic structures such as microchannels and microreservoirs inside photosensitive glass. Then, the femtosecond laser direct-write ablation followed by electroless metal plating enables space-selective deposition of patterned metal films on desired locations of internal walls of the fabricated microfluidic structures. The developed technique is applied to integrate a metal microheater into a glass microchannel to control the temperature of liquid samples in the channel, which can be used as a microreactor for enhancement of chemical reactions.

  5. Chip in a lab: Microfluidics for next generation life science research

    PubMed Central

    Streets, Aaron M.; Huang, Yanyi

    2013-01-01

    Microfluidic circuits are characterized by fluidic channels and chambers with a linear dimension on the order of tens to hundreds of micrometers. Components of this size enable lab-on-a-chip technology that has much promise, for example, in the development of point-of-care diagnostics. Micro-scale fluidic circuits also yield practical, physical, and technological advantages for studying biological systems, enhancing the ability of researchers to make more precise quantitative measurements. Microfluidic technology has thus become a powerful tool in the life science research laboratory over the past decade. Here we focus on chip-in-a-lab applications of microfluidics and survey some examples of how small fluidic components have provided researchers with new tools for life science research. PMID:23460772

  6. Evaluation of microfluidic channels with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Czajkowski, J.; Prykäri, T.; Alarousu, E.; Lauri, J.; Myllylä, R.

    2010-11-01

    Application of time domain, ultra high resolution optical coherence tomography (UHR-OCT) in evaluation of microfluidic channels is demonstrated. Presented study was done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti:sapphire femtosecond laser, a photonic crystal fibre and modified, free-space Michelson interferometer. To show potential of the technique, microfluidic chip fabricated by VTT Center for Printed Intelligence (Oulu, Finland) was measured. Ability for full volumetric reconstruction in non-contact manner enabled complete characterization of closed entity of a microfluidic channel without contamination and harm for the sample. Measurement, occurring problems, and methods of postprocessing for raw data are described. Results present completely resolved physical structure of the channel, its spatial dimensions, draft angles and evaluation of lamination quality.

  7. Compact and controlled microfluidic mixing and biological particle capture

    NASA Astrophysics Data System (ADS)

    Ballard, Matthew; Owen, Drew; Mills, Zachary Grant; Hesketh, Peter J.; Alexeev, Alexander

    2016-11-01

    We use three-dimensional simulations and experiments to develop a multifunctional microfluidic device that performs rapid and controllable microfluidic mixing and specific particle capture. Our device uses a compact microfluidic channel decorated with magnetic features. A rotating magnetic field precisely controls individual magnetic microbeads orbiting around the features, enabling effective continuous-flow mixing of fluid streams over a compact mixing region. We use computer simulations to elucidate the underlying physical mechanisms that lead to effective mixing and compare them with experimental mixing results. We study the effect of various system parameters on microfluidic mixing to design an efficient micromixer. We also experimentally and numerically demonstrate that orbiting microbeads can effectively capture particles transported by the fluid, which has major implications in pre-concentration and detection of biological particles including various cells and bacteria, with applications in areas such as point-of-care diagnostics, biohazard detection, and food safety. Support from NSF and USDA is gratefully acknowledged.

  8. Cell manipulation in microfluidics.

    PubMed

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2013-06-01

    Recent advances in the lab-on-a-chip field in association with nano/microfluidics have been made for new applications and functionalities to the fields of molecular biology, genetic analysis and proteomics, enabling the expansion of the cell biology field. Specifically, microfluidics has provided promising tools for enhancing cell biological research, since it has the ability to precisely control the cellular environment, to easily mimic heterogeneous cellular environment by multiplexing, and to analyze sub-cellular information by high-contents screening assays at the single-cell level. Various cell manipulation techniques in microfluidics have been developed in accordance with specific objectives and applications. In this review, we examine the latest achievements of cell manipulation techniques in microfluidics by categorizing externally applied forces for manipulation: (i) optical, (ii) magnetic, (iii) electrical, (iv) mechanical and (v) other manipulations. We furthermore focus on history where the manipulation techniques originate and also discuss future perspectives with key examples where available.

  9. Microfluidic cartridges for DNA purification and genotyping processed in standard laboratory instruments

    NASA Astrophysics Data System (ADS)

    Focke, Maximilian; Mark, Daniel; Stumpf, Fabian; Müller, Martina; Roth, Günter; Zengerle, Roland; von Stetten, Felix

    2011-06-01

    Two microfluidic cartridges intended for upgrading standard laboratory instruments with automated liquid handling capability by use of centrifugal forces are presented. The first microfluidic cartridge enables purification of DNA from human whole blood and is operated in a standard laboratory centrifuge. The second microfluidic catridge enables genotyping of pathogens by geometrically multiplexed real-time PCR. It is operated in a slightly modified off-the-shelf thermal cycler. Both solutions aim at smart and cost-efficient ways to automate work flows in laboratories. The DNA purification cartridge automates all liquid handling steps starting from a lysed blood sample to PCR ready DNA. The cartridge contains two manually crushable glass ampoules with liquid reagents. The DNA yield extracted from a 32 μl blood sample is 192 +/- 30 ng which corresponds to 53 +/- 8% of a reference extraction. The genotyping cartridge is applied to analyse isolates of the multi-resistant Staphyloccus aureus (MRSA) by real-time PCR. The wells contain pre-stored dry reagents such as primers and probes. Evaluation of the system with 44 genotyping assays showed a 100% specificity and agreement with the reference assays in standard tubes. The lower limit of detection was well below 10 copies of DNA per reaction.

  10. Design and Optimization of Coin-Shaped Microreactor Chips for PET Radiopharmaceutical Synthesis

    PubMed Central

    Elizarov, Arkadij M.; van Dam, R. Michael; Shin, Young Shik; Kolb, Hartmuth C.; Padgett, Henry C.; Stout, David; Shu, Jenny; Huang, Jiang; Daridon, Antoine; Heath, James R.

    2010-01-01

    An integrated elastomeric microfluidic device, with a footprint the size of a postage stamp, has been designed and optimized for multistep radiosynthesis of PET tracers. Methods The unique architecture of the device is centered around a 5-μL coin-shaped reactor, which yields reaction efficiency and speed from a combination of high reagent concentration, pressurized reactions, and rapid heat and mass transfer. Its novel features facilitate mixing, solvent exchange, and product collection. New mixing mechanisms assisted by vacuum, pressure, and chemical reactions are exploited. Results The architecture of the reported reactor is the first that has allowed batch-mode microfluidic devices to produce radiopharmaceuticals of sufficient quality and quantity to be validated by in vivo imaging. Conclusion The reactor has the potential to produce multiple human doses of 18F-FDG; the most impact, however, is expected in the synthesis of PET radiopharmaceuticals that can be made only with low yields by currently available equipment. PMID:20124050

  11. Magneto-capillary valve for integrated purification and enrichment of nucleic acids and proteins.

    PubMed

    den Dulk, Remco C; Schmidt, Kristiane A; Sabatté, Gwénola; Liébana, Susana; Prins, Menno W J

    2013-01-07

    We describe the magneto-capillary valve (MCV) technology, a flexible approach for integrated biological sample preparation within the concept of stationary microfluidics. Rather than moving liquids in a microfluidic device, discrete units of liquid are present at fixed positions in the device and magnetic particles are actuated between the fluids. The MCV concept is characterized by the use of two planar surfaces at a capillary mutual distance, with specific features to confine the fluids by capillary forces, and the use of a gas or a phase-change material separating the stationary aqueous liquids. We have studied the physics of magneto-capillary valving by quantifying the magnetic force as a function of time and position, which reveals the balance of magnetic, capillary and frictional forces in the system. By purification experiments with a fluorescent tracer we have measured the amount of co-transported liquid, which is a key parameter for efficient purification. To demonstrate the versatility of the technology, several MCV device architectures were tested in a series of biological assays, showing the purification and enrichment of nucleic acids and proteins. Target recovery comparable to non-miniaturized commercial kits was observed for the extraction of DNA from human cells in buffer, using a device architecture with patterned air valves. Experiments using an enrichment module and patterned air valves demonstrate a 40-fold effective enrichment of DNA in buffer. DNA was also successfully purified from blood plasma using paraffin phase-change valves. Finally, the enrichment of a protein biomarker (prostate-specific antigen) using geometrical air valves resulted in a 7-fold increase of detection signal. The MCV technology is versatile, offers extensive freedom for the design of fully integrated systems, and is expected to be manufacturable in a cost-effective way. We conclude that the MCV technology can become an important enabling technology for point-of-care systems with sample in-result out performance.

  12. Microfluidic technology platforms for synthesizing, labeling and measuring the kinetics of transport and biochemical reactions for developing molecular imaging probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelps, Michael E.

    2009-09-01

    Radiotracer techniques are used in environmental sciences, geology, biology and medicine. Radiotracers with Positron Emission Tomography (PET) provided biological examinations of ~3 million patients 2008. Despite the success of positron labeled tracers in many sciences, there is limited access in an affordable and convenient manner to develop and use new tracers. Integrated microfluidic chips are a new technology well matched to the concentrations of tracers. Our goal is to develop microfluidic chips and new synthesis approaches to enable wide dissemination of diverse types of tracers at low cost, and to produce new generations of radiochemists for which there are manymore » unfilled jobs. The program objectives are to: 1. Develop an integrated microfluidic platform technology for synthesizing and 18F-labeling diverse arrays of different classes of molecules. 2. Incorporate microfluidic chips into small PC controlled devices (“Synthesizer”) with a platform interfaced to PC for electronic and fluid input/out control. 3. Establish a de-centralized model with Synthesizers for discovering and producing molecular imaging probes, only requiring delivery of inexpensive [18F]fluoride ion from commercial PET radiopharmacies vs the centralized approach of cyclotron facilities synthesizing and shipping a few different types of 18F-probes. 4. Develop a position sensitive avalanche photo diode (PSAPD) camera for beta particles embedded in a microfluidic chip for imaging and measuring transport and biochemical reaction rates to valid new 18F-labeled probes in an array of cell cultures. These objectives are met within a research and educational program integrating radio-chemistry, synthetic chemistry, biochemistry, engineering and biology in the Crump Institute for Molecular Imaging. The Radiochemistry Training Program exposes PhD and post doctoral students to molecular imaging in vitro in cells and microorganisms in microfluidic chips and in vivo with PET, from new technologies for radiochemistry (macro to micro levels), biochemistry and biology to imaging principles, tracer kinetics, pharmacokinetics and biochemical assays. New generations of radiochemists will be immersed in the biochemistry and biology for which their labeled probes are being developed for assays of these processes. In this program engineers and radio-chemists integrate the principles of microfluidics and radiolabeling along with proper system design and chemistry rule sets to yield Synthesizers enabling biological and pharmaceutical scientists to develop diverse arrays of probes to pursue their interests. This progression would allow also radiochemists to focus on the further evolution of rapid, high yield synthetic reactions with new enabling technologies, rather than everyday production of radiotracers that should be done by technologists. The invention of integrated circuits in electronics established a platform technology that allowed an evolution of ideas and applications far beyond what could have been imagined at the beginning. Rather than provide a technology for the solution to a single problem, it is hoped that microfluidic radiochemistry will be an enabling platform technology for others to solve many problems. As part of this objective, another program goal is to commercialize the technologies that come from this work so that they can be provided to others who wish to use it.« less

  13. Design, fabrication and characterisation of a microfluidic time-temperature indicator

    NASA Astrophysics Data System (ADS)

    Schmitt, P.; Wedrich, K.; Müller, L.; Mehner, H.; Hoffmann, M.

    2017-11-01

    This paper describes a concept for a passive microfluidic time-temperature indicator (TTI) intended for intelligent food packaging. A microfluidic system is presented that makes use of the temperature-dependent flow of suitable food ingredients in a microcapillary. Based on the creeping distance inside the capillary, the time-temperature integral can be determined. A demonstrator of the microsystem has been designed, fabricated and characterised using liquid sugar alcohols as indicator fluids. To enable a first wireless read-out of the passive TTI, the sensor was read out using a commercial RFID equipment, and capacitive measurements have been carried out.

  14. Microfluidic Device to Quantify the Behavior of Therapeutic Bacteria in Three-Dimensional Tumor Tissue.

    PubMed

    Brackett, Emily L; Swofford, Charles A; Forbes, Neil S

    2016-01-01

    Microfluidic devices enable precise quantification of the interactions between anti-cancer bacteria and tumor tissue. Direct observation of bacterial movement and gene expression in tissue is difficult with either monolayers of cells or tumor-bearing mice. Quantification of these interactions is necessary to understand the inherent mechanisms of bacterial targeting and to develop modified organisms with enhanced therapeutic properties. Here we describe the procedures for designing, printing, and assembling microfluidic tumor-on-a-chip devices. We also describe the procedures for inserting three-dimensional tumor-cell masses, exposure to bacteria, and analyzing the resultant images.

  15. Reconfigurable microfluidic pump enabled by opto-electrical-thermal transduction

    NASA Astrophysics Data System (ADS)

    Takeuchi, Masaru; Hagiwara, Masaya; Haulot, Gauvain; Ho, Chih-Ming

    2013-10-01

    Flexible integration of a microfluidic system comprising pumps, valves, and microchannels was realized by an optoelectronic reconfigurable microchannels (OERM) technique. Projecting a low light fluidic device pattern—e.g., pumps, valves, and channels—onto an OERM platform generates Joule heating and melts the substrate in the bright area on the platform; thus, the fluidic system can be reconfigured by changing the projected light pattern. Hexadecane was used as the substrate of the microfluidic system. The volume change of hexadecane during the liquid-solid phase transition was utilized to generate pumping pressure. The system can pump nanoliters of water within several seconds.

  16. Microfluidic device for acoustic cell lysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branch, Darren W.; Cooley, Erika Jane; Smith, Gennifer Tanabe

    2015-08-04

    A microfluidic acoustic-based cell lysing device that can be integrated with on-chip nucleic acid extraction. Using a bulk acoustic wave (BAW) transducer array, acoustic waves can be coupled into microfluidic cartridges resulting in the lysis of cells contained therein by localized acoustic pressure. Cellular materials can then be extracted from the lysed cells. For example, nucleic acids can be extracted from the lysate using silica-based sol-gel filled microchannels, nucleic acid binding magnetic beads, or Nafion-coated electrodes. Integration of cell lysis and nucleic acid extraction on-chip enables a small, portable system that allows for rapid analysis in the field.

  17. Morphological tuning of polymeric nanoparticles via microfluidic platform for fuel cell applications.

    PubMed

    Hasani-Sadrabadi, Mohammad Mahdi; Majedi, Fatemeh Sadat; VanDersarl, Jules John; Dashtimoghadam, Erfan; Ghaffarian, S Reza; Bertsch, Arnaud; Moaddel, Homayoun; Renaud, Philippe

    2012-11-21

    At nanoscale length scales, the properties of particles change rapidly with the slightest change in dimension. The use of a microfluidic platform enables precise control of sub-100 nm organic nanoparticles (NPs) based on polybenzimidazole. Using hydrodynamic flow focusing, we can control the size and shape of the NPs, which in turn controls a number of particle material properties. The anhydrous proton-conducting nature of the prepared NPs allowed us to make a high-performance ion exchange membrane for fuel cell applications, and microfluidic tuning of the NPs allowed us subsequently to tune the fuel cell performance.

  18. Strategic enzyme patterning for microfluidic biofuel cells

    NASA Astrophysics Data System (ADS)

    Kjeang, E.; Sinton, D.; Harrington, D. A.

    The specific character of biological enzyme catalysts enables combined fuel and oxidant channels and simplified non-compartmentalized fuel cell assemblies. In this work, a microstructured enzymatic biofuel cell architecture is proposed, and species transport phenomena combined with consecutive chemical reactions are studied computationally in order to provide guidelines for optimization. This is the first computational study of this technology, and a 2D CFD model for species transport coupled with laminar fluid flow and Michaelis-Menten enzyme kinetics is established. It is shown that the system is reaction rate limited, indicating that enzyme specific turnover numbers are key parameters for biofuel cell performance. Separated and mixed enzyme patterns in different proportions are analyzed for various Peclet numbers. High fuel utilization is achieved in the diffusion dominated and mixed species transport regimes with separated enzymes arranged in relation to individual turnover rates. However, the Peclet number has to be above a certain threshold value to obtain satisfying current densities. The mixed transport regime is particularly attractive while current densities are maintained close to maximum levels. Optimum performance is achieved by mixed enzyme patterning tailored with respect to individual turnover rates, enabling high current densities combined with nearly complete fuel utilization.

  19. Microfluidic device having an immobilized pH gradient and PAGE gels for protein separation and analysis

    DOEpatents

    Sommer, Gregory J.; Hatch, Anson V.; Singh, Anup K.; Wang, Ying-Chih

    2012-12-11

    Disclosed is a novel microfluidic device enabling on-chip implementation of a two-dimensional separation methodology. Previously disclosed microscale immobilized pH gradients (IPG) are combined with perpendicular polyacrylamide gel electrophoresis (PAGE) microchannels to achieve orthogonal separations of biological samples. Device modifications enable inclusion of sodium dodecyl sulfate (SDS) in the second dimension. The device can be fabricated to use either continuous IPG gels, or the microscale isoelectric fractionation membranes we have also previously disclosed, for the first dimension. The invention represents the first all-gel two-dimensional separation microdevice, with significantly higher resolution power over existing devices.

  20. Microfluidic device having an immobilized pH gradient and page gels for protein separation and analysis

    DOEpatents

    Sommer, Gregory J; Hatch, Anson V; Singh, Anup K; Wang, Ying-Chih

    2014-05-20

    Disclosed is a novel microfluidic device enabling on-chip implementation of a two-dimensional separation methodology. Previously disclosed microscale immobilized pH gradients (IPG) are combined with perpendicular polyacrylamide gel electrophoresis (PAGE) microchannels to achieve orthogonal separations of biological samples. Device modifications enable inclusion of sodium dodecyl sulfate (SDS) in the second dimension. The device can be fabricated to use either continuous IPG gels, or the microscale isoelectric fractionation membranes we have also previously disclosed, for the first dimension. The invention represents the first all-gel two-dimensional separation microdevice, with significantly higher resolution power over existing devices.

  1. Automated reagent-dispensing system for microfluidic cell biology assays.

    PubMed

    Ly, Jimmy; Masterman-Smith, Michael; Ramakrishnan, Ravichandran; Sun, Jing; Kokubun, Brent; van Dam, R Michael

    2013-12-01

    Microscale systems that enable measurements of oncological phenomena at the single-cell level have a great capacity to improve therapeutic strategies and diagnostics. Such measurements can reveal unprecedented insights into cellular heterogeneity and its implications into the progression and treatment of complicated cellular disease processes such as those found in cancer. We describe a novel fluid-delivery platform to interface with low-cost microfluidic chips containing arrays of microchambers. Using multiple pairs of needles to aspirate and dispense reagents, the platform enables automated coating of chambers, loading of cells, and treatment with growth media or other agents (e.g., drugs, fixatives, membrane permeabilizers, washes, stains, etc.). The chips can be quantitatively assayed using standard fluorescence-based immunocytochemistry, microscopy, and image analysis tools, to determine, for example, drug response based on differences in protein expression and/or activation of cellular targets on an individual-cell level. In general, automation of fluid and cell handling increases repeatability, eliminates human error, and enables increased throughput, especially for sophisticated, multistep assays such as multiparameter quantitative immunocytochemistry. We report the design of the automated platform and compare several aspects of its performance to manually-loaded microfluidic chips.

  2. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.

    PubMed

    Knowlton, Stephanie; Yu, Chu Hsiang; Ersoy, Fulya; Emadi, Sharareh; Khademhosseini, Ali; Tasoglu, Savas

    2016-06-20

    Three-dimensional (3D) printing offers potential to fabricate high-throughput and low-cost fabrication of microfluidic devices as a promising alternative to traditional techniques which enables efficient design iterations in the development stage. In this study, we demonstrate a single-step fabrication of a 3D transparent microfluidic chip using two alternative techniques: a stereolithography-based desktop 3D printer and a two-step fabrication using an industrial 3D printer based on polyjet technology. This method, compared to conventional fabrication using relatively expensive materials and labor-intensive processes, presents a low-cost, rapid prototyping technique to print functional 3D microfluidic chips. We enhance the capabilities of 3D-printed microfluidic devices by coupling 3D cell encapsulation and spatial patterning within photocrosslinkable gelatin methacryloyl (GelMA). The platform presented here serves as a 3D culture environment for long-term cell culture and growth. Furthermore, we have demonstrated the ability to print complex 3D microfluidic channels to create predictable and controllable fluid flow regimes. Here, we demonstrate the novel use of 3D-printed microfluidic chips as controllable 3D cell culture environments, advancing the applicability of 3D printing to engineering physiological systems for future applications in bioengineering.

  3. Interplay between materials and microfluidics

    NASA Astrophysics Data System (ADS)

    Hou, Xu; Zhang, Yu Shrike; Santiago, Grissel Trujillo-De; Alvarez, Mario Moisés; Ribas, João; Jonas, Steven J.; Weiss, Paul S.; Andrews, Anne M.; Aizenberg, Joanna; Khademhosseini, Ali

    2017-04-01

    Developments in the field of microfluidics have triggered technological revolutions in many disciplines, including chemical synthesis, electronics, diagnostics, single-cell analysis, micro- and nanofabrication, and pharmaceutics. In many of these areas, rapid growth is driven by the increasing synergy between fundamental materials development and new microfluidic capabilities. In this Review, we critically evaluate both how recent advances in materials fabrication have expanded the frontiers of microfluidic platforms and how the improved microfluidic capabilities are, in turn, furthering materials design. We discuss how various inorganic and organic materials enable the fabrication of systems with advanced mechanical, optical, chemical, electrical and biointerfacial properties — in particular, when these materials are combined into new hybrids and modular configurations. The increasing sophistication of microfluidic techniques has also expanded the range of resources available for the fabrication of new materials, including particles and fibres with specific functionalities, 3D (bio)printed composites and organoids. Together, these advances lead to complex, multifunctional systems, which have many interesting potential applications, especially in the biomedical and bioengineering domains. Future exploration of the interactions between materials science and microfluidics will continue to enrich the diversity of applications across engineering as well as the physical and biomedical sciences.

  4. Microfluidic Devices for Drug Delivery Systems and Drug Screening

    PubMed Central

    Kompella, Uday B.; Damiati, Safa A.

    2018-01-01

    Microfluidic devices present unique advantages for the development of efficient drug carrier particles, cell-free protein synthesis systems, and rapid techniques for direct drug screening. Compared to bulk methods, by efficiently controlling the geometries of the fabricated chip and the flow rates of multiphase fluids, microfluidic technology enables the generation of highly stable, uniform, monodispersed particles with higher encapsulation efficiency. Since the existing preclinical models are inefficient drug screens for predicting clinical outcomes, microfluidic platforms might offer a more rapid and cost-effective alternative. Compared to 2D cell culture systems and in vivo animal models, microfluidic 3D platforms mimic the in vivo cell systems in a simple, inexpensive manner, which allows high throughput and multiplexed drug screening at the cell, organ, and whole-body levels. In this review, the generation of appropriate drug or gene carriers including different particle types using different configurations of microfluidic devices is highlighted. Additionally, this paper discusses the emergence of fabricated microfluidic cell-free protein synthesis systems for potential use at point of care as well as cell-, organ-, and human-on-a-chip models as smart, sensitive, and reproducible platforms, allowing the investigation of the effects of drugs under conditions imitating the biological system. PMID:29462948

  5. Introducing natural thermoplastic shellac to microfluidics: A green fabrication method for point-of-care devices

    PubMed Central

    Lausecker, R.; Badilita, V.; Wallrabe, U.

    2016-01-01

    We present a sustainable fabrication method for cheap point-of-care microfluidic systems, employing hot embossing of natural shellac as a key feature of an energy-efficient fabrication method that exclusively uses renewable materials as consumables. Shellac is a low-cost renewable biomaterial that features medium hydrophilicity (e.g., a water contact angle of ca. 73°) and a high chemical stability with respect to common solvents such as cyclohexane or toluene, rendering it an interesting candidate for low-cost microfluidics and a competitor to well-known systems such as paper-based or polydimethylsiloxane-based microfluidics. Moreover, its high replication accuracy for small features down to 30 μm lateral feature size and its ability to form smooth surfaces (surface roughness Ra = 29 nm) at low embossing temperatures (glass transition temperature Tg = 42.2 °C) enable energy-efficient hot embossing of microfluidic structures. Proof-of-concept for the implementation of shellac hot embossing as a green fabrication method for microfluidic systems is demonstrated through the successful fabrication of a microfluidic test setup and the assessment of its resource consumption. PMID:27478525

  6. Development of an Extraterrestrial Organic Analyzer (EOA) for Highly Sensitive Organic Detection on an Ice Shell Impact Penetrator (IceShIP)

    NASA Astrophysics Data System (ADS)

    Stockton, A. M.; Duca, Z. A.; Cato, M.; Cantrell, T.; Kim, J.; Putman, P.; Schmidt, B. E.

    2016-12-01

    Kinetic penetrators have the potential to enable low cost in situ measurements of the ice of worlds including Europa and Enceladus [1]. Their small size and mass, critical to limiting their kinetic energy, makes them ideal small landers riding on primarily orbiter missions, while enabling sampling at several m depth due to burial and excavation. In situ microfluidic-based organic analysis systems are a powerful, miniaturized approach for detecting markers of habitability and recent biological activity. Development of microfluidic technology, like that of the Mars Organic Analyzer (MOA) [2,3] and Enceladus Organic Analyzer (EOA), has led to an instrument capable of in situ organic chemical analysis compatible with a kinetic penetrator platform. This technology uses an integrated microfluidic processor to prepare samples for analysis via fluorescent derivatization prior to highly sensitive laser-induced fluorescence (LIF) detection. Selective derivatization in the presence of a chiral selector enables distinction between amino acid enantiomers. Finite element analysis of the core microfluidic processing and analytical device indicated that the device itself is more than capable of surviving the stresses associated with an impact acceleration of >50,000g. However, a number of developments were still required to enable a flight-ready system. Preliminary experiments indicated that moving from a pneumatically-actuated to a hydraulically-actuated microvalve system may provide better impact resistance. A hydraulically-actuated microvalve system was developed and tested. A modification of an established microfabricated LIF detection system would use indium bump bonding to permanently weld optical components using standard microfabrication techniques with perfect alignment. Recent work has also focused on developing and characterizing impact-resistant electronics. This work shows the low-TRL development of EOA's LIF and microfluidic subsystems for future planetary impact penetrator missions. With correct structural decisions and optimizations, EOA can survive a 50,000g impact, making it the only current optical instrument with this capability. References: [1] Gowen et al., Adv. Space Res., 2011, 725. [2] Skelley et al, PNAS USA, 2005, 102, 1041. [3] Kim J., et al, Anal. Chem., 2013, 85, 7682.

  7. One-Dimensional Nanostructures: Microfluidic-Based Synthesis, Alignment and Integration towards Functional Sensing Devices

    PubMed Central

    Xing, Yanlong; Dittrich, Petra S.

    2018-01-01

    Microfluidic-based synthesis of one-dimensional (1D) nanostructures offers tremendous advantages over bulk approaches e.g., the laminar flow, reduced sample consumption and control of self-assembly of nanostructures. In addition to the synthesis, the integration of 1D nanomaterials into microfluidic chips can enable the development of diverse functional microdevices. 1D nanomaterials have been used in applications such as catalysts, electronic instrumentation and sensors for physical parameters or chemical compounds and biomolecules and hence, can be considered as building blocks. Here, we outline and critically discuss promising strategies for microfluidic-assisted synthesis, alignment and various chemical and biochemical applications of 1D nanostructures. In particular, the use of 1D nanostructures for sensing chemical/biological compounds are reviewed. PMID:29303990

  8. Engineering controllable architecture in matrigel for 3D cell alignment.

    PubMed

    Jang, Jae Myung; Tran, Si-Hoai-Trung; Na, Sang Cheol; Jeon, Noo Li

    2015-02-04

    We report a microfluidic approach to impart alignment in ECM components in 3D hydrogels by continuously applying fluid flow across the bulk gel during the gelation process. The microfluidic device where each channel can be independently filled was tilted at 90° to generate continuous flow across the Matrigel as it gelled. The presence of flow helped that more than 70% of ECM components were oriented along the direction of flow, compared with randomly cross-linked Matrigel. Following the oriented ECM components, primary rat cortical neurons and mouse neural stem cells showed oriented outgrowth of neuronal processes within the 3D Matrigel matrix.

  9. Microscale anechoic architecture: acoustic diffusers for ultra low power microparticle separation via traveling surface acoustic waves.

    PubMed

    Behrens, Jan; Langelier, Sean; Rezk, Amgad R; Lindner, Gerhard; Yeo, Leslie Y; Friend, James R

    2015-01-07

    We present a versatile and very low-power traveling SAW microfluidic sorting device able to displace and separate particles of different diameter in aqueous suspension; the travelling wave propagates through the fluid bulk and diffuses via a Schröder diffuser, adapted from its typical use in concert hall acoustics to be the smallest such diffuser to be suitable for microfluidics. The effective operating power range is two to three orders of magnitude less than current SAW devices, uniquely eliminating the need for amplifiers, and by using traveling waves to impart forces directly upon suspended microparticles, they can be separated by size.

  10. Developments in label-free microfluidic methods for single-cell analysis and sorting.

    PubMed

    Carey, Thomas R; Cotner, Kristen L; Li, Brian; Sohn, Lydia L

    2018-04-24

    Advancements in microfluidic technologies have led to the development of many new tools for both the characterization and sorting of single cells without the need for exogenous labels. Label-free microfluidics reduce the preparation time, reagents needed, and cost of conventional methods based on fluorescent or magnetic labels. Furthermore, these devices enable analysis of cell properties such as mechanical phenotype and dielectric parameters that cannot be characterized with traditional labels. Some of the most promising technologies for current and future development toward label-free, single-cell analysis and sorting include electronic sensors such as Coulter counters and electrical impedance cytometry; deformation analysis using optical traps and deformation cytometry; hydrodynamic sorting such as deterministic lateral displacement, inertial focusing, and microvortex trapping; and acoustic sorting using traveling or standing surface acoustic waves. These label-free microfluidic methods have been used to screen, sort, and analyze cells for a wide range of biomedical and clinical applications, including cell cycle monitoring, rapid complete blood counts, cancer diagnosis, metastatic progression monitoring, HIV and parasite detection, circulating tumor cell isolation, and point-of-care diagnostics. Because of the versatility of label-free methods for characterization and sorting, the low-cost nature of microfluidics, and the rapid prototyping capabilities of modern microfabrication, we expect this class of technology to continue to be an area of high research interest going forward. New developments in this field will contribute to the ongoing paradigm shift in cell analysis and sorting technologies toward label-free microfluidic devices, enabling new capabilities in biomedical research tools as well as clinical diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices. © 2018 Wiley Periodicals, Inc.

  11. The pumping lid: investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications.

    PubMed

    Begolo, Stefano; Zhukov, Dmitriy V; Selck, David A; Li, Liang; Ismagilov, Rustem F

    2014-12-21

    Equipment-free pumping is a challenging problem and an active area of research in microfluidics, with applications for both laboratory and limited-resource settings. This paper describes the pumping lid method, a strategy to achieve equipment-free pumping by controlled generation of pressure. Pressure was generated using portable, lightweight, and disposable parts that can be integrated with existing microfluidic devices to simplify workflow and eliminate the need for pumping equipment. The development of this method was enabled by multi-material 3D printing, which allows fast prototyping, including composite parts that combine materials with different mechanical properties (e.g. both rigid and elastic materials in the same part). The first type of pumping lid we describe was used to produce predictable positive or negative pressures via controlled compression or expansion of gases. A model was developed to describe the pressures and flow rates generated with this approach and it was validated experimentally. Pressures were pre-programmed by the geometry of the parts and could be tuned further even while the experiment was in progress. Using multiple lids or a composite lid with different inlets enabled several solutions to be pumped independently in a single device. The second type of pumping lid, which relied on vapor-liquid equilibrium to generate pressure, was designed, modeled, and experimentally characterized. The pumping lid method was validated by controlling flow in different types of microfluidic applications, including the production of droplets, control of laminar flow profiles, and loading of SlipChip devices. We believe that applying the pumping lid methodology to existing microfluidic devices will enhance their use as portable diagnostic tools in limited resource settings as well as accelerate adoption of microfluidics in laboratories.

  12. Fast and accurate enzyme activity measurements using a chip-based microfluidic calorimeter.

    PubMed

    van Schie, Morten M C H; Ebrahimi, Kourosh Honarmand; Hagen, Wilfred R; Hagedoorn, Peter-Leon

    2018-03-01

    Recent developments in microfluidic and nanofluidic technologies have resulted in development of new chip-based microfluidic calorimeters with potential use in different fields. One application would be the accurate high-throughput measurement of enzyme activity. Calorimetry is a generic way to measure activity of enzymes, but unlike conventional calorimeters, chip-based calorimeters can be easily automated and implemented in high-throughput screening platforms. However, application of chip-based microfluidic calorimeters to measure enzyme activity has been limited due to problems associated with miniaturization such as incomplete mixing and a decrease in volumetric heat generated. To address these problems we introduced a calibration method and devised a convenient protocol for using a chip-based microfluidic calorimeter. Using the new calibration method, the progress curve of alkaline phosphatase, which has product inhibition for phosphate, measured by the calorimeter was the same as that recorded by UV-visible spectroscopy. Our results may enable use of current chip-based microfluidic calorimeters in a simple manner as a tool for high-throughput screening of enzyme activity with potential applications in drug discovery and enzyme engineering. Copyright © 2017. Published by Elsevier Inc.

  13. Plasmofluidics: Merging Light and Fluids at the Micro-/Nano-Scale

    PubMed Central

    Wang, Mingsong; Zhao, Chenglong; Miao, Xiaoyu; Zhao, Yanhui; Rufo, Joseph

    2016-01-01

    Plasmofluidics is the synergistic integration of plasmonics and micro/nano fluidics in devices and applications in order to enhance performance. There has been significant progress in the emerging field of plasmofluidics in recent years. By utilizing the capability of plasmonics to manipulate light at the nanoscale, combined with the unique optical properties of fluids, and precise manipulation via micro/nano fluidics, plasmofluidic technologies enable innovations in lab-on-a-chip systems, reconfigurable photonic devices, optical sensing, imaging, and spectroscopy. In this review article, we examine and categorize the most recent advances in plasmofluidics into plasmon-enhanced functionalities in microfluidics and microfluidics-enhanced plasmonic devices. The former focuses on plasmonic manipulations of fluids, bubbles, particles, biological cells, and molecules at the micro-/nano-scale. The latter includes technological advances that apply microfluidic principles to enable reconfigurable plasmonic devices and performance-enhanced plasmonic sensors. We conclude with our perspectives on the upcoming challenges, opportunities, and the possible future directions of the emerging field of plasmofluidics. PMID:26140612

  14. Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale.

    PubMed

    Wang, Mingsong; Zhao, Chenglong; Miao, Xiaoyu; Zhao, Yanhui; Rufo, Joseph; Liu, Yan Jun; Huang, Tony Jun; Zheng, Yuebing

    2015-09-16

    Plasmofluidics is the synergistic integration of plasmonics and micro/nanofluidics in devices and applications in order to enhance performance. There has been significant progress in the emerging field of plasmofluidics in recent years. By utilizing the capability of plasmonics to manipulate light at the nanoscale, combined with the unique optical properties of fluids and precise manipulation via micro/nanofluidics, plasmofluidic technologies enable innovations in lab-on-a-chip systems, reconfigurable photonic devices, optical sensing, imaging, and spectroscopy. In this review article, the most recent advances in plasmofluidics are examined and categorized into plasmon-enhanced functionalities in microfluidics and microfluidics-enhanced plasmonic devices. The former focuses on plasmonic manipulations of fluids, bubbles, particles, biological cells, and molecules at the micro/nanoscale. The latter includes technological advances that apply microfluidic principles to enable reconfigurable plasmonic devices and performance-enhanced plasmonic sensors. The article is concluded with perspectives on the upcoming challenges, opportunities, and possible future directions of the emerging field of plasmofluidics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Compartmentalized microchannel array for high-throughput analysis of single cell polarized growth and dynamics

    DOE PAGES

    Geng, Tao; Bredeweg, Erin L.; Szymanski, Craig J.; ...

    2015-11-04

    Here, interrogating polarized growth is technologically challenging due to extensive cellular branching and uncontrollable environmental conditions in conventional assays. Here we present a robust and high-performance microfluidic system that enables observations of polarized growth with enhanced temporal and spatial control over prolonged periods. The system has built-in tunability and versatility to accommodate a variety of science applications requiring precisely controlled environments. Using the model filamentous fungus, Neurospora crassa, this microfluidic system enabled direct visualization and analysis of cellular heterogeneity in a clonal fungal cell population, nuclear distribution and dynamics at the subhyphal level, and quantitative dynamics of gene expression withmore » single hyphal compartment resolution in response to carbon source starvation and exchange experiments. Although the microfluidic device is demonstrated on filamentous fungi, our technology is immediately extensible to a wide array of other biosystems that exhibit similar polarized cell growth with applications ranging from bioenergy production to human health.« less

  16. Microfluidic setup for on-line SERS monitoring using laser induced nanoparticle spots as SERS active substrate.

    PubMed

    Buja, Oana-M; Gordan, Ovidiu D; Leopold, Nicolae; Morschhauser, Andreas; Nestler, Jörg; Zahn, Dietrich R T

    2017-01-01

    A microfluidic setup which enables on-line monitoring of residues of malachite green (MG) using surface-enhanced Raman scattering (SERS) is reported. The SERS active substrate was prepared via laser induced synthesis of silver or gold nanoparticles spot on the bottom of a 200 μm inner dimension glass capillary, by focusing the laser beam during a continuous flow of a mixture of silver nitrate or gold chloride and sodium citrate. The described microfluidic setup enables within a few minutes the monitoring of several processes: the synthesis of the SERS active spot, MG adsorption to the metal surface, detection of the analyte when saturation of the SERS signal is reached, and finally, the desorption of MG from the spot. Moreover, after MG complete desorption, the regeneration of the SERS active spot was achieved. The detection of MG was possible down to 10 -7 M concentration with a good reproducibility when using silver or gold spots as SERS substrate.

  17. Reversible thermo-pneumatic valves on centrifugal microfluidic platforms.

    PubMed

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Harun, Sulaiman Wadi; Kazemzadeh, Amin; Rothan, Hussin A; Yusof, Rohana; Madou, Marc

    2015-08-21

    Centrifugal microfluidic systems utilize a conventional spindle motor to automate parallel biochemical assays on a single microfluidic disk. The integration of complex, sequential microfluidic procedures on these platforms relies on robust valving techniques that allow for the precise control and manipulation of fluid flow. The ability of valves to consistently return to their former conditions after each actuation plays a significant role in the real-time manipulation of fluidic operations. In this paper, we introduce an active valving technique that operates based on the deflection of a latex film with the potential for real-time flow manipulation in a wide range of operational spinning speeds. The reversible thermo-pneumatic valve (RTPV) seals or reopens an inlet when a trapped air volume is heated or cooled, respectively. The RTPV is a gas-impermeable valve composed of an air chamber enclosed by a latex membrane and a specially designed liquid transition chamber that enables the efficient usage of the applied thermal energy. Inputting thermo-pneumatic (TP) energy into the air chamber deflects the membrane into the liquid transition chamber against an inlet, sealing it and thus preventing fluid flow. From this point, a centrifugal pressure higher than the induced TP pressure in the air chamber reopens the fluid pathway. The behaviour of this newly introduced reversible valving system on a microfluidic disk is studied experimentally and theoretically over a range of rotational frequencies from 700 RPM to 2500 RPM. Furthermore, adding a physical component (e.g., a hemispherical rubber element) to induce initial flow resistance shifts the operational range of rotational frequencies of the RTPV to more than 6000 RPM. An analytical solution for the cooling of a heated RTPV on a spinning disk is also presented, which highlights the need for the future development of time-programmable RTPVs. Moreover, the reversibility and gas impermeability of the RTPV in the microfluidic networks are validated on a microfluidic disk designed for performing liquid circulation. Finally, an array of RTPVs is integrated into a microfluidic cartridge to enable sequential aliquoting for the conversion of dengue virus RNA to cDNA and the preparation of PCR reaction mixtures.

  18. Transient deformation of a droplet near a microfluidic constriction: A quantitative analysis

    NASA Astrophysics Data System (ADS)

    Trégouët, Corentin; Salez, Thomas; Monteux, Cécile; Reyssat, Mathilde

    2018-05-01

    We report on experiments that consist of deforming a collection of monodisperse droplets produced by a microfluidic chip through a flow-focusing device. We show that a proper numerical modeling of the flow is necessary to access the stress applied by the latter on the droplet along its trajectory through the chip. This crucial step enables the full integration of the differential equation governing the dynamical deformation, and consequently the robust measurement of the interfacial tension by fitting the experiments with the calculated deformation. Our study thus demonstrates the feasibility of quantitative in situ rheology in microfluidic flows involving, e.g., droplets, capsules, or cells.

  19. Temperature-programmed natural convection for micromixing and biochemical reaction in a single microfluidic chamber.

    PubMed

    Kim, Sung-Jin; Wang, Fang; Burns, Mark A; Kurabayashi, Katsuo

    2009-06-01

    Micromixing is a crucial step for biochemical reactions in microfluidic networks. A critical challenge is that the system containing micromixers needs numerous pumps, chambers, and channels not only for the micromixing but also for the biochemical reactions and detections. Thus, a simple and compatible design of the micromixer element for the system is essential. Here, we propose a simple, yet effective, scheme that enables micromixing and a biochemical reaction in a single microfluidic chamber without using any pumps. We accomplish this process by using natural convection in conjunction with alternating heating of two heaters for efficient micromixing, and by regulating capillarity for sample transport. As a model application, we demonstrate micromixing and subsequent polymerase chain reaction (PCR) for an influenza viral DNA fragment. This process is achieved in a platform of a microfluidic cartridge and a microfabricated heating-instrument with a fast thermal response. Our results will significantly simplify micromixing and a subsequent biochemical reaction that involves reagent heating in microfluidic networks.

  20. Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications

    PubMed Central

    Su, Wenjing; Cook, Benjamin S.; Fang, Yunnan; Tentzeris, Manos M.

    2016-01-01

    As the needs for low-cost rapidly-produced microfluidics are growing with the trend of Lab-on-a-Chip and distributed healthcare, the fully inkjet-printing of microfluidics can be a solution to it with numerous potential electrical and sensing applications. Inkjet-printing is an additive manufacturing technique featuring no material waste and a low equipment cost. Moreover, similar to other additive manufacturing techniques, inkjet-printing is easy to learn and has a high fabrication speed, while it offers generally a great planar resolution down to below 20 µm and enables flexible designs due to its inherent thin film deposition capabilities. Due to the thin film feature, the printed objects also usually obtain a high vertical resolution (such as 4.6 µm). This paper introduces a low-cost rapid three-dimensional fabrication process of microfluidics, that relies entirely on an inkjet-printer based single platform and can be implemented directly on top of virtually any substrates. PMID:27713545

  1. Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications

    NASA Astrophysics Data System (ADS)

    Su, Wenjing; Cook, Benjamin S.; Fang, Yunnan; Tentzeris, Manos M.

    2016-10-01

    As the needs for low-cost rapidly-produced microfluidics are growing with the trend of Lab-on-a-Chip and distributed healthcare, the fully inkjet-printing of microfluidics can be a solution to it with numerous potential electrical and sensing applications. Inkjet-printing is an additive manufacturing technique featuring no material waste and a low equipment cost. Moreover, similar to other additive manufacturing techniques, inkjet-printing is easy to learn and has a high fabrication speed, while it offers generally a great planar resolution down to below 20 µm and enables flexible designs due to its inherent thin film deposition capabilities. Due to the thin film feature, the printed objects also usually obtain a high vertical resolution (such as 4.6 µm). This paper introduces a low-cost rapid three-dimensional fabrication process of microfluidics, that relies entirely on an inkjet-printer based single platform and can be implemented directly on top of virtually any substrates.

  2. Precise pooling and dispensing of microfluidic droplets towards micro- to macro-world interfacing

    PubMed Central

    Brouzes, Eric; Carniol, April; Bakowski, Tomasz; Strey, Helmut H.

    2014-01-01

    Droplet microfluidics possesses unique properties such as the ability to carry out multiple independent reactions without dispersion of samples in microchannels. We seek to extend the use of droplet microfluidics to a new range of applications by enabling its integration into workflows based on traditional technologies, such as microtiter plates. Our strategy consists in developing a novel method to manipulate, pool and deliver a precise number of microfluidic droplets. To this aim, we present a basic module that combines droplet trapping with an on-chip valve. We quantitatively analyzed the trapping efficiency of the basic module in order to optimize its design. We also demonstrate the integration of the basic module into a multiplex device that can deliver 8 droplets at every cycle. This device will have a great impact in low throughput droplet applications that necessitate interfacing with macroscale technologies. The micro- to macro- interface is particularly critical in microfluidic applications that aim at sample preparation and has not been rigorously addressed in this context. PMID:25485102

  3. Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study

    PubMed Central

    Lim, Jong-Min; Bertrand, Nicolas; Valencia, Pedro M.; Rhee, Minsoung; Langer, Robert; Jon, Sangyong; Farokhzad, Omid C.; Karnik, Rohit

    2014-01-01

    Microfluidic synthesis of nanoparticles (NPs) can enhance the controllability and reproducibility in physicochemical properties of NPs compared to bulk synthesis methods. However, applications of microfluidic synthesis are typically limited to in vitro studies due to low production rates. Herein, we report the parallelization of NP synthesis by 3D hydrodynamic flow focusing (HFF) using a multilayer microfluidic system to enhance the production rate without losing the advantages of reproducibility, controllability, and robustness. Using parallel 3D HFF, polymeric poly(lactide-co-glycolide)-b-polyethyleneglycol (PLGA-PEG) NPs with sizes tunable in the range of 13–150 nm could be synthesized reproducibly with high production rate. As a proof of concept, we used this system to perform in vivo pharmacokinetic and biodistribution study of small (20 nm diameter) PLGA-PEG NPs that are otherwise difficult to synthesize. Microfluidic parallelization thus enables synthesis of NPs with tunable properties with production rates suitable for both in vitro and in vivo studies. PMID:23969105

  4. Immobilization of pH-sensitive CdTe Quantum Dots in a Poly(acrylate) Hydrogel for Microfluidic Applications

    NASA Astrophysics Data System (ADS)

    Franke, M.; Leubner, S.; Dubavik, A.; George, A.; Savchenko, T.; Pini, C.; Frank, P.; Melnikau, D.; Rakovich, Y.; Gaponik, N.; Eychmüller, A.; Richter, A.

    2017-04-01

    Microfluidic devices present the basis of modern life sciences and chemical information processing. To control the flow and to allow optical readout, a reliable sensor material that can be easily utilized for microfluidic systems is in demand. Here, we present a new optical readout system for pH sensing based on pH sensitive, photoluminescent glutathione capped cadmium telluride quantum dots that are covalently immobilized in a poly(acrylate) hydrogel. For an applicable pH sensing the generated hybrid material is integrated in a microfluidic sensor chip setup. The hybrid material not only allows in situ readout, but also possesses valve properties due to the swelling behavior of the poly(acrylate) hydrogel. In this work, the swelling property of the hybrid material is utilized in a microfluidic valve seat, where a valve opening process is demonstrated by a fluid flow change and in situ monitored by photoluminescence quenching. This discrete photoluminescence detection (ON/OFF) of the fluid flow change (OFF/ON) enables upcoming chemical information processing.

  5. A multi-functional bubble-based microfluidic system

    PubMed Central

    Khoshmanesh, Khashayar; Almansouri, Abdullah; Albloushi, Hamad; Yi, Pyshar; Soffe, Rebecca; Kalantar-zadeh, Kourosh

    2015-01-01

    Recently, the bubble-based systems have offered a new paradigm in microfluidics. Gas bubbles are highly flexible, controllable and barely mix with liquids, and thus can be used for the creation of reconfigurable microfluidic systems. In this work, a hydrodynamically actuated bubble-based microfluidic system is introduced. This system enables the precise movement of air bubbles via axillary feeder channels to alter the geometry of the main channel and consequently the flow characteristics of the system. Mixing of neighbouring streams is demonstrated by oscillating the bubble at desired displacements and frequencies. Flow control is achieved by pushing the bubble to partially or fully close the main channel. Patterning of suspended particles is also demonstrated by creating a large bubble along the sidewalls. Rigorous analytical and numerical calculations are presented to describe the operation of the system. The examples presented in this paper highlight the versatility of the developed bubble-based actuator for a variety of applications; thus providing a vision that can be expanded for future highly reconfigurable microfluidics. PMID:25906043

  6. Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry

    PubMed Central

    2015-01-01

    Amyloid fibrils represent a generic class of protein structure associated with both pathological states and with naturally occurring functional materials. This class of protein nanostructure has recently also emerged as an excellent foundation for sophisticated functional biocompatible materials including scaffolds and carriers for biologically active molecules. Protein-based materials offer the potential advantage that additional functions can be directly incorporated via gene fusion producing a single chimeric polypeptide that will both self-assemble and display the desired activity. To succeed, a chimeric protein system must self-assemble without the need for harsh triggering conditions which would damage the appended functional protein molecule. However, the micrometer to nanoscale patterning and morphological control of protein-based nanomaterials has remained challenging. This study demonstrates a general approach for overcoming these limitations through the microfluidic generation of enzymatically active microgels that are stabilized by amyloid nanofibrils. The use of scaffolds formed from biomaterials that self-assemble under mild conditions enables the formation of catalytic microgels while maintaining the integrity of the encapsulated enzyme. The enzymatically active microgel particles show robust material properties and their porous architecture allows diffusion in and out of reactants and products. In combination with microfluidic droplet trapping approaches, enzymatically active microgels illustrate the potential of self-assembling materials for enzyme immobilization and recycling, and for biological flow-chemistry. These design principles can be adopted to create countless other bioactive amyloid-based materials with diverse functions. PMID:26030507

  7. Plasma treatments of wool fiber surface for microfluidic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, So-Hyoun; Hwang, Ki-Hwan; Lee, Jin Su

    Highlights: • We used atmospheric plasma for tuning the wettability of wool fibers. • The wicking rates of the wool fibers increased with increasing treatment time. • The increasing of wettability results in removement of fatty acid on the wool surface. - Abstract: Recent progress in health diagnostics has led to the development of simple and inexpensive systems. Thread-based microfluidic devices allow for portable and inexpensive field-based technologies enabling medical diagnostics, environmental monitoring, and food safety analysis. However, controlling the flow rate of wool thread, which is a very important part of thread-based microfluidic devices, is quite difficult. For thismore » reason, we focused on thread-based microfluidics in the study. We developed a method of changing the wettability of hydrophobic thread, including wool thread. Thus, using natural wool thread as a channel, we demonstrate herein that the manipulation of the liquid flow, such as micro selecting and micro mixing, can be achieved by applying plasma treatment to wool thread. In addition to enabling the flow control of the treated wool channels consisting of all natural substances, this procedure will also be beneficial for biological sensing devices. We found that wools treated with various gases have different flow rates. We used an atmospheric plasma with O{sub 2}, N{sub 2} and Ar gases.« less

  8. Microfluidic viscometers for shear rheology of complex fluids and biofluids

    PubMed Central

    Wang, William S.; Vanapalli, Siva A.

    2016-01-01

    The rich diversity of man-made complex fluids and naturally occurring biofluids is opening up new opportunities for investigating their flow behavior and characterizing their rheological properties. Steady shear viscosity is undoubtedly the most widely characterized material property of these fluids. Although widely adopted, macroscale rheometers are limited by sample volumes, access to high shear rates, hydrodynamic instabilities, and interfacial artifacts. Currently, microfluidic devices are capable of handling low sample volumes, providing precision control of flow and channel geometry, enabling a high degree of multiplexing and automation, and integrating flow visualization and optical techniques. These intrinsic advantages of microfluidics have made it especially suitable for the steady shear rheology of complex fluids. In this paper, we review the use of microfluidics for conducting shear viscometry of complex fluids and biofluids with a focus on viscosity curves as a function of shear rate. We discuss the physical principles underlying different microfluidic viscometers, their unique features and limits of operation. This compilation of technological options will potentially serve in promoting the benefits of microfluidic viscometry along with evincing further interest and research in this area. We intend that this review will aid researchers handling and studying complex fluids in selecting and adopting microfluidic viscometers based on their needs. We conclude with challenges and future directions in microfluidic rheometry of complex fluids and biofluids. PMID:27478521

  9. A hybrid microfluidic-vacuum device for direct interfacing with conventional cell culture methods

    PubMed Central

    Chung, Bong Geun; Park, Jeong Won; Hu, Jia Sheng; Huang, Carlos; Monuki, Edwin S; Jeon, Noo Li

    2007-01-01

    Background Microfluidics is an enabling technology with a number of advantages over traditional tissue culture methods when precise control of cellular microenvironment is required. However, there are a number of practical and technical limitations that impede wider implementation in routine biomedical research. Specialized equipment and protocols required for fabrication and setting up microfluidic experiments present hurdles for routine use by most biology laboratories. Results We have developed and validated a novel microfluidic device that can directly interface with conventional tissue culture methods to generate and maintain controlled soluble environments in a Petri dish. It incorporates separate sets of fluidic channels and vacuum networks on a single device that allows reversible application of microfluidic gradients onto wet cell culture surfaces. Stable, precise concentration gradients of soluble factors were generated using simple microfluidic channels that were attached to a perfusion system. We successfully demonstrated real-time optical live/dead cell imaging of neural stem cells exposed to a hydrogen peroxide gradient and chemotaxis of metastatic breast cancer cells in a growth factor gradient. Conclusion This paper describes the design and application of a versatile microfluidic device that can directly interface with conventional cell culture methods. This platform provides a simple yet versatile tool for incorporating the advantages of a microfluidic approach to biological assays without changing established tissue culture protocols. PMID:17883868

  10. Microfluidics to Mimic Blood Flow in Health and Disease

    NASA Astrophysics Data System (ADS)

    Sebastian, Bernhard; Dittrich, Petra S.

    2018-01-01

    Throughout history, capillary systems have aided the establishment of the fundamental laws of blood flow and its non-Newtonian properties. The advent of microfluidics technology in the 1990s propelled the development of highly integrated lab-on-a-chip platforms that allow highly accurate replication of vascular systems' dimensions, mechanical properties, and biological complexity. Applications include the detection of pathological changes to red blood cells, white blood cells, and platelets at unparalleled sensitivity and the efficacy assessment of drug treatment. Recent efforts have aimed at the development of microfluidics-based tests usable in a clinial environment or the replication of more complex diseases such as thrombosis. These microfluidic disease models enable the study of onset and progression of disease as well as the identification of key players and risk factors, which have led to a spectrum of clinically relevant findings.

  11. Micromilling: A method for ultra-rapid prototyping of plastic microfluidic devices

    PubMed Central

    Guckenberger, David J.; de Groot, Theodorus E.; Wan, Alwin M.D.; Beebe, David J.; Young, Edmond W. K.

    2015-01-01

    This tutorial review offers protocols, tips, insight, and considerations for practitioners interested in using micromilling to create microfluidic devices. The objective is to provide a potential user with information to guide them on whether micromilling would fill a specific need within their overall fabrication strategy. Comparisons are made between micromilling and other common fabrication methods for plastics in terms of technical capabilities and cost. The main discussion focuses on “how-to” aspects of micromilling, to enable a user to select proper equipment and tools, and obtain usable microfluidic parts with minimal start-up time and effort. The supplementary information provides more extensive discussion on CNC mill setup, alignment, and programming. We aim to reach an audience with minimal prior experience in milling, but with strong interests in fabrication of microfluidic devices. PMID:25906246

  12. Making the invisible visible: a microfluidic chip using a low refractive index polymer.

    PubMed

    Hanada, Yasutaka; Ogawa, Tatsuya; Koike, Kazuhiko; Sugioka, Koji

    2016-07-07

    Microfluidic frameworks known as micro-total-analysis-systems or lab-on-a-chip have become versatile tools in cell biology research, since functional biochips are able to streamline dynamic observations of various cells. Glass or polymers are generally used as the substrate due to their high transparency, chemical stability and cost-effectiveness. However, these materials are not well suited for the microscopic observation of cell migration at the fluid boundary due to the refractive index mismatch between the medium and the biochip material. For this reason, we have developed a new method of fabricating three-dimensional (3D) microfluidic chips made of the low refractive index fluoric polymer CYTOP. This novel fabrication procedure involves the use of a femtosecond laser for direct writing, followed by wet etching with a dilute fluorinated solvent and annealing, to create high-quality 3D microfluidic chips inside a polymer substrate. A microfluidic chip made in this manner enabled us to more clearly observe the flagellum motion of a Dinoflagellate moving in circles near the fluid surface compared to the observations possible using conventional microfluidic chips. We believe that CYTOP microfluidic chips made using this new method may allow more detailed analysis of various cell migrations near solid boundaries.

  13. Microfluidic Devices in Advanced Caenorhabditis elegans Research.

    PubMed

    Muthaiyan Shanmugam, Muniesh; Subhra Santra, Tuhin

    2016-08-02

    The study of model organisms is very important in view of their potential for application to human therapeutic uses. One such model organism is the nematode worm, Caenorhabditis elegans. As a nematode, C. elegans have ~65% similarity with human disease genes and, therefore, studies on C. elegans can be translated to human, as well as, C. elegans can be used in the study of different types of parasitic worms that infect other living organisms. In the past decade, many efforts have been undertaken to establish interdisciplinary research collaborations between biologists, physicists and engineers in order to develop microfluidic devices to study the biology of C. elegans. Microfluidic devices with the power to manipulate and detect bio-samples, regents or biomolecules in micro-scale environments can well fulfill the requirement to handle worms under proper laboratory conditions, thereby significantly increasing research productivity and knowledge. The recent development of different kinds of microfluidic devices with ultra-high throughput platforms has enabled researchers to carry out worm population studies. Microfluidic devices primarily comprises of chambers, channels and valves, wherein worms can be cultured, immobilized, imaged, etc. Microfluidic devices have been adapted to study various worm behaviors, including that deepen our understanding of neuromuscular connectivity and functions. This review will provide a clear account of the vital involvement of microfluidic devices in worm biology.

  14. Microfluidics for investigating vaso-occlusions in sickle cell disease.

    PubMed

    Horton, Renita E

    2017-07-01

    SCD stems from amutation in the beta globin gene. Upon deoxygenation, hemoglobin polymerizes and triggers RBC remodeling. This phenomenon is central to SCD pathogenesis as individuals suffering from the disease are plagued by painful vaso-occlusive crises episodes. These episodes are the result of a combination of processes including inflammation, thrombosis, and blood cell adhesion to the vascular wall which leads to blockages within the vasculature termed vaso-occlusions. Vaso-occlusive episodes deprive tissues of oxygen and are a major contributor to SCD-related complications; unfortunately, the complex mechanisms that contribute to vaso-occlusions are not well understood. Vaso-occlusions can occur in post-capillary venules; hence, the microvasculature is a prime target for SCD therapies. Traditional in vitro systems poorly recapitulate architectural and dynamic flow properties of in vivo systems. However, microfluidic devices can capture features of the native vasculature such as cellular composition, flow, geometry, and ECM presentation. This review, although not comprehensive, highlights microfluidic approaches that aim to improve our current understanding of the pathophysiological mechanisms surrounding SCD. Microfluidic platforms can aid in identifying factors that may contribute to disease severity and can serve as suitable test beds for novel treatment strategies which may improve patient outcomes. © 2017 John Wiley & Sons Ltd.

  15. Direct 3D-printing of cell-laden constructs in microfluidic architectures.

    PubMed

    Liu, Justin; Hwang, Henry H; Wang, Pengrui; Whang, Grace; Chen, Shaochen

    2016-04-21

    Microfluidic platforms have greatly benefited the biological and medical fields, however standard practices require a high cost of entry in terms of time and energy. The utilization of three-dimensional (3D) printing technologies has greatly enhanced the ability to iterate and build functional devices with unique functions. However, their inability to fabricate within microfluidic devices greatly increases the cost of producing several different devices to examine different scientific questions. In this work, a variable height micromixer (VHM) is fabricated using projection 3D-printing combined with soft lithography. Theoretical and flow experiments demonstrate that altering the local z-heights of VHM improved mixing at lower flow rates than simple geometries. Mixing of two fluids occurs as low as 320 μL min(-1) in VHM whereas the planar zigzag region requires a flow rate of 2.4 mL min(-1) before full mixing occurred. Following device printing, to further demonstrate the ability of this projection-based method, complex, user-defined cell-laden scaffolds are directly printed inside the VHM. The utilization of this unique ability to produce 3D tissue models within a microfluidic system could offer a unique platform for medical diagnostics and disease modeling.

  16. Single cell Enrichment with High Throughput Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Pakjesm Pourfard, Pedram

    Microfluidics is a rapidly growing field of biomedical engineering with numerous applications such as diagnostic testing, therapeutics, and research preparation. Cell enrichment for automated diagnostic is often assayed through measurement of biochemical and biophysical markers. Although biochemical markers have been widely used, intrinsic biophysical markers, such as, Shear migration, Lift force, Dean force, and many other label-free techniques, are advantageous since they don't require costly labeling or sample preparation. However, current passive techniques for enrichment had limited adoption in clinical and cell biology research applications. They generally require low flow rate and low cell volume fraction for high efficiency. The Control increment filtration, T-shaped microfluidic device, and spiral-shaped microfluidic devices will be studied for single-cell separation from aggregates. Control increment filtration works like the tangential filter; however, cells are separated based off of same amount of flow rate passing through large space gaps. Main microchannel of T-Shaped is connected to two perpendicular side channels. Based off Shear-modulated inertial migration, this device will enable selective enrichment of cells. The spiral shaped microfluidic device depends on different Dean and lift forces acting on cells to separate them based off different sizes. The spiral geometry of the microchannel will enable dominant inertial forces and the Dean Rotation force to cause larger cells to migrate to the inner side of the microchannel. Because manipulation of microchannel dimensions correlates to the degree of cell separation, versatility in design exists. Cell mixture samples will contain cells of different sizes and therefore design strategies could be utilized to maximize the effectiveness of single-cell separation.

  17. Microfluidic size separation of cells and particles using a swinging bucket centrifuge.

    PubMed

    Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck

    2015-09-01

    Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency.

  18. Exosome separation using microfluidic systems: size-based, immunoaffinity-based and dynamic methodologies.

    PubMed

    Yang, Fang; Liao, Xiangzhi; Tian, Yuan; Li, Guiying

    2017-04-01

    Exosomes, nanovesicles secreted by most types of cells, exist in virtually all bodily fluids. Their rich nucleic acid and protein content make them potentially valuable biomarkers for noninvasive molecular diagnostics. They also show promise, after further development, to serve as a drug delivery system. Unfortunately, existing exosome separation technologies, such as ultracentrifugation and methods incorporating magnetic beads, are time-consuming, laborious and separate only exosomes of low purity. Thus, a more effective separation method is highly desirable. Microfluidic platforms are ideal tools for exosome separation, since they enable fast, cost-efficient, portable and precise processing of nanoparticles and small volumes of liquid samples. Recently, several microfluidic-based exosome separation technologies have been studied. In this article, the advantages of the most recent technologies, as well as their limitations, challenges and potential uses in novel microfluidic exosome separation and collection applications is reviewed. This review outlines the uses of new powerful microfluidic exosome detection tools for biologists and clinicians, as well as exosome separation tools for microfluidic engineers. Current challenges of exosome separation methodologies are also described, in order to highlight areas for future research and development. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Bio-functionalized silk hydrogel microfluidic systems.

    PubMed

    Zhao, Siwei; Chen, Ying; Partlow, Benjamin P; Golding, Anne S; Tseng, Peter; Coburn, Jeannine; Applegate, Matthew B; Moreau, Jodie E; Omenetto, Fiorenzo G; Kaplan, David L

    2016-07-01

    Bio-functionalized microfluidic systems were developed based on a silk protein hydrogel elastomeric materials. A facile multilayer fabrication method using gelatin sacrificial molding and layer-by-layer assembly was implemented to construct interconnected, three dimensional (3D) microchannel networks in silk hydrogels at 100 μm minimum feature resolution. Mechanically activated valves were implemented to demonstrate pneumatic control of microflow. The silk hydrogel microfluidics exhibit controllable mechanical properties, long-term stability in various environmental conditions, tunable in vitro and in vivo degradability in addition to optical transparency, providing unique features for cell/tissue-related applications than conventional polydimethylsiloxane (PDMS) and existing hydrogel-based microfluidic options. As demonstrated in the work here, the all aqueous-based fabrication process at ambient conditions enabled the incorporation of active biological substances in the bulk phase of these new silk microfluidic systems during device fabrication, including enzymes and living cells, which are able to interact with the fluid flow in the microchannels. These silk hydrogel-based microfluidic systems offer new opportunities in engineering active diagnostic devices, tissues and organs that could be integrated in vivo, and for on-chip cell sensing systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Merging microfluidics and sonochemistry: towards greener and more efficient micro-sono-reactors.

    PubMed

    Fernandez Rivas, David; Cintas, Pedro; Gardeniers, Han J G E

    2012-11-18

    Microfluidics enable the manipulation of chemical reactions using very small amounts of fluid, in channels with dimensions of tens to hundreds of micrometers; so-called microstructured devices, from which the iconic image of chips emerges. The immediate attraction of microfluidics lies in its greenness: use of small quantities of reagents and solvents, and hence less waste, a precise control of reaction conditions, integration of functionality for process intensification, safer and often faster protocols, reliable scale-up, and possibility of performing multiphase reactions. Among the limitations found in microfluidics the facile formation of precipitating products should be highlighted, and in this context, the search for efficient mass and energy transfers is a must. Such limitations have been partially overcome with the aid of ultrasound in conventional flow systems, and can now be successfully used in microreactors, which provide new capabilities. Novel applications and a better understanding of the physical and chemical aspects of sonochemistry can certainly be achieved by combining microfluidics and ultrasound. We will review this nascent area of research, paying attention to the latest developments and showing future directions, which benefit both from the existing microfluidic technology and sonochemistry itself.

  1. Microfluidic size separation of cells and particles using a swinging bucket centrifuge

    PubMed Central

    Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck

    2015-01-01

    Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency. PMID:26487900

  2. Predicting the behavior of microfluidic circuits made from discrete elements

    PubMed Central

    Bhargava, Krisna C.; Thompson, Bryant; Iqbal, Danish; Malmstadt, Noah

    2015-01-01

    Microfluidic devices can be used to execute a variety of continuous flow analytical and synthetic chemistry protocols with a great degree of precision. The growing availability of additive manufacturing has enabled the design of microfluidic devices with new functionality and complexity. However, these devices are prone to larger manufacturing variation than is typical of those made with micromachining or soft lithography. In this report, we demonstrate a design-for-manufacturing workflow that addresses performance variation at the microfluidic element and circuit level, in context of mass-manufacturing and additive manufacturing. Our approach relies on discrete microfluidic elements that are characterized by their terminal hydraulic resistance and associated tolerance. Network analysis is employed to construct simple analytical design rules for model microfluidic circuits. Monte Carlo analysis is employed at both the individual element and circuit level to establish expected performance metrics for several specific circuit configurations. A protocol based on osmometry is used to experimentally probe mixing behavior in circuits in order to validate these approaches. The overall workflow is applied to two application circuits with immediate use at on the bench-top: series and parallel mixing circuits that are modularly programmable, virtually predictable, highly precise, and operable by hand. PMID:26516059

  3. Machine vision for digital microfluidics

    NASA Astrophysics Data System (ADS)

    Shin, Yong-Jun; Lee, Jeong-Bong

    2010-01-01

    Machine vision is widely used in an industrial environment today. It can perform various tasks, such as inspecting and controlling production processes, that may require humanlike intelligence. The importance of imaging technology for biological research or medical diagnosis is greater than ever. For example, fluorescent reporter imaging enables scientists to study the dynamics of gene networks with high spatial and temporal resolution. Such high-throughput imaging is increasingly demanding the use of machine vision for real-time analysis and control. Digital microfluidics is a relatively new technology with expectations of becoming a true lab-on-a-chip platform. Utilizing digital microfluidics, only small amounts of biological samples are required and the experimental procedures can be automatically controlled. There is a strong need for the development of a digital microfluidics system integrated with machine vision for innovative biological research today. In this paper, we show how machine vision can be applied to digital microfluidics by demonstrating two applications: machine vision-based measurement of the kinetics of biomolecular interactions and machine vision-based droplet motion control. It is expected that digital microfluidics-based machine vision system will add intelligence and automation to high-throughput biological imaging in the future.

  4. A Fast Microfluidic Temperature Control Device for Studying Microtubule Dynamics in Fission Yeast

    PubMed Central

    Velve-Casquillas, Guilhem; Costa, Judite; Carlier-Grynkorn, Frédérique; Mayeux, Adeline; Tran, Phong T.

    2010-01-01

    Recent development in soft lithography and microfluidics enables biologists to create tools to control the cellular microenvironment. One such control is the ability to quickly change the temperature of the cells. Genetic model organism such as fission yeast has been useful for studies of the cell cytoskeleton. In particular, the dynamic microtubule cytoskeleton responds to changes in temperature. In addition, there are temperature-sensitive mutations of cytoskeletal proteins. We describe here the fabrication and use of a microfluidic device to quickly and reversibly change cellular temperature between 2°C and 50°C. We demonstrate the use of this device while imaging at high-resolution microtubule dynamics in fission yeast. PMID:20719272

  5. Microfluidics and Cancer: Are we there yet?

    PubMed Central

    Zhang, Jennifer Zhuo; Nagrath, Sunitha

    2013-01-01

    More than two decades ago, microfluidics began to show its impact in biological research. Since then, the field of microfluidics has evolving rapidly. Cancer is one of the leading causes of death worldwide. Microfluidics holds great promise in cancer diagnosis and also serves as an emerging tool for understanding cancer biology. Microfluidics can be valuable for cancer investigation due to its high sensitivity, high throughput, less material-consumption, low cost, and enhanced spatio-temporal control. The physical laws on microscale offer an advantage enabling the control of physics, biology, chemistry and physiology at cellular level. Furthermore, microfluidic based platforms are portable and can be easily designed for point-of-care diagnostics. Developing and applying the state of the art microfluidic technologies to address the unmet challenges in cancer can expand the horizons of not only fundamental biology but also the management of disease and patient care. Despite the various microfluidic technologies available in the field, few have been tested clinically, which can be attributed to the various challenges existing in bridging the gap between the emerging technology and real world applications. We present a review of role of microlfuidcs in cancer research, including the history, recent advances and future directions to explore where the field stand currently in addressing complex clinical challenges and future of it. This review identifies four critical areas in cancer research, in which microfluidics can change the current paradigm. These include cancer cell isolation, molecular diagnostics, tumor biology and high-throughput screening for therapeutics. In addition, some of our lab’s current research is presented in the corresponding sections. PMID:23358873

  6. Big insights from small volumes: deciphering complex leukocyte behaviors using microfluidics

    PubMed Central

    Irimia, Daniel; Ellett, Felix

    2016-01-01

    Inflammation is an indispensable component of the immune response, and leukocytes provide the first line of defense against infection. Although the major stereotypic leukocyte behaviors in response to infection are well known, the complexities and idiosyncrasies of these phenotypes in conditions of disease are still emerging. Novel tools are indispensable for gaining insights into leukocyte behavior, and in the past decade, microfluidic technologies have emerged as an exciting development in the field. Microfluidic devices are readily customizable, provide tight control of experimental conditions, enable high precision of ex vivo measurements of individual as well as integrated leukocyte functions, and have facilitated the discovery of novel leukocyte phenotypes. Here, we review some of the most interesting insights resulting from the application of microfluidic approaches to the study of the inflammatory response. The aim is to encourage leukocyte biologists to integrate these new tools into increasingly more sophisticated experimental designs for probing complex leukocyte functions. PMID:27194799

  7. Real-Time Continuous Identification of Greenhouse Plant Pathogens Based on Recyclable Microfluidic Bioassay System.

    PubMed

    Qu, Xiangmeng; Li, Min; Zhang, Hongbo; Lin, Chenglie; Wang, Fei; Xiao, Mingshu; Zhou, Yi; Shi, Jiye; Aldalbahi, Ali; Pei, Hao; Chen, Hong; Li, Li

    2017-09-20

    The development of a real-time continuous analytical platform for the pathogen detection is of great scientific importance for achieving better disease control and prevention. In this work, we report a rapid and recyclable microfluidic bioassay system constructed from oligonucleotide arrays for selective and sensitive continuous identification of DNA targets of fungal pathogens. We employ the thermal denaturation method to effectively regenerate the oligonucleotide arrays for multiple sample detection, which could considerably reduce the screening effort and costs. The combination of thermal denaturation and laser-induced fluorescence detection technique enables real-time continuous identification of multiple samples (<10 min per sample). As a proof of concept, we have demonstrated that two DNA targets of fungal pathogens (Botrytis cinerea and Didymella bryoniae) can be sequentially analyzed using our rapid microfluidic bioassay system, which provides a new paradigm in the design of microfluidic bioassay system and will be valuable for chemical and biomedical analysis.

  8. Microfluidic etching and oxime-based tailoring of biodegradable polyketoesters.

    PubMed

    Barrett, Devin G; Lamb, Brian M; Yousaf, Muhammad N

    2008-09-02

    A straightforward, flexible, and inexpensive method to etch biodegradable poly(1,2,6-hexanetriol alpha-ketoglutarate) films is reported. Microfluidic delivery of the etchant, a solution of NaOH, can create micron-scale channels through local hydrolysis of the polyester film. In addition, the presence of a ketone in the repeat unit allows for prior or post chemoselective modifications, enabling the design of functionalized microchannels. Delivery of oxyamine tethered ligands react with ketone groups on the polyketoester to generate covalent oxime linkages. By thermally sealing an etched film to a second flat surface, poly(1,2,6-hexanetriol alpha-ketoglutarate) can be used to create biodegradable microfluidic devices. In order to determine the versatility of the microfluidic etch technique, poly(epsilon-caprolactone) was etched with acetone. This strategy provides a facile method for the direct patterning of biodegradable materials, both through etching and chemoselective ligand immobilization.

  9. Epoxy Chip-in-Carrier Integration and Screen-Printed Metalization for Multichannel Microfluidic Lab-on-CMOS Microsystems.

    PubMed

    Li, Lin; Yin, Heyu; Mason, Andrew J

    2018-04-01

    The integration of biosensors, microfluidics, and CMOS instrumentation provides a compact lab-on-CMOS microsystem well suited for high throughput measurement. This paper describes a new epoxy chip-in-carrier integration process and two planar metalization techniques for lab-on-CMOS that enable on-CMOS electrochemical measurement with multichannel microfluidics. Several design approaches with different fabrication steps and materials were experimentally analyzed to identify an ideal process that can achieve desired capability with high yield and low material and tool cost. On-chip electrochemical measurements of the integrated assembly were performed to verify the functionality of the chip-in-carrier packaging and its capability for microfluidic integration. The newly developed CMOS-compatible epoxy chip-in-carrier process paves the way for full implementation of many lab-on-CMOS applications with CMOS ICs as core electronic instruments.

  10. A Microfluidic Immunostaining System Enables Quality Assured and Standardized Immunohistochemical Biomarker Analysis

    NASA Astrophysics Data System (ADS)

    Kwon, Seyong; Cho, Chang Hyun; Kwon, Youngmee; Lee, Eun Sook; Park, Je-Kyun

    2017-04-01

    Immunohistochemistry (IHC) plays an important role in biomarker-driven cancer therapy. Although there has been a high demand for standardized and quality assured IHC, it has rarely been achieved due to the complexity of IHC testing and the subjective validation-based process flow of IHC quality control. We present here a microfluidic immunostaining system for the standardization of IHC by creating a microfluidic linearly graded antibody (Ab)-staining device and a reference cell microarray. Unlike conventional efforts, our system deals primarily with the screening of biomarker staining conditions for quantitative quality assurance testing in IHC. We characterized the microfluidic matching of Ab staining intensity using three HER2 Abs produced by different manufacturers. The quality of HER2 Ab was also validated using tissues of breast cancer patients, demonstrating that our system is an efficient and powerful tool for the standardization and quality assurance of IHC.

  11. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation.

    PubMed

    Stephenson, William; Donlin, Laura T; Butler, Andrew; Rozo, Cristina; Bracken, Bernadette; Rashidfarrokhi, Ali; Goodman, Susan M; Ivashkiv, Lionel B; Bykerk, Vivian P; Orange, Dana E; Darnell, Robert B; Swerdlow, Harold P; Satija, Rahul

    2018-02-23

    Droplet-based single-cell RNA-seq has emerged as a powerful technique for massively parallel cellular profiling. While this approach offers the exciting promise to deconvolute cellular heterogeneity in diseased tissues, the lack of cost-effective and user-friendly instrumentation has hindered widespread adoption of droplet microfluidic techniques. To address this, we developed a 3D-printed, low-cost droplet microfluidic control instrument and deploy it in a clinical environment to perform single-cell transcriptome profiling of disaggregated synovial tissue from five rheumatoid arthritis patients. We sequence 20,387 single cells revealing 13 transcriptomically distinct clusters. These encompass an unsupervised draft atlas of the autoimmune infiltrate that contribute to disease biology. Additionally, we identify previously uncharacterized fibroblast subpopulations and discern their spatial location within the synovium. We envision that this instrument will have broad utility in both research and clinical settings, enabling low-cost and routine application of microfluidic techniques.

  12. 3D microfluidic fabrication using a low refractive index polymer for clear microscopic observation at the fluid boundary

    NASA Astrophysics Data System (ADS)

    Hanada, Y.

    2018-02-01

    Microfluidic chips known as μ-TAS or LoC have become versatile tools in cell research, since functional biochips are able to streamline dynamic observations of various cells. Glass or polymers are generally used as the substrate due to their high transparency, chemical stability and cost-effectiveness. However, these materials are not well suited to the microscopic observation at the fluid boundary due to the refractive index mismatch between the medium and the biochip material. For this reason, we have developed a method of fabricating three-dimensional (3D) microfluidic chips made of a low refractive index fluoric polymer CYTOP. CYTOP has a refractive index of 1.34, a value that is almost equivalent to that of water. This optical property is very important for clear 3D microscopic observations of cell motion near the solid boundary, due to the minimal mismatch between the refractive index values of the medium and the CYTOP substrate. Therefore, CYTOP microfluidics are expected to allow the generation of clear images of unique cell migratory processes near the microfluidic sidewall. Therefore, we established the fabrication procedure involving the use of femtosecond laser direct writing, followed by wet etching and annealing, to create high-quality 3D microfluidics inside a polymer substrate. A microfluidic chip made in this manner enables us to more clearly observe areas near the fluid surface, compared to the observations possible using conventional microfluidic chips.

  13. Shrinking microbubbles with microfluidics: mathematical modelling to control microbubble sizes.

    PubMed

    Salari, A; Gnyawali, V; Griffiths, I M; Karshafian, R; Kolios, M C; Tsai, S S H

    2017-11-29

    Microbubbles have applications in industry and life-sciences. In medicine, small encapsulated bubbles (<10 μm) are desirable because of their utility in drug/oxygen delivery, sonoporation, and ultrasound diagnostics. While there are various techniques for generating microbubbles, microfluidic methods are distinguished due to their precise control and ease-of-fabrication. Nevertheless, sub-10 μm diameter bubble generation using microfluidics remains challenging, and typically requires expensive equipment and cumbersome setups. Recently, our group reported a microfluidic platform that shrinks microbubbles to sub-10 μm diameters. The microfluidic platform utilizes a simple microbubble-generating flow-focusing geometry, integrated with a vacuum shrinkage system, to achieve microbubble sizes that are desirable in medicine, and pave the way to eventual clinical uptake of microfluidically generated microbubbles. A theoretical framework is now needed to relate the size of the microbubbles produced and the system's input parameters. In this manuscript, we characterize microbubbles made with various lipid concentrations flowing in solutions that have different interfacial tensions, and monitor the changes in bubble size along the microfluidic channel under various vacuum pressures. We use the physics governing the shrinkage mechanism to develop a mathematical model that predicts the resulting bubble sizes and elucidates the dominant parameters controlling bubble sizes. The model shows a good agreement with the experimental data, predicting the resulting microbubble sizes under different experimental input conditions. We anticipate that the model will find utility in enabling users of the microfluidic platform to engineer bubbles of specific sizes.

  14. Membrane-Based Emitter for Coupling Microfluidics with Ultrasensitive Nanoelectrospray Ionization-Mass Spectrometry

    PubMed Central

    Sun, Xuefei; Kelly, Ryan T.; Tang, Keqi; Smith, Richard D.

    2011-01-01

    An integrated poly(dimethylsiloxane) (PDMS) membrane-based microfluidic emitter for high performance nanoelectrospray ionization-mass spectrometry (nanoESI-MS) has been fabricated and evaluated. The ~100-μm-thick emitter was created by cutting a PDMS membrane that protrudes beyond the bulk substrate. The reduced surface area at the emitter enhances the electric field and reduces wetting of the surface by the electrospray solvent. As such, the emitter enables highly stable electrosprays at flow rates as low as 10 nL/min, and is compatible with electrospray solvents containing a large organic component (e.g., 90% methanol). This approach enables facile emitter construction, and provides excellent stability, reproducibility and sensitivity, as well as compatibility with multilayer soft lithography. PMID:21657269

  15. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems.

    PubMed

    Huh, Dongeun; Fujioka, Hideki; Tung, Yi-Chung; Futai, Nobuyuki; Paine, Robert; Grotberg, James B; Takayama, Shuichi

    2007-11-27

    We describe a microfabricated airway system integrated with computerized air-liquid two-phase microfluidics that enables on-chip engineering of human airway epithelia and precise reproduction of physiologic or pathologic liquid plug flows found in the respiratory system. Using this device, we demonstrate cellular-level lung injury under flow conditions that cause symptoms characteristic of a wide range of pulmonary diseases. Specifically, propagation and rupture of liquid plugs that simulate surfactant-deficient reopening of closed airways lead to significant injury of small airway epithelial cells by generating deleterious fluid mechanical stresses. We also show that the explosive pressure waves produced by plug rupture enable detection of the mechanical cellular injury as crackling sounds.

  16. Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip

    PubMed Central

    Yeh, Erh-Chia; Fu, Chi-Cheng; Hu, Lucy; Thakur, Rohan; Feng, Jeffrey; Lee, Luke P.

    2017-01-01

    Portable, low-cost, and quantitative nucleic acid detection is desirable for point-of-care diagnostics; however, current polymerase chain reaction testing often requires time-consuming multiple steps and costly equipment. We report an integrated microfluidic diagnostic device capable of on-site quantitative nucleic acid detection directly from the blood without separate sample preparation steps. First, we prepatterned the amplification initiator [magnesium acetate (MgOAc)] on the chip to enable digital nucleic acid amplification. Second, a simplified sample preparation step is demonstrated, where the plasma is separated autonomously into 224 microwells (100 nl per well) without any hemolysis. Furthermore, self-powered microfluidic pumping without any external pumps, controllers, or power sources is accomplished by an integrated vacuum battery on the chip. This simple chip allows rapid quantitative digital nucleic acid detection directly from human blood samples (10 to 105 copies of methicillin-resistant Staphylococcus aureus DNA per microliter, ~30 min, via isothermal recombinase polymerase amplification). These autonomous, portable, lab-on-chip technologies provide promising foundations for future low-cost molecular diagnostic assays. PMID:28345028

  17. Microfluidic droplet enrichment for targeted sequencing

    PubMed Central

    Eastburn, Dennis J.; Huang, Yong; Pellegrino, Maurizio; Sciambi, Adam; Ptáček, Louis J.; Abate, Adam R.

    2015-01-01

    Targeted sequence enrichment enables better identification of genetic variation by providing increased sequencing coverage for genomic regions of interest. Here, we report the development of a new target enrichment technology that is highly differentiated from other approaches currently in use. Our method, MESA (Microfluidic droplet Enrichment for Sequence Analysis), isolates genomic DNA fragments in microfluidic droplets and performs TaqMan PCR reactions to identify droplets containing a desired target sequence. The TaqMan positive droplets are subsequently recovered via dielectrophoretic sorting, and the TaqMan amplicons are removed enzymatically prior to sequencing. We demonstrated the utility of this approach by generating an average 31.6-fold sequence enrichment across 250 kb of targeted genomic DNA from five unique genomic loci. Significantly, this enrichment enabled a more comprehensive identification of genetic polymorphisms within the targeted loci. MESA requires low amounts of input DNA, minimal prior locus sequence information and enriches the target region without PCR bias or artifacts. These features make it well suited for the study of genetic variation in a number of research and diagnostic applications. PMID:25873629

  18. Femtosecond laser machining and lamination for large-area flexible organic microfluidic chips

    NASA Astrophysics Data System (ADS)

    Malek, C. Khan; Robert, L.; Salut, R.

    2009-04-01

    A hybrid process compatible with reel-to-reel manufacturing is developed for ultra low-cost large-scale manufacture of disposable microfluidic chips. It combines ultra-short laser microstructuring and lamination technology. Microchannels in polyester foils were formed using focused, high-intensity femtosecond laser pulses. Lamination using a commercial SU8-epoxy resist layer was used to seal the microchannel layer and cover foil. This hybrid process also enables heterogeneous material structuration and integration.

  19. Direct measurement of beta-agonists in swine hair extract in multiplexed mode by surface-enhanced Raman spectroscopy and microfluidic paper.

    PubMed

    Dou, Bin; Luo, Yong; Chen, Xu; Shi, Bo; Du, Yuguang; Gao, Zhigang; Zhao, Weijie; Lin, Bingcheng

    2015-02-01

    Bare gold nanoparticles selectively enhance the Raman signal of beta-agnonists in swine hair extract at 780 nm, which enables analysis of beta-agonists in swine hair extract without chemical labeling, purification, or separation. The analysis is multiplexable and the LOD of beta-agonists is around ng/mL in the assistance of microfluidic paper. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Twisting microfluidics in a planetary centrifuge.

    PubMed

    Yasuda, Shoya; Hayakawa, Masayuki; Onoe, Hiroaki; Takinoue, Masahiro

    2017-03-15

    This paper reports a twisting microfluidic method utilising a centrifuge-based fluid extruding system in a planetary centrifuge which simultaneously generates an orbital rotation and an axial spin. In this method, fluid extrusion from a micro-scale capillary to an 'open-space' solution or air enables release of the fluid from the capillary-based microchannel, which physically means that there is a release of fluids from a confined low-Reynolds-number environment to an open non-low-Reynolds-number environment. As a result, the extruded fluids are separated from the axial spin of the capillary, and the difference in the angular rates of the axial spin between the capillary and the extruded fluids produces the 'twisting' of the fluid. In this study, we achieve control of the twist of highly viscous fluids, and we construct a simple physical model for the fluid twist. In addition, we demonstrate the formation of twisted hydrogel microstructures (stripe-patterned microbeads and multi-helical microfibres) with control over the stripe pattern and the helical pitch length. We believe that this method will enable the generation of more sophisticated microstructures which cannot easily be formed by usual channel-based microfluidic devices. This method can also provide advanced control of microfluids, as in the case of rapid mixing of highly viscous fluids. This method can contribute to a wide range of applications in materials science, biophysics, biomedical science, and microengineering in the future.

  1. Real-time Full-spectral Imaging and Affinity Measurements from 50 Microfluidic Channels using Nanohole Surface Plasmon Resonance†

    PubMed Central

    Lee, Si Hoon; Lindquist, Nathan C.; Wittenberg, Nathan J.; Jordan, Luke R.; Oh, Sang-Hyun

    2012-01-01

    With recent advances in high-throughput proteomics and systems biology, there is a growing demand for new instruments that can precisely quantify a wide range of receptor-ligand binding kinetics in a high-throughput fashion. Here we demonstrate a surface plasmon resonance (SPR) imaging spectroscopy instrument capable of extracting binding kinetics and affinities from 50 parallel microfluidic channels simultaneously. The instrument utilizes large-area (~cm2) metallic nanohole arrays as SPR sensing substrates and combines a broadband light source, a high-resolution imaging spectrometer and a low-noise CCD camera to extract spectral information from every channel in real time with a refractive index resolution of 7.7 × 10−6. To demonstrate the utility of our instrument for quantifying a wide range of biomolecular interactions, each parallel microfluidic channel is coated with a biomimetic supported lipid membrane containing ganglioside (GM1) receptors. The binding kinetics of cholera toxin b (CTX-b) to GM1 are then measured in a single experiment from 50 channels. By combining the highly parallel microfluidic device with large-area periodic nanohole array chips, our SPR imaging spectrometer system enables high-throughput, label-free, real-time SPR biosensing, and its full-spectral imaging capability combined with nanohole arrays could enable integration of SPR imaging with concurrent surface-enhanced Raman spectroscopy. PMID:22895607

  2. Rapid and label-free microfluidic neutrophil purification and phenotyping in diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Hou, Han Wei; Petchakup, Chayakorn; Tay, Hui Min; Tam, Zhi Yang; Dalan, Rinkoo; Chew, Daniel Ek Kwang; Li, King Ho Holden; Boehm, Bernhard O.

    2016-07-01

    Advanced management of dysmetabolic syndromes such as diabetes will benefit from a timely mechanistic insight enabling personalized medicine approaches. Herein, we present a rapid microfluidic neutrophil sorting and functional phenotyping strategy for type 2 diabetes mellitus (T2DM) patients using small blood volumes (fingerprick ~100 μL). The developed inertial microfluidics technology enables single-step neutrophil isolation (>90% purity) without immuno-labeling and sorted neutrophils are used to characterize their rolling behavior on E-selectin, a critical step in leukocyte recruitment during inflammation. The integrated microfluidics testing methodology facilitates high throughput single-cell quantification of neutrophil rolling to detect subtle differences in speed distribution. Higher rolling speed was observed in T2DM patients (P < 0.01) which strongly correlated with neutrophil activation, rolling ligand P-selectin glycoprotein ligand 1 (PSGL-1) expression, as well as established cardiovascular risk factors (cholesterol, high-sensitive C-reactive protein (CRP) and HbA1c). Rolling phenotype can be modulated by common disease risk modifiers (metformin and pravastatin). Receiver operating characteristics (ROC) and principal component analysis (PCA) revealed neutrophil rolling as an important functional phenotype in T2DM diagnostics. These results suggest a new point-of-care testing methodology, and neutrophil rolling speed as a functional biomarker for rapid profiling of dysmetabolic subjects in clinical and patient-oriented settings.

  3. QR-on-a-chip: a computer-recognizable micro-pattern engraved microfluidic device for high-throughput image acquisition.

    PubMed

    Yun, Kyungwon; Lee, Hyunjae; Bang, Hyunwoo; Jeon, Noo Li

    2016-02-21

    This study proposes a novel way to achieve high-throughput image acquisition based on a computer-recognizable micro-pattern implemented on a microfluidic device. We integrated the QR code, a two-dimensional barcode system, onto the microfluidic device to simplify imaging of multiple ROIs (regions of interest). A standard QR code pattern was modified to arrays of cylindrical structures of polydimethylsiloxane (PDMS). Utilizing the recognition of the micro-pattern, the proposed system enables: (1) device identification, which allows referencing additional information of the device, such as device imaging sequences or the ROIs and (2) composing a coordinate system for an arbitrarily located microfluidic device with respect to the stage. Based on these functionalities, the proposed method performs one-step high-throughput imaging for data acquisition in microfluidic devices without further manual exploration and locating of the desired ROIs. In our experience, the proposed method significantly reduced the time for the preparation of an acquisition. We expect that the method will innovatively improve the prototype device data acquisition and analysis.

  4. A Microfluidic Chip Based on Localized Surface Plasmon Resonance for Real-Time Monitoring of Antigen-Antibody Reactions

    NASA Astrophysics Data System (ADS)

    Hiep, Ha Minh; Nakayama, Tsuyoshi; Saito, Masato; Yamamura, Shohei; Takamura, Yuzuru; Tamiya, Eiichi

    2008-02-01

    Localized surface plasmon resonance (LSPR) connecting to noble metal nanoparticles is an important issue for many analytical and biological applications. Therefore, the development of microfluidic LSPR chip that allows studying biomolecular interactions becomes an essential requirement for micro total analysis systems (µTAS) integration. However, miniaturized process of the conventional surface plasmon resonance system has been faced with some limitations, especially with the usage of Kretschmann configuration in total internal reflection mode. In this study, we have tried to solve this problem by proposing a novel microfluidic LSPR chip operated with a simple collinear optical system. The poly(dimethylsiloxane) (PDMS) based microfluidic chip was fabricated by soft-lithography technique and enables to interrogate specific insulin and anti-insulin antibody reaction in real-time after immobilizing antibody on its surface. Moreover, the sensing ability of microfluidic LSPR chip was also evaluated with various glucose concentrations. The kinetic constant of insulin and anti-insulin antibody was determined and the detection limit of 100 ng/mL insulin was archived.

  5. Resolution improvement of 3D stereo-lithography through the direct laser trajectory programming: Application to microfluidic deterministic lateral displacement device.

    PubMed

    Juskova, Petra; Ollitrault, Alexis; Serra, Marco; Viovy, Jean-Louis; Malaquin, Laurent

    2018-02-13

    The vast majority of current microfluidic devices are produced using soft lithography, a technique with strong limitations regarding the fabrication of three-dimensional architectures. Additive manufacturing holds great promises to overcome these limitations, but conventional machines still lack the resolution required by most microfluidic applications. 3D printing machines based on two-photon lasers, in contrast, have the needed resolution but are too limited in speed and size of the global device. Here we demonstrate how the resolution of conventional stereolithographic machines can be improved by a direct programming of the laser path and can contribute to bridge the gap between the two above technologies, allowing the direct printing of features between 10 and 100 μm, corresponding to a large fraction of microfluidic applications. This strategy allows to achieve resolutions limited only by the physical size of the laser beam, decreasing by a factor at least 2× the size of the smallest features printable, and increasing their reproducibility by a factor 5. The approach was applied to produce an open microfluidic device with the reversible seal, integrating periodical patterns using the simple motifs, and validated by the fabrication of a deterministic lateral displacement particles sorting device. The sorting of polystyrene beads (diameter: 20 μm and 45 μm) was achieved with a specificity >95%, comparable with that achieved with arrays prepared by microlithography. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Controlled droplet microfluidic systems for multistep chemical and biological assays.

    PubMed

    Kaminski, T S; Garstecki, P

    2017-10-16

    Droplet microfluidics is a relatively new and rapidly evolving field of science focused on studying the hydrodynamics and properties of biphasic flows at the microscale, and on the development of systems for practical applications in chemistry, biology and materials science. Microdroplets present several unique characteristics of interest to a broader research community. The main distinguishing features include (i) large numbers of isolated compartments of tiny volumes that are ideal for single cell or single molecule assays, (ii) rapid mixing and negligible thermal inertia that all provide excellent control over reaction conditions, and (iii) the presence of two immiscible liquids and the interface between them that enables new or exotic processes (the synthesis of new functional materials and structures that are otherwise difficult to obtain, studies of the functions and properties of lipid and polymer membranes and execution of reactions at liquid-liquid interfaces). The most frequent application of droplet microfluidics relies on the generation of large numbers of compartments either for ultrahigh throughput screens or for the synthesis of functional materials composed of millions of droplets or particles. Droplet microfluidics has already evolved into a complex field. In this review we focus on 'controlled droplet microfluidics' - a portfolio of techniques that provide convenient platforms for multistep complex reaction protocols and that take advantage of automated and passive methods of fluid handling on a chip. 'Controlled droplet microfluidics' can be regarded as a group of methods capable of addressing and manipulating droplets in series. The functionality and complexity of controlled droplet microfluidic systems can be positioned between digital microfluidics (DMF) addressing each droplet individually using 2D arrays of electrodes and ultrahigh throughput droplet microfluidics focused on the generation of hundreds of thousands or even millions of picoliter droplets that cannot be individually addressed by their location on a chip.

  7. Digital hydraulic drive for microfluidics and miniaturized cell culture devices based on shape memory alloy actuators

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Han; Wu, Xuanye; Kuan, Da-Han; Zimmermann, Stefan; Zengerle, Roland; Koltay, Peter

    2018-08-01

    In order to culture and analyze individual living cells, microfluidic cultivation and manipulation of cells become an increasingly important topic. Such microfluidic systems allow for exploring the phenotypic differences between thousands of genetically identical cells or pharmacological tests in parallel, which is impossible to achieve by traditional macroscopic cell culture methods. Therefore, plenty of microfluidic systems and devices have been developed for cell biological studies like cell culture, cell sorting, and cell lysis in the past. However, these microfluidic systems are still limited by the external pressure sources which most of the time are large in size and have to be connected by fluidic tubing leading to complex and delicate systems. In order to provide a miniaturized, more robust actuation system a novel, compact and low power consumption digital hydraulic drive (DHD) has been developed that is intended for use in portable and automated microfluidic systems for various applications. The DHD considered in this work consists of a shape memory alloy (SMA) actuator and a pneumatic cylinder. The switching time of the digital modes (pressure ON versus OFF) can be adjusted from 1 s to min. Thus, the DHDs might have many applications for driving microfluidic devices. In this work, different implementations of DHDs are presented and their performance is characterized by experiments. In particular, it will be shown that DHDs can be used for microfluidic large-scale integration (mLSI) valve control (256 valves in parallel) as well as potentially for droplet-based microfluidic systems. As further application example, high-throughput mixing of cell cultures (96 wells in parallel) is demonstrated employing the DHD to drive a so-called ‘functional lid’ (FL), to enable a miniaturized micro bioreactor in a regular 96-well micro well plate.

  8. Microfluidics as a functional tool for cell mechanics.

    PubMed

    Vanapalli, Siva A; Duits, Michel H G; Mugele, Frieder

    2009-01-05

    Living cells are a fascinating demonstration of nature's most intricate and well-coordinated micromechanical objects. They crawl, spread, contract, and relax-thus performing a multitude of complex mechanical functions. Alternatively, they also respond to physical and chemical cues that lead to remodeling of the cytoskeleton. To understand this intricate coupling between mechanical properties, mechanical function and force-induced biochemical signaling requires tools that are capable of both controlling and manipulating the cell microenvironment and measuring the resulting mechanical response. In this review, the power of microfluidics as a functional tool for research in cell mechanics is highlighted. In particular, current literature is discussed to show that microfluidics powered by soft lithographic techniques offers the following capabilities that are of significance for understanding the mechanical behavior of cells: (i) Microfluidics enables the creation of in vitro models of physiological environments in which cell mechanics can be probed. (ii) Microfluidics is an excellent means to deliver physical cues that affect cell mechanics, such as cell shape, fluid flow, substrate topography, and stiffness. (iii) Microfluidics can also expose cells to chemical cues, such as growth factors and drugs, which alter their mechanical behavior. Moreover, these chemical cues can be delivered either at the whole cell or subcellular level. (iv) Microfluidic devices offer the possibility of measuring the intrinsic mechanical properties of cells in a high throughput fashion. (v) Finally, microfluidic methods provide exquisite control over drop size, generation, and manipulation. As a result, droplets are being increasingly used to control the physicochemical environment of cells and as biomimetic analogs of living cells. These powerful attributes of microfluidics should further stimulate novel means of investigating the link between physicochemical cues and the biomechanical response of cells. Insights from such studies will have implications in areas such as drug delivery, medicine, tissue engineering, and biomedical diagnostics.

  9. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation.

    PubMed

    Shields, C Wyatt; Reyes, Catherine D; López, Gabriel P

    2015-03-07

    Accurate and high throughput cell sorting is a critical enabling technology in molecular and cellular biology, biotechnology, and medicine. While conventional methods can provide high efficiency sorting in short timescales, advances in microfluidics have enabled the realization of miniaturized devices offering similar capabilities that exploit a variety of physical principles. We classify these technologies as either active or passive. Active systems generally use external fields (e.g., acoustic, electric, magnetic, and optical) to impose forces to displace cells for sorting, whereas passive systems use inertial forces, filters, and adhesion mechanisms to purify cell populations. Cell sorting on microchips provides numerous advantages over conventional methods by reducing the size of necessary equipment, eliminating potentially biohazardous aerosols, and simplifying the complex protocols commonly associated with cell sorting. Additionally, microchip devices are well suited for parallelization, enabling complete lab-on-a-chip devices for cellular isolation, analysis, and experimental processing. In this review, we examine the breadth of microfluidic cell sorting technologies, while focusing on those that offer the greatest potential for translation into clinical and industrial practice and that offer multiple, useful functions. We organize these sorting technologies by the type of cell preparation required (i.e., fluorescent label-based sorting, bead-based sorting, and label-free sorting) as well as by the physical principles underlying each sorting mechanism.

  10. Microfluidic Cell Sorting: A Review of the Advances in the Separation of Cells from Debulking to Rare Cell Isolation

    PubMed Central

    Shields, C. Wyatt; Reyes, Catherine D.; López, Gabriel P.

    2015-01-01

    Accurate and high throughput cell sorting is a critical enabling technology in molecular and cellular biology, biotechnology, and medicine. While conventional methods can provide high efficiency sorting in short timescales, advances in microfluidics have enabled the realization of miniaturized devices offering similar capabilities that exploit a variety of physical principles. We classify these technologies as either active or passive. Active systems generally use external fields (e.g., acoustic, electric, magnetic, and optical) to impose forces to displace cells for sorting, whereas passive systems use inertial forces, filters, and adhesion mechanisms to purify cell populations. Cell sorting on microchips provides numerous advantages over conventional methods by reducing the size of necessary equipment, eliminating potentially biohazardous aerosols, and simplifying the complex protocols commonly associated with cell sorting. Additionally, microchip devices are well suited for parallelization, enabling complete lab-on-a-chip devices for cellular isolation, analysis, and experimental processing. In this review, we examine the breadth of microfluidic cell sorting technologies, while focusing on those that offer the greatest potential for translation into clinical and industrial practice and that offer multiple, useful functions. We organize these sorting technologies by the type of cell preparation required (i.e., fluorescent label-based sorting, bead-based sorting, and label-free sorting) as well as by the physical principles underlying each sorting mechanism. PMID:25598308

  11. Macro-meso-microsystems integration in LTCC : LDRD report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Smet, Dennis J.; Nordquist, Christopher Daniel; Turner, Timothy Shawn

    2007-03-01

    Low Temperature Cofired Ceramic (LTCC) has proven to be an enabling medium for microsystem technologies, because of its desirable electrical, physical, and chemical properties coupled with its capability for rapid prototyping and scalable manufacturing of components. LTCC is viewed as an extension of hybrid microcircuits, and in that function it enables development, testing, and deployment of silicon microsystems. However, its versatility has allowed it to succeed as a microsystem medium in its own right, with applications in non-microelectronic meso-scale devices and in a range of sensor devices. Applications include silicon microfluidic ''chip-and-wire'' systems and fluid grid array (FGA)/microfluidic multichip modulesmore » using embedded channels in LTCC, and cofired electro-mechanical systems with moving parts. Both the microfluidic and mechanical system applications are enabled by sacrificial volume materials (SVM), which serve to create and maintain cavities and separation gaps during the lamination and cofiring process. SVMs consisting of thermally fugitive or partially inert materials are easily incorporated. Recognizing the premium on devices that are cofired rather than assembled, we report on functional-as-released and functional-as-fired moving parts. Additional applications for cofired transparent windows, some as small as an optical fiber, are also described. The applications described help pave the way for widespread application of LTCC to biomedical, control, analysis, characterization, and radio frequency (RF) functions for macro-meso-microsystems.« less

  12. Microfluidics as a new tool in radiation biology

    PubMed Central

    Lacombe, Jerome; Phillips, Shanna Leslie; Zenhausern, Frederic

    2016-01-01

    Ionizing radiations interact with molecules at the cellular and molecular levels leading to several biochemical modifications that may be responsible for biological effects on tissue or whole organisms. The study of these changes is difficult because of the complexity of the biological response(s) to radiations and the lack of reliable models able to mimic the whole molecular phenomenon and different communications between the various cell networks, from the cell activation to the macroscopic effect at the tissue or organismal level. Microfluidics, the science and technology of systems that can handle small amounts of fluids in confined and controlled environment, has been an emerging field for several years. Some microfluidic devices, even at early stages of development, may already help radiobiological research by proposing new approaches to study cellular, tissue and total-body behavior upon irradiation. These devices may also be used in clinical biodosimetry since microfluidic technology is frequently developed for integrating complex bioassay chemistries into automated user-friendly, reproducible and sensitive analyses. In this review, we discuss the use, numerous advantages, and possible future of microfluidic technology in the field of radiobiology. We will also examine the disadvantages and required improvements for microfluidics to be fully practical in radiation research and to become an enabling tool for radiobiologists and radiation oncologists. PMID:26704304

  13. Microfluidics as a new tool in radiation biology.

    PubMed

    Lacombe, Jerome; Phillips, Shanna Leslie; Zenhausern, Frederic

    2016-02-28

    Ionizing radiations interact with molecules at the cellular and molecular levels leading to several biochemical modifications that may be responsible for biological effects on tissue or whole organisms. The study of these changes is difficult because of the complexity of the biological response(s) to radiations and the lack of reliable models able to mimic the whole molecular phenomenon and different communications between the various cell networks, from the cell activation to the macroscopic effect at the tissue or organismal level. Microfluidics, the science and technology of systems that can handle small amounts of fluids in confined and controlled environment, has been an emerging field for several years. Some microfluidic devices, even at early stages of development, may already help radiobiological research by proposing new approaches to study cellular, tissue and total-body behavior upon irradiation. These devices may also be used in clinical biodosimetry since microfluidic technology is frequently developed for integrating complex bioassay chemistries into automated user-friendly, reproducible and sensitive analyses. In this review, we discuss the use, numerous advantages, and possible future of microfluidic technology in the field of radiobiology. We will also examine the disadvantages and required improvements for microfluidics to be fully practical in radiation research and to become an enabling tool for radiobiologists and radiation oncologists. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Optimization of multiplexed PCR on an integrated microfluidic forensic platform for rapid DNA analysis.

    PubMed

    Estes, Matthew D; Yang, Jianing; Duane, Brett; Smith, Stan; Brooks, Carla; Nordquist, Alan; Zenhausern, Frederic

    2012-12-07

    This study reports the design, prototyping, and assay development of multiplexed polymerase chain reaction (PCR) on a plastic microfluidic device. Amplification of 17 DNA loci is carried out directly on-chip as part of a system for continuous workflow processing from sample preparation (SP) to capillary electrophoresis (CE). For enhanced performance of on-chip PCR amplification, improved control systems have been developed making use of customized Peltier assemblies, valve actuators, software, and amplification chemistry protocols. Multiple enhancements to the microfluidic chip design have been enacted to improve the reliability of sample delivery through the various on-chip modules. This work has been enabled by the encapsulation of PCR reagents into a solid phase material through an optimized Solid Phase Encapsulating Assay Mix (SPEAM) bead-based hydrogel fabrication process. SPEAM bead technology is reliably coupled with precise microfluidic metering and dispensing for efficient amplification and subsequent DNA short tandem repeat (STR) fragment analysis. This provides a means of on-chip reagent storage suitable for microfluidic automation, with the long shelf-life necessary for point-of-care (POC) or field deployable applications. This paper reports the first high quality 17-plex forensic STR amplification from a reference sample in a microfluidic chip with preloaded solid phase reagents, that is designed for integration with up and downstream processing.

  15. Multimodal Microchannel and Nanowell-Based Microfluidic Platforms for Bioimaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Tao; Smallwood, Chuck R.; Zhu, Ying

    2017-03-30

    Modern live-cell imaging approaches permit real-time visualization of biological processes. However, limitations for unicellular organism trapping, culturing and long-term imaging can preclude complete understanding of how such microorganisms respond to perturbations in their local environment or linking single-cell variability to whole population dynamics. We have developed microfluidic platforms to overcome prior technical bottlenecks to allow both chemostat and compartmentalized cellular growth conditions using the same device. Additionally, a nanowell-based platform enables a high throughput approach to scale up compartmentalized imaging optimized within the microfluidic device. These channel and nanowell platforms are complementary, and both provide fine control over the localmore » environment as well as the ability to add/replace media components at any experimental time point.« less

  16. Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter.

    PubMed

    Schmid, Lothar; Weitz, David A; Franke, Thomas

    2014-10-07

    We describe a versatile microfluidic fluorescence-activated cell sorter that uses acoustic actuation to sort cells or drops at ultra-high rates. Our acoustic sorter combines the advantages of traditional fluorescence-activated cell (FACS) and droplet sorting (FADS) and is applicable for a multitude of objects. We sort aqueous droplets, at rates as high as several kHz, into two or even more outlet channels. We can also sort cells directly from the medium without prior encapsulation into drops; we demonstrate this by sorting fluorescently labeled mouse melanoma cells in a single phase fluid. Our acoustic microfluidic FACS is compatible with standard cell sorting cytometers, yet, at the same time, enables a rich variety of more sophisticated applications.

  17. Optofluidic encapsulation and manipulation of silicon microchips using image processing based optofluidic maskless lithography and railed microfluidics.

    PubMed

    Chung, Su Eun; Lee, Seung Ah; Kim, Jiyun; Kwon, Sunghoon

    2009-10-07

    We demonstrate optofluidic encapsulation of silicon microchips using image processing based optofluidic maskless lithography and manipulation using railed microfluidics. Optofluidic maskless lithography is a dynamic photopolymerization technique of free-floating microstructures within a fluidic channel using spatial light modulator. Using optofluidic maskless lithography via computer-vision aided image processing, polymer encapsulants are fabricated for chip protection and guiding-fins for efficient chip conveying within a fluidic channel. Encapsulated silicon chips with guiding-fins are assembled using railed microfluidics, which is an efficient guiding and heterogeneous self-assembly system of microcomponents. With our technology, externally fabricated silicon microchips are encapsulated, fluidically guided and self-assembled potentially enabling low cost fluidic manipulation and assembly of integrated circuits.

  18. Revisiting lab-on-a-chip technology for drug discovery.

    PubMed

    Neuži, Pavel; Giselbrecht, Stefan; Länge, Kerstin; Huang, Tony Jun; Manz, Andreas

    2012-08-01

    The field of microfluidics or lab-on-a-chip technology aims to improve and extend the possibilities of bioassays, cell biology and biomedical research based on the idea of miniaturization. Microfluidic systems allow more accurate modelling of physiological situations for both fundamental research and drug development, and enable systematic high-volume testing for various aspects of drug discovery. Microfluidic systems are in development that not only model biological environments but also physically mimic biological tissues and organs; such 'organs on a chip' could have an important role in expediting early stages of drug discovery and help reduce reliance on animal testing. This Review highlights the latest lab-on-a-chip technologies for drug discovery and discusses the potential for future developments in this field.

  19. An integrated centrifugo-opto-microfluidic platform for arraying, analysis, identification and manipulation of individual cells.

    PubMed

    Burger, R; Kurzbuch, D; Gorkin, R; Kijanka, G; Glynn, M; McDonagh, C; Ducrée, J

    2015-01-21

    In this work we present a centrifugal microfluidic system enabling highly efficient collective trapping and alignment of particles such as microbeads and cells, their multi-colour fluorescent detection and subsequent manipulation by optical tweezers. We demonstrate array-based capture and imaging followed by "cherry-picking" of individual particles, first for fluorescently labelled polystyrene (PS) beads and then for cells. Different cell lines are discriminated based on intracellular as well as surface-based markers.

  20. Multiphoton writing of three-dimensional fluidic channels within a porous matrix.

    PubMed

    Lee, Jyh-Tsung; George, Matthew C; Moore, Jeffrey S; Braun, Paul V

    2009-08-19

    We demonstrate a facile method for fabricating novel 3D microfluidic channels by using two-photon-activated chemistry to locally switch the interior surface of a porous host from a hydrophobic state to a hydrophilic state. The 3D structures can be infilled selectively with water and/or hydrophobic oil with a minimum feature size of only a few micrometers. We envision that this approach may enable the fabrication of complex microfluidic structures that cannot be easily formed via current technologies.

  1. Punch card programmable microfluidics.

    PubMed

    Korir, George; Prakash, Manu

    2015-01-01

    Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series of holes in punched paper tapes, we demonstrate independent control of 15 on-chip pumps with enhanced mixing, normally-closed valves and a novel on-demand impact-based droplet generator. We demonstrate robustness of operation by encoding a string of characters representing the word "PUNCHCARD MICROFLUIDICS" using the droplet generator. Multiplexing is demonstrated by implementing an example colorimetric water quality assays for pH, ammonia, nitrite and nitrate content in different water samples. With its portable and robust design, low cost and ease-of-use, we envision punch card programmable microfluidics will bring complex control of microfluidic chips into field-based applications in low-resource settings and in the hands of children around the world.

  2. Super-Absorbent Polymer Valves and Colorimetric Chemistries for Time-Sequenced Discrete Sampling and Chloride Analysis of Sweat via Skin-Mounted Soft Microfluidics.

    PubMed

    Kim, Sung Bong; Zhang, Yi; Won, Sang Min; Bandodkar, Amay J; Sekine, Yurina; Xue, Yeguang; Koo, Jahyun; Harshman, Sean W; Martin, Jennifer A; Park, Jeong Min; Ray, Tyler R; Crawford, Kaitlyn E; Lee, Kyu-Tae; Choi, Jungil; Pitsch, Rhonda L; Grigsby, Claude C; Strang, Adam J; Chen, Yu-Yu; Xu, Shuai; Kim, Jeonghyun; Koh, Ahyeon; Ha, Jeong Sook; Huang, Yonggang; Kim, Seung Wook; Rogers, John A

    2018-03-01

    This paper introduces super absorbent polymer valves and colorimetric sensing reagents as enabling components of soft, skin-mounted microfluidic devices designed to capture, store, and chemically analyze sweat released from eccrine glands. The valving technology enables robust means for guiding the flow of sweat from an inlet location into a collection of isolated reservoirs, in a well-defined sequence. Analysis in these reservoirs involves a color responsive indicator of chloride concentration with a formulation tailored to offer stable operation with sensitivity optimized for the relevant physiological range. Evaluations on human subjects with comparisons against ex situ analysis illustrate the practical utility of these advances. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Inorganic Surface Coating with Fast Wetting-Dewetting Transitions for Liquid Manipulations.

    PubMed

    Yang, Yajie; Zhang, Liaoliao; Wang, Jue; Wang, Xinwei; Duan, Libing; Wang, Nan; Xiao, Fajun; Xie, Yanbo; Zhao, Jianlin

    2018-06-06

    Liquid manipulation is a fundamental issue for microfluidics and miniaturized sensors. Fast wetting-state transitions by optical methods have proven being efficient for liquid manipulations by organic surface coatings, however rarely been achieved by using inorganic coatings. Here, we report a fast optical-induced wetting-state transition surface achieved by inorganic coating, enabling tens of second transitions for a wetting-dewetting cycle, shortened from an hour, as typically reported. Here, we demonstrate a gravity-driven microfluidic reactor and switch it to a mixer after a second-step exposure in a minimum of within 80 s of UV exposure. The fast wetting-dewetting transition surfaces enable the fast switchable or erasable smart surfaces for water collection, miniature chemical reaction, or sensing systems by using inorganic surface coatings.

  4. Reconfigurable Microfluidic Magnetic Valve Arrays: Towards a Radiotherapy-Compatible Spheroid Culture Platform for the Combinatorial Screening of Cancer Therapies

    PubMed Central

    Labelle, Frédérique; Wong, Philip

    2017-01-01

    We introduce here a microfluidic cell culture platform or spheroid culture chamber array (SCCA) that can synthesize, culture, and enable fluorescence imaging of 3D cell aggregates (typically spheroids) directly on-chip while specifying the flow of reagents in each chamber via the use of an array of passive magnetic valves. The SCCA valves demonstrated sufficient resistance to burst (above 100 mBar), including after receiving radiotherapy (RT) doses of up to 8 Gy combined with standard 37 °C incubation for up to 7 days, enabling the simultaneous synthesis of multiple spheroids from different cell lines on the same array. Our results suggest that SCCA would be an asset in drug discovery processes, seeking to identify combinatorial treatments. PMID:28976942

  5. On-demand acoustic droplet splitting and steering in a disposable microfluidic chip.

    PubMed

    Park, Jinsoo; Jung, Jin Ho; Park, Kwangseok; Destgeer, Ghulam; Ahmed, Husnain; Ahmad, Raheel; Sung, Hyung Jin

    2018-01-30

    On-chip droplet splitting is one of the fundamental droplet-based microfluidic unit operations to control droplet volume after production and increase operational capability, flexibility, and throughput. Various droplet splitting methods have been proposed, and among them the acoustic droplet splitting method is promising because of its label-free operation without any physical or thermal damage to droplets. Previous acoustic droplet splitting methods faced several limitations: first, they employed a cross-type acoustofluidic device that precluded multichannel droplet splitting; second, they required irreversible bonding between a piezoelectric substrate and a microfluidic chip, such that the fluidic chip was not replaceable. Here, we present a parallel-type acoustofluidic device with a disposable microfluidic chip to address the limitations of previous acoustic droplet splitting devices. In the proposed device, an acoustic field is applied in the direction opposite to the flow direction to achieve multichannel droplet splitting and steering. A disposable polydimethylsiloxane microfluidic chip is employed in the developed device, thereby removing the need for permanent bonding and improving the flexibility of the droplet microfluidic device. We experimentally demonstrated on-demand acoustic droplet bi-splitting and steering with precise control over the droplet splitting ratio, and we investigated the underlying physical mechanisms of droplet splitting and steering based on Laplace pressure and ray acoustics analyses, respectively. We also demonstrated droplet tri-splitting to prove the feasibility of multichannel droplet splitting. The proposed on-demand acoustic droplet splitting device enables on-chip droplet volume control in various droplet-based microfluidic applications.

  6. Microfluidics: an enabling screening technology for enhanced oil recovery (EOR).

    PubMed

    Lifton, Victor A

    2016-05-21

    Oil production is a critical industrial process that affects the entire world population and any improvements in its efficiency while reducing its environmental impact are of utmost societal importance. The paper reviews recent applications of microfluidics and microtechnology to study processes of oil extraction and recovery. It shows that microfluidic devices can be useful tools in investigation and visualization of such processes used in the oil & gas industry as fluid propagation, flooding, fracturing, emulsification and many others. Critical macro-scale processes that define oil extraction and recovery are controlled by the micro-scale processes based on wetting, adhesion, surface tension, colloids and other concepts of microfluidics. A growing number of research efforts demonstrates that microfluidics is becoming, albeit slowly, an accepted methodology in this area. We propose several areas of development where implementation of microfluidics may bring about deeper understanding and hence better control over the processes of oil recovery based on fluid propagation, droplet generation, wettability control. Studies of processes such as hydraulic fracturing, sand particle propagation in porous networks, high throughput screening of chemicals (for example, emulsifiers and surfactants) in microfluidic devices that simulate oil reservoirs are proposed to improve our understanding of these complicated physico-chemical systems. We also discuss why methods of additive manufacturing (3D printing) should be evaluated for quick prototyping and modification of the three-dimensional structures replicating natural oil-bearing rock formations for studies accessible to a wider audience of researchers.

  7. Droplet microfluidics--a tool for single-cell analysis.

    PubMed

    Joensson, Haakan N; Andersson Svahn, Helene

    2012-12-03

    Droplet microfluidics allows the isolation of single cells and reagents in monodisperse picoliter liquid capsules and manipulations at a throughput of thousands of droplets per second. These qualities allow many of the challenges in single-cell analysis to be overcome. Monodispersity enables quantitative control of solute concentrations, while encapsulation in droplets provides an isolated compartment for the single cell and its immediate environment. The high throughput allows the processing and analysis of the tens of thousands to millions of cells that must be analyzed to accurately describe a heterogeneous cell population so as to find rare cell types or access sufficient biological space to find hits in a directed evolution experiment. The low volumes of the droplets make very large screens economically viable. This Review gives an overview of the current state of single-cell analysis involving droplet microfluidics and offers examples where droplet microfluidics can further biological understanding. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control.

    PubMed

    Frank, Philipp; Schreiter, Joerg; Haefner, Sebastian; Paschew, Georgi; Voigt, Andreas; Richter, Andreas

    2016-01-01

    Microfluidics is a great enabling technology for biology, biotechnology, chemistry and general life sciences. Despite many promising predictions of its progress, microfluidics has not reached its full potential yet. To unleash this potential, we propose the use of intrinsically active hydrogels, which work as sensors and actuators at the same time, in microfluidic channel networks. These materials transfer a chemical input signal such as a substance concentration into a mechanical output. This way chemical information is processed and analyzed on the spot without the need for an external control unit. Inspired by the development electronics, our approach focuses on the development of single transistor-like components, which have the potential to be used in an integrated circuit technology. Here, we present membrane isolated chemical volume phase transition transistor (MIS-CVPT). The device is characterized in terms of the flow rate from source to drain, depending on the chemical concentration in the control channel, the source-drain pressure drop and the operating temperature.

  9. Dissecting enzyme function with microfluidic-based deep mutational scanning.

    PubMed

    Romero, Philip A; Tran, Tuan M; Abate, Adam R

    2015-06-09

    Natural enzymes are incredibly proficient catalysts, but engineering them to have new or improved functions is challenging due to the complexity of how an enzyme's sequence relates to its biochemical properties. Here, we present an ultrahigh-throughput method for mapping enzyme sequence-function relationships that combines droplet microfluidic screening with next-generation DNA sequencing. We apply our method to map the activity of millions of glycosidase sequence variants. Microfluidic-based deep mutational scanning provides a comprehensive and unbiased view of the enzyme function landscape. The mapping displays expected patterns of mutational tolerance and a strong correspondence to sequence variation within the enzyme family, but also reveals previously unreported sites that are crucial for glycosidase function. We modified the screening protocol to include a high-temperature incubation step, and the resulting thermotolerance landscape allowed the discovery of mutations that enhance enzyme thermostability. Droplet microfluidics provides a general platform for enzyme screening that, when combined with DNA-sequencing technologies, enables high-throughput mapping of enzyme sequence space.

  10. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.

    PubMed

    Fu, Qiang; Liu, Jie

    2005-07-21

    A method to fabricate integrated single-walled carbon nanotube/microfluidic devices was developed. This simple process could be used to directly prepare nanotube thin film transistors within the microfluidic channel and to register SWNT devices with the microfludic channel without the need of an additional alignment step. The microfluidic device was designed to have several inlets that deliver multiple liquid flows to a single main channel. The location and width of each flow in the main channel could be controlled by the relative flow rates. This capability enabled us to study the effect of the location and the coverage area of the liquid flow that contained charged molecules on the conduction of the nanotube devices, providing important information on the sensing mechanism of carbon nanotube sensors. The results showed that in a sensor based on a nanotube thin film field effect transistor, the sensing signal came from target molecules absorbed on or around the nanotubes. The effect from adsorption on metal electrodes was weak.

  11. Validation of long-term primary neuronal cultures and network activity through the integration of reversibly bonded microbioreactors and MEA substrates.

    PubMed

    Biffi, Emilia; Menegon, Andrea; Piraino, Francesco; Pedrocchi, Alessandra; Fiore, Gianfranco B; Rasponi, Marco

    2012-01-01

    In vitro recording of neuronal electrical activity is a widely used technique to understand brain functions and to study the effect of drugs on the central nervous system. The integration of microfluidic devices with microelectrode arrays (MEAs) enables the recording of networks activity in a controlled microenvironment. In this work, an integrated microfluidic system for neuronal cultures was developed, reversibly coupling a PDMS microfluidic device with a commercial flat MEA through magnetic forces. Neurons from mouse embryos were cultured in a 100 µm channel and their activity was followed up to 18 days in vitro. The maturation of the networks and their morphological and functional characteristics were comparable with those of networks cultured in macro-environments and described in literature. In this work, we successfully demonstrated the ability of long-term culturing of primary neuronal cells in a reversible bonded microfluidic device (based on magnetism) that will be fundamental for neuropharmacological studies. Copyright © 2011 Wiley Periodicals, Inc.

  12. Drop mass transfer in a microfluidic chip compared to a centrifugal contactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemer, Martin B.; Roberts, Christine C.; Hughes, Lindsey G.

    2014-06-13

    A model system was developed for enabling a multiscale understanding of centrifugal-contactor liquid–liquid extraction.The system consisted of Nd(III) + xylenol orange in the aqueous phase buffered to pH =5.5 by KHP, and dodecane + thenoyltrifluroroacetone (HTTA) + tributyphosphate (TBP) in the organic phase. Diffusion constants were measured for neodymium in both the organic and aqueous phases, and the Nd(III) partition coefficients were measured at various HTTA and TBP concentrations. A microfluidic channel was used as a high-shear model environment to observe mass-transfer on a droplet scale with xylenol orange as the aqueous-phase metal indicator; mass-transfer rates were measured quantitatively inmore » both diffusion and reaction limited regimes on the droplet scale. Lastly, the microfluidic results were comparable to observations made for the same system in a laboratory scale liquid–liquid centrifugal contactor, indicating that single drop microfluidic experiments can provide information on mass transfer in complicated flows and geometries.« less

  13. Magnetically-guided assembly of microfluidic fibers for ordered construction of diverse netlike modules

    NASA Astrophysics Data System (ADS)

    Li, Xingfu; Shi, Qing; Wang, Huaping; Sun, Tao; Huang, Qiang; Fukuda, Toshio

    2017-12-01

    In this paper, a magnetically-guided assembly method is proposed to methodically construct diverse modules with a microfiber-based network for promoting nutrient circulation and waste excretion of cell culture. The microfiber is smoothly spun from the microfluidic device via precise control of the volumetric flow rate, and superparamagnetic nanoparticles within the alginate solution of the microfluidic fiber enable its magnetic response. The magnetized device is used to effectively capture the microfiber using its powerful magnetic flux density and high magnetic field gradient. Subsequently, the dot-matrix magnetic flux density is used to distribute the microfibers in an orderly fashion that depends on the array structure of the magnetized device. Furthermore, the magnetic microfluidic fibers are spatially organized into desired locations and are cross-aligned to form highly interconnected netlike modules in a liquid environment. Therefore, the experimental results herein demonstrate the structural controllability and stability of various modules and establish the effectiveness of the proposed method.

  14. Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control

    PubMed Central

    Frank, Philipp; Schreiter, Joerg; Haefner, Sebastian; Paschew, Georgi; Voigt, Andreas; Richter, Andreas

    2016-01-01

    Microfluidics is a great enabling technology for biology, biotechnology, chemistry and general life sciences. Despite many promising predictions of its progress, microfluidics has not reached its full potential yet. To unleash this potential, we propose the use of intrinsically active hydrogels, which work as sensors and actuators at the same time, in microfluidic channel networks. These materials transfer a chemical input signal such as a substance concentration into a mechanical output. This way chemical information is processed and analyzed on the spot without the need for an external control unit. Inspired by the development electronics, our approach focuses on the development of single transistor-like components, which have the potential to be used in an integrated circuit technology. Here, we present membrane isolated chemical volume phase transition transistor (MIS-CVPT). The device is characterized in terms of the flow rate from source to drain, depending on the chemical concentration in the control channel, the source-drain pressure drop and the operating temperature. PMID:27571209

  15. Microfluidic devices with permeable polymer barriers for capture and transport of biomolecules and cells.

    PubMed

    Lee, Ho Suk; Chu, Wai Keung; Zhang, Kun; Huang, Xiaohua

    2013-09-07

    We report a method for fabricating permeable polymer microstructure barriers in polydimethylsiloxane (PDMS) microfluidic devices and the use of the devices to capture and transport DNA and cells. The polymer microstructure in a desired location in a fluidic channel is formed in situ by the polymerization of acrylamide and polyethylene diacrylate cross-linker (PEG-DA) monomer in a solution which is trapped in the location using a pair of PDMS valves. The porous polymer microstructure provides a mechanical barrier to convective fluid flow in the channel or between two microfluidic chambers while it still conducts ions or small charged species under an electric field, allowing for the rapid capture and transport of biomolecules and cells by electrophoresis. We have demonstrated the application of the devices for the rapid capture and efficient release of bacteriophage λ genomic DNA, solution exchange and for the transport and capture of HeLa cells. Our devices will enable the multi-step processing of biomolecules and cells or individual cells within a single microfluidic chamber.

  16. Tapered Microfluidic for Continuous Micro-Object Separation Based on Hydrodynamic Principle.

    PubMed

    Ahmad, Ida Laila; Ahmad, Mohd Ridzuan; Takeuchi, Masaru; Nakajima, Masahiro; Hasegawa, Yasuhisa

    2017-12-01

    Recent advances in microfluidic technologies have created a demand for a simple and efficient separation intended for various applications such as food industries, biological preparation, and medical diagnostic. In this paper, we report a tapered microfluidic device for passive continuous separation of microparticles by using hydrodynamic separation. By exploiting the hydrodynamic properties of the fluid flow and physical characteristics of micro particles, effective size based separation is demonstrated. The tapered microfluidic device has widening geometries with respect to specific taper angle which amplify the sedimentation effect experienced by particles of different sizes. A mixture of 3-μm and 10-μm polystyrene microbeads are successfully separated using 20° and 25° taper angles. The results obtained are in agreement with three-dimensional finite element simulation conducted using Abaqus 6.12. Moreover, the feasibility of this mechanism for biological separation is demonstrated by using polydisperse samples consists of 3-μm polystyrene microbeads and human epithelial cervical carcinoma (HeLa) cells. 98% of samples purity is recovered at outlet 1 and outlet 3 with flow rate of 0.5-3.0 μl/min. Our device is interesting despite adopting passive separation approach. This method enables straightforward, label-free, and continuous separation of multiparticles in a stand-alone device without the need for bulky apparatus. Therefore, this device may become an enabling technology for point of care diagnosis tools and may hold potential for micrototal analysis system applications.

  17. Microfluidics for Antibiotic Susceptibility and Toxicity Testing

    PubMed Central

    Dai, Jing; Hamon, Morgan; Jambovane, Sachin

    2016-01-01

    The recent emergence of antimicrobial resistance has become a major concern for worldwide policy makers as very few new antibiotics have been developed in the last twenty-five years. To prevent the death of millions of people worldwide, there is an urgent need for a cheap, fast and accurate set of tools and techniques that can help to discover and develop new antimicrobial drugs. In the past decade, microfluidic platforms have emerged as potential systems for conducting pharmacological studies. Recent studies have demonstrated that microfluidic platforms can perform rapid antibiotic susceptibility tests to evaluate antimicrobial drugs’ efficacy. In addition, the development of cell-on-a-chip and organ-on-a-chip platforms have enabled the early drug testing, providing more accurate insights into conventional cell cultures on the drug pharmacokinetics and toxicity, at the early and cheaper stage of drug development, i.e., prior to animal and human testing. In this review, we focus on the recent developments of microfluidic platforms for rapid antibiotics susceptibility testing, investigating bacterial persistence and non-growing but metabolically active (NGMA) bacteria, evaluating antibiotic effectiveness on biofilms and combinatorial effect of antibiotics, as well as microfluidic platforms that can be used for in vitro antibiotic toxicity testing. PMID:28952587

  18. Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensing.

    PubMed

    Soenksen, L R; Kassis, T; Noh, M; Griffith, L G; Trumper, D L

    2018-03-13

    Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (<1 mL) has proven to be an elusive goal, especially if direct fluid-sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications.

  19. SAW Synthesis With IDTs Array and the Inverse Filter: Toward a Versatile SAW Toolbox for Microfluidics and Biological Applications.

    PubMed

    Riaud, Antoine; Baudoin, Michael; Thomas, Jean-Louis; Bou Matar, Olivier

    2016-10-01

    Surface acoustic waves (SAWs) are versatile tools to manipulate fluids at small scales for microfluidics and biological applications. A nonexhaustive list of operations that can be performed with SAW includes sessile droplet displacement, atomization, division, and merging but also the actuation of fluids embedded in microchannels or the manipulation of suspended particles. However, each of these operations requires a specific design of the wave generation system, the so-called interdigitated transducers (IDTs). Depending on the application, it might indeed be necessary to generate focused or plane, propagating or standing, and aligned or shifted waves. Furthermore, the possibilities offered by more complex wave fields such as acoustical vortices for particle tweezing and liquid twisting cannot be explored with classical IDTs. In this paper, we show that the inverse filter technique coupled with an IDTs array enables us to synthesize all classical wave fields used in microfluidics and biological applications with a single multifunctional platform. It also enables us to generate swirling SAWs, whose potential for the on-chip synthesis of tailored acoustical vortices has been demonstrated lately. The possibilities offered by this platform are illustrated by performing many operations successively on sessile droplets with the same system.

  20. Non-invasive paper-based microfluidic device for ultra-low detection of urea through enzyme catalysis

    NASA Astrophysics Data System (ADS)

    Suresh, Vignesh; Qunya, Ong; Kanta, Bera Lakshmi; Yuh, Lee Yeong; Chong, Karen S. L.

    2018-03-01

    This work describes the design, fabrication and characterization of a paper-based microfluidic device for ultra-low detection of urea through enzyme catalysis. The microfluidic system comprises an entry port, a fluidic channel, a reaction zone and two electrodes (contacts). Wax printing was used to create fluidic channels on the surface of a chromatography paper. Pre-conceptualized designs of the fluidic channel are wax-printed on the paper substrate while the electrodes are screen-printed. The paper printed with wax is heated to cause the wax reflow along the thickness of the paper that selectively creates hydrophilic and hydrophobic zones inside the paper. Urease immobilized in the reaction zone catalyses urea into releasing ions and, thereby, generating a current flow between the electrodes. A measure of current with respect to time at a fixed potential enables the detection of urea. The methodology enabled urea concentration down to 1 pM to be detected. The significance of this work lies in the use of simple and inexpensive paper-based substrates to achieve detection of ultra-low concentrations of analytes such as urea. The process is non-invasive and employs a less cumbersome two-electrode assembly.

  1. Development and characterization of a microfluidic model of the tumour microenvironment.

    PubMed

    Ayuso, Jose M; Virumbrales-Muñoz, María; Lacueva, Alodia; Lanuza, Pilar M; Checa-Chavarria, Elisa; Botella, Pablo; Fernández, Eduardo; Doblare, Manuel; Allison, Simon J; Phillips, Roger M; Pardo, Julián; Fernandez, Luis J; Ochoa, Ignacio

    2016-10-31

    The physical microenvironment of tumours is characterized by heterotypic cell interactions and physiological gradients of nutrients, waste products and oxygen. This tumour microenvironment has a major impact on the biology of cancer cells and their response to chemotherapeutic agents. Despite this, most in vitro cancer research still relies primarily on cells grown in 2D and in isolation in nutrient- and oxygen-rich conditions. Here, a microfluidic device is presented that is easy to use and enables modelling and study of the tumour microenvironment in real-time. The versatility of this microfluidic platform allows for different aspects of the microenvironment to be monitored and dissected. This is exemplified here by real-time profiling of oxygen and glucose concentrations inside the device as well as effects on cell proliferation and growth, ROS generation and apoptosis. Heterotypic cell interactions were also studied. The device provides a live 'window' into the microenvironment and could be used to study cancer cells for which it is difficult to generate tumour spheroids. Another major application of the device is the study of effects of the microenvironment on cellular drug responses. Some data is presented for this indicating the device's potential to enable more physiological in vitro drug screening.

  2. Miniaturized Power Processing Unit Study: A Cubesat Electric Propulsion Technology Enabler Project

    NASA Technical Reports Server (NTRS)

    Ghassemieh, Shakib M.

    2014-01-01

    This study evaluates High Voltage Power Processing Unit (PPU) technology and driving requirements necessary to enable the Microfluidic Electric Propulsion technology research and development by NASA and university partners. This study provides an overview of the state of the art PPU technology with recommendations for technology demonstration projects and missions for NASA to pursue.

  3. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells

    PubMed Central

    Cole, Russell H.; Tang, Shi-Yang; Siltanen, Christian A.; Shahi, Payam; Zhang, Jesse Q.; Poust, Sean; Gartner, Zev J.; Abate, Adam R.

    2017-01-01

    Although the elementary unit of biology is the cell, high-throughput methods for the microscale manipulation of cells and reagents are limited. The existing options either are slow, lack single-cell specificity, or use fluid volumes out of scale with those of cells. Here we present printed droplet microfluidics, a technology to dispense picoliter droplets and cells with deterministic control. The core technology is a fluorescence-activated droplet sorter coupled to a specialized substrate that together act as a picoliter droplet and single-cell printer, enabling high-throughput generation of intricate arrays of droplets, cells, and microparticles. Printed droplet microfluidics provides a programmable and robust technology to construct arrays of defined cell and reagent combinations and to integrate multiple measurement modalities together in a single assay. PMID:28760972

  4. Microwell Arrays for Studying Many Individual Cells

    NASA Technical Reports Server (NTRS)

    Folch, Albert; Kosar, Turgut Fettah

    2009-01-01

    "Laboratory-on-a-chip" devices that enable the simultaneous culturing and interrogation of many individual living cells have been invented. Each such device includes a silicon nitride-coated silicon chip containing an array of micromachined wells sized so that each well can contain one cell in contact or proximity with a patch clamp or other suitable single-cell-interrogating device. At the bottom of each well is a hole, typically 0.5 m wide, that connects the well with one of many channels in a microfluidic network formed in a layer of poly(dimethylsiloxane) on the underside of the chip. The microfluidic network makes it possible to address wells (and, thus, cells) individually to supply them with selected biochemicals. The microfluidic channels also provide electrical contact to the bottoms of the wells.

  5. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells.

    PubMed

    Cole, Russell H; Tang, Shi-Yang; Siltanen, Christian A; Shahi, Payam; Zhang, Jesse Q; Poust, Sean; Gartner, Zev J; Abate, Adam R

    2017-08-15

    Although the elementary unit of biology is the cell, high-throughput methods for the microscale manipulation of cells and reagents are limited. The existing options either are slow, lack single-cell specificity, or use fluid volumes out of scale with those of cells. Here we present printed droplet microfluidics, a technology to dispense picoliter droplets and cells with deterministic control. The core technology is a fluorescence-activated droplet sorter coupled to a specialized substrate that together act as a picoliter droplet and single-cell printer, enabling high-throughput generation of intricate arrays of droplets, cells, and microparticles. Printed droplet microfluidics provides a programmable and robust technology to construct arrays of defined cell and reagent combinations and to integrate multiple measurement modalities together in a single assay.

  6. Magnetic Tethering of Microswimmers in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Chawan, Aschvin; Jana, Saikat; Ghosh, Suvojit; Jung, Sunghwan; Puri, Ishwar

    2013-03-01

    Exercising control over animal locomotion is well known in the macro world. In the micro-scale world, such methods require more sophistication. We magnetize Paramecium multimicronucleatum by internalization of magnetite nanoparticles coated with bovine serum albumin (BSA). This enables control of their motion in a microfluidic device using a magnetic field. Miniature permanent magnets embedded within the device are used to tether the magnetized organisms to specific locations along a micro-channel. Ciliary beatings of the microswimmer generate shear flows nearby. We apply this setup to enhance cross-stream mixing in a microfluidic device by supplementing molecular diffusion. The device is similar to an active micromixer but requires no external power sources or artificial actuators. We optically characterize the effectiveness of the mechanism in a variety of flow situations.

  7. Photopatterned materials in bioanalytical microfluidic technology

    PubMed Central

    Tentori, Augusto M.; Herr, Amy E.

    2011-01-01

    Microfluidic technologies are playing an increasingly important role in biological inquiry. Sophisticated approaches to the microanalysis of biological specimens rely, in part, on the fine fluid and material control offered by microtechnology, as well as a sufficient capacity for systems integration. A suite of techniques that utilize photopatterning of polymers on fluidic surfaces, within fluidic volumes, and as primary device structures underpins recent technological innovation in bioanalysis. Well-characterized photopatterning approaches enable previously fabricated or commercially fabricated devices to be customized by the user in a straight-forward manner, making the tools accessible to laboratories that do not focus on microfabrication technology innovation. In this review of recent advances, we summarize reported microfluidic devices with photopatterned structures and regions as platforms for a diverse set of biological measurements and assays. PMID:21857772

  8. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells

    NASA Astrophysics Data System (ADS)

    Cole, Russell H.; Tang, Shi-Yang; Siltanen, Christian A.; Shahi, Payam; Zhang, Jesse Q.; Poust, Sean; Gartner, Zev J.; Abate, Adam R.

    2017-08-01

    Although the elementary unit of biology is the cell, high-throughput methods for the microscale manipulation of cells and reagents are limited. The existing options either are slow, lack single-cell specificity, or use fluid volumes out of scale with those of cells. Here we present printed droplet microfluidics, a technology to dispense picoliter droplets and cells with deterministic control. The core technology is a fluorescence-activated droplet sorter coupled to a specialized substrate that together act as a picoliter droplet and single-cell printer, enabling high-throughput generation of intricate arrays of droplets, cells, and microparticles. Printed droplet microfluidics provides a programmable and robust technology to construct arrays of defined cell and reagent combinations and to integrate multiple measurement modalities together in a single assay.

  9. Digital Microfluidics for Nucleic Acid Amplification

    PubMed Central

    Veigas, Bruno; Fortunato, Elvira; Martins, Rodrigo; Águas, Hugo; Igreja, Rui; Baptista, Pedro V.

    2017-01-01

    Digital Microfluidics (DMF) has emerged as a disruptive methodology for the control and manipulation of low volume droplets. In DMF, each droplet acts as a single reactor, which allows for extensive multiparallelization of biological and chemical reactions at a much smaller scale. DMF devices open entirely new and promising pathways for multiplex analysis and reaction occurring in a miniaturized format, thus allowing for healthcare decentralization from major laboratories to point-of-care with accurate, robust and inexpensive molecular diagnostics. Here, we shall focus on DMF platforms specifically designed for nucleic acid amplification, which is key for molecular diagnostics of several diseases and conditions, from pathogen identification to cancer mutations detection. Particular attention will be given to the device architecture, materials and nucleic acid amplification applications in validated settings. PMID:28672827

  10. Sperm quality assessment via separation and sedimentation in a microfluidic device.

    PubMed

    Chen, Chang-Yu; Chiang, Tsun-Chao; Lin, Cheng-Ming; Lin, Shu-Sheng; Jong, De-Shien; Tsai, Vincent F-S; Hsieh, Ju-Ton; Wo, Andrew M

    2013-09-07

    A major reason for infertility is due to male factors, including the quality of spermatozoa, which is a primary factor and often difficult to assess, particularly the total sperm concentration and its motile percentage. This work presents a simple microfluidic device to assess sperm quality by quantifying both total and motile sperm counts. The key design feature of the microfluidic device is two channels separated by a permeative phase-guide structure, where one channel is filled with raw semen and the other with pure buffer. The semen sample was allowed to reach equilibrium in both chambers, whereas non-motile sperms remained in the original channel, and roughly half of the motile sperms would swim across the phase-guide barrier into the buffer channel. Sperms in each channel agglomerated into pellets after centrifugation, with the corresponding area representing total and motile sperm concentrations. Total sperm concentration up to 10(8) sperms per ml and motile percentage in the range of 10-70% were tested, encompassing the cutoff value of 40% stated by World Health Organization standards. Results from patient samples show compact and robust pellets after centrifugation. Comparison of total sperm concentration between the microfluidic device and the Makler chamber reveal they agree within 5% and show strong correlation, with a coefficient of determination of R(2) = 0.97. Motile sperm count between the microfluidic device and the Makler chamber agrees within 5%, with a coefficient of determination of R(2) = 0.84. Comparison of results from the Makler Chamber, sperm quality analyzer, and the microfluidic device revealed that results from the microfluidic device agree well with the Makler chamber. The sperm microfluidic chip analyzes both total and motile sperm concentrations in one spin, is accurate and easy to use, and should enable sperm quality analysis with ease.

  11. Development of a titanium dioxide-coated microfluidic-based photocatalyst-assisted reduction device to couple high-performance liquid chromatography with inductively coupled plasma-mass spectrometry for determination of inorganic selenium species.

    PubMed

    Shih, Tsung-Ting; Lin, Cheng-Hsing; Hsu, I-Hsiang; Chen, Jian-Yi; Sun, Yuh-Chang

    2013-11-05

    We developed a selective and sensitive hyphenated system employing a microfluidic-based vapor generation (VG) system in conjunction with high-performance liquid chromatography (HPLC) separation and inductively coupled plasma-mass spectrometry (ICPMS) detection for the determination of trace inorganic selenium (Se) species. The VG system exploited poly(methyl methacrylate) (PMMA) substrates of high optical quality to fabricate a microfluidic-based photocatalyst-assisted reduction device (microfluidic-based PCARD). Moreover, to reduce the consumption of photocatalysts during analytical procedures, a microfluidic-based PCARD coated with titanium dioxide nanoparticles (nano-TiO2) was employed to avoid consecutive loading. Notably, to simplify the coating procedure and improve the stability of the coating materials, a dynamic coating method was utilized. Under the optimized conditions for the selenicals of interest, the online HPLC/TiO2-coated microfluidic-based PCARD/ICPMS system enabled us to achieve detection limits (based on 3σ) of 0.043 and 0.042 μg L(-1) for Se(IV) and Se(VI), respectively. Both Se(IV) and Se(VI) could be efficiently vaporized within 15 s, while a series of validation experiments indicated that our proposed method could be satisfactorily applied to the determination of inorganic Se species in the environmental water samples.

  12. 3D-glass molds for facile production of complex droplet microfluidic chips.

    PubMed

    Tovar, Miguel; Weber, Thomas; Hengoju, Sundar; Lovera, Andrea; Munser, Anne-Sophie; Shvydkiv, Oksana; Roth, Martin

    2018-03-01

    In order to leverage the immense potential of droplet microfluidics, it is necessary to simplify the process of chip design and fabrication. While polydimethylsiloxane (PDMS) replica molding has greatly revolutionized the chip-production process, its dependence on 2D-limited photolithography has restricted the design possibilities, as well as further dissemination of microfluidics to non-specialized labs. To break free from these restrictions while keeping fabrication straighforward, we introduce an approach to produce complex multi-height (3D) droplet microfluidic glass molds and subsequent chip production by PDMS replica molding. The glass molds are fabricated with sub-micrometric resolution using femtosecond laser machining technology, which allows directly realizing designs with multiple levels or even continuously changing heights. The presented technique significantly expands the experimental capabilities of the droplet microfluidic chip. It allows direct fabrication of multilevel structures such as droplet traps for prolonged observation and optical fiber integration for fluorescence detection. Furthermore, the fabrication of novel structures based on sloped channels (ramps) enables improved droplet reinjection and picoinjection or even a multi-parallelized drop generator based on gradients of confinement. The fabrication of these and other 3D-features is currently only available at such resolution by the presented strategy. Together with the simplicity of PDMS replica molding, this provides an accessible solution for both specialized and non-specialized labs to customize microfluidic experimentation and expand their possibilities.

  13. Computational analysis of integrated biosensing and shear flow in a microfluidic vascular model

    NASA Astrophysics Data System (ADS)

    Wong, Jeremy F.; Young, Edmond W. K.; Simmons, Craig A.

    2017-11-01

    Fluid flow and flow-induced shear stress are critical components of the vascular microenvironment commonly studied using microfluidic cell culture models. Microfluidic vascular models mimicking the physiological microenvironment also offer great potential for incorporating on-chip biomolecular detection. In spite of this potential, however, there are few examples of such functionality. Detection of biomolecules released by cells under flow-induced shear stress is a significant challenge due to severe sample dilution caused by the fluid flow used to generate the shear stress, frequently to the extent where the analyte is no longer detectable. In this work, we developed a computational model of a vascular microfluidic cell culture model that integrates physiological shear flow and on-chip monitoring of cell-secreted factors. Applicable to multilayer device configurations, the computational model was applied to a bilayer configuration, which has been used in numerous cell culture applications including vascular models. Guidelines were established that allow cells to be subjected to a wide range of physiological shear stress while ensuring optimal rapid transport of analyte to the biosensor surface and minimized biosensor response times. These guidelines therefore enable the development of microfluidic vascular models that integrate cell-secreted factor detection while addressing flow constraints imposed by physiological shear stress. Ultimately, this work will result in the addition of valuable functionality to microfluidic cell culture models that further fulfill their potential as labs-on-chips.

  14. Single-cell Genomics using Droplet-based Microfluidics

    NASA Astrophysics Data System (ADS)

    Basu, Anindita; Macosko, Evan; Shalek, Alex; McCarroll, Steven; Regev, Aviv; Weitz, Dave

    2014-03-01

    We develop a system to profile the transcriptome of mammalian cells in isolation using reverse emulsion droplet-based microfluidic techniques. This is accomplished by (a) encapsulating and lysing one cell per emulsion droplet, and (b) uniquely barcoding the RNA contents from each cell using unique DNA-barcoded microgel beads. This enables us to study the transcriptional behavior of a large number of cells at single-cell resolution. We then use these techniques to study transcriptional responses of isolated immune cells to precisely controlled chemical and pathological stimuli provided in the emulsion droplet.

  15. Fluidic optics

    NASA Astrophysics Data System (ADS)

    Whitesides, George M.; Tang, Sindy K. Y.

    2006-09-01

    Fluidic optics is a new class of optical system with real-time tunability and reconfigurability enabled by the introduction of fluidic components into the optical path. We describe the design, fabrication, operation of a number of fluidic optical systems, and focus on three devices, liquid-core/liquid-cladding (L2) waveguides, microfluidic dye lasers, and diffraction gratings based on flowing, crystalline lattices of bubbles, to demonstrate the integration of microfluidics and optics. We fabricate these devices in poly(dimethylsiloxane) (PDMS) with soft-lithographic techniques. They are simple to construct, and readily integrable with microanalytical or lab-on-a-chip systems.

  16. Compression and Reswelling of Microgel Particles after an Osmotic Shock

    NASA Astrophysics Data System (ADS)

    Sleeboom, Jelle J. F.; Voudouris, Panayiotis; Punter, Melle T. J. J. M.; Aangenendt, Frank J.; Florea, Daniel; van der Schoot, Paul; Wyss, Hans M.

    2017-09-01

    We use dedicated microfluidic devices to expose soft hydrogel particles to a rapid change in the externally applied osmotic pressure and observe a surprising, nonmonotonic response: After an initial rapid compression, the particle slowly reswells to approximately its original size. We theoretically account for this behavior, enabling us to extract important material properties from a single microfluidic experiment, including the compressive modulus, the gel permeability, and the diffusivity of the osmolyte inside the gel. We expect our approach to be relevant to applications such as controlled release, chromatography, and responsive materials.

  17. Placenta-on-a-chip: a novel platform to study the biology of the human placenta.

    PubMed

    Lee, Ji Soo; Romero, Roberto; Han, Yu Mi; Kim, Hee Chan; Kim, Chong Jai; Hong, Joon-Seok; Huh, Dongeun

    2016-01-01

    Studying the biology of the human placenta represents a major experimental challenge. Although conventional cell culture techniques have been used to study different types of placenta-derived cells, current in vitro models have limitations in recapitulating organ-specific structure and key physiological functions of the placenta. Here we demonstrate that it is possible to leverage microfluidic and microfabrication technologies to develop a microengineered biomimetic model that replicates the architecture and function of the placenta. A "Placenta-on-a-Chip" microdevice was created by using a set of soft elastomer-based microfabrication techniques known as soft lithography. This microsystem consisted of two polydimethylsiloxane (PDMS) microfluidic channels separated by a thin extracellular matrix (ECM) membrane. To reproduce the placental barrier in this model, human trophoblasts (JEG-3) and human umbilical vein endothelial cells (HUVECs) were seeded onto the opposite sides of the ECM membrane and cultured under dynamic flow conditions to form confluent epithelial and endothelial layers in close apposition. We tested the physiological function of the microengineered placental barrier by measuring glucose transport across the trophoblast-endothelial interface over time. The permeability of the barrier study was analyzed and compared to that obtained from acellular devices and additional control groups that contained epithelial or endothelial layers alone. Our microfluidic cell culture system provided a tightly controlled fluidic environment conducive to the proliferation and maintenance of JEG-3 trophoblasts and HUVECs on the ECM scaffold. Prolonged culture in this model produced confluent cellular monolayers on the intervening membrane that together formed the placental barrier. This in vivo-like microarchitecture was also critical for creating a physiologically relevant effective barrier to glucose transport. Quantitative investigation of barrier function was conducted by calculating permeability coefficients and metabolic rates in varying conditions of barrier structure. The rates of glucose transport and metabolism were consistent with previously reported in vivo observations. The "Placenta-on-a-Chip" microdevice described herein provides new opportunities to simulate and analyze critical physiological responses of the placental barrier. This system may be used to address the major limitations of existing placenta model systems and serve to enable research platforms for reproductive biology and medicine.

  18. NASA Tech Briefs, August 2013

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Topics covered include: Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes; Conical Seat Shut-Off Valve; Impact-Actuated Digging Tool for Lunar Excavation; Flexible Mechanical Conveyors for Regolith Extraction and Transport; Remote Memory Access Protocol Target Node Intellectual Property; Soft Decision Analyzer; Distributed Prognostics and Health Management with a Wireless Network Architecture; Minimal Power Latch for Single-Slope ADCs; Bismuth Passivation Technique for High-Resolution X-Ray Detectors; High-Strength, Super-elastic Compounds; Cu-Cr-Nb-Zr Alloy for Rocket Engines and Other High-Heat- Flux Applications; Microgravity Storage Vessels and Conveying-Line Feeders for Cohesive Regolith; CRUQS: A Miniature Fine Sun Sensor for Nanosatellites; On-Chip Microfluidic Components for In Situ Analysis, Separation, and Detection of Amino Acids; Spectroscopic Determination of Trace Contaminants in High-Purity Oxygen; Method of Separating Oxygen From Spacecraft Cabin Air to Enable Extravehicular Activities; Atomic Force Microscope Mediated Chromatography; Sample Analysis at Mars Instrument Simulator; Access Control of Web- and Java-Based Applications; Tool for Automated Retrieval of Generic Event Tracks (TARGET); Bilayer Protograph Codes for Half-Duplex Relay Channels; Influence of Computational Drop Representation in LES of a Droplet-Laden Mixing Layer.

  19. Nanofluidic fuel cell

    NASA Astrophysics Data System (ADS)

    Lee, Jin Wook; Kjeang, Erik

    2013-11-01

    Fuel cells are gaining momentum as a critical component in the renewable energy mix for stationary, transportation, and portable power applications. State-of-the-art fuel cell technology benefits greatly from nanotechnology applied to nanostructured membranes, catalysts, and electrodes. However, the potential of utilizing nanofluidics for fuel cells has not yet been explored, despite the significant opportunity of harnessing rapid nanoscale reactant transport in close proximity to the reactive sites. In the present article, a nanofluidic fuel cell that utilizes fluid flow through nanoporous media is conceptualized and demonstrated for the first time. This transformative concept captures the advantages of recently developed membraneless and catalyst-free fuel cell architectures paired with the enhanced interfacial contact area enabled by nanofluidics. When compared to previously reported microfluidic fuel cells, the prototype nanofluidic fuel cell demonstrates increased surface area, reduced activation overpotential, superior kinetic characteristics, and moderately enhanced fuel cell performance in the high cell voltage regime with up to 14% higher power density. However, the expected mass transport benefits in the high current density regime were constrained by high ohmic cell resistance, which could likely be resolved through future optimization studies.

  20. Multifunctional Polymer Nanofibers: UV Emission, Optical Gain, Anisotropic Wetting, and High Hydrophobicity for Next Flexible Excitation Sources

    PubMed Central

    2015-01-01

    The use of UV light sources is highly relevant in many fields of science, being directly related to all those detection and diagnosis procedures that are based on fluorescence spectroscopy. Depending on the specific application, UV light-emitting materials are desired to feature a number of opto-mechanical properties, including brightness, optical gain for being used in laser devices, flexibility to conform with different lab-on-chip architectures, and tailorable wettability to control and minimize their interaction with ambient humidity and fluids. In this work, we introduce multifunctional, UV-emitting electrospun fibers with both optical gain and greatly enhanced anisotropic hydrophobicity compared to films. Fibers are described by the onset of a composite wetting state, and their arrangement in uniaxial arrays further favors liquid directional control. The low gain threshold, optical losses, plastic nature, flexibility, and stability of these UV-emitting fibers make them interesting for building light-emitting devices and microlasers. Furthermore, the anisotropic hydrophobicity found is strongly synergic with optical properties, reducing interfacial interactions with liquids and enabling smart functional surfaces for droplet microfluidic and wearable applications. PMID:26401889

  1. Real-Time Microfluidic Blood-Counting System for PET and SPECT Preclinical Pharmacokinetic Studies.

    PubMed

    Convert, Laurence; Lebel, Réjean; Gascon, Suzanne; Fontaine, Réjean; Pratte, Jean-François; Charette, Paul; Aimez, Vincent; Lecomte, Roger

    2016-09-01

    Small-animal nuclear imaging modalities have become essential tools in the development process of new drugs, diagnostic procedures, and therapies. Quantification of metabolic or physiologic parameters is based on pharmacokinetic modeling of radiotracer biodistribution, which requires the blood input function in addition to tissue images. Such measurements are challenging in small animals because of their small blood volume. In this work, we propose a microfluidic counting system to monitor rodent blood radioactivity in real time, with high efficiency and small detection volume (∼1 μL). A microfluidic channel is built directly above unpackaged p-i-n photodiodes to detect β-particles with maximum efficiency. The device is embedded in a compact system comprising dedicated electronics, shielding, and pumping unit controlled by custom firmware to enable measurements next to small-animal scanners. Data corrections required to use the input function in pharmacokinetic models were established using calibrated solutions of the most common PET and SPECT radiotracers. Sensitivity, dead time, propagation delay, dispersion, background sensitivity, and the effect of sample temperature were characterized. The system was tested for pharmacokinetic studies in mice by quantifying myocardial perfusion and oxygen consumption with (11)C-acetate (PET) and by measuring the arterial input function using (99m)TcO4 (-) (SPECT). Sensitivity for PET isotopes reached 20%-47%, a 2- to 10-fold improvement relative to conventional catheter-based geometries. Furthermore, the system detected (99m)Tc-based SPECT tracers with an efficiency of 4%, an outcome not possible through a catheter. Correction for dead time was found to be unnecessary for small-animal experiments, whereas propagation delay and dispersion within the microfluidic channel were accurately corrected. Background activity and sample temperature were shown to have no influence on measurements. Finally, the system was successfully used in animal studies. A fully operational microfluidic blood-counting system for preclinical pharmacokinetic studies was developed. Microfluidics enabled reliable and high-efficiency measurement of the blood concentration of most common PET and SPECT radiotracers with high temporal resolution in small blood volume. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  2. A Service Oriented Architecture to Enable Sensor Webs

    NASA Technical Reports Server (NTRS)

    Sohlberg, Rob; Frye, Stu; Cappelaere, Pat; Ungar, Steve; Ames, Troy; Chien, Steve

    2006-01-01

    This viewgraph presentation reviews the development of a Service Oriented Architecture to assist in lowering the cost of new Earth Science products. This architecture will enable rapid and cost effective reconfiguration of new sensors.

  3. Punch Card Programmable Microfluidics

    PubMed Central

    Korir, George; Prakash, Manu

    2015-01-01

    Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series of holes in punched paper tapes, we demonstrate independent control of 15 on-chip pumps with enhanced mixing, normally-closed valves and a novel on-demand impact-based droplet generator. We demonstrate robustness of operation by encoding a string of characters representing the word “PUNCHCARD MICROFLUIDICS” using the droplet generator. Multiplexing is demonstrated by implementing an example colorimetric water quality assays for pH, ammonia, nitrite and nitrate content in different water samples. With its portable and robust design, low cost and ease-of-use, we envision punch card programmable microfluidics will bring complex control of microfluidic chips into field-based applications in low-resource settings and in the hands of children around the world. PMID:25738834

  4. Efficient generation of hepatic cells from mesenchymal stromal cells by an innovative bio-microfluidic cell culture device.

    PubMed

    Yen, Meng-Hua; Wu, Yuan-Yi; Liu, Yi-Shiuan; Rimando, Marilyn; Ho, Jennifer Hui-Chun; Lee, Oscar Kuang-Sheng

    2016-08-19

    Mesenchymal stromal cells (MSCs) are multipotent and have great potential in cell therapy. Previously we reported the differentiation potential of human MSCs into hepatocytes in vitro and that these cells can rescue fulminant hepatic failure. However, the conventional static culture method neither maintains growth factors at an optimal level constantly nor removes cellular waste efficiently. In addition, not only is the duration of differentiating hepatocyte lineage cells from MSCs required to improve, but also the need for a large number of hepatocytes for cell therapy has not to date been addressed fully. The purpose of this study is to design and develop an innovative microfluidic device to overcome these shortcomings. We designed and fabricated a microfluidic device and a culture system for hepatic differentiation of MSCs using our protocol reported previously. The microfluidic device contains a large culture chamber with a stable uniform flow to allow homogeneous distribution and expansion as well as efficient induction of hepatic differentiation for MSCs. The device enables real-time observation under light microscopy and exhibits a better differentiation efficiency for MSCs compared with conventional static culture. MSCs grown in the microfluidic device showed a higher level of hepatocyte marker gene expression under hepatic induction. Functional analysis of hepatic differentiation demonstrated significantly higher urea production in the microfluidic device after 21 days of hepatic differentiation. The microfluidic device allows the generation of a large number of MSCs and induces hepatic differentiation of MSCs efficiently. The device can be adapted for scale-up production of hepatic cells from MSCs for cellular therapy.

  5. A microfluidic device for studying cell signaling with multiple inputs and adjustable amplitudes and frequencies

    NASA Astrophysics Data System (ADS)

    Ningsih, Zubaidah; Chon, James W. M.; Clayton, Andrew H. A.

    2013-12-01

    Cell function is largely controlled by an intricate web of macromolecular interactions called signaling networks. It is known that the type and the intensity (concentration) of stimulus affect cell behavior. However, the temporal aspect of the stimulus is not yet fully understood. Moreover, the process of distinguishing between two stimuli by a cell is still not clear. A microfluidic device enables the delivery of a precise and exact stimulus to the cell due to the laminar flow established inside its micro-channel. The slow stream delivers a constant stimulus which is adjustable according to the experiment set up. Moreover, with controllable inputs, microfluidic facilitates the stimuli delivery according to a certain pattern with adjustable amplitude, frequency and phase. Several designs of PDMS microfluidic device has been produced in this project via photolithography and soft lithography processes. To characterize the microfluidic performance, two experiments has been conducted. First, by comparing the fluorescence intensity and the lifetime of fluorescein in the present of KI, mixing extent between two inputs was observed using Frequency Lifetime Imaging Microscopy (FLIM). Furthermore, the input-output relationship of fluorescein concentration delivered was also drawn to characterize the amplitude, frequency and phase of the inputs. Second experiment involved the cell culturing inside microfluidic. Using NG108-15 cells, proliferation and differentiation were observed based on the cell number and cell physiological changes. Our results demonstrate that hurdle design gives 86% mixing of fluorescein and buffer. Relationship between inputoutput fluorescein concentrations delivered has also been demonstrated and cells were successfully cultured inside the microfluidic.

  6. Control and automation of multilayered integrated microfluidic device fabrication.

    PubMed

    Kipper, Sarit; Frolov, Ludmila; Guy, Ortal; Pellach, Michal; Glick, Yair; Malichi, Asaf; Knisbacher, Binyamin A; Barbiro-Michaely, Efrat; Avrahami, Dorit; Yavets-Chen, Yehuda; Levanon, Erez Y; Gerber, Doron

    2017-01-31

    Integrated microfluidics is a sophisticated three-dimensional (multi layer) solution for high complexity serial or parallel processes. Fabrication of integrated microfluidic devices requires soft lithography and the stacking of thin-patterned PDMS layers. Precise layer alignment and bonding is crucial. There are no previously reported standards for alignment of the layers, which is mostly performed using uncontrolled processes with very low alignment success. As a result, integrated microfluidics is mostly used in academia rather than in the many potential industrial applications. We have designed and manufactured a semiautomatic Microfluidic Device Assembly System (μDAS) for full device production. μDAS comprises an electrooptic mechanical system consisting of four main parts: optical system, smart media holder (for PDMS), a micropositioning xyzθ system and a macropositioning XY mechanism. The use of the μDAS yielded valuable information regarding PDMS as the material for device fabrication, revealed previously unidentified errors, and enabled optimization of a robust fabrication process. In addition, we have demonstrated the utilization of the μDAS technology for fabrication of a complex 3 layered device with over 12 000 micromechanical valves and an array of 64 × 64 DNA spots on a glass substrate with high yield and high accuracy. We increased fabrication yield from 25% to about 85% with an average layer alignment error of just ∼4 μm. It also increased our protein expression yields from 80% to over 90%, allowing us to investigate more proteins per experiment. The μDAS has great potential to become a valuable tool for both advancing integrated microfluidics in academia and producing and applying microfluidic devices in the industry.

  7. Fabrication of Three-dimensional Paper-based Microfluidic Devices for Immunoassays.

    PubMed

    Fernandes, Syrena C; Wilson, Daniel J; Mace, Charles R

    2017-03-09

    Paper wicks fluids autonomously due to capillary action. By patterning paper with hydrophobic barriers, the transport of fluids can be controlled and directed within a layer of paper. Moreover, stacking multiple layers of patterned paper creates sophisticated three-dimensional microfluidic networks that can support the development of analytical and bioanalytical assays. Paper-based microfluidic devices are inexpensive, portable, easy to use, and require no external equipment to operate. As a result, they hold great promise as a platform for point-of-care diagnostics. In order to properly evaluate the utility and analytical performance of paper-based devices, suitable methods must be developed to ensure their manufacture is reproducible and at a scale that is appropriate for laboratory settings. In this manuscript, a method to fabricate a general device architecture that can be used for paper-based immunoassays is described. We use a form of additive manufacturing (multi-layer lamination) to prepare devices that comprise multiple layers of patterned paper and patterned adhesive. In addition to demonstrating the proper use of these three-dimensional paper-based microfluidic devices with an immunoassay for human chorionic gonadotropin (hCG), errors in the manufacturing process that may result in device failures are discussed. We expect this approach to manufacturing paper-based devices will find broad utility in the development of analytical applications designed specifically for limited-resource settings.

  8. Dynamics of blood flow in a microfluidic ladder network

    NASA Astrophysics Data System (ADS)

    Maddala, Jeevan; Zilberman-Rudenko, Jevgenia; McCarty, Owen

    The dynamics of a complex mixture of cells and proteins, such as blood, in perturbed shear flow remains ill-defined. Microfluidics is a promising technology for improving the understanding of blood flow under complex conditions of shear; as found in stent implants and in tortuous blood vessels. We model the fluid dynamics of blood flow in a microfluidic ladder network with dimensions mimicking venules. Interaction of blood cells was modeled using multiagent framework, where cells of different diameters were treated as spheres. This model served as the basis for predicting transition regions, collision pathways, re-circulation zones and residence times of cells dependent on their diameters and device architecture. Based on these insights from the model, we were able to predict the clot formation configurations at various locations in the device. These predictions were supported by the experiments using whole blood. To facilitate platelet aggregation, the devices were coated with fibrillar collagen and tissue factor. Blood was perfused through the microfluidic device for 9 min at a physiologically relevant venous shear rate of 600 s-1. Using fluorescent microscopy, we observed flow transitions near the channel intersections and at the areas of blood flow obstruction, which promoted larger thrombus formation. This study of integrating model predictions with experimental design, aids in defining the dynamics of blood flow in microvasculature and in development of novel biomedical devices.

  9. Centrifugal microfluidic platform for ultrasensitive detection of botulinum toxin

    DOE PAGES

    Koh, Chung -Yan; Schaff, Ulrich Y.; Sandstone Diagnostics, Livermore, CA; ...

    2014-12-18

    In this study, we present an innovative centrifugal microfluidic immunoassay platform (SpinDx) to address the urgent biodefense and public health need for ultrasensitive point-of-care/incident detection of botulinum toxin. The simple, sample-to-answer centrifugal microfluidic immunoassay approach is based on binding of toxins to antibody-laden capture particles followed by sedimentation of the particles through a density-media in a microfluidic disk and quantification by laser-induced fluorescence. A blind, head-to-head comparison study of SpinDx versus the gold-standard mouse bioassay demonstrates 100-fold improvement in sensitivity (limit of detection = 0.09 pg/mL), while achieving total sample-to-answer time of <30 min with 2-μL required volume of themore » unprocessed sample. We further demonstrate quantification of botulinum toxin in both exogeneous (human blood and serum spiked with toxins) and endogeneous (serum from mice intoxicated via oral, intranasal, and intravenous routes) samples. SpinDx can analyze, without any sample preparation, multiple sample types including whole blood, serum, and food. It is readily expandable to additional analytes as the assay reagents (i.e., the capture beads and detection antibodies) are disconnected from the disk architecture and the reader, facilitating rapid development of new assays. SpinDx can also serve as a general-purpose immunoassay platform applicable to diagnosis of other conditions and diseases.« less

  10. Health-enabling technologies for pervasive health care: on services and ICT architecture paradigms.

    PubMed

    Haux, Reinhold; Howe, Jurgen; Marschollek, Michael; Plischke, Maik; Wolf, Klaus-Hendrik

    2008-06-01

    Progress in information and communication technologies (ICT) is providing new opportunities for pervasive health care services in aging societies. To identify starting points of health-enabling technologies for pervasive health care. To describe typical services of and contemporary ICT architecture paradigms for pervasive health care. Summarizing outcomes of literature analyses and results from own research projects in this field. Basic functions for pervasive health care with respect to home care comprise emergency detection and alarm, disease management, as well as health status feedback and advice. These functions are complemented by optional (non-health care) functions. Four major paradigms for contemporary ICT architectures are person-centered ICT architectures, home-centered ICT architectures, telehealth service-centered ICT architectures and health care institution-centered ICT architectures. Health-enabling technologies may lead to both new ways of living and new ways of health care. Both ways are interwoven. This has to be considered for appropriate ICT architectures of sensor-enhanced health information systems. IMIA, the International Medical Informatics Association, may be an appropriate forum for interdisciplinary research exchange on health-enabling technologies for pervasive health care.

  11. End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linshiz, Gregory; Jensen, Erik; Stawski, Nina

    Synthetic biology aims to engineer biological systems for desired behaviors. The construction of these systems can be complex, often requiring genetic reprogramming, extensive de novo DNA synthesis, and functional screening. Here, we present a programmable, multipurpose microfluidic platform and associated software and apply the platform to major steps of the synthetic biology research cycle: design, construction, testing, and analysis. We show the platform’s capabilities for multiple automated DNA assembly methods, including a new method for Isothermal Hierarchical DNA Construction, and for Escherichia coli and Saccharomyces cerevisiae transformation. The platform enables the automated control of cellular growth, gene expression induction, andmore » proteogenic and metabolic output analysis. Finally, taken together, we demonstrate the microfluidic platform’s potential to provide end-to-end solutions for synthetic biology research, from design to functional analysis.« less

  12. FISH-in-CHIPS: A Microfluidic Platform for Molecular Typing of Cancer Cells.

    PubMed

    Perez-Toralla, Karla; Mottet, Guillaume; Tulukcuoglu-Guneri, Ezgi; Champ, Jérôme; Bidard, François-Clément; Pierga, Jean-Yves; Klijanienko, Jerzy; Draskovic, Irena; Malaquin, Laurent; Viovy, Jean-Louis; Descroix, Stéphanie

    2017-01-01

    Microfluidics offer powerful tools for the control, manipulation, and analysis of cells, in particular for the assessment of cell malignancy or the study of cell subpopulations. However, implementing complex biological protocols on chip remains a challenge. Sample preparation is often performed off chip using multiple manually performed steps, and protocols usually include different dehydration and drying steps that are not always compatible with a microfluidic format.Here, we report the implementation of a Fluorescence in situ Hybridization (FISH) protocol for the molecular typing of cancer cells in a simple and low-cost device. The geometry of the chip allows integrating the sample preparation steps to efficiently assess the genomic content of individual cells using a minute amount of sample. The FISH protocol can be fully automated, thus enabling its use in routine clinical practice.

  13. Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering.

    PubMed

    Perestrelo, Ana Rubina; Águas, Ana C P; Rainer, Alberto; Forte, Giancarlo

    2015-12-10

    Recent advances in biomedical technologies are mostly related to the convergence of biology with microengineering. For instance, microfluidic devices are now commonly found in most research centers, clinics and hospitals, contributing to more accurate studies and therapies as powerful tools for drug delivery, monitoring of specific analytes, and medical diagnostics. Most remarkably, integration of cellularized constructs within microengineered platforms has enabled the recapitulation of the physiological and pathological conditions of complex tissues and organs. The so-called "organ-on-a-chip" technology, which represents a new avenue in the field of advanced in vitro models, with the potential to revolutionize current approaches to drug screening and toxicology studies. This review aims to highlight recent advances of microfluidic-based devices towards a body-on-a-chip concept, exploring their technology and broad applications in the biomedical field.

  14. Multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality.

    PubMed

    Han, Arum; Wang, Olivia; Graff, Mason; Mohanty, Swomitra K; Edwards, Thayne L; Han, Ki-Ho; Bruno Frazier, A

    2003-08-01

    This paper describes an approach for fabricating multi-layer microfluidic systems from a combination of glass and plastic materials. Methods and characterization results for the microfabrication technologies underlying the process flow are presented. The approach is used to fabricate and characterize multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality. Hot embossing, heat staking of plastics, injection molding, microstenciling of electrodes, and stereolithography were combined with conventional MEMS fabrication techniques to realize the multi-layer systems. The approach enabled the integration of multiple plastic/glass materials into a single monolithic system, provided a solution for the integration of electrical functionality throughout the system, provided a mechanism for the inclusion of microactuators such as micropumps/valves, and provided an interconnect technology for interfacing fluids and electrical components between the micro system and the macro world.

  15. Sequential microfluidic droplet processing for rapid DNA extraction.

    PubMed

    Pan, Xiaoyan; Zeng, Shaojiang; Zhang, Qingquan; Lin, Bingcheng; Qin, Jianhua

    2011-11-01

    This work describes a novel droplet-based microfluidic device, which enables sequential droplet processing for rapid DNA extraction. The microdevice consists of a droplet generation unit, two reagent addition units and three droplet splitting units. The loading/washing/elution steps required for DNA extraction were carried out by sequential microfluidic droplet processing. The movement of superparamagnetic beads, which were used as extraction supports, was controlled with magnetic field. The microdevice could generate about 100 droplets per min, and it took about 1 min for each droplet to perform the whole extraction process. The extraction efficiency was measured to be 46% for λ-DNA, and the extracted DNA could be used in subsequent genetic analysis such as PCR, demonstrating the potential of the device for fast DNA extraction. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Nanofluidic interfaces in microfluidic networks

    DOE PAGES

    Millet, Larry J.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-09-24

    The integration of nano- and microfluidic technologies enables the construction of tunable interfaces to physical and biological systems across relevant length scales. The ability to perform chemical manipulations of miniscule sample volumes is greatly enhanced through these technologies and extends the ability to manipulate and sample the local fluidic environments at subcellular, cellular and community or tissue scales. Here we describe the development of a flexible surface micromachining process for the creation of nanofluidic channel arrays integrated within SU-8 microfluidic networks. The use of a semi-porous, silicon rich, silicon nitride structural layer allows rapid release of the sacrificial silicon dioxidemore » during the nanochannel fabrication. Nanochannel openings that form the interface to biological samples are customized using focused ion beam milling. The compatibility of these interfaces with on-chip microbial culture is demonstrated.« less

  17. End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis

    DOE PAGES

    Linshiz, Gregory; Jensen, Erik; Stawski, Nina; ...

    2016-02-02

    Synthetic biology aims to engineer biological systems for desired behaviors. The construction of these systems can be complex, often requiring genetic reprogramming, extensive de novo DNA synthesis, and functional screening. Here, we present a programmable, multipurpose microfluidic platform and associated software and apply the platform to major steps of the synthetic biology research cycle: design, construction, testing, and analysis. We show the platform’s capabilities for multiple automated DNA assembly methods, including a new method for Isothermal Hierarchical DNA Construction, and for Escherichia coli and Saccharomyces cerevisiae transformation. The platform enables the automated control of cellular growth, gene expression induction, andmore » proteogenic and metabolic output analysis. Finally, taken together, we demonstrate the microfluidic platform’s potential to provide end-to-end solutions for synthetic biology research, from design to functional analysis.« less

  18. Single-use thermoplastic microfluidic burst valves enabling on-chip reagent storage

    PubMed Central

    Rahmanian, Omid D.

    2014-01-01

    A simple and reliable method for fabricating single-use normally closed burst valves in thermoplastic microfluidic devices is presented, using a process flow that is readily integrated into established workflows for the fabrication of thermoplastic microfluidics. An experimental study of valve performance reveals the relationships between valve geometry and burst pressure. The technology is demonstrated in a device employing multiple valves engineered to actuate at different inlet pressures that can be generated using integrated screw pumps. On-chip storage and reconstitution of fluorescein salt sealed within defined reagent chambers are demonstrated. By taking advantage of the low gas and water permeability of cyclic olefin copolymer, the robust burst valves allow on-chip hermetic storage of reagents, making the technology well suited for the development of integrated and disposable assays for use at the point of care. PMID:25972774

  19. The Instrumentation of a Microfluidic Analyzer Enabling the Characterization of the Specific Membrane Capacitance, Cytoplasm Conductivity, and Instantaneous Young's Modulus of Single Cells.

    PubMed

    Wang, Ke; Zhao, Yang; Chen, Deyong; Huang, Chengjun; Fan, Beiyuan; Long, Rong; Hsieh, Chia-Hsun; Wang, Junbo; Wu, Min-Hsien; Chen, Jian

    2017-06-19

    This paper presents the instrumentation of a microfluidic analyzer enabling the characterization of single-cell biophysical properties, which includes seven key components: a microfluidic module, a pressure module, an imaging module, an impedance module, two LabVIEW platforms for instrument operation and raw data processing, respectively, and a Python code for data translation. Under the control of the LabVIEW platform for instrument operation, the pressure module flushes single cells into the microfluidic module with raw biophysical parameters sampled by the imaging and impedance modules and processed by the LabVIEW platform for raw data processing, which were further translated into intrinsic cellular biophysical parameters using the code developed in Python. Based on this system, specific membrane capacitance, cytoplasm conductivity, and instantaneous Young's modulus of three cell types were quantified as 2.76 ± 0.57 μF/cm², 1.00 ± 0.14 S/m, and 3.79 ± 1.11 kPa for A549 cells ( n cell = 202); 1.88 ± 0.31 μF/cm², 1.05 ± 0.16 S/m, and 3.74 ± 0.75 kPa for 95D cells ( n cell = 257); 2.11 ± 0.38 μF/cm², 0.87 ± 0.11 S/m, and 5.39 ± 0.89 kPa for H460 cells ( n cell = 246). As a semi-automatic instrument with a throughput of roughly 1 cell per second, this prototype instrument can be potentially used for the characterization of cellular biophysical properties.

  20. The Instrumentation of a Microfluidic Analyzer Enabling the Characterization of the Specific Membrane Capacitance, Cytoplasm Conductivity, and Instantaneous Young’s Modulus of Single Cells

    PubMed Central

    Wang, Ke; Zhao, Yang; Chen, Deyong; Huang, Chengjun; Fan, Beiyuan; Long, Rong; Hsieh, Chia-Hsun; Wang, Junbo; Wu, Min-Hsien; Chen, Jian

    2017-01-01

    This paper presents the instrumentation of a microfluidic analyzer enabling the characterization of single-cell biophysical properties, which includes seven key components: a microfluidic module, a pressure module, an imaging module, an impedance module, two LabVIEW platforms for instrument operation and raw data processing, respectively, and a Python code for data translation. Under the control of the LabVIEW platform for instrument operation, the pressure module flushes single cells into the microfluidic module with raw biophysical parameters sampled by the imaging and impedance modules and processed by the LabVIEW platform for raw data processing, which were further translated into intrinsic cellular biophysical parameters using the code developed in Python. Based on this system, specific membrane capacitance, cytoplasm conductivity, and instantaneous Young’s modulus of three cell types were quantified as 2.76 ± 0.57 μF/cm2, 1.00 ± 0.14 S/m, and 3.79 ± 1.11 kPa for A549 cells (ncell = 202); 1.88 ± 0.31 μF/cm2, 1.05 ± 0.16 S/m, and 3.74 ± 0.75 kPa for 95D cells (ncell = 257); 2.11 ± 0.38 μF/cm2, 0.87 ± 0.11 S/m, and 5.39 ± 0.89 kPa for H460 cells (ncell = 246). As a semi-automatic instrument with a throughput of roughly 1 cell per second, this prototype instrument can be potentially used for the characterization of cellular biophysical properties. PMID:28629175

  1. Detecting bacteria and Determining Their Susceptibility to Antibiotics by Stochastic Confinement in Nanoliter Droplets using Plug-Based Microfluidics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boedicker, J.; Li, L; Kline, T

    2008-01-01

    This article describes plug-based microfluidic technology that enables rapid detection and drug susceptibility screening of bacteria in samples, including complex biological matrices, without pre-incubation. Unlike conventional bacterial culture and detection methods, which rely on incubation of a sample to increase the concentration of bacteria to detectable levels, this method confines individual bacteria into droplets nanoliters in volume. When single cells are confined into plugs of small volume such that the loading is less than one bacterium per plug, the detection time is proportional to plug volume. Confinement increases cell density and allows released molecules to accumulate around the cell, eliminatingmore » the pre-incubation step and reducing the time required to detect the bacteria. We refer to this approach as stochastic confinement. Using the microfluidic hybrid method, this technology was used to determine the antibiogram - or chart of antibiotic sensitivity - of methicillin-resistant Staphylococcus aureus (MRSA) to many antibiotics in a single experiment and to measure the minimal inhibitory concentration (MIC) of the drug cefoxitin (CFX) against this strain. In addition, this technology was used to distinguish between sensitive and resistant strains of S. aureus in samples of human blood plasma. High-throughput microfluidic techniques combined with single-cell measurements also enable multiple tests to be performed simultaneously on a single sample containing bacteria. This technology may provide a method of rapid and effective patient-specific treatment of bacterial infections and could be extended to a variety of applications that require multiple functional tests of bacterial samples on reduced timescales.« less

  2. Design and evaluation of a microfluidic system for inhibition studies of yeast cell signaling

    NASA Astrophysics Data System (ADS)

    Hamngren, Charlotte; Dinér, Peter; Grøtli, Morten; Goksör, Mattias; Adiels, Caroline B.

    2012-10-01

    In cell signaling, different perturbations lead to different responses and using traditional biological techniques that result in averaged data may obscure important cell-to-cell variations. The aim of this study was to develop and evaluate a four-inlet microfluidic system that enables single-cell analysis by investigating the effect on Hog1 localization post a selective Hog1 inhibitor treatment during osmotic stress. Optical tweezers was used to position yeast cells in an array of desired size and density inside the microfluidic system. By changing the flow rates through the inlet channels, controlled and rapid introduction of two different perturbations over the cell array was enabled. The placement of the cells was determined by diffusion rates flow simulations. The system was evaluated by monitoring the subcellular localization of a fluorescently tagged kinase of the yeast "High Osmolarity Glycerol" (HOG) pathway, Hog1-GFP. By sequential treatment of the yeast cells with a selective Hog1 kinase inhibitor and sorbitol, the subcellular localization of Hog1-GFP was analysed on a single-cell level. The results showed impaired Hog1-GFP nuclear localization, providing evidence of a congenial design. The setup made it possible to remove and add an agent within 2 seconds, which is valuable for investigating the dynamic signal transduction pathways and cannot be done using traditional methods. We are confident that the features of the four-inlet microfluidic system will be a valuable tool and hence contribute significantly to unravel the mechanisms of the HOG pathway and similar dynamic signal transduction pathways.

  3. Augmented longitudinal acoustic trap for scalable microparticle enrichment.

    PubMed

    Cui, M; Binkley, M M; Shekhani, H N; Berezin, M Y; Meacham, J M

    2018-05-01

    We introduce an acoustic microfluidic device architecture that locally augments the pressure field for separation and enrichment of targeted microparticles in a longitudinal acoustic trap. Pairs of pillar arrays comprise "pseudo walls" that are oriented perpendicular to the inflow direction. Though sample flow is unimpeded, pillar arrays support half-wave resonances that correspond to the array gap width. Positive acoustic contrast particles of supracritical diameter focus to nodal locations of the acoustic field and are held against drag from the bulk fluid motion. Thus, the longitudinal standing bulk acoustic wave (LSBAW) device achieves size-selective and material-specific separation and enrichment of microparticles from a continuous sample flow. A finite element analysis model is used to predict eigenfrequencies of LSBAW architectures with two pillar geometries, slanted and lamellar. Corresponding pressure fields are used to identify longitudinal resonances that are suitable for microparticle enrichment. Optimal operating conditions exhibit maxima in the ratio of acoustic energy density in the LSBAW trap to that in inlet and outlet regions of the microchannel. Model results guide fabrication and experimental evaluation of realized LSBAW assemblies regarding enrichment capability. We demonstrate separation and isolation of 20  μ m polystyrene and ∼10  μ m antibody-decorated glass beads within both pillar geometries. The results also establish several practical attributes of our approach. The LSBAW device is inherently scalable and enables continuous enrichment at a prescribed location. These features benefit separations applications while also allowing concurrent observation and analysis of trap contents.

  4. Increased robustness of single-molecule counting with microfluidics, digital isothermal amplification, and a mobile phone versus real-time kinetic measurements.

    PubMed

    Selck, David A; Karymov, Mikhail A; Sun, Bing; Ismagilov, Rustem F

    2013-11-19

    Quantitative bioanalytical measurements are commonly performed in a kinetic format and are known to not be robust to perturbation that affects the kinetics itself or the measurement of kinetics. We hypothesized that the same measurements performed in a "digital" (single-molecule) format would show increased robustness to such perturbations. Here, we investigated the robustness of an amplification reaction (reverse-transcription loop-mediated amplification, RT-LAMP) in the context of fluctuations in temperature and time when this reaction is used for quantitative measurements of HIV-1 RNA molecules under limited-resource settings (LRS). The digital format that counts molecules using dRT-LAMP chemistry detected a 2-fold change in concentration of HIV-1 RNA despite a 6 °C temperature variation (p-value = 6.7 × 10(-7)), whereas the traditional kinetic (real-time) format did not (p-value = 0.25). Digital analysis was also robust to a 20 min change in reaction time, to poor imaging conditions obtained with a consumer cell-phone camera, and to automated cloud-based processing of these images (R(2) = 0.9997 vs true counts over a 100-fold dynamic range). Fluorescent output of multiplexed PCR amplification could also be imaged with the cell phone camera using flash as the excitation source. Many nonlinear amplification schemes based on organic, inorganic, and biochemical reactions have been developed, but their robustness is not well understood. This work implies that these chemistries may be significantly more robust in the digital, rather than kinetic, format. It also calls for theoretical studies to predict robustness of these chemistries and, more generally, to design robust reaction architectures. The SlipChip that we used here and other digital microfluidic technologies already exist to enable testing of these predictions. Such work may lead to identification or creation of robust amplification chemistries that enable rapid and precise quantitative molecular measurements under LRS. Furthermore, it may provide more general principles describing robustness of chemical and biological networks in digital formats.

  5. Superhydrophobic Surface Coatings for Microfluidics and MEMs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branson, Eric D.; Singh, Seema; Houston, Jack E.

    2006-11-01

    Low solid interfacial energy and fractally rough surface topography confer to Lotus plants superhydrophobic (SH) properties like high contact angles, rolling and bouncing of liquid droplets, and self-cleaning of particle contaminants. This project exploits the porous fractal structure of a novel, synthetic SH surface for aerosol collection, its self-cleaning properties for particle concentration, and its slippery nature 3 to enhance the performance of fluidic and MEMS devices. We propose to understand fundamentally the conditions needed to cause liquid droplets to roll rather than flow/slide on a surface and how this %22rolling transition%22 influences the boundary condition describing fluid flow inmore » a pipe or micro-channel. Rolling of droplets is important for aerosol collection strategies because it allows trapped particles to be concentrated and transported in liquid droplets with no need for a pre-defined/micromachined fluidic architecture. The fluid/solid boundary condition is important because it governs flow resistance and rheology and establishes the fluid velocity profile. Although many research groups are exploring SH surfaces, our team is the first to unambiguously determine their effects on fluid flow and rheology. SH surfaces could impact all future SNL designs of collectors, fluidic devices, MEMS, and NEMS. Interfaced with inertial focusing aerosol collectors, SH surfaces would allow size-specific particle populations to be collected, concentrated, and transported to a fluidic interface without loss. In microfluidic systems, we expect to reduce the energy/power required to pump fluids and actuate MEMS. Plug-like (rather than parabolic) velocity profiles can greatly improve resolution of chip-based separations and enable unprecedented control of concentration profiles and residence times in fluidic-based micro-reactors. Patterned SH/hydrophilic channels could induce mixing in microchannels and enable development of microflow control elements. Acknowledgements This work was funded by Sandia National Laboratory's Laboratory Directed Research & Development program (LDRD). Some coating processes were conducted in the cleanroom facility located at the University of New Mexico's Center for High Technology Materials (CHTM). SEM images were performed at UNM's Center for Micro-Engineering on equipment funded by a NSF New Mexico EPSCoR grant. 4« less

  6. Combining Microfluidics and Microrheology to Determine Rheological Properties of Soft Matter during Repeated Phase Transitions.

    PubMed

    Wehrman, Matthew D; Milstrey, Melissa J; Lindberg, Seth; Schultz, Kelly M

    2018-04-19

    The microstructure of soft matter directly impacts macroscopic rheological properties and can be changed by factors including colloidal rearrangement during previous phase changes and applied shear. To determine the extent of these changes, we have developed a microfluidic device that enables repeated phase transitions induced by exchange of the surrounding fluid and microrheological characterization while limiting shear on the sample. This technique is µ 2 rheology, the combination of microfluidics and microrheology. The microfluidic device is a two-layer design with symmetric inlet streams entering a sample chamber that traps the gel sample in place during fluid exchange. Suction can be applied far away from the sample chamber to pull fluids into the sample chamber. Material rheological properties are characterized using multiple particle tracking microrheology (MPT). In MPT, fluorescent probe particles are embedded into the material and the Brownian motion of the probes is recorded using video microscopy. The movement of the particles is tracked and the mean-squared displacement (MSD) is calculated. The MSD is related to macroscopic rheological properties, using the Generalized Stokes-Einstein Relation. The phase of the material is identified by comparison to the critical relaxation exponent, determined using time-cure superposition. Measurements of a fibrous colloidal gel illustrate the utility of the technique. This gel has a delicate structure that can be irreversibly changed when shear is applied. µ 2 rheology data shows that the material repeatedly equilibrates to the same rheological properties after each phase transition, indicating that phase transitions do not play a role in microstructural changes. To determine the role of shear, samples can be sheared prior to injection into our microfluidic device. µ 2 rheology is a widely applicable technique for the characterization of soft matter enabling the determination of rheological properties of delicate microstructures in a single sample during phase transitions in response to repeated changes in the surrounding environmental conditions.

  7. Magnetic Nickel iron Electroformed Trap (MagNET): a master/replica fabrication strategy for ultra-high throughput (>100 mL h−1) immunomagnetic sorting†

    PubMed Central

    Ko, Jina; Yelleswarapu, Venkata; Singh, Anup; Shah, Nishal

    2016-01-01

    Microfluidic devices can sort immunomagnetically labeled cells with sensitivity and specificity much greater than that of conventional methods, primarily because the size of microfluidic channels and micro-scale magnets can be matched to that of individual cells. However, these small feature sizes come at the expense of limited throughput (ϕ < 5 mL h−1) and susceptibility to clogging, which have hindered current microfluidic technology from processing relevant volumes of clinical samples, e.g. V > 10 mL whole blood. Here, we report a new approach to micromagnetic sorting that can achieve highly specific cell separation in unprocessed complex samples at a throughput (ϕ > 100 mL h−1) 100× greater than that of conventional microfluidics. To achieve this goal, we have devised a new approach to micromagnetic sorting, the magnetic nickel iron electroformed trap (MagNET), which enables high flow rates by having millions of micromagnetic traps operate in parallel. Our design rotates the conventional microfluidic approach by 90° to form magnetic traps at the edges of pores instead of in channels, enabling millions of the magnetic traps to be incorporated into a centimeter sized device. Unlike previous work, where magnetic structures were defined using conventional microfabrication, we take inspiration from soft lithography and create a master from which many replica electroformed magnetic micropore devices can be economically manufactured. These free-standing 12 µm thick permalloy (Ni80Fe20) films contain micropores of arbitrary shape and position, allowing the device to be tailored for maximal capture efficiency and throughput. We demonstrate MagNET's capabilities by fabricating devices with both circular and rectangular pores and use these devices to rapidly (ϕ = 180 mL h−1) and specifically sort rare tumor cells from white blood cells. PMID:27170379

  8. Covalent Bonding of Thermoplastics to Rubbers for Printable, Reel-to-Reel Processing in Soft Robotics and Microfluidics.

    PubMed

    Taylor, Jay M; Perez-Toralla, Karla; Aispuro, Ruby; Morin, Stephen A

    2018-02-01

    The lamination of mechanically stiff structures to elastic materials is prevalent in biological systems and popular in many emerging synthetic systems, such as soft robotics, microfluidics, stretchable electronics, and pop-up assemblies. The disparate mechanical and chemical properties of these materials have made it challenging to develop universal synthetic procedures capable of reliably adhering to these classes of materials together. Herein, a simple and scalable procedure is described that is capable of covalently laminating a variety of commodity ("off-the-shelf") thermoplastic sheets to silicone rubber films. When combined with laser printing, the nonbonding sites can be "printed" onto the thermoplastic sheets, enabling the direct fabrication of microfluidic systems for actuation and liquid handling applications. The versatility of this approach in generating thin, multifunctional laminates is demonstrated through the fabrication of milliscale soft actuators and grippers with hinged articulation and microfluidic channels with built-in optical filtering and pressure-dependent geometries. This method of fabrication offers several advantages, including technical simplicity, process scalability, design versatility, and material diversity. The concepts and strategies presented herein are broadly applicable to the soft robotics, microfluidics, and advanced and additive manufacturing communities where hybrid rubber/plastic structures are prevalent. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Measuring In Vivo Protein Dynamics Throughout the Cell Cycle Using Microfluidics.

    PubMed

    de Leeuw, Roy; Brazda, Peter; Charl Moolman, M; Kerssemakers, J W J; Solano, Belen; Dekker, Nynke H

    2017-01-01

    Studying the dynamics of intracellular processes and investigating the interaction of individual macromolecules in live cells is one of the main objectives of cell biology. These macromolecules move, assemble, disassemble, and reorganize themselves in distinct manners under specific physiological conditions throughout the cell cycle. Therefore, in vivo experimental methods that enable the study of individual molecules inside cells at controlled culturing conditions have proved to be powerful tools to obtain insights into the molecular roles of these macromolecules and how their individual behavior influence cell physiology. The importance of controlled experimental conditions is enhanced when the investigated phenomenon covers long time periods, or perhaps multiple cell cycles. An example is the detection and quantification of proteins during bacterial DNA replication. Wide-field microscopy combined with microfluidics is a suitable technique for this. During fluorescence experiments, microfluidics offer well-defined cellular orientation and immobilization, flow and medium interchangeability, and high-throughput long-term experimentation of cells. Here we present a protocol for the combined use of wide-field microscopy and microfluidics for the study of proteins of the Escherichia coli DNA replication process. We discuss the preparation and application of a microfluidic device, data acquisition steps, and image analysis procedures to determine the stoichiometry and dynamics of a replisome component throughout the cell cycle of live bacterial cells.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Xin; Yu, Xiao-Ying; Wang, Zhaoying

    The first results of using a novel single channel microfluidic reactor to enable Shewanella biofilm growth and in situ characterization using time-of-flight secondary ion mass spectrometry (ToF-SIMS) in the hydrated environment are presented. The new microfluidic interface allows direct probing of the liquid surface using ToF-SIMS, a vacuum surface technique. The detection window is an aperture of 2 m in diameter on a thin silicon nitride (SiN) membrane and it allows direct detection of the liquid surface. Surface tension of the liquid flowing inside the microchannel holds the liquid within the aperture. ToF-SIMS depth profiling was used to drill throughmore » the SiN membrane and the biofilm grown on the substrate. In situ 2D imaging of the biofilm in hydrated state was acquired, providing spatial distribution of the chemical compounds in the biofilm system. This data was compared with a medium filled microfluidic reactor devoid of biofilm and dried biofilm samples deposited on clean silicon wafers. Principle Component Analysis (PCA) was used to investigate these observations. Our results show that imaging biofilms in the hydrated environment using ToF-SIMS is possible using the unique microfluidic reactor. Moreover, characteristic biofilm fatty acids fragments were observed in the hydrated biofilm grown in the microfluidic channel, illustrating the advantage of imaging biofilm in its native environment.« less

  11. Digital microfluidics for automated hanging drop cell spheroid culture.

    PubMed

    Aijian, Andrew P; Garrell, Robin L

    2015-06-01

    Cell spheroids are multicellular aggregates, grown in vitro, that mimic the three-dimensional morphology of physiological tissues. Although there are numerous benefits to using spheroids in cell-based assays, the adoption of spheroids in routine biomedical research has been limited, in part, by the tedious workflow associated with spheroid formation and analysis. Here we describe a digital microfluidic platform that has been developed to automate liquid-handling protocols for the formation, maintenance, and analysis of multicellular spheroids in hanging drop culture. We show that droplets of liquid can be added to and extracted from through-holes, or "wells," and fabricated in the bottom plate of a digital microfluidic device, enabling the formation and assaying of hanging drops. Using this digital microfluidic platform, spheroids of mouse mesenchymal stem cells were formed and maintained in situ for 72 h, exhibiting good viability (>90%) and size uniformity (% coefficient of variation <10% intraexperiment, <20% interexperiment). A proof-of-principle drug screen was performed on human colorectal adenocarcinoma spheroids to demonstrate the ability to recapitulate physiologically relevant phenomena such as insulin-induced drug resistance. With automatable and flexible liquid handling, and a wide range of in situ sample preparation and analysis capabilities, the digital microfluidic platform provides a viable tool for automating cell spheroid culture and analysis. © 2014 Society for Laboratory Automation and Screening.

  12. Role of Structural Asymmetry in Controlling Drop Spacing in Microfluidic Ladder Networks

    NASA Astrophysics Data System (ADS)

    Wang, William; Maddala, Jeevan; Vanapalli, Siva; Rengasamy, Raghunathan

    2012-02-01

    Manipulation of drop spacing is crucial to many processes in microfluidic devices including drop coalescence, detection and storage. Microfluidic ladder networks ---where two droplet-carrying parallel channels are connected by narrow bypass channels through which the motion of drops is forbidden---have been proposed as a means to control relative separation between pairs of drops. Prior studies in microfluidic ladder networks with vertical bypasses, which possess fore-aft structural symmetry, have revealed that pairs of drops can only undergo reduction in drop spacing at the ladder exit. We investigate the dynamics of drops in microfluidic ladder networks with both vertical and slanted bypasses. Our analytical results indicate that unlike symmetric ladder networks, structural asymmetry introduced by a single slanted bypass can be used to modulate the relative spacing between drops, enabling them to contract, synchronize, expand or even flip at the ladder exit. Our experiments confirm all the behaviors predicted by theory. Numerical analysis further shows that ladders containing several identical bypasses can only linearly transform the input drop spacing. Finally, we find that ladders with specific combinations of vertical and slanted bypasses can generate non-linear transformation of input drop spacing, despite the absence of drop decision-making events at the bypass junctions.

  13. Digitally programmable microfluidic automaton for multiscale combinatorial mixing and sample processing†

    PubMed Central

    Jensen, Erik C.; Stockton, Amanda M.; Chiesl, Thomas N.; Kim, Jungkyu; Bera, Abhisek; Mathies, Richard A.

    2013-01-01

    A digitally programmable microfluidic Automaton consisting of a 2-dimensional array of pneumatically actuated microvalves is programmed to perform new multiscale mixing and sample processing operations. Large (µL-scale) volume processing operations are enabled by precise metering of multiple reagents within individual nL-scale valves followed by serial repetitive transfer to programmed locations in the array. A novel process exploiting new combining valve concepts is developed for continuous rapid and complete mixing of reagents in less than 800 ms. Mixing, transfer, storage, and rinsing operations are implemented combinatorially to achieve complex assay automation protocols. The practical utility of this technology is demonstrated by performing automated serial dilution for quantitative analysis as well as the first demonstration of on-chip fluorescent derivatization of biomarker targets (carboxylic acids) for microchip capillary electrophoresis on the Mars Organic Analyzer. A language is developed to describe how unit operations are combined to form a microfluidic program. Finally, this technology is used to develop a novel microfluidic 6-sample processor for combinatorial mixing of large sets (>26 unique combinations) of reagents. The digitally programmable microfluidic Automaton is a versatile programmable sample processor for a wide range of process volumes, for multiple samples, and for different types of analyses. PMID:23172232

  14. A Versatile Microfluidic Device for Automating Synthetic Biology.

    PubMed

    Shih, Steve C C; Goyal, Garima; Kim, Peter W; Koutsoubelis, Nicolas; Keasling, Jay D; Adams, Paul D; Hillson, Nathan J; Singh, Anup K

    2015-10-16

    New microbes are being engineered that contain the genetic circuitry, metabolic pathways, and other cellular functions required for a wide range of applications such as producing biofuels, biobased chemicals, and pharmaceuticals. Although currently available tools are useful in improving the synthetic biology process, further improvements in physical automation would help to lower the barrier of entry into this field. We present an innovative microfluidic platform for assembling DNA fragments with 10× lower volumes (compared to that of current microfluidic platforms) and with integrated region-specific temperature control and on-chip transformation. Integration of these steps minimizes the loss of reagents and products compared to that with conventional methods, which require multiple pipetting steps. For assembling DNA fragments, we implemented three commonly used DNA assembly protocols on our microfluidic device: Golden Gate assembly, Gibson assembly, and yeast assembly (i.e., TAR cloning, DNA Assembler). We demonstrate the utility of these methods by assembling two combinatorial libraries of 16 plasmids each. Each DNA plasmid is transformed into Escherichia coli or Saccharomyces cerevisiae using on-chip electroporation and further sequenced to verify the assembly. We anticipate that this platform will enable new research that can integrate this automated microfluidic platform to generate large combinatorial libraries of plasmids and will help to expedite the overall synthetic biology process.

  15. Microfluidic Arrayed Lab-On-A-Chip for Electrochemical Capacitive Detection of DNA Hybridization Events.

    PubMed

    Ben-Yoav, Hadar; Dykstra, Peter H; Bentley, William E; Ghodssi, Reza

    2017-01-01

    A microfluidic electrochemical lab-on-a-chip (LOC) device for DNA hybridization detection has been developed. The device comprises a 3 × 3 array of microelectrodes integrated with a dual layer microfluidic valved manipulation system that provides controlled and automated capabilities for high throughput analysis of microliter volume samples. The surface of the microelectrodes is functionalized with single-stranded DNA (ssDNA) probes which enable specific detection of complementary ssDNA targets. These targets are detected by a capacitive technique which measures dielectric variation at the microelectrode-electrolyte interface due to DNA hybridization events. A quantitative analysis of the hybridization events is carried out based on a sensing modeling that includes detailed analysis of energy storage and dissipation components. By calculating these components during hybridization events the device is able to demonstrate specific and dose response sensing characteristics. The developed microfluidic LOC for DNA hybridization detection offers a technology for real-time and label-free assessment of genetic markers outside of laboratory settings, such as at the point-of-care or in-field environmental monitoring.

  16. Microfluidics for High School Chemistry Students.

    PubMed

    Hemling, Melissa; Crooks, John A; Oliver, Piercen M; Brenner, Katie; Gilbertson, Jennifer; Lisensky, George C; Weibel, Douglas B

    2014-01-14

    We present a laboratory experiment that introduces high school chemistry students to microfluidics while teaching fundamental properties of acid-base chemistry. The procedure enables students to create microfluidic systems using nonspecialized equipment that is available in high school classrooms and reagents that are safe, inexpensive, and commercially available. The experiment is designed to ignite creativity and confidence about experimental design in a high school chemistry class. This experiment requires a computer program (e.g., PowerPoint), Shrinky Dink film, a readily available silicone polymer, weak acids, bases, and a colorimetric pH indicator. Over the span of five 45-min class periods, teams of students design and prepare devices in which two different pH solutions mix in a predictable way to create five different pH solutions. Initial device designs are instructive but rarely optimal. During two additional half-class periods, students have the opportunity to use their initial observations to redesign their microfluidic systems to optimize the outcome. The experiment exposes students to cutting-edge science and the design process, and solidifies introductory chemistry concepts including laminar flow, neutralization of weak acids-bases, and polymers.

  17. A portable pressure pump for microfluidic lab-on-a-chip systems using a porous polydimethylsiloxane (PDMS) sponge.

    PubMed

    Cha, Kyoung Je; Kim, Dong Sung

    2011-10-01

    In this paper, we propose a novel portable and disposable pressure pump using a porous polydimethylsiloxane (PDMS) sponge and demonstrate its application to a microfluidic lab-on-a-chip. The porous PDMS sponge was simply fabricated by a sugar leaching technique based on capillary suction of pre-cured PDMS into lumps of sugar, thereby enabling us to achieve the porous PDMS sponge composed of interconnected micropores. To indicate the characteristics of the porous PDMS sponge and pump, we measured the average porosities of them whose values were 0.64 and 0.34, respectively. A stress-strain relationship of the fabricated portable pressure pump represented a linear behavior in the compressive strain range of 0 to 20%. Within this range, a pumping volume of the pressure pump could be linearly controlled by the compressed strain. Finally, the fabricated porous PDMS pump was successfully demonstrated as a portable pressure pump for a disposable microfluidic lab-on-a-chip for efficient detection of agglutination. The proposed portable pressure pump can be potentially applicable to various disposable microfluidic lab-on-a-chip systems.

  18. Perspective use of direct human blood as an energy source in air-breathing hybrid microfluidic fuel cells

    NASA Astrophysics Data System (ADS)

    Dector, A.; Escalona-Villalpando, R. A.; Dector, D.; Vallejo-Becerra, V.; Chávez-Ramírez, A. U.; Arriaga, L. G.; Ledesma-García, J.

    2015-08-01

    This work presents a flexible and light air-breathing hybrid microfluidic fuel cell (HμFC) operated under biological conditions. A mixture of glucose oxidase, glutaraldehyde, multi-walled carbon nanotubes and vulcan carbon (GOx/VC-MWCNT-GA) was used as the bioanode. Meanwhile, integrating an air-exposed electrode (Pt/C) as the cathode enabled direct oxygen delivery from air. The microfluidic fuel cell performance was evaluated using glucose obtained from three different sources as the fuel: 5 mM glucose in phosphate buffer, human serum and human blood. For the last fuel, an open circuit voltage and maximum power density of 0.52 V and 0.20 mW cm-2 (at 0.38 V) were obtained respectively; meanwhile the maximum current density was 1.1 mA cm-2. Furthermore, the stability of the device was measured in terms of recovery after several polarization curves, showing excellent results. Although this air-breathing HμFC requires technological improvements before being tested in a biomedical device, it represents the best performance to date for a microfluidic fuel cell using human blood as glucose source.

  19. Microfluidics for High School Chemistry Students

    PubMed Central

    Hemling, Melissa; Crooks, John A.; Oliver, Piercen M.; Brenner, Katie; Gilbertson, Jennifer; Lisensky, George C.; Weibel, Douglas B.

    2014-01-01

    We present a laboratory experiment that introduces high school chemistry students to microfluidics while teaching fundamental properties of acid–base chemistry. The procedure enables students to create microfluidic systems using nonspecialized equipment that is available in high school classrooms and reagents that are safe, inexpensive, and commercially available. The experiment is designed to ignite creativity and confidence about experimental design in a high school chemistry class. This experiment requires a computer program (e.g., PowerPoint), Shrinky Dink film, a readily available silicone polymer, weak acids, bases, and a colorimetric pH indicator. Over the span of five 45-min class periods, teams of students design and prepare devices in which two different pH solutions mix in a predictable way to create five different pH solutions. Initial device designs are instructive but rarely optimal. During two additional half-class periods, students have the opportunity to use their initial observations to redesign their microfluidic systems to optimize the outcome. The experiment exposes students to cutting-edge science and the design process, and solidifies introductory chemistry concepts including laminar flow, neutralization of weak acids–bases, and polymers. PMID:25584013

  20. Long-Term Growth of Moss in Microfluidic Devices Enables Subcellular Studies in Development.

    PubMed

    Bascom, Carlisle S; Wu, Shu-Zon; Nelson, Katherine; Oakey, John; Bezanilla, Magdalena

    2016-09-01

    Key developmental processes that occur on the subcellular and cellular level or occur in occluded tissues are difficult to access, let alone image and analyze. Recently, culturing living samples within polydimethylsiloxane (PDMS) microfluidic devices has facilitated the study of hard-to-reach developmental events. Here, we show that an early diverging land plant, Physcomitrella patens, can be continuously cultured within PDMS microfluidic chambers. Because the PDMS chambers are bonded to a coverslip, it is possible to image P. patens development at high resolution over long time periods. Using PDMS chambers, we report that wild-type protonemal tissue grows at the same rate as previously reported for growth on solid medium. Using long-term imaging, we highlight key developmental events, demonstrate compatibility with high-resolution confocal microscopy, and obtain growth rates for a slow-growing mutant. By coupling the powerful genetic tools available to P. patens with long-term growth and imaging provided by PDMS microfluidic chambers, we demonstrate the capability to study cellular and subcellular developmental events in plants directly and in real time. © 2016 American Society of Plant Biologists. All rights reserved.

  1. Centrifugal Microfluidic System for Nucleic Acid Amplification and Detection

    PubMed Central

    Miao, Baogang; Peng, Niancai; Li, Lei; Li, Zheng; Hu, Fei; Zhang, Zengming; Wang, Chaohui

    2015-01-01

    We report here the development of a rapid PCR microfluidic system comprising a double-shaft turntable and centrifugal-based disc that rapidly drives the PCR mixture between chambers set at different temperatures, and the bidirectional flow improved the space utilization of the disc. Three heating resistors and thermistors maintained uniform, specific temperatures for the denaturation, annealing, and extension steps of the PCR. Infrared imaging showed that there was little thermal interference between reaction chambers; the system enabled the cycle number and reaction time of each step to be independently adjusted. To validate the function and efficiency of the centrifugal microfluidic system, a 350-base pair target gene from the hepatitis B virus was amplified and quantitated by fluorescence detection. By optimizing the cycling parameters, the reaction time was reduced to 32 min as compared to 120 min for a commercial PCR machine. DNA samples with concentrations ranging from 10 to 106 copies/mL could be quantitatively analyzed using this system. This centrifugal-based microfluidic platform is a useful system and possesses industrialization potential that can be used for portable diagnostics. PMID:26556354

  2. Combining Whispering-Gallery Mode Optical Biosensors with Microfluidics for Real-Time Detection of Protein Secretion from Living Cells in Complex Media.

    PubMed

    Chen, Ying-Jen; Schoeler, Ulrike; Huang, Chung-Hsuan Benjamin; Vollmer, Frank

    2018-05-01

    The noninvasive monitoring of protein secretion of cells responding to drug treatment is an effective and essential tool in latest drug development and for cytotoxicity assays. In this work, a surface functionalization method is demonstrated for specific detection of protein released from cells and a platform that integrates highly sensitive optical devices, called whispering-gallery mode biosensors, with precise microfluidics control to achieve label-free and real-time detection. Cell biomarker release is measured in real time and with nanomolar sensitivity. The surface functionalization method allows for antibodies to be immobilized on the surface for specific detection, while the microfluidics system enables detection in a continuous flow with a negligible compromise between sensitivity and flow control over stabilization and mixing. Cytochrome c detection is used to illustrate the merits of the system. Jurkat cells are treated with the toxin staurosporine to trigger cell apoptosis and cytochrome c released into the cell culture medium is monitored via the newly invented optical microfluidic platform. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Microwave Dielectric Heating of Drops in Microfluidic Devices†

    PubMed Central

    Issadore, David; Humphry, Katherine J.; Brown, Keith A.; Sandberg, Lori; Weitz, David; Westervelt, Robert M.

    2010-01-01

    We present a technique to locally and rapidly heat water drops in microfluidic devices with microwave dielectric heating. Water absorbs microwave power more efficiently than polymers, glass, and oils due to its permanent molecular dipole moment that has a large dielectric loss at GHz frequencies. The relevant heat capacity of the system is a single thermally isolated picoliter drop of water and this enables very fast thermal cycling. We demonstrate microwave dielectric heating in a microfluidic device that integrates a flow-focusing drop maker, drop splitters, and metal electrodes to locally deliver microwave power from an inexpensive, commercially available 3.0 GHz source and amplifier. The temperature of the drops is measured by observing the temperature dependent fluorescence intensity of cadmium selenide nanocrystals suspended in the water drops. We demonstrate characteristic heating times as short as 15 ms to steady-state temperatures as large as 30°C above the base temperature of the microfluidic device. Many common biological and chemical applications require rapid and local control of temperature, such as PCR amplification of DNA, and can benefit from this new technique. PMID:19495453

  4. Microchannel gel electrophoretic separation systems and methods for preparing and using

    DOEpatents

    Herr, Amy E; Singh, Anup K; Throckmorton, Daniel J

    2015-02-24

    A micro-analytical platform for performing electrophoresis-based immunoassays was developed by integrating photopolymerized cross-linked polyacrylamide gels within a microfluidic device. The microfluidic immunoassays are performed by gel electrophoretic separation and quantifying analyte concentration based upon conventional polyacrylamide gel electrophoresis (PAGE). To retain biological activity of proteins and maintain intact immune complexes, native PAGE conditions were employed. Both direct (non-competitive) and competitive immunoassay formats are demonstrated in microchips for detecting toxins and biomarkers (cytokines, c-reactive protein) in bodily fluids (serum, saliva, oral fluids). Further, a description of gradient gels fabrication is included, in an effort to describe methods we have developed for further optimization of on-chip PAGE immunoassays. The described chip-based PAGE immunoassay method enables immunoassays that are fast (minutes) and require very small amounts of sample (less than a few microliters). Use of microfabricated chips as a platform enables integration, parallel assays, automation and development of portable devices.

  5. Microchannel gel electrophoretic separation systems and methods for preparing and using

    DOEpatents

    Herr, Amy; Singh, Anup K; Throckmorton, Daniel J

    2013-09-03

    A micro-analytical platform for performing electrophoresis-based immunoassays was developed by integrating photopolymerized cross-linked polyacrylamide gels within a microfluidic device. The microfluidic immunoassays are performed by gel electrophoretic separation and quantifying analyte concentration based upon conventional polyacrylamide gel electrophoresis (PAGE). To retain biological activity of proteins and maintain intact immune complexes, native PAGE conditions were employed. Both direct (non-competitive) and competitive immunoassay formats are demonstrated in microchips for detecting toxins and biomarkers (cytokines, c-reactive protein) in bodily fluids (serum, saliva, oral fluids). Further, a description of gradient gels fabrication is included, in an effort to describe methods we have developed for further optimization of on-chip PAGE immunoassays. The described chip-based PAGE immunoassay method enables immunoassays that are fast (minutes) and require very small amounts of sample (less than a few microliters). Use of microfabricated chips as a platform enables integration, parallel assays, automation and development of portable devices.

  6. Automated single cell microbioreactor for monitoring intracellular dynamics and cell growth in free solution†

    PubMed Central

    Johnson-Chavarria, Eric M.; Agrawal, Utsav; Tanyeri, Melikhan; Kuhlman, Thomas E.

    2014-01-01

    We report an automated microfluidic-based platform for single cell analysis that allows for cell culture in free solution with the ability to control the cell growth environment. Using this approach, cells are confined by the sole action of gentle fluid flow, thereby enabling non-perturbative analysis of cell growth away from solid boundaries. In addition, the single cell microbioreactor allows for precise and time-dependent control over cell culture media, with the combined ability to observe the dynamics of non-adherent cells over long time scales. As a proof-of-principle demonstration, we used the platform to observe dynamic cell growth, gene expression, and intracellular diffusion of repressor proteins while precisely tuning the cell growth environment. Overall, this microfluidic approach enables the direct observation of cellular dynamics with exquisite control over environmental conditions, which will be useful for quantifying the behaviour of single cells in well-defined media. PMID:24836754

  7. Batch-reactor microfluidic device: first human use of a microfluidically produced PET radiotracer†

    PubMed Central

    Miraghaie, Reza; Kotta, Kishore; Ball, Carroll E.; Zhang, Jianzhong; Buchsbaum, Monte S.; Kolb, Hartmuth C.; Elizarov, Arkadij

    2013-01-01

    The very first microfluidic device used for the production of 18F-labeled tracers for clinical research is reported along with the first human Positron Emission Tomography scan obtained with a microfluidically produced radiotracer. The system integrates all operations necessary for the transformation of [18F]fluoride in irradiated cyclotron target water to a dose of radiopharmaceutical suitable for use in clinical research. The key microfluidic technologies developed for the device are a fluoride concentration system and a microfluidic batch reactor assembly. Concentration of fluoride was achieved by means of absorption of the fluoride anion on a micro ion-exchange column (5 μL of resin) followed by release of the radioactivity with 45 μL of the release solution (95 ± 3% overall efficiency). The reactor assembly includes an injection-molded reactor chip and a transparent machined lid press-fitted together. The resulting 50 μL cavity has a unique shape designed to minimize losses of liquid during reactor filling and liquid evaporation. The cavity has 8 ports for gases and liquids, each equipped with a 2-way on-chip mechanical valve rated for pressure up to 20.68 bar (300 psi). The temperature is controlled by a thermoelectric heater capable of heating the reactor up to 180 °C from RT in 150 s. A camera captures live video of the processes in the reactor. HPLC-based purification and reformulation units are also integrated in the device. The system is based on “split-box architecture”, with reagents loaded from outside of the radiation shielding. It can be installed either in a standard hot cell, or as a self-shielded unit. Along with a high level of integration and automation, split-box architecture allowed for multiple production runs without the user being exposed to radiation fields. The system was used to support clinical trials of [18F]fallypride, a neuroimaging radiopharmaceutical under IND Application #109,880. PMID:23135409

  8. Microfluidic bead-based diodes with targeted circular microchannels for low Reynolds number applications.

    PubMed

    Sochol, Ryan D; Lu, Albert; Lei, Jonathan; Iwai, Kosuke; Lee, Luke P; Lin, Liwei

    2014-05-07

    Self-regulating fluidic components are critical to the advancement of microfluidic processors for chemical and biological applications, such as sample preparation on chip, point-of-care molecular diagnostics, and implantable drug delivery devices. Although researchers have developed a wide range of components to enable flow rectification in fluidic systems, engineering microfluidic diodes that function at the low Reynolds number (Re) flows and smaller scales of emerging micro/nanofluidic platforms has remained a considerable challenge. Recently, researchers have demonstrated microfluidic diodes that utilize high numbers of suspended microbeads as dynamic resistive elements; however, using spherical particles to block fluid flow through rectangular microchannels is inherently limited. To overcome this issue, here we present a single-layer microfluidic bead-based diode (18 μm in height) that uses a targeted circular-shaped microchannel for the docking of a single microbead (15 μm in diameter) to rectify fluid flow under low Re conditions. Three-dimensional simulations and experimental results revealed that adjusting the docking channel geometry and size to better match the suspended microbead greatly increased the diodicity (Di) performance. Arraying multiple bead-based diodes in parallel was found to adversely affect system efficacy, while arraying multiple diodes in series was observed to enhance device performance. In particular, systems consisting of four microfluidic bead-based diodes with targeted circular-shaped docking channels in series revealed average Di's ranging from 2.72 ± 0.41 to 10.21 ± 1.53 corresponding to Re varying from 0.1 to 0.6.

  9. A Versatile PDMS/Paper Hybrid Microfluidic Platform for Sensitive Infectious Disease Diagnosis

    PubMed Central

    2015-01-01

    Bacterial meningitis is a serious health concern worldwide. Given that meningitis can be fatal and many meningitis cases occurred in high-poverty areas, a simple, low-cost, highly sensitive method is in great need for immediate and early diagnosis of meningitis. Herein, we report a versatile and cost-effective polydimethylsiloxane (PDMS)/paper hybrid microfluidic device integrated with loop-mediated isothermal amplification (LAMP) for the rapid, sensitive, and instrument-free detection of the main meningitis-causing bacteria, Neisseria meningitidis (N. meningitidis). The introduction of paper into the microfluidic device for LAMP reactions enables stable test results over a much longer period of time than a paper-free microfluidic system. This hybrid system also offers versatile functions, by providing not only on-site qualitative diagnostic analysis (i.e., a yes or no answer), but also confirmatory testing and quantitative analysis in laboratory settings. The limit of detection of N. meningitidis is about 3 copies per LAMP zone within 45 min, close to single-bacterium detection sensitivity. In addition, we have achieved simple pathogenic microorganism detection without a laborious sample preparation process and without the use of centrifuges. This low-cost hybrid microfluidic system provides a simple and highly sensitive approach for fast instrument-free diagnosis of N. meningitidis in resource-limited settings. This versatile PDMS/paper microfluidic platform has great potential for the point of care (POC) diagnosis of a wide range of infectious diseases, especially for developing nations. PMID:25019330

  10. Fast pesticide detection inside microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence.

    PubMed

    Tahirbegi, Islam Bogachan; Ehgartner, Josef; Sulzer, Philipp; Zieger, Silvia; Kasjanow, Alice; Paradiso, Mirco; Strobl, Martin; Bouwes, Dominique; Mayr, Torsten

    2017-02-15

    The necessities of developing fast, portable, cheap and easy to handle pesticide detection platforms are getting attention of scientific and industrial communities. Although there are some approaches to develop microchip based pesticide detection platforms, there is no compact microfluidic device for the complementary, fast, cheap, reusable and reliable analysis of different pesticides. In this work, a microfluidic device is developed for in-situ analysis of pesticide concentration detected via metabolism/photosynthesis of Chlamydomonas reinhardtii algal cells (algae) in tap water. Algae are grown in glass based microfluidic chip, which contains integrated optical pH and oxygen sensors in a portable system for on-site detection. In addition, intrinsic algal fluorescence is detected to analyze the pesticide concentration in parallel to pH and oxygen sensors with integrated fluorescence detectors. The response of the algae under the effect of different concentrations of pesticides is evaluated and complementary inhibition effects depending on the pesticide concentration are demonstrated. The three different sensors allow the determination of various pesticide concentrations in the nanomolar concentration range. The miniaturized system provides the fast quantification of pesticides in less than 10min and enables the study of toxic effects of different pesticides on Chlamydomonas reinhardtii green algae. Consequently, the microfluidic device described here provides fast and complementary detection of different pesticides with algae in a novel glass based microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Compartmentalized Platforms for Neuro-pharmacological Research

    PubMed Central

    Jadhav, Amol D.; Wei, Li; Shi, Peng

    2016-01-01

    Dissociated primary neuronal cell culture remains an indispensable approach for neurobiology research in order to investigate basic mechanisms underlying diverse neuronal functions, drug screening and pharmacological investigation. Compartmentalization, a widely adopted technique since its emergence in 1970s enables spatial segregation of neuronal segments and detailed investigation that is otherwise limited with traditional culture methods. Although these compartmental chambers (e.g. Campenot chamber) have been proven valuable for the investigation of Peripheral Nervous System (PNS) neurons and to some extent within Central Nervous System (CNS) neurons, their utility has remained limited given the arduous manufacturing process, incompatibility with high-resolution optical imaging and limited throughput. The development in the area of microfabrication and microfluidics has enabled creation of next generation compartmentalized devices that are cheap, easy to manufacture, require reduced sample volumes, enable precise control over the cellular microenvironment both spatially as well as temporally, and permit highthroughput testing. In this review we briefly evaluate the various compartmentalization tools used for neurobiological research, and highlight application of the emerging microfluidic platforms towards in vitro single cell neurobiology. PMID:26813122

  12. A microfluidic device with multi-valves system to enable several simultaneous exposure tests on Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Jung, Jaehoon; Nakajima, Masahiro; Masaru, Takeuchi; Huang, Qiang; Fukuda, Toshio

    2014-03-01

    In this paper, we report on a microfluidic device with a multi-valve system to conduct several exposure tests on Caenorhabditis elegans (C. elegans) simultaneously. It has pneumatic valves and no-moving-parts (NMP) valves. An NMP valve is incorporated with a chamber and enables the unidirectional movement of C. elegans in the chamber; once worms are loaded into the chamber, they cannot exit, regardless of the flow direction. To demonstrate the ability of the NMP valve to handle worms, we made a microfluidic device with three chambers. Each chamber was used to expose worms to Cd and Cu solutions, and K-medium. A pair of electrodes was installed in the device and the capacitance in-between the electrode was measured. When a C. elegans passed through the electrodes, the capacitance was changed. The capacitance change was proportional to the body volume of the worm, thus the body volume change by the heavy metal exposure was measured in the device. Thirty worms were divided into three groups and exposed to each solution. We confirmed that the different solutions induced differences in the capacitance changes for each group. These results indicate that our device is a viable method for simultaneously analyzing the effect of multiple stimuli on C. elegans.

  13. Deep wells integrated with microfluidic valves for stable docking and storage of cells.

    PubMed

    Jang, Yun-Ho; Kwon, Cheong Hoon; Kim, Sang Bok; Selimović, Seila; Sim, Woo Young; Bae, Hojae; Khademhosseini, Ali

    2011-02-01

    In this paper, we describe a microfluidic mechanism that combines microfluidic valves and deep wells for cell localization and storage. Cells are first introduced into the device via externally controlled flow. Activating on-chip valves was used to interrupt the flow and to sediment the cells floating above the wells. Thus, valves could be used to localize the cells in the desired locations. We quantified the effect of valves in the cell storage process by comparing the total number of cells stored with and without valve activation. We hypothesized that in deep wells external flows generate low shear stress regions that enable stable, long-term docking of cells. To assess this hypothesis we conducted numerical calculations to understand the influence of well depth on the forces acting on cells. We verified those predictions experimentally by comparing the fraction of stored cells as a function of the well depth and input flow rate upon activation of the valves. As expected, upon reintroduction of the flow the cells in the deep wells were not moved whereas those in shallow wells were washed away. Taken together, our paper demonstrates that deep wells and valves can be combined to enable a broad range of cell studies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development and characterization of a microfluidic model of the tumour microenvironment

    PubMed Central

    Ayuso, Jose M.; Virumbrales-Muñoz, María; Lacueva, Alodia; Lanuza, Pilar M.; Checa-Chavarria, Elisa; Botella, Pablo; Fernández, Eduardo; Doblare, Manuel; Allison, Simon J.; Phillips, Roger M.; Pardo, Julián; Fernandez, Luis J.; Ochoa, Ignacio

    2016-01-01

    The physical microenvironment of tumours is characterized by heterotypic cell interactions and physiological gradients of nutrients, waste products and oxygen. This tumour microenvironment has a major impact on the biology of cancer cells and their response to chemotherapeutic agents. Despite this, most in vitro cancer research still relies primarily on cells grown in 2D and in isolation in nutrient- and oxygen-rich conditions. Here, a microfluidic device is presented that is easy to use and enables modelling and study of the tumour microenvironment in real-time. The versatility of this microfluidic platform allows for different aspects of the microenvironment to be monitored and dissected. This is exemplified here by real-time profiling of oxygen and glucose concentrations inside the device as well as effects on cell proliferation and growth, ROS generation and apoptosis. Heterotypic cell interactions were also studied. The device provides a live ‘window’ into the microenvironment and could be used to study cancer cells for which it is difficult to generate tumour spheroids. Another major application of the device is the study of effects of the microenvironment on cellular drug responses. Some data is presented for this indicating the device’s potential to enable more physiological in vitro drug screening. PMID:27796335

  15. Microfluidic control of droplet formation from stable emulsions formed by aqueous two-phase systems

    NASA Astrophysics Data System (ADS)

    Teixeira, Alyne G.; Tsai, Meng-Chiao; Frampton, John P.

    2018-02-01

    Aqueous two-phase systems (ATPSs) form from the thermodynamic separation of two dissolved incompatible solutes, such as two polymers, a polymer and a salt, and a polymer and a surfactant. At most supercritical concentrations, ATPS emulsions can be formed by vigorous mixing. These emulsions typically settle into distinct layers in minutes to hours. However, it is also possible to choose ATPS compositions with extremely long settling times that resemble stable emulsions. Here, we generated stable emulsions from a polyethylene glycol (PEG)-dextran ATPS by selecting ATPS compositions at the extreme ends of the tie lines connecting the binodal curve delineating phase-separating compositions. Droplets of PEG in a continuous dextran phase did not coalesce appreciably over the course of several days when stored in a conical tube or syringe. However, upon exposure to laminar flow conditions in a microfluidic channel, droplets were observed to coalesce. Through microscopic characterization of droplet volume, an increase in droplet size and decrease in overall droplet number was observed as a function of channel distance, suggesting a progressive droplet merging phenomenon. This novel approach to control droplet size by encouraging coalescence of stable emulsions under laminar flow in a microfluidic channel enables the production of droplets ranging from fL to several pL, which may enable various future biotechnology applications.

  16. Internet-enabled collaborative agent-based supply chains

    NASA Astrophysics Data System (ADS)

    Shen, Weiming; Kremer, Rob; Norrie, Douglas H.

    2000-12-01

    This paper presents some results of our recent research work related to the development of a new Collaborative Agent System Architecture (CASA) and an Infrastructure for Collaborative Agent Systems (ICAS). Initially being proposed as a general architecture for Internet based collaborative agent systems (particularly complex industrial collaborative agent systems), the proposed architecture is very suitable for managing the Internet enabled complex supply chain for a large manufacturing enterprise. The general collaborative agent system architecture with the basic communication and cooperation services, domain independent components, prototypes and mechanisms are described. Benefits of implementing Internet enabled supply chains with the proposed infrastructure are discussed. A case study on Internet enabled supply chain management is presented.

  17. Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity.

    PubMed

    Baudoin, Régis; Corlu, Anne; Griscom, Laurent; Legallais, Cécile; Leclerc, Eric

    2007-06-01

    Current developments in the technological fields of liver tissue engineering, bioengineering, biomechanics, microfabrication and microfluidics have lead to highly complex and pertinent new tools called "cell biochips" for in vitro toxicology. The purpose of "cell biochips" is to mimic organ tissues in vitro in order to partially reduce the amount of in vivo testing. These "cell biochips" consist of microchambers containing engineered tissue and living cell cultures interconnected by a microfluidic network, which allows the control of microfluidic flows for dynamic cultures, by continuous feeding of nutrients to cultured cells and waste removal. Cell biochips also allow the control of physiological contact times of diluted molecules with the tissues and cells, for rapid testing of sample preparations or specific addressing. Cell biochips can be situated between in vitro and in vivo testing. These types of systems can enhance functionality of cells by mimicking the tissue architecture complexities when compared to in vitro analysis but at the same time present a more rapid and simple process when compared to in vivo testing procedures. In this paper, we first introduce the concepts of microfluidic and biochip systems based on recent progress in microfabrication techniques used to mimic liver tissue in vitro. This includes progress and understanding in biomaterials science (cell culture substrate), biomechanics (dynamic cultures conditions) and biology (tissue engineering). The development of new "cell biochips" for chronic toxicology analysis of engineered tissues can be achieved through the combination of these research domains. Combining these advanced research domains, we then present "cell biochips" that allow liver chronic toxicity analysis in vitro on engineered tissues. An extension of the "cell biochip" idea has also allowed "organ interactions on chip", which can be considered as a first step towards the replacement of animal testing using a combined liver/lung organ model.

  18. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  19. Paper-based analytical devices for environmental analysis.

    PubMed

    Meredith, Nathan A; Quinn, Casey; Cate, David M; Reilly, Thomas H; Volckens, John; Henry, Charles S

    2016-03-21

    The field of paper-based microfluidics has experienced rapid growth over the past decade. Microfluidic paper-based analytical devices (μPADs), originally developed for point-of-care medical diagnostics in resource-limited settings, are now being applied in new areas, such as environmental analyses. Low-cost paper sensors show great promise for on-site environmental analysis; the theme of ongoing research complements existing instrumental techniques by providing high spatial and temporal resolution for environmental monitoring. This review highlights recent applications of μPADs for environmental analysis along with technical advances that may enable μPADs to be more widely implemented in field testing.

  20. Emerging Neuromorphic Computing Architectures & Enabling Hardware for Cognitive Information Processing Applications

    DTIC Science & Technology

    2010-06-01

    DATES COVEREDAPR 2009 – JAN 2010 (From - To) APR 2009 – JAN 2010 4. TITLE AND SUBTITLE EMERGING NEUROMORPHIC COMPUTING ARCHITECTURES AND ENABLING...14. ABSTRACT The highly cross-disciplinary emerging field of neuromorphic computing architectures for cognitive information processing applications...belief systems, software, computer engineering, etc. In our effort to develop cognitive systems atop a neuromorphic computing architecture, we explored

  1. A reusable microfluidic plate with alternate-choice architecture for assessing growth preference in tissue culture.

    PubMed

    Wittig, John H; Ryan, Allen F; Asbeck, Peter M

    2005-05-15

    We present the design of a chamber to evaluate in vitro how species and concentrations of soluble molecules control features of cell growth-potentially including cell proliferation, cell motility, process extension, and process termination. We have created a reusable cell culture plate that integrates a microfluidic media delivery network with standard cell culture environment. The microfluidic network delivers a stream of cell culture media with a step-like concentration gradient down a 50-100 microm wide microchannel called the presentation region. Migrating cells or growing cell processes freely choose between the two distinct chemical environments in the presentation region, but they are forced to exclusively choose either one environment or the other when they grow past a physical barrier acting as a decision point. Our fabrication technique requires little specialized equipment, and can be carried out in approximately 4 days per plate. We demonstrate the effectiveness of our plates as neurites from spiral ganglion explants preferentially grow in media containing neurotrophin-3 (NT-3) as opposed to media without NT-3. Our design could be used without modification to study dissociated cell responses to soluble growth cues, and for behavioral screening of small motile organisms.

  2. Construction of 3D multicellular microfluidic chip for an in vitro skin model.

    PubMed

    Lee, Sojin; Jin, Seon-Pil; Kim, Yeon Kyung; Sung, Gun Yong; Chung, Jin Ho; Sung, Jong Hwan

    2017-06-01

    Current in vitro skin models do not recapitulate the complex architecture and functions of the skin tissue. In particular, on-chip construction of an in vitro model comprising the epidermis and dermis layer with vascular structure for mass transport has not been reported yet. In this study, we aim to develop a microfluidic, three-dimensional (3D) skin chip with fluidic channels using PDMS and hydrogels. Mass transport within the collagen hydrogel matrix was verified with fluorescent model molecules, and a transport-reaction model of oxygen and glucose inside the skin chip was developed to aid the design of the microfluidic skin chip. Comparison of viabilities of dermal fibroblasts and HaCaT cultured in the chip with various culture conditions revealed that the presence of flow plays a crucial role in maintaining the viability, and both cells were viable after 10 days of air exposure culture. Our 3D skin chip with vascular structures can be a valuable in vitro model for reproducing the interaction between different components of the skin tissue, and thus work as a more physiologically realistic platform for testing skin reaction to cosmetic products and drugs.

  3. Microfluidic colloid filtration

    PubMed Central

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-01-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level. PMID:26927706

  4. Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering

    PubMed Central

    Perestrelo, Ana Rubina; Águas, Ana C. P.; Rainer, Alberto; Forte, Giancarlo

    2015-01-01

    Recent advances in biomedical technologies are mostly related to the convergence of biology with microengineering. For instance, microfluidic devices are now commonly found in most research centers, clinics and hospitals, contributing to more accurate studies and therapies as powerful tools for drug delivery, monitoring of specific analytes, and medical diagnostics. Most remarkably, integration of cellularized constructs within microengineered platforms has enabled the recapitulation of the physiological and pathological conditions of complex tissues and organs. The so-called “organ-on-a-chip” technology, which represents a new avenue in the field of advanced in vitro models, with the potential to revolutionize current approaches to drug screening and toxicology studies. This review aims to highlight recent advances of microfluidic-based devices towards a body-on-a-chip concept, exploring their technology and broad applications in the biomedical field. PMID:26690442

  5. Energy Harvesting with a Liquid-Metal Microfluidic Influence Machine

    NASA Astrophysics Data System (ADS)

    Conner, Christopher; de Visser, Tim; Loessberg, Joshua; Sherman, Sam; Smith, Andrew; Ma, Shuo; Napoli, Maria Teresa; Pennathur, Sumita; Weld, David

    2018-04-01

    We describe and demonstrate an alternative energy-harvesting technology based on a microfluidic realization of a Wimshurst influence machine. The prototype device converts the mechanical energy of a pressure-driven flow into electrical energy, using a multiphase system composed of droplets of liquid mercury surrounded by insulating oil. Electrostatic induction between adjacent metal droplets drives charge through external electrode paths, resulting in continuous charge amplification and collection. We demonstrate a power output of 4 nW from the initial prototype and present calculations suggesting that straightforward device optimization could increase the power output by more than 3 orders of magnitude. At that level, the power efficiency of this energy-harvesting mechanism, limited by viscous dissipation, could exceed 90%. The microfluidic context enables straightforward scaling and parallelization, as well as hydraulic matching to a variety of ambient mechanical energy sources, such as human locomotion.

  6. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures

    NASA Astrophysics Data System (ADS)

    Yuk, Hyunwoo; Zhang, Teng; Parada, German Alberto; Liu, Xinyue; Zhao, Xuanhe

    2016-06-01

    Inspired by mammalian skins, soft hybrids integrating the merits of elastomers and hydrogels have potential applications in diverse areas including stretchable and bio-integrated electronics, microfluidics, tissue engineering, soft robotics and biomedical devices. However, existing hydrogel-elastomer hybrids have limitations such as weak interfacial bonding, low robustness and difficulties in patterning microstructures. Here, we report a simple yet versatile method to assemble hydrogels and elastomers into hybrids with extremely robust interfaces (interfacial toughness over 1,000 Jm-2) and functional microstructures such as microfluidic channels and electrical circuits. The proposed method is generally applicable to various types of tough hydrogels and diverse commonly used elastomers including polydimethylsiloxane Sylgard 184, polyurethane, latex, VHB and Ecoflex. We further demonstrate applications enabled by the robust and microstructured hydrogel-elastomer hybrids including anti-dehydration hydrogel-elastomer hybrids, stretchable and reactive hydrogel-elastomer microfluidics, and stretchable hydrogel circuit boards patterned on elastomer.

  7. Modular microfluidics for point-of-care protein purifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millet, L. J.; Lucheon, J. D.; Standaert, R. F.

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured tomore » suit a variety of fluidic operations or biochemical processes. In conclusion, we demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.« less

  8. 3D pulsed laser-triggered high-speed microfluidic fluorescence-activated cell sorter

    PubMed Central

    Chen, Yue; Wu, Ting-Hsiang; Kung, Yu-Chun; Teitell, Michael A.; Chiou, Pei-Yu

    2014-01-01

    We report a 3D microfluidic pulsed laser-triggered fluorescence-activated cell sorter capable of sorting at a throughput of 23,000 cells sec−1 with 90% purity in high-purity mode and at a throughput of 45,000 cells sec−1 with 45% purity in enrichment mode in one stage and in a single channel. This performance is realized by exciting laser-induced cavitation bubbles in a 3D PDMS microfluidic channel to generate high-speed liquid jets that deflect detected fluorescent cells and particles focused by 3D sheath flows. The ultrafast switching mechanism (20 μsec complete on-off cycle), small liquid jet perturbation volume, and three-dimensional sheath flow focusing for accurate timing control of fast (1.5 m sec−1) passing cells and particles are three critical factors enabling high-purity sorting at high-throughput in this sorter. PMID:23844418

  9. Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms

    PubMed Central

    Dak, Piyush; Ebrahimi, Aida; Swaminathan, Vikhram; Duarte-Guevara, Carlos; Bashir, Rashid; Alam, Muhammad A.

    2016-01-01

    Low cost, portable sensors can transform health care by bringing easily available diagnostic devices to low and middle income population, particularly in developing countries. Sample preparation, analyte handling and labeling are primary cost concerns for traditional lab-based diagnostic systems. Lab-on-a-chip (LoC) platforms based on droplet-based microfluidics promise to integrate and automate these complex and expensive laboratory procedures onto a single chip; the cost will be further reduced if label-free biosensors could be integrated onto the LoC platforms. Here, we review some recent developments of label-free, droplet-based biosensors, compatible with “open” digital microfluidic systems. These low-cost droplet-based biosensors overcome some of the fundamental limitations of the classical sensors, enabling timely diagnosis. We identify the key challenges that must be addressed to make these sensors commercially viable and summarize a number of promising research directions. PMID:27089377

  10. Multiplexed analysis of protein-ligand interactions by fluorescence anisotropy in a microfluidic platform.

    PubMed

    Cheow, Lih Feng; Viswanathan, Ramya; Chin, Chee-Sing; Jennifer, Nancy; Jones, Robert C; Guccione, Ernesto; Quake, Stephen R; Burkholder, William F

    2014-10-07

    Homogeneous assay platforms for measuring protein-ligand interactions are highly valued due to their potential for high-throughput screening. However, the implementation of these multiplexed assays in conventional microplate formats is considerably expensive due to the large amounts of reagents required and the need for automation. We implemented a homogeneous fluorescence anisotropy-based binding assay in an automated microfluidic chip to simultaneously interrogate >2300 pairwise interactions. We demonstrated the utility of this platform in determining the binding affinities between chromatin-regulatory proteins and different post-translationally modified histone peptides. The microfluidic chip assay produces comparable results to conventional microtiter plate assays, yet requires 2 orders of magnitude less sample and an order of magnitude fewer pipetting steps. This approach enables one to use small samples for medium-scale screening and could ease the bottleneck of large-scale protein purification.

  11. Droplet microfluidics for synthetic biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gach, Philip Charles; Iwai, Kosuke; Kim, Peter Wonhee

    Here, synthetic biology is an interdisciplinary field that aims to engineer biological systems for useful purposes. Organism engineering often requires the optimization of individual genes and/or entire biological pathways (consisting of multiple genes). Advances in DNA sequencing and synthesis have recently begun to enable the possibility of evaluating thousands of gene variants and hundreds of thousands of gene combinations. However, such large-scale optimization experiments remain cost-prohibitive to researchers following traditional molecular biology practices, which are frequently labor-intensive and suffer from poor reproducibility. Liquid handling robotics may reduce labor and improve reproducibility, but are themselves expensive and thus inaccessible to mostmore » researchers. Microfluidic platforms offer a lower entry price point alternative to robotics, and maintain high throughput and reproducibility while further reducing operating costs through diminished reagent volume requirements. Droplet microfluidics have shown exceptional promise for synthetic biology experiments, including DNA assembly, transformation/transfection, culturing, cell sorting, phenotypic assays, artificial cells and genetic circuits.« less

  12. PR-PR: Cross-Platform Laboratory Automation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linshiz, G; Stawski, N; Goyal, G

    To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Goldenmore » Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.« less

  13. Microfluidic array platform for simultaneous lipid bilayer membrane formation.

    PubMed

    Zagnoni, M; Sandison, M E; Morgan, H

    2009-01-01

    In recent years, protein array technologies have found widespread applications in proteomics. However, new methods for high-throughput analysis of protein-protein and protein-compound interactions are still required. In this paper, an array of lipid bilayer membranes formed within a microfluidic system with integrated electrodes is presented. The system is comprised of three layers that are clamped together, thus rendering the device cleanable and reusable. The device microfluidics enable the simultaneous formation of an array of lipid bilayers using a previously developed air-exposure technique, thereby avoiding the need to manually form individual bilayers. The Ag/AgCl electrodes allow for ion channel measurements, each of the sites being independently addressable. Typically, a 50% yield in simultaneous lipid bilayer formation over 12 sites was obtained and ion channel recordings have been acquired over multiple sites. This system has great potential for the development of an automatable platform of suspended lipid bilayer arrays.

  14. Screw-actuated displacement micropumps for thermoplastic microfluidics.

    PubMed

    Han, J Y; Rahmanian, O D; Kendall, E L; Fleming, N; DeVoe, D L

    2016-10-05

    The fabrication of on-chip displacement pumps integrated into thermoplastic chips is explored as a simple and low cost method for achieving precise and programmable flow control for disposable microfluidic systems. The displacement pumps consist of stainless steel screws inserted into threaded ports machined into a thermoplastic substrate which also serve as on-chip reagent storage reservoirs. Three different methods for pump sealing are investigated to enable high pressure flows without leakage, and software-defined control of multiple pumps is demonstrated in a self-contained platform using a compact and self-contained microcontroller for operation. Using this system, flow rates ranging from 0.5-40 μl min -1 are demonstrated. The pumps are combined with on-chip burst valves to fully seal multiple reagents into fabricated chips while providing on-demand fluid distribution in a downstream microfluidic network, and demonstrated for the generation of size-tunable water-in-oil emulsions.

  15. Constant flow-driven microfluidic oscillator for different duty cycles

    PubMed Central

    Kim, Sung-Jin; Yokokawa, Ryuji; Lesher-Perez, Sasha Cai; Takayama, Shuichi

    2012-01-01

    This paper presents microfluidic devices that autonomously convert two constant flow inputs into an alternating oscillatory flow output. We accomplish this hardware embedded self-control programming using normally closed membrane valves that have an inlet, an outlet, and a membrane-pressurization chamber connected to a third terminal. Adjustment of threshold opening pressures in these 3-terminal flow switching valves enabled adjustment of oscillation periods to between 57–360 s with duty cycles of 0.2–0.5. These values are in relatively good agreement with theoretical values, providing the way for rational design of an even wider range of different waveform oscillations. We also demonstrate the ability to use these oscillators to perform temporally patterned delivery of chemicals to living cells. The device only needs a syringe pump, thus removing the use of complex, expensive external actuators. These tunable waveform microfluidic oscillators are envisioned to facilitate cell-based studies that require temporal stimulation. PMID:22206453

  16. Optical trapping for complex fluid microfluidics

    NASA Astrophysics Data System (ADS)

    Vestad, Tor; Oakey, John; Marr, David W. M.

    2004-10-01

    Many proposed applications of microfluidics involve the manipulation of complex fluid mixtures such as blood or bacterial suspensions. To sort and handle the constituent particles within these suspensions, we have developed a miniaturized automated cell sorter using optical traps. This microfluidic cell sorter offers the potential to perform chip-top microbiology more rapidly and with less associated hardware and preparation time than other techniques currently available. To realize the potential of this technology in practical clinical and consumer lab-on-a-chip devices however, microscale control of not only particulates but also the fluid phase must be achieved. To address this, we have developed a mechanical fluid control scheme that integrates well with our optical separations approach. We demonstrate here a combined technique, one that employs both mechanical actuation and optical trapping for the precise control of complex suspensions. This approach enables both cell and particle separations as well as the subsequent fluid control required for the completion of complex analyses.

  17. Modular microfluidics for point-of-care protein purifications.

    PubMed

    Millet, L J; Lucheon, J D; Standaert, R F; Retterer, S T; Doktycz, M J

    2015-04-21

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured to suit a variety of fluidic operations or biochemical processes. We demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.

  18. Modular microfluidics for point-of-care protein purifications

    DOE PAGES

    Millet, L. J.; Lucheon, J. D.; Standaert, R. F.; ...

    2015-01-01

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured tomore » suit a variety of fluidic operations or biochemical processes. In conclusion, we demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.« less

  19. Droplet microfluidics for synthetic biology

    DOE PAGES

    Gach, Philip Charles; Iwai, Kosuke; Kim, Peter Wonhee; ...

    2017-08-10

    Here, synthetic biology is an interdisciplinary field that aims to engineer biological systems for useful purposes. Organism engineering often requires the optimization of individual genes and/or entire biological pathways (consisting of multiple genes). Advances in DNA sequencing and synthesis have recently begun to enable the possibility of evaluating thousands of gene variants and hundreds of thousands of gene combinations. However, such large-scale optimization experiments remain cost-prohibitive to researchers following traditional molecular biology practices, which are frequently labor-intensive and suffer from poor reproducibility. Liquid handling robotics may reduce labor and improve reproducibility, but are themselves expensive and thus inaccessible to mostmore » researchers. Microfluidic platforms offer a lower entry price point alternative to robotics, and maintain high throughput and reproducibility while further reducing operating costs through diminished reagent volume requirements. Droplet microfluidics have shown exceptional promise for synthetic biology experiments, including DNA assembly, transformation/transfection, culturing, cell sorting, phenotypic assays, artificial cells and genetic circuits.« less

  20. Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms.

    PubMed

    Dak, Piyush; Ebrahimi, Aida; Swaminathan, Vikhram; Duarte-Guevara, Carlos; Bashir, Rashid; Alam, Muhammad A

    2016-04-14

    Low cost, portable sensors can transform health care by bringing easily available diagnostic devices to low and middle income population, particularly in developing countries. Sample preparation, analyte handling and labeling are primary cost concerns for traditional lab-based diagnostic systems. Lab-on-a-chip (LoC) platforms based on droplet-based microfluidics promise to integrate and automate these complex and expensive laboratory procedures onto a single chip; the cost will be further reduced if label-free biosensors could be integrated onto the LoC platforms. Here, we review some recent developments of label-free, droplet-based biosensors, compatible with "open" digital microfluidic systems. These low-cost droplet-based biosensors overcome some of the fundamental limitations of the classical sensors, enabling timely diagnosis. We identify the key challenges that must be addressed to make these sensors commercially viable and summarize a number of promising research directions.

  1. Fabrication of anti-protein-fouling poly(ethylene glycol) microfluidic chip electrophoresis by sandwich photolithography

    PubMed Central

    Cong, Hailin; Xu, Xiaodan; Yu, Bing; Liu, Huwei

    2016-01-01

    Microfluidic chip electrophoresis (MCE) is a powerful separation tool for biomacromolecule analysis. However, adsorption of biomacromolecules, particularly proteins onto microfluidic channels severely degrades the separation performance of MCE. In this paper, an anti-protein-fouling MCE was fabricated using a novel sandwich photolithography of poly(ethylene glycol) (PEG) prepolymers. Photopatterned microchannel with a minimum resolution of 10 μm was achieved. After equipped with a conventional online electrochemical detector, the device enabled baseline separation of bovine serum albumin, lysozyme (Lys), and cytochrome c (Cyt-c) in 53 s under a voltage of 200 V. Compared with a traditional polydimethylsiloxane MCE made by soft lithography, the PEG MCE made by the sandwich photolithography not only eliminated the need of a master mold and the additional modification process of the microchannel but also showed excellent anti-protein-fouling properties for protein separation. PMID:27493702

  2. PR-PR: cross-platform laboratory automation system.

    PubMed

    Linshiz, Gregory; Stawski, Nina; Goyal, Garima; Bi, Changhao; Poust, Sean; Sharma, Monica; Mutalik, Vivek; Keasling, Jay D; Hillson, Nathan J

    2014-08-15

    To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Golden Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.

  3. Analysis system for characterisation of simple, low-cost microfluidic components

    NASA Astrophysics Data System (ADS)

    Smith, Suzanne; Naidoo, Thegaran; Nxumalo, Zandile; Land, Kevin; Davies, Emlyn; Fourie, Louis; Marais, Philip; Roux, Pieter

    2014-06-01

    There is an inherent trade-off between cost and operational integrity of microfluidic components, especially when intended for use in point-of-care devices. We present an analysis system developed to characterise microfluidic components for performing blood cell counting, enabling the balance between function and cost to be established quantitatively. Microfluidic components for sample and reagent introduction, mixing and dispensing of fluids were investigated. A simple inlet port plugging mechanism is used to introduce and dispense a sample of blood, while a reagent is released into the microfluidic system through compression and bursting of a blister pack. Mixing and dispensing of the sample and reagent are facilitated via air actuation. For these microfluidic components to be implemented successfully, a number of aspects need to be characterised for development of an integrated point-of-care device design. The functional components were measured using a microfluidic component analysis system established in-house. Experiments were carried out to determine: 1. the force and speed requirements for sample inlet port plugging and blister pack compression and release using two linear actuators and load cells for plugging the inlet port, compressing the blister pack, and subsequently measuring the resulting forces exerted, 2. the accuracy and repeatability of total volumes of sample and reagent dispensed, and 3. the degree of mixing and dispensing uniformity of the sample and reagent for cell counting analysis. A programmable syringe pump was used for air actuation to facilitate mixing and dispensing of the sample and reagent. Two high speed cameras formed part of the analysis system and allowed for visualisation of the fluidic operations within the microfluidic device. Additional quantitative measures such as microscopy were also used to assess mixing and dilution accuracy, as well as uniformity of fluid dispensing - all of which are important requirements towards the successful implementation of a blood cell counting system.

  4. Wirelessly powered microfluidic dielectrophoresis devices using printable RF circuits.

    PubMed

    Qiao, Wen; Cho, Gyoujin; Lo, Yu-Hwa

    2011-03-21

    We report the first microfluidic device integrated with a printed RF circuit so the device can be wirelessly powered by a commercially available RFID reader. For conventional dielectrophoresis devices, electrical wires are needed to connect the electric components on the microchip to external equipment such as power supplies, amplifiers, function generators, etc. Such a procedure is unfamiliar to most clinicians and pathologists who are used to working with a microscope for examination of samples on microscope slides. The wirelessly powered device reported here eliminates the entire need for wire attachments and external instruments so the operators can use the device in essentially the same manner as they do with microscope slides. The integrated circuit can be fabricated on a flexible plastic substrate at very low cost using a roll-to-roll printing method. Electrical power at 13.56 MHz transmitted by a radio-frequency identification (RFID) reader is inductively coupled to the printed RFIC and converted into 10 V DC (direct current) output, which provides sufficient power to drive a microfluidic device to manipulate biological particles such as beads and proteins via the DC dielectrophoresis (DC-DEP) effect. To our best knowledge, this is the first wirelessly powered microfluidic dielectrophoresis device. Although the work is preliminary, the device concept, the architecture, and the core technology are expected to stimulate many efforts in the future and transform the technology to a wide range of clinical and point-of-care applications. This journal is © The Royal Society of Chemistry 2011

  5. Microfluidics enables multiplex evaluation of the same cells for further studies.

    PubMed

    Mojica, W D; Oh, K W; Lee, H; Furlani, E P; Sykes, D; Sands, A M

    2016-08-01

    The continuous discovery of biomarkers and their evolving use for the diagnosis and guidance of therapy for patients with cancer has increased awareness of the need to triage biospecimens properly. On occasion, cytology samples are the only type of biospecimen available for analysis. Often, the current approach for these latter specimens is cytopathology-centric, with cells limited to examination by bright field microscopy. When specimens are paucicellular, there is often insufficient material for ancillary testing. Therefore, a need exists to develop an alternative approach that allows for the multiplexed analysis of cells when they are limited in number. In recent previous publications, we demonstrated that clinically derived cells from tissue are suitable for evaluation in a microfluidic device. In our current endeavour, we seek to expand upon those findings and determine if those same cells can be recovered for further analysis. A microfluidic channel was designed, fabricated and tested using cytology specimens generated from tissue specimens. The cytological features of the cells tested were examined prior to entering the channel; they were then compared to similar cells while in the channel, and upon recovery from the channel. Recovery of DNA and proteins were also tested. The morphology of the tested cells was not compromised in either the channel or upon recovery. More importantly, the integrity of the cells remained intact, with the recovery of proteins and high molecular weight DNA possible. We developed and tested an alternative approach to the processing of cytopathology specimens that enables multiplexed evaluation. Using microfluidics, cytological examination of biopecimens can be performed, but in contrast to existing approaches, the same cells examined can be recovered for downstream analysis. © 2015 John Wiley & Sons Ltd.

  6. On-Chip Titration of an Anticoagulant Argatroban and Determination of the Clotting Time within Whole Blood or Plasma Using a Plug-Based Microfluidic System

    PubMed Central

    Song, Helen; Li, Hung-Wing; Munson, Matthew S.; Van Ha, Thuong G.; Ismagilov, Rustem F.

    2006-01-01

    This paper describes extending plug-based microfluidics to handling complex biological fluids such as blood, solving the problem of injecting additional reagents into plugs, and applying this system to measuring of clotting time in small volumes of whole blood and plasma. Plugs are droplets transported through microchannels by fluorocarbon fluids. A plug-based microfluidic system was developed to titrate an anticoagulant (argatroban) into blood samples and to measure the clotting time using the activated partial thromboplastin time (APTT) test. To carry out these experiments, the following techniques were developed for a plug-based system: (i) using Teflon AF coating on the microchannel wall to enable formation of plugs containing blood and transport of the solid fibrin clots within plugs, (ii) using a hydrophilic glass capillary to enable reliable merging of a reagent from an aqueous stream into plugs, (iii) using bright-field microscopy to detect the formation of a fibrin clot within plugs and using fluorescent microscopy to detect the production of thrombin using a fluorogenic substrate, and (iv) titration of argatroban (0–1.5 μg/mL) into plugs and measurement of the resulting APTTs at room temperature (23 °C) and physiological temperature (37 °C). APTT measurements were conducted with normal pooled plasma (platelet-poor plasma) and with donor’s blood samples (both whole blood and platelet-rich plasma). APTT values and APTT ratios measured by the plug-based microfluidic device were compared to the results from a clinical laboratory at 37 °C. APTT obtained from the on-chip assay were about double those from the clinical laboratory but the APTT ratios from these two methods agreed well with each other. PMID:16841902

  7. Multicellular Vascularized Engineered Tissues through User-Programmable Biomaterial Photodegradation.

    PubMed

    Arakawa, Christopher K; Badeau, Barry A; Zheng, Ying; DeForest, Cole A

    2017-10-01

    A photodegradable material-based approach to generate endothelialized 3D vascular networks within cell-laden hydrogel biomaterials is introduced. Exploiting multiphoton lithography, microchannel networks spanning nearly all size scales of native human vasculature are readily generated with unprecedented user-defined 4D control. Intraluminal channel architectures of synthetic vessels are fully customizable, providing new opportunities for next-generation microfluidics and directed cell function. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Enabling Technologies for Microfluidic Flow Control and Detection

    NASA Astrophysics Data System (ADS)

    Leslie, Daniel Christopher

    Advances in microfluidic technologies have expanded conventional chemical and biological techniques to the point where we can envision rapid, inexpensive and portable analysis. Among the numerous challenges in the development of portable, chip-based technologies are simple flow control and detection strategies, which will be essential to widespread acceptance and implementation at both the point-of-care and in locales with limited facilities/resources. The research presented in this dissertation is focused on the development of precise flow control techniques and new, simplified detection technologies aimed at addressing these challenges. An introduction to the concepts important to microfluidics and a brief history to the field are presented in Chapter 1. Chapter 2 will present the development of a technique for the precise control of small volumes of liquids, where well-studied electrical circuit concepts are employed to create frequency-dependent microfluidic circuits. In this system, elastomeric thin films act as fluidic capacitors and diodes, which, when combined with resistors (channels), make fluidic circuits that are described by analytical models. Metering of two separate chemical inputs with a single oscillatory pneumatic control line is demonstrated by combining simple fluidic circuits (i.e., band-pass filters) to significantly reduce the external hardware required for microfluidic flow control. In order to quantify multiple flow profiles in microfluidic circuits, a novel multiplexed flow measurement method using visible dyes is introduced in Chapter 3 and rapidly determines individual flow in connected channels, post-fabrication device quality and solution viscosity. Another thrust of this dissertation research has been to develop miniaturized bioanalytical systems. Chapter 4 describes the adaption of a nucleic-acid-tagged antibody protein detection reaction to a microfluidic platform for detection of down to 5 E. coli O157:H7 cells. Furthermore, a completely non-contact temperature control platform is developed in Chapter 5 for forensic human identification reactions, based on interferometric temperature sensing and infrared-mediated heating, which simplifies the microfluidic device and its operation. Finally, possible future directions are outlined in Chapter 6 including further simplification of microfluidic instrumentation.

  9. Integrated optical detection of autonomous capillary microfluidic immunoassays:a hand-held point-of-care prototype.

    PubMed

    Novo, P; Chu, V; Conde, J P

    2014-07-15

    The miniaturization of biosensors using microfluidics has potential in enabling the development of point-of-care devices, with the added advantages of reduced time and cost of analysis with limits-of-detection comparable to those obtained through traditional laboratory techniques. Interfacing microfluidic devices with the external world can be difficult especially in aspects involving fluid handling and the need for simple sample insertion that avoids special equipment or trained personnel. In this work we present a point-of-care prototype system by integrating capillary microfluidics with a microfabricated photodiode array and electronic instrumentation into a hand-held unit. The capillary microfluidic device is capable of autonomous and sequential fluid flow, including control of the average fluid velocity at any given point of the analysis. To demonstrate the functionality of the prototype, a model chemiluminescence ELISA was performed. The performance of the integrated optical detection in the point-of-care prototype is equal to that obtained with traditional bench-top instrumentation. The photodiode signals were acquired, displayed and processed by a simple graphical user interface using a computer connected to the microcontroller through USB. The prototype performed integrated chemiluminescence ELISA detection in about 15 min with a limit-of-detection of ≈2 nM with an antibody-antigen affinity constant of ≈2×10(7) M(-1). Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A microfluidic system with integrated molecular imprinting polymer films for surface plasmon resonance detection

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Chiang; Lee, Gwo-Bin; Chien, Fan-Ching; Chen, Shean-Jen; Chen, Wen-Janq; Yang, Ming-Chang

    2006-07-01

    This paper presents a novel microfluidic system with integrated molecular imprinting polymer (MIP) films designed for surface plasmon resonance (SPR) biosensing of multiple nanoscale biomolecules. The innovative microfluidic chip uses pneumatic microvalves and micropumps to transport a precise amount of the biosample through multiple microchannels to sensing regions containing the locally spin-coated MIP films. The signals of SPR biosensing are basically proportional to the number of molecules adsorbed on the MIP films. Hence, a precise control of flow rates inside microchannels is important to determine the adsorption amount of the molecules in the SPR/MIP chips. The integration of micropumps and microvalves can automate the sample introduction process and precisely control the amount of the sample injection to the microfluidic system. The proposed biochip enables the label-free biosensing of biomolecules in an automatic format, and provides a highly sensitive, highly specific and high-throughput detection performance. Three samples, i.e. progesterone, cholesterol and testosterone, are successfully detected using the developed system. The experimental results show that the proposed SPR/MIP microfluidic chip provides a comparable sensitivity to that of large-scale SPR techniques, but with reduced sample consumption and an automatic format. As such, the developed biochip has significant potential for a wide variety of nanoscale biosensing applications. The preliminary results of the current paper were presented at Transducers 2005, Seoul, Korea, 5-9 June 2005.

  11. Binary centrifugal microfluidics enabling novel, digital addressable functions for valving and routing.

    PubMed

    Wang, Guanghui; Tan, Jie; Tang, Minghui; Zhang, Changbin; Zhang, Dongying; Ji, Wenbin; Chen, Junhao; Ho, Ho-Pui; Zhang, Xuping

    2018-03-16

    Centrifugal microfluidics or lab-on-a-disc (LOAD) is a promising branch of lab-on-a-chip or microfluidics. Besides effective fluid transportation and inherently available density-based sample separation in centrifugal microfluidics, uniform actuation of flow on the disc makes the platform compact and scalable. However, the natural radially outward centrifugal force in a LOAD system limits its capacity to perform complex fluid manipulation steps. In order to increase the fluid manipulation freedom and integration capacity of the LOAD system, we propose a binary centrifugal microfluidics platform. With the help of Euler force, our platform allows free switching of both left and right states based on a rather simple mechanical structure. The periodical switching of state would provide a "clock" signal for a sequence of droplet binary logic operations. With the binary state platform and the "clock" signal, we can accurately handle the droplet separately in each time step with a maximum main frequency of about 10 S s-1 (switching per second). Apart from droplet manipulations such as droplet generation and metering, we also demonstrate a series of droplet logic operations, such as binary valving, droplet routing and digital addressable droplet storage. Furthermore, complex bioassays such as the Bradford assay and DNA purification assay are demonstrated on a binary platform, which is totally impossible for a traditional LOAD system. Our binary platform largely improves the capability for logic operation on the LOAD platform, and it is a simple and promising approach for microfluidic lab-on-a-disc large-scale integration.

  12. Macro to Nano: A Simple Method for Transporting Cultured Cells from Milliliter Scale to Nanoliter Scale

    PubMed Central

    Seale, Kevin T.; Faley, Shannon L.; Chamberlain, Jeff; Wikswo, John P.

    2013-01-01

    Microfluidic devices are well suited for the study of metabolism and paracrine and autocrine signaling because they allow steady or intermittent perfusion of biological cells at cell densities that approach those in living tissue. They also enable the study of small populations of rare cells. However, it can be difficult to introduce the cells into a microfluidic device to achieve and control such densities without damaging or clumping the cells. We describe simple procedures that address the problem of efficient introduction of cells and cell culture media into microfluidic devices using small bore polyetheretherketone (PEEK) tubing and Hamilton gastight syringes. Suspension or adherent cells grown in cell culture flasks are centrifuged and extracted directly from the centrifuge pellet into the end of the PEEK tubing by aspiration. The tube end is then coupled to pre-punched channels in the polydimethylsiloxane (PDMS) microfluidic device by friction fitting. Controlled depression of the syringe plunger expels the cells into the microfluidic device only seconds following aspiration. The gastight syringes and PEEK tubing with PEEK fittings provide a noncompliant source of pressure and suction with a rapid response time that is well suited for short-term intra-microfluidic cellular studies. The benefits of this method are its simplicity, modest expense, the short preparation time required for loading appropriate numbers of cells, and the applicability of the technique to small quantities of rare or expensive cells. This should in turn lead to new applications of microfludic devices to biology and medicine. PMID:20511682

  13. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs.

    PubMed

    Colosi, Cristina; Costantini, Marco; Barbetta, Andrea; Dentini, Mariella

    2017-01-01

    3D bioprinting is an emerging field that can be described as a robotic additive biofabrication technology that has the potential to build tissues or organs. In general, bioprinting uses a computer-controlled printing device to accurately deposit cells and biomaterials into precise architectures with the goal of creating on demand organized multicellular tissue structures and eventually intra-organ vascular networks. The latter, in turn, will promote the host integration of the engineered tissue/organ in situ once implanted. Existing biofabrication techniques still lay behind this goal. Here, we describe a novel microfluidic printing head-integrated within a custom 3D bioprinter-that allows for the deposition of multimaterial and/or multicellular within a single scaffold by extruding simultaneously different bioinks or by rapidly switching between one bioink and another. The designed bioprinting method effectively moves toward the direction of creating viable tissues and organs for implantation in clinic and research in lab environments.

  14. In Vitro Microfluidic Models for Neurodegenerative Disorders.

    PubMed

    Osaki, Tatsuya; Shin, Yoojin; Sivathanu, Vivek; Campisi, Marco; Kamm, Roger D

    2018-01-01

    Microfluidic devices enable novel means of emulating neurodegenerative disease pathophysiology in vitro. These organ-on-a-chip systems can potentially reduce animal testing and substitute (or augment) simple 2D culture systems. Reconstituting critical features of neurodegenerative diseases in a biomimetic system using microfluidics can thereby accelerate drug discovery and improve our understanding of the mechanisms of several currently incurable diseases. This review describes latest advances in modeling neurodegenerative diseases in the central nervous system and the peripheral nervous system. First, this study summarizes fundamental advantages of microfluidic devices in the creation of compartmentalized cell culture microenvironments for the co-culture of neurons, glial cells, endothelial cells, and skeletal muscle cells and in their recapitulation of spatiotemporal chemical gradients and mechanical microenvironments. Then, this reviews neurodegenerative-disease-on-a-chip models focusing on Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Finally, this study discusses about current drawbacks of these models and strategies that may overcome them. These organ-on-chip technologies can be useful to be the first line of testing line in drug development and toxicology studies, which can contribute significantly to minimize the phase of animal testing steps. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Thermally driven microfluidic pumping via reversible shape memory polymers

    NASA Astrophysics Data System (ADS)

    Robertson, J. M.; Rodriguez, R. X.; Holmes, L. R., Jr.; Mather, P. T.; Wetzel, E. D.

    2016-08-01

    The need exists for autonomous microfluidic pumping systems that utilize environmental cues to transport fluid within a network of channels for such purposes as heat distribution, self-healing, or optical reconfiguration. Here, we report on reversible thermally driven microfluidic pumping enabled by two-way shape memory polymers. After developing a suitable shape memory polymer (SMP) through variation in the crosslink density, thin and flexible microfluidic devices were constructed by lamination of plastic films with channels defined by laser-cutting of double-sided adhesive film. SMP blisters integrated into the devices provide thermally driven pumping, while opposing elastic blisters are used to generate backpressure for reversible operation. Thermal cycling of the device was found to drive reversible fluid flow: upon heating to 60 °C, the SMP rapidly contracted to fill the surface channels with a transparent fluid, and upon cooling to 8 °C the flow reversed and the channel re-filled with black ink. Combined with a metallized backing layer, this device results in refection of incident light at high temperatures and absorption of light (at the portions covered with channels) at low temperatures. We discuss power-free, autonomous applications ranging from thermal regulation of structures to thermal indication via color change.

  16. Elasto-inertial microfluidics for bacteria separation from whole blood for sepsis diagnostics.

    PubMed

    Faridi, Muhammad Asim; Ramachandraiah, Harisha; Banerjee, Indradumna; Ardabili, Sahar; Zelenin, Sergey; Russom, Aman

    2017-01-04

    Bloodstream infections (BSI) remain a major challenge with high mortality rate, with an incidence that is increasing worldwide. Early treatment with appropriate therapy can reduce BSI-related morbidity and mortality. However, despite recent progress in molecular based assays, complex sample preparation steps have become critical roadblock for a greater expansion of molecular assays. Here, we report a size based, label-free, bacteria separation from whole blood using elasto-inertial microfluidics. In elasto-inertial microfluidics, the viscoelastic flow enables size based migration of blood cells into a non-Newtonian solution, while smaller bacteria remain in the streamline of the blood sample entrance and can be separated. We first optimized the flow conditions using particles, and show continuous separation of 5 μm particles from 2 μm at a yield of 95% for 5 µm particle and 93% for 2 µm particles at respective outlets. Next, bacteria were continuously separated at an efficiency of 76% from undiluted whole blood sample. We demonstrate separation of bacteria from undiluted while blood using elasto-inertial microfluidics. The label-free, passive bacteria preparation method has a great potential for downstream phenotypic and molecular analysis of bacteria.

  17. Recent advances in nonbiofouling PDMS surface modification strategies applicable to microfluidic technology

    PubMed Central

    Gokaltun, Aslihan; Yarmush, Martin L.; Asatekin, Ayse; Usta, O. Berk

    2017-01-01

    In the last decade microfabrication processes including rapid prototyping techniques have advanced rapidly and achieved a fairly mature stage. These advances have encouraged and enabled the use of microfluidic devices by a wider range of users with applications in biological separations and cell and organoid cultures. Accordingly, a significant current challenge in the field is controlling biomolecular interactions at interfaces and the development of novel biomaterials to satisfy the unique needs of the biomedical applications. Poly(dimethylsiloxane) (PDMS) is one of the most widely used materials in the fabrication of microfluidic devices. The popularity of this material is the result of its low cost, simple fabrication allowing rapid prototyping, high optical transparency, and gas permeability. However, a major drawback of PDMS is its hydrophobicity and fast hydrophobic recovery after surface hydrophilization. This results in significant nonspecific adsorption of proteins as well as small hydrophobic molecules such as therapeutic drugs limiting the utility of PDMS in biomedical microfluidic circuitry. Accordingly, here, we focus on recent advances in surface molecular treatments to prevent fouling of PDMS surfaces towards improving its utility and expanding its use cases in biomedical applications. PMID:28695160

  18. Concurrent DNA Preconcentration and Separation in Bipolar Electrode-Based Microfluidic Device

    PubMed Central

    Song, Hongjun; Wang, Yi; Garson, Charles; Pant, Kapil

    2015-01-01

    This paper presents a bipolar electrode (BPE) device in a microfluidic dual-channel design for concurrent preconcentration and separation of composite DNA containing samples. The novelty of the present effort relies on the combination of BPE-induced ion concentration polarization (ICP) and end-labeled free-solution electrophoresis (ELFSE). The ion concentration polarization effect arising from the faradaic reaction on the BPE is utilized to exert opposing electrophoretic and electroosmotic forces on the DNA samples. Meanwhile, end-labeled free-solution electrophoresis alters the mass-charge ratio to enable simultaneous DNA separation in free solution. The microfluidic device was fabricated using standard and soft lithography techniques to form gold-on-glass electrode capped with a PDMS microfluidic channel. Experimental testing with various DNA samples was carried out over a range of applied electric field. Concentration ratios up to 285× within 5 minutes for a 102-mer DNA, and concurrent preconcentration and free-solution separation of binary mixture of free and bound 102-mer DNA within 6 minutes was demonstrated. The effect of applied electric field was also interrogated with respect to pertinent performance metrics of preconcentration and separation. PMID:26005497

  19. X-ray transparent microfluidic chip for mesophase-based crystallization of membrane proteins and on-chip structure determination

    DOE PAGES

    Khvostichenko, Daria S.; Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.; ...

    2014-08-21

    Crystallization from lipidic mesophase matrices is a promising route to diffraction-quality crystals and structures of membrane proteins. The microfluidic approach reported here eliminates two bottlenecks of the standard mesophase-based crystallization protocols: (i) manual preparation of viscous mesophases and (ii) manual harvesting of often small and fragile protein crystals. In the approach reported here, protein-loaded mesophases are formulated in an X-ray transparent microfluidic chip using only 60 nL of the protein solution per crystallization trial. The X-ray transparency of the chip enables diffraction data collection from multiple crystals residing in microfluidic wells, eliminating the normally required manual harvesting and mounting ofmore » individual crystals. In addition, we validated our approach by on-chip crystallization of photosynthetic reaction center, a membrane protein from Rhodobacter sphaeroides, followed by solving its structure to a resolution of 2.5 Å using X-ray diffraction data collected on-chip under ambient conditions. A moderate conformational change in hydrophilic chains of the protein was observed when comparing the on-chip, room temperature structure with known structures for which data were acquired under cryogenic conditions.« less

  20. Enhanced Quality Factor Label-free Biosensing with Micro-Cantilevers Integrated into Microfluidic Systems.

    PubMed

    Kartanas, Tadas; Ostanin, Victor; Challa, Pavan Kumar; Daly, Ronan; Charmet, Jerome; Knowles, Tuomas P J

    2017-11-21

    Microelectromechanical systems (MEMS) have enabled the development of a new generation of sensor platforms. Acoustic sensor operation in liquid, the native environment of biomolecules, causes, however, significant degradation of sensing performance due to viscous drag and relies on the availability of capture molecules to bind analytes of interest to the sensor surface. Here, we describe a strategy to interface MEMS sensors with microfluidic platforms through an aerosol spray. Our sensing platform comprises a microfluidic spray nozzle and a microcantilever array operated in dynamic mode within a closed loop oscillator. A solution containing the analyte is sprayed uniformly through picoliter droplets onto the microcantilever surface; the micrometer-scale drops evaporate rapidly and leave the solutes behind, adding to the mass of the cantilever. This sensing scheme results in a 50-fold increase in the quality factor compared to operation in liquid, yet allows the analytes to be introduced into the sensing system from a solution phase. It achieves a 370 femtogram limit of detection, and we demonstrate quantitative label-free analysis of inorganic salts and model proteins. These results demonstrate that the standard resolution limits of cantilever sensing in dynamic mode can be overcome with the integration of spray microfluidics with MEMS.

  1. X-ray Transparent Microfluidic Chip for Mesophase-Based Crystallization of Membrane Proteins and On-Chip Structure Determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khvostichenko, Daria S.; Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.

    2014-10-01

    Crystallization from lipidic mesophase matrices is a promising route to diffraction-quality crystals and structures of membrane proteins. The microfluidic approach reported here eliminates two bottlenecks of the standard mesophase-based crystallization protocols: (i) manual preparation of viscous mesophases and (ii) manual harvesting of often small and fragile protein crystals. In the approach reported here, protein-loaded mesophases are formulated in an X-ray transparent microfluidic chip using only 60 nL of the protein solution per crystallization trial. The X-ray transparency of the chip enables diffraction data collection from multiple crystals residing in microfluidic wells, eliminating the normally required manual harvesting and mounting ofmore » individual crystals. We validated our approach by on-chip crystallization of photosynthetic reaction center, a membrane protein from Rhodobacter sphaeroides, followed by solving its structure to a resolution of 2.5 Å using X-ray diffraction data collected on-chip under ambient conditions. A moderate conformational change in hydrophilic chains of the protein was observed when comparing the on-chip, room temperature structure with known structures for which data were acquired under cryogenic conditions.« less

  2. Method for forming polymerized microfluidic devices

    DOEpatents

    Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.; Renzi, Ronald F.; Claudnic, Mark R.

    2013-03-12

    Methods for making a microfluidic device according to embodiments of the present invention include defining.about.cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  3. Soft-state biomicrofluidic pulse generator for single cell analysis

    NASA Astrophysics Data System (ADS)

    Sabounchi, Poorya; Ionescu-Zanetti, Cristian; Chen, Roger; Karandikar, Manjiree; Seo, Jeonggi; Lee, Luke P.

    2006-05-01

    We present the design, fabrication, and characterization of a soft-state biomicrofluidic pulse generator for single cell analysis. Hydrodynamic cell trapping via lateral microfluidic junctions allows the trapping of single cells from a bulk suspension. Microfluidic injection sites adjacent to the cell-trapping channels enable the pulsed delivery of nanoliter volumes of biochemical reagent. We demonstrated the application and removal of reagent at a frequency of 10Hz with a rise time of less than 33ms and a reagent consumption rate of 0.2nL/s. It is shown that this system operates as a low-pass filter with a cutoff frequency of 7Hz.

  4. Protein detection system

    DOEpatents

    Fruetel, Julie A [Livermore, CA; Fiechtner, Gregory J [Bethesda, MD; Kliner, Dahv A. V. [San Ramon, CA; McIlroy, Andrew [Livermore, CA

    2009-05-05

    The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 10.sup.3 to 10.sup.4 (to .about.1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.

  5. Material-Efficient Microfluidic Platform for Exploratory Studies of Visible-Light Photoredox Catalysis.

    PubMed

    Coley, Connor W; Abolhasani, Milad; Lin, Hongkun; Jensen, Klavs F

    2017-08-07

    We present an automated microfluidic platform for in-flow studies of visible-light photoredox catalysis in liquid or gas-liquid reactions at the 15 μL scale. An oscillatory flow strategy enables a flexible residence time while preserving the mixing and heat transfer advantages of flow systems. The adjustable photon flux made possible with the platform is characterized using actinometry. Case studies of oxidative hydroxylation of phenylboronic acids and dimerization of thiophenol demonstrate the capabilities and advantages of the system. Reaction conditions identified through droplet screening translate directly to continuous synthesis with minor platform modifications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Invited Review Article: Review of centrifugal microfluidic and bio-optical disks

    PubMed Central

    Nolte, David D.

    2009-01-01

    Spinning biodisks have advantages that make them attractive for specialized biochip applications. The two main classes of spinning biodisks are microfluidic disks and bio-optical compact disks (BioCD). Microfluidic biodisks take advantage of noninertial pumping for lab-on-a-chip devices using noninertial valves and switches under centrifugal and Coriolis forces to distribute fluids about the disks. BioCDs use spinning-disk interferometry, under the condition of common-path phase quadrature, to perform interferometric label-free detection of molecular recognition and binding. The optical detection of bound molecules on a disk is facilitated by rapid spinning that enables high-speed repetitive sampling to eliminate 1∕f noise through common-mode rejection of intensity fluctuations and extensive signal averaging. Multiple quadrature classes have been developed, such as microdiffraction, in-line, phase contrast, and holographic adaptive optics. Thin molecular films are detected through the surface dipole density with a surface height sensitivity for the detection of protein spots that is approximately 1 pm. This sensitivity easily resolves a submonolayer of solid-support immobilized antibodies and their antigen targets. Fluorescence and light scattering provide additional optical detection techniques on spinning disks. Immunoassays have been applied to haptoglobin using protein A∕G immobilization of antibodies and to prostate specific antigen. Small protein spots enable scalability to many spots per disk for high-throughput and highly multiplexed immonoassays. PMID:19895047

  7. Determining the Partial Pressure of Volatile Components via Substrate-Integrated Hollow Waveguide Infrared Spectroscopy with Integrated Microfluidics.

    PubMed

    Kokoric, Vjekoslav; Theisen, Johannes; Wilk, Andreas; Penisson, Christophe; Bernard, Gabriel; Mizaikoff, Boris; Gabriel, Jean-Christophe P

    2018-04-03

    A microfluidic system combined with substrate-integrated hollow waveguide (iHWG) vapor phase infrared spectroscopy has been developed for evaluating the chemical activity of volatile compounds dissolved in complex fluids. Chemical activity is an important yet rarely exploited parameter in process analysis and control. Access to chemical activity parameters enables systematic studies on phase diagrams of complex fluids, the detection of aggregation processes, etc. The instrumental approach developed herein uniquely enables controlled evaporation/permeation from a sample solution into a hollow waveguide structure and the analysis of the partial pressures of volatile constituents. For the example of a binary system, it was shown that the chemical activity may be deduced from partial pressure measurements at thermodynamic equilibrium conditions. The combined microfluidic-iHWG midinfrared sensor system (μFLUID-IR) allows the realization of such studies in the absence of any perturbations provoked by sampling operations, which is unavoidable using state-of-the-art analytical techniques such as headspace gas chromatography. For demonstration purposes, a water/ethanol mixture was investigated, and the derived data was cross-validated with established literature values at different mixture ratios. Next to perturbation-free measurements, a response time of the sensor <150 s ( t 90 ) at a recovery time <300 s ( t recovery ) has been achieved, which substantiates the utility of μFLUID-IR for future process analysis-and-control applications.

  8. Mkit: A Cell Migration Assay Based on Microfluidic Device and Smartphone

    PubMed Central

    Yang, Ke; Wu, Jiandong; Peretz-Soroka, Hagit; Zhu, Ling; Li, Zhigang; Sang, Yaoshuo; Hipolito, Jolly; Zhang, Michael; Santos, Susy; Hillier, Craig; de Faria, Ricardo Lobato; Liu, Yong; Lin, Francis

    2017-01-01

    Mobile sensing based on the integration of microfluidic device and smartphone, so-called MS2 technology, has enabled many applications over recent years, and continues to stimulate growing interest in both research communities and industries. In particular, it has been envisioned that MS2 technology can be developed for various cell functional assays to enable basic research and clinical applications. Toward this direction, in this paper, we describe the development of a MS2-based cell functional assay for testing cell migration (the Mkit). The system is constructed as an integrated test kit, which includes microfluidic chips, a smartphone-based imaging platform, the phone apps for image capturing and data analysis, and a set of reagent and accessories for performing the cell migration assay. We demonstrated that the Mkit can effectively measure purified neutrophil and cancer cell chemotaxis. Furthermore, neutrophil chemotaxis can be tested from a drop of whole blood using the Mkit with red blood cell (RBC) lysis. The effects of chemoattractant dose and gradient profile on neutrophil chemotaxis were also tested using the Mkit. In addition to research applications, we demonstrated the effective use of the Mkit for on-site test at the hospital and for testing clinical samples from chronic obstructive pulmonary disease patient. Thus, this developed Mkit provides an easy and integrated experimental platform for cell migration related research and potential medical diagnostic applications. PMID:28772229

  9. Microfluidic device enabled quantitative time-lapse microscopic-photography for phenotyping vegetative and reproductive phases in Fusarium virguliforme, which is pathogenic to soybean.

    PubMed

    Marshall, Jill; Qiao, Xuan; Baumbach, Jordan; Xie, Jingyu; Dong, Liang; Bhattacharyya, Madan K

    2017-03-15

    Time-lapse microscopic-photography allows in-depth phenotyping of microorganisms. Here we report development of such a system using a microfluidic device, generated from polydimethylsiloxane and glass slide, placed on a motorized stage of a microscope for conducting time-lapse microphotography of multiple observations in 20 channels simultaneously. We have demonstrated the utility of the device in studying growth, germination and sporulation in Fusarium virguliforme that causes sudden death syndrome in soybean. To measure the growth differences, we developed a polyamine oxidase fvpo1 mutant in this fungus that fails to grow in minimal medium containing polyamines as the sole nitrogen source. Using this system, we demonstrated that the conidiospores of the pathogen take an average of five hours to germinate. During sporulation, it takes an average of 10.5 h for a conidiospore to mature and get detached from its conidiophore for the first time. Conidiospores are developed in a single conidiophore one after another. The microfluidic device enabled quantitative time-lapse microphotography reported here should be suitable for screening compounds, peptides, micro-organisms to identify fungitoxic or antimicrobial agents for controlling serious plant pathogens. The device could also be applied in identifying suitable target genes for host-induced gene silencing in pathogens for generating novel disease resistance in crop plants.

  10. An Integrated Microfluidic Processor for DNA-Encoded Combinatorial Library Functional Screening

    PubMed Central

    2017-01-01

    DNA-encoded synthesis is rekindling interest in combinatorial compound libraries for drug discovery and in technology for automated and quantitative library screening. Here, we disclose a microfluidic circuit that enables functional screens of DNA-encoded compound beads. The device carries out library bead distribution into picoliter-scale assay reagent droplets, photochemical cleavage of compound from the bead, assay incubation, laser-induced fluorescence-based assay detection, and fluorescence-activated droplet sorting to isolate hits. DNA-encoded compound beads (10-μm diameter) displaying a photocleavable positive control inhibitor pepstatin A were mixed (1920 beads, 729 encoding sequences) with negative control beads (58 000 beads, 1728 encoding sequences) and screened for cathepsin D inhibition using a biochemical enzyme activity assay. The circuit sorted 1518 hit droplets for collection following 18 min incubation over a 240 min analysis. Visual inspection of a subset of droplets (1188 droplets) yielded a 24% false discovery rate (1166 pepstatin A beads; 366 negative control beads). Using template barcoding strategies, it was possible to count hit collection beads (1863) using next-generation sequencing data. Bead-specific barcodes enabled replicate counting, and the false discovery rate was reduced to 2.6% by only considering hit-encoding sequences that were observed on >2 beads. This work represents a complete distributable small molecule discovery platform, from microfluidic miniaturized automation to ultrahigh-throughput hit deconvolution by sequencing. PMID:28199790

  11. An Integrated Microfluidic Processor for DNA-Encoded Combinatorial Library Functional Screening.

    PubMed

    MacConnell, Andrew B; Price, Alexander K; Paegel, Brian M

    2017-03-13

    DNA-encoded synthesis is rekindling interest in combinatorial compound libraries for drug discovery and in technology for automated and quantitative library screening. Here, we disclose a microfluidic circuit that enables functional screens of DNA-encoded compound beads. The device carries out library bead distribution into picoliter-scale assay reagent droplets, photochemical cleavage of compound from the bead, assay incubation, laser-induced fluorescence-based assay detection, and fluorescence-activated droplet sorting to isolate hits. DNA-encoded compound beads (10-μm diameter) displaying a photocleavable positive control inhibitor pepstatin A were mixed (1920 beads, 729 encoding sequences) with negative control beads (58 000 beads, 1728 encoding sequences) and screened for cathepsin D inhibition using a biochemical enzyme activity assay. The circuit sorted 1518 hit droplets for collection following 18 min incubation over a 240 min analysis. Visual inspection of a subset of droplets (1188 droplets) yielded a 24% false discovery rate (1166 pepstatin A beads; 366 negative control beads). Using template barcoding strategies, it was possible to count hit collection beads (1863) using next-generation sequencing data. Bead-specific barcodes enabled replicate counting, and the false discovery rate was reduced to 2.6% by only considering hit-encoding sequences that were observed on >2 beads. This work represents a complete distributable small molecule discovery platform, from microfluidic miniaturized automation to ultrahigh-throughput hit deconvolution by sequencing.

  12. Enabling Microfluidics: From Clean Rooms to Makerspaces

    DTIC Science & Technology

    2016-09-30

    anyone can make 133 and rapidly scale to bulk manufacturing . To enable others to take part in this type of product 134 design and development, we...cost molds for a fee; however, the 77 design process is slowed down waiting for molds to be manufactured and shipped. While 78 PDMS devices may be...finished prototype into a commercial product . An example of a rapid 101 prototyping method amenable to scaled-up manufacturing is laser cutting. Figure

  13. Surface-tension driven open microfluidic platform for hanging droplet culture

    PubMed Central

    de Groot, T. E.; Veserat, K. S.; Berthier, E.; Beebe, D. J.; Theberge, A. B.

    2015-01-01

    The hanging droplet technique for three-dimensional tissue culture has been used for decades in biology labs, with the core technology remaining relatively unchanged. Recently microscale approaches have expanded the capabilities of the hanging droplet method, making it more user-friendly. We present a spontaneously driven, open hanging droplet culture platform to address many limitations of current platforms. Our platform makes use of two interconnected hanging droplet wells, a larger well where cells are cultured and a smaller well for user interface via a pipette. The two-well system results in lower shear stress in the culture well during fluid exchange, enabling shear sensitive or non-adherent cells to be cultured in a droplet. The ability to perform fluid exchanges in-droplet enables long-term culture, treatment, and characterization without disruption of the culture. The open well format of the platform was utilized to perform time-dependent coculture, enabling culture configurations with bone tissue scaffolds and cells grown in suspension. The open nature of the system allowed the direct addition or removal of tissue over the course of an experiment, manipulations that would be impractical in other microfluidic or hanging droplet culture platforms. PMID:26660268

  14. A Novel 96well-formatted Micro-gap Plate Enabling Drug Response Profiling on Primary Tumour Samples

    NASA Astrophysics Data System (ADS)

    Ma, Wei-Yuan; Hsiung, Lo-Chang; Wang, Chen-Ho; Chiang, Chi-Ling; Lin, Ching-Hung; Huang, Chiun-Sheng; Wo, Andrew M.

    2015-04-01

    Drug-based treatments are the most widely used interventions for cancer management. Personalized drug response profiling remains inherently challenging with low cell count harvested from tumour sample. We present a 96well-formatted microfluidic plate with built-in micro-gap that preserves up to 99.2% of cells during multiple assay/wash operation and only 9,000 cells needed for a single reagent test (i.e. 1,000 cells per test spot x 3 selected concentration x triplication), enabling drug screening and compatibility with conventional automated workstations. Results with MCF7 and MDA-MB-231 cell lines showed that no statistical significance was found in dose-response between the device and conventional 96-well plate control. Primary tumour samples from breast cancer patients tested in the device also showed good IC50 prediction. With drug screening of primary cancer cells must consider a wide range of scenarios, e.g. suspended/attached cell types and rare/abundant cell availability, the device enables high throughput screening even for suspended cells with low cell count since the signature microfluidic cell-trapping feature ensures cell preservation in a multiple solution exchange protocol.

  15. Complex Microfluidic Systems Architectures and Applications to Micropower Generation

    DTIC Science & Technology

    2010-07-07

    signal. Images are recorded via an Hamamatsu Orca camera and processed with Matlab. The observed results show the ability of the micromixer to distribute...Generator was produced. References [1] F. Bottausci, C. Cardonne, C. Meinhart, and I. Mezić. An ultrashort mixing length micromixer : The shear superposition... micromixer . Lab on a Chip, 7(3):396–398, 2007. [2] F. Bottausci, I. Mezić, C.D. Meinhart, and C. Cardonne. Mixing in the shear superposition

  16. Optofluidic Microsystems for Chemical and Biological Analysis

    PubMed Central

    Fan, Xudong; White, Ian M.

    2011-01-01

    Optofluidics – the synergistic integration of photonics and microfluidics – has recently emerged as a new analytical field that provides a number of unique characteristics for enhanced sensing performance and simplification of microsystems. In this review, we describe various optofluidic architectures developed in the past five years, emphasize the mechanisms by which optofluidics enhances bio/chemical analysis capabilities, including sensing and the precise control of biological micro/nanoparticles, and envision new research directions to which optofluidics leads. PMID:22059090

  17. Microscale solution manipulation using photopolymerized hydrogel membranes and induced charge electroosmosis micropumps

    NASA Astrophysics Data System (ADS)

    Paustian, Joel Scott

    Microfluidic technology is playing an ever-expanding role in advanced chemical and biological devices, with diverse applications including medical diagnostics, high throughput research tools, chemical or biological detection, separations, and controlled particle fabrication. Even so, local (microscale) modification of solution properties within microchannels, such as pressure, solute concentration, and voltage remains a challenge, and improved spatiotemporal control would greatly enhance the capabilities of microfluidics. This thesis demonstrates and characterizes two microfluidic tools to enhance local solution control. I first describe a microfluidic pump that uses an electrokinetic effect, Induced-Charge Electroosmosis (ICEO), to generate pressure on-chip. In ICEO, steady flows are driven by AC fields along metal-electrolyte interfaces. I design and microfabricate a pump that exploits this effect to generate on-chip pressures. The ICEO pump is used to drive flow along a microchannel, and the pressure is measured as a function of voltage, frequency, and electrolyte composition. This is the first demonstration of chip-scale flows driven by ICEO, which opens the possibility for ICEO pumping in self-contained microfluidic devices. Next, I demonstrate a method to create thin local membranes between microchannels, which enables local diffusive delivery of solute. These ``Hydrogel Membrane Microwindows'' are made by photopolymerizing a hydrogel which serves as a local ``window'' for solute diffusion and electromigration between channels, but remains a barrier to flow. I demonstrate three novel experimental capabilities enabled by the hydrogel membranes: local concentration gradients, local electric currents, and rapid diffusive composition changes. I conclude by applying the hydrogel membranes to study solvophoresis, the migration of particles in solvent gradients. Solvent gradients are present in many chemical processes, but migration of particles within these gradients is not well understood. An improved understanding would allow solvophoresis to be engineered (e.g. for coatings and thin film deposition) or reduced (e.g. in fouling processes during reactions and separations). Toward this end, I perform velocity measurements of colloidal particles at various ethanol-water concentrations and gradient strengths. The velocity was found to depend on the mole fraction via the equation u = DSP▿ln X, where u is the velocity, DSP is the mobility, and X is the ethanol mole fraction.

  18. Localized, stepwise template growth of functional nanowires from an amino acid-supported framework in a microfluidic chip.

    PubMed

    Puigmartí-Luis, Josep; Rubio-Martínez, Marta; Imaz, Inhar; Cvetković, Benjamin Z; Abad, Llibertat; Pérez Del Pino, Angel; Maspoch, Daniel; Amabilino, David B

    2014-01-28

    A spatially controlled synthesis of nanowire bundles of the functional crystalline coordination polymer (CP) Ag(I)TCNQ (tetracyanoquinodimethane) from previously fabricated and trapped monovalent silver CP (Ag(I)Cys (cysteine)) using a room-temperature microfluidic-assisted templated growth method is demonstrated. The incorporation of microengineered pneumatic clamps in a two-layer polydimethylsiloxane-based (PDMS) microfluidic platform was used. Apart from guiding the formation of the Ag(I)Cys coordination polymer, this microfluidic approach enables a local trapping of the in situ synthesized structures with a simple pneumatic clamp actuation. This method not only enables continuous and multiple chemical events to be conducted upon the trapped structures, but the excellent fluid handling ensures a precise chemical activation of the amino acid-supported framework in a position controlled by interface and clamp location that leads to a site-specific growth of Ag(I)TCNQ nanowire bundles. The synthesis is conducted stepwise starting with Ag(I)Cys CPs, going through silver metal, and back to a functional CP (Ag(I)TCNQ); that is, a novel microfluidic controlled ligand exchange (CP → NP → CP) is presented. Additionally, the pneumatic clamps can be employed further to integrate the conductive Ag(I)TCNQ nanowire bundles onto electrode arrays located on a surface, hence facilitating the construction of the final functional interfaced systems from solution specifically with no need for postassembly manipulation. This localized self-supported growth of functional matter from an amino acid-based CP shows how sequential localized chemistry in a fluid cell can be used to integrate molecular systems onto device platforms using a chip incorporating microengineered pneumatic tools. The control of clamp pressure and in parallel the variation of relative flow rates of source solutions permit deposition of materials at different locations on a chip that could be useful for device array preparation. The in situ reaction and washing procedures make this approach a powerful one for the fabrication of multicomponent complex nanomaterials using a soft bottom-up approach.

  19. Ultrasensitive Nanoelectrospray Ionization-Mass Spectrometry using Poly(dimethylsiloxane) Microchips with Monolithically Integrated Emitters

    PubMed Central

    Sun, Xuefei; Kelly, Ryan T.; Tang, Keqi; Smith, Richard D.

    2010-01-01

    Summary Poly(dimethylsiloxane) (PDMS) is a widely used substrate for microfluidic devices, as it enables facile fabrication and has other distinctive properties. However, for applications requiring highly sensitive nanoelectrospray ionization mass spectrometry (nanoESI-MS) detection, the use of PDMS microdevices has been hindered by a large chemical background in the mass spectra that originates from the leaching of uncross-linked oligomers and other contaminants from the substrate. A more general challenge is that microfluidic devices containing monolithically integrated electrospray emitters are frequently unable to operate stably in the nanoflow regime where the best sensitivity is achieved. In this report, we extracted the contaminants from PDMS substrates using a series of solvents, eliminating the background observed when untreated PDMS microchips are used for nanoESI-MS, such that peptides at concentrations of 1 nM were readily detected. Optimization of the integrated emitter geometry enabled stable operation at flow rates as low as 10 nL/min. PMID:20617264

  20. Coplanar electrode microfluidic chip enabling accurate sheathless impedance cytometry.

    PubMed

    De Ninno, Adele; Errico, Vito; Bertani, Francesca Romana; Businaro, Luca; Bisegna, Paolo; Caselli, Federica

    2017-03-14

    Microfluidic impedance cytometry offers a simple non-invasive method for single-cell analysis. Coplanar electrode chips are especially attractive due to ease of fabrication, yielding miniaturized, reproducible, and ultimately low-cost devices. However, their accuracy is challenged by the dependence of the measured signal on particle trajectory within the interrogation volume, that manifests itself as an error in the estimated particle size, unless any kind of focusing system is used. In this paper, we present an original five-electrode coplanar chip enabling accurate particle sizing without the need for focusing. The chip layout is designed to provide a peculiar signal shape from which a new metric correlating with particle trajectory can be extracted. This metric is exploited to correct the estimated size of polystyrene beads of 5.2, 6 and 7 μm nominal diameter, reaching coefficient of variations lower than the manufacturers' quoted values. The potential impact of the proposed device in the field of life sciences is demonstrated with an application to Saccharomyces cerevisiae yeast.

  1. Flexible planar microfluidic chip employing a light emitting diode and a PIN-photodiode for portable flow cytometers.

    PubMed

    Kettlitz, Siegfried W; Valouch, Sebastian; Sittel, Wiebke; Lemmer, Uli

    2012-01-07

    Detection of fluorescence particles is a key method of flow cytometry. We evaluate the performance of a design for a microfluidic fluorescence particle detection device. Due to the planar design with low layer thicknesses, we avoid optical components such as lenses or dichroic mirrors and substitute them with a shadow mask and colored film filters. A commercially available LED is used as the light source and a PIN-photodiode as detector. This design approach reduces component cost and power consumption and enables supplying the device with power from a standard USB port. From evaluation of this design, we obtain a maximum particle detection frequency of up to 600 particles per second at a sensitivity of better than 4.7 × 10(5) MESF (molecules of equivalent soluble fluorochrome) measured with particles for FITC sensitivity calibration. Lowering the flow rate increases the instrument sensitivity by an order of magnitude enabling the detection of particles with 4.5 × 10(4) MESF.

  2. Microfluidic PDMS on paper (POP) devices.

    PubMed

    Shangguan, Jin-Wen; Liu, Yu; Pan, Jian-Bin; Xu, Bi-Yi; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-12-20

    In this paper, we propose a generalized concept of microfluidic polydimethylsiloxane (PDMS) on paper (POP) devices, which combines well the merits of paper chips and PDMS chips. First, we optimized the conditions for accurate PDMS spatial patterning on paper, based on screen printing and a high temperature enabled superfast curing technique, which enables PDMS patterning to an accuracy of tens of microns in less than ten seconds. This, in turn, makes it available for seamless, reversible and reliable integration of the resulting paper layer with other PDMS channel structures. The integrated POP devices allow for both porous paper and smooth channels to be spatially defined on the devices, greatly extending the flexibility for designers to be able to construct powerful functional structures. To demonstrate the versatility of this design, a prototype POP device for the colorimetric analysis of liver function markers, serum protein, alkaline phosphatase (ALP) and aspartate aminotransferase (AST), was constructed. On this POP device, quantitative sample loading, mixing and multiplex analysis have all been realized.

  3. High-throughput automated microfluidic sample preparation for accurate microbial genomics

    PubMed Central

    Kim, Soohong; De Jonghe, Joachim; Kulesa, Anthony B.; Feldman, David; Vatanen, Tommi; Bhattacharyya, Roby P.; Berdy, Brittany; Gomez, James; Nolan, Jill; Epstein, Slava; Blainey, Paul C.

    2017-01-01

    Low-cost shotgun DNA sequencing is transforming the microbial sciences. Sequencing instruments are so effective that sample preparation is now the key limiting factor. Here, we introduce a microfluidic sample preparation platform that integrates the key steps in cells to sequence library sample preparation for up to 96 samples and reduces DNA input requirements 100-fold while maintaining or improving data quality. The general-purpose microarchitecture we demonstrate supports workflows with arbitrary numbers of reaction and clean-up or capture steps. By reducing the sample quantity requirements, we enabled low-input (∼10,000 cells) whole-genome shotgun (WGS) sequencing of Mycobacterium tuberculosis and soil micro-colonies with superior results. We also leveraged the enhanced throughput to sequence ∼400 clinical Pseudomonas aeruginosa libraries and demonstrate excellent single-nucleotide polymorphism detection performance that explained phenotypically observed antibiotic resistance. Fully-integrated lab-on-chip sample preparation overcomes technical barriers to enable broader deployment of genomics across many basic research and translational applications. PMID:28128213

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasdekis, Andreas E.; Stephanopoulos, Gregory

    The sampling and manipulation of cells down to the individual has been of substantial interest since the very beginning of Life Sciences. Herein, our objective is to highlight the most recent developments in single cell manipulation, as well as pioneering ones. First, flow-through methods will be discussed, namely methods in which the single cells flow continuously in an ordered manner during their analysis. This section will be followed by confinement techniques that enable cell isolation and confinement in one, two- or three-dimensions. Flow cytometry and droplet microfluidics are the two most common methods of flow-through analysis. While both are high-throughputmore » techniques, their difference lays in the fact that the droplet encapsulated cells experience a restricted and personal microenvironment, while in flow cytometry cells experience similar nutrient and stimuli initial concentrations. These methods are rather well established; however, they recently enabled immense strides in single cell phenotypic analysis, namely the identification and analysis of metabolically distinct individuals from an isogenic population using both droplet microfluidics and flow cytometry.« less

  5. Large-scale microfluidics providing high-resolution and high-throughput screening of Caenorhabditis elegans poly-glutamine aggregation model

    NASA Astrophysics Data System (ADS)

    Mondal, Sudip; Hegarty, Evan; Martin, Chris; Gökçe, Sertan Kutal; Ghorashian, Navid; Ben-Yakar, Adela

    2016-10-01

    Next generation drug screening could benefit greatly from in vivo studies, using small animal models such as Caenorhabditis elegans for hit identification and lead optimization. Current in vivo assays can operate either at low throughput with high resolution or with low resolution at high throughput. To enable both high-throughput and high-resolution imaging of C. elegans, we developed an automated microfluidic platform. This platform can image 15 z-stacks of ~4,000 C. elegans from 96 different populations using a large-scale chip with a micron resolution in 16 min. Using this platform, we screened ~100,000 animals of the poly-glutamine aggregation model on 25 chips. We tested the efficacy of ~1,000 FDA-approved drugs in improving the aggregation phenotype of the model and identified four confirmed hits. This robust platform now enables high-content screening of various C. elegans disease models at the speed and cost of in vitro cell-based assays.

  6. Microfluidic Technology: Uncovering the Mechanisms of Nanocrystal Nucleation and Growth.

    PubMed

    Lignos, Ioannis; Maceiczyk, Richard; deMello, Andrew J

    2017-05-16

    The controlled and reproducible formation of colloidal semiconductor nanocrystals (or quantum dots) is of central importance in nanoscale science and technology. The tunable size- and shape-dependent properties of such materials make them ideal candidates for the development of efficient and low-cost displays, solar cells, light-emitting devices, and catalysts. The formidable difficulties associated with the macroscale preparation of semiconductor nanocrystals (possessing bespoke optical and chemical properties) result from the fact that underlying reaction mechanisms are complex and that the reactive environment is difficult to control. Automated microfluidic reactors coupled with monitoring systems and optimization algorithms aim to elucidate complex reaction mechanisms that govern both nucleation and growth of nanocrystals. Such platforms are ideally suited for the efficient optimization of reaction parameters, assuring the reproducible synthesis of nanocrystals with user-defined properties. This Account aims to inform the nanomaterials community about how microfluidic technologies can supplement flask experimentation for the ensemble investigation of formation mechanisms and design of semiconductor nanocrystals. We present selected studies outlining the preparation of quantum dots using microfluidic systems with integrated analytics. Such microfluidic reaction systems leverage the ability to extract real-time information regarding optical, structural, and compositional characteristics of quantum dots during nucleation and growth stages. The Account further highlights our recent research activities focused on the development and application of droplet-based microfluidics with integrated optical detection systems for the efficient and rapid screening of reaction conditions and a better understanding of the mechanisms of quantum dot synthesis. We describe the features and operation of fully automated microfluidic reactors and their subsequent application to high-throughput parametric screening of metal chalcogenides (CdSe, PbS, PbSe, CdSeTe), ternary and core/shell heavy metal-free quantum dots (CuInS 2 , CuInS 2 /ZnS), and all-inorganic perovskite nanocrystals (CsPbX 3 , X = Cl, Br, I) syntheses. Critically, concurrent absorption and photoluminescence measurements on millisecond to second time scales allow the extraction of basic parameters governing nanocrystal formation. Moreover, experimental data obtained from such microfluidic platforms can be directly supported by theoretical models of nucleation and growth. To this end, we also describe the use of metamodeling algorithms able to accurately predict optimized conditions of CdSe synthesis using a minimal number of sample parameters. Importantly, we discuss future challenges that must be addressed before microfluidic technologies are in a position to be widely adopted for the on-demand formation of nanocrystals. From a technology perspective, these challenges include the development of novel engineering platforms for the formation of complex architectures, the integration of monitoring systems able to harvest photophysical and structural information, the incorporation of continuous purification systems, and the application of optimization algorithms to multicomponent quantum dot systems.

  7. Molecular separations using nanostructured porous thin films fabricated by glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Bezuidenhout, Louis Wentzel

    Biomolecular separation techniques are an enabling technology that indirectly in.uence many aspects of our lives. Advances have led to faster analyses, reduced costs, higher specificity, and new analytical techniques, impacting areas such as health care, environmental monitoring, polymer sciences, agriculture, and nutrition. Further development of separations technology is anticipated to follow the path of computing technology such that miniaturization through the development of microfluidics technology, lab-on-a-chip systems, and other integrative, multi-component systems will further extend our analysis capabilities. Creation of new and improvement of existing separation technologies is an integral part of the pathway to miniaturized systems. the work of this thesis investigates molecular separations using porous nanostructured films fabricated by the thin film process glancing angle deposition (GLAD). Structural architecture, pore size and shape, and film density can be finely controlled to produce high-surface area thin films with engineered morphology. The characteristic size scales and structural control of GLAD films are well-suited to biomolecules and separation techniques, motivating investigation into the utility and performance of GLAD films for biomolecular separations. This project consisted of three phases. First, chromatographic separation of dye molecules on silica GLAD films was demonstrated by thin layer chromatography Direct control of film nanostructure altered the separation characteristics; most strikingly, anisotropic structures provided two-dimensional analyte migration. Second, nanostructures made with GLAD were integrated in PDMS microfluidic channels using a sacrificial etching process; DNA molecules (10/48 kbp and 6/10/20 kbp mixtures) were electrophoretically separated on a microfluidic chip using a porous bed of SiO2 vertical posts. Third, mass spectrometry of proteins and drugs in the mass range of 100-1300 m/z was performed using laser desorption/ionization (LDI) on silicon GLAD films, and the influence of film thickness, porosity, structure, and substrate on performance was characterized. The application of GLAD nanostructured thin films to biomolecular separations is demonstrated and validated in this thesis. Chromatographic separation of dye molecules, electrophoretic separation of DNA molecules, and mass spectrometric isolation of small proteins and drug molecules by laser desorption ionization were demonstrated using GLAD films. All three methods yielded promising results and establish GLAD as a potential technology for biomolecular separations.

  8. Real-time pH monitoring of industrially relevant enzymatic reactions in a microfluidic side-entry reactor (μSER) shows potential for pH control.

    PubMed

    Gruber, Pia; Marques, Marco P C; Sulzer, Philipp; Wohlgemuth, Roland; Mayr, Torsten; Baganz, Frank; Szita, Nicolas

    2017-06-01

    Monitoring and control of pH is essential for the control of reaction conditions and reaction progress for any biocatalytic or biotechnological process. Microfluidic enzymatic reactors are increasingly proposed for process development, however typically lack instrumentation, such as pH monitoring. We present a microfluidic side-entry reactor (μSER) and demonstrate for the first time real-time pH monitoring of the progression of an enzymatic reaction in a microfluidic reactor as a first step towards achieving pH control. Two different types of optical pH sensors were integrated at several positions in the reactor channel which enabled pH monitoring between pH 3.5 and pH 8.5, thus a broader range than typically reported. The sensors withstood the thermal bonding temperatures typical of microfluidic device fabrication. Additionally, fluidic inputs along the reaction channel were implemented to adjust the pH of the reaction. Time-course profiles of pH were recorded for a transketolase and a penicillin G acylase catalyzed reaction. Without pH adjustment, the former showed a pH increase of 1 pH unit and the latter a pH decrease of about 2.5 pH units. With pH adjustment, the pH drop of the penicillin G acylase catalyzed reaction was significantly attenuated, the reaction condition kept at a pH suitable for the operation of the enzyme, and the product yield increased. This contribution represents a further step towards fully instrumented and controlled microfluidic reactors for biocatalytic process development. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Biochemical analysis with microfluidic systems.

    PubMed

    Bilitewski, Ursula; Genrich, Meike; Kadow, Sabine; Mersal, Gaber

    2003-10-01

    Microfluidic systems are capillary networks of varying complexity fabricated originally in silicon, but nowadays in glass and polymeric substrates. Flow of liquid is mainly controlled by use of electroosmotic effects, i.e. application of electric fields, in addition to pressurized flow, i.e. application of pressure or vacuum. Because electroosmotic flow rates depend on the charge densities on the walls of capillaries, they are influenced by substrate material, fabrication processes, surface pretreatment procedures, and buffer additives. Microfluidic systems combine the properties of capillary electrophoretic systems and flow-through analytical systems, and thus biochemical analytical assays have been developed utilizing and integrating both aspects. Proteins, peptides, and nucleic acids can be separated because of their different electrophoretic mobility; detection is achieved with fluorescence detectors. For protein analysis, in particular, interfaces between microfluidic chips and mass spectrometers were developed. Further levels of integration of required sample-treatment steps were achieved by integration of protein digestion by immobilized trypsin and amplification of nucleic acids by the polymerase chain reaction. Kinetic constants of enzyme reactions were determined by adjusting different degrees of dilution of enzyme substrates or inhibitors within a single chip utilizing mainly the properties of controlled dosing and mixing liquids within a chip. For analysis of kinase reactions, however, a combination of a reaction step (enzyme with substrate and inhibitor) and a separation step (enzyme substrate and reaction product) was required. Microfluidic chips also enable separation of analytes from sample matrix constituents, which can interfere with quantitative determination, if they have different electrophoretic mobilities. In addition to analysis of nucleic acids and enzymes, immunoassays are the third group of analytical assays performed in microfluidic chips. They utilize either affinity capillary electrophoresis as a homogeneous assay format, or immobilized antigens or antibodies in heterogeneous assays with serial supply of reagents and washing solutions.

  10. Hydrogel-coated microfluidic channels for cardiomyocyte culture

    PubMed Central

    Annabi, Nasim; Selimović, Šeila; Cox, Juan Pablo Acevedo; Ribas, João; Bakooshli, Mohsen Afshar; Heintze, Déborah; Weiss, Anthony S.; Cropek, Donald; Khademhosseini, Ali

    2013-01-01

    The research areas of tissue engineering and drug development have displayed increased interest in organ-on-a-chip studies, in which physiologically or pathologically relevant tissues can be engineered to test pharmaceutical candidates. Microfluidic technologies enable the control of the cellular microenvironment for these applications through the topography, size, and elastic properties of the microscale cell culture environment, while delivering nutrients and chemical cues to the cells through continuous media perfusion. Traditional materials used in the fabrication of microfluidic devices, such as poly(dimethylsiloxane) (PDMS), offer high fidelity and high feature resolution, but do not facilitate cell attachment. To overcome this challenge, we have developed a method for coating microfluidic channels inside a closed PDMS device with a cell-compatible hydrogel layer. We have synthesized photocrosslinkable gelatin and tropoelastin-based hydrogel solutions that were used to coat the surfaces under continuous flow inside 50 μm wide, straight microfluidic channels to generate a hydrogel layer on the channel walls. Our observation of primary cardiomyocytes seeded on these hydrogel layers showed preferred attachment as well as higher spontaneous beating rates on tropoelastin coatings compared to gelatin. In addition, cellular attachment, alignment and beating were stronger on 5 % (w/v) hydrogel-coated devices than on 10 % (w/v) gel-coated channels. Our results demonstrate that cardiomyocytes respond favorably to the elastic, soft tropoelastin culture substrates, indicating that tropoelastin-based hydrogels may be a suitable coating choice for some organ-on-a-chip applications. We anticipate that the proposed hydrogel coating method and tropoelastin as a cell culture substrate may be useful for the generation of elastic tissues, e.g. blood vessels, using microfluidic approaches. PMID:23728018

  11. A Model for Communications Satellite System Architecture Assessment

    DTIC Science & Technology

    2011-09-01

    This is shown in Equation 4. The total system cost includes all development, acquisition, fielding, operations, maintenance and upgrades, and system...protection. A mathematical model was implemented to enable the analysis of communications satellite system architectures based on multiple system... implemented to enable the analysis of communications satellite system architectures based on multiple system attributes. Utilization of the model in

  12. Strategies for P2P connectivity in reconfigurable converged wired/wireless access networks.

    PubMed

    Puerto, Gustavo; Mora, José; Ortega, Beatriz; Capmany, José

    2010-12-06

    This paper presents different strategies to define the architecture of a Radio-Over-Fiber (RoF) Access networks enabling Peer-to-Peer (P2P) functionalities. The architectures fully exploit the flexibility of a wavelength router based on the feedback configuration of an Arrayed Waveguide Grating (AWG) and an optical switch to broadcast P2P services among diverse infrastructures featuring dynamic channel allocation and enabling an optical platform for 3G and beyond wireless backhaul requirements. The first architecture incorporates a tunable laser to generate a dedicated wavelength for P2P purposes and the second architecture takes advantage of reused wavelengths to enable the P2P connectivity among Optical Network Units (ONUs) or Base Stations (BS). While these two approaches allow the P2P connectivity in a one at a time basis (1:1), the third architecture enables the broadcasting of P2P sessions among different ONUs or BSs at the same time (1:M). Experimental assessment of the proposed architecture shows approximately 0.6% Error Vector Magnitude (EVM) degradation for wireless services and 1 dB penalty in average for 1 x 10(-12) Bit Error Rate (BER) for wired baseband services.

  13. From genes to protein mechanics on a chip.

    PubMed

    Otten, Marcus; Ott, Wolfgang; Jobst, Markus A; Milles, Lukas F; Verdorfer, Tobias; Pippig, Diana A; Nash, Michael A; Gaub, Hermann E

    2014-11-01

    Single-molecule force spectroscopy enables mechanical testing of individual proteins, but low experimental throughput limits the ability to screen constructs in parallel. We describe a microfluidic platform for on-chip expression, covalent surface attachment and measurement of single-molecule protein mechanical properties. A dockerin tag on each protein molecule allowed us to perform thousands of pulling cycles using a single cohesin-modified cantilever. The ability to synthesize and mechanically probe protein libraries enables high-throughput mechanical phenotyping.

  14. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals

    PubMed Central

    Shapiro, Orr H.; Kramarsky-Winter, Esti; Gavish, Assaf R.; Stocker, Roman; Vardi, Assaf

    2016-01-01

    Coral reefs, and the unique ecosystems they support, are facing severe threats by human activities and climate change. Our understanding of these threats is hampered by the lack of robust approaches for studying the micro-scale interactions between corals and their environment. Here we present an experimental platform, coral-on-a-chip, combining micropropagation and microfluidics to allow direct microscopic study of live coral polyps. The small and transparent coral micropropagates are ideally suited for live-imaging microscopy, while the microfluidic platform facilitates long-term visualization under controlled environmental conditions. We demonstrate the usefulness of this approach by imaging coral micropropagates at previously unattainable spatio-temporal resolutions, providing new insights into several micro-scale processes including coral calcification, coral–pathogen interaction and the loss of algal symbionts (coral bleaching). Coral-on-a-chip thus provides a powerful method for studying coral physiology in vivo at the micro-scale, opening new vistas in coral biology. PMID:26940983

  15. Computational Analysis of Enhanced Magnetic Bioseparation in Microfluidic Systems with Flow-Invasive Magnetic Elements

    PubMed Central

    Khashan, S. A.; Alazzam, A.; Furlani, E. P.

    2014-01-01

    A microfluidic design is proposed for realizing greatly enhanced separation of magnetically-labeled bioparticles using integrated soft-magnetic elements. The elements are fixed and intersect the carrier fluid (flow-invasive) with their length transverse to the flow. They are magnetized using a bias field to produce a particle capture force. Multiple stair-step elements are used to provide efficient capture throughout the entire flow channel. This is in contrast to conventional systems wherein the elements are integrated into the walls of the channel, which restricts efficient capture to limited regions of the channel due to the short range nature of the magnetic force. This severely limits the channel size and hence throughput. Flow-invasive elements overcome this limitation and enable microfluidic bioseparation systems with superior scalability. This enhanced functionality is quantified for the first time using a computational model that accounts for the dominant mechanisms of particle transport including fully-coupled particle-fluid momentum transfer. PMID:24931437

  16. "Artificial micro organs"--a microfluidic device for dielectrophoretic assembly of liver sinusoids.

    PubMed

    Schütte, Julia; Hagmeyer, Britta; Holzner, Felix; Kubon, Massimo; Werner, Simon; Freudigmann, Christian; Benz, Karin; Böttger, Jan; Gebhardt, Rolf; Becker, Holger; Stelzle, Martin

    2011-06-01

    In order to study possible toxic side effects of potential drug compounds in vitro a reliable test system is needed. Predicting liver toxicity presents a major challenge of particular importance as liver cells grown in a cell culture suffer from a rapid loss of their liver specific functions. Therefore we are developing a new microfluidic test system for liver toxicity. This test system is based on an organ-like liver 3D co-culture of hepatocytes and endothelial cells. We devised a microfluidic chip featuring cell culture chambers with integrated electrodes for the assembly of liver sinusoids by dielectrophoresis. Fluid channels enable an organ-like perfusion with culture media and test compounds. Different chamber designs were studied and optimized with regard to dielectrophoretic force distribution, hydrodynamic flow profile, and cell trapping rate using numeric simulations. Based on simulation results a microchip was injection-moulded from COP. This chip allowed the assembly of viable hepatocytes and endothelial cells in a sinusoid-like fashion.

  17. Droplet microfluidics for synthetic biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gach, PC; Iwai, K; Kim, PW

    2017-01-01

    © 2017 The Royal Society of Chemistry. Synthetic biology is an interdisciplinary field that aims to engineer biological systems for useful purposes. Organism engineering often requires the optimization of individual genes and/or entire biological pathways (consisting of multiple genes). Advances in DNA sequencing and synthesis have recently begun to enable the possibility of evaluating thousands of gene variants and hundreds of thousands of gene combinations. However, such large-scale optimization experiments remain cost-prohibitive to researchers following traditional molecular biology practices, which are frequently labor-intensive and suffer from poor reproducibility. Liquid handling robotics may reduce labor and improve reproducibility, but are themselvesmore » expensive and thus inaccessible to most researchers. Microfluidic platforms offer a lower entry price point alternative to robotics, and maintain high throughput and reproducibility while further reducing operating costs through diminished reagent volume requirements. Droplet microfluidics have shown exceptional promise for synthetic biology experiments, including DNA assembly, transformation/transfection, culturing, cell sorting, phenotypic assays, artificial cells and genetic circuits.« less

  18. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals.

    PubMed

    Shapiro, Orr H; Kramarsky-Winter, Esti; Gavish, Assaf R; Stocker, Roman; Vardi, Assaf

    2016-03-04

    Coral reefs, and the unique ecosystems they support, are facing severe threats by human activities and climate change. Our understanding of these threats is hampered by the lack of robust approaches for studying the micro-scale interactions between corals and their environment. Here we present an experimental platform, coral-on-a-chip, combining micropropagation and microfluidics to allow direct microscopic study of live coral polyps. The small and transparent coral micropropagates are ideally suited for live-imaging microscopy, while the microfluidic platform facilitates long-term visualization under controlled environmental conditions. We demonstrate the usefulness of this approach by imaging coral micropropagates at previously unattainable spatio-temporal resolutions, providing new insights into several micro-scale processes including coral calcification, coral-pathogen interaction and the loss of algal symbionts (coral bleaching). Coral-on-a-chip thus provides a powerful method for studying coral physiology in vivo at the micro-scale, opening new vistas in coral biology.

  19. Droplet microfluidics with a nanoemulsion continuous phase.

    PubMed

    Gu, Tonghan; Yeap, Eunice W Q; Somasundar, Ambika; Chen, Ran; Hatton, T Alan; Khan, Saif A

    2016-07-05

    We present the first study of a novel, generalizable method that uses a water-in-oil nanoemulsion as the continuous phase to generate uniform aqueous micro-droplets in a capillary-based microfluidic system. We first study the droplet generation mechanism in this system and compare it to the more conventional case where a simple oil/solvent (with surfactant) is used as the continuous phase. Next, we present two versatile methods - adding demulsifying chemicals and heat treatment - to allow active online chemical interaction between the continuous and dispersed phases. These methods allow each generated micro-droplet to act as a well-mixed micro-reactor with walls that are 'permeable' to the nanoemulsion droplets and their contents. Finally, we demonstrate an application of this system in the fabrication of uniform hydrogel (alginate) micro-beads with control over particle properties such as size and swelling. Our work expands the toolbox of droplet-based microfluidics, enabling new opportunities and applications involving active colloidal continuous phases carrying chemical payloads, both in advanced materials synthesis and droplet-based screening and diagnostic methods.

  20. Inertial focusing and passive micro-mixing techniques for rare cells capturing microfluidic platform

    NASA Astrophysics Data System (ADS)

    Phadke, Manisha; Shaner, Sebastian; Shah, Shreyas; Rodriguez, Ygnacio; Wibowo, Denni; Whulanza, Yudan; Teriete, Peter; Allen, Jeff; Kassegne, Sam

    2018-02-01

    Isolation and capture of rare cells continues to be a daunting task that is still looking for an innovative and efficient method. While a variety of approaches have been suggested over the past several years, immunocapturing in a microfluidic platform carries a substantial promise as shown by recent published works. In this paper, we introduced a combination of inertial focusing and passive micro-mixing through 3D chevron-type features in a microchannel to induce chaotic mixing within antibody-coated microchannels and, ultimately, promote rare cell capture. The device introduced in this work contains curved microchannels that consist of a series of staggered chevron grooves. The curved channels enable inertial focusing while the chevron grooves allow for chaotic mixing. The microfluidics platform microfabricated through soft lithography has a polydimethylsiloxane (PDMS) foundation and was thinly coated with an alginate hydrogel derivatized with streptavidin. We submitted that our qualitative and quantitative results demonstrated the potentials in advancements in rare cell isolation through this integration of two techniques.

  1. miRNA detection at single-cell resolution using microfluidic LNA flow-FISH

    DOE PAGES

    Wu, Meiye; Piccini, Matthew Ernest; Koh, Chung -Yan; ...

    2014-08-20

    Flow cytometry in combination with fluorescent in situ hybridization (flow-FISH) is a powerful technique that can be utilized to rapidly detect nucleic acids at single-cell resolution without the need for homogenization or nucleic acid extraction. Here, we describe a microfluidic-based method which enables the detection of microRNAs or miRNAs in single intact cells by flow-FISH using locked nucleic acid (LNA)-containing probes. Our method can be applied to all RNA species including mRNA and small noncoding RNA and is suitable for multiplexing with protein immunostaining in the same cell. For demonstration of our method, this chapter details the detection of miR155more » and CD69 protein in PMA and ionomycin-stimulated Jurkat cells. Here, we also include instructions on how to set up a microfluidic chip sample preparation station to prepare cells for imaging and analysis on a commercial flow cytometer or a custom-built micro-flow cytometer.« less

  2. Microfluidic direct injection method for analysis of urinary 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) using molecularly imprinted polymers coupled on-line with LC-MS/MS.

    PubMed

    Shah, Kumar A; Peoples, Michael C; Halquist, Matthew S; Rutan, Sarah C; Karnes, H Thomas

    2011-01-25

    The work described in this paper involves development of a high-throughput on-line microfluidic sample extraction method using capillary micro-columns packed with MIP beads coupled with tandem mass spectrometry for the analysis of urinary NNAL. The method was optimized and matrix effects were evaluated and resolved. The method enabled low sample volume (200 μL) and rapid analysis of urinary NNAL by direct injection onto the microfluidic column packed with molecularly imprinted beads engineered to NNAL. The method was validated according to the FDA bioanalytical method validation guidance. The dynamic range extended from 20.0 to 2500.0 pg/mL with a percent relative error of ±5.9% and a run time of 7.00 min. The lower limit of quantitation was 20.0 pg/mL. The method was used for the analysis of NNAL and NNAL-Gluc concentrations in smokers' urine. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Continuous microcarrier-based cell culture in a benchtop microfluidic bioreactor.

    PubMed

    Abeille, F; Mittler, F; Obeid, P; Huet, M; Kermarrec, F; Dolega, M E; Navarro, F; Pouteau, P; Icard, B; Gidrol, X; Agache, V; Picollet-D'hahan, N

    2014-09-21

    Microfluidic bioreactors are expected to impact cell therapy and biopharmaceutical production due to their ability to control cellular microenvironments. This work presents a novel approach for continuous cell culture in a microfluidic system. Microcarriers (i.e., microbeads) are used as growth support for anchorage-dependent mammalian cells. This approach eases the manipulation of cells within the system and enables harmless extraction of cells. Moreover, the microbioreactor uses a perfusion function based on the biocompatible integration of a porous membrane to continuously feed the cells. The perfusion rate is optimized through simulations to provide a stable biochemical environment. Thermal management is also addressed to ensure a homogeneous bioreactor temperature. Eventually, incubator-free cell cultures of Drosophila S2 and PC3 cells are achieved over the course of a week using this bioreactor. In future applications, a more efficient alternative to harvesting cells from microcarriers is also anticipated as suggested by our positive results from the microcarrier digestion experiments.

  4. An investigation into dispersion upon switching between solvents within a microfluidic system using a chemically resistant integrated optical refractive index sensor.

    PubMed

    Parker, Richard M; Gates, James C; Wales, Dominic J; Smith, Peter G R; Grossel, Martin C

    2013-02-07

    A planar Bragg grating device has been developed that is capable of detecting changes in the refractive index of a wide range of fluids including solvents, acids and bases. The integration of this high precision refractive index sensor within a chemically resistant microfluidic flow system has enabled the investigation of diverse fluid interactions. By cycling between different solvents, both miscible and immiscible, within the microfluidic system it is shown that the previous solvent determines the nature of the refractive index profile across the transition in composition. This solvent dispersion effect is investigated with particular attention to the methanol-water transition, where transients in refractive index are observed that are an order of magnitude larger in amplitude than the difference between the bulk fluids. The potential complications of such phenomenon are discussed together with an example of a device that exploits this effect for the unambiguous composition measurement of a binary solvent system.

  5. Microfluidic Separation of Ethylene and Ethane Using Frustrated Lewis Pairs.

    PubMed

    Voicu, Dan; Stephan, Douglas W; Kumacheva, Eugenia

    2015-12-21

    Separation of gaseous olefins and paraffins is one of the most important separation processes in the industry. Development of new cost-effective technologies aims at reducing the high energy consumption during the separation process. Here, we took advantage of the reaction of frustrated Lewis pairs (FLPs) with ethylene to achieve reactive extraction of ethylene from ethylene-ethane mixtures. The extraction was studied using a microfluidic platform, which enabled a rapid, high-throughput assessment of reaction conditions to optimize gas separation efficiency. A separation factor of 7.3 was achieved for ethylene from a 1:1 volume ratio mixture of ethylene and ethane, which corresponded to an extracted ethylene purity of 88 %. The results obtained in the microfluidic studies were validated using infrared spectroscopy. This work paves the way for further development of the FLPs and optimization of reaction conditions, thereby maximizing the separation efficiency of olefins from their mixtures with paraffins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom.

    PubMed

    Mao, Xiaole; Lin, Sz-Chin Steven; Lapsley, Michael Ian; Shi, Jinjie; Juluri, Bala Krishna; Huang, Tony Jun

    2009-07-21

    We report a tunable optofluidic microlens configuration named the Liquid Gradient Refractive Index (L-GRIN) lens for focusing light within a microfluidic device. The focusing of light was achieved through the gradient refractive index (GRIN) within the liquid medium, rather than via curved refractive lens surfaces. The diffusion of solute (CaCl(2)) between side-by-side co-injected microfluidic laminar flows was utilized to establish a hyperbolic secant (HS) refractive index profile to focus light. Tailoring the refractive index profile by adjusting the flow conditions enables not only tuning of the focal distance (translation mode), but also shifting of the output light direction (swing mode), a second degree of freedom that to our knowledge has yet to be accomplished for in-plane tunable microlenses. Advantages of the L-GRIN lens also include a low fluid consumption rate, competitive focusing performance, and high compatibility with existing microfluidic devices. This work provides a new strategy for developing integrative tunable microlenses for a variety of lab-on-a-chip applications.

  7. Accelerating Yeast Prion Biology using Droplet Microfluidics

    NASA Astrophysics Data System (ADS)

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David

    2012-02-01

    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  8. A low-cost, manufacturable method for fabricating capillary and optical fiber interconnects for microfluidic devices.

    PubMed

    Hartmann, Daniel M; Nevill, J Tanner; Pettigrew, Kenneth I; Votaw, Gregory; Kung, Pang-Jen; Crenshaw, Hugh C

    2008-04-01

    Microfluidic chips require connections to larger macroscopic components, such as light sources, light detectors, and reagent reservoirs. In this article, we present novel methods for integrating capillaries, optical fibers, and wires with the channels of microfluidic chips. The method consists of forming planar interconnect channels in microfluidic chips and inserting capillaries, optical fibers, or wires into these channels. UV light is manually directed onto the ends of the interconnects using a microscope. UV-curable glue is then allowed to wick to the end of the capillaries, fibers, or wires, where it is cured to form rigid, liquid-tight connections. In a variant of this technique, used with light-guiding capillaries and optical fibers, the UV light is directed into the capillaries or fibers, and the UV-glue is cured by the cone of light emerging from the end of each capillary or fiber. This technique is fully self-aligned, greatly improves both the quality and the manufacturability of the interconnects, and has the potential to enable the fabrication of interconnects in a fully automated fashion. Using these methods, including a semi-automated implementation of the second technique, over 10,000 interconnects have been formed in almost 2000 microfluidic chips made of a variety of rigid materials. The resulting interconnects withstand pressures up to at least 800psi, have unswept volumes estimated to be less than 10 femtoliters, and have dead volumes defined only by the length of the capillary.

  9. A light writable microfluidic "flash memory": optically addressed actuator array with latched operation for microfluidic applications.

    PubMed

    Hua, Zhishan; Pal, Rohit; Srivannavit, Onnop; Burns, Mark A; Gulari, Erdogan

    2008-03-01

    This paper presents a novel optically addressed microactuator array (microfluidic "flash memory") with latched operation. Analogous to the address-data bus mediated memory address protocol in electronics, the microactuator array consists of individual phase-change based actuators addressed by localized heating through focused light patterns (address bus), which can be provided by a modified projector or high power laser pointer. A common pressure manifold (data bus) for the entire array is used to generate large deflections of the phase change actuators in the molten phase. The use of phase change material as the working media enables latched operation of the actuator array. After the initial light "writing" during which the phase is temporarily changed to molten, the actuated status is self-maintained by the solid phase of the actuator without power and pressure inputs. The microfluidic flash memory can be re-configured by a new light illumination pattern and common pressure signal. The proposed approach can achieve actuation of arbitrary units in a large-scale array without the need for complex external equipment such as solenoid valves and electrical modules, which leads to significantly simplified system implementation and compact system size. The proposed work therefore provides a flexible, energy-efficient, and low cost multiplexing solution for microfluidic applications based on physical displacements. As an example, the use of the latched microactuator array as "normally closed" or "normally open" microvalves is demonstrated. The phase-change wax is fully encapsulated and thus immune from contamination issues in fluidic environments.

  10. Accurate, predictable, repeatable micro-assembly technology for polymer, microfluidic modules.

    PubMed

    Lee, Tae Yoon; Han, Kyudong; Barrett, Dwhyte O; Park, Sunggook; Soper, Steven A; Murphy, Michael C

    2018-01-01

    A method for the design, construction, and assembly of modular, polymer-based, microfluidic devices using simple micro-assembly technology was demonstrated to build an integrated fluidic system consisting of vertically stacked modules for carrying out multi-step molecular assays. As an example of the utility of the modular system, point mutation detection using the ligase detection reaction (LDR) following amplification by the polymerase chain reaction (PCR) was carried out. Fluid interconnects and standoffs ensured that temperatures in the vertically stacked reactors were within ± 0.2 C° at the center of the temperature zones and ± 1.1 C° overall. The vertical spacing between modules was confirmed using finite element models (ANSYS, Inc., Canonsburg, PA) to simulate the steady-state temperature distribution for the assembly. Passive alignment structures, including a hemispherical pin-in-hole, a hemispherical pin-in-slot, and a plate-plate lap joint, were developed using screw theory to enable accurate exactly constrained assembly of the microfluidic reactors, cover sheets, and fluid interconnects to facilitate the modular approach. The mean mismatch between the centers of adjacent through holes was 64 ± 7.7 μm, significantly reducing the dead volume necessary to accommodate manufacturing variation. The microfluidic components were easily assembled by hand and the assembly of several different configurations of microfluidic modules for executing the assay was evaluated. Temperatures were measured in the desired range in each reactor. The biochemical performance was comparable to that obtained with benchtop instruments, but took less than 45 min to execute, half the time.

  11. Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes.

    PubMed

    Iwai, Kosuke; Shih, Kuan Cheng; Lin, Xiao; Brubaker, Thomas A; Sochol, Ryan D; Lin, Liwei

    2014-10-07

    Point-of-care (POC) and disposable biomedical applications demand low-power microfluidic systems with pumping components that provide controlled pressure sources. Unfortunately, external pumps have hindered the implementation of such microfluidic systems due to limitations associated with portability and power requirements. Here, we propose and demonstrate a 'finger-powered' integrated pumping system as a modular element to provide pressure head for a variety of advanced microfluidic applications, including finger-powered on-chip microdroplet generation. By utilizing a human finger for the actuation force, electrical power sources that are typically needed to generate pressure head were obviated. Passive fluidic diodes were designed and implemented to enable distinct fluids from multiple inlet ports to be pumped using a single actuation source. Both multilayer soft lithography and injection molding processes were investigated for device fabrication and performance. Experimental results revealed that the pressure head generated from a human finger could be tuned based on the geometric characteristics of the pumping system, with a maximum observed pressure of 7.6 ± 0.1 kPa. In addition to the delivery of multiple, distinct fluids into microfluidic channels, we also employed the finger-powered pumping system to achieve the rapid formation of both water-in-oil droplets (106.9 ± 4.3 μm in diameter) and oil-in-water droplets (75.3 ± 12.6 μm in diameter) as well as the encapsulation of endothelial cells in droplets without using any external or electrical controllers.

  12. Characterization of printable cellular micro-fluidic channels for tissue engineering.

    PubMed

    Zhang, Yahui; Yu, Yin; Chen, Howard; Ozbolat, Ibrahim T

    2013-06-01

    Tissue engineering has been a promising field of research, offering hope of bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3D) vascularized organs remains the main technological barrier to be overcome. One of the major challenges is the inclusion of a vascular network to support cell viability in terms of nutrients and oxygen perfusion. This paper introduces a new approach to the fabrication of vessel-like microfluidic channels that has the potential to be used in thick tissue or organ fabrication in the future. In this research, we investigate the manufacturability of printable micro-fluidic channels, where micro-fluidic channels support mechanical integrity as well as enable fluid transport in 3D. A pressure-assisted solid freeform fabrication platform is developed with a coaxial needle dispenser unit to print hollow hydrogel filaments. The dispensing rheology is studied, and effects of material properties on structural formation of hollow filaments are analyzed. Sample structures are printed through the developed computer-controlled system. In addition, cell viability and gene expression studies are presented in this paper. Cell viability shows that cartilage progenitor cells (CPCs) maintained their viability right after bioprinting and during prolonged in vitro culture. Real-time PCR analysis yielded a relatively higher expression of cartilage-specific genes in alginate hollow filament encapsulating CPCs, compared with monolayer cultured CPCs, which revealed that printable semi-permeable micro-fluidic channels provided an ideal environment for cell growth and function.

  13. Detection of avian influenza antigens in proximity fiber, droplet, and optical waveguide microfluidics

    NASA Astrophysics Data System (ADS)

    Yoon, Jeong-Yeol; Heinze, Brian C.; Gamboa, Jessica; You, David J.

    2009-05-01

    Virus antigens of avian influenza subtype H3N2 were detected on two different microfluidic platforms: microchannel and droplet. Latex immunoagglutination assays were performed using 920-nm highly carboxylated polystyrene beads that are conjugated with antibody to avian influenza virus. The bead suspension was merged with the solutions of avian influenza virus antigens in a Y-junction of a microchannel made by polydimethylsiloxane soft lithography. The resulting latex immunoagglutinations were measured with two optical fibers in proximity setup to detect 45° forward light scattering. Alternatively, 10 μL droplets of a bead suspension and an antigen solution were merged on a superhydrophobic surface (water contact angle = 155°), whose movement was guided by a metal wire, and 180° back light scattering is measured with a backscattering optical probe. Detection limits were 0.1 pg mL-1 for both microchannel with proximity fibers and droplet microfluidics, thanks to the use of micro-positioning stages to help generate reproducible optical signals. Additionally, optical waveguide was tested by constructing optical waveguide channels (filled with mineral oil) within a microfluidic device to detect the same light scattering. Detection limit was 0.1 ng mL-1 for an optical waveguide device, with a strong potential of improvement in the near future. The use of optical waveguide enabled smaller device setup, easier operation, smaller standard deviations and broader linear range of assay than proximity fiber microchannel and droplet microfluidics. Total assay time was less than 10 min.

  14. Characterization of Printable Cellular Micro-fluidic Channels for Tissue Engineering

    PubMed Central

    Zhang, Yahui; Yu, Yin; Chen, Howard; Ozbolat, Ibrahim T.

    2014-01-01

    Tissue engineering has been a promising field of research, offering hope of bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3D) vascularized organs remains the main technological barrier to be overcome. One of the major challenges is the inclusion of a vascular network to support cell viability in terms of nutrients and oxygen perfusion. This paper introduces a new approach to fabrication of vessel-like microfluidic channels that has the potential to be used in thick tissue or organ fabrication in the future. In this research, we investigate the manufacturability of printable micro-fluidic channels, where micro-fluidic channels support mechanical integrity as well as enable fluid transport in 3D. A pressure-assisted solid freeform fabrication platform is developed with a coaxial needle dispenser unit to print hollow hydrogel filaments. The dispensing rheology is studied, and effects of material properties on structural formation of hollow filaments are analyzed. Sample structures are printed through the developed computer-controlled system. In addition, cell viability and gene expression studies are presented in this paper. Cell viability shows that cartilage progenitor cells (CPCs) maintained their viability right after bioprinting and during prolonged in vitro culture. Real-time PCR analysis yielded relatively higher expression of cartilage-specific genes in alginate hollow filament encapsulating CPCs, compared with monolayer cultured CPCs, which revealed that printable semi-permeable micro-fluidic channels provided an ideal environment for cell growth and function. PMID:23458889

  15. Fully Integrated Microfluidic Device for Direct Sample-to-Answer Genetic Analysis

    NASA Astrophysics Data System (ADS)

    Liu, Robin H.; Grodzinski, Piotr

    Integration of microfluidics technology with DNA microarrays enables building complete sample-to-answer systems that are useful in many applications such as clinic diagnostics. In this chapter, a fully integrated microfluidic device [1] that consists of microfluidic mixers, valves, pumps, channels, chambers, heaters, and a DNA microarray sensor to perform DNA analysis of complex biological sample solutions is present. This device can perform on-chip sample preparation (including magnetic bead-based cell capture, cell preconcentration and purification, and cell lysis) of complex biological sample solutions (such as whole blood), polymerase chain reaction, DNA hybridization, and electrochemical detection. A few novel microfluidic techniques were developed and employed. A micromix-ing technique based on a cavitation microstreaming principle was implemented to enhance target cell capture from whole blood samples using immunomagnetic beads. This technique was also employed to accelerate DNA hybridization reaction. Thermally actuated paraffin-based microvalves were developed to regulate flows. Electrochemical pumps and thermopneumatic pumps were integrated on the chip to provide pumping of liquid solutions. The device is completely self-contained: no external pressure sources, fluid storage, mechanical pumps, or valves are necessary for fluid manipulation, thus eliminating possible sample contamination and simplifying device operation. Pathogenic bacteria detection from ~mL whole blood samples and single-nucleotide polymorphism analysis directly from diluted blood were demonstrated. The device provides a cost-effective solution to direct sample-to-answer genetic analysis, and thus has a potential impact in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.

  16. Advances in Digital Calibration Techniques Enabling Real-Time Beamforming SweepSAR Architectures

    NASA Technical Reports Server (NTRS)

    Hoffman, James P.; Perkovic, Dragana; Ghaemi, Hirad; Horst, Stephen; Shaffer, Scott; Veilleux, Louise

    2013-01-01

    Real-time digital beamforming, combined with lightweight, large aperture reflectors, enable SweepSAR architectures, which promise significant increases in instrument capability for solid earth and biomass remote sensing. These new instrument concepts require new methods for calibrating the multiple channels, which are combined on-board, in real-time. The benefit of this effort is that it enables a new class of lightweight radar architecture, Digital Beamforming with SweepSAR, providing significantly larger swath coverage than conventional SAR architectures for reduced mass and cost. This paper will review the on-going development of the digital calibration architecture for digital beamforming radar instrument, such as the proposed Earth Radar Mission's DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) instrument. This proposed instrument's baseline design employs SweepSAR digital beamforming and requires digital calibration. We will review the overall concepts and status of the system architecture, algorithm development, and the digital calibration testbed currently being developed. We will present results from a preliminary hardware demonstration. We will also discuss the challenges and opportunities specific to this novel architecture.

  17. Hybrid optofluidic biosensors

    NASA Astrophysics Data System (ADS)

    Parks, Joshua W.

    Optofluidics, born of the desire to create a system containing microfluidic environments with integrated optical elements, has seen dramatic increases in popularity over the last 10 years. In particular, the application of this technology towards chip based molecular sensors has undergone significant development. The most sensitive of these biosensors interface liquid- and solid-core antiresonant reflecting optical waveguides (ARROWs). These sensor chips are created using conventional silicon microfabrication. As such, ARROW technology has previously been unable to utilize state-of-the-art microfluidic developments because the technology used--soft polydimethyl siloxane (PDMS) micromolded chips--is unamenable to the silicon microfabrication workflows implemented in the creation of ARROW detection chips. The original goal of this thesis was to employ hybrid integration, or the connection of independently designed and fabricated optofluidic and microfluidic chips, to create enhanced biosensors with the capability of processing and detecting biological samples on a single hybrid system. After successful demonstration of this paradigm, this work expanded into a new direction--direct integration of sensing and detection technologies on a new platform with dynamic, multi-dimensional photonic re-configurability. This thesis reports a number of firsts, including: • 1,000 fold optical transmission enhancement of ARROW optofluidic detection chips through thermal annealing, • Detection of single nucleic acids on a silicon-based ARROW chip, • Hybrid optofluidic integration of ARROW detection chips and passive PDMS microfluidic chips, • Hybrid optofluidic integration of ARROW detection chips and actively controllable PDMS microfluidic chips with integrated microvalves, • On-chip concentration and detection of clinical Ebola nucleic acids, • Multimode interference (MMI) waveguide based wavelength division multiplexing for detection of single influenza virions, • All PDMS platform created from monolithically integrated solid- and liquid-core waveguides with single particle detection efficiency and directly integrated microvalves, featuring: ∘ Tunable/tailorable PDMS MMI waveguides, ∘ Lightvalves (optical switch/fluidic microvalve) with the ability to dynamically control light and fluid flow simultaneously, ∘ Lightvalve trap architecture with the ability to physically trap, detect, and analyze single biomolecules.

  18. Getting the most from microfluidic platforms for biomedical applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shen, Amy

    2016-03-01

    Microfluidics has emerged in recent years as a versatile method of manipulating fluids at small length-scales, and in particular, for generating and manipulating micron size droplets with controllable size and functionality. For example, many research groups developed microfluidics devices for cell encapsulation, and synthesizing functionalized polymer microspheres and inorganic nanoparticles with precise control over their shapes and sizes. In this talk, I will showcase 2 microfluidic platforms to highlight their versatility and potential biomedical applications. (1) Droplet microfluidic platforms (a) A droplet microfluidics method to fabricate alginate microspheres while simultaneously immobilizing anti-Mycobacterium tuberculosis complex IgY and anti-Escherichia coli IgG antibodies primarily on the porous alginate carriers for specific binding and binding affinity tests. The binding affinity of antibodies is directly measured by fluorescence intensity of stained target bacteria on the microspheres. We demonstrate that the functionalized alginate microspheres yield specificity comparable with an enzyme-linked immunosorbent assay. We can easily modify the size and shape of alginate microspheres, and increase the concentration of functionalized alginate microspheres to further enhance binding kinetics and enable multiplexing. (b) A novel droplet microfluidics method to image oxygen in single islets (pancreatic cells) for glucose sensing. Individual islets and a fluorescent oxygen-sensitive dye were encased within a thin alginate polymer microcapsule for insulin secretion monitoring. The sensing system operated similarly from 2-48 hours following encapsulation, and viability and function of the islets were not significantly affected by the encapsulation process. This approach should be applicable to other cell types and dyes sensitive to other biologically important molecules. (2) A microfluidic chamber to perform uniform electric field stimulation in circular shaped culturewares A 3D computer-aided designed (CAD) polymeric insert is designed and retrofitted to circular shaped culturewares in an integrated microfluidic electrical stimulation platform to generate uniform EF with higher cell yields. In particular, NIH/3T3 mouse embryonic fibroblast cells are used to validate the performance of the 3D designed Poly(methyl methacrylate) (PMMA) inserts in a circular-shaped 6-well plate. The CAD based inserts can be easily scaled up to further increase effective stimulation area percentages, and also be implemented in commercially available culturewares for a wide variety of EF-related research such as EF-cell interaction and tissue regeneration studies.

  19. Photo-control of nanointeractions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomes, William Joseph, Jr.; Potter, Barrett George, Jr.; Jiang, Liu

    2005-02-01

    The manipulation of physical interactions between structural moieties on the molecular scale is a fundamental hurdle in the realization and operation of nanostructured materials and high surface area microsystem architectures. These include such nano-interaction-based phenomena as self-assembly, fluid flow, and interfacial tribology. The proposed research utilizes photosensitive molecular structures to tune such interactions reversibly. This new material strategy provides optical actuation of nano-interactions impacting behavior on both the nano- and macroscales and with potential to impact directed nanostructure formation, microfluidic rheology, and tribological control.

  20. Droplet microfluidics for amplification-free genetic detection of single cells.

    PubMed

    Rane, Tushar D; Zec, Helena C; Puleo, Chris; Lee, Abraham P; Wang, Tza-Huei

    2012-09-21

    In this article we present a novel droplet microfluidic chip enabling amplification-free detection of single pathogenic cells. The device streamlines multiple functionalities to carry out sample digitization, cell lysis, probe-target hybridization for subsequent fluorescent detection. A peptide nucleic acid fluorescence resonance energy transfer probe (PNA beacon) is used to detect 16S rRNA present in pathogenic cells. Initially the sensitivity and quantification abilities of the platform are tested using a synthetic target mimicking the actual expression level of 16S rRNA in single cells. The capability of the device to perform "sample-to-answer" pathogen detection of single cells is demonstrated using E. coli as a model pathogen.

  1. Agarose droplet microfluidics for highly parallel and efficient single molecule emulsion PCR.

    PubMed

    Leng, Xuefei; Zhang, Wenhua; Wang, Chunming; Cui, Liang; Yang, Chaoyong James

    2010-11-07

    An agarose droplet method was developed for highly parallel and efficient single molecule emulsion PCR. The method capitalizes on the unique thermoresponsive sol-gel switching property of agarose for highly efficient DNA amplification and amplicon trapping. Uniform agarose solution droplets generated via a microfluidic chip serve as robust and inert nanolitre PCR reactors for single copy DNA molecule amplification. After PCR, agarose droplets are gelated to form agarose beads, trapping all amplicons in each reactor to maintain the monoclonality of each droplet. This method does not require cocapsulation of primer labeled microbeads, allows high throughput generation of uniform droplets and enables high PCR efficiency, making it a promising platform for many single copy genetic studies.

  2. Fabrication of novel silicone capsules with tunable mechanical properties by microfluidic techniques.

    PubMed

    Vilanova, Neus; Rodríguez-Abreu, Carlos; Fernández-Nieves, Alberto; Solans, Conxita

    2013-06-12

    A novel approach for the synthesis of silicone capsules using double W/O/W emulsions as templates is introduced. The low viscosity of the silicone precursors enables the use of microfluidic techniques to accurately control the size and morphology of the double emulsion droplets, which after cross-linking result in the desired monodisperse silicone capsules. Their shell thickness can be finely tuned, which in turn allows control over their permeability and mechanical properties; the latter are particularly important in a variety of practical applications where the capsules are subjected to large external forces. The potential of these capsules for controlled release is also demonstrated using a model hydrophilic substance.

  3. Simultaneous Transmit and Receive Performance of an 8-channel Digital Phased Array

    DTIC Science & Technology

    2017-01-16

    Lincoln Laboratory Lexington, Massachusetts, USA Abstract—The Aperture- Level Simultaneous Transmit and Re- ceive (ALSTAR) architecture enables extremely...In [1], the Aperture- Level Simultaneous Transmit and Receive (ALSTAR) architecture was proposed for achieving STAR using a fully digital phased array...Aperture- Level Simultaneous Transmit and Receive (ALSTAR) architecture enables STAR functionality in a digital phased array without the use of specialized

  4. Laser-induced fluorescence detection platform for point-of-care testing

    NASA Astrophysics Data System (ADS)

    Berner, Marcel; Hilbig, Urs; Schubert, Markus B.; Gauglitz, Günter

    2017-08-01

    Point-of-care testing (POCT) devices for continuous low-cost monitoring of critical patient parameters require miniaturized and integrated setups for performing quick high-sensitivity analyses, away from central clinical laboratories. This work presents a novel and promising laser-induced fluorescence platform for measurements in direct optical test formats that leads towards such powerful POCT devices based on fluorescence-labeled immunoassays. Ultimate sensitivity of thin film photodetectors, integrated with microfluidics, and a comprehensive optimization of all system components aim at low-level signal detection in the targeted biosensor application. The setup acquires fluorescence signals from the volume of a microfluidic channel. An innovative sandwiching process forms a flow channel in the microfluidic chips by embedding laser-cut double-sided adhesive tapes. The custom fit of amorphous silicon based photodiode arrays to the geometry of the flow channel enables miniaturization, fully adequate for POCT devices. A free-beam laser excitation with line focus provides excellent alignment stability, allows for easy and reliable swapping of the disposable microfluidic chips, and therewith greatly improves the ease of use of the resulting integrated device. As a proof-of-concept of this novel in-volume measurement approach, the limit of detection for the dye DY636-COOH in pure water as a model fluorophore is examined and found to be 26 nmol l-1 .

  5. Isolation and detection of circulating tumour cells from metastatic melanoma patients using a slanted spiral microfluidic device.

    PubMed

    Aya-Bonilla, Carlos A; Marsavela, Gabriela; Freeman, James B; Lomma, Chris; Frank, Markus H; Khattak, Muhammad A; Meniawy, Tarek M; Millward, Michael; Warkiani, Majid E; Gray, Elin S; Ziman, Mel

    2017-09-15

    Circulating Tumour Cells (CTCs) are promising cancer biomarkers. Several methods have been developed to isolate CTCs from blood samples. However, the isolation of melanoma CTCs is very challenging as a result of their extraordinary heterogeneity, which has hindered their biological and clinical study. Thus, methods that isolate CTCs based on their physical properties, rather than surface marker expression, such as microfluidic devices, are greatly needed in melanoma. Here, we assessed the ability of the slanted spiral microfluidic device to isolate melanoma CTCs via label-free enrichment. We demonstrated that this device yields recovery rates of spiked melanoma cells of over 80% and 55%, after one or two rounds of enrichment, respectively. Concurrently, a two to three log reduction of white blood cells was achieved with one or two rounds of enrichment, respectively. We characterised the isolated CTCs using multimarker flow cytometry, immunocytochemistry and gene expression. The results demonstrated that CTCs from metastatic melanoma patients were highly heterogeneous and commonly expressed stem-like markers such as PAX3 and ABCB5. The implementation of the slanted microfluidic device for melanoma CTC isolation enables further understanding of the biology of melanoma metastasis for biomarker development and to inform future treatment approaches.

  6. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat.

    PubMed

    Koh, Ahyeon; Kang, Daeshik; Xue, Yeguang; Lee, Seungmin; Pielak, Rafal M; Kim, Jeonghyun; Hwang, Taehwan; Min, Seunghwan; Banks, Anthony; Bastien, Philippe; Manco, Megan C; Wang, Liang; Ammann, Kaitlyn R; Jang, Kyung-In; Won, Phillip; Han, Seungyong; Ghaffari, Roozbeh; Paik, Ungyu; Slepian, Marvin J; Balooch, Guive; Huang, Yonggang; Rogers, John A

    2016-11-23

    Capabilities in health monitoring enabled by capture and quantitative chemical analysis of sweat could complement, or potentially obviate the need for, approaches based on sporadic assessment of blood samples. Established sweat monitoring technologies use simple fabric swatches and are limited to basic analysis in controlled laboratory or hospital settings. We present a collection of materials and device designs for soft, flexible, and stretchable microfluidic systems, including embodiments that integrate wireless communication electronics, which can intimately and robustly bond to the surface of the skin without chemical and mechanical irritation. This integration defines access points for a small set of sweat glands such that perspiration spontaneously initiates routing of sweat through a microfluidic network and set of reservoirs. Embedded chemical analyses respond in colorimetric fashion to markers such as chloride and hydronium ions, glucose, and lactate. Wireless interfaces to digital image capture hardware serve as a means for quantitation. Human studies demonstrated the functionality of this microfluidic device during fitness cycling in a controlled environment and during long-distance bicycle racing in arid, outdoor conditions. The results include quantitative values for sweat rate, total sweat loss, pH, and concentration of chloride and lactate. Copyright © 2016, American Association for the Advancement of Science.

  7. Integrated Microfluidic Flow-Through Microbial Fuel Cells

    PubMed Central

    Jiang, Huawei; Ali, Md. Azahar; Xu, Zhen; Halverson, Larry J.; Dong, Liang

    2017-01-01

    This paper reports on a miniaturized microbial fuel cell with a microfluidic flow-through configuration: a porous anolyte chamber is formed by filling a microfluidic chamber with three-dimensional graphene foam as anode, allowing nutritional medium to flow through the chamber to intimately interact with the colonized microbes on the scaffolds of the anode. No nutritional media flow over the anode. This allows sustaining high levels of nutrient utilization, minimizing consumption of nutritional substrates, and reducing response time of electricity generation owing to fast mass transport through pressure-driven flow and rapid diffusion of nutrients within the anode. The device provides a volume power density of 745 μW/cm3 and a surface power density of 89.4 μW/cm2 using Shewanella oneidensis as a model biocatalyst without any optimization of bacterial culture. The medium consumption and the response time of the flow-through device are reduced by 16.4 times and 4.2 times, respectively, compared to the non-flow-through counterpart with its freeway space volume six times the volume of graphene foam anode. The graphene foam enabled microfluidic flow-through approach will allow efficient microbial conversion of carbon-containing bioconvertible substrates to electricity with smaller space, less medium consumption, and shorter start-up time. PMID:28120875

  8. The role of intracochlear drug delivery devices in the management of inner ear disease.

    PubMed

    Ayoob, Andrew M; Borenstein, Jeffrey T

    2015-03-01

    Diseases of the inner ear include those of the auditory and vestibular systems, and frequently result in disabling hearing loss or vertigo. Despite a rapidly expanding pipeline of potential cochlear therapeutics, the inner ear remains a challenging organ for targeted drug delivery, and new technologies are required to deliver these therapies in a safe and efficacious manner. In addition to traditional approaches for direct inner ear drug delivery, novel microfluidics-based systems are under development, promising improved control over pharmacokinetics over longer periods of delivery, ultimately with application towards hair cell regeneration in humans. Advances in the development of intracochlear drug delivery systems are reviewed, including passive systems, active microfluidic technologies and cochlear prosthesis-mediated delivery. This article provides a description of novel delivery systems and their potential future clinical applications in treating inner ear disease. Recent progresses in microfluidics and miniaturization technologies are enabling the development of wearable and ultimately implantable drug delivery microsystems. Progress in this field is being spurred by the convergence of advances in molecular biology, microfluidic flow control systems and models for drug transport in the inner ear. These advances will herald a new generation of devices, with near-term applications in preclinical models, and ultimately with human clinical use for a range of diseases of the inner ear.

  9. 3D-PRINTING OF TRANSPARENT BIO-MICROFLUIDIC DEVICES IN PEG-DA

    PubMed Central

    Urrios, Arturo; Parra-Cabrera, Cesar; Bhattacharjee, Nirveek; Gonzalez-Suarez, Alan M.; Rigat-Brugarolas, Luis G.; Nallapatti, Umashree; Samitier, Josep; DeForest, Cole A.; Posas, Francesc; Garcia-Cordero, José L.; Folch, Albert

    2016-01-01

    The vast majority of microfluidic systems are molded in poly(dimethylsiloxane) (PDMS) by soft lithography due to the favorable properties of PDMS: biocompatible, elastomeric, transparent, gas-permeable, inexpensive, and copyright-free. However, PDMS molding involves tedious manual labor, which makes PDMS devices prone to assembly failures and difficult to disseminate to research and clinical settings. Furthermore, the fabrication procedures limit the 3D complexity of the devices to layered designs. Stereolithography (SL), a form of 3D-printing, has recently attracted attention as a way to customize the fabrication of biomedical devices due to its automated, assembly-free 3D fabrication, rapidly decreasing costs, and fast-improving resolution and throughput. However, existing SL resins are not biocompatible and patterning transparent resins at high resolution remains difficult. Here we report procedures for the preparation and patterning of a transparent resin based on low-MW poly(ethylene glycol) diacrylate (MW 250) (PEG-DA-250). The 3D-printed devices are highly transparent and cells can be cultured on PEG-DA-250 prints for several days. This biocompatible SL resin and printing process solves some of the main drawbacks of 3D-printed microfluidic devices: biocompatibility and transparency. In addition, it should also enable the production of non-microfluidic biomedical devices. PMID:27217203

  10. Integrated Microfluidic Flow-Through Microbial Fuel Cells

    NASA Astrophysics Data System (ADS)

    Jiang, Huawei; Ali, Md. Azahar; Xu, Zhen; Halverson, Larry J.; Dong, Liang

    2017-01-01

    This paper reports on a miniaturized microbial fuel cell with a microfluidic flow-through configuration: a porous anolyte chamber is formed by filling a microfluidic chamber with three-dimensional graphene foam as anode, allowing nutritional medium to flow through the chamber to intimately interact with the colonized microbes on the scaffolds of the anode. No nutritional media flow over the anode. This allows sustaining high levels of nutrient utilization, minimizing consumption of nutritional substrates, and reducing response time of electricity generation owing to fast mass transport through pressure-driven flow and rapid diffusion of nutrients within the anode. The device provides a volume power density of 745 μW/cm3 and a surface power density of 89.4 μW/cm2 using Shewanella oneidensis as a model biocatalyst without any optimization of bacterial culture. The medium consumption and the response time of the flow-through device are reduced by 16.4 times and 4.2 times, respectively, compared to the non-flow-through counterpart with its freeway space volume six times the volume of graphene foam anode. The graphene foam enabled microfluidic flow-through approach will allow efficient microbial conversion of carbon-containing bioconvertible substrates to electricity with smaller space, less medium consumption, and shorter start-up time.

  11. An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics.

    PubMed

    Szydzik, C; Gavela, A F; Herranz, S; Roccisano, J; Knoerzer, M; Thurgood, P; Khoshmanesh, K; Mitchell, A; Lechuga, L M

    2017-08-08

    A primary limitation preventing practical implementation of photonic biosensors within point-of-care platforms is their integration with fluidic automation subsystems. For most diagnostic applications, photonic biosensors require complex fluid handling protocols; this is especially prominent in the case of competitive immunoassays, commonly used for detection of low-concentration, low-molecular weight biomarkers. For this reason, complex automated microfluidic systems are needed to realise the full point-of-care potential of photonic biosensors. To fulfil this requirement, we propose an on-chip valve-based microfluidic automation module, capable of automating such complex fluid handling. This module is realised through application of a PDMS injection moulding fabrication technique, recently described in our previous work, which enables practical fabrication of normally closed pneumatically actuated elastomeric valves. In this work, these valves are configured to achieve multiplexed reagent addressing for an on-chip diaphragm pump, providing the sample and reagent processing capabilities required for automation of cyclic competitive immunoassays. Application of this technique simplifies fabrication and introduces the potential for mass production, bringing point-of-care integration of complex automated microfluidics into the realm of practicality. This module is integrated with a highly sensitive, label-free bimodal waveguide photonic biosensor, and is demonstrated in the context of a proof-of-concept biosensing assay, detecting the low-molecular weight antibiotic tetracycline.

  12. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels.

    PubMed

    Wang, Xiaolin; Phan, Duc T T; Sobrino, Agua; George, Steven C; Hughes, Christopher C W; Lee, Abraham P

    2016-01-21

    This paper reports a method for generating an intact and perfusable microvascular network that connects to microfluidic channels without appreciable leakage. This platform incorporates different stages of vascular development including vasculogenesis, endothelial cell (EC) lining, sprouting angiogenesis, and anastomosis in sequential order. After formation of a capillary network inside the tissue chamber via vasculogenesis, the adjacent microfluidic channels are lined with a monolayer of ECs, which then serve as the high-pressure input ("artery") and low pressure output ("vein") conduits. To promote a tight interconnection between the artery/vein and the capillary network, sprouting angiogenesis is induced, which promotes anastomosis of the vasculature inside the tissue chamber with the EC lining along the microfluidic channels. Flow of fluorescent microparticles confirms the perfusability of the lumenized microvascular network, and minimal leakage of 70 kDa FITC-dextran confirms physiologic tightness of the EC junctions and completeness of the interconnections between artery/vein and the capillary network. This versatile device design and its robust construction methodology establish a physiological transport model of interconnected perfused vessels from artery to vascularized tissue to vein. The system has utility in a wide range of organ-on-a-chip applications as it enables the physiological vascular interconnection of multiple on-chip tissue constructs that can serve as disease models for drug screening.

  13. Development of a shear stress-free microfluidic gradient generator capable of quantitatively analyzing single-cell morphology.

    PubMed

    Barata, David; Spennati, Giulia; Correia, Cristina; Ribeiro, Nelson; Harink, Björn; van Blitterswijk, Clemens; Habibovic, Pamela; van Rijt, Sabine

    2017-09-07

    Microfluidics, the science of engineering fluid streams at the micrometer scale, offers unique tools for creating and controlling gradients of soluble compounds. Gradient generation can be used to recreate complex physiological microenvironments, but is also useful for screening purposes. For example, in a single experiment, adherent cells can be exposed to a range of concentrations of the compound of interest, enabling high-content analysis of cell behaviour and enhancing throughput. In this study, we present the development of a microfluidic screening platform where, by means of diffusion, gradients of soluble compounds can be generated and sustained. This platform enables the culture of adherent cells under shear stress-free conditions, and their exposure to a soluble compound in a concentration gradient-wise manner. The platform consists of five serial cell culture chambers, all coupled to two lateral fluid supply channels that are used for gradient generation through a source-sink mechanism. Furthermore, an additional inlet and outlet are used for cell seeding inside the chambers. Finite element modeling was used for the optimization of the design of the platform and for validation of the dynamics of gradient generation. Then, as a proof-of-concept, human osteosarcoma MG-63 cells were cultured inside the platform and exposed to a gradient of Cytochalasin D, an actin polymerization inhibitor. This set-up allowed us to analyze cell morphological changes over time, including cell area and eccentricity measurements, as a function of Cytochalasin D concentration by using fluorescence image-based cytometry.

  14. Mkit: A cell migration assay based on microfluidic device and smartphone.

    PubMed

    Yang, Ke; Wu, Jiandong; Peretz-Soroka, Hagit; Zhu, Ling; Li, Zhigang; Sang, Yaoshuo; Hipolito, Jolly; Zhang, Michael; Santos, Susy; Hillier, Craig; de Faria, Ricardo Lobato; Liu, Yong; Lin, Francis

    2018-01-15

    Mobile sensing based on the integration of microfluidic device and smartphone, so-called MS 2 technology, has enabled many applications over recent years, and continues to stimulate growing interest in both research communities and industries. In particular, it has been envisioned that MS 2 technology can be developed for various cell functional assays to enable basic research and clinical applications. Toward this direction, in this paper, we describe the development of a MS 2 -based cell functional assay for testing cell migration (the M kit ). The system is constructed as an integrated test kit, which includes microfluidic chips, a smartphone-based imaging platform, the phone apps for image capturing and data analysis, and a set of reagent and accessories for performing the cell migration assay. We demonstrated that the M kit can effectively measure purified neutrophil and cancer cell chemotaxis. Furthermore, neutrophil chemotaxis can be tested from a drop of whole blood using the M kit with red blood cell (RBC) lysis. The effects of chemoattractant dose and gradient profile on neutrophil chemotaxis were also tested using the M kit . In addition to research applications, we demonstrated the effective use of the M kit for on-site test at the hospital and for testing clinical samples from chronic obstructive pulmonary disease patient. Thus, this developed M kit provides an easy and integrated experimental platform for cell migration related research and potential medical diagnostic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Microfluidic device capable of medium recirculation for non-adherent cell culture

    PubMed Central

    Dixon, Angela R.; Rajan, Shrinidhi; Kuo, Chuan-Hsien; Bersano, Tom; Wold, Rachel; Futai, Nobuyuki; Takayama, Shuichi; Mehta, Geeta

    2014-01-01

    We present a microfluidic device designed for maintenance and culture of non-adherent mammalian cells, which enables both recirculation and refreshing of medium, as well as easy harvesting of cells from the device. We demonstrate fabrication of a novel microfluidic device utilizing Braille perfusion for peristaltic fluid flow to enable switching between recirculation and refresh flow modes. Utilizing fluid flow simulations and the human promyelocytic leukemia cell line, HL-60, non-adherent cells, we demonstrate the utility of this RECIR-REFRESH device. With computer simulations, we profiled fluid flow and concentration gradients of autocrine factors and found that the geometry of the cell culture well plays a key role in cell entrapping and retaining autocrine and soluble factors. We subjected HL-60 cells, in the device, to a treatment regimen of 1.25% dimethylsulfoxide, every other day, to provoke differentiation and measured subsequent expression of CD11b on day 2 and day 4 and tumor necrosis factor-alpha (TNF-α) on day 4. Our findings display perfusion sensitive CD11b expression, but not TNF-α build-up, by day 4 of culture, with a 1:1 ratio of recirculation to refresh flow yielding the greatest increase in CD11b levels. RECIR-REFRESH facilitates programmable levels of cell differentiation in a HL-60 non-adherent cell population and can be expanded to other types of non-adherent cells such as hematopoietic stem cells. PMID:24753733

  16. Architecture as Design Study.

    ERIC Educational Resources Information Center

    Kauppinen, Heta

    1989-01-01

    Explores the use of analogies in architectural design, the importance of Gestalt theory and aesthetic cannons in understanding and being sensitive to architecture. Emphasizes the variation between public and professional appreciation of architecture. Notes that an understanding of architectural process enables students to improve the aesthetic…

  17. Microfluidic volumetric flow determination using optical coherence tomography speckle: An autocorrelation approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Pretto, Lucas R., E-mail: lucas.de.pretto@usp.br; Nogueira, Gesse E. C.; Freitas, Anderson Z.

    2016-04-28

    Functional modalities of Optical Coherence Tomography (OCT) based on speckle analysis are emerging in the literature. We propose a simple approach to the autocorrelation of OCT signal to enable volumetric flow rate differentiation, based on decorrelation time. Our results show that this technique could distinguish flows separated by 3 μl/min, limited by the acquisition speed of the system. We further perform a B-scan of gradient flow inside a microchannel, enabling the visualization of the drag effect on the walls.

  18. A Handheld Point-of-Care Genomic Diagnostic System

    PubMed Central

    Myers, Frank B.; Henrikson, Richard H.; Bone, Jennifer; Lee, Luke P.

    2013-01-01

    The rapid detection and identification of infectious disease pathogens is a critical need for healthcare in both developed and developing countries. As we gain more insight into the genomic basis of pathogen infectivity and drug resistance, point-of-care nucleic acid testing will likely become an important tool for global health. In this paper, we present an inexpensive, handheld, battery-powered instrument designed to enable pathogen genotyping in the developing world. Our Microfluidic Biomolecular Amplification Reader (µBAR) represents the convergence of molecular biology, microfluidics, optics, and electronics technology. The µBAR is capable of carrying out isothermal nucleic acid amplification assays with real-time fluorescence readout at a fraction of the cost of conventional benchtop thermocyclers. Additionally, the µBAR features cell phone data connectivity and GPS sample geotagging which can enable epidemiological surveying and remote healthcare delivery. The µBAR controls assay temperature through an integrated resistive heater and monitors real-time fluorescence signals from 60 individual reaction chambers using LEDs and phototransistors. Assays are carried out on PDMS disposable microfluidic cartridges which require no external power for sample loading. We characterize the fluorescence detection limits, heater uniformity, and battery life of the instrument. As a proof-of-principle, we demonstrate the detection of the HIV-1 integrase gene with the µBAR using the Loop-Mediated Isothermal Amplification (LAMP) assay. Although we focus on the detection of purified DNA here, LAMP has previously been demonstrated with a range of clinical samples, and our eventual goal is to develop a microfluidic device which includes on-chip sample preparation from raw samples. The µBAR is based entirely around open source hardware and software, and in the accompanying online supplement we present a full set of schematics, bill of materials, PCB layouts, CAD drawings, and source code for the µBAR instrument with the goal of spurring further innovation toward low-cost genetic diagnostics. PMID:23936402

  19. The Combat Cloud: Enabling Multi-Domain Command and Control Across the Range of Military Operations

    DTIC Science & Technology

    2017-03-01

    and joint by their very nature.3 The Combat Cloud architecture will enable MDC2 by increasing the interoperability of existing networks...order to provide operating platforms with a robust architecture that communicates with relevant players, operates at reduced levels of connectivity...responsibility or aircraft platform, and a Combat Cloud architecture helps focus thought toward achieving efficient MDC2 and effects rather than

  20. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Heckler, Greg; Menrad, Robert J.; Hudiburg, John J.; Boroson, Don M.; Robinson, Bryan S.; Cornwell, Donald M.

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) Team proposed a fundamentally new architectural concept, with enabling technologies, that defines an evolutionary pathway out to the 2040 timeframe in which an increasing user community comprised of more diverse space science and exploration missions can be supported. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network through implementation of select technologies resulting in a global communication and navigation network that provides communication and navigation services to a wide range of space users in the Near Earth regime, defined as an Earth-centered sphere with radius of 2M Km. The enabling technologies include: High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology (PNT). This paper describes this new architecture, the key technologies that enable it and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  1. A Microfluidic Technique to Probe Cell Deformability

    PubMed Central

    Hoelzle, David J.; Varghese, Bino A.; Chan, Clara K.; Rowat, Amy C.

    2014-01-01

    Here we detail the design, fabrication, and use of a microfluidic device to evaluate the deformability of a large number of individual cells in an efficient manner. Typically, data for ~102 cells can be acquired within a 1 hr experiment. An automated image analysis program enables efficient post-experiment analysis of image data, enabling processing to be complete within a few hours. Our device geometry is unique in that cells must deform through a series of micron-scale constrictions, thereby enabling the initial deformation and time-dependent relaxation of individual cells to be assayed. The applicability of this method to human promyelocytic leukemia (HL-60) cells is demonstrated. Driving cells to deform through micron-scale constrictions using pressure-driven flow, we observe that human promyelocytic (HL-60) cells momentarily occlude the first constriction for a median time of 9.3 msec before passaging more quickly through the subsequent constrictions with a median transit time of 4.0 msec per constriction. By contrast, all-trans retinoic acid-treated (neutrophil-type) HL-60 cells occlude the first constriction for only 4.3 msec before passaging through the subsequent constrictions with a median transit time of 3.3 msec. This method can provide insight into the viscoelastic nature of cells, and ultimately reveal the molecular origins of this behavior. PMID:25226269

  2. Impact of Nutrient Restriction on the Structure of Listeria monocytogenes Biofilm Grown in a Microfluidic System.

    PubMed

    Cherifi, Tamazight; Jacques, Mario; Quessy, Sylvain; Fravalo, Philippe

    2017-01-01

    Biofilm formation by the pathogen Listeria monocytogenes is a major concern in food industries. The aim of this work was to elucidate the effect of nutrient limitation on both biofilm architecture and on the viability of the bacteria in microfluidic growth conditions. Biofilm formation by two L. monocytogenes strains was performed in a rich medium (BHI) and in a 10-fold diluted BHI (BHI/10) at 30°C for 24 h by using both static conditions and the microfluidic system Bioflux. In dynamic conditions, biofilms grown in rich and poor medium showed significant differences as well in structure and in the resulting biovolume. In BHI/10, biofilm was organized in a knitted network where cells formed long chains, whereas in the rich medium, the observed structure was homogeneous cellular multilayers. Biofilm biovolume production in BHI/10 was significantly higher than in BHI in these dynamic conditions. Interestingly, biovolume of dead cells in biofilms formed under limited nutrient conditions (BHI/10) was significantly higher than in biofilms formed in the BHI medium. In the other hand, in static conditions, biofilm is organized in a multilayer cells and dispersed cells in a rich medium BHI and poor medium BHI/10 respectively. There was significantly more biomass in the rich medium compared to BHI/10 but no difference was noted in the dead/damaged subpopulation showing how L. monocytogenes biofilm could be affected by the growth conditions. This work demonstrated that nutrient concentration affects biofilm structure and the proportion of dead cells in biofilms under microfluidic condition. Our study also showed that limited nutrients play an important role in the structural stability of L. monocytogenes biofilm by enhancing cell death and liberating extracellular DNA.

  3. Flow distribution in parallel microfluidic networks and its effect on concentration gradient

    PubMed Central

    Guermonprez, Cyprien; Michelin, Sébastien; Baroud, Charles N.

    2015-01-01

    The architecture of microfluidic networks can significantly impact the flow distribution within its different branches and thereby influence tracer transport within the network. In this paper, we study the flow rate distribution within a network of parallel microfluidic channels with a single input and single output, using a combination of theoretical modeling and microfluidic experiments. Within the ladder network, the flow rate distribution follows a U-shaped profile, with the highest flow rate occurring in the initial and final branches. The contrast with the central branches is controlled by a single dimensionless parameter, namely, the ratio of hydrodynamic resistance between the distribution channel and the side branches. This contrast in flow rates decreases when the resistance of the side branches increases relative to the resistance of the distribution channel. When the inlet flow is composed of two parallel streams, one of which transporting a diffusing species, a concentration variation is produced within the side branches of the network. The shape of this concentration gradient is fully determined by two dimensionless parameters: the ratio of resistances, which determines the flow rate distribution, and the Péclet number, which characterizes the relative speed of diffusion and advection. Depending on the values of these two control parameters, different distribution profiles can be obtained ranging from a flat profile to a step distribution of solute, with well-distributed gradients between these two limits. Our experimental results are in agreement with our numerical model predictions, based on a simplified 2D advection-diffusion problem. Finally, two possible applications of this work are presented: the first one combines the present design with self-digitization principle to encapsulate the controlled concentration in nanoliter chambers, while the second one extends the present design to create a continuous concentration gradient within an open flow chamber. PMID:26487905

  4. Impact of Nutrient Restriction on the Structure of Listeria monocytogenes Biofilm Grown in a Microfluidic System

    PubMed Central

    Cherifi, Tamazight; Jacques, Mario; Quessy, Sylvain; Fravalo, Philippe

    2017-01-01

    Biofilm formation by the pathogen Listeria monocytogenes is a major concern in food industries. The aim of this work was to elucidate the effect of nutrient limitation on both biofilm architecture and on the viability of the bacteria in microfluidic growth conditions. Biofilm formation by two L. monocytogenes strains was performed in a rich medium (BHI) and in a 10-fold diluted BHI (BHI/10) at 30°C for 24 h by using both static conditions and the microfluidic system Bioflux. In dynamic conditions, biofilms grown in rich and poor medium showed significant differences as well in structure and in the resulting biovolume. In BHI/10, biofilm was organized in a knitted network where cells formed long chains, whereas in the rich medium, the observed structure was homogeneous cellular multilayers. Biofilm biovolume production in BHI/10 was significantly higher than in BHI in these dynamic conditions. Interestingly, biovolume of dead cells in biofilms formed under limited nutrient conditions (BHI/10) was significantly higher than in biofilms formed in the BHI medium. In the other hand, in static conditions, biofilm is organized in a multilayer cells and dispersed cells in a rich medium BHI and poor medium BHI/10 respectively. There was significantly more biomass in the rich medium compared to BHI/10 but no difference was noted in the dead/damaged subpopulation showing how L. monocytogenes biofilm could be affected by the growth conditions. This work demonstrated that nutrient concentration affects biofilm structure and the proportion of dead cells in biofilms under microfluidic condition. Our study also showed that limited nutrients play an important role in the structural stability of L. monocytogenes biofilm by enhancing cell death and liberating extracellular DNA. PMID:28567031

  5. High-throughput combinatorial cell co-culture using microfluidics.

    PubMed

    Tumarkin, Ethan; Tzadu, Lsan; Csaszar, Elizabeth; Seo, Minseok; Zhang, Hong; Lee, Anna; Peerani, Raheem; Purpura, Kelly; Zandstra, Peter W; Kumacheva, Eugenia

    2011-06-01

    Co-culture strategies are foundational in cell biology. These systems, which serve as mimics of in vivo tissue niches, are typically poorly defined in terms of cell ratios, local cues and supportive cell-cell interactions. In the stem cell niche, the ability to screen cell-cell interactions and identify local supportive microenvironments has a broad range of applications in transplantation, tissue engineering and wound healing. We present a microfluidic platform for the high-throughput generation of hydrogel microbeads for cell co-culture. Encapsulation of different cell populations in microgels was achieved by introducing in a microfluidic device two streams of distinct cell suspensions, emulsifying the mixed suspension, and gelling the precursor droplets. The cellular composition in the microgels was controlled by varying the volumetric flow rates of the corresponding streams. We demonstrate one of the applications of the microfluidic method by co-encapsulating factor-dependent and responsive blood progenitor cell lines (MBA2 and M07e cells, respectively) at varying ratios, and show that in-bead paracrine secretion can modulate the viability of the factor dependent cells. Furthermore, we show the application of the method as a tool to screen the impact of specific growth factors on a primary human heterogeneous cell population. Co-encapsulation of IL-3 secreting MBA2 cells with umbilical cord blood cells revealed differential sub-population responsiveness to paracrine signals (CD14+ cells were particularly responsive to locally delivered IL-3). This microfluidic co-culture platform should enable high throughput screening of cell co-culture conditions, leading to new strategies to manipulate cell fate. This journal is © The Royal Society of Chemistry 2011

  6. Microfluidic magnetic fluidized bed for DNA analysis in continuous flow mode.

    PubMed

    Hernández-Neuta, Iván; Pereiro, Iago; Ahlford, Annika; Ferraro, Davide; Zhang, Qiongdi; Viovy, Jean-Louis; Descroix, Stéphanie; Nilsson, Mats

    2018-04-15

    Magnetic solid phase substrates for biomolecule manipulation have become a valuable tool for simplification and automation of molecular biology protocols. However, the handling of magnetic particles inside microfluidic chips for miniaturized assays is often challenging due to inefficient mixing, aggregation, and the advanced instrumentation required for effective actuation. Here, we describe the use of a microfluidic magnetic fluidized bed approach that enables dynamic, highly efficient and simplified magnetic bead actuation for DNA analysis in a continuous flow platform with minimal technical requirements. We evaluate the performance of this approach by testing the efficiency of individual steps of a DNA assay based on padlock probes and rolling circle amplification. This assay comprises common nucleic acid analysis principles, such as hybridization, ligation, amplification and restriction digestion. We obtained efficiencies of up to 90% for these reactions with high throughput processing up to 120μL of DNA dilution at flow rates ranging from 1 to 5μL/min without compromising performance. The fluidized bed was 20-50% more efficient than a commercially available solution for microfluidic manipulation of magnetic beads. Moreover, to demonstrate the potential of this approach for integration into micro-total analysis systems, we optimized the production of a low-cost polymer based microarray and tested its analytical performance for integrated single-molecule digital read-out. Finally, we provide the proof-of-concept for a single-chamber microfluidic chip that combines the fluidized bed with the polymer microarray for a highly simplified and integrated magnetic bead-based DNA analyzer, with potential applications in diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Bright conjugated polymer nanoparticles containing a biodegradable shell produced at high yields and with tuneable optical properties by a scalable microfluidic device.

    PubMed

    Abelha, T F; Phillips, T W; Bannock, J H; Nightingale, A M; Dreiss, C A; Kemal, E; Urbano, L; deMello, J C; Green, M; Dailey, L A

    2017-02-02

    This study compares the performance of a microfluidic technique and a conventional bulk method to manufacture conjugated polymer nanoparticles (CPNs) embedded within a biodegradable poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG 5K -PLGA 55K ) matrix. The influence of PEG 5K -PLGA 55K and conjugated polymers cyano-substituted poly(p-phenylene vinylene) (CN-PPV) and poly(9,9-dioctylfluorene-2,1,3-benzothiadiazole) (F8BT) on the physicochemical properties of the CPNs was also evaluated. Both techniques enabled CPN production with high end product yields (∼70-95%). However, while the bulk technique (solvent displacement) under optimal conditions generated small nanoparticles (∼70-100 nm) with similar optical properties (quantum yields ∼35%), the microfluidic approach produced larger CPNs (140-260 nm) with significantly superior quantum yields (49-55%) and tailored emission spectra. CPNs containing CN-PPV showed smaller size distributions and tuneable emission spectra compared to F8BT systems prepared under the same conditions. The presence of PEG 5K -PLGA 55K did not affect the size or optical properties of the CPNs and provided a neutral net electric charge as is often required for biomedical applications. The microfluidics flow-based device was successfully used for the continuous preparation of CPNs over a 24 hour period. On the basis of the results presented here, it can be concluded that the microfluidic device used in this study can be used to optimize the production of bright CPNs with tailored properties with good reproducibility.

  8. A brief review on microfluidic platforms for hormones detection.

    PubMed

    Ozhikandathil, Jayan; Badilescu, Simona; Packirisamy, Muthukumaran

    2017-01-01

    Lab-on-chip technology is attracting great interest due to its potential as miniaturized devices that can automate and integrate many sample-handling steps, minimize consumption of reagent and samples, have short processing time and enable multiplexed analysis. Microfluidic devices have demonstrated their potential for a broad range of applications in life sciences, including point-of-care diagnostics and personalized medicine, based on the routine diagnosis of levels of hormones, cancer markers, and various metabolic products in blood, serum, etc. Microfluidics offers an adaptable platform that can facilitate cell culture as well as monitor their activity and control the cellular environment. Signaling molecules released from cells such as neurotransmitters and hormones are important in assessing the health of cells and the effect of drugs on their functions. In this review, we provide an insight into the state-of-art applications of microfluidics for monitoring of hormones released by cells. In our works, we have demonstrated efficient detection methods for bovine growth hormones using nano and microphotonics integrated microfluidics devices. The bovine growth hormone can be used as a growth promoter in dairy farming to enhance the milk and meat production. In the recent years, a few attempts have been reported on developing very sensitive, fast and low-cost methods of detection of bovine growth hormone using micro devices. This paper reviews the current state-of-art of detection and analysis of hormone using integrated optical micro and nanofluidics systems. In addition, the paper also focuses on various lab-on-a-chip technologies reported recently, and their benefits for screening growth hormones in milk.

  9. Comparison of capacitive and radio frequency resonator sensors for monitoring parallelized droplet microfluidic production.

    PubMed

    Conchouso, David; McKerricher, Garret; Arevalo, Arpys; Castro, David; Shamim, Atif; Foulds, Ian G

    2016-08-16

    Scaled-up production of microfluidic droplets, through the parallelization of hundreds of droplet generators, has received a lot of attention to bring novel multiphase microfluidics research to industrial applications. However, apart from droplet generation, other significant challenges relevant to this goal have never been discussed. Examples include monitoring systems, high-throughput processing of droplets and quality control procedures among others. In this paper, we present and compare capacitive and radio frequency (RF) resonator sensors as two candidates that can measure the dielectric properties of emulsions in microfluidic channels. By placing several of these sensors in a parallelization device, the stability of the droplet generation at different locations can be compared, and potential malfunctions can be detected. This strategy enables for the first time the monitoring of scaled-up microfluidic droplet production. Both sensors were prototyped and characterized using emulsions with droplets of 100-150 μm in diameter, which were generated in parallelization devices at water-in-oil volume fractions (φ) between 11.1% and 33.3%.Using these sensors, we were able to measure accurately increments as small as 2.4% in the water volume fraction of the emulsions. Although both methods rely on the dielectric properties of the emulsions, the main advantage of the RF resonator sensors is the fact that they can be designed to resonate at multiple frequencies of the broadband transmission line. Consequently with careful design, two or more sensors can be parallelized and read out by a single signal. Finally, a comparison between these sensors based on their sensitivity, readout cost and simplicity, and design flexibility is also discussed.

  10. Enabling Tussle-Agile Inter-networking Architectures by Underlay Virtualisation

    NASA Astrophysics Data System (ADS)

    Dianati, Mehrdad; Tafazolli, Rahim; Moessner, Klaus

    In this paper, we propose an underlay inter-network virtualisation framework in order to enable tussle-agile flexible networking over the existing inter-network infrastructures. The functionalities that inter-networking elements (transit nodes, access networks, etc.) need to support in order to enable virtualisation are discussed. We propose the base architectures of each the abstract elements to support the required inter-network virtualisation functionalities.

  11. A contact-lens-on-a-chip companion diagnostic tool for personalized medicine.

    PubMed

    Guan, Allan; Wang, Yi; Phillips, K Scott; Li, Zhenyu

    2016-04-07

    We present a novel, microfluidic platform that integrates human tears (1 μL) with commercial contact lens materials to provide personalized assessment of lens care solution performance. This device enabled the detection of significant differences in cleaning and disinfection outcomes between subjects and between biofilms vs. planktonic bacteria.

  12. Femtosecond laser direct-write of optofluidics in polymer-coated optical fiber

    NASA Astrophysics Data System (ADS)

    Joseph, Kevin A. J.; Haque, Moez; Ho, Stephen; Aitchison, J. Stewart; Herman, Peter R.

    2017-03-01

    Multifunctional lab in fiber technology seeks to translate the accomplishments of optofluidic, lab on chip devices into silica fibers. a robust, flexible, and ubiquitous optical communication platform that can underpin the `Internet of Things' with distributed sensors, or enable lab on chip functions deep inside our bodies. Femtosecond lasers have driven significant advances in three-dimensional processing, enabling optical circuits, microfluidics, and micro-mechanical structures to be formed around the core of the fiber. However, such processing typically requires the stripping and recoating of the polymer buffer or jacket, increasing processing time and mechanically weakening the device. This paper reports on a comprehensive assessment of laser damage in urethane-acrylate-coated fiber. The results show a sufficient processing window is available for femtosecond laser processing of the fiber without damaging the polymer jacket. The fiber core, cladding, and buffer could be simultaneously processed without removal of the buffer jacket. Three-dimensional lab in fiber devices were successfully fabricated by distortion-free immersionlens focusing, presenting fiber-cladding optical circuits and progress towards chemically-etched channels, microfluidic cavities, and MEMS structure inside buffer-coated fiber.

  13. High-throughput electrical measurement and microfluidic sorting of semiconductor nanowires.

    PubMed

    Akin, Cevat; Feldman, Leonard C; Durand, Corentin; Hus, Saban M; Li, An-Ping; Hui, Ho Yee; Filler, Michael A; Yi, Jingang; Shan, Jerry W

    2016-05-24

    Existing nanowire electrical characterization tools not only are expensive and require sophisticated facilities, but are far too slow to enable statistical characterization of highly variable samples. They are also generally not compatible with further sorting and processing of nanowires. Here, we demonstrate a high-throughput, solution-based electro-orientation-spectroscopy (EOS) method, which is capable of automated electrical characterization of individual nanowires by direct optical visualization of their alignment behavior under spatially uniform electric fields of different frequencies. We demonstrate that EOS can quantitatively characterize the electrical conductivities of nanowires over a 6-order-of-magnitude range (10(-5) to 10 S m(-1), corresponding to typical carrier densities of 10(10)-10(16) cm(-3)), with different fluids used to suspend the nanowires. By implementing EOS in a simple microfluidic device, continuous electrical characterization is achieved, and the sorting of nanowires is demonstrated as a proof-of-concept. With measurement speeds two orders of magnitude faster than direct-contact methods, the automated EOS instrument enables for the first time the statistical characterization of highly variable 1D nanomaterials.

  14. Cloud-enabled microscopy and droplet microfluidic platform for specific detection of Escherichia coli in water.

    PubMed

    Golberg, Alexander; Linshiz, Gregory; Kravets, Ilia; Stawski, Nina; Hillson, Nathan J; Yarmush, Martin L; Marks, Robert S; Konry, Tania

    2014-01-01

    We report an all-in-one platform - ScanDrop - for the rapid and specific capture, detection, and identification of bacteria in drinking water. The ScanDrop platform integrates droplet microfluidics, a portable imaging system, and cloud-based control software and data storage. The cloud-based control software and data storage enables robotic image acquisition, remote image processing, and rapid data sharing. These features form a "cloud" network for water quality monitoring. We have demonstrated the capability of ScanDrop to perform water quality monitoring via the detection of an indicator coliform bacterium, Escherichia coli, in drinking water contaminated with feces. Magnetic beads conjugated with antibodies to E. coli antigen were used to selectively capture and isolate specific bacteria from water samples. The bead-captured bacteria were co-encapsulated in pico-liter droplets with fluorescently-labeled anti-E. coli antibodies, and imaged with an automated custom designed fluorescence microscope. The entire water quality diagnostic process required 8 hours from sample collection to online-accessible results compared with 2-4 days for other currently available standard detection methods.

  15. Characterization of Bonding Between Poly(dimethylsiloxane) and Cyclic Olefin Coplymer Using Corona Discharge Induced Grafting Polymerization

    PubMed Central

    Liu, Ke; Gu, Pan; Hamaker, Kiri; Fan, Z. Hugh

    2011-01-01

    Thermoplastics have been increasingly used for fabricating microfluidic devices because of their low cost, mechanical/biocompatible attributes, and well-established manufacturing processes. However, there is sometimes a need to integrate such a device with components made from other materials such as polydimethylsiloxane (PDMS). Bonding thermoplastics with PDMS to produce hybrid devices is not straightforward. We have reported our method to modify the surface property of a cyclic olefin copolymer (COC) substrate by using corona discharge and grafting polymerization of 3-(trimethoxysilyl)propyl methacrylate; the modified surface enabled strong bonding of COC with PDMS. In this paper, we report our studies on the surface modification mechanism using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurement. Using this bonding method, we fabricated a three-layer (COC/PDMS/COC) hybrid device consisting of elastomer-based valve arrays. The microvalve operation was confirmed through the displacement of a dye solution in a fluidic channel when the elastomer membrane was pneumatically actuated. Valve-enabled microfluidic handling was demonstrated. PMID:21962541

  16. Dynamic in-situ sensing of fluid-dispersed 2D materials integrated on microfluidic Si chip.

    PubMed

    Hogan, Benjamin T; Dyakov, Sergey A; Brennan, Lorcan J; Younesy, Salma; Perova, Tatiana S; Gun'ko, Yurii K; Craciun, Monica F; Baldycheva, Anna

    2017-02-10

    In this work, we propose a novel approach for wafer-scale integration of 2D materials on CMOS photonic chip utilising methods of synthetic chemistry and microfluidics technology. We have successfully demonstrated that this approach can be used for integration of any fluid-dispersed 2D nano-objects on silicon-on-insulator photonics platform. We demonstrate for the first time that the design of an optofluidic waveguide system can be optimised to enable simultaneous in-situ Raman spectroscopy monitoring of 2D dispersed flakes during the device operation. Moreover, for the first time, we have successfully demonstrated the possibility of label-free 2D flake detection via selective enhancement of the Stokes Raman signal at specific wavelengths. We discovered an ultra-high signal sensitivity to the xyz alignment of 2D flakes within the optofluidic waveguide. This in turn enables precise in-situ alignment detection, for the first practicable realisation of 3D photonic microstructure shaping based on 2D-fluid composites and CMOS photonics platform, while also representing a useful technological tool for the control of liquid phase deposition of 2D materials.

  17. Review of methods to probe single cell metabolism and bioenergetics

    DOE PAGES

    Vasdekis, Andreas E.; Stephanopoulos, Gregory

    2014-10-31

    The sampling and manipulation of cells down to the individual has been of substantial interest since the very beginning of Life Sciences. Herein, our objective is to highlight the most recent developments in single cell manipulation, as well as pioneering ones. First, flow-through methods will be discussed, namely methods in which the single cells flow continuously in an ordered manner during their analysis. This section will be followed by confinement techniques that enable cell isolation and confinement in one, two- or three-dimensions. Flow cytometry and droplet microfluidics are the two most common methods of flow-through analysis. While both are high-throughputmore » techniques, their difference lays in the fact that the droplet encapsulated cells experience a restricted and personal microenvironment, while in flow cytometry cells experience similar nutrient and stimuli initial concentrations. These methods are rather well established; however, they recently enabled immense strides in single cell phenotypic analysis, namely the identification and analysis of metabolically distinct individuals from an isogenic population using both droplet microfluidics and flow cytometry.« less

  18. Cloud-Enabled Microscopy and Droplet Microfluidic Platform for Specific Detection of Escherichia coli in Water

    PubMed Central

    Kravets, Ilia; Stawski, Nina; Hillson, Nathan J.; Yarmush, Martin L.; Marks, Robert S.; Konry, Tania

    2014-01-01

    We report an all-in-one platform – ScanDrop – for the rapid and specific capture, detection, and identification of bacteria in drinking water. The ScanDrop platform integrates droplet microfluidics, a portable imaging system, and cloud-based control software and data storage. The cloud-based control software and data storage enables robotic image acquisition, remote image processing, and rapid data sharing. These features form a “cloud” network for water quality monitoring. We have demonstrated the capability of ScanDrop to perform water quality monitoring via the detection of an indicator coliform bacterium, Escherichia coli, in drinking water contaminated with feces. Magnetic beads conjugated with antibodies to E. coli antigen were used to selectively capture and isolate specific bacteria from water samples. The bead-captured bacteria were co-encapsulated in pico-liter droplets with fluorescently-labeled anti-E. coli antibodies, and imaged with an automated custom designed fluorescence microscope. The entire water quality diagnostic process required 8 hours from sample collection to online-accessible results compared with 2–4 days for other currently available standard detection methods. PMID:24475107

  19. Localized Synthesis of Conductive Copper-Tetracyanoquinodimethane Nanostructures in Ultrasmall Microchambers for Nanoelectronics.

    PubMed

    Xing, Yanlong; Sun, Guoguang; Speiser, Eugen; Esser, Norbert; Dittrich, Petra S

    2017-05-24

    In this work, the microfluidic-assisted synthesis of copper-tetracyanoquinodimethane (Cu-TCNQ) nanostructures in an ambient environment is reported for the first time. A two-layer microfluidic device comprising parallel actuated microchambers was used for the synthesis and enabled excellent fluid handling for the continuous and multiple chemical reactions in confined ultrasmall chambers. Different precautions were applied to ensure the reduction state of copper (Cu) for the synthesis of Cu-TCNQ charge-transfer compounds. The localized synthesis of Cu and in situ transformation to Cu-TCNQ complexes in solution were achieved by applying different gas pressures in the control layer. Additionally, various diameters of the Cu-TCNQ nano/microstructures were obtained by adjusting the concentration of the precursors and reaction time. After the synthesis, platinum (Pt) microelectrode arrays, which were aligned at the microchambers, could enable the in situ measurements of the electronic properties of the synthesized nanostructures without further manipulation. The as-prepared Cu-TCNQ wire bundles showed good conductivity and a reversible hysteretic switching effect, which proved the possibility in using them to build advanced nanoelectronics.

  20. System-level integration of active silicon photonic biosensors

    NASA Astrophysics Data System (ADS)

    Laplatine, L.; Al'Mrayat, O.; Luan, E.; Fang, C.; Rezaiezadeh, S.; Ratner, D. M.; Cheung, K.; Dattner, Y.; Chrostowski, L.

    2017-02-01

    Biosensors based on silicon photonic integrated circuits have attracted a growing interest in recent years. The use of sub-micron silicon waveguides to propagate near-infrared light allows for the drastic reduction of the optical system size, while increasing its complexity and sensitivity. Using silicon as the propagating medium also leverages the fabrication capabilities of CMOS foundries, which offer low-cost mass production. Researchers have deeply investigated photonic sensor devices, such as ring resonators, interferometers and photonic crystals, but the practical integration of silicon photonic biochips as part of a complete system has received less attention. Herein, we present a practical system-level architecture which can be employed to integrate the aforementioned photonic biosensors. We describe a system based on 1 mm2 dies that integrate germanium photodetectors and a single light coupling device. The die are embedded into a 16x16 mm2 epoxy package to enable microfluidic and electrical integration. First, we demonstrate a simple process to mimic Fan-Out Wafer-level-Packaging, which enables low-cost mass production. We then characterize the photodetectors in the photovoltaic mode, which exhibit high sensitivity at low optical power. Finally, we present a new grating coupler concept to relax the lateral alignment tolerance down to +/- 50 μm at 1-dB (80%) power penalty, which should permit non-experts to use the biochips in a"plug-and-play" style. The system-level integration demonstrated in this study paves the way towards the mass production of low-cost and highly sensitive biosensors, and can facilitate their wide adoption for biomedical and agro-environmental applications.

Top