Sample records for microgravity science program

  1. Microgravity Research Results and Experiences from the NASA Mir Space Station Program

    NASA Technical Reports Server (NTRS)

    Schagheck, R. A.; Trach, B.

    2000-01-01

    The Microgravity Research Program Office (MRPO) participated aggressively in Phase I of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges to long duration microgravity space research. Payloads with both NASA and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about dealing with long duration on orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. Microgravity participation in the NASA Mir Program began with the first joint NASA Mir flight to the Mir Space Station. The earliest participation setup acceleration measurement capabilities that were used throughout the Program. Research, conducted by all Microgravity science disciplines, continued on each subsequent increment for the entire three-year duration of the Program. The Phase I Program included the Microgravity participation of over 30 Fluids, Combustion, Materials, and Biotechnology Sciences and numerous commercially sponsored research payloads. In addition to the research gained from Microgravity investigations, long duration operation of facility hardware was tested. Microgravity facilities operated on Mir included the Space Acceleration Measurement System (SAMS), the Microgravity Glovebox (MGBX), the Biotechnology System (BTS) and the Canadian Space Agency sponsored Microgravity Isolation Mount (MIM). The Russian OPTIZONE Furnace was also incorporated into our material science research. All of these efforts yielded significant and useful scientific research data. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings. Most importantly this paper highlights the various disciplines of microgravity research conducted during the International Space Station, Phase 1 Program onboard the Mir Station. A capsulation of significant research and the applicability of our findings are provided. In addition, a brief discussion of how future microgravity science gathering capabilities, hardware development and payload operations techniques have enhanced our ability to conduct long duration microgravity research.

  2. The potential impact of microgravity science and technology on education

    NASA Technical Reports Server (NTRS)

    Wargo, M. J.

    1992-01-01

    The development of educational support materials by NASA's Microgravity Science and Applications Division is discussed in the light of two programs. Descriptions of the inception and application possibilities are given for the Microgravity-Science Teacher's Guide and the program of Undergraduate Research Opportunities in Microgravity Science and Technology. The guide is intended to introduce students to the principles and research efforts related to microgravity, and the undergraduate program is intended to reinforce interest in the space program. The use of computers and electronic communications is shown to be an important catalyst for the educational efforts. It is suggested that student and teacher access to these programs be enhanced so that they can have a broader impact on the educational development of space-related knowledge.

  3. Microgravity Program strategic plan, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The all encompassing objective of the NASA Microgravity Program is the use of space as a lab to conduct research and development. The on-orbit microgravity environment, with its substantially reduced buoyancy forces, hydrostatic pressures, and sedimentation, enables the conduction of scientific studies not possible on Earth. This environment allows processes to be isolated and controlled with an accuracy that cannot be obtained in the terrestrial environment. The Microgravity Science and Applications Div. has defined three major science categories in order to develop a program structure: fundamental science, including the study of the behavior of fluids, transport phenomena, condensed matter physics, and combustion science; materials science, including electronic and photonic materials, metals and alloys, and glasses and ceramics; and biotechnology, focusing on macromolecular crystal growth as well as cell and molecular science. Experiments in these areas seek to provide observations of complex phenomena and measurements of physical attributes with a precision that is enabled by the microgravity environment.

  4. Microgravity science and applications. Program tasks and bibliography for FY 1994

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground-based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. ATD (Advanced Technology Development) program task descriptions are also included. The bibliography cites the related PI (Principal Investigator) publications and presentations for these program tasks in FY 1994. Three appendices include Table of Acronyms, Guest Investigator Index, and Principal Investigator Index.

  5. Microgravity science & applications. Program tasks and bibliography for FY 1995

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. Advanced technology development (ATD) program task descriptions are also included. The bibliography cites the related principle investigator (PI) publications and presentations for these program tasks in FY 1994. Three appendices include a Table of Acronyms, a Guest Investigator index and a Principle Investigator index.

  6. Microgravity research in NASA ground-based facilities

    NASA Technical Reports Server (NTRS)

    Lekan, Jack

    1989-01-01

    An overview of reduced gravity research performed in NASA ground-based facilities sponsored by the Microgravity Science and Applications Program of the NASA Office of Space Science and Applications is presented. A brief description and summary of the operations and capabilities of each of these facilities along with an overview of the historical usage of them is included. The goals and program elements of the Microgravity Science and Applications programs are described and the specific programs that utilize the low gravity facilities are identified. Results from two particular investigations in combustion (flame spread over solid fuels) and fluid physics (gas-liquid flows at microgravity conditions) are presented.

  7. NASA Microgravity Combustion Science Research Plans for the ISS

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    2003-01-01

    A peer-reviewed research program in Microgravity Combustion Science has been chartered by the Physical Sciences Research Division of the NASA Office of Biological and Physical Research. The scope of these investigations address both fundamental combustion phenomena and applied combustion research topics of interest to NASA. From this pool of research, flight investigations are selected which benefit from access to a microgravity environment. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). Through its spacecraft fire safety program, applied research is conducted to decrease risks to humans living and working in space. The Microgravity Combustion Science program implements a structured flight research process utilizing the International Space Station (ISS) and two of its premier facilities- the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox - to conduct space-based research investigations. This paper reviews the current plans for Microgravity Combustion Science research on the International Space Station from 2003 through 2012.

  8. NASA's Microgravity Science Research Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The ongoing challenge faced by NASA's Microgravity Science Research Program is to work with the scientific and engineering communities to secure the maximum return from our Nation's investments by: assuring that the best possible science emerges from the science community for microgravity investigations; ensuring the maximum scientific return from each investigation in the most timely and cost-effective manner; and enhancing the distribution of data and applications of results acquired through completed investigations to maximize their benefits.

  9. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Szofran, Frank R. (Compiler); McCauley, D. (Compiler); Walker, C. (Compiler)

    1996-01-01

    The Microgravity Materials Science Conference was held June 10-11, 1996 at the Von Braun Civic Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Science and Applications Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the second NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 80 investigations and 69 principal investigators in FY96, all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement (NRA) scheduled for release in late 1996 by the Microgravity Science and Applications Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the MSFC microgravity research facilities was held on June 12, 1996. This volume is comprised of the research reports submitted by the principal investigators after the conference and presentations made by various NASA microgravity science managers.

  10. Early use of Space Station Freedom for NASA's Microgravity Science and Applications Program

    NASA Technical Reports Server (NTRS)

    Rhome, Robert C.; O'Malley, Terence F.

    1992-01-01

    The paper describes microgravity science opportunities inherent to the restructured Space Station and presents a synopsis of the scientific utilization plan for the first two years of ground-tended operations. In the ground-tended utilization mode the Space Station is a large free-flyer providing a continuous microgravity environment unmatched by any other platform within any existing U.S. program. It is pointed out that the importance of this period of early Space Station mixed-mode utilization between crew-tended and ground-tended approaches is of such magnitude that Station-based microgravity science experiments many become benchmarks to the disciplines involved. The traffic model that is currently being pursued is designed to maximize this opportunity for the U.S. microgravity science community.

  11. Microgravity Science and Applications: Program Tasks and Bibliography for Fiscal Year 1996

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA's Microgravity Science and Applications Division (MSAD) sponsors a program that expands the use of space as a laboratory for the study of important physical, chemical, and biochemical processes. The primary objective of the program is to broaden the value and capabilities of human presence in space by exploiting the unique characteristics of the space environment for research. However, since flight opportunities are rare and flight research development is expensive, a vigorous ground-based research program, from which only the best experiments evolve, is critical to the continuing strength of the program. The microgravity environment affords unique characteristics that allow the investigation of phenomena and processes that are difficult or impossible to study an Earth. The ability to control gravitational effects such as buoyancy driven convection, sedimentation, and hydrostatic pressures make it possible to isolate phenomena and make measurements that have significantly greater accuracy than can be achieved in normal gravity. Space flight gives scientists the opportunity to study the fundamental states of physical matter-solids, liquids and gasses-and the forces that affect those states. Because the orbital environment allows the treatment of gravity as a variable, research in microgravity leads to a greater fundamental understanding of the influence of gravity on the world around us. With appropriate emphasis, the results of space experiments lead to both knowledge and technological advances that have direct applications on Earth. Microgravity research also provides the practical knowledge essential to the development of future space systems. The Office of Life and Microgravity Sciences and Applications (OLMSA) is responsible for planning and executing research stimulated by the Agency's broad scientific goals. OLMSA's Microgravity Science and Applications Division (MSAD) is responsible for guiding and focusing a comprehensive program, and currently manages its research and development tasks through five major scientific areas: biotechnology, combustion science, fluid physics, fundamental physics, and materials science. FY 1996 was an important year for MSAD. NASA continued to build a solid research community for the coming space station era. During FY 1996, the NASA Microgravity Research Program continued investigations selected from the 1994 combustion science, fluid physics, and materials science NRAS. MSAD also released a NASA Research Announcement in microgravity biotechnology, with more than 130 proposals received in response. Selection of research for funding is expected in early 1997. The principal investigators chosen from these NRAs will form the core of the MSAD research program at the beginning of the space station era. The third United States Microgravity Payload (USMP-3) and the Life and Microgravity Spacelab (LMS) missions yielded a wealth of microgravity data in FY 1996. The USMP-3 mission included a fluids facility and three solidification furnaces, each designed to examine a different type of crystal growth.

  12. Microgravity science and applications projects and payloads

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.

    1987-01-01

    An overview of work conducted by the Microgravity Science and Applications Division of NASA is presented. The goals of the program are the development and implementation of a reduced-gravity research, science and applications program, exploitation of space for human benefits, and the application of reduced gravity research for the development of advanced technologies. Space research of fluid dynamics and mass transport phenomena is discussed and the facilities available for reduced gravity experiments are presented. A program for improving communication with the science and applications communities and the potential use of the Space Station for microgravity research are also examined.

  13. Microgravity Science and Applications

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The report presents fifteen papers from a workshop on microgravity science and applications held at the Jet Propulsion Laboratory in Pasadena, California, on December 3 to 4, 1984. The workshop and panel were formed by the Solid State Sciences Committee of the Board on Physics and Astronomy of the National Research Council in response to a request from the Office of Science and Technology Policy. The goal was to review the microgravity science and applications (MSA) program of NASA and to evaluate the quality of the program. The topics for the papers are metals and alloys, electronic materials, ceramics and glasses, biotechnology, combustion science, and fluid dynamics.

  14. Microgravity Combustion Diagnostics Workshop

    NASA Technical Reports Server (NTRS)

    Santoro, Gilbert J. (Editor); Greenberg, Paul S. (Editor); Piltch, Nancy D. (Editor)

    1988-01-01

    Through the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications (OSSA) at NASA Headquarters, a program entitled, Advanced Technology Development (ATD) was promulgated with the objective of providing advanced technologies that will enable the development of future microgravity science and applications experimental flight hardware. Among the ATD projects one, Microgravity Combustion Diagnostics (MCD), has the objective of developing advanced diagnostic techniques and technologies to provide nonperturbing measurements of combustion characteristics and parameters that will enhance the scientific integrity and quality of microgravity combustion experiments. As part of the approach to this project, a workshop was held on July 28 and 29, 1987, at the NASA Lewis Research Center. A small group of laser combustion diagnosticians met with a group of microgravity combustion experimenters to discuss the science requirements, the state-of-the-art of laser diagnostic technology, and plan the direction for near-, intermediate-, and long-term programs. This publication describes the proceedings of that workshop.

  15. Microgravity research opportunities for the 1990s

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Committee on Microgravity Research (CMGR) was made a standing committee of the Space Studies Board (SSB) and charged with developing a long-range research strategy. The scientific disciplines contained within the microgravity program, and covered in this report, include fluid mechanics and transport phenomena, combustion, biological sciences and biotechnology, materials science, and microgravity physics. The purpose of this report is to recommend means to accomplish the goal of advancing science and technology in each of the component disciplines. Microgravity research should be aimed at making significant impacts in each discipline emphasized. The conclusions and recommendations presented in this report fall into five categories: (1) overall goals for the microgravity research program; (2) general priorities among the major scientific disciplines affected by gravity; (3) identification of the more promising experimental challenges and opportunities within each discipline; (4) general scientific recommendations that apply to all microgravity-related disciplines; and (5) recommendations concerning administrative policies and procedures that are essential to the conduct of excellent laboratory science.

  16. NASA's Microgravity Technology Report, 1996: Summary of Activities

    NASA Technical Reports Server (NTRS)

    Kierk, Isabella

    1996-01-01

    This report covers technology development and technology transfer activities within the Microgravity Science Research Programs during FY 1996. It also describes the recent major tasks under the Advanced Technology Development (ATD) Program and identifies current technology requirements. This document is consistent with NASA,s Enteprise for the Human Exploration and development of Space (HEDS) Strategic Plan. This annual update reflects changes in the Microgravity Science Research Program's new technology activities and requirements. Appendix A. FY 1996 Advanced Technology Development. Program and Project Descriptions. Appendix B. Technology Development.

  17. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, D. C. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    The Microgravity Materials Science Conference was held July 14-16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

  18. NASA Microgravity Science and Applications Program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Key elements of the microgravity research program as conducted by the Microgravity Science and Applications Division (MSAD) within the Office of Space Science and Applications (OSSA) during fiscal year (FY) 1992 are described. This NASA funded program supported investigators from the university, industry, and government research communities. The program's goals, the approach taken to achieve those goals, and the resources that were available are summarized. It provides a 'snapshot' of the Program's status at the end of FY 1992 and reviews highlights and progress in the ground and flight-based research during the year. It also describes four major space missions that flew during FY 1992, the advanced technology development (ATD) activities, and the plans to use the research potential of Space Station Freedom and other advanced carriers. The MSAD program structure encompassed five research areas: (1) Biotechnology, (2) Combustion Science, (3) Fluid Physics, (4) Materials Science, and (5) Benchmark Physics.

  19. NASA's Microgravity Science Program

    NASA Technical Reports Server (NTRS)

    Salzman, Jack A.

    1994-01-01

    Since the late 1980s, the NASA Microgravity Science Program has implemented a systematic effort to expand microgravity research. In 1992, 114 new investigators were selected to enter the program and more US microgravity experiments were conducted in space than in all the years combined since Skylab (1973-74). The use of NASA Research Announcements (NRA's) to solicit research proposals has proven to be highly successful in building a strong base of high-quality peer-reviewed science in both the ground-based and flight experiment elements of the program. The ground-based part of the program provides facilities for low gravity experiments including drop towers and aircraft for making parabolic flights. Program policy is that investigations should not proceed to the flight phase until all ground-based investigative capabilities have been exhausted. In the space experiments program, the greatest increase in flight opportunities has been achieved through dedicated or primary payload Shuttle missions. These missions will continue to be augmented by both mid-deck and GAS-Can accommodated experiments. A US-Russian cooperative flight program envisioned for 1995-97 will provide opportunities for more microgravity research as well as technology demonstration and systems validation efforts important for preparing for experiment operations on the Space Station.

  20. Microgravity Materials Science Conference 2000. Volume 1

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 1 of 3 of the 2000 Microgravity Material Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference. In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in materials science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was close to 350 people. Posters were available for viewing during the conference and a dedicated poster session was held on the second day. Nanotechnology radiation shielding materials, Space Station science opportunities, biomaterials research, and outreach and educational aspects of the program were featured in the plenary talks. This volume, the first to be released on CD-ROM for materials science, is comprised of the research reports submitted by the Principal Investigators at the conference.

  1. Microgravity Materials Science Conference 2000. Volume 3

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Bennett, Nancy; McCauley, Dannah; Murphy, Karen; Poindexter, Samantha

    2001-01-01

    This is Volume 3 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was close to 350 people, Posters were available for viewing during the conference and a dedicated poster session was held on the second day. Nanotechnology, radiation shielding materials, Space Station science opportunities, biomaterials research, and outreach and educational aspects of the program were featured in the plenary talks. This volume, the first to be released on CD-ROM for materials science, is comprised of the research reports submitted by the Principal Investigators at the conference.

  2. Microgravity Materials Science Conference 2000. Volume 2

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 2 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference %%,its to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was close to 350 people, Posters were available for viewing during the conference and a dedicated poster session was held on the second day. Nanotechnology, radiation shielding materials, Space Station science opportunities, biomaterials research, and outreach and educational aspects of the program were featured in the plenary talks. This volume, the first to be released on CD-ROM for materials science, is comprised of the research reports submitted by the Principal Investigators at the conference.

  3. Microgravity research results and experiences from the NASA/MIR space station program.

    PubMed

    Schlagheck, R A; Trach, B L

    2003-12-01

    The Microgravity Research Program (MRP) participated aggressively in Phase 1 of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges of long duration microgravity space research. Payloads with both National Aeronautics and Space Agency (NASA) and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about long-duration on-orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings. Published by Elsevier Ltd.

  4. Information systems requirements for the Microgravity Science and Applications Program

    NASA Technical Reports Server (NTRS)

    Kicza, M. E.; Kreer, J. R.

    1991-01-01

    NASA's Microgravity Science and Applications (MSAD) Program is presented. Additionally, the types of information produced wiithin the program and the anticipated growth in information system requirements as the program transitions to Space Station Freedom utilization are discussed. Plans for payload operations support in the Freedom era are addressed, as well as current activities to define research community requirements for data and sample archives.

  5. Information systems requirements for the microgravity science and applications program

    NASA Technical Reports Server (NTRS)

    Kicza, M. E.; Kreer, J. R.

    1990-01-01

    NASA's Microgravity Science and Applications (MSAD) Program is presented. Additionally, the types of information produced within the program and the anticipated growth in information system requirements as the program transitions to Space Station Freedom utilization are discussed. Plans for payload operations support in the Freedom era are addressed, as well as current activities to define research community requirements for data and sample archives.

  6. Research and competition: Best partners

    NASA Technical Reports Server (NTRS)

    Shaw, J. M.

    1986-01-01

    NASA's Microgravity Science and Applications Program is directed toward research in the science and technology of processing materials under conditions of low gravity. The objective is to make a detailed examination of the constraints imposed by gravitational forces on Earth. The program is expected to lead ultimately to the development of new materials and processes in Earth-based commercial applications, adding to this nation's technological base. An important resource that U.S. researchers have readily available to them is the new Microgravity Materials Science Laboratory (MMSL) at NASA Lewis Research Center in Cleveland. A typical scenario for a microgravity materials experiment at Lewis would begin by establishing 1-g baseline data in the MMSL and then proceeding, if it is indicated, to a drop tower or to simulated microgravity conditions in a research aircraft to qualify the project for space flight. A major component of Lewis microgravity materials research work involves the study of metal and alloy solidification fundamentals.

  7. Ukrainian Program for Material Science in Microgravity

    NASA Astrophysics Data System (ADS)

    Fedorov, Oleg

    Ukrainian Program for Material Sciences in Microgravity O.P. Fedorov, Space Research Insti-tute of NASU -NSAU, Kyiv, The aim of the report is to present previous and current approach of Ukrainian research society to the prospect of material sciences in microgravity. This approach is based on analysis of Ukrainian program of research in microgravity, preparation of Russian -Ukrainian experiments on Russian segment of ISS and development of new Ukrainian strategy of space activity for the years 2010-2030. Two parts of issues are discussed: (i) the evolution of our views on the priorities in microgravity research (ii) current experiments under preparation and important ground-based results. item1 The concept of "space industrialization" and relevant efforts in Soviet and post -Soviet Ukrainian research institutions are reviewed. The main topics are: melt supercooling, crystal growing, testing of materials, electric welding and study of near-Earth environment. The anticipated and current results are compared. item 2. The main experiments in the framework of Ukrainian-Russian Research Program for Russian Segment of ISS are reviewed. Flight installations under development and ground-based results of the experiments on directional solidification, heat pipes, tribological testing, biocorrosion study is presented. Ground-based experiments and theoretical study of directional solidification of transparent alloys are reviewed as well as preparation of MORPHOS installation for study of succinonitrile -acetone in microgravity.

  8. Fluids and Materials Science Studies Utilizing the Microgravity-vibration Isolation Mount (MIM)

    NASA Technical Reports Server (NTRS)

    Herring, Rodney; Tryggvason, Bjarni; Duval, Walter

    1998-01-01

    Canada's Microgravity Sciences Program (MSP) is the smallest program of the ISS partners and so can participate in only a few, highly focused projects in order to make a scientific and technological impact. One focused project involves determining the effect of accelerations (g-jitter) on scientific measurements in a microgravity environment utilizing the Microgravity-vibration Isolation Mount (MIM). Many experiments share the common characteristic of having a fluid stage in their process. The quality of the experimental measurements have been expected to be affected by g-jitters which has lead the ISS program to include specifications to limit the level of acceleration allowed on a subset of experimental racks. From finite element analysis (FEM), the ISS structure will not be able to meet the acceleration specifications. Therefore, isolation systems are necessary. Fluid science results and materials science results show significant sensitivity to g-jitter. The work done to date should be viewed only as a first look at the issue of g-jitter sensitivity. The work should continue with high priority such that the international science community and the ISS program can address the requirement and settle on an agreed to overall approach as soon as possible.

  9. Flight- and Ground-Based Materials Science Programs at NASA

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Microgravity Research Division of NASA funds research programs in all branches of materials science including ceramics and glasses. A NASA Research Announcement (NRA)is currently planned with proposals due in March 1999. Proposals are accepted for both flight- definition and ground- based research projects with a main criterion being a strong justification for microgravity. A review of the program in its entirety will be given, with special emphasis on microgravity related ceramics research. The topics of current interest in the NRA will be discussed in terms of International Space Station research and NASA's Human Exploration and Development of Space (HEDS) initiative.

  10. Toward a microgravity research strategy

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Recommendations of the Committee on Microgravity Research (CMGR) of the Space Studies Board of the National Research Council are found in the Summary and Recommendations in the front of the report. The CMGR recommends a long-range research strategy. The main rationale for the microgravity research program should be to improve our fundamental scientific and technical knowledge base, particularly in the areas that are likely to lead to improvements in processing and manufacturing on earth. The CMGR recommends research be categorized as Biological science and technology, Combustion, Fluid science, Fundamental phenomena, Materials, and Processing science and technology. The committee also recommends that NASA apply a set of value criteria and measurement indicators to define the research and analysis program more clearly. The CMGR recommends that the funding level for research and analysis in microgravity science be established as a fixed percentage of the total program of NASA's Microgravity Science and Applications Division in order to build a strong scientific base for future experiments. The committee also recommends a cost-effective approach to experiments. Finally the CMGR recommends that a thorough technical review of the centers for commercial development of space be conducted to determine the quality of their activities and to ascertain to what degree their original mission has been accomplished.

  11. NASA science utilization plans for the Space Station.

    PubMed

    Reeves, E M; Cressy, P J

    1995-10-01

    The Mir-1 and International Space Station Alpha capabilities present the science community with unique long duration platforms to conduct a wide range of scientific research in the microgravity and life sciences as well as in the observational sciences, NASA is developing plans to use the capabilities of Mir and Space Station as they emerge during the development of the orbital program. In both cases the planned science utilization programs take advantage of the volume, crew, power, microgravity and logistics resupply unique to each phase. The paper will present these utilization plans in the context of an evolving scientific program.

  12. Introduction of International Microgravity Strategic Planning Group

    NASA Technical Reports Server (NTRS)

    Rhome, Robert

    1998-01-01

    Established in May 6, 1995, the purpose of this International Strategic Planning Group for Microgravity Science and Applications Research is to develop and update, at least on a biennial basis, an International Strategic Plan for Microgravity Science and Applications Research. The member space agencies have agreed to contribute to the development of a Strategic Plan, and seek the implementation of the cooperative programs defined in this Plan. The emphasis of this plan is the coordination of hardware construction and utilization within the various areas of research including biotechnology, combustion science, fluid physics, materials science and other special topics in physical sciences. The Microgravity Science and Applications International Strategic Plan is a joint effort by the present members - ASI, CNES, CSA, DLR, ESA, NASA, and NASDA. It represents the consensus from a series of discussions held within the International Microgravity Strategic Planning Group (IMSPG). In 1996 several space agencies initiated multilateral discussions on how to improve the effectiveness of international microgravity research during the upcoming Space Station era. These discussions led to a recognition of the need for a comprehensive strategic plan for international microgravity research that would provide a framework for cooperation between international agencies. The Strategic Plan is intended to provide a basis for inter-agency coordination and cooperation in microgravity research in the environment of the International Space Station (ISS) era. This will be accomplished through analysis of the interests and goals of each participating agency and identification of mutual interests and program compatibilities. The Plan provides a framework for maximizing the productivity of space-based research for the benefit of our societies.

  13. Microgravity

    NASA Image and Video Library

    1998-09-30

    The Electrostatic Levitator (ESL) Facility established at Marshall Space Flight Center (MSFC) supports NASA's Microgravity Materials Science Research Program. NASA materials science investigations include ground-based, flight definition and flight projects. Flight definition projects, with demanding science concept review schedules, receive highest priority for scheduling experiment time in the Electrostatic Levitator (ESL) Facility.

  14. Microgravity Research: A Retrospective of Accomplishments

    NASA Astrophysics Data System (ADS)

    Voorhees, Peter

    2005-03-01

    During the early days of human spaceflight U.S. National Aeronautics and Space Administration (NASA) began giving researchers the ability to perform experiments under extremely low gravity conditions (microgravity). Early microgravity experiments were rudimentary and discovery driven. The limitations of such an approach were clear and in the early 1990s, NASA broadened its program significantly beyond those experiments that were destined to be flown to include a ground- based program that contained both experimental and theoretical investigations. The ground-based program provided a source of carefully designed microgravity experiments. This led to the program in the Physical Sciences Division that involved research in, for example, fluids, materials and low temperature physics. The impact of the microgravity research program has been the focus of a recent National Research Council report titled “Assessment of Directions in Microgravity and Physical Sciences Research at NASA.” We found that there have been numerous high impact ground-based and flight investigations. For example, NASA funding has been instrumental in elucidating the nature of surface-tension-driven fluid flows, dendritic crystal growth and the thermodynamics of phase transitions near critical points. Using this report as a basis, a discussion of the impact of microgravity research on the fields in which it is a part will be given.

  15. 2002 Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, Donald (Editor); Ramachandran, Narayanan (Editor); Murphy, Karen (Editor); McCauley, Dannah (Editor); Bennett, Nancy (Editor)

    2003-01-01

    The 2002 Microgravity Materials Science Conference was held June 25-26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the Cooperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. This CD-ROM proceedings is comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.

  16. Crystal Growth Furnace System Configuration and Planned Experiments on the Second United States Microgravity Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Srinivas, R.; Hambright, G.; Ainsworth, M.; Fiske, M.; Schaefer, D.

    1995-01-01

    The Crystal Growth Furnace (CGF) is currently undergoing modifications and refurbishment and is currently undergoing modifications and refurbishment and is manifested to refly on the Second United States Microgravity Laboratory (USML-2) mission scheduled for launch in September 1995. The CGF was developed for the National Aeronautics and Space Administration (NASA) under the Microgravity Science and Applications Division (MSAD) programs at NASA Headquarters. The refurbishment and reflight program is being managed by the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Funding and program support for the CGF project is provided to MSFC by the office of Life and Microgravity Sciences and Applications at NASA Headquarters. This paper presents an overview of the CGF system configuration for the USML-2 mission, and provides a brief description of the planned on-orbit experiment operation.

  17. Microgravity Outreach and Education

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Rosenberg, Carla B.

    2000-01-01

    The NASA Microgravity Research Program has been actively developing classroom activities and educator's guides since the flight of the First United States Microgravity Laboratory. In addition, various brochures, posters, and exhibit materials have been produced for outreach efforts to the general public and to researchers outside of the program. These efforts are led by the Microgravity Research Outreach/Education team at Marshall Space Flight Center, with classroom material support from the K-12 Educational Program of The National Center for Microgravity Research on Fluids and Combustion (NCMR), general outreach material development by the Microgravity Outreach office at Hampton University, and electronic/media access coordinated by Marshall. The broad concept of the NCMR program is to develop a unique set of microgravity-related educational products that enable effective outreach to the pre-college community by supplementing existing mathematics, science, and technology curricula. The current thrusts of the program include summer teacher and high school internships during which participants help develop educational materials and perform research with NCMR and NASA scientists; a teacher sabbatical program which allows a teacher to concentrate on a major educational product during a full school year; frequent educator workshops held at NASA and at regional and national teachers conferences; a nascent student drop tower experiment competition; presentations and demonstrations at events that also reach the general public; and the development of elementary science and middle school mathematics classroom products. An overview of existing classroom products will be provided, along with a list of pertinent World Wide Web URLs. Demonstrations of some hands on activities will show the audience how simple it can be to bring microgravity into the classroom.

  18. Microgravity strategic plan, 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The mission of the NASA Microgravity program is to utilize the unique characteristics of the space environment, primarily the near absence of gravity, to understand the role of gravity in materials processing, and to demonstrate the feasibility of space production of improved materials that have high technological, and possible commercial, utility. The following five goals for the Microgravity Program are discussed: (1) Develop a comprehensive research program in fundamental sciences, materials science, and biotechnology for the purpose of attaining a structured understanding of gravity dependent physical phenomena in both Earth and non-Earth environments; (2) Foster the growth of interdisciplinary research community to conduct research in the space environment; (3) Encourage international cooperation for the purpose of conducting research in the space environment; (4) Utilize a permanently manned, multi-facility national microgravity laboratory in low-Earth orbit to provide a long-duration, stable microgravity environment; (5) Promote industrial applications of space research for the development of new, commercially viable products, services, and markets resulting from research in the space environment.

  19. Materials Science Research Hardware for Application on the International Space Station: an Overview of Typical Hardware Requirements and Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S.; Fiske, M. R.; Srinivas, R.

    2000-01-01

    NASA's Marshall Space Flight Center (MSFC) is the lead center for Materials Science Microgravity Research. The Materials Science Research Facility (MSRF) is a key development effort underway at MSFC. The MSRF will be the primary facility for microgravity materials science research on board the International Space Station (ISS) and will implement the NASA Materials Science Microgravity Research Program. It will operate in the U.S. Laboratory Module and support U. S. Microgravity Materials Science Investigations. This facility is being designed to maintain the momentum of the U.S. role in microgravity materials science and support NASA's Human Exploration and Development of Space (HEDS) Enterprise goals and objectives for Materials Science. The MSRF as currently envisioned will consist of three Materials Science Research Racks (MSRR), which will be deployed to the International Space Station (ISS) in phases, Each rack is being designed to accommodate various Experiment Modules, which comprise processing facilities for peer selected Materials Science experiments. Phased deployment will enable early opportunities for the U.S. and International Partners, and support the timely incorporation of technology updates to the Experiment Modules and sensor devices.

  20. Microgravity science and applications program tasks, 1991 revision

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Presented here is a compilation of the active research tasks for FY 1991 sponsored by the Microgravity Science and Applications Division of the NASA Office of Space Science and Applications. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. Included is an introductory description of the program, the strategy and overall goal, identification of the organizational structures and the people involved, and a description of each. The tasks are grouped into several categories: electronic materials; solidification of metals, alloys, and composites; fluids, interfaces, and transport; biotechnology; combustion science; glasses and ceramics; experimental technology, instrumentation, and facilities; and Physical and Chemistry Experiments (PACE). The tasks cover both the ground based and flight programs.

  1. NASA's Microgravity Research Program

    NASA Technical Reports Server (NTRS)

    Woodard, Dan

    1998-01-01

    This fiscal year (FY) 1997 annual report describes key elements of the NASA Microgravity Research Program (MRP) as conducted by the Microgravity Research Division (MRD) within NASA's Office of Life and Microgravity, Sciences and Applications. The program's goals, approach taken to achieve those goals, and program resources are summarized. All snapshots of the program's status at the end of FY 1997 and a review of highlights and progress in grounds and flights based research are provided. Also described are major space missions that flew during FY 1997, plans for utilization of the research potential of the International Space Station, the Advanced Technology Development (ATD) Program, and various educational/outreach activities. The MRP supports investigators from academia, industry, and government research communities needing a space environment to study phenomena directly or indirectly affected by gravity.

  2. Space Product Development: Bringing the Benefits of Space Down to Earth

    NASA Technical Reports Server (NTRS)

    Allen, Rosalie W.; Tygielski, Andrew; Gabris, Edward A.

    1997-01-01

    The newly developed microgravity Research Program Office was created to consolidate and integrate NASA's microgravity research efforts, comprised of the microgravity Science and Applications Program and Space Product Development Program. This resulted in an integrated agency program serving the science and industrial research communities, providing leadership, management, direction and overview of all agency microgravity research activities. This paper provides an overview of NASA's microgravity Research Program, with particular emphasis on the Space Product Development Program activities, the potential economic impact and quality of life improvements resulting from this research, and future plans for commercial microgravity research in space. The goal of the Space Product Development Program is to facilitate the use of space for commercial products and services. The unique attributes of space are exploited to conduct industry driven research in the areas of crystallography, bio-systems, agriculture, electronic and non-electronic materials. Industry uses the knowledge gained from focused space research to create new products and processes, to gain economic competitive advantages, to create new jobs and improve the quality of life on earth. The objectives of the program are implemented through NASA's Commercial Space Centers, non-profit consortia of industry, academia and government, that provide the mechanism for communication and technical expert exchange between NASA and industry. Over 200 commercial research activities have been conducted by the Commercial Space Centers and their industrial affiliates over the last four and one-half years during Space Shuttle mission, as well as sounding rocket flights. The results of this research will have a significant impact on competitive products, jobs and quality of life improvements.

  3. Microgravity Science and Application Program tasks, 1989 revision

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The active research tasks, as of the fiscal year 1989, of the Microgravity Science and Applications Program, NASA Office of Space Science and Applications, involving several NASA Centers and other organizations are compiled. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The scientists in industry, university, and government communities. An introductory description of the program, the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task are included. Also provided is a list of recent publications. The tasks are grouped into several major categories: electronic materials, solidification of metals, alloys, and composites; fluids, interfaces, and transport; biotechnology; glasses and ceramics; combustion science; physical and chemistry experiments (PACE); and experimental technology, facilities, and instrumentation.

  4. Commerce Lab - A program of commercial flight opportunities

    NASA Technical Reports Server (NTRS)

    Robertson, J.; Atkins, H. L.; Williams, J. R.

    1985-01-01

    Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab program provides mission planning for private sector involvement in the space program, in general, and the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.

  5. 17th International Microgravity Measurements Group Meeting

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1998-01-01

    The Seventeenth International Microgravity Measurements Group (MGMG) meeting was held 24-26 March 1998 at the Ohio Aerospace Institute (OAI) in Brook Park, Ohio. This meeting focused on the transition of microgravity science research from the Shuttle, Mir, and free flyers to the International Space Station. The MGMG series of meetings are conducted by the Principal Investigator Microgravity Services project of the Microgravity Science Division at the NASA Lewis Research Center. The MGMG meetings provide a forum for the exchange of information and ideas about the microgravity environment and microgravity acceleration research in the Microgravity Research Program. The meeting had participation from investigators in all areas of microgravity research. The attendees included representatives from: NASA centers; National Space Development Agency of Japan; European Space Agency; Daimler Benz Aerospace AG; Deutsches Zentrum fuer Luft- und Raumfahrt; Centre National d'Etudes Spatiales; Canadian Space Agency, national research institutions; Universities in U.S., Italy, Germany, and Russia; and commercial companies in the U.S. and Russia. Several agencies presented summaries of the measurement, analysis, and characterization of the microgravity environment of the Shuttle, Mir, and sounding rockets over the past fifteen years. This extensive effort has laid a foundation for pursuing a similar course during future microgravity science experiment operations on the ISS. Future activities of microgravity environment characterization were discussed by several agencies who plan to operate on the ISS.

  6. SAMS Acceleration Measurements on Mir from June to November 1995

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Hrovat, Ken; Moskowitz, Milton; McPherson, Kevin

    1996-01-01

    The NASA Microgravity Science and Applications Division (MSAD) sponsors science experiments on a variety of microgravity carriers, including sounding rockets, drop towers, parabolic aircraft, and Orbiter missions. The MSAD sponsors the Space Acceleration Measurement System (SAMS) to support microgravity science experiments with acceleration measurements to characterize the microgravity environment to which the experiments were exposed. The Principal Investigator Microgravity Services project at the NASA Lewis Research Center supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. In 1993, a cooperative effort was started between the United States and Russia involving science utilization of the Russian Mir space station by scientists from the United States and Russia. MSAD is currently sponsoring science experiments participating in the Shuttle-Mir Science Program in cooperation with the Russians on the Mir space station. Included in the complement of MSAD experiments and equipment is a SAMS unit In a manner similar to Orbiter mission support, the SAMS unit supports science experiments from the U.S. and Russia by measuring the microgravity environment during experiment operations. The initial SAMS supported experiment was a Protein Crystal Growth (PCG) experiment from June to November 1995. SAMS data were obtained during the PCG operations on Mir in accordance with the PCG Principal Investigator's requirements. This report presents an overview of the SAMS data recorded to support this PCG experiment. The report contains plots of the SAMS 100 Hz sensor head data as an overview of the microgravity environment, including the STS-74 Shuttle-Mir docking.

  7. Physical Sciences Research Priorities and Plans in OBPR

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene

    2002-01-01

    This paper presents viewgraphs of physical sciences research priorities and plans at the Office of Biological and Physical Sciences Research (OBPR). The topics include: 1) Sixth Microgravity Fluid Physics and Transport Phenomena Conference; 2) Beneficial Characteristics of the Space Environment; 3) Windows of Opportunity for Research Derived from Microgravity; 4) Physical Sciences Research Program; 5) Fundamental Research: Space-based Results and Ground-based Applications; 6) Nonlinear Oscillations; and 7) Fundamental Research: Applications to Mission-Oriented Research.

  8. ISS Microgravity Research Payload Training Methodology

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Geveden, Rex (Technical Monitor)

    2001-01-01

    The NASA Microgravity Research Discipline has multiple categories of science payloads that are being planned and currently under development to operate on various ISS on-orbit increments. The current program includes six subdisciplines; Materials Science, Fluids Physics, Combustion Science, Fundamental Physics, Cellular Biology and Macromolecular Biotechnology. All of these experiment payloads will require the astronaut various degrees of crew interaction and science observation. With the current programs planning to build various facility class science racks, the crew will need to be trained on basic core operations as well as science background. In addition, many disciplines will use the Express Rack and the Microgravity Science Glovebox (MSG) to utilize the accommodations provided by these facilities for smaller and less complex type hardware. The Microgravity disciplines will be responsible to have a training program designed to maximize the experiment and hardware throughput as well as being prepared for various contingencies both with anomalies as well as unexpected experiment observations. The crewmembers will need various levels of training from simple tasks as power on and activate to extensive training on hardware mode change out to observing the cell growth of various types of tissue cultures. Sample replacement will be required for furnaces and combustion type modules. The Fundamental Physics program will need crew EVA support to provide module change out of experiment. Training will take place various research centers and hardware development locations. It is expected that onboard training through various methods and video/digital technology as well as limited telecommunication interaction. Since hardware will be designed to operate from a few weeks to multiple research increments, flexibility must be planned in the training approach and procedure skills to optimize the output as well as the equipment maintainability. Early increment lessons learned will be addressed.

  9. Microgravity: A New Tool for Basic and Applied Research in Space

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This brochure highlights selected aspects of the NASA Microgravity Science and Applications program. So that we can expand our understanding and control of physical processes, this program supports basic and applied research in electronic materials, metals, glasses and ceramics, biological materials, combustion and fluids and chemicals. NASA facilities that provide weightless environments on the ground, in the air, and in space are available to U.S. and foreign investigators representing the academic and industrial communities. After a brief history of microgravity research, the text explains the advantages and methods of performing microgravity research. Illustrations follow of equipment used and experiments preformed aboard the Shuttle and of prospects for future research. The brochure concludes be describing the program goals and the opportunities for participation.

  10. Combustion Research Aboard the ISS Utilizing the Combustion Integrated Rack and Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.; Otero, Angel M.; Urban, David L.

    2002-01-01

    The Physical Sciences Research Program of NASA sponsors a broad suite of peer-reviewed research investigating fundamental combustion phenomena and applied combustion research topics. This research is performed through both ground-based and on-orbit research capabilities. The International Space Station (ISS) and two facilities, the Combustion Integrated Rack and the Microgravity Science Glovebox, are key elements in the execution of microgravity combustion flight research planned for the foreseeable future. This paper reviews the Microgravity Combustion Science research planned for the International Space Station implemented from 2003 through 2012. Examples of selected research topics, expected outcomes, and potential benefits will be provided. This paper also summarizes a multi-user hardware development approach, recapping the progress made in preparing these research hardware systems. Within the description of this approach, an operational strategy is presented that illustrates how utilization of constrained ISS resources may be maximized dynamically to increase science through design decisions made during hardware development.

  11. Growing protein crystals in microgravity - The NASA Microgravity Science and Applications Division (MSAD) Protein Crystal Growth (PCG) program

    NASA Technical Reports Server (NTRS)

    Herren, B.

    1992-01-01

    In collaboration with a medical researcher at the University of Alabama at Birmingham, NASA's Marshall Space Flight Center in Huntsville, Alabama, under the sponsorship of the Microgravity Science and Applications Division (MSAD) at NASA Headquarters, is continuing a series of space experiments in protein crystal growth which could lead to innovative new drugs as well as basic science data on protein molecular structures. From 1985 through 1992, Protein Crystal Growth (PCG) experiments will have been flown on the Space Shuttle a total of 14 times. The first four hand-held experiments were used to test hardware concepts; later flights incorporated these concepts for vapor diffusion protein crystal growth with temperature control. This article provides an overview of the PCG program: its evolution, objectives, and plans for future experiments on NASA's Space Shuttle and Space Station Freedom.

  12. Microgravity Science and Applications Program Tasks, 1984 Revision

    NASA Technical Reports Server (NTRS)

    Pentecost, E. (Compiler)

    1985-01-01

    This report is a compilation of the active research tasks as of the end of the fiscal year 1984 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations. The purpose of the document is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The report is structured to include an introductory description of the program, strategy and overall goal; identification of the organizational structures and people involved; and a description of each research task, together with a list of recent publications. The tasks are grouped into six categories: (1) electronic materials; (2) solidification of metals, alloys, and composites; (3) fluid dynamics and transports; (4) biotechnology; (5) glasses and ceramics; and (6) combustion.

  13. Workshop on Research for Space Exploration: Physical Sciences and Process Technology

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    1998-01-01

    This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.

  14. Proceedings of the First Workshop on Containerless Experimentation in Microgravity

    NASA Technical Reports Server (NTRS)

    Trinh, E. H. (Editor)

    1990-01-01

    The goals of the workshop were first to provide scientists an opportunity to acquaint themselves with the past, current, and future scientific investigations carried out in the Containerless Science programs of the Microgravity Science and Applications Div. of NASA, as well as ESA and Japanese Space Agencies. The second goal was to assess the technological development program for low gravity containerless experimentation instruments. The third goal was to obtain recommendations concerning rigorous but feasible new scientific and technological initiative for space experiments using noncontact sample positioning and diagnostic techniques.

  15. Microgravity science and applications: Program tasks and bibliography for FY 1992

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report is a compilation of the FY 1992 Principal Investigator program task descriptions funded by the Microgravity Science and Applications Division (MSAD), NASA Headquarters, Washington, DC. The document also provides a bibliography of FY 1992 publications and presentations cited by MSAD Principal Investigators, and an index of the Principal Investigators and their affiliations. The purpose of the document is to provide an overview and progress report for the funded tasks for scientists and researchers in industry, university, and government communities. The tasks are grouped into three categories appropriate to the type of research being done-space flight, ground based, and advanced technology development-and by science discipline. The science disciplines are: biotechnology, combustion science,, electronic materials, fluid physics, fundamental physics, glass and ceramics, metals and alloys, and protein crystal growth.

  16. Microgravity Combustion Science: 1995 Program Update

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Editor); Gokoglu, Suleyman A. (Editor); Friedman, Robert (Editor)

    1995-01-01

    Microgravity greatly benefits the study of fundamental combustion processes. In this environment, buoyancy-induced flow is nearly eliminated, weak or normally obscured forces and flows can be isolated, gravitational settling or sedimentation is nearly eliminated, and temporal and spatial scales can be expanded. This document reviews the state of knowledge in microgravity combustion science with the emphasis on NASA-sponsored developments in the current period of 1992 to early 1995. The subjects cover basic research in gaseous premixed and diffusion-flame systems, flame structure and sooting, liquid droplets and pools, and solid-surface ignition and flame spread. They also cover applied research in combustion synthesis of ceramic-metal composites, advanced diagnostic instrumentation, and on-orbit fire safety. The review promotes continuing research by describing the opportunities for Principal Investigator participation through the NASA Research Announcement program and the available NASA Lewis Research Center ground-based facilities and spaceflight accommodations. This review is compiled by the members and associates of the NASA Lewis Microgravity Combustion Branch, and it serves as an update of two previous overview reports.

  17. Microgravity Science and Applications Program tasks, 1990 revision

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The active research tasks as of the end of the fiscal year 1990 sponsored by the Microgravity Science and Applications Division of the NASA Office of Space Science and Applications are compiled. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The report includes an introductory description of the program, the strategy and overall goal; an index of principle investigators; and a description of each task. A list of recent publications is also provided. The tasks are grouped into six major categories: electronic materials; solidification of metals, alloys, and composites; fluid dynamics and transport phenomena; biotechnology; glasses and ceramics; combustion; experimental technology; facilities; and Physics And Chemistry Experiments (PACE). The tasks are divided into ground-based and flight experiments.

  18. Microanalytical Efforts in Support of NASA's Materials Science Programs

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    2004-01-01

    Following a brief overview of NASA s Microgravity Materials Science programs, specific examples will be given showing electron beam and optical microscopic applications to two-phase glass structures, dendrite tip radii, solid solution semiconductors, undercooled two-phase stainless steels and meteorites.

  19. Microgravity Science Glovebox Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).

  20. Space Station Freedom - Optimized to support microgravity research and earth observations

    NASA Technical Reports Server (NTRS)

    Bilardo, Vincent J., Jr.; Herman, Daniel J.

    1990-01-01

    The Space Station Freedom Program is reviewed, with particular attention given to the Space Station configuration, program elements description, and utilization accommodation. Since plans call for the assembly of the initial SSF configuration over a 3-year time span, it is NASA's intention to perform useful research on it during the assembly process. The research will include microgravity experiments and observational sciences. The specific attributes supporting these attempts are described, such as maintainance of a very low microgravity level and continuous orientation of the vehicle to maintain a stable, accurate local-vertical/local-horizontal attitude.

  1. Microgravity Science and Applications Program tasks, 1987 revision

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A compilation is presented of the active research tasks as of the end of the FY87 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations. An overview is provided of the program scope for managers and scientists in industry, university, and government communities. An introductory description is provided of the program along with the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task. A list of recent publications is also provided. The tasks are grouped into six major categories: Electronic Materials; Solidification of Metals, Alloys, and Composites; Fluid Dynamics and Transport Phenomena; Biotechnology; Glasses and Ceramics; and Combustion. Other categories include Experimental Technology, General Studies and Surveys; Foreign Government Affiliations; Industrial Affiliations; and Physics and Chemistry Experiments (PACE). The tasks are divided into ground based and flight experiments.

  2. Microgravity Science and Applications Program tasks, 1988 revision

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The active research tasks as of the end of the fiscal year 1988 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations are compiled. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. Also included are an introductory description of the program, the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task. A list of recent publications is provided. The tasks are grouped into six major categories: electronic materials; solidification of metals, alloys, and composites; fluid dynamics and transport phenomena; biotechnology; glasses and ceramics; and combustion. Other categories include experimental technology, general studies and surveys; foreign government affiliations; industrial affiliations; and Physics And Chemistry Experiments (PACE). The tasks are divided into ground-based and flight experiments.

  3. Commerce Lab: Mission analysis and payload integration study

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The needs of an aggressive commercial microgravity program are identified, space missions are defined, and infrastructural issues are identified and analyzed. A commercial laboratory, commerce lab, is conceived to be one or more an array of carriers which would fly aboard the space shuttle and accommodate microgravity science experiment payloads. Commerce lab is seen as a logical transition between currently planned space shuttle missions and future microgravity missions centered around the space station.

  4. Microgravity Science and Applications Flight Programs, January - March 1987, selected papers, volume 1

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A compilation of papers presented at this conference is given. The science dealing with materials and fluids and with fundamental studies in physics and chemistry in a low gravity environment is examined. Program assessments are made along with directions for progress in the future use of the space shuttle program.

  5. New Directions in NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Recently, NASA's Microgravity Research Division was re-aligned to match the Agency's increasing awareness of the importance of biological and nano-structural sciences. The Division has become the Physical Sciences Research section within the newly created Office of Biological and Physical Research. Within materials science and in the last few years, new programs aimed at biomaterials have been initiated. Results from these programs and also new research pertaining to materials for radiation protection will be discussed.

  6. 1000424

    NASA Image and Video Library

    2010-03-16

    L TO R: DR. FRANCIS CHIARAMONTE, PROGRAM EXECUTIVE FOR PHYSICAL SCIENCES, ISS RESEARCH PROJECT, NASA HEADQUARTERS; DR. RAYMOND CLINTON, ACTING MANAGER FOR SCIENCE AND MISSION SYSTEMS OFFICE, NASA MARSHALL; DR. FRANK SZOFRAN, MICROGRAVITY MATERIALS SCIENCE PROJECT MANAGER AND DISCIPLINE SCIENTIST MATERIALS AND PROCESSES LABORATORY AT MSFC.

  7. Microgravity: A Teacher's Guide with Activities in Science, Mathematics, and Technology

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J.B.; Vogt, Gregory L.; Wargo, Michael J.

    1997-01-01

    Microgravity is the subject of this teacher's guide. This publication identifies the underlying mathematics, physics, and technology principles that apply to microgravity. The topics included in this publication are: 1) Microgravity Science Primer; 2) The Microgravity Environment of Orbiting Spacecraft; 3) Biotechnology; 4) Combustion Science; 5) Fluid Physics; 6) Fundamental Physics; and 7) Materials Science; 8) Microgravity Research and Exploration; and 9) Microgravity Science Space Flights. This publication also contains a glossary of selected terms.

  8. PI Microgravity Services Role for International Space Station Operations

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1998-01-01

    During the ISS era, the NASA Lewis Research Center's Principal Investigator Microgravity Services (PIMS) project will provide to principal investigators (PIs) microgravity environment information and characterization of the accelerations to which their experiments were exposed during on orbit operations. PIMS supports PIs by providing them with microgravity environment information for experiment vehicles, carriers, and locations within the vehicle. This is done to assist the PI with their effort to evaluate the effect of acceleration on their experiments. Furthermore, PIMS responsibilities are to support the investigators in the area of acceleration data analysis and interpretation, and provide the Microgravity science community with a microgravity environment characterization of selected experiment carriers and vehicles. Also, PIMS provides expertise in the areas of microgravity experiment requirements, vibration isolation, and the implementation of requirements for different spacecraft to the microgravity community and other NASA programs.

  9. FLEX: A Decisive Step Forward in NASA's Combustion Research Program

    NASA Technical Reports Server (NTRS)

    Hickman, John M.; Dietrich, Daniel L.; Hicks, Michael C.; Nayagam, Vedha; Stocker, Dennis

    2012-01-01

    Stemming from the need to prevent, detect and suppress on-board spacecraft fires, the NASA microgravity combustion research program has grown to include fundamental research. From early experiment, we have known that flames behave differently in microgravity, and this environment would provide an ideal laboratory for refining many of the long held principals of combustion science. A microgravity environment can provide direct observation of phenomena that cannot be observed on Earth. Through the years, from precursor work performed in drop towers leading to experiments on the International Space Station (ISS), discoveries have been made about the nature of combustion in low gravity environments. These discoveries have uncovered new phenomena and shed a light on many of the fundamental phenomena that drive combustion processes. This paper discusses the NASA microgravity combustion research program taking place in the ISS Combustion Integrated Rack, its various current and planned experiments, and the early results from the Flame Extinguishment (FLEX) Experiment.

  10. Commerce Lab - An enabling facility and test bed for commercial flight opportunities

    NASA Technical Reports Server (NTRS)

    Robertson, Jack; Atkins, Harry L.; Williams, John R.

    1986-01-01

    Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab provides an enabling facility and test bed for commercial flight opportunities. Commerce Lab program activities to date have focused on mission planning for private sector involvement in the space program to facilitate the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.

  11. Technology base for microgravity horticulture

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Magnuson, J. W.; Scruby, R. R.; Scheld, H. W.

    1987-01-01

    Advanced microgravity plant biology research and life support system development for the spacecraft environment are critically hampered by the lack of a technology base. This inadequacy stems primarily from the fact that microgravity results in a lack of convective currents and phase separation as compared to the one gravity environment. A program plan is being initiated to develop this technology base. This program will provide an iterative flight development effort that will be closely integrated with both basic science investigations and advanced life support system development efforts incorporating biological processes. The critical considerations include optimum illumination methods, root aeration, root and shoot support, and heat rejection and gas exchange in the plant canopy.

  12. Vibration isolation technology - An executive summary of systems development and demonstration. [for proposed microgravity experiments aboard STS and Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Grodsinsky, C. M.; Logsdon, K. A.; Lubomski, J. F.

    1993-01-01

    A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.

  13. The path to an experiment in space (from concept to flight)

    NASA Technical Reports Server (NTRS)

    Salzman, Jack A.

    1994-01-01

    The following are discussed in this viewgraph presentation on developing flight experiments for NASA's Microgravity Science and Applications Program: time from flight PI selection to launch; key flight experiment phases and schedule drivers; microgravity experiment definition/development process; definition and engineering development phase; ground-based reduced gravity research facilities; project organization; responsibilities and duties of principle investigator/co-investigators, project scientist, and project manager; the science requirements document; flight development phase; experiment cost and schedule; and keys to experiment success.

  14. Overview of NASA's Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  15. The NASA Microgravity Fluid Physics Program: Research Plans for the ISS

    NASA Technical Reports Server (NTRS)

    Kohl, Fred J.; Singh, Bhim S.; Shaw, Nancy J.; Chiaramonte, Francis P.

    2003-01-01

    Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. NASA's Biological and Physical Research Enterprise seeks to exploit the space environment to conduct research supporting human exploration of space (strategic research), research of intrinsic scientific importance and impact (fundamental research), and commercial research. The strategic research thrust will build the vital knowledge base needed to enable NASA's mission to explore the Universe and search for life. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, niultiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA- sponsored flight experiments in microgravity fluid physics and transport phenomena will be carried out on the International Space Station (ISS) in the Fluids Integrated Rack (FIR), in the Microgravity Science Glovebox (MSG), in EXPRESS racks, and in other facilities provided by international partners. This paper presents an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to enable this research.

  16. Research Opportunities Supporting the Vision for Space Exploration from the Transformation of the Former Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Szofran, Frank; Bassler, Julie A.; Schlagheck, Ronald A.; Cook, Mary Beth

    2005-01-01

    The Microgravity Materials Science Program established a strong research capability through partnerships between NASA and the scientific research community. With the announcement of the vision for space exploration, additional emphasis in strategic materials science areas was necessary. The President's Commission recognized that achieving its exploration objectives would require significant technical innovation, research, and development in focal areas defined as "enabling technologies." Among the 17 enabling technologies identified for initial focus were: advanced structures, advanced power and propulsion; closed-loop life support and habitability; extravehicular activity systems; autonomous systems and robotics; scientific data collection and analysis, biomedical risk mitigation; and planetary in situ resource utilization. Mission success may depend upon use of local resources to fabricate a replacement part to repair a critical system. Future propulsion systems will require materials with a wide range of mechanical, thermophysical, and thermochemical properties, many of them well beyond capabilities of today's materials systems. Materials challenges have also been identified by experts working to develop advanced life support systems. In responding to the vision for space exploration, the Microgravity Materials Science Program aggressively transformed its research portfolio and focused materials science areas of emphasis to include space radiation shielding; in situ fabrication and repair for life support systems; in situ resource utilization for life support consumables; and advanced materials for exploration, including materials science for space propulsion systems and for life support systems. The purpose of this paper is to inform the scientific community of these new research directions and opportunities to utilize their materials science expertise and capabilities to support the vision for space exploration.

  17. Life Sciences Program Tasks and Bibliography

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1995. Additionally, this inaugural edition of the Task Book includes information for FY 1994 programs. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page

  18. Microgravity: A Teacher's Guide With Activities in Science, Mathematics, and Technology

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Vogt, Gregory L.; Wargo, Michael J.

    1997-01-01

    The purpose of this curriculum supplement guide is to define and explain microgravity and show how microgravity can help us learn about the phenomena of our world. The front section of the guide is designed to provide teachers of science, mathematics, and technology at many levels with a foundation in microgravity science and applications. It begins with background information for the teacher on what microgravity is and how it is created. This is followed with information on the domains of microgravity science research; biotechnology, combustion science, fluid physics, fundamental physics, materials science, and microgravity research geared toward exploration. The background section concludes with a history of microgravity research and the expectations microgravity scientists have for research on the International Space Station. Finally, the guide concludes with a suggested reading list, NASA educational resources including electronic resources, and an evaluation questionnaire.

  19. Microgravity Materials Research and Code U ISRU

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.; Sibille, Laurent

    2004-01-01

    The NASA microgravity research program, simply put, has the goal of doing science (which is essentially finding out something previously unknown about nature) utilizing the unique long-term microgravity environment in Earth orbit. Since 1997 Code U has in addition funded scientific basic research that enables safe and economical capabilities to enable humans to live, work and do science beyond Earth orbit. This research has been integrated with the larger NASA missions (Code M and S). These new exploration research focus areas include Radiation Shielding Materials, Macromolecular Research on Bone and Muscle Loss, In Space Fabrication and Repair, and Low Gravity ISRU. The latter two focus on enabling materials processing in space for use in space. The goal of this program is to provide scientific and technical research resulting in proof-of-concept experiments feeding into the larger NASA program to provide humans in space with an energy rich, resource rich, self sustaining infrastructure at the earliest possible time and with minimum risk, launch mass and program cost. President Bush's Exploration Vision (1/14/04) gives a new urgency for the development of ISRU concepts into the exploration architecture. This will require an accelerated One NASA approach utilizing NASA's partners in academia, and industry.

  20. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. NASA and contractor personnel who conducted the DIME activity with the students. Shown (L-R) are: Eric Baumann (NASA, 2.2-second Drop Tower Facility manager), Daniel Dietrich (NASA) mentor for Sycamore High School team), Carol Hodanbosi (National Center for Microgravity Research; DIME staff), Richard DeLombard (NASA; DIME staff), Jose Carrion (GRC Akima, drop tower technician), Dennis Stocker (NASA; DIME staff), Peter Sunderland (NCMR, mentor for COSI Academy student team), Sandi Thompson (NSMR sabbatical teacher; DIME staff), Dan Woodard (MASA Microgravity Outreach Program Manager), Adam Malcolm (NASA co-op student; DIME staff), Carla Rosenberg (NCMR; DIME staff), and Twila Schneider (Infinity Technology; NASA Microgravity Research program contractor). This image is from a digital still camera; higher resolution is not available.

  1. Spacelab

    NASA Image and Video Library

    1992-06-01

    The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs that provided scientists an opportunity to research various scientific investigations in a weightless environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology (crystal growth), and combustion science. This photograph shows astronaut Ken Bowersox conducting the Astroculture experiment in the middeck of the orbiter Columbia. This experiment was to evaluate and find effective ways to supply nutrient solutions for optimizing plant growth and avoid releasing solutions into the crew quarters in microgravity. Since fluids behave differently in microgravity, plant watering systems that operate well on Earth do not function effectively in space. Plants can reduce the costs of providing food, oxygen, and pure water as well as lower the costs of removing carbon dioxide in human space habitats. The Astroculture experiment flew aboard the STS-50 mission in June 1992 and was managed by the Marshall Space Flight Center.

  2. Spacelab

    NASA Image and Video Library

    1992-06-01

    The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs that provided scientists an opportunity to research various scientific investigations in a weightless environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology (crystal growth), and combustion science. This is a close-up view of the Astroculture experiment rack in the middeck of the orbiter. The Astroculture experiment was to evaluate and find effective ways to supply nutrient solutions for optimizing plant growth and avoid releasing solutions into the crew quarters in microgravity. Since fluids behave differently in microgravity, plant watering systems that operate well on Earth do not function effectively in space. Plants can reduce the costs of providing food, oxygen, and pure water, as well as lower the costs of removing carbon dioxide in human space habitats. The USML-1 flew aboard the STS-50 mission on June 1992 and was managed by the Marshall Space Flight Center.

  3. Microgravity

    NASA Image and Video Library

    2000-12-15

    Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Even in normal gravity, bioactive glass particles enhance bone growth in laboratory tests with flat tissue cultures. Ducheyne and his team believe that using the bioactive microcarriers in a rotating bioreactor in microgravity will produce improved, three-dimensional tissue cultures. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and University of Pennsylvania Center for Bioactive Materials and Tissue Engineering.

  4. Microgravity

    NASA Image and Video Library

    2001-10-01

    Students in the Young Astronaut Program at the Coca-Cola Space Science Center in Columbus, GA, constructed gloveboxes using the new NASA Student Glovebox Education Guide. The young astronauts used cardboard copier paper boxes as the heart of the glovebox. The paper boxes transformed into gloveboxes when the students pasted poster-pictures of an actual NASA microgravity science glovebox inside and outside of the paper boxes. The young astronauts then added holes for gloves and removable transparent top covers, which completed the construction of the gloveboxes. This image is from a digital still camera; higher resolution is not available.

  5. Development of experimental systems for material sciences under microgravity

    NASA Technical Reports Server (NTRS)

    Tanii, Jun; Obi, Shinzo; Kamimiyata, Yotsuo; Ajimine, Akio

    1988-01-01

    As part of the Space Experiment Program of the Society of Japanese Aerospace Companies, three experimental systems (G452, G453, G454) have been developed for materials science studies under microgravity by the NEC Corporation. These systems are to be flown as Get Away Special payloads for studying the feasibility of producing new materials. Together with the experimental modules carrying the hardware specific to the experiment, the three systems all comprise standard subsystems consisting of a power supply, sequence controller, temperature controller, data recorder, and video recorder.

  6. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  7. Microgravity science and applications bibliography, 1989 revision

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This edition of the Microgravity Science and Applications (MSA) Bibliography is a compilation of government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments utilizing a low gravity environment to elucidate and control various processes, or with ground based activities that provide supported research. It encompasses literature published but not cited in the 1988 Revision and that literature which has been published in the past year. Subdivisions of the Bibliography include: electronic materials, metals, alloys, and composites; fluids, interfaces, and transport; glasses and ceramics; biotechnology; combustion science; experimental technology, facilities, and instrumentation. Also included are publications from the European, Soviet, and Japanese programs.

  8. Microgravity

    NASA Image and Video Library

    1992-06-25

    Space Shuttle Columbia (STS-50) onboard photo of astronauts working in United States Microgravity Laboratory (USML-1). USML-1 will fly in orbit for extended periods of time attached to the Shuttle, providing greater opportunities for research in materials science, fluid dynamics, biotechnology, and combustion science. The scientific data gained from the USML-1 missions will constitute a landmark in space science, pioneering investigations into the role of gravity in a wide array of important processes and phenomena. In addition, the missions will also provide much of the experience in performing research in space and in the design of instruments needed for Space Station Freedom and the programs to follow in the 21st Century.

  9. Microgravity science and applications bibliography, 1990 revision

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This edition of the Microgravity Science and Applications (MSA) Bibliography is a compilation of government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments utilizing a low gravity environment to elucidate and control various processes, or with ground based activities that provide supporting research. It encompasses literature published but not cited in the 1989 Revision and that literature which has been published in the past year. Subdivisions of the bibliography include: electronic materials; metals, alloys, and composites; fluids, interfaces, and transport; glasses and ceramics; biotechnology; combustion science; and experimental technology, facilities, and instrumentation. Also included are publications from the European, Soviet, and Japanese programs.

  10. Microgravity science and applications bibliography, 1991 revision

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This edition of the Microgravity Science and Applications (MSA) Bibliography is a compilation of government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments using a low gravity environment to elucidate and control various processes, or with ground based activities that provide supporting research. It encompasses literature published but not cited in the 1990 Revision and that literature which has been published in the past year. Subdivisions of the bibliography include: Electronic materials; Metals, alloys, and composites; Fluids, interfaces and transport; Glasses and ceramics; Biotechnology; Combustion science; and Experimental technology, instrumentation, and facilities. Also included are a limited number of publications from the European, Soviet, and Japanese programs.

  11. The NASA Microgravity Fluid Physics Program: Knowledge for Use on Earth and Future Space Missions

    NASA Technical Reports Server (NTRS)

    Kohl, Fred J.; Singh, Bhim S.; Alexander, J. Iwan; Shaw, Nancy J.; Hill, Myron E.; Gati, Frank G.

    2002-01-01

    Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. The purpose of the Fluid Physics Program is to support the goals of NASA's Biological and Physical Research Enterprise which seeks to exploit the space environment to conduct research and to develop commercial opportunities, while building the vital knowledge base needed to enable efficient and effective systems for protecting and sustaining humans during extended space flights. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, multiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA-sponsored fluid physics and transport phenomena studies will be carried out on the International Space Station in the Fluids Integrated Rack, in the Microgravity Science Glovebox, in EXPRESS racks, and in other facilities provided by international partners. This paper will present an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to achieve this research.

  12. Microgravity

    NASA Image and Video Library

    1998-01-01

    Biotechnology Refrigerator (BTR) holds fixed tissue culture bags at 4 degrees C to preserve them for return to Earth and postflight analysis. The cultures are used in research with the NASA Bioreactor cell science program. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  13. Vibration isolation technology: An executive summary of systems development and demonstration

    NASA Technical Reports Server (NTRS)

    Grodsinsky, Carlos M.; Logsdon, Kirk A.; Lubomski, Joseph F.

    1993-01-01

    A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.

  14. Vibration isolation technology - An executive summary of systems development and demonstration

    NASA Astrophysics Data System (ADS)

    Grodsinsky, C. M.; Logsdon, K. A.; Lubomski, J. F.

    1993-01-01

    A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.

  15. Life Sciences Program Tasks and Bibliography for FY 1996

    NASA Technical Reports Server (NTRS)

    Nelson, John C. (Editor)

    1997-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1996. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page.

  16. Life Sciences Program Tasks and Bibliography for FY 1997

    NASA Technical Reports Server (NTRS)

    Nelson, John C. (Editor)

    1998-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1997. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive internet web page.

  17. Microgravity Science and Applications Program tasks, 1986 revision

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Microgravity Science and Applications (MSA) program is directed toward research in the science and technology of processing materials under conditions of low gravity to provide a detailed examination of the constraints imposed by gravitational forces on Earth. The program is expected to lead to the development of new materials and processes in commercial applications adding to this nation's technological base. The research studies emphasize the selected materials and processes that will best elucidate the limitations due to gravity and demonstrate the enhanced sensitivity of control of processes that may be provided by the weightless environment of space. Primary effort is devoted to a study of the specific areas of research which reveals potential value in the initial investigations of the previous decades. Examples of previous process research include crystal growth and directional solidification of metals; containerless processing of reactive materials; synthesis and separation of biological materials; etc. Additional efforts will be devoted to identifying the special requirements which drive the design of hardware to reduce risk in future developments.

  18. Biological and Physical Space Research Laboratory 2002 Science Review

    NASA Technical Reports Server (NTRS)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  19. Overview of NASA's Microgravity Materials Research Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton; Grugel, Richard

    2012-01-01

    The NASA microgravity materials program is dedicated to conducting microgravity experiments and related modeling efforts that will help us understand the processes associated with the formation of materials. This knowledge will help improve ground based industrial production of such materials. The currently funded investigations include research on the distribution of dopants and formation of defects in semiconductors, transitions between columnar and dendritic grain morphology, coarsening of phase boundaries, competition between thermally and kinetically favored phases, and the formation of glassy vs. crystalline material. NASA microgravity materials science investigators are selected for funding either through a proposal in response to a NASA Research Announcement or by participation in a team proposing to a foreign agency research announcement. In the latter case, a US investigator participating in a successful proposal to a foreign agency can then apply to NASA for funding of an unsolicited proposal. The program relies on cooperation with other aerospace partners from around the world. The ISS facilities used for these investigations are provided primarily by partnering with foreign agencies and in most cases the US investigators are working as a part of a larger team studying a specific area of materials science. The following facilities are to be utilized for the initial investigations. The ESA provided Low Gradient Facility and the Solidification and Quench Inserts to the Materials Research Rack/Materials Science Laboratory are to be used primarily for creating bulk samples that are directionally solidified or quenched from a high temperature melt. The CNES provided DECLIC facility is used to observe morphological development in transparent materials. The ESA provided Electro-Magnetic Levitator (EML) is designed to levitate, melt and then cool samples in order to study nucleation behavior. The facility provides conditions in which nucleation of the solid is not triggered from the wall and in which fluid flows in the sample can be controlled and manipulated. These conditions allow scientists ideal conditions for understanding the relative amounts and distribution of different phases that form in the solid. Finally, the Coarsening of Solid Liquid Melts hardware allows quenching of low temperature samples in the Microgravity Science Glovebox.

  20. Spacelab program's scientific benefits to mankind

    NASA Technical Reports Server (NTRS)

    Graft, Harry G., Jr.; Marmann, Richard A.

    1993-01-01

    The paper describes the important scientific discoveries and accomplishments achieved by the Spacelab program during the ten years of its operation starting with the first flight in 1983, with emphasis on the discoveries and accomplishments in the fields of astronomy and astrophysics, atmospheric science, life sciences, microgravity science, plasma physics, and earth observations. The Spacelab systems performance and operations are discussed with particular attention given to the operations applicable to the Space Station era.

  1. Spacelab

    NASA Image and Video Library

    1992-06-01

    The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs that provided scientists an opportunity to research various scientific investigations in a weightlessness environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology (crystal growth), and combustion science. This is a close-up view of the Drop Physics Module (DPM) in the USML science laboratory. The DPM was dedicated to the detailed study of the dynamics of fluid drops in microgravity: their equilibrium shapes, the dynamics of their flows, and their stable and chaotic behaviors. It also demonstrated a technique known as containerless processing. The DPM and microgravity combine to remove the effects of the container, such as chemical contamination and shape, on the sample being studied. Sound waves, generating acoustic forces, were used to suspend a sample in microgravity and to hold a sample of free drops away from the walls of the experiment chamber, which isolated the sample from potentially harmful external influences. The DPM gave scientists the opportunity to test theories of classical fluid physics, which have not been confirmed by experiments conducted on Earth. This image is a close-up view of the DPM. The USML-1 flew aboard the STS-50 mission on June 1992, and was managed by the Marshall Space Flight Center.

  2. Dropping In a Microgravity Environment (DIME) contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. NASA and contractor personnel who conducted the DIME activity with the students. Shown (L-R) are: Eric Baumann (NASA, 2.2-second Drop Tower Facility manager), Daniel Dietrich (NASA) mentor for Sycamore High School team), Carol Hodanbosi (National Center for Microgravity Research; DIME staff), Richard DeLombard (NASA; DIME staff), Jose Carrion (GRC Akima, drop tower technician), Dennis Stocker (NASA; DIME staff), Peter Sunderland (NCMR, mentor for COSI Academy student team), Sandi Thompson (NSMR sabbatical teacher; DIME staff), Dan Woodard (MASA Microgravity Outreach Program Manager), Adam Malcolm (NASA co-op student; DIME staff), Carla Rosenberg (NCMR; DIME staff), and Twila Schneider (Infinity Technology; NASA Microgravity Research program contractor). This image is from a digital still camera; higher resolution is not available.

  3. Microgravity science and applications bibliography, 1986 revision

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This edition of the Microgravity Science and Applications (MSA) Bibliography is a compilation of Government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments utilizing a low-gravity environment to elucidate and control various processes or ground-based activities providing supporting research. It encompasses literature published in FY-86 and part of FY-87 but not cited in the 1985 Revision, pending publications, and those submitted for publication during this time period. Subdivisions of the bibliography include six major categories: Electronic Materials, Metals, Alloys, and Combustion Science. Other categories include Experimental Technology and General Studies. Included are publications from the European and Soviet programs. In addition, there is a list of patents and a cross reference index.

  4. Vibration environment - Acceleration mapping strategy and microgravity requirements for Spacelab and Space Station

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.; Baugher, Charles R.; Delombard, Richard

    1990-01-01

    In order to define the acceleration requirements for future Shuttle and Space Station Freedom payloads, methods and hardware characterizing accelerations on microgravity experiment carriers are discussed. The different aspects of the acceleration environment and the acceptable disturbance levels are identified. The space acceleration measurement system features an adjustable bandwidth, wide dynamic range, data storage, and ability to be easily reconfigured and is expected to fly on the Spacelab Life Sciences-1. The acceleration characterization and analysis project describes the Shuttle acceleration environment and disturbance mechanisms, and facilitates the implementation of the microgravity research program.

  5. Microgravity Platforms

    NASA Technical Reports Server (NTRS)

    Del Basso, Steve

    2000-01-01

    The world's space agencies have been conducting microgravity research since the beginning of space flight. Initially driven by the need to understand the impact of less than- earth gravity physics on manned space flight, microgravity research has evolved into a broad class of scientific experimentation that utilizes extreme low acceleration environments. The U.S. NASA microgravity research program supports both basic and applied research in five key areas: biotechnology - focusing on macro-molecular crystal growth as well as the use of the unique space environment to assemble and grow mammalian tissue; combustion science - focusing on the process of ignition, flame propagation, and extinction of gaseous, liquid, and solid fuels; fluid physics - including aspects of fluid dynamics and transport phenomena; fundamental physics - including the study of critical phenomena, low-temperature, atomic, and gravitational physics; and materials science - including electronic and photonic materials, glasses and ceramics, polymers, and metals and alloys. Similar activities prevail within the Chinese, European, Japanese, and Russian agencies with participation from additional international organizations as well. While scientific research remains the principal objective behind these program, all hope to drive toward commercialization to sustain a long range infrastructure which .benefits the national technology and economy. In the 1997 International Space Station Commercialization Study, conducted by the Potomac Institute for Policy Studies, some viable microgravity commercial ventures were identified, however, none appeared sufficiently robust to privately fund space access at that time. Thus, government funded micro gravity research continues on an evolutionary path with revolutionary potential.

  6. Microgravity

    NASA Image and Video Library

    1996-01-01

    Dr. Michael Wargo, program scientist for materials science at NASA headquarters, explains the math and physics principles associated with freefall research to attendees at the arnual conference of the National Council of Teachers of Mathematics.

  7. Microgravity Science and Applications. Program Tasks and Bibliography for FY 1993

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An annual report published by the Microgravity Science and Applications Division (MSAD) of NASA is presented. It represents a compilation of the Division's currently-funded ground, flight and Advanced Technology Development tasks. An overview and progress report for these tasks, including progress reports by principal investigators selected from the academic, industry and government communities, are provided. The document includes a listing of new bibliographic data provided by the principal investigators to reflect the dissemination of research data during FY 1993 via publications and presentations. The document also includes division research metrics and an index of the funded investigators. The document contains three sections and three appendices: Section 1 includes an introduction and metrics data, Section 2 is a compilation of the task reports in an order representative of its ground, flight or ATD status and the science discipline it represents, and Section 3 is the bibliography. The three appendices, in the order of presentation, are: Appendix A - a microgravity science acronym list, Appendix B - a list of guest investigators associated with a biotechnology task, and Appendix C - an index of the currently funded principal investigators.

  8. Microgravity: Teacher's Guide with Activities for Physical Science.

    ERIC Educational Resources Information Center

    Vogt, Gregory L.; Wargo, Michael J.

    This teacher's guide to microgravity contains 16 student science activities with full background information to facilitate an understanding of the concepts of microgravity for teachers and students. Topics covered in the background sections include the definitions of gravity and microgravity, creating microgravity, the fluid state, combustion…

  9. Low Gravity Materials Science Research for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Semmes, Edmund B.; Schlagheck, Ronald A.; Bassler, Julie A.; Cook, Mary Beth; Wargo, Michael J.; Sanders, Gerald B.; Marzwell, Neville I.

    2004-01-01

    On January 14, 2004, the President of the United States announced a new vision for the United States civil space program. The Administrator of the National Aeronautics and Space Administration (NASA) has the responsibility to implement this new vision. The President also created a Presidential Commission 'to obtain recommendations concerning implementation of the new vision for space exploration.' The President's Commission recognized that achieving the exploration objectives would require significant technical innovation, research, and development in focal areas defined as 'enabling technologies.' Among the 17 enabling technologies identified for initial focus were advanced structures; advanced power and propulsion; closed-loop life support and habitability; extravehicular activity system; autonomous systems and robotics; scientific data collection and analysis; biomedical risk mitigation; and planetary in situ resource utilization. The Commission also recommended realignment of NASA Headquarters organizations to support the vision for space exploration. NASA has aggressively responded in its planning to support the vision for space exploration and with the current considerations of the findings and recommendations from the Presidential Commission. This presentation will examine the transformation and realignment activities to support the vision for space exploration that are underway in the microgravity materials science program. The heritage of the microgravity materials science program, in the context of residence within the organizational structure of the Office of Biological and Physical Research, and thematic and sub-discipline based research content areas, will be briefly examined as the starting point for the ongoing transformation. Overviews of future research directions will be presented and the status of organizational restructuring at NASA Headquarters, with respect to influences on the microgravity materials science program, will be discussed. Additional information is included in the original extended abstract.

  10. Customer requirements process

    NASA Technical Reports Server (NTRS)

    Russell, Yvonne; Falsetti, Christine M.

    1991-01-01

    Customer requirements are presented through three viewgraphs. One graph presents the range of services, which include requirements management, network engineering, operations, and applications support. Another viewgraph presents the project planning process. The third viewgraph presents the programs and/or projects actively supported including life sciences, earth science and applications, solar system exploration, shuttle flight engineering, microgravity science, space physics, and astrophysics.

  11. NASA Microgravity Science Competition for High-school-aged Student Teams

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Stocker, Dennis; Hodanbosi, Carol; Baumann, Eric

    2002-01-01

    NASA participates in a wide variety of educational activities including competitive events. There are competitive events sponsored by NASA and student teams which are mentored by NASA centers. This participation by NASA in public forums serves to bring the excitement of aerospace science to students and educators. A new competition for highschool-aged student teams involving projects in microgravity has completed two pilot years and will have national eligibility for teams during the 2002-2003 school year. A team participating in the Dropping In a Microgravity Environment will research the field of microgravity, develop a hypothesis, and prepare a proposal for an experiment to be conducted in a microgravity drop tower facility. A team of NASA scientists and engineers will select the top proposals and those teams will then design and build their experiment apparatus. When the experiment apparatus are completed, team representatives will visit NASA Glenn in Cleveland, Ohio for operation of their facility and participate in workshops and center tours. Presented in this paper will be a description of DIME, an overview of the planning and execution of such a program, results from the first two pilot years, and a status of the first national competition.

  12. Microgravity sciences application visiting scientist program

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Contract NAS8-38785, Microgravity Experimental and Theoretical Research, is a project involving a large number of individual research programs related to: determination of the structure of human serum albumin and other biomedically important proteins; analysis of thermodynamic properties of various proteins and models of protein nucleation; development of experimental techniques for the growth of protein crystals in space; study of the physics of electrical double layers in the mechanics of liquid interfaces; computational analysis of vapor crystal growth processes in microgravity; analysis of the influence of magnetic fields in damping residual flows in directional solidification processes; crystal growth and characterization of II-VI semiconductor alloys; and production of thin films for nonlinear optics. It is not intended that the programs will be necessarily limited to this set at any one time. The visiting scientists accomplishing these programs shall serve on-site at MSFC to take advantage of existing laboratory facilities and the daily opportunities for technical communications with various senior scientists.

  13. Research and technology, 1993. Salute to Skylab and Spacelab: Two decades of discovery

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A summary description of Skylab and Spacelab is presented. The section on Advanced Studies includes projects in space science, space systems, commercial use of space, and transportation systems. Within the Research Programs area, programs are listed under earth systems science, space physics, astrophysics, and microgravity science and applications. Technology Programs include avionics, materials and manufacturing processes, mission operations, propellant and fluid management, structures and dynamics, and systems analysis and integration. Technology transfer opportunities and success are briefly described. A glossary of abbreviations and acronyms is appended as is a list of contract personnel within the program areas.

  14. Flight Mechanics Experiment Onboard NASA's Zero Gravity Aircraft

    ERIC Educational Resources Information Center

    Matthews, Kyle R.; Motiwala, Samira A.; Edberg, Donald L.; García-Llama, Eduardo

    2012-01-01

    This paper presents a method to promote STEM (Science, Technology, Engineering, and Mathematics) education through participation in a reduced gravity program with NASA (National Aeronautics and Space Administration). Microgravity programs with NASA provide students with a unique opportunity to conduct scientific research with innovative and…

  15. The Microgravity Demonstrator

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Wargo, Michael J.

    1999-01-01

    The Demonstrator is a tool to create microgravity conditions in your classroom. A series of demonstrations is used to provide a dramatically visual, physical connection between free-fall and microgravity conditions and to understand why various types of experiments are performed under microgravity conditions. A wealth of back-round material on free-fall, microgravity, and micro-gravity sciences is available in two educational documents available through the NASA Teacher Resource Centers: Microgravity-Activity Guide for Science, Mathematics, and Technology Education, and The Mathematics of Microgravity. The remainder of this manual is divided into five sections. The first explains how to put the Microgravity Demonstrator together. The next section introduces the individual demonstrations and discusses the underlying physical science concepts. Following that are detailed steps for conducting each demonstration to make your use of the Demonstrator most effective. Next are some ideas on how to make your own Microgravity Demonstrator. The last section is a tips and troubleshooting guide for video connections and operations. If you have one of the NASA Microgravity Demonstrators, this entire manual should be useful. If you have a copy of the Microgravity Demonstrator Videotape and would like to use that as a teaching tool, the Demonstrations and Scientific Background section of this manual will give you insight into the science areas studied in microgravity.

  16. Advanced Technologies for Space Life Science Payloads on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Connolly, John P. (Technical Monitor)

    1997-01-01

    SENSORS 2000! (S2K!) is a specialized, high-performance work group organized to provide advanced engineering and technology support for NASA's Life Sciences spaceflight and ground-based research and development programs. In support of these objectives, S2K! manages NASA's Advanced Technology Development Program for Biosensor and Biotelemetry Systems (ATD-B), with particular emphasis on technologies suitable for Gravitational Biology, Human Health and Performance, and Information Technology and Systems Management. A concurrent objective is to apply and transition ATD-B developed technologies to external, non-NASA humanitarian (medical, clinical, surgical, and emergency) situations and to stimulate partnering and leveraging with other government agencies, academia, and the commercial/industrial sectors. A phased long-term program has been implemented to support science disciplines and programs requiring specific biosensor (i.e., biopotential, biophysical, biochemical, and biological) measurements from humans, animals (mainly primates and rodents), and cells under controlled laboratory and simulated microgravity situations. In addition to the technology programs described above, NASA's Life and Microgravity Sciences and Applications Office has initiated a Technology Infusion process to identify and coordinate the utilization and integration of advanced technologies into its International Space Station Facilities. This project has recently identified a series of technologies, tasks, and products which, if implemented, would significantly increase the science return, decrease costs, and provide improved technological capability. This presentation will review the programs described above and discuss opportunities for collaboration, leveraging, and partnering with NASA.

  17. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  18. Nineteenth International Microgravity Measurements Group Meeting

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard (Compiler)

    2000-01-01

    The Microgravity Measurements Group meetings provide a forum for an exchange of information and ideas about various aspects of microgravity acceleration research in international microgravity research programs. These meetings are sponsored by the PI Microgravity Services (PIMS) project at the NASA Glenn Research Center. The 19th MGMG meeting was held 11-13 July 2000 at the Sheraton Airport Hotel in Cleveland, Ohio. The 44 attendees represented NASA, other space agencies, universities, and commercial companies; 8 of the attendees were international representatives from Japan, Italy, Canada, Russia, and Germany. Twenty-seven presentations were made on a variety of microgravity environment topics including the International Space Station (ISS), acceleration measurement and analysis results, science effects from microgravity accelerations, vibration isolation, free flyer satellites, ground testing, vehicle characterization, and microgravity outreach and education. The meeting participants also toured three microgravity-related facilities at the NASA Glenn Research Center. Contained within the minutes is the conference agenda, which indicates each speaker, the title of their presentation, and the actual time of their presentation. The minutes also include the charts for each presentation, which indicate the authors' name(s) and affiliation. In some cases, a separate written report was submitted and has been Included here

  19. Commercial Generic Bioprocessing Apparatus Science Insert - 03

    NASA Technical Reports Server (NTRS)

    Moreno, Nancy; Stodieck, Louis; Cushing, Paula; Stowe, Mark; Hamilton, Mary Ann; Werner, Ken

    2008-01-01

    Commercial Generic Bioprocessing Apparatus Science Insert - 03 (CSI-03) is the third set of investigations in the CSI program series. The CSI program provides the K-12 community opportunities to utilize the unique microgravity environment of the International Space Station as part of the regular classroom to encourage learning and interest in science, technology, engineering and math. CSI-03 will examine the complete life cycle of the painted lady butterfly and the ability of an orb weaving spider to spin a web, eat and remain healthy in space.

  20. Microgravity sciences application visiting scientist program

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin; Vanalstine, James

    1995-01-01

    Marshall Space Flight Center pursues scientific research in the area of low-gravity effects on materials and processes. To facilitate these Government performed research responsibilities, a number of supplementary research tasks were accomplished by a group of specialized visiting scientists. They participated in work on contemporary research problems with specific objectives related to current or future space flight experiments and defined and established independent programs of research which were based on scientific peer review and the relevance of the defined research to NASA microgravity for implementing a portion of the national program. The programs included research in the following areas: protein crystal growth, X-ray crystallography and computer analysis of protein crystal structure, optimization and analysis of protein crystal growth techniques, and design and testing of flight hardware.

  1. The Biophysics Microgravity Initiative

    NASA Technical Reports Server (NTRS)

    Gorti, S.

    2016-01-01

    Biophysical microgravity research on the International Space Station using biological materials has been ongoing for several decades. The well-documented substantive effects of long duration microgravity include the facilitation of the assembly of biological macromolecules into large structures, e.g., formation of large protein crystals under micro-gravity. NASA is invested not only in understanding the possible physical mechanisms of crystal growth, but also promoting two flight investigations to determine the influence of µ-gravity on protein crystal quality. In addition to crystal growth, flight investigations to determine the effects of shear on nucleation and subsequent formation of complex structures (e.g., crystals, fibrils, etc.) are also supported. It is now considered that long duration microgravity research aboard the ISS could also make possible the formation of large complex biological and biomimetic materials. Investigations of various materials undergoing complex structure formation in microgravity will not only strengthen NASA science programs, but may also provide invaluable insight towards the construction of large complex tissues, organs, or biomimetic materials on Earth.

  2. First Middle East Aircraft Parabolic Flights for ISU Participant Experiments

    NASA Astrophysics Data System (ADS)

    Pletser, Vladimir; Frischauf, Norbert; Cohen, Dan; Foster, Matthew; Spannagel, Ruven; Szeszko, Adam; Laufer, Rene

    2017-06-01

    Aircraft parabolic flights are widely used throughout the world to create microgravity environment for scientific and technology research, experiment rehearsal for space missions, and for astronaut training before space flights. As part of the Space Studies Program 2016 of the International Space University summer session at the Technion - Israel Institute of Technology, Haifa, Israel, a series of aircraft parabolic flights were organized with a glider in support of departmental activities on `Artificial and Micro-gravity' within the Space Sciences Department. Five flights were organized with manoeuvres including several parabolas with 5 to 6 s of weightlessness, bank turns with acceleration up to 2 g and disorientation inducing manoeuvres. Four demonstration experiments and two experiments proposed by SSP16 participants were performed during the flights by on board operators. This paper reports on the microgravity experiments conducted during these parabolic flights, the first conducted in the Middle East for science and pedagogical experiments.

  3. Overview of NASA's microgravity combustion science and fire safety program

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.

    1993-01-01

    The study of fundamental combustion processes in a microgravity environment is a relatively new scientific endeavor. A few simple, precursor experiments were conducted in the early 1970's. Today the advent of the U.S. space shuttle and the anticipation of the Space Station Freedom provide for scientists and engineers a special opportunity -- in the form of long duration microgravity laboratories -- and need -- in the form of spacecraft fire safety and a variety of terrestrial applications -- to pursue fresh insight into the basic physics of combustion. Through microgravity, a new range of experiments can be performed since: (1) Buoyancy-induced flows are nearly eliminated; (2) Normally obscured forces and flows may be isolated; (3) Gravitational settling or sedimentation is nearly eliminated; and (4) Larger time or length scales in experiments become permissible.

  4. An overview of the cosmic dust analogue material production in reduced gravity: the STARDUST experience

    NASA Technical Reports Server (NTRS)

    Ferguson, F.; Lilleleht, L. U.; Nuth, J.; Stephens, J. R.; Bussoletti, E.; Colangeli, L.; Mennella, V.; Dell'Aversana, P.; Mirra, C.

    1993-01-01

    The formation, properties and chemical dynamics of microparticles are important in a wide variety of technical and scientific fields including synthesis of semiconductor crystals from the vapour, heterogeneous chemistry in the stratosphere and the formation of cosmic dust surrounding the stars. Gravitational effects on particle formation from vapors include gas convection and buoyancy and particle sedimentation. These processes can be significantly reduced by studying condensation and agglomeration of particles in microgravity. In addition, to accurately simulate particle formation near stars, which takes place under low gravity conditions, studies in microgravity are desired. We report here the STARDUST experience, a recent collaborative effort that brings together a successful American program of microgravity experiments on particle formation aboard NASA KC-135 Reduced Gravity Research Aircraft and several Italian research groups with expertise in microgravity research and astrophysical dust formation. The program goal is to study the formation and properties of high temperature particles and gases that are of interest in astrophysics and planetary science. To do so we are developing techniques that are generally applicable to study particle formation and properties, taking advantage of the microgravity environment to allow accurate control of system parameters.

  5. Spacelab

    NASA Image and Video Library

    1992-10-22

    This is a Space Shuttle Columbia (STS-52) onboard photograph of the United States Microgravity Payload-1 (USMP-1) in the cargo bay. The USMP program is a series of missions developed by NASA to provide scientists with the opportunity to conduct research in the unique microgravity environment of the Space Shuttle's payload bay. The USMP-1 mission was designed for microgravity experiments that do not require the hands-on environment of the Spacelab. Science teams on the ground would remotely command and monitor instruments and analyze data from work stations at NASA's Spacelab Mission Operation Control facility at the Marshall Space Flight Center (MSFC). The USMP-1 payload carried three investigations: two studied basic fluid and metallurgical processes in microgravity, and the third would characterize the microgravity environment onboard the Space Shuttle. The three experiments that made up USMP-1 were the Lambda Point Experiment, the Space Acceleration Measurement System, and the Materials for the Study of Interesting Phenomena of Solidification Earth and in Orbit (MEPHISTO). The three experiments were mounted on two cornected Mission Peculiar Equipment Support Structures (MPESS) mounted in the orbiter's cargo bay. The USMP program was managed by the MSFC and the MPESS was developed by the MSFC.

  6. An overview of the cosmic dust analogue material production in reduced gravity: the STARDUST experience.

    PubMed

    Ferguson, F; Lilleleht, L U; Nuth, J; Stephens, J R; Bussoletti, E; Colangeli, L; Mennella, V; Dell'Aversana, P; Mirra, C

    1993-01-01

    The formation, properties and chemical dynamics of microparticles are important in a wide variety of technical and scientific fields including synthesis of semiconductor crystals from the vapour, heterogeneous chemistry in the stratosphere and the formation of cosmic dust surrounding the stars. Gravitational effects on particle formation from vapors include gas convection and buoyancy and particle sedimentation. These processes can be significantly reduced by studying condensation and agglomeration of particles in microgravity. In addition, to accurately simulate particle formation near stars, which takes place under low gravity conditions, studies in microgravity are desired. We report here the STARDUST experience, a recent collaborative effort that brings together a successful American program of microgravity experiments on particle formation aboard NASA KC-135 Reduced Gravity Research Aircraft and several Italian research groups with expertise in microgravity research and astrophysical dust formation. The program goal is to study the formation and properties of high temperature particles and gases that are of interest in astrophysics and planetary science. To do so we are developing techniques that are generally applicable to study particle formation and properties, taking advantage of the microgravity environment to allow accurate control of system parameters.

  7. Future prospects for space life sciences from a NASA perspective

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Lujan, Barbara F.

    1989-01-01

    Plans for future NASA research programs in the life sciences are reviewed. Consideration is given to international cooperation in space life science research, the NASA approach to funding life science research, and research opportunities using the Space Shuttle, the Space Station, and Biological Satellites. Several specific programs are described, including the Centrifuge Project to provide a controlled acceleration environment for microgravity studies, the Rhesus Project to conduct biomedical research using rhesus monkeys, and the LifeSat international biosatellite project. Also, the Space Biology Initiative to design and develop life sciences laboratory facilities for the Space Shuttle and the Space Station and the Extended Duration Crew Operations program to study crew adaptation needs are discussed.

  8. Proceedings of the Twentieth International Microgravity Measurements Group Meeting

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard (Compiler)

    2001-01-01

    The International Microgravity Measurements Group annual meetings provide a forum for an exchange of information and ideas about various aspects of microgravity acceleration research in international microgravity research programs. These meetings are sponsored by the PI Microgravity Services (PIMS) project at the NASA Glenn Research Center. The twentieth MGMG meeting was held 7-9 August 2001 at the Hilton Garden Inn Hotel in Cleveland, Ohio. The 35 attendees represented NASA, other space agencies, universities, and commercial companies; eight of the attendees were international representatives from Canada, Germany, Italy, Japan, and Russia. Seventeen presentations were made on a variety of microgravity environment topics including the International Space Station (ISS), acceleration measurement and analysis results, science effects from microgravity accelerations, vibration isolation, free flyer satellites, ground testing, and microgravity outreach. Two working sessions were included in which a demonstration of ISS acceleration data processing and analyses were performed with audience participation. Contained within the minutes is the conference agenda which indicates each speaker, the title of their presentation, and the actual time of their presentation. The minutes also include the charts for each presentation which indicate the author's name(s) and affiliation. In some cases, a separate written report was submitted and has been included here.

  9. NASA Life Sciences Program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This Life Science Program video examines the variety of projects that study both the physiological and psychological impacts on astronauts due to extended space missions. The hazards of space radiation and microgravity effects on the human body are described, along with these effects on plant growth, and the performance of medical procedures in space. One research technique, which is hoped to provide help for future space travel, is the study of aquanauts and their life habits underwater.

  10. High-school Student Teams in a National NASA Microgravity Science Competition

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Hodanbosi, Carol; Stocker, Dennis

    2003-01-01

    The Dropping In a Microgravity Environment or DIME competition for high-school-aged student teams has completed the first year for nationwide eligibility after two regional pilot years. With the expanded geographic participation and increased complexity of experiments, new lessons were learned by the DIME staff. A team participating in DIME will research the field of microgravity, develop a hypothesis, and prepare a proposal for an experiment to be conducted in a NASA microgravity drop tower. A team of NASA scientists and engineers will select the top proposals and then the selected teams will design and build their experiment apparatus. When completed, team representatives will visit NASA Glenn in Cleveland, Ohio to operate their experiment in the 2.2 Second Drop Tower and participate in workshops and center tours. NASA participates in a wide variety of educational activities including competitive events. There are competitive events sponsored by NASA (e.g. NASA Student Involvement Program) and student teams mentored by NASA centers (e.g. For Inspiration and Recognition of Science and Technology Robotics Competition). This participation by NASA in these public forums serves to bring the excitement of aerospace science to students and educators.Researchers from academic institutions, NASA, and industry utilize the 2.2 Second Drop Tower at NASA Glenn Research Center in Cleveland, Ohio for microgravity research. The researcher may be able to complete the suite of experiments in the drop tower but many experiments are precursor experiments for spaceflight experiments. The short turnaround time for an experiment's operations (45 minutes) and ready access to experiment carriers makes the facility amenable for use in a student program. The pilot year for DIME was conducted during the 2000-2001 school year with invitations sent out to Ohio- based schools and organizations. A second pilot year was conducted during the 2001-2002 school year for teams in the six-state region of Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin. The third year for DIME was conducted during the 2002-2003 school year for teams from the fifty United States, the District of Columbia, and Puerto Rico. An annual national DIME program is planned for the foreseeable future. Presented in this paper will be a description of DIME, an overview of the planning and execution of such a program, results from the first three years, and lessons learned from the first national competition.

  11. The First United States Microgravity Laboratory

    NASA Technical Reports Server (NTRS)

    Powers, C. Blake (Editor); Shea, Charlotte; Mcmahan, Tracy; Accardi, Denise; Mikatarian, Jeff

    1991-01-01

    The United States Microgravity Laboratory (USML-1) is one part of a science and technology program that will open NASA's next great era of discovery and establish the United States' leadership in space. A key component in the preparation for this new age of exploration, the USML-1 will fly in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology, and combustion science. The major components of the USML-1 are the Crystal Growth Furnace, the Surface Tension Driven Convection Experiment (STDCE) Apparatus, and the Drop Physics Module. Other components of USML-1 include Astroculture, Generic Bioprocessing Apparatus, Extended Duration Orbiter Medical Project, Protein Crystal Growth, Space Acceleration Measurement System, Solid Surface Combustion Experiment, Zeolite Crystal Growth and Spacelab Glovebox provided by the European Space Agency.

  12. Microgravity: a Teacher's Guide with Activities, Secondary Level

    NASA Technical Reports Server (NTRS)

    Vogt, Gregory L. (Editor); Wargo, Michael J. (Editor)

    1992-01-01

    This NASA Educational Publication is a teacher's guide that focuses on microgravity for the secondary level student. The introduction answers the question 'What is microgravity?', as well as describing gravity and creating microgravity. Following the introduction is a microgravity primer which covers such topics as the fluid state, combustion science, materials science, biotechnology, as well as microgravity and space flight. Seven different activities are described in the activities section and are written by authors prominent in the field. The concluding sections of the book include a glossary, microgravity references, and NASA educational resources.

  13. Kennedy Educate to Innovate (KETI) Microgravity Powerpoint Presentation

    NASA Technical Reports Server (NTRS)

    2011-01-01

    The purpose of this presentation is to define and explain microgravity and show how microgravity can help students learn about the phenomena of the world. The presentation is designed to provide teachers of science, technology, engineering, and mathematics at many levels with a foundation in microgravity science and applications.

  14. Space Medicine

    NASA Technical Reports Server (NTRS)

    Pool, Sam L.

    2000-01-01

    The National Academy of Sciences Committee on Space Biology and Medicine points out that space medicine is unique among space sciences, because in addition to addressing questions of fundamental scientific interest, it must address clinical or human health and safety issues as well. Efforts to identify how microgravity affects human physiology began in earnest by the United States in 1960 with the establishment of the National Aeronautics and Space Administration (NASA's) Life Sciences program. Before the first human space missions, prediction about the physiological effects of microgravity in space ranged from extremely severe to none at all. The understanding that has developed from our experiences in space to date allows us to be guardedly optimistic about the ultimate accommodations of humans to space flight. Only by our travels into the microgravity environment of space have we begun to unravel the mysteries associated with gravity's role in shaping human physiology. Space medicine is still at its very earliest stages. Development of this field has been slow for several reasons, including the limited number of space flights, the small number of research subjects, and the competition within the life sciences community and other disciplines for flight opportunities. The physiological changes incurred during space flight may have a dramatic effect on the course of an injury or illness. These physiological changes present an exciting challenge for the field of space medicine: how to best preserve human health and safety while simultaneously deciphering the effects of microgravity on human performance. As the United States considers the future of humans in long-term space travel, it is essential that the many mysteries as to how microgravity affects human systems be addressed with vigor. Based on the current state of our knowledge, the justification is excellent indeed compelling- for NASA to develop a sophisticated capability in space medicine. Teams of physicians and scientists should be actively engaged in fundamental and applied research designed to ensure that it is safe for humans to routinely and repeatedly stay and work in the microgravity environment of space.

  15. Student Drop Tower Competitions: Dropping In a Microgravity Environment (DIME) and What If No Gravity? (WING)

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; Stocker, Dennis P.; DeLombard, Richard

    2011-01-01

    This paper describes two student competition programs that allow student teams to conceive a science or engineering experiment for a microgravity environment. Selected teams design and build their experimental hardware, conduct baseline tests, and ship their experiment to NASA where it is operated in the 2.2 Second Drop Tower. The hardware and acquired data is provided to the teams after the tests are conducted so that the teams can prepare their final reports about their findings.

  16. Materials science on parabolic aircraft: The FY 1987-1989 KC-135 microgravity test program

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A. (Editor)

    1993-01-01

    This document covers research results from the KC-135 Materials Science Program managed by MSFC for the period FY87 through FY89. It follows the previous NASA Technical Memorandum for FY84-86 published in August 1988. This volume contains over 30 reports grouped into eight subject areas covering acceleration levels, space flight hardware, transport and interfacial studies, thermodynamics, containerless processing, welding, melt/crucible interactions, and directional solidification. The KC-135 materials science experiments during FY87-89 accomplished direct science, preparation for space flight experiments, and justification for new experiments in orbit.

  17. Cooperative Research Projects in the Microgravity Combustion Science Programs Sponsored by NASA and NEDO

    NASA Technical Reports Server (NTRS)

    Ross, Howard (Compiler)

    2000-01-01

    This document contains the results of a collection of selected cooperative research projects between principal investigators in the microgravity combustion science programs, sponsored by NASA and NEDO. Cooperation involved the use of drop towers in Japan and the United States, and the sharing of subsequent research data and findings. The topical areas include: (1) Interacting droplet arrays, (2) high pressure binary fuel sprays, (3) sooting droplet combustion, (4) flammability limits and dynamics of spherical, premixed gaseous flames and, (5) ignition and transition of flame spread across thin solid fuel samples. All of the investigators view this collaboration as a success. Novel flame behaviors were found and later published in archival journals. In some cases the experiments provided verification of the design and behavior in subsequent experiments performed on the Space Shuttle. In other cases, the experiments provided guidance to experiments that are expected to be performed on the International Space Station.

  18. Microgravity

    NASA Image and Video Library

    2000-12-15

    Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Bioactive glass particles (left) with a microporous surface (right) are widely accepted as a synthetic material for periodontal procedures. Using the particles to grow three-dimensional tissue cultures may one day result in developing an improved, more rugged bone tissue that may be used to correct skeletal disorders and bone defects. The work is sponsored by NASA's Office of Biological and Physical Research.

  19. Equations of Motion for the g-LIMIT Microgravity Vibration Isolation System

    NASA Technical Reports Server (NTRS)

    Kim, Y. K.; Whorton, M. S.

    2001-01-01

    A desirable microgravity environment for experimental science payloads may require an active vibration isolation control system. A vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being developed by NASA Marshall Space Flight Center to support microgravity science experiments using the microgravity science glovebox. In this technical memorandum, the full six-degree-of-freedom nonlinear equations of motion for g-LIMIT are derived. Although the motivation for this model development is control design and analysis of g-LIMIT, the equations are derived for a general configuration and may be used for other isolation systems as well.

  20. NASA's Microgravity Fluid Physics Program: Tolerability to Residual Accelerations

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond

    1998-01-01

    An overview of the NASA microgravity fluid physics program is presented. The necessary quality of a reduced-gravity environment in terms of tolerable residual acceleration or g levels is a concern that is inevitably raised for each new microgravity experiment. Methodologies have been reported in the literature that provide guidance in obtaining reasonable estimates of residual acceleration sensitivity for a broad range of fluid physics phenomena. Furthermore, a relatively large and growing database of microgravity experiments that have successfully been performed in terrestrial reduced gravity facilities and orbiting platforms exists. Similarity of experimental conditions and hardware, in some cases, lead to new experiments adopting prior experiments g-requirements. Rationale applied to other experiments can, in principle, be a valuable guide to assist new Principal Investigators, PIs, in determining the residual acceleration tolerability of their flight experiments. The availability of g-requirements rationale from prior (mu)g experiments is discussed. An example of establishing g tolerability requirements is demonstrated, using a current microgravity fluid physics flight experiment. The Fluids and Combustion Facility (FCF) which is currently manifested on the US Laboratory of the International Space Station (ISS) will provide opportunities for fluid physics and combustion experiments throughout the life of the ISS. Although the FCF is not intended to accommodate all fluid physics experiments, it is expected to meet the science requirements of approximately 80% of the new PIs that enter the microgravity fluid physics program. The residual acceleration requirements for the FCF fluid physics experiments are based on a set of fourteen reference fluid physics experiments which are discussed.

  1. A Summary of the Quasi-Steady Acceleration Environment on-Board STS-94 (MSL-1)

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin M.; Nati, Maurizio; Touboul, Pierre; Schuette, Andreas; Sablon, Gert

    1999-01-01

    The continuous free-fall state of a low Earth orbit experienced by NASA's Orbiters results in a unique reduced gravity environment. While microgravity science experiments are conducted in this reduced gravity environment, various accelerometer systems measure and record the microgravity acceleration environment for real-time and post-flight correlation with microgravity science data. This overall microgravity acceleration environment is comprised of quasi-steady, oscillatory, and transient contributions. The First Microgravity Science Laboratory (MSL-1) payload was dedicated to experiments studying various microgravity science disciplines, including combustion, fluid physics, and materials processing. In support of the MSL-1 payload, two systems capable of measuring the quasi-steady acceleration environment were flown: the Orbital Acceleration Research Experiment (OARE) and the Microgravity Measurement Assembly (MMA) system's Accelerometre Spatiale Triaxiale most evident in the quasi-steady acceleration regime. Utilizing such quasi-steady events, a comparison and summary of the quasi-steady acceleration environment for STS-94 will be presented

  2. Development of a Remote Sensing and Microgravity Student GAS Payload

    NASA Technical Reports Server (NTRS)

    Branly, Rolando; Ritter, Joe; Friedfeld, Robert; Ackerman, Eric; Carruthers, Carl; Faranda, Jon

    1999-01-01

    The G-781 Terrestrial and Atmospheric Multi-Spectral Explorer payload (TAMSE) is the result of an educational partnership between Broward and Brevard Community Colleges with the Association of Small Payload Researchers (ASPR) and the Florida Space Institute, University of Central Florida. The effort focuses on flying nine experiments, including three earth viewing remote sensing experiments, three microgravity experiments involving crystal growth, and three radiation measurement experiments. The G-781 science team, composed of both student and faculty members, has been working on this payload since 1995. The dream of flying the first Florida educational GAS experiment led to the flight of a passive Radiation dosimetry experiment on STS-91 (ASPR-GraDEx-I), which will be reflown as part of TAMSE. This project has lead to the development of a mature space science program within the schools. Many students have been positively touched by direct involvement with NASA and the GAS program as well as with other flight programs e.g. the KC-135 flight program. Several students have changed majors, and selected physics, engineering, and other science career paths as a result of the experience. The importance of interdisciplinary training is fundamental to this payload and to the teaching of the natural sciences. These innovative student oriented projects will payoff not only in new science data, but also in accomplishing training for the next generation of environmental and space scientists. The details the TAMSE payload design are presented in this paper.

  3. Life and Biomedical Sciences and Applications Advisory Subcommittee Meeting

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The proceedings of the August 1995 meeting of the Life and Biomedical Sciences and Applications Advisory Subcommittee (LBSAAS) are summarized. The following topics were addressed by the Subcommittee members: the activities and status of the LBSA Division; program activities of the Office of Life and Microgravity Sciences and Applications (OLMSA); the medical Countermeasures Program; and the Fettman Report on animal research activities at ARC. Also presented were a history and overview of the activities of the Space Station Utilization Advisory Committee and the Advanced Life Support Program (ALSP). The meeting agenda and a list of the Subcommittee members and meeting attendees are included as appendices.

  4. Budget estimates: Fiscal year 1994. Volume 3: Research and program management

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The research and program management (R&PM) appropriation provides the salaries, other personnel and related costs, and travel support for NASA's civil service workforce. This FY 1994 budget funds costs associated with 23,623 full-time equivalent (FTE) work years. Budget estimates are provided for all NASA centers by categories such as space station and new technology investments, space flight programs, space science, life and microgravity sciences, advanced concepts and technology, center management and operations support, launch services, mission to planet earth, tracking and data programs, aeronautical research and technology, and safety, reliability, and quality assurance.

  5. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations. Some initial results from the first three materials experiments are given.

  6. Spacelab Science Results Study. Volume 1; External Observations

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J. (Compiler)

    1999-01-01

    Some of the 36 Spacelab missions were more or less dedicated to specific scientific disciplines, while other carried a eclectic mixture of experiments ranging from astrophysics to life sciences. However, the experiments can be logically classified into two general categories; those that make use of the Shuttle as an observing platform for external phenomena (including those which use the Shuttle in an interactive mode) and those which use the Shuttle as a microgravity laboratory. This first volume of this Spacelab Science Results study will be devoted to experiments of the first category. The disciplines included are Astrophysics, Solar Physics, Space Plasma Physics, Atmospheric Sciences, and Earth Sciences. Because of the large number of microgravity investigations, Volume 2 will be devoted to Microgravity Sciences, which includes Fluid Physics, Combustion Science, Materials Science, and Biotechnology, and Volume 3 will be devoted to Space Life Sciences, which studies the response and adaptability of living organisms to the microgravity environment.

  7. KSC-04pd1398

    NASA Image and Video Library

    2004-06-30

    KENNEDY SPACE CENTER, FLA. - Kimberly Beck is a Controlled Biological Systems trainee in the Spaceflight and Life Sciences Training Program. She is helping with growth studies supporting the WONDER (Water Offset Nutrient Delivery Experiment) flight payload, which is investigating hydroponic plant crop production in microgravity.

  8. KSC-04PD-1398

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Kimberly Beck is a Controlled Biological Systems trainee in the Spaceflight and Life Sciences Training Program. She is helping with growth studies supporting the WONDER (Water Offset Nutrient Delivery Experiment) flight payload, which is investigating hydroponic plant crop production in microgravity.

  9. Microgravity science and applications bibliography, 1988 revision

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Microgravity Science and Applications (MSA) Bibliography is a compilation of government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments utilizing a low-gravity environment to elucidate and control various processes or with ground-based activities that provide supporting research. It encompasses literature published but not cited in the 1984 Revision and the literature which was published in the past year. Subdivisions of the bibliography include: electronic materials; metals, alloys, and composites; fluid dynamics and transports; biotechnology; glass and ceramics; and combustion. Also included are publications from the European, Soviet, and Japanese MSA programs. In addition, there is a list of patents and appendices providing a compilation of anonymously authored collections of reports and a cross reference index.

  10. Contribution to "AIAA Aerospace Year in Review" article

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Downey, J. Patton

    2012-01-01

    The NASA Marshall Space Flight Center Microgravity Science Program is dedicated to promoting our understanding of materials processing by conducting relevant experiments in the microgravity environment and supporting related modeling efforts with the intent of improving ground-based practices. Currently funded investigations include research on dopant distribution and defect formation in semiconductors, microstructural development and transitions in dendritic casting alloys, coarsening phenomena, competition between thermal and kinetic phase formation, and the formation of glassy vs. crystalline material. NASA Microgravity Materials Science Principle Investigators are selected for funding either through a proposal in response to a NASA Research Announcement or by collaborating on a team that has successfully proposed to a foreign space agency research announcement. In the latter case, a US investigator can then apply to NASA for funding through an unsolicited proposal. The International Space Station (ISS) facilities used for the experimental investigations are provided primarily by partnering with foreign agencies and often US investigators are working as a part of a larger team studying a specific area of materials science. Facilities for conducting experiments aboard the ISS include the European Space Agency (ESA) Low Gradient Facility (LGF) and the Solidification and Quench (SQF) modular inserts to the Materials Research Rack/Materials Science Laboratory and are primarily used for controlled solidification studies. The French Space Agency (CNES) provided DECLIC facility allows direct observation of morphological development in transparent materials that solidify analogously to metals. The ESA provided Electro ]Magnetic Levitator (EML) is designed to levitate, melt and then cool samples in order to determine material properties, study nucleation behavior, and document phase transitions. Finally, the Microgravity Science Glovebox (MSG) serves as a onboard facility for supporting the hardware required to conduct a number of smaller, short-term investigations.

  11. The Biotechnology Facility for International Space Station.

    PubMed

    Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy

    2004-03-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.

  12. The Biotechnology Facility for International Space Station

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy

    2004-01-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.

  13. Microgravity

    NASA Image and Video Library

    1995-04-06

    An experiment vehicle plunges into the deceleration at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one-meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 3 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  14. Microgravity

    NASA Image and Video Library

    1995-04-06

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physcis, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 2 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  15. Microgravity

    NASA Image and Video Library

    1995-04-06

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 4 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  16. Microgravity

    NASA Image and Video Library

    1995-04-06

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No.1 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  17. Biotechnology opportunities on Space Station

    NASA Technical Reports Server (NTRS)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  18. Combustion Research aboard the ISS Utilizing the Combustion Integrated Rack and Microgravity Science Glovebox

    NASA Astrophysics Data System (ADS)

    Sutliff, T. J.; Otero, A. M.; Urban, D. L.

    2002-01-01

    The Physical Sciences Research Program of NASA has chartered a broad suite of peer-reviewed research investigating both fundamental combustion phenomena and applied combustion research topics. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). The applied research benefit humans living and working in space through its fire safety program. The Combustion Science Discipline is implementing a structured flight research program utilizing the International Space Station (ISS) and two of its premier facilities, the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox to conduct this space-based research. This paper reviews the current vision of Combustion Science research planned for International Space Station implementation from 2003 through 2012. A variety of research efforts in droplets and sprays, solid-fuels combustion, and gaseous combustion have been independently selected and critiqued through a series of peer-review processes. During this period, while both the ISS carrier and its research facilities are under development, the Combustion Science Discipline has synergistically combined research efforts into sub-topical areas. To conduct this research aboard ISS in the most cost effective and resource efficient manner, the sub-topic research areas are implemented via a multi-user hardware approach. This paper also summarizes the multi-user hardware approach and recaps the progress made in developing these research hardware systems. A balanced program content has been developed to maximize the production of fundamental and applied combustion research results within the current budgetary and ISS operational resource constraints. Decisions on utilizing the Combustion Integrated Rack and the Microgravity Science Glovebox are made based on facility capabilities and research requirements. To maximize research potential, additional research objectives are specified as desires a priori during the research design phase. These expanded research goals, which are designed to be achievable even with late addition of operational resources, allow additional research of a known, peer-endorsed scope to be conducted at marginal cost. Additional operational resources such as upmass, crewtime, data downlink bandwidth, and stowage volume may be presented by the ISS planners late in the research mission planning process. The Combustion Discipline has put in place plans to be prepared to take full advantage of such opportunities.

  19. Telescience testbed pilot program, volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.

    1989-01-01

    Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth sciences, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, is the executive summary.

  20. Studying Planarian Regeneration Aboard the International Space Station within the Student Space Flight Experimental Program

    NASA Astrophysics Data System (ADS)

    Vista SSEP Mission 11 Team; Hagstrom, Danielle; Bartee, Christine; Collins, Eva-Maria S.

    2018-05-01

    The growing possibilities of space travel are quickly moving from science fiction to reality. However, to realize the dream of long-term space travel, we must understand how these conditions affect biological and physiological processes. Planarians are master regenerators, famous for their ability to regenerate from very small parts of the original animal. Understanding how this self-repair works may inspire regenerative therapies in humans. Two studies conducted aboard the International Space Station (ISS) showed that planarian regeneration is possible in microgravity. One study reported no regenerative defects, whereas the other study reported behavioral and microbiome alterations post-space travel and found that 1 of 15 planarians regenerated a Janus head, suggesting that microgravity exposure may not be without consequences. Given the limited number of studies and specimens, further microgravity experiments are necessary to evaluate the effects of microgravity on planarian regeneration. Such studies, however, are generally difficult and expensive to conduct. We were fortunate to be sponsored by the Student Spaceflight Experiment Program (SSEP) to investigate how microgravity affects regeneration of the planarian species Dugesia japonica on the ISS. While we were unable to successfully study planarian regeneration within the experimental constraints of our SSEP Mission, we systematically analyzed the cause for the failed experiment, leading us to propose a modified protocol. This work thus opens the door for future experiments on the effects of microgravity on planarian regeneration on SSEP Missions as well as for more advanced experiments by professional researchers.

  1. Bare Bones of Bioactive Glass

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Even in normal gravity, bioactive glass particles enhance bone growth in laboratory tests with flat tissue cultures. Ducheyne and his team believe that using the bioactive microcarriers in a rotating bioreactor in microgravity will produce improved, three-dimensional tissue cultures. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and University of Pennsylvania Center for Bioactive Materials and Tissue Engineering.

  2. Microgravity: A Teacher's Guide with Activities in Science, Mathematics, and Technology. Grades 5-12.

    ERIC Educational Resources Information Center

    Rogers, Melissa J. B.; Vogt, Gregory L.; Wargo, Michael J.

    This teacher's guide explains microgravity, provides information on the history of microgravity, the domains of microgravity research and introduces classroom activities. Among the contents are the following: (1) "First, What Is Gravity?"; (2) "What Is Microgravity?"; (3) "Creating Microgravity"; (4) "The…

  3. The Second International Microgravity Combustion Workshop

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This CP contains 40 papers presented at the Second International Microgravity Combustion Workshop held in Cleveland, OH, from September 15 to 17, 1992. The purpose of the workshop was twofold: to exchange information about the progress and promise of combustion science in microgravity and to provide a forum to discuss which areas in microgravity combustion science need to be expanded profitably and which should be included in upcoming NASA Research Announcements (NRA).

  4. Commerce Lab: Mission analysis payload integration study. Appendix A: Data bases

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The development of Commerce Lab is detailed. Its objectives are to support the space program in these areas: (1) the expedition of space commercialization; (2) the advancement of microgravity science and applications; and (3) as a precursor to future missions in the space program. Ways and means of involving private industry and academia in this commercialization is outlined.

  5. The g-LIMIT Microgravity Vibration Isolation System for the Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.; Ryan, Stephen G. (Technical Monitor)

    2001-01-01

    For many microgravity science experiments in the International Space Station, the ambient acceleration environment will be exceed desirable levels. To provide a more quiescent acceleration environment to the microgravity payloads, a vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being designed. g-LIMIT is a sub-rack level isolation system for the Microgravity Science Glovebox that can be tailored to a variety of applications. Scheduled for launch on the UF-1 mission, the initial implementation of g-LIMIT will be a Characterization Test in the Microgravity Science Glovebox. g-LIMIT will be available to glovebox investigators immediately after characterization testing. Standard MSG structural and umbilical interfaces will be used so that the interface requirements are minimized. g-LIMIT consists of three integrated isolator modules, each of which is comprised of a dual axis actuator, two axes of acceleration sensing, two axes of position sensing, control electronics, and data transmission capabilities in a small-volume package. In addition, this system provides the unique capability for measuring quasi-steady acceleration of the experiment independent of accelerometers as a by-product of the control system and will have the capability of generating user-specified pristine accelerations to enhance experiment operations.

  6. Materials Science

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Materials Science Program is structured so that NASA s headquarters is responsible for the program content and selection, through the Enterprise Scientist, and MSFC provides for implementation of ground and flight programs with a Discipline Scientist and Discipline Manager. The Discipline Working Group of eminent scientists from outside of NASA acts in an advisory capacity and writes the Discipline Document from which the NRA content is derived. The program is reviewed approximately every three years by groups such as the Committee on Microgravity Research, the National Materials Advisory Board, and the OBPR Maximization and Prioritization (ReMaP) Task Force. The flight program has had as many as twenty-six principal investigators (PIs) in flight or flight definition stage, with the numbers of PIs in the future dependent on the results of the ReMaP Task Force and internal reviews. Each project has a NASA-appointed Project Scientist, considered a half-time job, who assists the PI in understanding and preparing for internal reviews such as the Science Concept Review and Requirements Definition Review. The Project Scientist also insures that the PI gets the maximum science support from MSFC, represents the PI to the MSFC community, and collaborates with the Project Manager to insure the project is well-supported and remains vital. Currently available flight equipment includes the Materials Science Research Rack (MSRR-1) and Microgravity Science Glovebox. Ground based projects fall into one or more of several categories. Intellectual Underpinning of Flight Program projects include theoretical studies backed by modeling and computer simulations; bring to maturity new research, often by young researchers, and may include preliminary short duration low gravity experiments in the KC-135 aircraft or drop tube; enable characterization of data sets from previous flights; and provide thermophysical property determinations to aid PIs. Radiation Shielding and preliminary In Situ Resource Utilization (ISRU) studies work towards future long duration missions. Biomaterials support materials issues affecting crew health. Nanostructured Materials are currently considered to be maturing new research, and Advanced Materials for Space Transportation has as yet no PIs. PIs are assigned a NASA Technical Monitor to maintain contact, a position considered to be a 5 percent per PI effort. Currently 33 PIs are supported on the 1996 NRA, which is about to expire, and 59 on the 1998 NRA. Two new NRAs, one for Radiation Shielding and one for Materials Science for Advanced Space Propulsion are due to be announced by the 2003 fiscal year. MSFC has a number of facilities supporting materials science. These include the Microgravity Development Laboratory/SD43; Electrostatic Levitator Facility; SCN Purification Facility; Electron Microscope/Microprobe Facility; Static and Rotating Magnetic Field Facility; X-Ray Diffraction Facility; and the Furnace Development Laboratory.

  7. NASA-HBCU Space Science and Engineering Research Forum Proceedings

    NASA Technical Reports Server (NTRS)

    Sanders, Yvonne D. (Editor); Freeman, Yvonne B. (Editor); George, M. C. (Editor)

    1989-01-01

    The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements).

  8. USU research helps agriculture enter the space age

    NASA Technical Reports Server (NTRS)

    Salisbury, F. B.

    1987-01-01

    Research at the Utah State University College of Agriculture that is relevant to the space life sciences is reviewed. Specific programs detailed are gravitropism of dicot stems, maximization of wheat yields for use in space exploration, and plant development processes in wheat in microgravity.

  9. Summary Status of the Space Acceleration Measurement System (SAMS), September 1993

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1993-01-01

    The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the flrst Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered 18 gigabytes of data representing 68 days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and.the Microgravity Measurement and Analysis Project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.

  10. The 3rd International Microgravity Combustion Workshop

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Compiler)

    1995-01-01

    This Conference Publication contains 71 papers presented at the Third International Microgravity Combustion Workshop held in Cleveland, Ohio, from April 11 to 13, 1995. The purpose of the workshop was twofold: to exchange information about the progress and promise of combustion science in microgravity and to provide a forum to discuss which areas in microgravity combustion science need to be expanded profitably and which should be included in upcoming NASA Research Announcements (NRA).

  11. Space Congress, 27th, Cocoa Beach, FL, Apr. 24-27, 1990, Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The present symposium on aeronautics and space encompasses DOD research and development, science payloads, small microgravity carriers, the Space Station, technology payloads and robotics, commercial initiatives, STS derivatives, space exploration, and DOD space operations. Specific issues addressed include the use of AI to meet space requirements, the Astronauts Laboratory Smart Structures/Skins Program, the Advanced Liquid Feed Experiment, an overview of the Spacelab program, the Autonomous Microgravity Industrial Carrier Initiative, and the Space Station requirements and transportation options for a lunar outpost. Also addressed are a sensor-data display for telerobotic systems, the Pegasus and Taurus launch vehicles, evolutionary transportation concepts, the upgrade of the Space Shuttle avionics, space education, orbiting security sentinels, and technologies for improving launch-vehicle responsiveness.

  12. The economics of microgravity research.

    PubMed

    DiFrancesco, Jeanne M; Olson, John M

    2015-01-01

    In this introduction to the economics of microgravity research, DiFrancesco and Olson explore the existing landscape and begin to define the requirements for a robust, well-funded microgravity research environment. This work chronicles the history, the opportunities, and how the decisions made today will shape the future. The past 60 years have seen tremendous growth in the capabilities and resources available to conduct microgravity science. However, we are now at an inflection point for the future of humanity in space. A confluence of factors including the rise of commercialization, a shifting funding landscape, and a growing international presence in space exploration, and terrestrial research platforms are shaping the conditions for full-scale microgravity research programs. In this first discussion, the authors focus on the concepts of markets, tangible and intangible value, research pathways and their implications for investments in research projects, and the collateral platforms needed. The opportunities and implications for adopting new approaches to funding and market-making illuminate how decisions made today will affect the speed of advances the community will be able to achieve in the future.

  13. The economics of microgravity research

    PubMed Central

    DiFrancesco, Jeanne M; Olson, John M

    2015-01-01

    In this introduction to the economics of microgravity research, DiFrancesco and Olson explore the existing landscape and begin to define the requirements for a robust, well-funded microgravity research environment. This work chronicles the history, the opportunities, and how the decisions made today will shape the future. The past 60 years have seen tremendous growth in the capabilities and resources available to conduct microgravity science. However, we are now at an inflection point for the future of humanity in space. A confluence of factors including the rise of commercialization, a shifting funding landscape, and a growing international presence in space exploration, and terrestrial research platforms are shaping the conditions for full-scale microgravity research programs. In this first discussion, the authors focus on the concepts of markets, tangible and intangible value, research pathways and their implications for investments in research projects, and the collateral platforms needed. The opportunities and implications for adopting new approaches to funding and market-making illuminate how decisions made today will affect the speed of advances the community will be able to achieve in the future. PMID:28725707

  14. Microgravity science and applications bibliography, 1987 revision

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This edition of the Microgravity Science and Applications (MSA) Bibliography is a compilation of Government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments utilizing a low gravity environment to elucidate and control various processes or with ground based activities that provide supporting research. It encompasses literature published but not cited in the 1984 Revision and literature which has been published in the past year. Subdivisions of the bibliography include six major categories: Electronic Materials; Metals, Alloys, and Composites; Fluid Dynamics and Transport; Biotechnology; Glass and Ceramics; and Combustion. Also included are publications from the European, Soviet, and Japanese MSA programs. In addition, there is a list of patents and appendices providing a compilation of an anonymously authored collection of reports and a cross reference index.

  15. Microgravity science and applications bibliography, 1985 revision

    NASA Technical Reports Server (NTRS)

    Pentecost, E. (Compiler)

    1985-01-01

    This edition of the Microgravity Science and Applications (MSA) Bibliography is a compilation of Government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments utilizing a low-gravity environment to elucidate and control various processes or with ground-based activities that provide supporting research. It encompasses literature published but not cited in the 1984 Revision and that literature which has been published in the past year. Subdivisions of the bibliography include six major categories: Electronic Materials; Metal, Alloys, and Composites; Fluid Dynamics and Transports; Biotechnology; Glass and Ceramics; and Combustion. Also included are publications from the European, Soviet, and Japanese MSA programs. In addition, there is a list of patents and appendices providing a compilation of anonymously authored collection of reports and a cross reference index.

  16. Short duration microgravity experiments in physical and life sciences during parabolic flights: the first 30 ESA campaigns.

    PubMed

    Pletser, Vladimir

    2004-11-01

    Aircraft parabolic flights provide repetitively up to 20 s of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences, to test instrumentation and to train astronauts before a space flight. The European Space Agency (ESA) has organized since 1984 thirty parabolic flight campaigns for microgravity research experiments utilizing six different airplanes. More than 360 experiments were successfully conducted during more than 2800 parabolas, representing a cumulated weightlessness time of 15 h 30 m. This paper presents the short duration microgravity research programme of ESA. The experiments conducted during these campaigns are summarized, and the different airplanes used by ESA are shortly presented. The technical capabilities of the Airbus A300 'Zero-G' are addressed. Some Physical Science, Technology and Life Science experiments performed during the last ESA campaigns with the Airbus A300 are presented to show the interest of this unique microgravity research tool to complement, support and prepare orbital microgravity investigations. c2004 Elsevier Ltd. All rights reserved.

  17. Microgravity Particle Research on the Space Station

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W. (Editor); Mckay, Christopher P. (Editor); Schwartz, Deborah E. (Editor)

    1987-01-01

    Science questions that could be addressed by a Space Station Microgravity Particle Research Facility for studying small suspended particles were discussed. Characteristics of such a facility were determined. Disciplines covered include astrophysics and the solar nebula, planetary science, atmospheric science, exobiology and life science, and physics and chemistry.

  18. STS-30 onboard closeup of the fluids experiment apparatus (FEA) equipment

    NASA Image and Video Library

    1989-05-08

    STS030-01-015 (4-8 May 1989) --- A 35mm close-up view of the Fluids Experiment Apparatus (FEA) aboard Atlantis for NASA’s STS-30 mission. Rockwell International is engaged in a joint endeavor agreement with NASA’s Office of Commercial Programs in the field of floating zone crystal growth and purification research. The March 1987 agreement provides for microgravity experiments to be performed in the company’s Microgravity Laboratory, the FEA. Crewmembers, especially Mary L. Cleave, devoted a great deal of onboard time to the monitoring of various materials science experiments using the apparatus.

  19. Microgravity

    NASA Image and Video Library

    1998-09-30

    Optical ports ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (beam passes through the window at left), positioning lasers (one port is at center), and lamps to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  20. First Post-Flight Status Report for the Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Baugher, Charles R., III

    2003-01-01

    The Microgravity Science Glovebox (MSG) was launched to the International Space Station (ISS) this year on the second Utilization Flight (UF2). After successful on-orbit activation, the facility began supporting an active microgravity research program. The inaugural NASA experiments operated in the unit were the Solidification Using a Baffle in Sealed Ampoules (SUBSA, A. Ostrogorski, PI), and the Pore Formation and Mobility (PFMI, R. Grugel, PI) experiments. Both of these materials science investigations demonstrated the versatility of the facility through extensive use of telescience. The facility afforded the investigators with the capability of monitoring and operating the experiments in real-time and provided several instances in which the unique combination of scientists and flight crew were able to salvage situations which would have otherwise led to the loss of a science experiment in an unmanned, or automated, environment. The European Space Agency (ESA) also made use of the facility to perform a series of four experiments that were carried to the ISS via a Russian Soyuz and subsequently operated by a Belgium astronaut during a ten day Station visit. This imaginative approach demonstrated the ability of the MSG integration team to handle a rapid integration schedule (approximately seven months) and an intensive operations interval. Interestingly, and thanks to aggressive attention from the crew, the primary limitation to experiment thru-put in these early operational phases is proving to be the restrictions on the up-mass to the Station, rather than the availability of science operations.

  1. Vibration Isolation Technology (VIT) ATD Project

    NASA Technical Reports Server (NTRS)

    Lubomski, Joseph F.; Grodsinsky, Carlos M.; Logsdon, Kirk A.; Rohn, Douglas A.; Ramachandran, N.

    1994-01-01

    A fundamental advantage for performing material processing and fluid physics experiments in an orbital environment is the reduction in gravity driven phenomena. However, experience with manned spacecraft such as the Space Transportation System (STS) has demonstrated a dynamic acceleration environment far from being characterized as a 'microgravity' platform. Vibrations and transient disturbances from crew motions, thruster firings, rotating machinery etc. can have detrimental effects on many proposed microgravity science experiments. These same disturbances are also to be expected on the future space station. The Microgravity Science and Applications Division (MSAD) of the Office of Life and Microgravity Sciences and Applications (OLMSA), NASA Headquarters recognized the need for addressing this fundamental issue. As a result an Advanced Technology Development (ATD) project was initiated in the area of Vibration Isolation Technology (VIT) to develop methodologies for meeting future microgravity science needs. The objective of the Vibration Isolation Technology ATD project was to provide technology for the isolation of microgravity science experiments by developing methods to maintain a predictable, well defined, well characterized, and reproducible low-gravity environment, consistent with the needs of the microgravity science community. Included implicitly in this objective was the goal of advising the science community and hardware developers of the fundamental need to address the importance of maintaining, and how to maintain, a microgravity environment. This document will summarize the accomplishments of the VIT ATD which is now completed. There were three specific thrusts involved in the ATD effort. An analytical effort was performed at the Marshall Space Flight Center to define the sensitivity of selected experiments to residual and dynamic accelerations. This effort was redirected about half way through the ATD focusing specifically on the sensitivity of protein crystals to a realistic orbital environment. The other two thrusts of the ATD were performed at the Lewis Research Center. The first was to develop technology in the area of reactionless mechanisms and robotics to support the eventual development of robotics for servicing microgravity science experiments. This activity was completed in 1990. The second was to develop vibration isolation and damping technology providing protection for sensitive science experiments. In conjunction with the this activity, two workshops were held. The results of these were summarized and are included in this report.

  2. Electrophoresis experiments in microgravity

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.; Rhodes, Percy H.

    1991-01-01

    The use of the microgravity environment to separate and purify biological cells and proteins has been a major activity since the beginning of the NASA Microgravity Science and Applications program. Purified populations of cells are needed for research, transplantation and analysis of specific cell constituents. Protein purification is a necessary step in research areas such as genetic engineering where the new protein has to be separated from the variety of other proteins synthesized from the microorganism. Sufficient data are available from the results of past electrophoresis experiments in space to show that these experiments were designed with incomplete knowledge of the fluid dynamics of the process including electrohydrodynamics. However, electrophoresis is still an important separation tool in the laboratory and thermal convection does limit its performance. Thus, there is a justification for electrophoresis but the emphasis of future space experiments must be directed toward basic research with model experiments to understand the microgravity environment and fluid analysis to test the basic principles of the process.

  3. Spacelab

    NASA Image and Video Library

    1992-06-25

    The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs and provided scientists an opportunity to research various scientific investigations in a weightless environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology, and combustion science. In this photograph, astronaut Carl Meade is reviewing the manual to activate the Generic Bioprocessing Apparatus (GBA) inside the Spacelab module. The GBA for the USML-1 mission was a multipurpose facility that could help us answer important questions about the relationship between gravity and biology. This unique facility allowed scientists to study biological processes in samples ranging from molecules to small organisms. For example, scientists would examine how collagen, a protein substance found in cornective tissue, bones, and cartilage, forms fibers. In microgravity, it might be possible to alter collagen fiber assembly so that this material could be used more effectively as artificial skin, blood vessels, and other parts of the body. The USML-1 was managed by the Marshall Space Flight Center and waslaunched aboard the Space Shuttle Orbiter Columbia (STS-50) on June 25, 1992.

  4. STS-50 USML-1, Onboard Photo

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs and provided scientists an opportunity to research various scientific investigations in a weightless environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology, and combustion science. In this photograph, astronaut Carl Meade is reviewing the manual to activate the Generic Bioprocessing Apparatus (GBA) inside the Spacelab module. The GBA for the USML-1 mission was a multipurpose facility that could help us answer important questions about the relationship between gravity and biology. This unique facility allowed scientists to study biological processes in samples ranging from molecules to small organisms. For example, scientists would examine how collagen, a protein substance found in cornective tissue, bones, and cartilage, forms fibers. In microgravity, it might be possible to alter collagen fiber assembly so that this material could be used more effectively as artificial skin, blood vessels, and other parts of the body. The USML-1 was managed by the Marshall Space Flight Center and waslaunched aboard the Space Shuttle Orbiter Columbia (STS-50) on June 25, 1992.

  5. KSC-04pd1397

    NASA Image and Video Library

    2004-06-30

    KENNEDY SPACE CENTER, FLA. - Kimberly Beck, a college trainee in Controlled Biological Systems in the Spaceflight and Life Sciences Training Program, is helping with growth studies supporting payload development. Behind her is part of the WONDER (Water Offset Nutrient Delivery Experiment) flight payload that is investigating hydroponic plant crop production in microgravity.

  6. KSC-04PD-1397

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Kimberly Beck, a college trainee in Controlled Biological Systems in the Spaceflight and Life Sciences Training Program, is helping with growth studies supporting payload development. Behind her is part of the WONDER (Water Offset Nutrient Delivery Experiment) flight payload that is investigating hydroponic plant crop production in microgravity.

  7. Ground-Based Research within NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  8. NASA's Plans for Materials Science on ISS: Cooperative Utilization of the MSRR-MSL

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis; Szofran, Frank

    2008-01-01

    The ISS Research Project draws Life (non-human) and Physical Sciences investigations on the ISS, free flyer and ground-based into one coordinated project. The project has two categories: I. Exploration Research Program: a) Utilizes the ISS as a low Technology Readiness Level (TRL) test bed for technology development, demonstration and problem resolution in the areas of life support, fire safety, power, propulsion, thermal management, materials technology, habitat design, etc.; b) Will include endorsement letters from other ETDP projects to show relevancy. II. Non-Exploration Research Program; a) Not directly related to supporting the human exploration program. Research conducted in the life (non-human) and physical sciences; b) The program will sustain, to the maximum extent practicable, the United States scientific expertise and research capability in fundamental microgravity research. Physical Sciences has about 44 grants, and Life Sciences has approximately 32 grants, mostly with universities, to conduct low TRL research; this includes grants to be awarded from the 2008 Fluid Physics and Life Science NRA's.

  9. Summary Status of the Space Acceleration Measurement System (SAMS), September 1993

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1994-01-01

    The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the First Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered eighteen gigabytes of data representing sixty-eight days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and the Microgravity Measurement and Analysis project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.

  10. Umbilical Stiffness Matrix Characterization and Testing for Microgravity Science Payloads

    NASA Technical Reports Server (NTRS)

    Engberg, Robert C.

    2003-01-01

    This paper describes efforts of testing and analysis of various candidate cables and umbilicals for International Space Station microgravity science payloads. The effects of looping, large vs. small displacements, and umbilical mounting configurations were assessed. A 3-DOF stepper motor driven fixture was used to excite the umbilicals. Forces and moments were directly measured in all three axes with a 6-DOF load cell in order to derive suitable stiffness matrices for design and analysis of vibration isolation controllers. Data obtained from these tests were used to help determine the optimum type and configuration of umbilical cables for the International Space Station microgravity science glovebox (MSG) vibration isolation platform. The data and procedures can also be implemented into control algorithm simulations to assist in validation of actively controlled vibration isolation systems. The experimental results of this work are specific in support of the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) isolation platform, to be located in the microgravity science glovebox aboard the U.S. Destiny Laboratory Module.

  11. Microgravity Vibration Isolation for the International Space Station

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.

    2000-01-01

    The International Space Station (ISS) is being envisioned as a laboratory for experiments in numerous microgravity (micrograms) science disciplines. Predictions of the ISS acceleration environment indicate that the ambient acceleration levels ill exceed levels that can be tolerated by the science experiments. Hence, microgravity vibration isolation systems are being developed to attenuate the accelerations to acceptable levels. While passive isolation systems are beneficial in certain applications, active isolation systems are required to provide attenuation at low frequencies and to mitigate directly induced payload disturbances. To date, three active isolation systems have been successfully tested in the orbital environment. A fourth system called g-LIMIT is currently being developed for the Microgravity Science Glovebox and is manifested for launch on the UF-1 mission. This paper presents an overview of microgravity vibration isolation technology and the g-LIMIT system in particular.

  12. Biomedical Monitoring and Countermeasures Facility

    NASA Technical Reports Server (NTRS)

    Stewart, Donald F.

    1992-01-01

    The Space Station Freedom Program (SSFP) represents the transition within the US Space program from the 'heroic' era of space flight (characterized most vividly by the Mercury and Apollo programs) to an epoch characterized by routine access to the space environment. In this new era, the unique characteristics of the microgravity environment will enable new types of research activities, primarily in the life sciences, materials science, and biotechnology fields. In addition to its role as a'microgravity science laboratory,' Space Station Freedom (SSF) constitutes the operational platform on which the knowledge and skills needed to continue our exploration of space will be acquired. In the area of spacecraft operations, these skills include the ability to assemble, operate, and maintain large structures in space. In the area of crew operations, the potentially harmful effects of extended exposure to microgravity must be understood in order to keep the crew mission capable. To achieve this goal, the complex process of physiological deconditioning must be monitored, and countermeasures utilized as needed to keep the individual crew members within acceptable physiological limits. The countermeasures program under development for the SSF Program is titled the Biomedical Monitoring and Countermeasures (BMAC) program. As implied by the name, this activity has two primary products, a biomedical monitoring element and a countermeasures development effort. The program is a critical path element in the overall SSF Program, and should be considered an essential element of operations on board the space station. It is readily apparent that the capability to both protect and optimize the health and performance of the human operators on board SSF will be a critical element in the overall success of the SSFP. Previous experience within the Russian space program has demonstrated that the time required for countermeasures on extended missions can become a monumental operational burden. Therefore, one of the primary objectives of the countermeasures development activity will be to design and implement countermeasures which are significantly more effective than the existing generation. Other primary objectives include the following: to set health and human performance standards for all mission phases; to determine critical issues that affect performance or return to flight status; to develop and implement monitoring systems to follow health and performance status; and to understand risk, and balance the resource costs of countermeasures vs. the benefit gained.

  13. KSC-98pc280

    NASA Image and Video Library

    1998-02-06

    The STS-90 Neurolab payload is honored with a ceremony after being lowered into its payload canister in KSC's Operations and Checkout Building for the last time. This phase of the Shuttle program is winding down as the second phase of the International Space Station (ISS) program gets under way. Microgravity and life science research that formerly was conducted in Spacelab modules, such as Neurolab, will eventually be conducted inside the completed ISS. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. The crew of STS-90, slated for launch in April, will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  14. The 1992-1993 NASA Space Biology Accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1994-01-01

    This report consists of individual technical summaries of research projects of NASA's Space Biology Program, for research conducted during the calendar years of 1992 and 1993. This program includes both plant and animal research, and is dedicated to understanding the role of gravity and the effects of microgravity on biological processes; determining the effects of the interaction of gravity and other environmental factors on biological systems; and using the microgravity of the space environment as a tool to advance fundamental scientific knowledge in the biological sciences to improve the quality of life on Earth and contribute to NASA's goal of manned exploration of space. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  15. SAMS-II Requirements and Operations

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.

    1998-01-01

    The Space Acceleration Measurements System (SAMS) II is the primary instrument for the measurement, storage, and communication of the microgravity environment aboard the International Space Station (ISS). SAMS-II is being developed by the NASA Lewis Research Center Microgravity Science Division to primarily support the Office of Life and Microgravity Science and Applications (OLMSA) Microgravity Science and Applications Division (MSAD) payloads aboard the ISS. The SAMS-II is currently in the test and verification phase at NASA LeRC, prior to its first hardware delivery scheduled for July 1998. This paper will provide an overview of the SAMS-II instrument, including the system requirements and topology, physical and electrical characteristics, and the Concept of Operations for SAMS-II aboard the ISS.

  16. Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Microgravity Science Glovebox is being developed by the European Space Agency and NASA to provide a large working volume for hands-on experiments aboard the International Space Station. Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall)

  17. Microgravity Disturbance Predictions in the Combustion Integrated Rack

    NASA Astrophysics Data System (ADS)

    Just, M.; Grodsinsky, Carlos M.

    2002-01-01

    This paper will focus on the approach used to characterize microgravity disturbances in the Combustion Integrated Rack (CIR), currently scheduled for launch to the International Space Station (ISS) in 2005. Microgravity experiments contained within the CIR are extremely sensitive to vibratory and transient disturbances originating on-board and off-board the rack. Therefore, several techniques are implemented to isolate the critical science locations from external vibration. A combined testing and analysis approach is utilized to predict the resulting microgravity levels at the critical science location. The major topics to be addressed are: 1) CIR Vibration Isolation Approaches, 2) Disturbance Sources and Characterization, 3) Microgravity Predictive Modeling, 4) Science Microgravity Requirements, 6) Microgravity Control, and 7) On-Orbit Disturbance Measurement. The CIR is using the Passive Rack Isolation System (PaRIS) to isolate the rack from offboard rack disturbances. By utilizing this system, CIR is connected to the U.S. Lab module structure by either 13 or 14 umbilical lines and 8 spring / damper isolators. Some on-board CIR disturbers are locally isolated by grommets or wire ropes. CIR's environmental and science on board support equipment such as air circulation fans, pumps, water flow, air flow, solenoid valves, and computer hard drives cause disturbances within the rack. These disturbers along with the rack structure must be characterized to predict whether the on-orbit vibration levels during experimentation exceed the specified science microgravity vibration level requirements. Both vibratory and transient disturbance conditions are addressed. Disturbance levels/analytical inputs are obtained for each individual disturber in a "free floating" condition in the Glenn Research Center (GRC) Microgravity Emissions Lab (MEL). Flight spare hardware is tested on an Orbital Replacement Unit (ORU) basis. Based on test and analysis, maximum disturbance level allocations are developed for each ORU. The worst-case disturbances are input into an on-orbit analytical dynamic model of the rack. These models include both NASTRAN and MATLAB Simulink models , which include eigenvector and frequency inputs of the rack rigid body modes, the rack umbilical modes, and the racks' structural modes. The disturbance areas and science locations need to be modeled accurately to give valid predictions. The analytically determined microgravity vibration levels are compared to the CIR science requirements contained in the FCF Science Requirements Envelope Document (SRED). The predicted levels will be compared with the on-orbit measurements provided by the Space Acceleration Measurement System (SAMS) sensor, which is to be mounted on the CIR optics bench.

  18. Life sciences and space research 25 (1). Gravitational biology; Interdisciplinary Scientific Commission F of the COSPAR Plenary Meeting, 29th, Washington, DC, Aug. 28-Sep. 5, 1992

    NASA Technical Reports Server (NTRS)

    Cogoli, A. (Editor); Cogoli-Greuter, M. (Editor); Gruener, R. (Editor); Sievers, A. (Editor); Ubbels, G. A. (Editor); Halstead, T. W. (Editor); Ross, M. D. (Editor); Roux, S. J. (Editor); Oser, H. (Editor); Lujan, B. F. (Editor)

    1994-01-01

    The conference includes papers describing theories and models of cell biology in microgravity and weightlessness; experimental research on cellular responses to altered gravity in plants and animals, natural and simulated; graviresponses in plants; gravitational effects in developmental biology; mechanisms of gravisensing; effects on animals and humans; and educational programs in Space Life Sciences.

  19. Transitioning a Fundamental Research Program to Align with the NASA Exploration Initiative-Perspectives from Microgravity Combustion Science and Fluid Physics

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.; Kohl, Fred J.

    2004-01-01

    A new Vision for Space Exploration was announced earlier this year by U.S. President George W. Bush. NASA has evaluated on-going programs for strategic alignment with this vision. The evaluation proceeded at a rapid pace and is resulting in changes to the scope and focus of experimental research that will be conducted in support of the new vision. The existing network of researchers in the physical sciences - a highly capable, independent, and loosely knitted community - typically have shared conclusions derived from their work within appropriate discipline-specific peer reviewed journals and publications. The initial result of introducing this Vision for Space Exploration has been to shift research focus from a broad coverage of numerous, widely varying topics into a research program focused on a nearly-singular set of supporting research objectives to enable advances in space exploration. Two of these traditional physical science research disciplines, Combustion Science and Fluid Physics, are implementing a course adjustment from a portfolio dominated by "Fundamental Science Research" to one focused nearly exclusively on supporting the Exploration Vision. Underlying scientific and engineering competencies and infrastructure of the Microgravity Combustion Science and Fluid Physics disciplines do provide essential research capabilities to support the contemporary thrusts of human life support, radiation countermeasures, human health, low gravity research for propulsion and materials and, ultimately, research conducted on the Moon and Mars. A perspective on how these two research disciplines responded to the course change will be presented. The relevance to the new NASA direction is provided, while demonstrating through two examples how the prior investment in fundamental research is being brought to bear on solving the issues confronting the successful implementation of the exploration goals.

  20. COSMOS 2044 Mission: Overview

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.; Ballard, R. W.; Connol, J. P.; Vasques, M. F.

    1992-01-01

    The COSMOS 2044 spaceflight was the ninth Soviet-International joint mission dedicated to space biomedicine and the seventh in which the United States has participated. The unmanned Vostok vehicle carried 10 rats and two rhesus monkeys on its 14-day voyage. This spaceflight yielded an unprecedented bounty of data on physiological responses to the microgravity environment. The tissues studied and the numbers and types of studies performed by members of the international science community constituted a new record. Many of the results obtained by the approximately 80 American scientists who participated are reported in the series of COSMOS 2044 papers in this issue. Descriptions of the spaceflight and animal procedures are detailed elsewhere. The broad goals of the space biomedical program are threefold. The first is to characterize qualitatively and quantitatively the biological responses to the microgravity environment, be they adaptive or pathological. The second goal is to clarify the physiological-biochemical mechanisms mediating the responses to microgravity. The third goal of this program is to use the space environment as a tool to better understand adaptive and disease processes in terrestrial organisms.

  1. Presentation to International Space University Students on g-LIMIT and STABLE-ATD Projects and Related Microgravity Vibration Isolation Topics

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean

    1998-01-01

    Vibration isolation is a necessity in the development of science in space and especially those experiments destined for operation on the International Space Station (ISS). The premise of microgravity scientific research is that in space, disturbances are minimized and experiments can be conducted in the absence of gravity. Although microgravity conditions exist in space, disturbances are still present in various forms and can be detrimental to the success of a microgravity experiment. Due to the plethora of disturbances and the various types that will occur on the space station, the microgravity community has elected to incorporate various means of isolating scientific payloads from these unwanted vibrations. Designing these vibration isolators is a crucial task to achieve true microgravity science. Since conventional methods of isolating payloads can achieve only limited isolation, new technologies are being developed to achieve the goal of designing a generic vibration isolation system. One such system being developed for the Microgravity Science Glovebox (MSG) is called g-LIMIT which stands for Glovebox Integrated Microgravity Isolation Technology. The g-LIMIT system is a miniaturized active vibration isolator for glovebox experiments. Although the system is initially developed for glovebox experiments, the g-LIMIT technology is designed to be upwardly scaleable to provide isolation for a broad range of users. The g-LIMIT system is scheduled to be flown on the UF-2 mission in August of the year 2000 and will be tested shortly thereafter. Once the system has been fully qualified, the hardware will become available for other researchers and will provide a platform upon which the goal of microgravity science can be achieved.

  2. Spacelab J: Microgravity and life sciences

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Spacelab J is a joint venture between NASA and the National Space Development Agency of Japan (NASDA). Using a Spacelab pressurized long module, 43 experiments will be performed in the areas of microgravity and life sciences. These experiments benefit from the microgravity environment available on an orbiting Shuttle. Removed from the effects of gravity, scientists will seek to observe processes and phenomena impossible to study on Earth, to develop new and more uniform mixtures, to study the effects of microgravity and the space environment on living organisms, and to explore the suitability of microgravity for certain types of research. Mission planning and an overview of the experiments to be performed are presented. Orbital research appears to hold many advantages for microgravity science investigations, which on this mission include electronic materials, metals and alloys, glasses and ceramics, fluid dynamics and transport phenomena, and biotechnology. Gravity-induced effects are eliminated in microgravity. This allows the investigations on Spacelab J to help scientists develop a better understanding of how these gravity-induced phenomena affect both processing and products on Earth and to observe subtle phenomena that are masked in gravity. The data and samples from these investigations will not only allow scientists to better understand the materials but also will lead to improvements in the methods used in future experiments. Life sciences research will collect data on human adaptation to the microgravity environment, investigate ways of assisting astronauts to readapt to normal gravity, explore the effects of microgravity and radiation on living organisms, and gather data on the fertilization and development of organisms in the absence of gravity. This research will improve crew comfort and safety on future missions while helping scientists to further understand the human body.

  3. NASA's Needs for Biomaterials within the HEDS Initiative

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    2000-01-01

    The part to be played by materials scientists to further NASA's exploration missions cannot be underestimated. To quote Jerome Groopman (New Yorker, February 14, 2000), "The rocket science will be the easy part". The four main risks on the Critical Path Road Map during a three-year sojourn to Mars are osteoporosis, psychological problems, radiation induced cancer and acute medical trauma. NASA's microgravity materials science program has investigations in membrane fabrication, bone growth and materials for radiation protection. These programs will be reviewed in the context of the four main risks, as will other potential uses of biomaterials and applications of biomimetic processing.

  4. Telescience testbed pilot program, volume 2: Program results

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.

    1989-01-01

    Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth sciences, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, contains the integrated results. Background is provided of the program and highlights of the program results. The various testbed experiments and the programmatic approach is summarized. The results are summarized on a discipline by discipline basis, highlighting the lessons learned for each discipline. Then the results are integrated across each discipline, summarizing the lessons learned overall.

  5. Biotechnology Science Experiments on Mir

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.

    1999-01-01

    This paper describes the microgravity biotechnology experiments carried out on the Shuttle/Mir program. Four experiments investigated the growth of protein crystals, and three investigated cellular growth. Many hundreds of protein samples were processed using four different techniques. The objective of these experiments was to determine optimum conditions for the growth of very high quality single crystals to be used for structure determination. The Biotechnology System (BTS) was used to process the three cell growth investigations. The samples processed by these experiments were: bovine chondrocytes, human renal epithelial cells, and human breast cancer cells and endothelial cells. The objective was to determine the unique properties of cell aggregates produced in the microgravity environment.

  6. Microgravity

    NASA Image and Video Library

    1998-09-30

    Optical prots ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), poisitioning lasers (one port is at center), and lamps (such as the deuterium arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  7. Microgravity

    NASA Image and Video Library

    1998-09-30

    Optical prots ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), poisitioning lasers (one port is at center), and lamps (arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  8. 75 FR 65669 - Notice of Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... INFORMATION: I. Abstract DIME & WING are components of a NASA competition program which allows teams to design and build a science experiment which will then be operated in a NASA microgravity drop tower facility. Teams of 4 students are selected to come to GRC and drop their experiment and will be required to...

  9. 75 FR 54189 - Notice of Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... INFORMATION: I. Abstract DIME & WING are components of a NASA competition program which allows teams to design and build a science experiment which will then be operated in a NASA microgravity drop tower facility. Teams of 4 students are selected to come to GRC and drop their experiment and will be required to...

  10. Research and technology 1989

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Marshall Space Flight Center annual report summarizes their advanced studies, research programs, and technological developments. Areas covered include: transportation systems; space systems such as Gravity Probe-B and Gamma Ray Imaging Telescope; data systems; microgravity science; astronomy and astrophysics; solar, magnetospheric, and atomic physics; aeronomy; propulsion; materials and processes; structures and dynamics; automated systems; space systems; and avionics.

  11. Microgravity

    NASA Image and Video Library

    1997-03-11

    The Microgravity Science Glovebox (MSG) is being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  12. Space Studies Board Annual Report 1994

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The following summaries of major reports are presented: (1) 'Scientific Opportunities in the Human Exploration of Space;' (2) 'A Space Physics Paradox;' (3) 'An Integrated Strategy for the Planetary Sciences;' and (4) 'ONR (Office of Naval Research) Research Opportunities in Upper Atmospheric Sciences.' Short reports on the following topics are also presented: life and microgravity sciences and the Space Station Program, the Space Infrared Telescope Facility and the Stratospheric Observatory for infrared astronomy, the Advanced X-ray Astrophysics Facility and Cassini Saturn Probe, and the utilization of the Space Station.

  13. MSG: Microgravity Science Glovebox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baugher, C.R.; Ramachandran, N.; Roark, W.

    1996-12-31

    The capabilities of the Space Station glovebox facility is described. Tentatively scheduled to be launched in 1999, this facility called the Microgravity Sciences Glovebox (MSG), will provide a robust and sophisticated platform for doing microgravity experiments on the Space Station. It will provide an environment not only for testing and evaluating experiment concepts, but also serve as a platform for doing fairly comprehensive science investigations. Its design has evolved substantially from the middeck glovebox, now flown on Space Shuttle missions, not only in increased experiment volume but also in significant capability enhancements. The system concept, functionality and architecture are discussedmore » along with technical information that will benefit potential science investigators.« less

  14. Microgravity Science Glovebox (MSG) Space Sciences's Past, Present, and Future on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Jordan, Lee P.

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas.

  15. Materials Science

    NASA Image and Video Library

    1998-09-30

    Dr. Jan Rogers, project scientist for the Electrostatic Levitator (ESL) at NASA's Marshall Space Flight Center(MSFC). The ESL uses static electricity to suspend an obejct (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials sciences program.

  16. Microgravity Science Glovebox - Glove

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows a rubber glove and its attachment ring for the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  17. Microgravity Science Glovebox - Interior Reach

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows the interior reach in the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  18. The IPE facility in the ISS

    NASA Astrophysics Data System (ADS)

    Orr, Astrid

    IPE is a micro-gravity experiment that addresses planetary science. It is an ESA study in phase B and is intended to be installed on the Internaional Space Station. The goals of IPE are to: 1) understand the formation of planetesimals, or planet precursors, by studying the mutual interactions of micron-sized dust particles and their agglomeration in conditions representative of pre-planetary conditions 2) study the light scattering behavior of proto-planterary dust aggregates IPE (= ICAPS Precursor Experiment) is linked to a scientific program of ESA to study the Interactions in Cosmic and Atmospheric Particle systems under microgravity: ICAPS. The IPE collaboration includes an international Facility Science Team composed of leading scientists from France, Germany, Belgium, Canada and Spain. It also envolves a European industrial consortium. This paper will present the current status of the IPE project, the scientific objectives and the current payload configuration.

  19. Microgravity combustion science: A program overview

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The promise of microgravity combustion research is introduced by way of a brief survey of results, the available set of reduced gravity facilities, and plans for experimental capabilities in the Space Station era. The study of fundamental combustion processes in a microgravity environment is a relatively new scientific endeavor. A few simple, precursor experiments were conducted in the early 1970's. Today the advent of the U.S. space shuttle and the anticipation of the Space Station Freedom provide for scientists and engineers a special opportunity, in the form of long duration microgravity laboratories, and need, in the form of spacecraft fire safety and a variety of terrestrial applications, to pursue fresh insight into the basic physics of combustion. The microgravity environment enables a new range of experiments to be performed since buoyancy-induced flows are nearly eliminated, normally obscured forces and flows may be isolated, gravitational settling or sedimentation is nearly eliminated, and larger time or length scales in experiments become permissible. The range of experiments completed to date was not broad, but is growing. Unexpected phenomena have been observed often in microgravity combustion experiments, raising questions about the degree of accuracy and completion of our classical understanding and our ability to estimate spacecraft fire hazards. Because of the field's relative immaturity, instrumentation has been restricted primarily to high-speed photography. To better explain these findings, more sophisticated diagnostic instrumentation, similar to that evolving in terrestrial laboratories, is being developed for use on Space Station Freedom and, along the way, in existing microgravity facilities.

  20. Microgravity

    NASA Image and Video Library

    2001-05-31

    The Microgravity Science Glovebox is being developed by the European Space Agency and NASA to provide a large working volume for hands-on experiments aboard the International Space Station. Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall)

  1. Materials Science Experiments on the International Space Station

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Performance Goal for NASA's Microgravity Materials Science Program reads "Use microgravity to establish and improve quantitative and predictive relationships between the structure, processing and properties of materials." The advent of the International Space Station will open up a new era in Materials Science Research including the ability to perform long term and frequent experiments in microgravity. As indicated the objective is to gain a greater understanding of issues of materials science in an environment in which the force of gravity can be effectively switched off. Thus gravity related issues of convection, buoyancy and hydrostatic forces can be reduced and the science behind the structure/processing/properties relationship can more easily be understood. The specific areas of research covered within the program are (1) the study of Nucleation and Metastable States, (2) Prediction and Control of Microstructure (including pattern formation and morphological stability), (3) Phase Separation and Interfacial Stability, (4) Transport Phenomena (including process modeling and thermophysical properties measurement), and (5) Crystal Growth, and Defect Generation and Control. All classes of materials, including metals and alloys, glasses and ceramics, polymers, electronic materials (including organic and inorganic single crystals), aerogels and nanostructures, are included in these areas. The principal experimental equipment available to the materials scientist on the International Space Station (ISS) will be the Materials Science Research Facility (MSRF). Each of these systems will be accommodated in a single ISS rack, which can operate autonomously, will accommodate telescience operations, and will provide real time data to the ground. Eventual plans call for three MSRF racks, the first of which will be shared with the European Space Agency (ESA). Under international agreements, ESA and other partners will provide some of the equipment, while NASA covers launch and integration costs. The MSRF facilities will include modular components, which can be exchanged to provide inserts specifically matched to the engineering requirements of the particular Principal Investigator. To defray costs and avoid duplication of engineering effort NASA is also pursuing the possibility of using facilities provided by international partners. By this means it is anticipated that all of the types of research outlined in the previous paragraph can be done on the ISS.

  2. Compendium of Information for Interpreting the Microgravity Environment of the Orbiter Spacecraft

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1996-01-01

    Science experiments are routinely conducted on the NASA shuttle orbiter vehicles. Primarily, these experiments are operated on such missions to take advantage of the microgravity (low-level acceleration) environment conditions during on-orbit operations. Supporting accelerometer instruments are operated with the experiments to measure the microgravity acceleration environment in which the science experiments were operated. Tne Principal Investigator Microgravity Services (PIMS) Project at NASA Lewis Research Center interprets these microgravity acceleration data and prepares mission summary reports to aid the principal investigators of the scientific experiments in understanding the microgravity environment. Much of the information about the orbiter vehicle and the microgravity environment remains the same for each mission. Rather than repeat that information in each mission summary report, reference information is presented in this report to assist users in understanding the microgravity-acceleration data. The characteristics of the microgravity acceleration environment are first presented. The methods of measurement and common instruments used on orbiter missions are described. The coordinate systems utilized in the orbiter and accelerometers are described. Some of the orbiter attitudes utilized in microgravity related missions are illustrated. Methods of data processing are described and illustrated. The interpretation of the microgravity acceleration data is included with an explanation of common disturbance sources. Instructions to access some of the acceleration data and a description of the orbiter thrusters are explained in the appendixes. A microgravity environment bibliography is also included.

  3. Microgravity

    NASA Image and Video Library

    2000-01-31

    The Fluids and Combustion Facility (FCF) is a modular, multi-user facility to accommodate microgravity science experiments on board Destiny, the U.S. Laboratory Module for the International Space Station (ISS). The FCF will be a permanet facility aboard the ISS, and will be capable of accommodating up to ten science investigations per year. It will support the NASA Science and Technology Research Plans for the International Space Station (ISS) which require sustained systematic research of the effects of reduced gravity in the areas of fluid physics and combustion science. From left to right are the Combustion Integrated Rack, the Shared Rack, and the Fluids Integrated Rack. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo Credit: NASA/Marshall Space Flight Center)

  4. Microgravity Science Glovebox - Airlock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows the access through the internal airlock (bottom right) on the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  5. Microgravity Science Glovebox - Working Volume

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Interior lights give the Microgravity Science Glovebox (MSG) the appearance of a high-tech juke box. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  6. Microgravity Science Glovebox - Labels

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Labels are overlaid on a photo (0003837) of the Microgravity Science Glovebox (MSG). The MSG is being developed by the European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  7. User needs as a basis for advanced technology. [U.S. civil space program

    NASA Technical Reports Server (NTRS)

    Mankins, John C.; Reck, Gregory M.

    1992-01-01

    The NASA Integrated Technology Plan (ITP) is described with treatment given to the identification of U.S. technology needs, space research and technology programs, and some ITP implementations. The ITP is based on the development and transfer of technologies relevant to the space program that also have significant implications for general technological research. Among the areas of technological research identified are: astrophysics, earth sciences, microgravity, and space physics. The Office of Space Science and Applications prioritizes the technology needs in three classes; the highest priority is given to submm and microwave technologies for earth sciences and astrophysics study. Other government and commercial needs are outlined that include cryogenic technologies, low-cost engines, advanced data/signal processing, and low-cost ELVs. It is demonstrated that by identifying and addressing these areas of user technology needs NASA's research and technology program can enhance U.S. trade and industrial competitiveness.

  8. China takes microgravity work to new heights | Science | AAAS

    Science.gov Websites

    China takes microgravity work to new heights By Dennis Normile Apr. 5, 2016 , 2:00 PM China's space :10.1126/science.aaf9876 Dennis Normile More from News illustration of GOES-17 Cooling failure threatens

  9. Microgravity Science Laboratory (MSL-1)

    NASA Technical Reports Server (NTRS)

    Robinson, M. B. (Compiler)

    1998-01-01

    The MSL-1 payload first flew on the Space Shuttle Columbia (STS-83) April 4-8, 1997. Due to a fuel cell problem, the mission was cut short, and the payload flew again on Columbia (STS-94) July 1-17, 1997. The MSL-1 investigations were performed in a pressurized Spacelab module and the Shuttle middeck. Twenty-nine experiments were performed and represented disciplines such as fluid physics, combustion, materials science, biotechnology, and plant growth. Four accelerometers were used to record and characterize the microgravity environment. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity.

  10. Microgravity Science Glovebox (MSG)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Microgravity Science Glovebox is a facility for performing microgravity research in the areas of materials, combustion, fluids and biotechnology science. The facility occupies a full ISPR, consisting of: the ISPR rack and infrastructure for the rack, the glovebox core facility, data handling, rack stowage, outfitting equipment, and a video subsystem. MSG core facility provides the experiment developers a chamber with air filtering and recycling, up to two levels of containment, an airlock for transfer of payload equipment to/from the main volume, interface resources for the payload inside the core facility, resources inside the airlock, and storage drawers for MSG support equipment and consumables.

  11. Life and Microgravity Spacelab (LMS)

    NASA Technical Reports Server (NTRS)

    Downey, James Patton (Compiler)

    1998-01-01

    This document reports the results and analyses presented at the Life and Microgravity Spacelab One Year Science Review meeting. The science conference was held in Montreal, Canada, on August 20-21, 1997, and was hosted by the Canadian Space Agency. The LMS payload flew on the Space Shuttle Columbia (STS-78) from June 20 - July 7, 1996. The LMS investigations were performed in a pressurized Spacelab module and the Shuttle middeck. Forty scientific experiments were performed in fields such as fluid physics, solidification of metals, alloys, and semiconductors, the growth of protein crystals, and animal, human, and plant life sciences. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity.

  12. Microgravity

    NASA Image and Video Library

    1997-03-11

    This photo shows the interior reach in the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  13. PIMS Data Storage, Access, and Neural Network Processing

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin M.; Moskowitz, Milton E.

    1998-01-01

    The Principal Investigator Microgravity Services (PIMS) project at NASA's Lewis Research Center has supported microgravity science Principal Investigator's (PIs) by processing, analyzing, and storing the acceleration environment data recorded on the NASA Space Shuttles and the Russian Mir space station. The acceleration data recorded in support of the microgravity science investigated on these platforms has been generated in discrete blocks totaling approximately 48 gigabytes for the Orbiter missions and 50 gigabytes for the Mir increments. Based on the anticipated volume of acceleration data resulting from continuous or nearly continuous operations, the International Space Station (ISS) presents a unique set of challenges regarding the storage of and access to microgravity acceleration environment data. This paper presents potential microgravity environment data storage, access, and analysis concepts for the ISS era.

  14. Microgravity Science Glovebox - Interior Lamps

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An array of miniature lamps will provide illumination to help scientists as they conduct experiments inside the Microgravity Science Glovebox (MSG). The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  15. Strategic Research Directions In Microgravity Materials Science

    NASA Technical Reports Server (NTRS)

    Clinton, Raymond G., Jr.; Wargo, Michael J.; Marzwell, Neville L.; Sanders, Gerald; Schlagheck, Ron; Semmes, Ed; Bassler, Julie; Cook, Beth

    2004-01-01

    The Office of Biological and Physical Research (OBPR) is moving aggressively to align programs, projects, and products with the vision for space exploration. Research in advanced materials is a critical element in meeting exploration goals. Research in low gravity materials science in OBPR is being focused on top priority needs in support of exploration: 1) Space Radiation Shielding; 2) In Situ Resource Utilization; 3) In Situ Fabrication and Repair; 4) Materials Science for Spacecraft and Propulsion Systems; 5) Materials Science for Advanced Life Support Systems. Roles and responsibilities in low gravity materials research for exploration between OBPR and the Office of Exploration Systems are evolving.

  16. Accommodation requirements for microgravity science and applications research on space station

    NASA Technical Reports Server (NTRS)

    Uhran, M. L.; Holland, L. R.; Wear, W. O.

    1985-01-01

    Scientific research conducted in the microgravity environment of space represents a unique opportunity to explore and exploit the benefits of materials processing in the virtual abscence of gravity induced forces. NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. A study is performed to define from the researchers' perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. The accommodation requirements focus on the microgravity science disciplines including combustion science, electronic materials, metals and alloys, fluids and transport phenomena, glasses and ceramics, and polymer science. User requirements have been identified in eleven research classes, each of which contain an envelope of functional requirements for related experiments having similar characteristics, objectives, and equipment needs. Based on these functional requirements seventeen items of experiment apparatus and twenty items of core supporting equipment have been defined which represent currently identified equipment requirements for a pressurized laboratory module at the initial operating capability of the NASA space station.

  17. Compatibility of the Space Station Freedom life sciences research centrifuge with microgravity requirements

    NASA Technical Reports Server (NTRS)

    Hasha, Martin D.

    1990-01-01

    NASA is developing a Life Sciences Centrifuge Facility for Space Station Freedom. In includes a 2.5-meter artificial gravity Bioresearch Centrifuge (BC), which is perhaps the most critical single element in the life sciences space research program. It rotates continuously at precise selectable rates, and utilizes advanced reliable technologies to reduce vibrations. Three disturbance types are analyzed using a current Space Station Freedom dynamic model in the 0.0 to 5.0 Hz range: sinusoidal, random, and transient. Results show that with proper selection of proven design techniques, BC vibrations are compatible with requirements.

  18. Students build glovebox at Space Science Center

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Students in the Young Astronaut Program at the Coca-Cola Space Science Center in Columbus, GA, constructed gloveboxes using the new NASA Student Glovebox Education Guide. The young astronauts used cardboard copier paper boxes as the heart of the glovebox. The paper boxes transformed into gloveboxes when the students pasted poster-pictures of an actual NASA microgravity science glovebox inside and outside of the paper boxes. The young astronauts then added holes for gloves and removable transparent top covers, which completed the construction of the gloveboxes. This image is from a digital still camera; higher resolution is not available.

  19. Microgravity

    NASA Image and Video Library

    1997-03-11

    This photo shows one of three arrays of air filters inside the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  20. Microgravity

    NASA Image and Video Library

    1997-03-11

    Interior lights give the Microgravity Science Glovebox (MSG) the appearance of a high-tech juke box. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  1. Microgravity

    NASA Image and Video Library

    1997-03-11

    This photo shows a rubber glove and its attachment ring for the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  2. Microgravity

    NASA Image and Video Library

    1997-03-11

    This photo shows the access through the internal airlock (bottom right) on the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  3. Spacelab

    NASA Image and Video Library

    1992-06-25

    This is a photograph of the Spacelab module for the first United States Microgravity Laboratory (USML-1) mission, showing logos of the Spacelab mission on the left and the USML-1 mission on the right. The USML-1 was one part of a science and technology program that opened NASA's next great era of discovery and established the United States' leadership in space. From investigations designed to gather fundamental knowledge in a variety of areas to demonstrations of new equipment, USML-1 forged the way for future USML missions and helped prepare for advanced microgravity research and processing aboard the Space Station. Thirty-one investigations comprised the payload of the first USML-1 mission. The experiments aboard USML-1 covered five basic areas: fluid dynamics, the study of how liquids and gases respond to the application or absence of differing forces; crystal growth, the production of inorganic and organic crystals; combustion science, the study of the processes and phenomena of burning; biological science, the study of plant and animal life; and technology demonstrations. The USML-1 was managed by the Marshall Space Flight Center and launched aboard the Space Shuttle Orbiter Columbia (STS-50) on June 25, 1992.

  4. Fundamentals of Microgravity Vibration Isolation

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.

    2000-01-01

    In view of the utility of space vehicles as orbiting science laboratories, the need for vibration isolation systems for acceleration sensitive experiments has gained increasing visibility. This presentation provides a tutorial discussion of microgravity vibration isolation technology with the objective of elaborating on the relative merits of passive and active isolation approaches. The concepts of control bandwidth, isolation performance, and robustness will be addressed with illustrative examples. Concluding the presentation will be a suggested roadmap for future technology development activities to enhance the acceleration environment for microgravity science experiments.

  5. NASA Microgravity Combustion Science Program

    NASA Technical Reports Server (NTRS)

    King, Merrill K.

    1999-01-01

    Combustion has been a subject of increasingly vigorous scientific research for over a century, not surprising considering that combustion accounts for approximately 85% of the world's energy production and is a key element of many critical technologies used by contemporary society. Although combustion technology is vital to our standard of living, it also poses great challenges to maintaining a habitable environment. A major goal of combustion research is production of fundamental (foundational) knowledge that can be used in developing accurate simulations of complex combustion processes, replacing current "cut-and-try" approaches and allowing developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion. With full understanding of the physics and chemistry involved in a given combustion process, including details of the unit processes and their interactions, physically accurate models which can then be used for parametric exploration of new combustion domains via computer simulation can be developed, with possible resultant definition of radically different approaches to accomplishment of various combustion goals. Effects of gravitational forces on earth impede combustion studies more than they impede most other areas of science. The effects of buoyancy are so ubiquitous that we often do not appreciate the enormous negative impact that they have had on the rational development of combustion science. Microgravity offers potential for major gains in combustion science understanding in that it offers unique capability to establish the flow environment rather than having it dominated by uncontrollable (under normal gravity) buoyancy effects and, through this control, to extend the range of test conditions that can be studied. It cannot be emphasized too strongly that our program is dedicated to taking advantage of microgravity to untangle complications caused by gravity, allowing major strides in our understanding of combustion processes and in subsequent development of improved combustion devices leading to improved quality of life on Earth. Fire and/or explosion events aboard spacecraft could be devastating to international efforts to expand the human presence in space. Testing to date has shown that ignition and flame spread on fuel surfaces (e.g., paper, wire insulation) behave quite differently under partial gravity and microgravity conditions. In addition, fire signatures-i.e., heat release, smoke production, flame visibility, and radiation-are now known to be quite different in reduced gravity environments; this research has provided data to improve the effectiveness of fire prevention practices, smoke and fire detectors, and fire extinguishment systems. The more we can apply our scientific and technological understanding to potential fire behavior in microgravity and partial gravity, the more assurance can be given to those people whose lives depend on the environment aboard spacecraft or eventually on habitats on the Moon or Mars.

  6. Microgravity

    NASA Image and Video Library

    2001-05-02

    John Henson (grade 12) and Suzi Bryce (grade 10) from DuPont Manual High School in Louisville, Kentucky, conduct a drop with NASA's Microgravity Demonstrator. A camera and a TV/VCR unit let students play back recordings of how different physical devices behave differently during freefall as compared to 1-g. The activity was part of the education outreach segment of the Pan-Pacific Basin Workshop on Microgravity Sciences held in Pasadena, California. The event originated at the California Science Center in Los Angeles. The DuPont Manual students patched in to the event through the distance learning lab at the Louisville Science Center. This image is from a digital still camera; higher resolution is not available.

  7. Dynamic Modeling and Testing of MSRR-1 for Use in Microgravity Environments Analysis

    NASA Technical Reports Server (NTRS)

    Gattis, Christy; LaVerde, Bruce; Howell, Mike; Phelps, Lisa H. (Technical Monitor)

    2001-01-01

    Delicate microgravity science is unlikely to succeed on the International Space Station if vibratory and transient disturbers corrupt the environment. An analytical approach to compute the on-orbit acceleration environment at science experiment locations within a standard payload rack resulting from these disturbers is presented. This approach has been grounded by correlation and comparison to test verified transfer functions. The method combines the results of finite element and statistical energy analysis using tested damping and modal characteristics to provide a reasonable approximation of the total root-mean-square (RMS) acceleration spectra at the interface to microgravity science experiment hardware.

  8. Microgravity Sciences Glovebox (MSG) with Shear History Extensional Rheology Experiment (SHERE) in European Lab Columbus

    NASA Image and Video Library

    2008-07-31

    ISS017-E-012288 (31 July 2008) --- NASA astronaut Greg Chamitoff, Expedition 17 flight engineer, works with the Shear History Extensional Rheology Experiment (SHERE) rheometer inside the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.

  9. Microgravity Sciences Glovebox (MSG) with Shear History Extensional Rheology Experiment (SHERE) in European Lab Columbus

    NASA Image and Video Library

    2008-07-31

    ISS017-E-012283 (31 July 2008) --- NASA astronaut Greg Chamitoff, Expedition 17 flight engineer, works with the Shear History Extensional Rheology Experiment (SHERE) rheometer inside the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.

  10. Microgravity fluid management in two-phase thermal systems

    NASA Technical Reports Server (NTRS)

    Parish, Richard C.

    1987-01-01

    Initial studies have indicated that in comparison to an all liquid single phase system, a two-phase liquid/vapor thermal control system requires significantly lower pumping power, demonstrates more isothermal control characteristics, and allows greater operational flexibility in heat load placement. As a function of JSC's Work Package responsibility for thermal management of space station equipment external to the pressurized modules, prototype development programs were initiated on the Two-Phase Thermal Bus System (TBS) and the Space Erectable Radiator System (SERS). JSC currently has several programs underway to enhance the understanding of two-phase fluid flow characteristics. The objective of one of these programs (sponsored by the Microgravity Science and Applications Division at NASA-Headquarters) is to design, fabricate, and fly a two-phase flow regime mapping experiment in the Shuttle vehicle mid-deck. Another program, sponsored by OAST, involves the testing of a two-phase thermal transport loop aboard the KC-135 reduced gravity aircraft to identify system implications of pressure drop variation as a function of the flow quality and flow regime present in a representative thermal system.

  11. Microgravity Science Glovebox (MSG) Space Science's Past, Present, and Future on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Spearing, Scott F.; Jordan, Lee P.; McDaniel S. Greg

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas. The MSG is a very versatile and capable research facility on the ISS. The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration. MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration. The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.

  12. Unsteady numerical simulations of the stability and dynamics of flames

    NASA Technical Reports Server (NTRS)

    Kailasanath, K.; Patnaik, G.; Oran, E. S.

    1995-01-01

    In this report we describe the research performed at the Naval Research Laboratory in support of the NASA Microgravity Science and Applications Program over the past three years (from Feb. 1992) with emphasis on the work performed since the last microgravity combustion workshop. The primary objective of our research is to develop an understanding of the differences in the structure, stability, dynamics and extinction of flames in earth gravity and in microgravity environments. Numerical simulations, in which the various physical and chemical processes can be independently controlled, can significantly advance our understanding of these differences. Therefore, our approach is to use detailed time-dependent, multi-dimensional, multispecies numerical models to perform carefully designed computational experiments. The basic issues we have addressed, a general description of the numerical approach, and a summary of the results are described in this report. More detailed discussions are available in the papers published which are referenced herein. Some of the basic issues we have addressed recently are (1) the relative importance of wall losses and gravity on the extinguishment of downward-propagating flames; (2) the role of hydrodynamic instabilities in the formation of cellular flames; (3) effects of gravity on burner-stabilized flames, and (4) effects of radiative losses and chemical-kinetics on flames near flammability limits. We have also expanded our efforts to include hydrocarbon flames in addition to hydrogen flames and to perform simulations in support of other on-going efforts in the microgravity combustion sciences program. Modeling hydrocarbon flames typically involves a larger number of species and a much larger number of reactions when compared to hydrogen. In addition, more complex radiation models may also be needed. In order to efficiently compute such complex flames recent developments in parallel computing have been utilized to develop a state-of-the-art parallel flame code. This is discussed below in some detail after a brief discussion of the numerical models.

  13. Development of experimental facilities for processing metallic crystals in orbit

    NASA Technical Reports Server (NTRS)

    Duncan, Bill J.

    1990-01-01

    This paper discusses the evolution, current status, and planning for facilities to exploit the microgravity environment of earth orbit in applied metallic materials science. Space-Shuttle based facilities and some precursor flight programs are reviewed. Current facility development programs and planned Space Station furnace capabilities are described. The reduced gravity levels available in earth orbit allow the processing of metallic materials without the disturbing influence of gravitationally induced thermal convection, stratification due to density differences in sample components, or the effects of hydrostatic pressure.

  14. Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

    NASA Technical Reports Server (NTRS)

    Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.

    2000-01-01

    This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.

  15. Microgravity Science in Space Flight Gloveboxes

    NASA Technical Reports Server (NTRS)

    Baugher, Charles; Bennett, Nancy; Cockrell, David; Jex, David; Musick, Barry; Poe, James; Roark, Walter

    1998-01-01

    Microgravity science studies the influences of gravity on phenomena in fluids, materials processes, combustion, and human cell growth in the low acceleration environment of space flight. During the last decade, the accomplishment of the flight research in the field has evolved into an effective cooperation between the flight crew in the Shuttle and the ground-based investigator using real-time communication via voice and video links. This team structure has led to interactive operations in which the crew performs the experimentation while guided, as necessary, by the science investigator who formulated the investigation and who will subsequently interpret and analyze the data. One of the primary challenges to implementing this interactive research has been the necessity of structuring a means of handling fluids, gases, and hazardous materials in a manned laboratory that exhibits the novelty of weightlessness. Developing clever means of designing experiments in closed vessels is part of the solution- but the space flight requirement for one and two failure-tolerant containment systems leads to serious complications in the physical handling of sample materials. In response to the conflict between the clear advantage of human operation and judgment, versus the necessity to isolate the experiment from the crewmember and the spacecraft environment, the Microgravity Research Program has initiated a series of Gloveboxes in the various manned experiment carriers. These units provide a sealed containment vessel whose interior is under a negative pressure with respect to the ambient environment but is accessible to a crewmember through the glove ports.

  16. NASA Microgravity Combustion Science Program

    NASA Technical Reports Server (NTRS)

    King, Merrill K.

    1997-01-01

    Combustion is a key element of many critical technologies used by contemporary society. For example, electric power production, home heating, surface and air transportation, space propulsion, and materials synthesis all utilize combustion as a source of energy. Yet, although combustion technology is vital to our standard of living, it poses great challenges to maintaining a habitable environment. For example, pollutants, atmospheric change and global warming, unwanted fires and explosions, and the incineration of hazardous wastes are major problem areas which would benefit from improved understanding of combustion. Effects of gravitational forces impede combustion studies more than most other areas of science since combustion involves production of high-temperature gases whose low density results in buoyant motion, vastly complicating the execution and interpretation of experiments. Effects of buoyancy are so ubiquitous that their enormous negative impact on the rational development of combustion science is generally not recognized. Buoyant motion also triggers the onset of turbulence, yielding complicating unsteady effects. Finally, gravity forces cause particles and drops to settle, inhibiting deconvoluted studies of heterogeneous flames important to furnace, incineration and power generation technologies. Thus, effects of buoyancy have seriously limited our capabilities to carry out 'clean' experiments needed for fundamental understanding of flame phenomena. Combustion scientists can use microgravity to simplify the study of many combustion processes, allowing fresh insights into important problems via a deeper understanding of elemental phenomena also found in Earth-based combustion processes and to additionally provide valuable information concerning how fires behave in microgravity and how fire safety on spacecraft can be enhanced.

  17. Microgravity

    NASA Image and Video Library

    2001-05-02

    Students from DuPont Manual High School in Louisville, Kentucky participated in a video-teleconference during the Pan-Pacific Basin Workshop on Microgravity Sciences held in Pasadena, California. The event originated at the California Science Center in Los Angeles. The DuPont Manual students patched in to the event through the distance learning lab at the Louisville Science Center. This image is from a digital still camera; higher resolution is not available.

  18. Microgravity

    NASA Image and Video Library

    1997-03-11

    An array of miniature lamps will provide illumination to help scientists as they conduct experiments inside the Microgravity Science Glovebox (MSG). The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  19. Space Station Freedom combustion research

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1992-01-01

    Extended operations in microgravity, on board spacecraft like Space Station Freedom, provide both unusual opportunities and unusual challenges for combustion science. On the one hand, eliminating the intrusion of buoyancy provides a valuable new perspective for fundamental studies of combustion phenomena. On the other hand, however, the absence of buoyancy creates new hazards of fires and explosions that must be understood to assure safe manned space activities. These considerations - and the relevance of combustion science to problems of pollutants, energy utilization, waste incineration, power and propulsion systems, and fire and explosion hazards, among others - provide strong motivation for microgravity combustion research. The intrusion of buoyancy is a greater impediment to fundamental combustion studies than to most other areas of science. Combustion intrinsically heats gases with the resulting buoyant motion at normal gravity either preventing or vastly complicating measurements. Perversely, this limitation is most evident for fundamental laboratory experiments; few practical combustion phenomena are significantly affected by buoyancy. Thus, we have never observed the most fundamental combustion phenomena - laminar premixed and diffusion flames, heterogeneous flames of particles and surfaces, low-speed turbulent flames, etc. - without substantial buoyant disturbances. This precludes rational merging of theory, where buoyancy is of little interest, and experiments, that always are contaminated by buoyancy, which is the traditional path for developing most areas of science. The current microgravity combustion program seeks to rectify this deficiency using both ground-based and space-based facilities, with experiments involving space-based facilities including: laminar premixed flames, soot processes in laminar jet diffusion flames, structure of laminar and turbulent jet diffusion flames, solid surface combustion, one-dimensional smoldering, ignition and flame spread of liquids, drop combustion, and quenching of panicle-air flames. Unfortunately, the same features that make microgravity attractive for fundamental combustion experiments, introduce new fire and explosion hazards that have no counterpart on earth. For example, microgravity can cause broader flammability limits, novel regimes of flame spread, enhanced effects of flame radiation, slower fire detector response, and enhanced combustion upon injecting fire extinguishing agents, among others. On the other hand, spacecraft provide an opportunity to use 'fire-safe' atmospheres due to their controlled environment. Investigation of these problems is just beginning, with specific fire safety experiments supplementing the space based fundamental experiments listed earlier; thus, much remains to be done to develop an adequate technology base for fire and explosion safety considerations for spacecraft.

  20. Telescience testbed pilot program, volume 3: Experiment summaries

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.

    1989-01-01

    Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth science, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, presents summaries of the experiments. This experiment involves the evaluation of the current Internet for the use of file and image transfer between SIRTF instrument teams. The main issue addressed was current network response times.

  1. Turning toys into microgravity machines

    NASA Astrophysics Data System (ADS)

    Sumners, C.; Reiff, P.

    The Toys in Space program communicates the experience of being in space and ultimately living in space. In space, what would happen to a yo-yo's speed, a top's wobble, or your skill in playing soccer, throwing a boomerang or jumping rope? Discover how these toys and others have performed in microgravity and how these demonstrations can link children to the space program. On April 12, 1985 astronauts carried the first experiment package of miniature mechanical systems called toys into space. Since that time 54 toys have been demonstrated in microgravity. This summer, NASA and the Houston Museum of Natural Science have sponsored the first International Toys in Space project with sixteen toys chosen for their popularity and relevance around the world. This set of toys takes advantage of the larger Space Station by providing toys that take up more room - from two-person games of soccer, lacrosse, marbles, and hockey to a jump rope and several kinds of yoyos. Three earlier Toys in Space missions have shown that toys are ideal machines to demonstrate how gravity affects moving objects on the Earth's surface and how the motions of these objects change in microgravity. In this presentation, participants actually experiment with miniature versions of toys, predict their behavior on orbit, and watch the surprising results. Participants receive toy patterns to share with young people at home, around the world. The Toys in Space program scales for all ages. Young learners can use their observation and comparison skills while older students apply physics concepts to toy behaviors. Concepts demonstrated include all of Newton's Laws of Motion, gyroscopic stability, centripetal force, density, as well as conservation of linear and angular momentum.

  2. Microgravity

    NASA Image and Video Library

    2001-05-02

    John Henson (grade 12) and Suzi Bryce (grade 10) conducted the drop from DuPont Manual High School in Louisville, Kentucky, conduct a drop with NASA's Microgravity Demonstrator. A camera and a TV/VCR unit let students play back recordings of how different physical devices behave differently during freefall as compared to 1-g. The activity was part of the education outreach segment of the Pan-Pacific Basin Workshop on Microgravity Sciences held in Pasadena, California. The event originated at the California Science Center in Los Angeles. The DuPont Manual students patched in to the event through the distance learning lab at the Louisville Science Center. This image is from a digital still camera; higher resolution is not available.

  3. The FCF Combustion Integrated Rack: Microgravity Combustion Science Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    OMalley, Terence F.; Weiland, Karen J.

    2002-01-01

    The Combustion Integrated Rack (CIR) is one of three facility payload racks being developed for the International Space Station (ISS) Fluids and Combustion Facility (FCF). Most microgravity combustion experiments will be performed onboard the Space Station in the Combustion Integrated Rack. Experiment-specific equipment will be installed on orbit in the CIR to customize it to perform many different scientific experiments during the ten or more years that it will operate on orbit. This paper provides an overview of the CIR, including a description of its preliminary design and planned accommodations for microgravity combustion science experiments, and descriptions of the combustion science experiments currently planned for the CIR.

  4. Utilizing Advanced Vibration Isolation Technology to Enable Microgravity Science Operations

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean Carl

    1999-01-01

    Microgravity scientific research is performed in space to determine the effects of gravity upon experiments. Until recently, experiments had to accept the environment aboard various carriers: reduced-gravity aircraft, sub-orbital payloads, Space Shuttle, and Mir. If the environment is unacceptable, then most scientists would rather not expend the resources without the assurance of true microgravity conditions. This is currently the case on the International Space Station, because the ambient acceleration environment will exceed desirable levels. For this reason, the g-LIMIT (Glovebox Integrated Microgravity Isolation Technology) system is currently being developed to provide a quiescent acceleration environment for scientific operations. This sub-rack isolation system will provide a generic interface for a variety of experiments for the Microgravity Science Glovebox. This paper describes the motivation for developing of the g-LIMIT system, presents the design concept and details some of the advanced technologies utilized in the g-LIMIT flight design.

  5. STS-30 MS Cleave monitors fluids experiment apparatus (FEA) equipment

    NASA Image and Video Library

    1989-05-08

    STS030-02-018 (4-8 May 1989) --- A 35mm overall scene of the operations devoted to the fluids experiment apparatus (FEA) aboard Atlantis for NASA’s STS-30 mission. Astronaut Mary L. Cleave, mission specialist, is seen with the computer which is instrumental in the carrying out of a variety of materials science experiments. Rockwell International is engaged in a joint endeavor agreement with NASA’s Office of Commercial Programs in the field of floating zone crystal growth and purification research. The March 1987 agreement provides for microgravity experiments to be performed in the company’s Microgravity Laboratory, the FEA. An 8 mm camcorder which documented details inside the apparatus is visible at bottom of the frame.

  6. Bare Bones of Bioactive Glass

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Bioactive glass particles (left) with a microporous surface (right) are widely accepted as a synthetic material for periodontal procedures. Using the particles to grow three-dimensional tissue cultures may one day result in developing an improved, more rugged bone tissue that may be used to correct skeletal disorders and bone defects. The work is sponsored by NASA's Office of Biological and Physical Research.

  7. Spacelab

    NASA Image and Video Library

    1994-07-08

    Astronaut Carl E. Walz, mission specialist, flies through the second International Microgravity Laboratory (IML-2) science module, STS-65 mission. IML was dedicated to study fundamental materials and life sciences in a microgravity environment inside Spacelab, a laboratory carried aloft by the Shuttle. The mission explored how life forms adapt to weightlessness and investigated how materials behave when processed in space. The IML program gave a team of scientists from around the world access to a unique environment, one that is free from most of Earth's gravity. Managed by the NASA Marshall Space Flight Center, the 14-nation European Space Agency (ESA), the Canadian Space Agency (SCA), the French National Center for Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DARA/DLR), and the National Space Development Agency of Japan (NASDA) participated in developing hardware and experiments for the IML missions. The missions were managed by NASA's Marshall Space Flight Center. The Orbiter Columbia was launched on July 8, 1994 for the IML-2 mission.

  8. Development of Active Learning Curriculum for CASPER's Microgravity Drop Tower

    NASA Astrophysics Data System (ADS)

    Carmona-Reyes, Jorge; Wang, Li; York, Judy; Matthews, Lorin; Laufer, Rene; Cook, Mike; Schmoke, Jimmy; Hyde, Truell

    2016-10-01

    As CASPER's new drop tower comes on line, plans for correlated educational research curricula are underway. CASPER's educational research team is working on developing curricula specific to the CASPER drop tower, modeled on a contest currently in use by (BEST) Robotics Inc. within central Texas independent school districts. The curricula integrates age specific use of computer programming software packages such as ``Scratch'' with industry standard communication protocols and augmented reality applications. Content is constructed around an earth and space science framework, covering subjects such as stars and galaxies, matter and energy, fusion and fission at a middle school level. CASPER faculty are partnering with the Region 12 Service Center; this combination provides a wide range of expertise that includes professional development, pedagogical methods, computational thinking in addition to microgravity and space science research expertise. The details of this work will be presented and samples of the manner in which it is impacting the CASPER research and educational outreach partnership will be discussed.

  9. Material Science

    NASA Image and Video Library

    2003-01-22

    One of the first materials science experiments on the International Space Station -- the Solidification Using a Baffle in Sealed Ampoules (SUBSA) -- will be conducted during Expedition Five inside the Microgravity Science Glovebox. The glovebox is the first dedicated facility delivered to the Station for microgravity physical science research, and this experiment will be the first one operated inside the glovebox. The glovebox's sealed work environment makes it an ideal place for the furnace that will be used to melt semiconductor crystals. Astronauts can change out samples and manipulate the experiment by inserting their hands into a pair of gloves that reach inside the sealed box. Dr. Aleksandar Ostrogorsky, a materials scientist from the Rensselaer Polytechnic Institute, Troy, N.Y., and the principal investigator for the SUBSA experiment, uses the gloves to examine an ampoule like the ones used for his experiment inside the glovebox's work area. The Microgravity Science Glovebox and the SUBSA experiment are managed by NASA's Marshall Space Flight Center in Huntsville, Ala.

  10. Microgravity

    NASA Image and Video Library

    1999-12-01

    Dr. Donald Gilles, the Discipline Scientist for Materials Science in NASA's Microgravity Materials Science and Applications Department, demonstrates to Carl Dohrman a model of dendrites, the branch-like structures found in many metals and alloys. Dohrman was recently selected by the American Society for Metals International as their 1999 ASM International Foundation National Merit Scholar. The University of Illinois at Urbana-Champaign freshman recently toured NASA's materials science facilities at the Marshall Space Flight Center.

  11. Life sciences biomedical research planning for Space Station

    NASA Technical Reports Server (NTRS)

    Primeaux, Gary R.; Michaud, Roger; Miller, Ladonna; Searcy, Jim; Dickey, Bernistine

    1987-01-01

    The Biomedical Research Project (BmRP), a major component of the NASA Life Sciences Space Station Program, incorporates a laboratory for the study of the effects of microgravity on the human body, and the development of techniques capable of modifying or counteracting these effects. Attention is presently given to a representative scenario of BmRP investigations and associated engineering analyses, together with an account of the evolutionary process by which the scenarios and the Space Station design requirements they entail are identified. Attention is given to a tether-implemented 'variable gravity centrifuge'.

  12. Spacelab Accomplishments Forum 4

    NASA Technical Reports Server (NTRS)

    Emond, J. (Editor); Bennet, N. (Compiler); McCauley, D. (Compiler); Murphy, K. (Compiler); Baugher, Charles R. (Technical Monitor)

    1999-01-01

    The Spacelab Module, exposed platforms, and supporting instrumentation were designed and developed by the European Space Agency to house advanced experiments inside the Space Shuttle cargo bay. The Spacelab program has hosted a cross-disciplinary research agenda over a 17-year flight history. Several variations of Spacelab were used to host payloads for almost every space research discipline that NASA pursues-life sciences, microgravity research, space sciences, and earth observation studies. After seventeen years of flight, Spacelab modules, pallets, or variations thereof flew on the Shuttle 36 times for a total of 375 flight days.

  13. Microgravity Science Glovebox - Airlock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Once the Microgravity Science Glovebox (MSG) is sealed, additional experiment items can be inserted through a small airlock at the bottom right of the work volume. It is shown here with the door removed. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  14. Microgravity Science Glovebox - Working Volume

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Access ports, one on each side of the Microgravity Science Glovebox (MSG), will allow scientists to place large experiment items inside the MSG. The ports also provide additional glove ports (silver disk) for greater access to the interior. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  15. Microgravity Science Glovebox - Airlock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Once the Microgravity Science Glovebox (MSG) is sealed, additional experiment items can be inserted through a small airlock at the bottom right of the work volume. It is shown here with the door open. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  16. Space Station Freedom Utilization Conference: Executive summary

    NASA Technical Reports Server (NTRS)

    1992-01-01

    From August 3-6, 1992, Space Station Freedom Program (SSFP) representatives and prospective Space Station Freedom researchers gathered at the Von Braun Civic Center in Huntsville, Alabama, for NASA's first annual Space Station Freedom (SSF) Utilization Conference. The sessions presented are: (1) overview and research capabilities; (2) research plans and opportunities; (3) life sciences research; (4) technology research; (4) microgravity research and biotechnology; and (5) closing plenary.

  17. Creating the Future: Research and Technology

    NASA Technical Reports Server (NTRS)

    1998-01-01

    With the many different technical talents, Marshall Space Flight Center (MSFC) continues to be an important force behind many scientific breakthroughs. The MSFC's annual report reviews the technology developments, research in space and microgravity sciences, studies in space system concepts, and technology transfer. The technology development programs include development in: (1) space propulsion and fluid management, (2) structures and dynamics, (3) materials and processes and (4) avionics and optics.

  18. Numerical Investigation of Microgravity Tank Pressure Rise Due to Boiling

    NASA Technical Reports Server (NTRS)

    Hylton, Sonya; Ibrahim, Mounir; Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    The ability to control self-pressurization in cryogenic storage tanks is essential for NASAs long-term space exploration missions. Predictions of the tank pressure rise in Space are needed in order to inform the microgravity design and optimization process. Due to the fact that natural convection is very weak in microgravity, heat leaks into the tank can create superheated regions in the liquid. The superheated regions can instigate microgravity boiling, giving rise to pressure spikes during self-pressurization. In this work, a CFD model is developed to predict the magnitude and duration of the microgravity pressure spikes. The model uses the Schrage equation to calculate the mass transfer, with a different accommodation coefficient for evaporation at the interface, condensation at the interface, and boiling in the bulk liquid. The implicit VOF model was used to account for the moving interface, with bounded second order time discretization. Validation of the models predictions was carried out using microgravity data from the Tank Pressure Control Experiment, which flew aboard the Space Shuttle Mission STS-52. Although this experiment was meant to study pressurization and pressure control, it underwent boiling during several tests. The pressure rise predicted by the CFD model compared well with the experimental data. The ZBOT microgravity experiment is scheduled to fly on February 2016 aboard the ISS. The CFD model was also used to perform simulations for setting parametric limits for the Zero-Boil-Off Tank (ZBOT) Experiments Test Matrix in an attempt to avoid boiling in the majority of the test runs that are aimed to study pressure increase rates during self-pressurization. *Supported in part by NASA ISS Physical Sciences Research Program, NASA HQ, USA

  19. Multiphase flow and phase change in microgravity: Fundamental research and strategic research for exploration of space

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    2003-01-01

    NASA is preparing to undertake science-driven exploration missions. The NASA Exploration Team's vision is a cascade of stepping stones. The stepping-stone will build the technical capabilities needed for each step with multi-use technologies and capabilities. An Agency-wide technology investment and development program is necessary to implement the vision. The NASA Exploration Team has identified a number of areas where significant advances are needed to overcome all engineering and medical barriers to the expansion of human space exploration beyond low-Earth orbit. Closed-loop life support systems and advanced propulsion and power technologies are among the areas requiring significant advances from the current state-of-the-art. Studies conducted by the National Academy of Science's National Research Council and Workshops organized by NASA have shown that multiphase flow and phase change play a crucial role in many of these advanced technology concepts. Lack of understanding of multiphase flow, phase change, and interfacial phenomena in the microgravity environment has been a major hurdle. An understanding of multiphase flow and phase change in microgravity is, therefore, critical to advancing many technologies needed. Recognizing this, the Office of Biological and Physical Research (OBPR) has initiated a strategic research thrust to augment the ongoing fundamental research in fluid physics and transport phenomena discipline with research especially aimed at understanding key multiphase flow related issues in propulsion, power, thermal control, and closed-loop advanced life support systems. A plan for integrated theoretical and experimental research that has the highest probability of providing data, predictive tools, and models needed by the systems developers to incorporate highly promising multiphase-based technologies is currently in preparation. This plan is being developed with inputs from scientific community, NASA mission planners and industry personnel. The fundamental research in multiphase flow and phase change in microgravity is aimed at developing better mechanistic understanding of pool boiling and ascertaining the effects of gravity on heat transfer and the critical heat flux. Space flight experiments conducted in space have shown that nucleate pool boiling can be sustained under certain conditions in the microgravity environment. New space flight experiments are being developed to provide more quantitative information on pool boiling in microgravity. Ground-based investigations are also being conducted to develop mechanistic models for flow and pool boiling. An overview of the research plan and roadmap for the strategic research in multiphase flow and phase change as well as research findings from the ongoing program will be presented.

  20. International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  1. International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  2. International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  3. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  4. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  5. The Brazilian research and teaching center in biomedicine and aerospace biomedical engineering.

    PubMed

    Russomano, T; Falcao, P F; Dalmarco, G; Martinelli, L; Cardoso, R; Santos, M A; Sparenberg, A

    2008-08-01

    The recent engagement of Brazil in the construction and utilization of the International Space Station has motivated several Brazilian research institutions and universities to establish study centers related to Space Sciences. The Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS) is no exception. The University initiated in 1993 the first degree course training students to operate commercial aircraft in South America (the School of Aeronautical Sciences. A further step was the decision to build the first Brazilian laboratory dedicated to the conduct of experiments in ground-based microgravity simulation. Established in 1998, the Microgravity Laboratory, which was located in the Instituto de Pesquisas Cientificas e Tecnologicas (IPCT), was supported by the Schools of Medicine, Aeronautical Sciences and Electrical Engineering/Biomedical Engineering. At the end of 2006, the Microgravity Laboratory became a Center and was transferred to the School of Engineering. The principal activities of the Microgravity Centre are the development of research projects related to human physiology before, during and after ground-based microgravity simulation and parabolic flights, to aviation medicine in the 21st century and to aerospace biomedical engineering. The history of Brazilian, and why not say worldwide, space science should unquestionably go through PUCRS. As time passes, the pioneering spirit of our University in the aerospace area has become undeniable. This is due to the group of professionals, students, technicians and staff in general that have once worked or are still working in the Center of Microgravity, a group of faculty and students that excel in their undeniable technical-scientific qualifications.

  6. Microgravity

    NASA Image and Video Library

    1995-10-20

    Onboard Space Shuttle Columbia (STS-73) Payload Commander Kathryn Thornton and Commander Ken Bowersox discuss the Drop Physics Module (DPM) experiment in the United States Microgravity Laboratory 2 (USML-2) spacelab science module.

  7. Microgravity

    NASA Image and Video Library

    2001-05-02

    Sutta Chernubhotta (grade 10) from DuPont Manual High School in Louisville, Kentucky, asks a question of on of the on-line lecturers during the Pan-Pacific Basin Workshop on Microgravity Sciences held in Pasadena, California. The event originated at the California Science Center in Los Angeles. The DuPont Manual students patched in to the event through the distance learning lab at the Louisville Science Center. This image is from a digital still camera; higher resolution is not available.

  8. Microgravity

    NASA Image and Video Library

    2001-04-25

    The arnual conference for the Educator Resource Center Network (ERCN) Coordinators was held at Glenn Research Center at Lewis Field in Cleveland, Ohio. The conference included participants from NASA's Educator Resource Centers located throughout the country. The Microgravity Science Division at Glenn sponsored a Microgravity Day for all the conference participants. Kathy Higgins of the National Center for Microgravity Research at GRC explains educational resources to teachers. This image is from a digital still camera; higher resolution is not available.

  9. 3D Simulation: Microgravity Environments and Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Estes, Samantha; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Most, if not all, 3-D and Virtual Reality (VR) software programs are designed for one-G gravity applications. Space environments simulations require gravity effects of one one-thousandth to one one-million of that of the Earth's surface (10(exp -3) - 10(exp -6) G), thus one must be able to generate simulations that replicate those microgravity effects upon simulated astronauts. Unfortunately, the software programs utilized by the National Aeronautical and Space Administration does not have the ability to readily neutralize the one-G gravity effect. This pre-programmed situation causes the engineer or analysis difficulty during micro-gravity simulations. Therefore, microgravity simulations require special techniques or additional code in order to apply the power of 3D graphic simulation to space related applications. This paper discusses the problem and possible solutions to allow microgravity 3-D/VR simulations to be completed successfully without program code modifications.

  10. Motion of Air Bubbles in Water Subjected to Microgravity Accelerations

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Kelly, Eric M.; Hrovat, Kenneth; Nelson, Emily S.; Pettit, Donald R.

    2006-01-01

    The International Space Station (ISS) serves as a platform for microgravity research for the foreseeable future. A microgravity environment is one in which the effects of gravity are drastically reduced which then allows physical experiments to be conducted without the over powering effects of gravity. During his 6-month stay on the ISS, astronaut Donald R. Pettit performed many informal/impromptu science experiments with available equipment. One such experiment focused on the motion of air bubbles in a rectangular container nearly filled with de-ionized water. Bubbles were introduced by shaking and then the container was secured in place for several hours while motion of the bubbles was recorded using time-lapse photography. This paper shows correlation between bubble motion and quasi-steady acceleration levels during one such experiment operation. The quasi-steady acceleration vectors were measured by the Microgravity Acceleration Measurement System (MAMS). Essentially linear motion was observed in the condition considered here. Dr. Pettit also created other conditions which produced linear and circulating motion, which are the subjects of further study. Initial observations of this bubble motion agree with calculations from many microgravity physical science experiments conducted on shuttle microgravity science missions. Many crystal-growth furnaces involve heavy metals and high temperatures in which undesired acceleration-driven convection during solidification can adversely affect the crystal. Presented in this paper will be results showing correlation between bubble motion and the quasi-steady acceleration vector.

  11. Microgravity

    NASA Image and Video Library

    1992-06-25

    Space Shuttle Columbia (STS-50) astronaut Bornie Dunbar wears protective goggles to assemble a zeolite sample cartridge for the Crystal Growth Furnace (CGF) in the United States Microgravity Laboratory-1 (USML-1) science module.

  12. A TREETOPS Simulation of the STABLE Microgravity Vibration Isolation System

    NASA Technical Reports Server (NTRS)

    Nurre, G. S.; Whorton, M. S.; Kim, Y. K.

    1999-01-01

    As a research facility for microgravity science, the International Space Station (ISS) will be used for numerous experiments which require a quiescent acceleration environment across a broad spectrum of frequencies. For many micro-gravity science experiments, the ambient acceleration environment on ISS will significantly exceed desirable levels. The ubiquity of acceleration disturbance sources and the difficulty in characterization of these sources precludes source isolation, requiring, vibration isolation to attenuate the disturbances to an acceptable level at the experiment. To provide a more quiescent acceleration environment, a vibration isolation system named STABLE (Suppression of Transient Accelerations By LEvitation) was developed. STABLE was the first successful flight test of an active isolation device for micro-gravity science payloads and was flown on STS-73/USML-2 in October 1995. This report documents the development of the high fidelity, nonlinear, multibody simulation developed using TREETOPS which was used to design the control laws and define the expected performance of the STABLE isolation system.

  13. NASA's Zero-g aircraft operations

    NASA Technical Reports Server (NTRS)

    Williams, R. K.

    1988-01-01

    NASA's Zero-g aircraft, operated by the Johnson Space Center, provides the unique weightless or zero-g environment of space flight for hardware development and test and astronaut training purposes. The program, which began in 1959, uses a slightly modified Boeing KC-135A aircraft, flying a parabolic trajectory, to produce weightless periods of 20 to 25 seconds. The program has supported the Mercury, Gemini, Apollo, Skylab, Apollo-Soyuz and Shuttle programs as well as a number of unmanned space operations. Typical experiments for flight in the aircraft have included materials processing experiments, welding, fluid manipulation, cryogenics, propellant tankage, satellite deployment dynamics, planetary sciences research, crew training with weightless indoctrination, space suits, tethers, etc., and medical studies including vestibular research. The facility is available to microgravity research organizations on a cost-reimbursable basis, providing a large, hands-on test area for diagnostic and support equipment for the Principal Investigators and providing an iterative-type design approach to microgravity experiment development. The facility allows concepts to be proven and baseline experimentation to be accomplished relatively inexpensively prior to committing to the large expense of a space flight.

  14. Adaptation of Motility Analysis Apparatus for Space Science and Microgravity Ground-Based Experiments

    NASA Technical Reports Server (NTRS)

    Johnson, Jacqueline U.

    1996-01-01

    Previous space flight studies have described unfavorable effects of microgravity on testicular morphology and spermatogenesis (Cosmos 1887 Biosputnik flight, 9/29/87 - 10/12/87). The flight animals demonstrated small reductions in testicular and epididymal size, the phenomenon explained as resulting water loss. Yet, light microscopic histological preparations revealed few spermatozoa in the rete testis of the flight males compared to control animals. The cause for this finding was subjectively assessed to be due to "the anatomical dislocation of the organs... and a disturbance in testicular blood supply". Unfortunately, the reported effects of microgravity on the reproductive processes (particularly within males) are few and divergent. If habitation in space is a futuristic goal, more objective testing (of male and female gametes) in a microgravity environment will provide insight to the developmental potential of these reproductive cells. As part of the Marshall Space Flight Centers' Summer Faculty Fellowship Program within the Biophysics Branch, a key component of the research investigation was to develop a test to evaluate individual cell motility and orientation in varying gravitational environments, using computerized assessment of sperm cell concentration, morphology and motility to provide objective, quantitative experimental control. In previous work performed jointly by the author and a NASA colleague, it has been shown that macroscopic motile aggregates of spermatozoa were not altered by the absence of microgravity. Variations in the number of normal versus abnormal sperm due to microgravity influences have yet to be established. It is therefore of interest to monitor the cytoskeletal matrix (microtubulin) of these organisms as a possible indicator of cell viability and/or function.

  15. Microgravity Combustion Science and Fluid Physics Experiments and Facilities for the ISS

    NASA Technical Reports Server (NTRS)

    Lauver, Richard W.; Kohl, Fred J.; Weiland, Karen J.; Zurawski, Robert L.; Hill, Myron E.; Corban, Robert R.

    2001-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program supports both ground-based and flight experiment research in the disciplines of Combustion Science and Fluid Physics. Combustion Science research includes the areas of gas jet diffusion flames, laminar flames, burning of droplets and misting fuels, solids and materials flammability, fire and fire suppressants, turbulent combustion, reaction kinetics, materials synthesis, and other combustion systems. The Fluid Physics discipline includes the areas of complex fluids (colloids, gels, foams, magneto-rheological fluids, non-Newtonian fluids, suspensions, granular materials), dynamics and instabilities (bubble and drop dynamics, magneto/electrohydrodynamics, electrochemical transport, geophysical flows), interfacial phenomena (wetting, capillarity, contact line hydrodynamics), and multiphase flows and phase changes (boiling and condensation, heat transfer, flow instabilities). A specialized International Space Station (ISS) facility that provides sophisticated research capabilities for these disciplines is the Fluids and Combustion Facility (FCF). The FCF consists of the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) and the Shared Accommodations Rack and is designed to accomplish a large number of science investigations over the life of the ISS. The modular, multiuser facility is designed to optimize the science return within the available resources of on-orbit power, uplink/downlink capacity, crew time, upmass/downmass, volume, etc. A suite of diagnostics capabilities, with emphasis on optical techniques, will be provided to complement the capabilities of the subsystem multiuser or principal investigator-specific experiment modules. The paper will discuss the systems concept, technical capabilities, functionality, and the initial science investigations in each discipline.

  16. SSC microgravity sounding rocket program MASER.

    PubMed

    Jonsson, R

    1988-01-01

    The Swedish Microgravity Sounding Rocket program MASER is presented. Especially the MASER 1 payload is depicted, but also an outlook for the future possibilities within the Short Duration Flight Opportunities is given. Furthermore the coordination and relation with the German TEXUS program is touched upon. With the two TEXUS and MASER programs--possibly together with other fascinating projects like M-ARIES and MG-M-ARIANNE--the microgravity scientific community in Europe should get reasonable amounts of flight opportunities in preparation for the big space venture the European Space Station.

  17. Budget estimates, fiscal year 1995. Volume 1: Agency summary, human space flight, and science, aeronautics and technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA budget request has been restructured in FY 1995 into four appropriations: human space flight; science, aeronautics, and technology; mission support; and inspector general. The human space flight appropriations provides funding for NASA's human space flight activities. This includes the on-orbit infrastructure (space station and Spacelab), transportation capability (space shuttle program, including operations, program support, and performance and safety upgrades), and the Russian cooperation program, which includes the flight activities associated with the cooperative research flights to the Russian Mir space station. These activities are funded in the following budget line items: space station, Russian cooperation, space shuttle, and payload utilization and operations. The science, aeronautics, and technology appropriations provides funding for the research and development activities of NASA. This includes funds to extend our knowledge of the earth, its space environment, and the universe and to invest in new technologies, particularly in aeronautics, to ensure the future competitiveness of the nation. These objectives are achieved through the following elements: space science, life and microgravity sciences and applications, mission to planet earth, aeronautical research and technology, advanced concepts and technology, launch services, mission communication services, and academic programs.

  18. Microgravity

    NASA Image and Video Library

    1998-05-01

    The Microgravity Science Glovebox is a facility for performing microgravity research in the areas of materials, combustion, fluids and biotechnology science. The facility occupies a full ISPR, consisting of: the ISPR rack and infrastructure for the rack, the glovebox core facility, data handling, rack stowage, outfitting equipment, and a video subsystem. MSG core facility provides the experiment developers a chamber with air filtering and recycling, up to two levels of containment, an airlock for transfer of payload equipment to/from the main volume, interface resources for the payload inside the core facility, resources inside the airlock, and storage drawers for MSG support equipment and consumables.

  19. Development of a vibration isolation prototype system for microgravity space experiments

    NASA Technical Reports Server (NTRS)

    Logsdon, Kirk A.; Grodsinsky, Carlos M.; Brown, Gerald V.

    1990-01-01

    The presence of small levels of low-frequency accelerations on the space shuttle orbiters has degraded the microgravity environment for the science community. Growing concern about this microgravity environment has generated interest in systems that can isolate microgravity science experiments from vibrations. This interest has resulted primarily in studies of isolation systems with active methods of compensation. The development of a magnetically suspended, six-degree-of-freedom active vibration isolation prototype system capable of providing the needed compensation to the orbital environment is presented. A design for the magnetic actuators is described, and the control law for the prototype system that gives a nonintrusive inertial isolation response to the system is also described. Relative and inertial sensors are used to provide an inertial reference for isolating the payload.

  20. Development of life sciences equipment for microgravity and hypergravity simulation

    NASA Technical Reports Server (NTRS)

    Mulenburg, G. M.; Evans, J.; Vasques, M.; Gundo, D. P.; Griffith, J. B.; Harper, J.; Skundberg, T.

    1994-01-01

    The mission of the Life Science Division at the NASA Ames Research Center is to investigate the effects of gravity on living systems in the spectrum from cells to humans. The range of these investigations is from microgravity, as experienced in space, to Earth's gravity, and hypergravity. Exposure to microgravity causes many physiological changes in humans and other mammals including a headward shift of body fluids, atrophy of muscles - especially the large muscles of the legs - and changes in bone and mineral metabolism. The high cost and limited opportunity for research experiments in space create a need to perform ground based simulation experiments on Earth. Models that simulate microgravity are used to help identify and quantify these changes, to investigate the mechanisms causing these changes and, in some cases, to develop countermeasures.

  1. Spacelab Module for USML-1 Mission in Orbiter Cargo Bay

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This is a photograph of the Spacelab module for the first United States Microgravity Laboratory (USML-1) mission, showing logos of the Spacelab mission on the left and the USML-1 mission on the right. The USML-1 was one part of a science and technology program that opened NASA's next great era of discovery and established the United States' leadership in space. From investigations designed to gather fundamental knowledge in a variety of areas to demonstrations of new equipment, USML-1 forged the way for future USML missions and helped prepare for advanced microgravity research and processing aboard the Space Station. Thirty-one investigations comprised the payload of the first USML-1 mission. The experiments aboard USML-1 covered five basic areas: fluid dynamics, the study of how liquids and gases respond to the application or absence of differing forces; crystal growth, the production of inorganic and organic crystals; combustion science, the study of the processes and phenomena of burning; biological science, the study of plant and animal life; and technology demonstrations. The USML-1 was managed by the Marshall Space Flight Center and launched aboard the Space Shuttle Orbiter Columbia (STS-50) on June 25, 1992.

  2. Microgravity

    NASA Image and Video Library

    1995-10-20

    Onboard Space Shuttle Columbia (STS-73) Payload Commander Kathryn Thornton works with the Drop Physics Module (DPM) in the United States Microgravity Laboratory 2 (USML-2) Spacelab Science Module cleaning the experiment chamber of the DPM.

  3. Microgravity

    NASA Image and Video Library

    1995-10-20

    Astronaut Kathryn C. Thornton, payload commander, works at the Drop Physics Module (DPM) on the portside of the science module supporting the U.S. Microgravity Laboratory (USML-2). Astronaut Kerneth D. Bowersox, mission commander, looks on.

  4. Microgravity

    NASA Image and Video Library

    1997-03-11

    This photo shows the access through the internal airlock on the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). The airlock will allow the insertion or removal of equipment and samples without opening the working volume of the glovebox. Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  5. Microgravity

    NASA Image and Video Library

    1997-03-11

    Once the Microgravity Science Glovebox (MSG) is sealed, additional experiment items can be inserted through a small airlock at the bottom right of the work volume. It is shown here with the door open. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  6. The 1985-86 NASA space/gravitational biology accomplishments

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Individual Technical summaries of research projects of NASA's Space/Gravitational Biology Program are presented. This Program is concerned with using the unique characteristics of the space environment, particularly microgravity, as a tool to advance knowledge in the biological sciences; understanding how gravity has shaped and affected life on Earth; and understanding how the space environment affects both plant and animal species. The summaries for each project include a description of the research, a listing of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  7. Fluid mechanics and mass transfer in melt crystal growth: Analysis of the floating zone and vertical Bridgman processes

    NASA Technical Reports Server (NTRS)

    Brown, R. A.

    1986-01-01

    This research program focuses on analysis of the transport mechanisms in solidification processes, especially one of interest to the Microgravity Sciences and Applications Program of NASA. Research during the last year has focused on analysis of the dynamics of the floating zone process for growth of small-scale crystals, on studies of the effect of applied magnetic fields on convection and solute segregation in directional solidification, and on the dynamics of microscopic cell formation in two-dimensional solidification of binary alloys. Significant findings are given.

  8. SpeedyTime-4_Microgravity_Science_Glovebox

    NASA Image and Video Library

    2017-08-03

    Doing groundbreaking science can mean working with dangerous materials; how do the astronauts on the International Space Station protect themselves and their ship in those cases? They use the Microgravity Science Glovebox: in this “SpeedyTime” segment Expedition 52 flight engineer Peggy Whitson pulls a rack out of the wall of the Destiny Laboratory to show us how astronauts access a sealed environment for science and technology experiments that involve potentially hazardous materials. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  9. NASA's Microgravity Research Program

    NASA Technical Reports Server (NTRS)

    Woodard, Dan R. (Editor); Henderson, Robin N. (Technical Monitor)

    2000-01-01

    The Fiscal Year 1999 Annual Report describes key elements of the NASA Microgravity Research Program. The Program's goals, approach taken to achieve those goals, and program resources are summarized. A review of the Program's status at the end of FY1999 and highlights of the ground-and-flight research are provided.

  10. NASA's Microgravity Fluid Physics Strategic Research Roadmap

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Singh, Bhim S.

    2004-01-01

    The Microgravity Fluid Physics Program at NASA has developed a substantial investigator base engaging a broad crosssection of the U.S. scientific community. As a result, it enjoys a rich history of many significant scientific achievements. The research supported by the program has produced many important findings that have been published in prestigious journals such as Science, Nature, Journal of Fluid Mechanics, Physics of Fluids, and many others. The focus of the program so far has primarily been on fundamental scientific studies. However, a recent shift in emphasis at NASA to develop advanced technologies to enable future exploration of space has provided motivation to add a strategic research component to the program. This has set into motion a year of intense planning within NASA including three workshops to solicit inputs from the external scientific community. The planning activities and the workshops have resulted in a prioritized list of strategic research issues along with a corresponding detailed roadmap specific to fluid physics. The results of these activities were provided to NASA s Office of Biological and Physical Research (OBPR) to support the development of the Enterprise Strategy document. This paper summarizes these results while showing how the planned research supports NASA s overall vision through OBPR s organizing questions.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2003-10-20

    In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).

  12. Rapid Thermal Processing (RTP) of semiconductors in space

    NASA Technical Reports Server (NTRS)

    Anderson, T. J.; Jones, K. S.

    1993-01-01

    The progress achieved on the project entitled 'Rapid Thermal Processing of Semiconductors in Space' for a 12 month period of activity ending March 31, 1993 is summarized. The activity of this group is being performed under the direct auspices of the ROMPS program. The main objective of this program is to develop and demonstrate the use of advanced robotics in space with rapid thermal process (RTP) of semiconductors providing the test technology. Rapid thermal processing is an ideal processing step for demonstration purposes since it encompasses many of the characteristics of other processes used in solid state device manufacturing. Furthermore, a low thermal budget is becoming more important in existing manufacturing practice, while a low thermal budget is critical to successful processing in space. A secondary objective of this project is to determine the influence of microgravity on the rapid thermal process for a variety of operating modes. In many instances, this involves one or more fluid phases. The advancement of microgravity processing science is an important ancillary objective.

  13. Microgravity

    NASA Image and Video Library

    2001-04-25

    The arnual conference for the Educator Resource Center Network (ERCN) Coordinators was held at Glenn Research Center at Lewis Field in Cleveland, Ohio. The conference included participants from NASA's Educator Resource Centers located throughout the country. The Microgravity Science Division at Glenn sponsored a Microgravity Day for all the conference participants. This image is from a digital still camera; higher resolution is not available.

  14. Materials Science Experiments Under Microgravity - A Review of History, Facilities, and Future Opportunities

    NASA Technical Reports Server (NTRS)

    Stenzel, Ch.

    2012-01-01

    Materials science experiments have been a key issue already since the early days of research under microgravity conditions. A microgravity environment facilitates processing of metallic and semiconductor melts without buoyancy driven convection and sedimentation. Hence, crystal growth of semiconductors, solidification of metallic alloys, and the measurement of thermo-physical parameters are the major applications in the field of materials science making use of these dedicated conditions in space. In the last three decades a large number of successful experiments have been performed, mainly in international collaborations. In parallel, the development of high-performance research facilities and the technological upgrade of diagnostic and stimuli elements have also contributed to providing optimum conditions to perform such experiments. A review of the history of materials science experiments in space focussing on the development of research facilities is given. Furthermore, current opportunities to perform such experiments onboard ISS are described and potential future options are outlined.

  15. Space Shuttle Projects

    NASA Image and Video Library

    1997-01-14

    The crew patch for NASA's STS-83 mission depicts the Space Shuttle Columbia launching into space for the first Microgravity Sciences Laboratory 1 (MSL-1) mission. MSL-1 investigated materials science, fluid dynamics, biotechnology, and combustion science in the microgravity environment of space, experiments that were conducted in the Spacelab Module in the Space Shuttle Columbia's cargo bay. The center circle symbolizes a free liquid under microgravity conditions representing various fluid and materials science experiments. Symbolic of the combustion experiments is the surrounding starburst of a blue flame burning in space. The 3-lobed shape of the outermost starburst ring traces the dot pattern of a transmission Laue photograph typical of biotechnology experiments. The numerical designation for the mission is shown at bottom center. As a forerunner to missions involving International Space Station (ISS), STS-83 represented the hope that scientific results and knowledge gained during the flight will be applied to solving problems on Earth for the benefit and advancement of humankind.

  16. The microgravity environment of the D1 mission

    NASA Technical Reports Server (NTRS)

    Hamacher, H.; Merbold, U.; Jilg, R.

    1990-01-01

    Some characteristic features and results of D1 microgravity measurements are discussed as performed in the Material Science Double Rack (MSDR) and the Materials Science Double Rack for Experiment Modules and Apparatus (MEDEA). Starting with a brief review of the main potential disturbances, the payload aspects of interest to the analysis and the accelerometer measuring systems are described. The microgravity data are analyzed with respect to selected mission events such as thruster firings for attitude control, operations of Spacelab experiment facilities, vestibular experiments and crew activities. The origins are divided into orbit, vehicle, and experiment induced perturbations. It has been found that the microgravity-environment is dictated mainly by payload-induced perturbations. To reduce the microgravity-level, the design of some experiment facilities has to be improved by minimizing the number of moving parts, decoupling of disturbing units from experiment facilities, by taking damping measures, etc. In addition, strongly disturbing experiments and very sensitive investigations should be performed in separate mission phases.

  17. Microgravity science and applications: Apparatus and facilities

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA support apparatus and facilities for microgravity research are summarized in fact sheets. The facilities are ground-based simulation environments for short-term experiments, and the shuttle orbiter environment for long duration experiments. The 17 items of the microgravitational experimental apparatus are described. Electronic materials, alloys, biotechnology, fluid dynamics and transport phenomena, glasses and ceramics, and combustion science are among the topics covered.

  18. NASA Microgravity Research Program

    NASA Technical Reports Server (NTRS)

    Woodard, Dan

    1999-01-01

    The Fiscal Year 1998 Annual Report describes key elements of the NASA Microgravity Research Program. The Program's goals, approach taken to achieve those goals, and program resources are summarized. A review of the Program's status at the end of FY1998 and highlights of the ground- and-flight-based research are provided.

  19. Microgravity

    NASA Image and Video Library

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens of cartilage tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Constructs grown on Mir (A) tended to become more spherical, whereas those grown on Earth (B) maintained their initial disc shape. These findings might be related to differences in cultivation conditions, i.e., videotapes showed that constructs floated freely in microgravity but settled and collided with the rotating vessel wall at 1g (Earth's gravity). In particular, on Mir the constructs were exposed to uniform shear and mass transfer at all surfaces such that the tissue grew equally in all directions, whereas on Earth the settling of discoid constructs tended to align their flat circular areas perpendicular to the direction of motion, increasing shear and mass transfer circumferentially such that the tissue grew preferentially in the radial direction. A and B are full cross sections of constructs from Mir and Earth groups shown at 10-power. C and D are representative areas at the construct surfaces enlarged to 200-power. They are stained red with safranin-O. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Photo credit: Proceedings of the National Academy of Sciences.

  20. Microgravity

    NASA Image and Video Library

    2001-10-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Final samples from Mir and Earth appeared histologically cartilaginous throughout their entire cross sections (5-8 mm thick), with the exception of fibrous outer capsules. Constructs grown on Earth (A) appeared to have a more organized extracellular matrix with more uniform collagen orientation as compared with constructs grown on Mir (B), but the average collagen fiber diameter was similar in the two groups (22 +- 2 nm) and comparable to that previously reported for developing articular cartilage. Randomly oriented collagen in Mir samples would be consistent with previous reports that microgravity disrupts fibrillogenesis. These are transmission electron micrographs of constructs from Mir (A) and Earth (B) groups at magnifications of x3,500 and x120,000 (Inset). The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Credit: Proceedings of the National Academy of Sciences.

  1. Aerospace century XXI: Space sciences, applications, and commercial developments; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgenthaler, G.W.; Koster, J.N.

    1987-01-01

    Papers are presented on rocket UV observations of Comet Halley, a space system for microgravity research, transitioning from Spacelab to Space Station science, and assemblers and future space hardware. Also considered are spatial and temporal scales of atmospheric disturbances, Doppler radar for prediction and warning, data management for the Columbus program, communications satellites of the future, and commercial launch vehicles. Other topics include space geodesy and earthquake predictions, inverted cellular radio satellite systems, material processing in space, and potential for earth observations from the manned Space Station.

  2. Microgravity

    NASA Image and Video Library

    2001-05-02

    Students from DuPont Manual High School in Louisville, Kentucky participated in a video-teleconference during the Pan-Pacific Basin Workshop on Microgravity Sciences held in Pasadena, California. The event originated at the California Science Center in Los Angeles. The DuPont Manual students patched in to the event through the distance learning lab at the Louisville Science Center. Education coordinator Twila Schneider (left) of Infinity Technology and NASA materials engineer Chris Cochrane prepare students for the on-line workshop. This image is from a digital still camera; higher resolution is not available.

  3. Microgravity

    NASA Image and Video Library

    2001-05-02

    Suzarne Nichols (12th grade) from DuPont Manual High School in Louisville, Kentucky, asks a question of on of the on-line lecturers during the Pan-Pacific Basin Workshop on Microgravity Sciences held in Pasadena, California. The event originated at the California Science Center in Los Angeles. The DuPont Manual students patched in to the event through the distance learning lab at the Louisville Science Center. Jie Ma (grade 10, at right) waits her turn to ask a question. This image is from a digital still camera; higher resolution is not available.

  4. Microgravity

    NASA Image and Video Library

    1997-03-11

    Access ports, one on each side of the Microgravity Science Glovebox (MSG), will allow scientists to place large experiment items inside the MSG. The ports also provide additional glove ports (silver disk) for greater access to the interior. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  5. Microgravity

    NASA Image and Video Library

    1997-03-11

    Access ports, one on each side of the Microgravity Science Glovebox (MSG), will allow scientists to place large experiment items inside the MSG. The ports also provide additional glove ports (dark circle) for greater access to the interior. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  6. Microgravity

    NASA Image and Video Library

    1997-03-11

    This photo shows the access through the internal airlock (bottom right) on the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). The airlock will allow the insertion or removal of equipment and samples without opening the working volume of the glovebox. Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  7. Microgravity

    NASA Image and Video Library

    1995-10-20

    Onboard Space Shuttle Columbia (STS-73) Mission Specialists Catherine Cady Coleman works at the glovebox facility in support of the Protein Crystal Growth Glovebox (PCG-GBX) experiment in the United States Microgravity Laboratory 2 (USML-2) Spacelab science module.

  8. Material Science

    NASA Image and Video Library

    2003-01-22

    Pores and voids often form in metal castings on Earth (above) making them useless. A transparent material that behaves at a large scale in microgravity the way that metals behave at the microscopic scale on Earth, will help show how voids form and learn how to prevent them. Scientists are using the microgravity environment on the International Space Station to study how these bubbles form, move and interact. The Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox aboard the International Space Station uses a transparent material called succinonitrile that behaves like a metal to study this problem. Video images sent to the ground allow scientists to watch the behavior of the bubbles as they control the melting and freezing of the material. The bubbles do not float to the top of the material in microgravity, so they can study their interactions.

  9. Research objectives, opportunities, and facilities for microgravity science

    NASA Technical Reports Server (NTRS)

    Bayuzick, Robert J.

    1992-01-01

    Microgravity Science in the U.S.A. involves research in fluids science, combustion science, materials science, biotechnology, and fundamental physics. The purpose is to achieve a thorough understanding of the effects of gravitational body forces on physical phenomena relevant to those disciplines. This includes the study of phenomena which are usually overwhelmed by the presence of gravitational body forces and, therefore, chiefly manifested when gravitational forces are weak. In the pragmatic sense, the research involves gravity level as an experimental parameter. Calendar year 1992 is a landmark year for research opportunities in low earth orbit for Microgravity Science. For the first time ever, three Spacelab flights will fly in a single year: IML-1 was launched on January 22; USML-1 was launched on June 25; and, in September, SL-J will be launched. A separate flight involving two cargo bay carriers, USMP-1, will be launched in October. From the beginning of 1993 up to and including the Space Station era (1997), nine flights involving either Spacelab or USMP carriers will be flown. This will be augmented by a number of middeck payloads and get away specials flying on various flights. All of this activity sets the stage for experimentation on Space Station Freedom. Beginning in 1997, experiments in Microgravity Science will be conducted on the Space Station. Facilities for doing experiments in protein crystal growth, solidification, and biotechnology will all be available. These will be joined by middeck-class payloads and the microgravity glove box for conducting additional experiments. In 1998, a new generation protein crystal growth facility and a facility for conducting combustion research will arrive. A fluids science facility and additional capability for conducting research in solidification, as well as an ability to handle small payloads on a quick response basis, will be added in 1999. The year 2000 will see upgrades in the protein crystal growth and fluids science facilities. From the beginning of 1997 to the fall of 1999 (the 'man-tended capability' era), there will be two or three utilization flights per year. Plans call for operations in Microgravity Science during utilization flights and between utilization flights. Experiments conducted during utilization flights will characteristically require crew interaction, short duration, and less sensitivity to perturbations in the acceleration environment. Operations between utilization flights will involve experiments that can be controlled remotely and/or can be automated. Typically, the experiments will require long times and a pristine environment. Beyond the fall of 1999 (the 'permanently-manned capability' era), some payloads will require crew interaction; others will be automated and will make use of telescience.

  10. Cell culture experiments planned for the space bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.; Cross, John H.

    1987-01-01

    Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.

  11. Mission Success for Combustion Science

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J.

    2004-01-01

    This presentation describes how mission success for combustion experiments has been obtained in previous spaceflight experiments and how it will be obtained for future International Space Station (ISS) experiments. The fluids and combustion facility is a payload planned for the ISS. It is composed of two racks: the fluids Integrated rack and the Combustion INtegrated Rack (CIR). Requirements for the CIR were obtained from a set of combustion basis experiments that served as surrogates for later experiments. The process for experiments that fly on the ISS includes proposal selection, requirements and success criteria definition, science and engineering reviews, mission operations, and postflight operations. By following this process, the microgravity combustion science program has attained success in 41 out of 42 experiments.

  12. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  13. Third United States Microgravity Payload: One Year Report

    NASA Technical Reports Server (NTRS)

    Currieri, P. A. (Compiler); McCauley, D. (Compiler); Walker, C. (Compiler)

    1998-01-01

    This document reports the one year science results for the Third United States Microgravity Payload (USMP-3). The USMP-3 major experiments were on a support structure in the Space Shuttle's payload bay and operated almost completely by the Principal Investigators through telescience. The mission included a Glovebox where the crew performed additional experiments for the investigators. Together about seven major scientific experiments were performed, advancing the state of knowledge in fields such as low temperature physics, solidification, and combustion. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive space station era.

  14. Fourth United States Microgravity Payload: One Year Report

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C. (Compiler); Curreri, Peter A. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    This document reports the one year science results for the Fourth United States Microgravity Payload (USMP-4). The USMP-4 major experiments were on a support structure in the Space Shuttle's payload bay and operated almost completely by the Principal Investigators through telescience. The mission included a Glovebox where the crew performed additional experiments for the investigators. Together about eight major scientific experiments were performed, advancing the state of knowledge in fields such as low temperature physics, solidification, and combustion. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive Space Station era.

  15. Joint Launch + One Year Science Review of USML-1 and USMP-1 with the Microgravity Measurement Group

    NASA Technical Reports Server (NTRS)

    Ramachandran, N. (Editor); Frazier, Donald. O. (Editor); Lehoczky, Sandor L. (Editor); Baugher, Charles R. (Editor)

    1994-01-01

    This document summarizes from the various investigations their comprehensive results and highlights, and also serves as a combined mission report for the first United States Microgravity Laboratory (USML-1) amd the United States Microgravity Payload (USMP-1). USML-1 included 31 investigations in fluid dynamics, crystal growth, combustion, biotechnology, and technology demonstrations supported by 11 facilities. On the USMP-1 mission, both the MEPHISTO and Lambda Point experiments exceeded by over 100 percent their planned science objectives. The mission was also the first time that acceleration data were down-linked and analyzed in real time.

  16. Ground based ISS payload microgravity disturbance assessments.

    PubMed

    McNelis, Anne M; Heese, John A; Samorezov, Sergey; Moss, Larry A; Just, Marcus L

    2005-01-01

    In order to verify that the International Space Station (ISS) payload facility racks do not disturb the microgravity environment of neighboring facility racks and that the facility science operations are not compromised, a testing and analytical verification process must be followed. Currently no facility racks have taken this process from start to finish. The authors are participants in implementing this process for the NASA Glenn Research Center (GRC) Fluids and Combustion Facility (FCF). To address the testing part of the verification process, the Microgravity Emissions Laboratory (MEL) was developed at GRC. The MEL is a 6 degree of freedom inertial measurement system capable of characterizing inertial response forces (emissions) of components, sub-rack payloads, or rack-level payloads down to 10(-7) g's. The inertial force output data, generated from the steady state or transient operations of the test articles, are utilized in analytical simulations to predict the on-orbit vibratory environment at specific science or rack interface locations. Once the facility payload rack and disturbers are properly modeled an assessment can be made as to whether required microgravity levels are achieved. The modeling is utilized to develop microgravity predictions which lead to the development of microgravity sensitive ISS experiment operations once on-orbit. The on-orbit measurements will be verified by use of the NASA GRC Space Acceleration Measurement System (SAMS). The major topics to be addressed in this paper are: (1) Microgravity Requirements, (2) Microgravity Disturbers, (3) MEL Testing, (4) Disturbance Control, (5) Microgravity Control Process, and (6) On-Orbit Predictions and Verification. Published by Elsevier Ltd.

  17. Research opportunities with the Centrifuge Facility

    NASA Technical Reports Server (NTRS)

    Funk, Glenn A.

    1992-01-01

    The Centrifuge Facility on Space Station Freedom will consist of a 2.5-meter diameter Centrifuge accommodating two concentric rings of habitats and providing variable g-forces between 0.01 g and 2.0 g; modular habitats providing housing and lifesupport for rats, mice, and plants; a habitat holding system providing power, water, airflow and other utilities to several modular habitats; and a life sciences glovebox, an isolated work volume accommodating simultaneous operations by at least two scientists and providing lighting, airflow, video and data access, and other experiment support functions. The centrifuge facility will enable long-duration animal and plant microgravity research not previously possible in the NASA flight research program. It will offer unprecedented opportunities for use of on-board 1-g control populations and statistically significant numbers of specimens. On orbit 1-g controls will allow separation of the effects of microgravity from other environmental factors. Its selectable-g and simultaneous multiple-g capabilities will enable studies of gravitational thresholds, the use of artificial gravity as a countermeasure to the effects of microgravity, and ready simulation of Lunar and Martian gravities.

  18. Microgravity

    NASA Image and Video Library

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  19. MESC Payload Setup

    NASA Image and Video Library

    2017-02-21

    iss050e052142 (Feb. 21, 2017) --- Expedition 50 Flight Engineer Peggy Whitson sets up a microscope in support of the Microgravity Expanded Stem Cells payload outside the Microgravity Science Glovebox housed inside the U.S. Destiny laboratory module.

  20. Space Experiment Module (SEM)

    NASA Technical Reports Server (NTRS)

    Brodell, Charles L.

    1999-01-01

    The Space Experiment Module (SEM) Program is an education initiative sponsored by the National Aeronautics and Space Administration (NASA) Shuttle Small Payloads Project. The program provides nationwide educational access to space for Kindergarten through University level students. The SEM program focuses on the science of zero-gravity and microgravity. Within the program, NASA provides small containers or "modules" for students to fly experiments on the Space Shuttle. The experiments are created, designed, built, and implemented by students with teacher and/or mentor guidance. Student experiment modules are flown in a "carrier" which resides in the cargo bay of the Space Shuttle. The carrier supplies power to, and the means to control and collect data from each experiment.

  1. Solidification Using the Baffle in Sealed Ampoules

    NASA Technical Reports Server (NTRS)

    Ostrogorsky, A.; Marin, C.; Churilov, A.; Volz, M. P.; Bonner, W. A.; Spivey, R. A.; Smith, G.

    2003-01-01

    Solidification Using a Baffle in Sealed Ampoules (SUBSA) is the first investigation conducted in the Microgravity Science Glovebox (MSG) Facility at the International Space Station (ISS) Alpha. In July, August and September of 2002, 8 single crystals of InSb, doped with Te and Zn, were directionally solidified in microgravity. Ground based tests, related numerical modeling and images of the growth process obtained in microgravity are presented.

  2. Gravity-Dependent Combustion and Fluids Research - From Drop Towers to Aircraft to the ISS

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Singh, Bhim S.; Kohl, Fred J.

    2007-01-01

    Driven by the need for knowledge related to the low-gravity environment behavior of fluids in liquid fuels management, thermal control systems and fire safety for spacecraft, NASA embarked on a decades long research program to understand, accommodate and utilize the relevant phenomena. Beginning in the 1950s, and continuing through to today, drop towers and aircraft were used to conduct an ever broadening and increasingly sophisticated suite of experiments designed to elucidate the underlying gravity-dependent physics that drive these processes. But the drop towers and aircraft afford only short time periods of continuous low gravity. Some of the earliest rocket test flights and manned space missions hosted longer duration experiments. The relatively longer duration low-g times available on the space shuttle during the 1980s and 1990s enabled many specialized experiments that provided unique data for a wide range of science and engineering disciplines. Indeed, a number of STS-based Spacelab missions were dedicated solely to basic and applied microgravity research in the biological, life and physical sciences. Between 1980 and 2000, NASA implemented a vigorous Microgravity Science Program wherein combustion science and fluid physics were major components. The current era of space stations from the MIR to the International Space Station have opened up a broad range of opportunities and facilities that are now available to support both applied research for technologies that will help to enable the future exploration missions and for a continuation of the non-exploration basic research that began over fifty years ago. The ISS-based facilities of particular value to the fluid physics and combustion/fire safety communities are the Fluids and Combustion Facility Combustion Integrated Rack and the Fluids Integrated Rack.

  3. Interfacial Surgery Determination of Succinonitrile and Succinonitrile-Acetone Alloy Using Surface Light Scattering Spectrometer

    NASA Technical Reports Server (NTRS)

    Tin, Padetha; Frate, David T.; deGroh, Henry C., III

    2001-01-01

    The objectives of this ground based research is to measure the liquid/vapor interfacial surface energies of succinonitrile (SCN) and alloys of succinonitrile and acetone using Surface Light Scattering Spectrometer. Liquid/vapor interfacial energy measurements will be made near and above the melting point and are the primary goal of this proposal. A measurement of viscosity also results from the Surface Light Scattering technique employed. Interfacial free energies between the phases enters into many analysis of phase transformation and flow, including nucleation, dendritic growth, interface stability, Ostwald ripening, and Marangoni flow. Succirionitrile (SCN) is useful as a model for the study of metal solidification, although it is an organic material, it has a BCC crystal structure and solidifies dendriticly like a metal. It is also transparent and has a low melting point (58.08 C). Succinonitrile has been and is being used extensively in NASAs Microgravity Materials Science and Fluid Physics programs and as well as in several ground-based and microgravity studies including the Isothermal Dendritic Growth Experiment (IDGE) due to Glicksman and coworkers and subsequently in several theoretical and numerical studies of dendritic growth. Previous measurements of succinonitrile (SCN) and alloys of succinonitrile and acetone surface tensions are extremely limited. We believe the data sought through this proposal have significant basic physical property data value and thus the work proposed will provide needed data in support of NASAs Microgravity program research.

  4. Robust Control for The G-Limit Microgravity Vibration Isolation System

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.

    2004-01-01

    Many microgravity science experiments need an active isolation system to provide a sufficiently quiescent acceleration environment. The g-LIMIT vibration isolation system will provide isolation for Microgravity Science Glovebox experiments in the International Space Station. While standard control system technologies have been demonstrated for these applications, modern control methods have the potential for meeting performance requirements while providing robust stability in the presence of parametric uncertainties that are characteristic of microgravity vibration isolation systems. While H2 and H infinity methods are well established, neither provides the levels of attenuation performance and robust stability in a compensator with low order. Mixed H2/mu controllers provide a means for maximizing robust stability for a given level of mean-square nominal performance while directly optimizing for controller order constraints. This paper demonstrates the benefit of mixed norm design from the perspective of robustness to parametric uncertainties and controller order for microgravity vibration isolation. A nominal performance metric analogous to the mu measure for robust stability assessment is also introduced in order to define an acceptable trade space from which different control methodologies can be compared.

  5. The Future of New Discoveries on the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian

    2000-01-01

    The Materials Science program is one of the five Microgravity research disciplines in NASA's Human Exploration and Development of Space (HEDS). This research uses the low gravity environment to obtain the fundamental understanding of various phenomena effects and it's relationship to structure, processing, and properties of materials. The International Space Station (ISS) will complete the first major assembly phase within the next year thus providing the opportunity for on-orbit research and scientific utilization in early 2001. Research will become routine as the final Space Station configuration is completed. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules. This paper addresses the current scope of the flight investigator program that will utilize the various capabilities on ISS. The type of research and classification of materials that are addressed using multiple types of flight apparatus will be explained. The various flight and ground facilities that are used to support the NASA program are described. The early utilization schedule for the materials science payloads with associated hardware will be covered. The Materials Science Research Facility and related international experiment modules serves as the foundation for this capability. The potential applications and technologies obtained from the Materials Science program are described.

  6. Joint Launch + One Year Science Review of USML-1 and USMP-1 with the Microgravity Measurement Group. Volume 2

    NASA Technical Reports Server (NTRS)

    Ramachandran, N. (Editor); Frazier, D. O. (Editor); Lehoczky, S. L. (Editor); Baugher, C. R. (Editor)

    1994-01-01

    On September 22-24, 1993, investigators from the First United States Microgravity Laboratory (USML-1) and the First United States Microgravity Payload (USMP-1) Missions met with the Microgravity Measurement Group (MGMG) in Huntsville, Alabama, to discuss science results and the microgravity environments from the respective missions. USML-1 was launched June 1992, and USMP-1 was launched October 1992. This document summarizes from the various investigations, the comprehensive results and highlights, and also serves as a combined mission report for the two missions. USML-1 was the first totally U.S.-sponsored mission dedicated to microgravity research and included 31 investigations in fluid dynamics, crystal growth, combustion, biotechnology, and technology demonstrations supported by 11 facilities. The papers in these proceedings attest to the wealth of information gleaned from the highly successful mission. On the USMP-1 mission, both the MEPHISTO and the Lambda Point experiments exceeded by over 100% their planned science objectives. The mission also marked the first time that acceleration data were down-linked and analyzed in real-time. The meeting, which concentrated on flight results, brought low-gravity investigators, accelerometer designers, and acceleration data analysis experts together. This format facilitated a tremendous amount of information exchange between these varied groups. Several of the experimenters showed results, sane for the very first time, of the effects of residual accelerations on their experiment. The proceedings which are published in two volumes also contain transcriptions of the discussion periods following talks and also submittals from a simultaneous poster session.

  7. Microgravity

    NASA Image and Video Library

    2001-05-02

    Suzarne Nichols (12th grade) from DuPont Manual High School in Louisville, Kentucky, asks a question of on of the on-line lecturers during the Pan-Pacific Basin Workshop on Microgravity Sciences held in Pasadena, California. The event originated at the California Science Center in Los Angeles. The DuPont Manual students patched in to the event through the distance learning lab at the Louisville Science Center. NASA materials engineer Chris Cochrane prepare students for the on-line workshop helps two students prepare a drop demonstration. This image is from a digital still camera; higher resolution is not available.

  8. CM-1 - MS Thomas and PS Linteris in Spacelab

    NASA Image and Video Library

    2012-09-18

    STS083-302-005 (4-8 April 1997) --- Payload specialist Gregory T. Linteris enters data on the progress of a Microgravity Sciences Laboratory (MSL-1) experiment on a lap top computer aboard the Spacelab Science Module while astronaut Donald A. Thomas, mission specialist, checks an experiment in the background. Linteris and Thomas, along with four other NASA astronauts and a second payload specialist supporting the Microgravity Sciences Laboratory (MSL-1) mission were less than a fourth of the way through a scheduled 16-day flight when a power problem cut short their planned stay.

  9. Preparation for microgravity - The role of the Microgravity Material Science Laboratory

    NASA Technical Reports Server (NTRS)

    Johnston, J. Christopher; Rosenthal, Bruce N.; Meyer, Maryjo B.; Glasgow, Thomas K.

    1988-01-01

    Experiments at the NASA Lewis Research Center's Microgravity Material Science Laboratory using physical and mathematical models to delineate the effects of gravity on processes of scientific and commercial interest are discussed. Where possible, transparent model systems are used to visually track convection, settling, crystal growth, phase separation, agglomeration, vapor transport, diffusive flow, and polymer reactions. Materials studied include metals, alloys, salts, glasses, ceramics, and polymers. Specific technologies discussed include the General Purpose furnace used in the study of metals and crystal growth, the isothermal dendrite growth apparatus, the electromagnetic levitator/instrumented drop tube, the high temperature directional solidification furnace, the ceramics and polymer laboratories and the center's computing facilities.

  10. Second United States Microgravity Laboratory: One Year Report. Volume 1

    NASA Technical Reports Server (NTRS)

    Vlasse, M (Editor); McCauley, D. (Editor); Walker, C. (Editor)

    1998-01-01

    This document reports the one year science results for the important and highly successful Second United States Microgravity Laboratory (USML-2). The USML-2 mission consisted of a pressurized Spacelab module where the crew performed experiments. The mission also included a Glovebox where the crew performed additional experiments for the investigators. Together, about 36 major scientific experiments were performed, advancing the state of knowledge in fields such as fluid physics, solidification of metals, alloys, and semiconductors, combustion, and the growth of protein crystals. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive Space Station era.

  11. Second United States Microgravity Laboratory: One Year Report. Volume 2

    NASA Technical Reports Server (NTRS)

    Vlasse, M. (Editor); McCauley, D. (Editor); Walker, C. (Editor)

    1998-01-01

    This document reports the one year science results for the important and highly successful Second United States Microgravity Laboratory (USML-2). The USML-2 mission consisted of a pressurized Spacelab module where the crew performed experiments. The mission also included a Glovebox where the crew performed additional experiments for the investigators. Together, about 36 major scientific experiments were performed, advancing the state of knowledge in fields such as fluid physics, solidification of metals, alloys, and semiconductors, combustion, and the growth of protein crystals. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive Space Station era.

  12. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn; Frazier, Natalie; Lehman, John; Aicher, Winfried

    2013-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1000 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to support US PIs and their partners. The first of these Flight SCAs are being developed for investigations to support research in the areas of crystal growth and liquid phase sintering. Subsequent investigations are in various stages of development. US investigations will include a ground test program in order to distinguish the particular effects of the absence of gravity.

  13. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, S. E.; Lehman, J. R.; Frazier, N. C.

    2016-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400degC. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to support US PIs and their partners. The first of these Flight SCAs are being developed for investigations to support research in the areas of crystal growth and liquid phase sintering. Subsequent investigations are in various stages of development. US investigations will include a ground test program in order to distinguish the particular effects of the absence of gravity.

  14. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn; Frazier, Natalie; Lehman, John

    2016-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400?C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to support US PIs and their partners. The first of these Flight SCAs are being developed for investigations to support research in the areas of crystal growth and liquid phase sintering. Subsequent investigations are in various stages of development. US investigations will include a ground test program in order to distinguish the particular effects of the absence of gravity.

  15. The 1988-1989 NASA Space/Gravitational Biology Accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1990-01-01

    This report consists of individual technical summaries of research projects of NASA's space/gravitational biology program, for research conducted during the period May 1988 to April 1989. This program is concerned with using the unique characteristics of the space environment, particularly microgravity, as a tool to advance knowledge in the biological sciences; understanding how gravity has shaped and affected life on Earth; and understanding how the space environment affects both plant and animal species. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  16. The 1986-87 NASA space/gravitational biology accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1987-01-01

    This report consists of individual technical summaries of research projects of NASA's Space/Gravitational Biology program, for research conducted during the period January 1986 to April 1987. This program utilizes the unique characteristics of the space environment, particularly microgravity, as a tool to advance knowledge in the biological sciences; understanding how gravity has shaped and affected life on Earth; and understanding how the space environment affects both plant and animal species. The summaries for each project include a description of the research, a list of accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  17. The 1987-1988 NASA space/gravitational biology accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1988-01-01

    Individual technical summaries of research projects of the NASA Space/Gravitational Biology Program, for research conducted during the period January 1987 to April 1988 are presented. This Program is concerned with using the characteristics of the space environment, particularly microgravity, as a tool to advance knowledge in the biological sciences; understanding how gravity has shaped and affected life on earth; and understanding how the space environment affects both plant and animal species. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  18. Phase 1 research program overview

    NASA Technical Reports Server (NTRS)

    Uri, J. J.; Lebedev, O. N.

    2001-01-01

    The Phase 1 research program was unprecedented in its scope and ambitious in its objectives. The National Aeronautics and Space Administration committed to conducting a multidisciplinary long-duration research program on a platform whose capabilities were not well known, not to mention belonging to another country. For the United States, it provided the first opportunity to conduct research in a long-duration space flight environment since the Skylab program in the 1970's. Multiple technical as well as cultural challenges were successfully overcome through the dedicated efforts of a relatively small cadre of individuals. The program developed processes to successfully plan, train for and execute research in a long-duration environment, with significant differences identified from short-duration space flight science operations. Between August 1994 and June 1998, thousands of kilograms of research hardware was prepared and launched to Mir, and thousands of kilograms of hardware and data products were returned to Earth. More than 150 Principal Investigators from eight countries were involved in the program in seven major research disciplines: Advanced Technology; Earth Sciences; Fundamental Biology; Human Life Sciences; International Space Station Risk Mitigation; Microgravity; and Space Sciences. Approximately 75 long-duration investigations were completed on Mir, with additional investigations performed on the Shuttle flights that docked with Mir. The flight phase included the participation of seven US astronauts and 20 Russian cosmonauts. The successful completion of the Phase 1 research program not only resulted in high quality science return but also in numerous lessons learned to make the ISS experience more productive. The cooperation developed during the program was instrumental in its success. c2001 AIAA. Published by Elsevier Science Ltd.

  19. Phase 1 research program overview.

    PubMed

    Uri, J J; Lebedev, O N

    2001-01-01

    The Phase 1 research program was unprecedented in its scope and ambitious in its objectives. The National Aeronautics and Space Administration committed to conducting a multidisciplinary long-duration research program on a platform whose capabilities were not well known, not to mention belonging to another country. For the United States, it provided the first opportunity to conduct research in a long-duration space flight environment since the Skylab program in the 1970's. Multiple technical as well as cultural challenges were successfully overcome through the dedicated efforts of a relatively small cadre of individuals. The program developed processes to successfully plan, train for and execute research in a long-duration environment, with significant differences identified from short-duration space flight science operations. Between August 1994 and June 1998, thousands of kilograms of research hardware was prepared and launched to Mir, and thousands of kilograms of hardware and data products were returned to Earth. More than 150 Principal Investigators from eight countries were involved in the program in seven major research disciplines: Advanced Technology; Earth Sciences; Fundamental Biology; Human Life Sciences; International Space Station Risk Mitigation; Microgravity; and Space Sciences. Approximately 75 long-duration investigations were completed on Mir, with additional investigations performed on the Shuttle flights that docked with Mir. The flight phase included the participation of seven US astronauts and 20 Russian cosmonauts. The successful completion of the Phase 1 research program not only resulted in high quality science return but also in numerous lessons learned to make the ISS experience more productive. The cooperation developed during the program was instrumental in its success. c2001 AIAA. Published by Elsevier Science Ltd.

  20. Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions (InSPACE-2) Experiment in Microgravity S

    NASA Image and Video Library

    2009-01-30

    ISS018-E-024515 (30 Jan. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works with the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.

  1. Microgravity

    NASA Image and Video Library

    1999-01-01

    Gerard M. Faeth, University of Michigan, principal investigator in combustion science experiments, including Flow/Soot-Formation in Nonbuoyant Laminar Diffusion Flames, investigation of Laminar Jet Diffusion Flames in Microgravity: A Paradigm for Soot Processes in Turbulent Flames, and Soot Processes in Freely-Propagating Laminar Premixed Flames.

  2. NASA's Microgravity Technology Report: Summary of Activities 1997

    NASA Technical Reports Server (NTRS)

    Woodard, Dan

    1998-01-01

    The purpose of the 1997 NASA Microgravity Technology Report is to update the Microgravity Research Program's technology development policy and to present and assess current technology related activities and requirements identified within its research and technology disciplines.

  3. Exposure to microgravity for 30 days onboard Bion M1 caused muscle atrophy and impaired regeneration in murine femoral Quadriceps

    NASA Astrophysics Data System (ADS)

    Radugina, E. A.; Almeida, E. A. C.; Blaber, E.; Poplinskaya, V. A.; Markitantova, Y. V.; Grigoryan, E. N.

    2018-02-01

    Mechanical unloading in microgravity during spaceflight is known to cause muscular atrophy, changes in muscle fiber composition, gene expression, and reduction in regenerative muscle growth. Although some limited data exists for long-term effects of microgravity in human muscle, these processes have mostly been studied in rodents for short periods of time. Here we report on how long-term (30-day long) mechanical unloading in microgravity affects murine muscles of the femoral Quadriceps group. To conduct these studies we used muscle tissue from 6 microgravity mice, in comparison to habitat (7), and vivarium (14) ground control mice from the NASA Biospecimen Sharing Program conducted in collaboration with the Institute for Biomedical Problems of the Russian Academy of Sciences, during the Russian Bion M1 biosatellite mission in 2013. Muscle histomorphology from microgravity specimens showed signs of extensive atrophy and regenerative hypoplasia relative to ground controls. Specifically, we observed a two-fold decrease in the number of myonuclei, compared to vivarium and ground controls, and central location of myonuclei, low density of myofibers in the tissue, and of myofibrils within a fiber, as well as fragmentation and swelling of myofibers. Despite obvious atrophy, muscle regeneration nevertheless appeared to have continued after 30 days in microgravity as evidenced by thin and short newly formed myofibers. Many of them, however, showed evidence of apoptotic cells and myofibril degradation, suggesting that long-term unloading in microgravity may affect late stages of myofiber differentiation. Ground asynchronous and vivarium control animals demonstrated normal, well-developed tissue structure with sufficient blood and nerve supply and evidence of regenerative formation of new myofibers free of apoptotic nuclei. Regenerative activity of satellite cells in muscles was observed both in microgravity and ground control groups, using Pax7 and Myogenin immunolocalization, as well as Myogenin expression analysis. In addition, we have detected positive nuclear immunolocalization of c-Jun and c-Myc proteins indicating their sensitivity to changes in gravitational loading in a given model. In summary, long-term spaceflight in microgravity caused significant atrophy and degeneration of the femoral Quadriceps muscle group, and it may interfere with muscle regenerative processes by inducing apoptosis in newly-formed myofibrils during their differentiation phase.

  4. Discussion of Priorities

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Microgravity Science Division identifies four priority ratings for microgravity research and technology issues: 1) Critical; 2) Severely Limiting; 3) Enhancements; 4) Communication. Reduced gravity instabilities are critical, while severely limiting issues include phase separation, phase change, and flow through components. Enhancements are listed for passive phase separation and phase change. This viewgraph presentation also classifies microgravity issues as spaceflight, ground-based, or other for the time periods 2003-2008, 2009-2015, and beyond.

  5. Microgravity

    NASA Image and Video Library

    2001-04-25

    The arnual conference for the Educator Resource Center Network (ERCN) Coordinators was held at Glenn Research Center at Lewis Field in Cleveland, Ohio. The conference included participants from NASA's Educator Resource Centers located throughout the country. The Microgravity Science Division at Glenn sponsored a Microgravity Day for all the conference participants. Dr. Wil Roberson and Marge Lehky prepare a demonstration with the mini-drop tower. This image is from a digital still camera; higher resolution is not available.

  6. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Sandi Thompson of the National Center for Microgravity Research GRC makes a final adjustment to the drop package. This image is from a digital still camera; higher resolution is not available.

  7. International Workshop on Vibration Isolation Technology for Microgravity Science Applications

    NASA Technical Reports Server (NTRS)

    Lubomski, Joseph F. (Editor)

    1992-01-01

    The International Workshop on Vibration Isolation Technology for Microgravity Science Applications was held on April 23-25, 1991 at the Holiday Inn in Middleburg Heights, Ohio. The main objective of the conference was to explore vibration isolation requirements of space experiments and what level of vibration isolation could be provided both by present and planned systems on the Space Shuttle and Space Station Freedom and by state of the art vibration isolation technology.

  8. Mechanisms of combustion limits in premixed gas flames at microgravity

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1991-01-01

    A three-year experimental and theoretical research program on the mechanisms of combustion limits of premixed gasflames at microgravity was conducted. Progress during this program is identified and avenues for future studies are discussed.

  9. Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S. (Editor)

    1999-01-01

    This conference presents information to the scientific community on research results, future directions, and research opportunities in microgravity fluid physics and transport phenomena within NASA's microgravity research program. The conference theme is "The International Space Station." Plenary sessions provide an overview of the Microgravity Fluid Physics Program, the International Space Station and the opportunities ISS presents to fluid physics and transport phenomena researchers, and the process by which researchers may become involved in NASA's program, including information about the NASA Research Announcement in this area. Two plenary lectures present promising areas of research in electrohydrodynamics/electrokinetics in the movement of particles and in micro- and meso-scale effects on macroscopic fluid dynamics. Featured speakers in plenary sessions present results of recent flight experiments not heretofore presented. The conference publication consists of this book of abstracts and the full Proceedings of the 4th Microgravity Fluid Physics and Transport Phenomena Conference on CD-ROM, containing full papers presented at the conference (NASA/CP-1999-208526/SUPPL1).

  10. Studies of premixed laminar and turbulent flames at microgravity

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1993-01-01

    A two and one-half year experimental and theoretical research program on the properties of laminar and turbulent premixed gas flames at microgravity was conducted. Progress during this program is identified and avenues for future studies are discussed.

  11. Microgravity Acceleration Environment of the International Space Station (panel)

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Foster, William M.; Schafer, Craig P.

    2001-01-01

    This paper examines the microgravity environment provided to the early science experiments by the International Space Station vehicle which is under construction. The microgravity environment will be compared with predicted levels for this stage of assembly. Included are initial analyses of the environment and preliminary identification of some sources of accelerations. Features of the operations of the accelerometer instruments, the data processing system, and data dissemination to users are also described.

  12. A Geology Sampling System for Microgravity Bodies

    NASA Technical Reports Server (NTRS)

    Hood, Anthony; Naids, Adam

    2016-01-01

    Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are been discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a microgravity body. Currently the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.

  13. An innovative approach to the development of a portable unit for analytical flame characterization in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Dubinskiy, Mark A.; Kamal, Mohammed M.; Misra, Prabhaker

    1995-01-01

    The availability of manned laboratory facilities in space offers wonderful opportunities and challenges in microgravity combustion science and technology. In turn, the fundamentals of microgravity combustion science can be studied via spectroscopic characterization of free radicals generated in flames. The laser-induced fluorescence (LIF) technique is a noninvasive method of considerable utility in combustion physics and chemistry suitable for monitoring not only specific species and their kinetics, but it is also important for imaging of flames. This makes LIF one of the most important tools for microgravity combustion science. Flame characterization under microgravity conditions using LIF is expected to be more informative than other methods aimed at searching for effects like pumping phenomenon that can be modeled via ground level experiments. A primary goal of our work consisted in working out an innovative approach to devising an LIF-based analytical unit suitable for in-space flame characterization. It was decided to follow two approaches in tandem: (1) use the existing laboratory (non-portable) equipment and determine the optimal set of parameters for flames that can be used as analytical criteria for flame characterization under microgravity conditions; and (2) use state-of-the-art developments in laser technology and concentrate some effort in devising a layout for the portable analytical equipment. This paper presents an up-to-date summary of the results of our experiments aimed at the creation of the portable device for combustion studies in a microgravity environment, which is based on a portable UV tunable solid-state laser for excitation of free radicals normally present in flames in detectable amounts. A systematic approach has allowed us to make a convenient choice of species under investigation, as well as the proper tunable laser system, and also enabled us to carry out LIF experiments on free radicals using a solid-state laser tunable in the UV.

  14. Opportunities for research on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Phillips, Robert W.

    1992-01-01

    NASA has allocated research accommodations on Freedom (equipment, utilities, etc.) to the program offices that sponsor space-based research and development as follows: Space Science and Applications (OSSA)--52 percent, Commercial Programs (OCP)--28 percent, Aeronautics and Space Technology (OAST)--12 percent, and Space Flight (OSF)--8 percent. Most of OSSA's allocation will be used for microgravity and life science experiments; although OSSA's space physics, astrophysics, earth science and applications, and solar system exploration divisions also will use some of this allocation. Other Federal agencies have expressed an interest in using Space Station Freedom. They include the National Institutes of Health (NIH), U.S. Geological Survey, National Science Foundation, National Oceanic and Atmospheric Administration, and U.S. Departments of Agriculture and Energy. Payload interfaces with space station lab support equipment must be simple, and experiment packages must be highly contained. Freedom's research facilities will feature International Standard Payload Racks (ISPR's), experiment racks that are about twice the size of a Spacelab rack. ESA's Columbus lab will feature 20 racks, the U.S. lab will have 12 racks, and the Japanese lab will have 10. Thus, Freedom will have a total of 42 racks versus 8 for Space lab. NASA is considering outfitting some rack space to accommodate small, self-contained payloads similar to the Get-Away-Special canisters and middeck-locker experiment packages flown on Space Shuttle missions. Crew time allotted to experiments on Freedom at permanently occupied capability will average 25 minutes per rack per day, compared to six hours per rack per day on Spacelab missions. Hence, telescience--the remote operation of space-based experiments by researchers on the ground--will play a very important role in space station research. Plans for supporting life sciences research on Freedom focus on the two basic goals of NASA 's space life sciences program: to ensure the health, safety, and productivity of humans in space and to acquire fundamental knowledge of biological processes. Space-based research has already shown that people and plants respond the same way to the microgravity environment: they lose structure. However, the mechanisms by which they respond are different, and researchers do not yet know much about these mechanisms. Life science research accommodations on Freedom will include facilities for experiments designed to address this and other questions, in fields such as gravitational biology, space physiology, and biomedical monitoring and countermeasures research.

  15. An Overview of the Microgravity Science Glovebox (MSG) Facility and the Research Performed in the MSG on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie; Flores, Ginger N.

    2009-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG has been operating on the ISS since July 2002 and is currently located in the Columbus Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a workbench type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, +/- 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. In fact, the MSG has been used for over 5000 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, and life support technologies. MSG is an ideal platform for science investigations and research required to advance the technology readiness levels (TRLs) applicable to the Constellation Program. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, an overview of future investigations currently planned for operation in the MSG, and potential applications of MSG investigations that can provide useful data to the Constellation Program. In addition, this paper will address the role of the MSG facility in the ISS National Lab.

  16. STS-50 Columbia, Orbiter Vehicle (OV) 102, crew insignia

    NASA Image and Video Library

    1999-07-26

    STS050-S-001 (January 1992) --- Designed by the flight crew, the insignia for the United States Microgravity Laboratory (USML-1), captures a space shuttle traveling above Earth while trailing the USML banner. The orbiter is oriented vertically in a typical attitude for microgravity science and in this position represents the numeral 1 in the mission's abbreviated title. This flight represents the first in a series of USML flights on which the primary objective is microgravity science, planned and executed through the combined efforts of the United States of America's government, industry and academia. Visible in the payload bay are the Spacelab module, and the extended duration orbiter "cryo" pallet which will be making its first flight. The small g and Greek letter mu on the Spacelab module symbolize the microgravity environment being used for research in the areas of materials science and fluid physics. The large block letter U extends outside the patch perimeter, symbolizing the potential for the experiments on this flight to expand the current boundaries of knowledge in microgravity science. The Stars and Stripes of the USML block letters and the United States landmass in the Earth scene below reflect the crew's pride in the United States origin of all onboard experiments. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  17. Dropping In a Microgravity Environment (DIME) Contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Sandi Thompson of the National Center for Microgravity Research GRC makes a final adjustment to the drop package. This image is from a digital still camera; higher resolution is not available.

  18. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Here students from Sycamore High School in Cincinnati, Ohio, talk with Dr. Dennis Stocker, one of Glenn's lead microgravity scientists, about the uses of the drop tower. This image is from a digital still camera; higher resolution is not available.

  19. JSC Human Life Sciences Project

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication includes articles entitled: (1) E029 - Magnetic Resonance Imaging after Exposure to Microgravity; (2) E030 - Extended Studies of Pulmonary Function in Weightlessness; (3) E074 - Direct Measurement of the Initial Bone Response to Spaceflight in Humans; (4) E401 - The Effects of Microgravity on Skeletal Muscle Contractile Properties; (5) E407 - Effects of Microgravity on the Biochemical and Bioenergetic Characteristics of Human Skeletal Muscle; (6) E410 - Torso Rotation Experiment; (7) E920 - Effect of Weightlessness on Human Single Muscle Fiber Function; (8) E948 - Human Sleep, Circadian Rhythms and Performance in Space; (9) E963 - Microgravity Effects on Standardized Cognitive Performance Measures; and (10) E971 - Measurement of Energy Expenditures During Spaceflight Using the Doubly Labeled Water Method

  20. Reduced-Gravity Experiments Conducted to Help Bioreactor Development

    NASA Technical Reports Server (NTRS)

    Niederhaus, Charles E.; Nahra, Henry K.; Kizito, John P.

    2004-01-01

    The NASA Glenn Research Center and the NASA Johnson Space Center are collaborating on fluid dynamic investigations for a future cell science bioreactor to fly on the International Space Station (ISS). Project Manager Steven Gonda from the Cellular Biotechnology Program at Johnson is leading the development of the Hydrodynamic Focusing Bioreactor--Space (HFB-S) for use on the ISS to study tissue growth in microgravity. Glenn is providing microgravity fluid physics expertise to help with the design and evaluation of the HFB-S. These bioreactors are used for three-dimensional tissue culture, which cannot be done in ground-based labs in normal gravity. The bioreactors provide a continual supply of oxygen for cell growth, as well as periodic replacement of cell culture media with nutrients. The bioreactor must provide a uniform distribution of oxygen and nutrients while minimizing the shear stresses on the tissue culture.

  1. Material Science Experiments on Mir

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.

    1999-01-01

    This paper describes the microgravity materials experiments carried out on the Shuttle/Mir program. There were six experiments, all of which investigated some aspect of diffusivity in liquid melts. The Liquid Metal Diffusion (LMD) experiment investigated the diffusivity of molten Indium samples at 185 C using a radioactive tracer, In-114m. By monitoring two different gamma ray energies (190 keV and 24 keV) emitted by the samples it was possible to measure independently the diffusion rates in the bulk and at the surface of the samples. The Queens University Experiment in Liquid Diffusion (QUELD) was the furnace facility used to process 213 samples for the five other experiments. These experiments investigated the diffusion, ripening, crystal growth, and glass formation in metal, semiconductor, and glass samples. This facility had the capability to process samples in an isothermal or gradient configuration for varying periods of time at temperatures up to 900 C. Both the LMD and the QUELD furnaces were mounted on the Microgravity Isolation Mount (MIM) which provided isolation from g-jitter. All the microgravity experiments were supported by the Space Acceleration Measurement System (SAMS); a three head three axes acceleration monitoring system which measured and recorded the acceleration environment.

  2. Biotechnology Facility: An ISS Microgravity Research Facility

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  3. Microgravity

    NASA Image and Video Library

    2000-04-14

    Jimmy Grisham of the Microgravity Program Plarning Integration Office at NASA/Marshall Space Flight Center, demonstrates the classroom-size Microgravity Drop Tower Demonstrator. The apparatus provides 1/6 second of microgravity for small experiments. A video camera helps teachers observe what happens inside the package. This demonstration was at the April 2000 conference of the National Council of Teachers of Mathematics (NCTM) in Chicago. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  4. Principal Investigator Microgravity Services Role in ISS Acceleration Data Distribution

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin

    1999-01-01

    Measurement of the microgravity acceleration environment on the International Space Station will be accomplished by two accelerometer systems. The Microgravity Acceleration Measurement System will record the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime comprised of vehicle, crew, and equipment disturbances will be accomplished by the Space Acceleration Measurement System-II. Due to the dynamic nature of the microgravity environment and its potential to influence sensitive experiments, Principal Investigators require distribution of microgravity acceleration in a timely and straightforward fashion. In addition to this timely distribution of the data, long term access to International Space Station microgravity environment acceleration data is required. The NASA Glenn Research Center's Principal Investigator Microgravity Services project will provide the means for real-time and post experiment distribution of microgravity acceleration data to microgravity science Principal Investigators. Real-time distribution of microgravity environment acceleration data will be accomplished via the World Wide Web. Data packets from the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System-II will be routed from onboard the International Space Station to the NASA Glenn Research Center's Telescience Support Center. Principal Investigator Microgravity Services' ground support equipment located at the Telescience Support Center will be capable of generating a standard suite of acceleration data displays, including various time domain and frequency domain options. These data displays will be updated in real-time and will periodically update images available via the Principal Investigator Microgravity Services web page.

  5. Reproducible Crystal Growth Experiments in Microgravity Science Glovebox at the International Space Station (SUBSA Investigation)

    NASA Technical Reports Server (NTRS)

    Ostrogorsky, A.; Marin, C.; Volz, M. P.; Bonner, W. A.

    2005-01-01

    Solidification Using a Baffle in Sealed Ampoules (SUBSA) is the first investigation conducted in the Microgravity Science Glovebox (MSG) Facility at the International Space Station (ISS) Alpha. 8 single crystals of InSb, doped with Te and Zn, were directionally solidified in microgravity. The experiments were conducted in a furnace with a transparent gradient section, and a video camera, sending images to the earth. The real time images (i) helped seeding, (ii) allowed a direct measurement of the solidification rate. The post-flight characterization of the crystals includes: computed x-ray tomography, Secondary Ion Mass Spectroscopy (SIMS), Hall measurements, Atomic Absorption (AA), and 4 point probe analysis. For the first time in microgravity, several crystals having nearly identical initial transients were grown. Reproducible initial transients were obtained with Te-doped InSb. Furthermore, the diffusion controlled end-transient was demonstrated experimentally (SUBSA 02). From the initial transients, the diffusivity of Te and Zn in InSb was determined.

  6. Overview of the Microgravity Science Glovebox (MSG)

    NASA Technical Reports Server (NTRS)

    Wright, Mary Etta

    1999-01-01

    MSG is a third generation glovebox for Microgravity Science investigations: SpaceLab Glovebox (GBX); Middeck/MIR Gloveboxes (M/MGBX); and GBX and M/MGBX developed by Bradford Engineering (NL). Previous flights have demonstrated utility of glovebox facilities: Contained environment enables broader range of science experiments; Affords better control of video and photographic imaging (a prime data source); Provides better environmental control than cabin atmosphere; and Useful for contingency operations. MSG developed in response to demands for increased work volume, increased capabilities and additional resources. MSG is multi-user facility to support a wide range of small science and technology investigations: Fluid physics; Combustion science; Material science; Biotechnology (cell culturing and protein crystal growth); Space processing; Fundamental physics; and Technology demonstrations. Topics included in this viewgraph are: MSG capabilities; MSG hardware items; MSG, GSE, and OSE items; MSG development approach; and Science utilization.

  7. NBS (National Bureau of Standards): Materials measurements

    NASA Technical Reports Server (NTRS)

    Manning, J. R.

    1985-01-01

    NBS work for NASA in support of NASA's Microgravity Science and Applications Program under NASA Government Order H-27954B (Properties of Electronic Materials) covering the period April 1, 1984 to March 31, 1985 is described. The work has been carried out in three independent tasks: Task 1--Surface Tensions and Their Variations with Temperature and Impurities; Task 2--Convention during Unidirectional Solidification; Task 3--Measurement of High Temperature Thermodynamic Properties. The results for each task are given separately in the body of the report.

  8. [Some peculiar features of liquid supply to the root medium of plants growing in microgravity

    NASA Technical Reports Server (NTRS)

    Podol'skii, I. G.; Sychev, V. N.; Levinskikh, M. A.; Strugov, O. M.; Bingham, G. E.; Salisbury, F. B. (Principal Investigator)

    1998-01-01

    Sixteen point probes monitored moisture level in the root medium of the wheat plants grown in greenhouse SVET on the MIR/NASA space science program. The article outlines types of water migration in the absence of gravity. Hydrophysical characteristics of perspective root media have been explored. Results of the water supply monitoring and control in the course of experiment are reported. The authors put forward porous root media to facilitate water migration and aeration.

  9. Microgravity

    NASA Image and Video Library

    2000-05-05

    This computer graphic depicts the relative complexity of crystallizing large proteins in order to study their structures through x-ray crystallography. Insulin is a vital protein whose structure has several subtle points that scientists are still trying to determine. Large molecules such as insuline are complex with structures that are comparatively difficult to understand. For comparison, a sugar molecule (which many people have grown as hard crystals in science glass) and a water molecule are shown. These images were produced with the Macmolecule program. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  10. Microgravity

    NASA Image and Video Library

    2001-04-25

    The arnual conference for the Educator Resource Center Network (ERCN) Coordinators was held at Glenn Research Center at Lewis Field in Cleveland, Ohio. The conference included participants from NASA's Educator Resource Centers located throughout the country. The Microgravity Science Division at Glenn sponsored a Microgravity Day for all the conference participants. Twila Schneider of Infinity Technology, a NASA contractor, explains the basics of building a glovebox mockup from a copier paper box. This image is from a digital still camera; higher resolution is not available.

  11. OARE and SAMS on STS-94/MSL-1

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton; Hrovat, Kenneth; McPherson, Kevin; Tschen, Peter; DeLombard, Richard; Nati, Maurizio

    1998-01-01

    Four microgravity acceleration measurement instruments were included on MSL-1 to measure the accelerations and vibrations to which science experiments were exposed during their operation on the mission. The data were processed and presented to the principal investigators in a variety of formats to aid their assessment of the microgravity environment during their experiment operations. Two accelerometer systems managed by the NASA Lewis Research Center (LeRC) supported the MSL-1 mission: the Orbital Acceleration Research Experiment (OARE), and the Space Acceleration Measurement System (SAMS). In addition, the Microgravity Measurement Assembly (MMA) and the Quasi- Steady Acceleration Measurement (QSAM) system, both sponsored by the Microgravity Research Division, collected acceleration data as a part of the MSL-1 mission. The NIMA was funded and designed by the European Space Agency in the Netherlands (ESA/ESTEC), and the QSAM system was funded and designed by the German Space Agency (DLR). The Principal Investigator Microgravity Services (PIMS) project at the NASA Lewis Research Center (LeRC) supports Principal Investigators (PIs) of the Microgravity science community as they evaluate the effects of acceleration on their experiments. PIMS primary responsibility is to support NASA-sponsored investigators in the area of acceleration data analysis and interpretation. A mission summary report was prepared and published by PIMS in order to furnish interested experiment investigators with a guide for evaluating the acceleration environment during the MSL-1 mission.

  12. MSRR Rack Materials Science Research Rack

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn

    2017-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and the European Space Agency (ESA) for materials science investigations on the International Space Station (ISS). The MSRR is managed at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The MSRR facility subsystems were manufactured by Teledyne Brown Engineering (TBE) and integrated with the ESA/EADS-Astrium developed Materials Science Laboratory (MSL) at the MSFC Space Station Integration and Test Facility (SSITF) as part of the Systems Development Operations Support (SDOS) contract. MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module on the ISS. Materials science is an integral part of developing new, safer, stronger, more durable materials for use throughout everyday life. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved, and how they differ in the microgravity environment of space. To that end, the MSRR accommodates advanced investigations in the microgravity environment of the ISS for basic materials science research in areas such as solidification of metals and alloys. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials Science Laboratory (MSL) which accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample-Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400 C. Once an SCA is installed, the experiment can be run by automatic command or science conducted via telemetry commands from the ground. This facility is available to support materials science investigations through programs such as the US National Laboratory, Technology Development, NASA Research Announcements, and others. TBE and MSFC are currently developing NASA Sample Cartridge Assemblies (SCA's) with a planned availability for launch in 2017.

  13. Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This conference presents information to the scientific community on research results, future directions, and research opportunities in microgravity fluid physics and transport phenomena within NASA's microgravity research program. The conference theme is "The International Space Station." The conference publication consists of the full Proceedings of the 4th Microgravity Fluid Physics and Transport Phenomena Conference on CD-ROM, containing full papers presented at the conference. Ninety papers are presented in 21 technical sessions, and a special exposition session presents 32 posters describing the work of principal investigators new to NASA's program in this discipline. Eighty-eight papers and 25 posters are presented in their entirety on the CD-ROM.

  14. Formation of Carbon Nanotubes in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Alford, J. M.; Mason, G. R.; Feikema, D. A.

    2001-01-01

    Even though nanotube science has become one of the worlds most rapidly advancing areas of research, very little is known about the processes involved in nanotube synthesis. To study the formation of carbon nanotubes in an environment unhindered by the buoyancy induced flows generated by the high temperatures necessary to vaporize carbon and grow nanotubes, we have designed a miniature carbon arc apparatus that can produce carbon nanotubes under microgravity conditions. During the first phase of this project, we designed, built, and successfully tested the mini carbon arc in both 1g and 2.2 sec drop tower microgravity conditions. We have demonstrated that microgravity can eliminate the strong convective flows from the carbon arc and we have successfully produced single-walled carbon nanotubes in microgravity. We believe that microgravity processing will allow us to better understand the nanotube formation process and eventually allow us to grow nanotubes that are superior to ground-based production.

  15. Microgravity Active Vibration Isolation System on Parabolic Flights

    NASA Astrophysics Data System (ADS)

    Dong, Wenbo; Pletser, Vladimir; Yang, Yang

    2016-07-01

    The Microgravity Active Vibration Isolation System (MAIS) aims at reducing on-orbit vibrations, providing a better controlled lower gravity environment for microgravity physical science experiments. The MAIS will be launched on Tianzhou-1, the first cargo ship of the China Manned Space Program. The principle of the MAIS is to suspend with electro-magnetic actuators a scientific payload, isolating it from the vibrating stator. The MAIS's vibration isolation capability is frequency-dependent and a decrease of vibration of about 40dB can be attained. The MAIS can accommodate 20kg of scientific payload or sample unit, and provide 30W of power and 1Mbps of data transmission. The MAIS is developed to support microgravity scientific experiments on manned platforms in low earth orbit, in order to meet the scientific requirements for fluid physics, materials science, and fundamental physics investigations, which usually need a very quiet environment, increasing their chances of success and their scientific outcomes. The results of scientific experiments and technology tests obtained with the MAIS will be used to improve future space based research. As the suspension force acting on the payload is very small, the MAIS can only be operative and tested in a weightless environment. The 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, German Aerospace Centre) granted a flight opportunity to the MAIS experiment to be tested during its 27th parabolic flight campaign of September 2015 performed on the A310 ZERO-G aircraft managed by the French company Novespace, a subsidiary of the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency). The experiment results confirmed that the 6 degrees of freedom motion control technique was effective, and that the vibration isolation performance fulfilled perfectly the expectations based on theoretical analyses and simulations. This paper will present the design of the MAIS and the experiment results obtained during the parabolic flight campaign.

  16. The 1989-1990 NASA space biology accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1991-01-01

    Individual technical summaries of research projects on NASA's Space Biology Program for research conducted during the period May 1989 to April 1990 are presented. This program is concerned with using the unique characteristics of the space environment, particularly microgravity, as a tool to advance the following: (1) knowledge in the biological sciences; (2) understanding of how gravity has shaped and affected life on the Earth; and (3) understanding of how the space environment affects both plants and animals. The summaries for each project include a description of the research, a list of accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  17. Electrically Driven Thermal Management: Flight Validation, Experiment Development, Future Technologies

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2018-01-01

    Electrically Driven Thermal Management is an active research and technology development initiative incorporating ISS technology flight demonstrations (STP-H5), development of Microgravity Science Glovebox (MSG) flight experiment, and laboratory-based investigations of electrically based thermal management techniques. The program targets integrated thermal management for future generations of RF electronics and power electronic devices. This presentation reviews four program elements: i.) results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched in February 2017 ii.) development of the Electrically Driven Liquid Film Boiling Experiment iii.) two University based research efforts iv.) development of Oscillating Heat Pipe evaluation at Goddard Space Flight Center.

  18. Microgravity Outreach with Math Teachers

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Jimmy Grisham of the Microgravity Program Plarning Integration Office at NASA/Marshall Space Flight Center (MSFC), demonstrates the classroom-size Microgravity Drop Tower Demonstrator. This apparatus provides 1/6 second of microgravity for small experiments. A video camera helps teachers observe what happens inside the package. This demonstration was at the April 2000 conference of the National Council of Teachers of Mathematics (NCTM) in Chicago. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  19. Microgravity Outreach with Math Teachers

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Jimmy Grisham of the Microgravity Program Plarning Integration Office at NASA/Marshall Space Flight Center, demonstrates the classroom-size Microgravity Drop Tower Demonstrator. The apparatus provides 1/6 second of microgravity for small experiments. A video camera helps teachers observe what happens inside the package. This demonstration was at the April 2000 conference of the National Council of Teachers of Mathematics (NCTM) in Chicago. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  20. International Space Station Increment-2 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy

    2002-01-01

    This summary report presents the results of some of the processed acceleration data, collected aboard the International Space Station during the period of May to August 2001, the Increment-2 phase of the station. Two accelerometer systems were used to measure the acceleration levels during activities that took place during the Increment-2 segment. However, not all of the activities were analyzed for this report due to time constraints, lack of precise information regarding some payload operations and other station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments, which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of vehicle microgravity requirements verification. The International Space Station Increment-2 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and the vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2) The Space Acceleration Measurement System, which is a high frequency sensor, measures vibratory acceleration data in the range of 0.01 to 300 Hz. This summary report presents analysis of some selected quasisteady and vibratory activities measured by these accelerometers during Increment-2 from May to August 20, 2001.

  1. International Space Station Increment-3 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy; Grodsinksy, Carlos

    2002-01-01

    This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of August to December 2001. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-3. However, not all of the activities were analyzed for this report due to time constraint and lack of precise timeline information regarding some payload operations and station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification. The International Space Station Increment-3 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: (1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. (2) The Space Acceleration Measurement System, which is a high frequency sensor, measures vibratory acceleration data in the range of 0.01 to 400 Hz. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment-3 from August to December, 2001.

  2. Development and approach to low-frequency microgravity isolation systems

    NASA Technical Reports Server (NTRS)

    Grodsinsky, Carlos M.

    1990-01-01

    The low-gravity environment provided by space flight has afforded the science community a unique arena for the study of fundamental and technological sciences. However, the dynamic environment observed on space shuttle flights and predicted for Space Station Freedom has complicated the analysis of prior microgravity experiments and prompted concern for the viability of proposed space experiments requiring long-term, low-gravity environments. Thus, isolation systems capable of providing significant improvements to this random environment are being developed. The design constraints imposed by acceleration-sensitive, microgravity experiment payloads in the unique environment of space and a theoretical background for active isolation are discussed. A design is presented for a six-degree-of-freedom, active, inertial isolation system based on the baseline relative and inertial isolation techniques described.

  3. Sixth International Microgravity Combustion Workshop

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt (Compiler)

    2001-01-01

    This conference proceedings document is a compilation of papers presented orally or as poster displays to the Sixth International Microgravity Combustion Workshop held in Cleveland, Ohio on May 22-24, 2001. The purpose of the workshop is to present and exchange research results from theoretical and experimental work in combustion science using the reduced-gravity environment as a research tool. The results are contributed by researchers funded by NASA throughout the United States at universities, industry and government research agencies, and by researchers from international partner countries that are also participating in the microgravity combustion science research discipline. These research results are intended for use by public and private sector organizations for academic purposes, for the development of technologies needed for Human Exploration and Development of Space, and to improve Earth-bound combustion and fire-safety related technologies.

  4. Dropping In a Microgravity Environment (DIME) contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Here students from Sycamore High School in Cincinnati, Ohio, talk with Dr. Dennis Stocker, one of Glenn's lead microgravity scientists, about the uses of the drop tower. This image is from a digital still camera; higher resolution is not available.

  5. International cooperation in the field of space life sciences: European Space Agency's (ESA) perspectives.

    PubMed

    Oser, H

    1989-08-01

    International cooperation in life sciences, as in any other of the space research fields, takes place at two distinct levels: scientist to scientist, or agency to agency. This article is more concerned with the agency to agency level, which involves the arrangements made between two partners for the flying of experiments and/or hardware on space missions. International cooperation is inherent to the European Space Agency (ESA), since it consists of 13 member states (Austria, Belgium, Denmark, France, Ireland, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, United Kingdom, and West Germany) and one associated member, Finland. ESA also has special cooperative arrangements with Canada. Life sciences research in ESA is carried out within the Microgravity Research Program, an optional program to which member states (in this case all but Austria and Ireland) contribute "a la carte," and receive their "share" accordingly. Therefore, many of the activities are naturally linked to international arrangements within the member states, and also to arrangements between the agencies, with life sciences being the dominant activity between NASA and ESA.

  6. International Space Station -- Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Fluids and Combustion Facility (FCF) is a modular, multi-user facility to accommodate microgravity science experiments on board Destiny, the U.S. Laboratory Module for the International Space Station (ISS). The FCF will be a permanet facility aboard the ISS, and will be capable of accommodating up to ten science investigations per year. It will support the NASA Science and Technology Research Plans for the International Space Station (ISS) which require sustained systematic research of the effects of reduced gravity in the areas of fluid physics and combustion science. From left to right are the Combustion Integrated Rack, the Shared Rack, and the Fluids Integrated Rack. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo Credit: NASA/Marshall Space Flight Center)

  7. U.S. Materials Science on the International Space Station: Status and Plans

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Kelton, Kenneth F.; Matson, Douglas M.; Poirier, David R.; Trivedi, Rohit K.; Su, Ching-Hua; Volz, Martin P.; Voorhees, Peter W.

    2010-01-01

    This viewgraph presentation reviews the current status and NASA plans for materials science on the International Space Station. The contents include: 1) Investigations Launched in 2009; 2) DECLIC in an EXPRESS rack; 3) Dynamical Selection of Three-Dimensional Interface Patterns in Directional Solidification (DSIP); 4) Materials Science Research Rack (MSRR); 5) Materials Science Laboratory; 6) Comparison of Structure and Segregation in Alloys Directionally Solidified in Terrestrial and Microgravity Environments (MICAST/CETSOL); 7) Coarsening in Solid Liquid Mixtures 2 Reflight (CSLM 2R); 8) Crystal Growth Investigations; 9) Levitator Investigations; 10) Quasi Crystalline Undercooled Alloys for Space Investigation (QUASI); 11) The Role of Convection and Growth Competition in Phase Selection in Microgravity (LODESTARS); 12) Planned Additional Investigations; 13) SETA; 14) METCOMP; and 15) Materials Science NRA.

  8. Microgravity metal processing: from undercooled liquids to bulk metallic glasses

    PubMed Central

    Hofmann, Douglas C; Roberts, Scott N

    2015-01-01

    Bulk metallic glasses (BMGs) are a novel class of metal alloys that are poised for widespread commercialization. Over 30 years of NASA and ESA (as well as other space agency) funding for both ground-based and microgravity experiments has resulted in fundamental science data that have enabled commercial production. This review focuses on the history of microgravity BMG research, which includes experiments on the space shuttle, the ISS, ground-based experiments, commercial fabrication and currently funded efforts. PMID:28725709

  9. Desert Rats 2011 Mission Simulation: Effects of Microgravity Operational Modes on Fields Geology Capabilities

    NASA Technical Reports Server (NTRS)

    Bleacher, Jacob E.; Hurtado, J. M., Jr.; Meyer, J. A.

    2012-01-01

    Desert Research and Technology Studies (DRATS) is a multi-year series of NASA tests that deploy planetary surface hardware and exercise mission and science operations in difficult conditions to advance human and robotic exploration capabilities. DRATS 2011 (Aug. 30-Sept. 9, 2011) tested strategies for human exploration of microgravity targets such as near-Earth asteroids (NEAs). Here we report the crew perspective on the impact of simulated microgravity operations on our capability to conduct field geology.

  10. Spacelab

    NASA Image and Video Library

    1994-07-08

    This is a Space Shuttle Columbia (STS-65) onboard photo of the second International Microgravity Laboratory (IML-2) in the cargo bay with Earth in the background. Mission objectives of IML-2 were to conduct science and technology investigations that required the low-gravity environment of space, with emphasis on experiments that studied the effects of microgravity on materials processes and living organisms. Materials science and life sciences are two of the most exciting areas of microgravity research because discoveries in these fields could greatly enhance the quality of life on Earth. If the structure of certain proteins can be determined by examining high-quality protein crystals grown in microgravity, advances can be made to improve the treatment of many human diseases. Electronic materials research in space may help us refine processes and make better products, such as computers, lasers, and other high-tech devices. The 14-nation European Space Agency (ESA), the Canadian Space Agency (SCA), the French National Center for Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DARA/DLR), and the National Space Development Agency of Japan (NASDA) participated in developing hardware and experiments for the IML missions. The missions were managed by NASA's Marshall Space Flight Center. The Orbiter Columbia was launched from the Kennedy Space Center on July 8, 1994 for the IML-2 mission.

  11. g-LIMIT: A Vibration Isolation System for the Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.

    1998-01-01

    For many microgravity science experiments using the Microgravity Science Glovebox (MSG), the ambient acceleration environment will exceed desirable levels. To provide a more quiescent acceleration environment, a vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being designed. g-LIMIT is the next generation of technology developed for and demonstrated by STABLE on the USML-2 mission in October 1995. Although g-LIMIT is a sub-rack level isolation system that can be used in a variety of applications, g-LIMIT is uniquely optimized for MSG implementation. Standard MSG structural and umbilical interfaces will be used so that the isolation mount is transparent to the user with no additional accommodation requirements. g-LIMIT consists of three integrated isolator modules, each of which is comprised of a dual axis actuator, two axes of acceleration sensing, two axes of position sensing, control electronics, and data transmission capabilities in a minimum-volume package. In addition, this system provides the unique capability for measuring absolute acceleration of the experiment independent of accelerometers as a by-product of the control system and will have the capability of generating pristine accelerations to enhance experiment operations. g-LIMIT is scheduled for flight during the UF-2 mission and will be available to glovebox investigators immediately after characterization testing.

  12. 14 CFR 1275.101 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., biology, engineering and physical sciences (physics and chemistry). (h) Inquiry means the assessment of..., social sciences, statistics, and biological and physical research (ground based and microgravity...

  13. Biological and Medical Experiments on the Space Shuttle, 1981 - 1985

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor); Dufour, Patricia A. (Editor)

    1986-01-01

    This volume is the first in a planned series of reports intended to provide a comprehensive record of all the biological and medical experiments and samples flown on the Space Shuttle. Experiments described have been conducted over a five-year period, beginning with the first plant studies conducted on STS-2 in November 1981, and extending through STS 61-C, the last mission to fly before the tragic Challenger accident of January 1986. Experiments were sponsored within NASA not only by the Life Sciences Division of the Office of Space Science and Applications, but also by the Shuttle Student Involvement Program (SSIP) and the Get Away Special (GAS) Program. Independent medical studies were conducted as well on the Shuttle crew under the auspices of the Space Biomedical Research Institute at Johnson Space Center. In addition, cooperative agreements between NASA and foreign government agencies led to a number of independent experiments and also paved the way for the joint US/ESA Spacelab 1 mission and the German (DFVLR) Spacelab D-1. Experiments included: (1) medically oriented studies of the crew aimed at identifying, preventing, or treating health problems due to space travel; (2) projects to study morphological, physiological, or behavioral effects of microgravity on animals and plants; (3) studies of the effects of microgravity on cells and tissues; and (4) radiation experiments monitoring the spacecraft environment with chemical or biological dosimeters or testing radiation effects on simple organisms and seeds.

  14. Applied virtual reality in aerospace design

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P.

    1995-01-01

    A virtual reality (VR) applications program has been under development at the Marshall Space Flight Center (MSFC) since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. Before VR can be used with confidence in a particular application, VR must be validated for that class of applications. For that reason, specific validation studies for selected classes of applications have been proposed and are currently underway. These include macro-ergonomic 'control room class' design analysis, Spacelab stowage reconfiguration training, a full-body microgravity functional reach simulator, a gross anatomy teaching simulator, and micro-ergonomic design analysis. This paper describes the MSFC VR Applications Program and the validation studies.

  15. Regulatory physiology discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the Regulatory Physiology discipline of the Space Physiology and Countermeasures Program is twofold. First, to determine and study how microgravity and associated factors of space flight affect the regulatory mechanisms by which humans adapt and achieve homeostasis and thereby regulate their ability to respond to internal and external signals; and, second, to study selected physiological systems that have been demonstrated to be influenced by gravity. The Regulatory Physiology discipline, as defined here, is composed of seven subdisciplines: (1) Circadian Rhythms, (2) Endocrinology, (3) Fluid and Electrolyte Regulation, (4) Hematology, (5) Immunology, (6) Metabolism and Nutrition, and (7) Temperature Regulation. The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the area of regulatory physiology. It covers the research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in regulatory physiology. It contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.

  16. 14 CFR 1201.200 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... development in astrophysics, life sciences, Earth sciences and applications, solar system exploration, space physics, communications, microgravity science and applications, and communications and information systems... computational and experimental fluid dynamics and aerodynamics; fluid and thermal physics; rotorcraft, powered...

  17. 14 CFR § 1201.200 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... development in astrophysics, life sciences, Earth sciences and applications, solar system exploration, space physics, communications, microgravity science and applications, and communications and information systems... computational and experimental fluid dynamics and aerodynamics; fluid and thermal physics; rotorcraft, powered...

  18. 14 CFR 1201.200 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... development in astrophysics, life sciences, Earth sciences and applications, solar system exploration, space physics, communications, microgravity science and applications, and communications and information systems... computational and experimental fluid dynamics and aerodynamics; fluid and thermal physics; rotorcraft, powered...

  19. 14 CFR 1203.902 - Membership.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Committee membership: (a) Associate Administrator for: (1) Aero-Space Technology. (2) Space Science. (3) Space Flight. (4) External Relations. (5) Life and Microgravity Sciences and Applications. (b) Associate...

  20. 14 CFR § 1275.101 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., biology, engineering and physical sciences (physics and chemistry). (h) Inquiry means the assessment of..., psychology, social sciences, statistics, and biological and physical research (ground based and microgravity...

  1. 14 CFR 1203.902 - Membership.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Committee membership: (a) Associate Administrator for: (1) Aero-Space Technology. (2) Space Science. (3) Space Flight. (4) External Relations. (5) Life and Microgravity Sciences and Applications. (b) Associate...

  2. 14 CFR 1203.902 - Membership.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Committee membership: (a) Associate Administrator for: (1) Aero-Space Technology. (2) Space Science. (3) Space Flight. (4) External Relations. (5) Life and Microgravity Sciences and Applications. (b) Associate...

  3. 14 CFR 1203.902 - Membership.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Committee membership: (a) Associate Administrator for: (1) Aero-Space Technology. (2) Space Science. (3) Space Flight. (4) External Relations. (5) Life and Microgravity Sciences and Applications. (b) Associate...

  4. Space Studies Board, 1994

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This 1994 report of the Space Studies Board of the National Research Council summarizes the charter and organization of the board, activities and membership, major and short reports, and congressional testimony. A cumulative bibliography of the Space Studies (formerly Space Science) Board and its committees is provided. An appendix contains reports of the panel to review Earth Observing System Data and Information System (EOSDIS) plans. Major reports cover scientific opportunities in the human exploration of space, the dichotomy between funding and effectiveness in space physics, an integrated strategy for the planetary sciences for the years 1995-2010, and Office of Naval Research (ONR) research opportunities in upper atmospheric sciences. Short reports cover utilization of the space station, life and microgravity sciences and the space station program, Space Infrared Telescope Facility and the Stratospheric Observatory for Infrared Astronomy, and the Advanced X-ray Astrophysics Facility and Cassini Saturn Probe.

  5. 1999 NCCS Highlights

    NASA Technical Reports Server (NTRS)

    Bennett, Jerome (Technical Monitor)

    2002-01-01

    The NASA Center for Computational Sciences (NCCS) is a high-performance scientific computing facility operated, maintained and managed by the Earth and Space Data Computing Division (ESDCD) of NASA Goddard Space Flight Center's (GSFC) Earth Sciences Directorate. The mission of the NCCS is to advance leading-edge science by providing the best people, computers, and data storage systems to NASA's Earth and space sciences programs and those of other U.S. Government agencies, universities, and private institutions. Among the many computationally demanding Earth science research efforts supported by the NCCS in Fiscal Year 1999 (FY99) are the NASA Seasonal-to-Interannual Prediction Project, the NASA Search and Rescue Mission, Earth gravitational model development efforts, the National Weather Service's North American Observing System program, Data Assimilation Office studies, a NASA-sponsored project at the Center for Ocean-Land-Atmosphere Studies, a NASA-sponsored microgravity project conducted by researchers at the City University of New York and the University of Pennsylvania, the completion of a satellite-derived global climate data set, simulations of a new geodynamo model, and studies of Earth's torque. This document presents highlights of these research efforts and an overview of the NCCS, its facilities, and its people.

  6. Behavior of stem cells under outer-space microgravity and ground-based microgravity simulation.

    PubMed

    Zhang, Cui; Li, Liang; Chen, Jianling; Wang, Jinfu

    2015-06-01

    With rapid development of space engineering, research on life sciences in space is being conducted extensively, especially cellular and molecular studies on space medicine. Stem cells, undifferentiated cells that can differentiate into specialized cells, are considered a key resource for regenerative medicine. Research on stem cells under conditions of microgravity during a space flight or a ground-based simulation has generated several excellent findings. To help readers understand the effects of outer space and ground-based simulation conditions on stem cells, we reviewed recent studies on the effects of microgravity (as an obvious environmental factor in space) on morphology, proliferation, migration, and differentiation of stem cells. © 2015 International Federation for Cell Biology.

  7. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Here, students from Sycamore High School in Cincinnati, Ohio, help a NASA technician prepare their experiment. This image is from a digital still camera; higher resolution is not available.

  8. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Students from Sycamore High School in Cincinnati, Ohio (girls), and the COSI Academy, Columbus, Ohio (boys), participated. This image is from a digital still camera; higher resolution is not available.

  9. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Meredith Mendenhall of Sycamore High School, Cincinnati, Ohio, flips on a tape recorder in preparation for a drop. This image is from a digital still camera; higher resolution is not available.

  10. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Here, students are briefed by NASA engineer Daniel Dietrich at the top of the drop tower. This image is from a digital still camera; higher resolution is not available.

  11. Survey of Active Vibration Isolation Systems for Microgravity Applications

    NASA Technical Reports Server (NTRS)

    Grodsinsky, Carlos M.; Whorton, Mark S.

    2000-01-01

    In view of the utility of space vehicles as orbiting science laboratories, the need for vibration isolation systems for acceleration-sensitive experiments has gained increasing visibility. To date, three active microgravity vibration isolation systems have successfully been demonstrated in flight. A tutorial discussion of the microgravity vibration isolation problem, including a description of the acceleration environment of the International Space Station and attenuation requirements, as well as a comparison or the dynamics of passive isolation, active rack-level isolation, and active payload-level isolation is provided. The flight test results of the three demonstrated systems: suppression of transient accelerations by levitation, the microgravity vibration isolation mount, and the active rack isolation system are surveyed.

  12. Microgravity isolation system design: A modern control synthesis framework

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.

    1994-01-01

    Manned orbiters will require active vibration isolation for acceleration-sensitive microgravity science experiments. Since umbilicals are highly desirable or even indispensable for many experiments, and since their presence greatly affects the complexity of the isolation problem, they should be considered in control synthesis. In this paper a general framework is presented for applying extended H2 synthesis methods to the three-dimensional microgravity isolation problem. The methodology integrates control and state frequency weighting and input and output disturbance accommodation techniques into the basic H2 synthesis approach. The various system models needed for design and analysis are also presented. The paper concludes with a discussion of a general design philosophy for the microgravity vibration isolation problem.

  13. Microgravity isolation system design: A modern control synthesis framework

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.

    1994-01-01

    Manned orbiters will require active vibration isolation for acceleration-sensitive microgravity science experiments. Since umbilicals are highly desirable or even indispensable for many experiments, and since their presence greatly affects the complexity of the isolation problem, they should be considered in control synthesis. A general framework is presented for applying extended H2 synthesis methods to the three-dimensional microgravity isolation problem. The methodology integrates control and state frequency weighting and input and output disturbance accommodation techniques into the basic H2 synthesis approach. The various system models needed for design and analysis are also presented. The paper concludes with a discussion of a general design philosophy for the microgravity vibration isolation problem.

  14. An Overview of the NASA Sounding Rocket and Balloon Programs

    NASA Technical Reports Server (NTRS)

    Eberspeaker, Philip J.; Smith, Ira S.

    2003-01-01

    The U.S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 50 to 60 missions per year in support of the NASA scientific community. These missions support investigations sponsored by NASA's Offices of Space Science, Life and Microgravity Sciences & Applications, and Earth Science. The Goddard Space Flight Center has management and implementation responsibility for these programs. The NASA Sounding Rockets Program provides the science community with payload development support, environmental testing, launch vehicles, and launch operations from fixed and mobile launch ranges. Sounding rockets continue to provide a cost-effective way to make in situ observations from 50 to 1500 km in the near-earth environment and to uniquely cover the altitude regime between 50 km and 130 km above the Earth's surface. New technology efforts include GPS payload event triggering, tailored trajectories, new vehicle configuration development to expand current capabilities, and the feasibility assessment of an ultra high altitude sounding rocket vehicle. The NASA Balloon Program continues to make advancements and developments in its capabilities for support of the scientific ballooning community. The Long Duration Balloon (LDB) is capable of providing flight durations in excess of two weeks and has had many successful flights since its development. The NASA Balloon Program is currently engaged in the development of the Ultra Long Duration Balloon (ULDB), which will be capable of providing flight times up to 100-days. Additional development efforts are focusing on ultra high altitude balloons, station keeping techniques and planetary balloon technologies.

  15. From Undersea to Outer Space: The STS-40 Jellyfish Experiment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an educational production featuring 'Ari', animated jellyfish who recounts his journey into space. Jellyfish were flown aboard the shuttle to study the effects of microgravity on living organisms. Topics Ari explores are: microgravity, life sciences, similarities between jellyfish and humans, and the life cycle and anatomy of a jellyfish.

  16. Optimal Control Design using an H(sub 2) Method for the Glovebox Integrated Microgravity Isolation Technology (G-Limit)

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip C.; Hampton, R. David

    2002-01-01

    The acceleration environment on the International Space Station (ISS) will likely exceed the requirements of many micro-gravity experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) is being built by the NASA Marshall Space Flight Center to attenuate the nominal acceleration environment and provide some isolation for microgravity science experiments. G-LIMIT uses Lorentz (voice-coil) magnetic actuators to isolate a platform for mounting science payloads from the nominal acceleration environment. The system utilizes payload acceleration, relative position, and relative orientation measurements in a feedback controller to accomplish the vibration isolation task. The controller provides current commands to six magnetic actuators, producing the required experiment isolation from the ISS acceleration environment. This paper presents the development of a candidate control law to meet the acceleration attenuation requirements for the g-LIMIT experiment platform. The controller design is developed using linear optimal control techniques for frequency-weighted H(sub 2) norms. Comparison of the performance and robustness to plant uncertainty for this control design approach is included in the discussion.

  17. Frequency Weighted H2 Control Design for the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT)

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip C.; Hampton, R. David

    2004-01-01

    The acceleration environment on the International Space Station (ISS) exceeds the requirements of many microgravity experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) has been built by the NASA Marshall Space Flight Center to attenuate the nominal acceleration environment and provide some isolation for microgravity science experiments. The g-LIMIT uses Lorentz (voice-coil) magnetic actuators to isolate a platform, for mounting science payloads, from the nominal acceleration environment. The system utilizes payload-acceleration, relative-position, and relative-orientation measurements in a feedback controller to accomplish the vibration isolation task. The controller provides current commands to six magnetic actuators, producing the required experiment isolation from the ISS acceleration environment. The present work documents the development of a candidate control law to meet the acceleration attenuation requirements for the g-LIMIT experiment platform. The controller design is developed using linear optimal control techniques for frequency-weighted H2 norms. Comparison of performance and robustness to plant uncertainty for this control design approach is included in the discussion. System performance is demonstrated in the presence of plant modeling error.

  18. Optimal Control Design Using an H2 Method for the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT)

    NASA Technical Reports Server (NTRS)

    Calhoun, Phillip C.; Hampton, R. David; Whorton, Mark S.

    2001-01-01

    The acceleration environment on the International Space Station (ISS) will likely exceed the requirements of many micro-gravity experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) is being built by the NASA Marshall Space Flight Center to attenuate the nominal acceleration environment and provide some isolation for micro-gravity science experiments. G-LIMIT uses Lorentz (voice-coil) magnetic actuators to isolate a platform for mounting science payloads from the nominal acceleration environment. The system utilizes payload acceleration, relative position, and relative orientation measurements in a feedback controller to accomplish the vibration isolation task. The controller provides current command to six magnetic actuators, producing the required experiment isolation from the ISS acceleration environment. This paper presents the development of a candidate control law to meet the acceleration attenuation requirements for the g-LIMIT experiment platform. The controller design is developed using linear optimal control techniques for both frequency-weighted H(sub 2) and H(sub infinity) norms. Comparison of the performance and robustness to plant uncertainty for these two optimal control design approaches are included in the discussion.

  19. Dropping In a Microgravity Environment (DIME) contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Here Carol Hodanbosi of the National Center for Microgravity Research and Jose Carrion, a lab mechanic with AKAC, prepare a student experiment package (inside the silver-colored frame) inside the orange-colored drag shield that encloses all experiment hardware. This image is from a digital still camera; higher resolution is not available.

  20. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Here Carol Hodanbosi of the National Center for Microgravity Research and Jose Carrion, a lab mechanic with AKAC, prepare a student experiment package (inside the silver-colored frame) inside the orange-colored drag shield that encloses all experiment hardware. This image is from a digital still camera; higher resolution is not available.

  1. 14 CFR § 1203.902 - Membership.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Committee membership: (a) Associate Administrator for: (1) Aero-Space Technology. (2) Space Science. (3) Space Flight. (4) External Relations. (5) Life and Microgravity Sciences and Applications. (b) Associate...

  2. A New Direction for the NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for the flight research environment. A summary will explain the concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program.

  3. Fifth International Microgravity Combustion Workshop

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt (Compiler)

    1999-01-01

    This conference proceedings document is a compilation of 120 papers presented orally or as poster displays to the Fifth International Microgravity Combustion Workshop held in Cleveland, Ohio on May 18-20, 1999. The purpose of the workshop is to present and exchange research results from theoretical and experimental work in combustion science using the reduced-gravity environment as a research tool. The results are contributed by researchers funded by NASA throughout the United States at universities, industry and government research agencies, and by researchers from at least eight international partner countries that are also participating in the microgravity combustion science research discipline. These research results are intended for use by public and private sector organizations for academic purposes, for the development of technologies needed for the Human Exploration and Development of Space, and to improve Earth-bound combustion and fire-safety related technologies.

  4. Microgravity Fluids for Biology, Workshop

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  5. Material Science

    NASA Image and Video Library

    2003-01-22

    Video images sent to the ground allow scientists to watch the behavior of the bubbles as they control the melting and freezing of the material during the Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox aboard the International Space Station. While the investigation studies the way that metals behave at the microscopic scale on Earth -- and how voids form -- the experiment uses a transparent material called succinonitrile that behaves like a metal to study this problem. The bubbles do not float to the top of the material in microgravity, so they can study their interactions.

  6. Polymeric materials science in the microgravity environment

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.

    1989-01-01

    The microgravity environment presents some interesting possibilities for the study of polymer science. Properties of polymeric materials depend heavily on their processing history and environment. Thus, there seem to be some potentially interesting and useful new materials that could be developed. The requirements for studying polymeric materials are in general much less rigorous than those developed for studying metals, for example. Many of the techniques developed for working with other materials, including heat sources, thermal control hardware and noncontact temperature measurement schemes should meet the needs of the polymer scientist.

  7. Summary Report of Mission Acceleration Measurements for STS-78. Launched June 20, 1996

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Hrovat, Kenneth; McPherson, Kevin M.; Moskowitz, Milton E.; Rogers, Melissa J. B.

    1997-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-78 mission using accelerometers from three different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System and the Microgravity Measurement Assembly. The quasi-steady environment was also calculated in near real-time during the mission by the Microgravity Analysis Workstation. The Orbital Acceleration Research Experiment provided investigators with real-time quasi-steady acceleration measurements. The Space Acceleration Measurement System recorded higher frequency data on-board for post-mission analysis. The Microgravity Measurement Assembly provided investigators with real-time quasi-steady and higher frequency acceleration measurements. The Microgravity Analysis Workstation provided calculation of the quasi-steady environment. This calculation was presented to the science teams in real-time during the mission. The microgravity environment related to several different Orbiter, crew and experiment operations is presented and interpreted in this report. A radiator deploy, the Flight Control System checkout, and a vernier reaction control system reboost demonstration had minimal effects on the acceleration environment, with excitation of frequencies in the 0.01 to 10 Hz range. Flash Evaporator System venting had no noticeable effect on the environment while supply and waste water dumps caused excursions of 2 x lO(exp -6) to 4 x 10(exp -6) g in the Y(sub b) and Z(sub b) directions. Crew sleep and ergometer exercise periods can be clearly seen in the acceleration data, as expected. Accelerations related to the two Life Science Laboratory Equipment Refrigerator/Freezers were apparent in the data as are accelerations caused by the Johnson Space Center Projects Centrifuge. As on previous microgravity missions, several signals are present in the acceleration data for which a source has not been identified. The causes of these accelerations are under investigation.

  8. Moon and Mars gravity environment during parabolic flights: a new European approach to prepare for planetary exploration

    NASA Astrophysics Data System (ADS)

    Pletser, Vladimir; Clervoy, Jean-Fran; Gharib, Thierry; Gai, Frederic; Mora, Christophe; Rosier, Patrice

    Aircraft parabolic flights provide repetitively up to 20 seconds of reduced gravity during ballis-tic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The European Space Agency (ESA) has organized since 1984 more than fifty parabolic flight campaigns for microgravity research experiments utilizing six different airplanes. More than 600 experiments were conducted spanning several fields in Physical Sciences and Life Sciences, namely Fluid Physics, Combustion Physics, Ma-terial Sciences, fundamental Physics and Technology tests, Human Physiology, cell and animal Biology, and technical tests of Life Sciences instrumentation. Since 1997, ESA uses the Airbus A300 'Zero G', the largest airplane in the world used for this type of experimental research flight and managed by the French company Novespace, a subsidiary of the French space agency CNES. From 2010 onwards, ESA and Novespace will offer the possibility of flying Martian and Moon parabolas during which reduced gravity levels equivalent to those on the Moon and Mars will be achieved repetitively for periods of more than 20 seconds. Scientists are invited to submit experiment proposals to be conducted at these partial gravity levels. This paper presents the technical capabilities of the Airbus A300 Zero-G aircraft used by ESA to support and conduct investigations at Moon-, Mars-and micro-gravity levels to prepare research and exploration during space flights and future planetary exploration missions. Some Physiology and Technology experiments performed during past ESA campaigns at 0, 1/6 an 1/3 g are presented to show the interest of this unique research tool for microgravity and partial gravity investigations.

  9. New Technologies Being Developed for the Thermophoretic Sampling of Smoke Particulates in Microgravity

    NASA Technical Reports Server (NTRS)

    Sheredy, William A.

    2003-01-01

    The Characterization of Smoke Particulate for Spacecraft Fire Detection, or Smoke, microgravity experiment is planned to be performed in the Microgravity Science Glovebox Facility on the International Space Station (ISS). This investigation, which is being developed by the NASA Glenn Research Center, ZIN Technologies, and the National Institute of Standards and Technologies (NIST), is based on the results and experience gained from the successful Comparative Soot Diagnostics experiment, which was flown as part of the USMP-3 (United States Microgravity Payload 3) mission on space shuttle flight STS-75. The Smoke experiment is designed to determine the particle size distributions of the smokes generated from a variety of overheated spacecraft materials and from microgravity fires. The objective is to provide the data that spacecraft designers need to properly design and implement fire detection in spacecraft. This investigation will also evaluate the performance of the smoke detectors currently in use aboard the space shuttle and ISS for the test materials in a microgravity environment.

  10. Microgravity: New opportunities to facilitate biotechnology development

    NASA Astrophysics Data System (ADS)

    Johnson, Terry; Todd, Paul; Stodieck, Louis S.

    1996-03-01

    New opportunities exist to use the microgravity environment to facilitate biotechnology development. BioServe Space Technologies Center for the Commercial Development of Space offers access to microgravity environments for companies who wish to perform research or develop products in three specific life-science fields: Biomedical and Pharmaceutical Research, Biotechnology and Bioprocessing Research, and Agricultural and Environmental Research. Examples of each include physiological testing of new pharmaceutical countermeasures against symptoms that are exaggerated in space flight, crystallization and testing of novel, precompetitive biopharmaceutical substances in a convection-free environment, and closed life-support system product development.

  11. Neuroscience discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Over the past two decades, NASA's efforts in the neurosciences have developed into a program of research directed at understanding the acute changes that occur in the neurovestibular and sensorimotor systems during short-duration space missions. However, the proposed extended-duration flights of up to 28 days on the Shuttle orbiter and 6 months on Space Station Freedom, a lunar outpost, and Mars missions of perhaps 1-3 years in space, make it imperative that NASA's Life Sciences Division begin to concentrate research in the neurosciences on the chronic effects of exposure to microgravity on the nervous system. Major areas of research will be directed at understanding (1) central processing, (2) motor systems, (3) cognitive/spatial orientation, and (4) sensory receptors. The purpose of the Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of neurosciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of nervous system function. It contains a general plan that will be used by NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.

  12. International Space Station Increment-6/8 Microgravity Environment Summary Report November 2002 to April 2004

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; Reckart, Timothy

    2006-01-01

    This summary report presents the analysis results of some of the processed acceleration data measured aboard the International Space Station during the period of November 2002 to April 2004. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-6/8. However, not all of the activities during that period were analyzed in order to keep the size of the report manageable. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System to support microgravity science experiments that require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification as well as in support of the International Space Station support cadre. The International Space Station Increment-6/8 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1. The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2. The Space Acceleration Measurement System measures vibratory acceleration data in the range of 0.01 to 400 Hz. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment-6/8 from November 2002 to April 2004.

  13. How to Make a Microgravity Drop Tower for Your Classroom

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Hall, Nancy R.

    2014-01-01

    Microgravity is quite often seen as exotic and special as astronauts float around in the International Space Station, eating MM's in mid-air, and performing science experiments, all done seemingly without gravity being present. Surprisingly enough, up on the ISS there is about 90 of the same gravity that holds you to the floor in your classroom or museum exhibit hall. Participate in this session and you will understand that and more. You can use simple devices to demonstrate microgravity conditions in your classroom or museum exhibit hall. This will be the same microgravity condition that astronauts experience on the ISS, just for a much shorter period of time. Contrary to popular opinion of some people, microgravity is NOT caused by zero gravity up there. Microgravity on the ISS is due to free fall within the Earth's gravitational field. That means you can drop an item in free fall in your classroom and museum exhibit hall and that item will experience microgravity. In this session, a short theory segment will explain and reinforce these concepts so that you may explain to others. The session will concentrate on showing the session participants how to make an effective, but inexpensive, drop tower for use in the classroom. Such a drop tower may be used to reinforce classroom instruction in physics and forces motion as well as serve as a platform for student investigations, classroom competitions, and student science or technology fair entries. Session participants will build their own simple microgravity experiment and operate them in a drop tower, compare results, and modify their experiment based on results. This material is also useful for public demonstrations at school open houses, travelling museum exhibits, fixed museum exhibits, and independent student projects or experiments. These free fall concepts also connect terrestrial demonstrations with planetary moon motion, comet trajectory, and more.

  14. Behavioral Adaptations of Female Mice on the International Space Station

    NASA Technical Reports Server (NTRS)

    Strieter, I.; Moyer, E. L.; Lowe, M.; Choi, S.; Gong, C.; Cadena, Sam; Stodieck, Louis; Globus, R. K.; Ronca, A. E.

    2017-01-01

    Adult female mice were sent to the International Space Station (ISS) as part of an early life science mission utilizing NASA's Rodent Habitat. Its primary purpose was to provide further insight into the influence of a microgravity environment on various aspects of mammalian physiology and well-being as part of an ongoing program of research aimed ultimately at understanding and ameliorating the deleterious influences of space on the human body. The present study took advantage of video collected from fixed, in-flight cameras within the habitat itself, to assess behavioral adaptations observed among in-flight mice aboard the ISS and differences in behavior with respect to a control group on the ground. Data collection consisted of several behavioral measures recorded by a trained observer with the assistance of interactive behavior analysis software. Specific behavioral measures included frequencies of conspecific interactionsociability, time spent feeding and conducting hygienic behavior, and relative durations of thigmotactic behavior, which is commonly used as an index of anxiety. Data were used to test tentative hypotheses that such behaviors differ significantly across mice under microgravity versus 1g conditions, and the assumption that the novel experience of microgravity itself may represent an initially anxiogenic stimulus which an animal will eventually acclimate to, perhaps through habituation.

  15. Strategy For Implementing The UN "Zero-Gravity Instrument Project" To Promote Space Science Among School Children In Nigeria

    NASA Astrophysics Data System (ADS)

    Alabi, O.; Agbaje, G.; Akinyede, J.

    2015-12-01

    The United Nations "Zero Gravity Instrument Project" (ZGIP) is one of the activities coordinated under the Space Education Outreach Program (SEOP) of the African Regional Centre for Space Science and Technology Education in English (ARCSSTE-E) to popularize space science among pre-collegiate youths in Nigeria. The vision of ZGIP is to promote space education and research in microgravity. This paper will deliberate on the strategy used to implement the ZGIP to introduce school children to authentic scientific data and inquiry. The paper highlights how the students learned to collect scientific data in a laboratory environment, analyzed the data with specialized software, obtained results, interpreted and presented the results of their study in a standard format to the scientific community. About 100 school children, aged between 7 and 21 years, from ten public and private schools located in Osun State, Nigeria participated in the pilot phase of the ZGIP which commenced with a 1-day workshop in March 2014. During the inauguration workshop, the participants were introduced to the environment of outer space, with special emphasis on the concept of microgravity. They were also taught the basic principle of operation of the Clinostat, a Zero-Gravity Instrument donated to ARCSSTE-E by the United Nations Office for Outer Space Affairs (UN-OOSA), Vienna, under the Human Space Technology Initiative (UN-HSTI). At the end of the workshop, each school designed a project, and had a period of 1 week, on a planned time-table, to work in the laboratory of ARCSSTE-E where they utilized the clinostat to examine the germination of indigenous plant seeds in simulated microgravity conditions. The paper also documents the post-laboratory investigation activities, which included presentation of the results in a poster competition and an evaluation of the project. The enthusiasm displayed by the students, coupled with the favorable responses recorded during an oral interview conducted to assess the impact of the project on the participants indicated that this method of informal education and 'Catch them Young' approach can be used to cultivate scientific research skills among school children and motivate them to develop interest in careers in space science and technology.

  16. NBS (National Bureau of Standards): Materials measurements

    NASA Technical Reports Server (NTRS)

    Manning, J. R.

    1984-01-01

    Work in support of NASA's Microgravity Science and Applications Program is described. The results of the following three tasks are given in detail: (1) surface tensions and their variations with temperature and impurities; (2) convection during unidirectional solidification; and (3) measurement of high temperature thermophysical properties. Tasks 1 and 2 were directed toward determining how the reduced gravity obtained in space flight can affect convection and solidification processes. Emphasis in task 3 was on development of levitation and containerless processing techniques which can be applied in space flight to provide thermodynamic measurements of reactive materials.

  17. NASA + JAXA = Partners in Space

    NASA Image and Video Library

    2017-02-12

    NASA announced the continuation of the successful collaboration with the Japan Aerospace Exploration Agency (JAXA) with the recent signing of an agreement to encourage scientists from both countries to use International Space Station hardware located in both countries’ laboratories. JAXA’s Tetesuya Sakashita, the science integration manager for JAXA’s “Kibo” laboratory module, talks about plans to expand on investigations in microgravity including inviting more countries to participate in this unique orbiting laboratory. To learn more about this new program of cooperation, check out this recent article posted at NASA.gov.

  18. Materials dispersion and biodynamics project research

    NASA Technical Reports Server (NTRS)

    Lewis, Marian L.

    1992-01-01

    The Materials Dispersion and Biodynamics Project (MDBP) focuses on dispersion and mixing of various biological materials and the dynamics of cell-to-cell communication and intracellular molecular trafficking in microgravity. Research activities encompass biomedical applications, basic cell biology, biotechnology (products from cells), protein crystal development, ecological life support systems (involving algae and bacteria), drug delivery (microencapsulation), biofilm deposition by living organisms, and hardware development to support living cells on Space Station Freedom (SSF). Project goals are to expand the existing microgravity science database through experiments on sounding rockets, the Shuttle, and COMET program orbiters and to evolve,through current database acquisition and feasibility testing, to more mature and larger-scale commercial operations on SSF. Maximized utilization of SSF for these science applications will mean that service companies will have a role in providing equipment for use by a number of different customers. An example of a potential forerunner of such a service for SSF is the Materials Dispersion Apparatus (MDA) 'mini lab' of Instrumentation Technology Associates, Inc. (ITA) in use on the Shuttle for the Commercial MDAITA Experiments (CMIX) Project. The MDA wells provide the capability for a number of investigators to perform mixing and bioprocessing experiments in space. In the area of human adaptation to microgravity, a significant database has been obtained over the past three decades. Some low-g effects are similar to Earth-based disorders (anemia, osteoporosis, neuromuscular diseases, and immune system disorders). As new information targets potential profit-making processes, services and products from microgravity, commercial space ventures are expected to expand accordingly. Cooperative CCDS research in the above mentioned areas is essential for maturing SSF biotechnology and to ensure U.S. leadership in space technology. Currently, the MDBP conducts collaborative research with investigators at the Rockefeller University, National Cancer Institute, and the Universities of California, Arizona, and Alabama in Birmingham. The growing database from these collaborations provides fundamental information applicable to development of cell products, manipulation of immune cell response, bone cell growth and mineralization, and other processes altered by low-gravity. Contacts with biotechnology and biopharmaceutical companies are being increased to reach uninformed potential SSF users, provide access through the CMDS to interested users for feasibility studies, and to continue active involvement of current participants. We encourage and actively seek participation of private sector companies, and university and government researchers interested in biopharmaceuticals, hardware development and fundamental research in microgravity.

  19. First International Microgravity Laboratory

    NASA Technical Reports Server (NTRS)

    Mcmahan, Tracy; Shea, Charlotte; Wiginton, Margaret; Neal, Valerie; Gately, Michele; Hunt, Lila; Graben, Jean; Tiderman, Julie; Accardi, Denise

    1990-01-01

    This colorful booklet presents capsule information on every aspect of the International Microgravity Laboratory (IML). As part of Spacelab, IML is divided into Life Science Experiments and Materials Science Experiments. Because the life and materials sciences use different Spacelab resources, they are logically paired on the IML missions. Life science investigations generally require significant crew involvement, and crew members often participate as test subjects or operators. Materials missions capitalize on these complementary experiments. International cooperation consists in participation by the European Space Agency, Canada, France, Germany, and Japan who are all partners in developing hardware and experiments of IML missions. IML experiments are crucial to future space ventures, like the development of Space Station Freedom, the establishment of lunar colonies, and the exploration of other planets. Principal investigators are identified for each experiment.

  20. The 1990-1991 NASA space biology accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1993-01-01

    This report consists of individual technical summaries of research projects of NASA's Space Biology Program, for research conducted during the period May 1990 through May 1991. This program includes both plant and animal research, and is dedicated to understanding the role of gravity and other environmental factors on biological systems and to using the microgravity of the space environment as a tool to advance fundamental scientific knowledge in the biological sciences to improve the quality of life on Earth and contribute to NASA's goal of manned exploration of space. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  1. Blunt trauma and operative care in microgravity: a review of microgravity physiology and surgical investigations with implications for critical care and operative treatment in space.

    PubMed

    Kirkpatrick, A W; Campbell, M R; Novinkov, O L; Goncharov, I B; Kovachevich, I V

    1997-05-01

    The assembly of the International Space Station in a low earth orbit will soon become a reality. The National Aeronautics and Space Administration envisions inhabited lunar bases and staffed missions to Mars in the future. Increasing numbers of astronauts, construction of high-mass structures, increased extra-vehicular activity, and prolonged if not prohibitive medical evacuation times to earth underscore the need to address requirements for trauma care in nonterrestrial environments. A search was carried out to review the relevant literature in the MEDLINE and SPACELINE databases. All related Technical, Corporate, and Flight Test Reports in the KRUG Life Sciences corporate library were also reviewed. Bibliographies of all articles were then reviewed from these papers to identify additional pertinent literature. Senior Russian investigators reviewed the Russian literature and translated Russian publications when appropriate. Personal communication and discussion with active microgravity investigators and ongoing microgravity research supplemented published reports. A large volume of data exist to document the multiple detrimental physiologic effects of microgravity exposure on human physiology. Organs systems such as cardiovascular, neurohumoral, immune, hematopoetic, and musculoskeletal systems may be particularly affected. These physiologic changes suggest an impaired ability to withstand major systemic trauma. Observational data also suggest adverse changes in numerous aspects of response to wounding and injury, and in areas such as the behavior of hemorrhage, microbiologic flora, and wound healing. In addition to an increased volume of ongoing and anticipated basic science research in microgravity physiology, preliminary studies of clinical diagnosis and therapy have been carried out in microgravity and microgravity laboratories. The feasibility of a wide range of ancillary critical care techniques has been verified in the parabolic flight model of microgravity. Although Russian investigators first performed laparotomies on rabbits in parabolic flight in 1967, only recently have American investigators demonstrated the reproducible feasibility of open and endoscopic surgical procedures under general anesthetic in animal models in a microgravity environment. With appropriate instrumentation and personnel, the majority of resuscitative and surgical interventions required to stabilize a severely injured astronaut are feasible in a microgravity environment. Onboard limitations in mass, volume, and power that are ever present in any spacecraft design will limit the realistic capabilities of the medical system. Standard proved and tested trauma and operative management protocols will constitute the basis for extra-terrestrial care. Surgeons should familiarize themselves with the microgravity environment and remain active in planning trauma care for the continued exploration of space.

  2. Analysis of Microgravity Experiments Conducted on the Apollo Spacecraft

    NASA Technical Reports Server (NTRS)

    Sharpe, R. J.; Wright, M. D.

    2009-01-01

    This Technical Memorandum (TM) discusses the microgravity experiments carried out during the later missions of the Apollo program. Microgravity experiments took place during the Apollo 14, 16, and 17 missions and consisted of four experiments in various materials processing concentrations with two of the four experiments taking place over the course of two missions. Experiments consist of composite casting, electrophoresis, heat flow and convection, and liquid transfer. This TM discusses the background, the workup, execution, and results of each experiment. In addition, the historical significance of each experiment to future applications/NASA programs is discussed.

  3. Beyond Our Boundaries: Research and Technology

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Topics considered include: Propulsion and Fluid Management; Structures and Dynamics; Materials and Manufacturing Processes; Sensor Technology; Software Technology; Optical Systems; Microgravity Science; Earth System Science; Astrophysics; Solar Physics; and Technology Transfer.

  4. BASS II

    NASA Image and Video Library

    2014-02-14

    ISS038-E-047576 (14 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  5. BASS II

    NASA Image and Video Library

    2014-02-14

    ISS038-E-047582 (14 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  6. Mastracchio during BASS II Setup

    NASA Image and Video Library

    2014-02-12

    ISS038-E-046381 (12 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  7. Hopkins during BASS II Setup

    NASA Image and Video Library

    2014-02-12

    ISS038-E-046393 (12 Feb. 2014) --- NASA astronaut Mike Hopkins, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  8. Mastracchio works with BASS-II

    NASA Image and Video Library

    2014-02-18

    ISS038-E-053250 (18 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  9. Mastracchio during BASS II Setup

    NASA Image and Video Library

    2014-02-12

    ISS038-E-046387 (12 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  10. Hopkins during BASS II Setup

    NASA Image and Video Library

    2014-02-12

    ISS038-E-046394 (12 Feb. 2014) --- NASA astronaut Mike Hopkins, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  11. Mastracchio works with BASS-II

    NASA Image and Video Library

    2014-02-18

    ISS038-E-053251 (18 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  12. Mastracchio during BASS II Setup

    NASA Image and Video Library

    2014-02-12

    ISS038-E-046391 (12 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  13. Microgravity

    NASA Image and Video Library

    1999-04-01

    The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. This image shows the overview for the EDSE in the Microgravity Development Lab (MDL).

  14. Microgravity

    NASA Image and Video Library

    1999-04-01

    The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. Video and power rack for the EDSE in the Microgravity Development Lab (MDL).

  15. Microgravity

    NASA Image and Video Library

    1999-04-01

    The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. Dendrite irritator control for the EDSE in the Microgravity Development Lab (MDL).

  16. STS-107 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; Reckhart, Timothy

    2005-01-01

    This summary report presents the results of the processed acceleration data measured aboard the Columbia orbiter during the STS-107 microgravity mission from January 16 to February 1, 2003. Two accelerometer systems were used to measure the acceleration levels due to vehicle and science operations activities that took place during the 16-day mission. Due to lack of precise timeline information regarding some payload's operations, not all of the activities were analyzed for this report. However, a general characterization of the microgravity environment of the Columbia Space Shuttle during the 16-day mission is presented followed by a more specific characterization of the environment for some designated payloads during their operations. Some specific quasi-steady and vibratory microgravity environment characterization analyses were performed for the following payloads: Structure of Flame Balls at Low Lewis-number-2, Laminar Soot Processes-2, Mechanics of Granular Materials-3 and Water Mist Fire-Suppression Experiment. The Physical Science Division of the National Aeronautics and Space Administration sponsors the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System for Free Flyer to support microgravity science experiments, which require microgravity acceleration measurements. On January 16, 2003, both the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System for Free Flyer accelerometer systems were launched on the Columbia Space Transportation System-107 from the Kennedy Space Center. The Orbital Acceleration Research Experiment supported science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System for Free Flyer unit supported experiments requiring vibratory acceleration measurement. The Columbia reduced gravity environment analysis presented in this report uses acceleration data collected by these two sets of accelerometer systems: The Orbital Acceleration Research Experiment is a low frequency sensor, which measures acceleration up to 1 Hz, but the 1 Hz acceleration data is trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to other locations for characterizing the quasi-steady environment for payloads and the vehicle. The Space Acceleration Measurement System for Free Flyer measures vibratory acceleration in the range of 0.01 to 200 Hz at multiple measurement locations. The vibratory acceleration data measured by this system is used to assess the local vibratory environment for payloads as well as to measure the disturbance causes by the vehicle systems, crew exercise devices and payloads operation disturbances. This summary report presents analysis of selected quasi-steady and vibratory activities measured by these two accelerometers during the Columbia 16-day microgravity mission from January 16 to February 1, 2003.

  17. Space Commercial Opportunities for Fluid Physics and Transport Phenomena Applications

    NASA Technical Reports Server (NTRS)

    Gavert, R.

    2000-01-01

    Microgravity research at NASA has been an undertaking that has included both science and commercial approaches since the late 80s and early 90s. The Fluid Physics and Transport Phenomena community has been developed, through NASA's science grants, into a valuable base of expertise in microgravity science. This was achieved through both ground and flight scientific research. Commercial microgravity research has been primarily promoted thorough NASA sponsored Centers for Space Commercialization which develop cost sharing partnerships with industry. As an example, the Center for Advanced Microgravity Materials Processing (CAMMP)at Northeastern University has been working with cost sharing industry partners in developing Zeolites and zeo-type materials as an efficient storage medium for hydrogen fuel. Greater commercial interest is emerging. The U.S. Congress has passed the Commercial Space Act of 1998 to encourage the development of a commercial space industry in the United States. The Act has provisions for the commercialization of the International Space Station (ISS). Increased efforts have been made by NASA to enable industrial ventures on-board the ISS. A Web site has been established at http://commercial/nasa/gov which includes two important special announcements. One is an open request for entrepreneurial offers related to the commercial development and use of the ISS. The second is a price structure and schedule for U.S. resources and accommodations. The purpose of the presentation is to make the Fluid Physics and Transport Phenomena community, which understands the importance of microgravity experimentation, aware of important aspects of ISS commercial development. It is a desire that this awareness will be translated into a recognition of Fluid Physics and Transport Phenomena application opportunities coordinated through the broad contacts of this community with industry.

  18. Planning Experiments for a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.

    1998-01-01

    Prior to performing science experiments in a microgravity environment, scientists must understand and appreciate a variety of issues related to that environment. The microgravity conditions required for optimum performance of the experiment will help define an appropriate carrier, drop facility, sounding rocket, free-flyer, or manned orbiting spacecraft. Within a given carrier, such as the International Space Station, experiment sensitivity to vibrations and quasi-steady accelerations should also influence the location and orientation of the experiment apparatus; the flight attitude of the carrier (if selectable); and the scheduling of experiment operations in conjunction with other activities. If acceptable microgravity conditions are not expected from available carriers or experiment scheduling cannot avoid disruptive activities, then a vibration isolation system should be considered. In order to best interpret the experimental results, appropriate accelerometer data must be collected contemporaneously with the experimental data. All of this requires a good understanding of experiment sensitivity to the microgravity environment.

  19. Dropping In a Microgravity Environment (DIME) contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Here, students from Sycamore High School in Cincinnati, Ohio, help a NASA technician prepare their experiment. This image is from a digital still camera; higher resolution is not available.

  20. Dropping In a Microgravity Environment (DIME) Contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Pictured are students from COSI Academy, Columbus, Ohio and their teacher. The other team was from Sycamore High School in Cincinnati, Ohio. This image is from a digital still camera; higher resolution is not available.

  1. Dropping In a Microgravity Environment (DIME) contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Here, students are briefed by NASA engineer Daniel Dietrich at the top of the drop tower. This image is from a digital still camera; higher resolution is not available.

  2. Dropping In a Microgravity Environment (DIME) Contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Meredith Mendenhall of Sycamore High School, Cincinnati, Ohio, flips on a tape recorder in preparation for a drop. This image is from a digital still camera; higher resolution is not available.

  3. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Pictured are students from COSI Academy, Columbus, Ohio and their teacher. The other team was from Sycamore High School in Cincinnati, Ohio. This image is from a digital still camera; higher resolution is not available.

  4. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. This is the interior of the Sycamore High School (Cincinnati, Ohio) students' experiment to observe the flame spreading on a 100 percent cotton T-shirt under low-g. This image is from a digital still camera; higher resolution is not available.

  5. A Survey of Active Vibration Isolation Systems for Microgravity Applications

    NASA Technical Reports Server (NTRS)

    Grodsinsky, Carlos M.; Whorton, Mark S.

    2000-01-01

    In view of the utility of space vehicles as orbiting science laboratories, the need for vibration isolation systems for acceleration sensitive experiments has gained increasing visibility. To date, three active microgravity vibration isolation systems have successfully been demonstrated in flight. This paper provides a tutorial discussion of the microgravity vibration isolation problem including a description of the acceleration environment of the International Space Station and attenuation requirements as well as a comparison of the dynamics of passive isolation, active rack-level isolation, and active payload-level isolation. This paper also surveys the flight test results of the three demonstrated systems: Suppression of Transient Accelerations By Levitation (STABLE); the Microgravity Vibration Isolation Mount (MIM); and the Active Rack Isolation System (ARIS).

  6. Through Microgravity and Towards the Stars: Microgravity and Strategic Research at Marshall's Biological and Physical Space Research Laboratory

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2003-01-01

    The Microgravity and Strategic research at Marshall s Biological and Physical Space Research Laboratory will be reviewed. The environment in orbit provides a unique opportunity to study Materials Science and Biotechnology in the absence of sedimentation and convection. There are a number of peer-selected investigations that have been selected to fly on the Space Station that have been conceived and are led by Marshall s Biological and Physical Research Laboratory s scientists. In addition to Microgravity research the Station will enable research in "Strategic" Research Areas that focus on enabling humans to live, work, and explore the solar system safely. New research in Radiation Protection, Strategic Molecular Biology, and In-Space Fabrication will be introduced.

  7. Dropping In a Microgravity Environment (DIME) Contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Students from Sycamore High School in Cincinnati, Ohio (girls), and the COSI Academy, Columbus, Ohio (boys), participated. This image is from a digital still camera; higher resolution is not available.

  8. Microgravity Combustion Research: 1999 Program and Results

    NASA Technical Reports Server (NTRS)

    Friedman, Robert (Editor); Gokoglu, Suleyman A. (Editor); Urban, David L. (Editor)

    1999-01-01

    The use of the microgravity environment of space to expand scientific knowledge and to enable the commercial development of space for enhancing the quality of life on Earth is particularly suitable to the field of combustion. This document reviews the current status of microgravity combustion research and derived information. It is the fourth in a series of timely surveys, all published as NASA Technical Memoranda, and it covers largely the period from 1995 to early 1999. The scope of the review covers three program areas: fundamental studies, applications to fire safety and other fields. and general measurements and diagnostics. The document also describes the opportunities for Principal Investigator participation through the NASA Research Announcement program and the NASA Glenn Research Center low-gravity facilities available to researchers.

  9. A New Direction for NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be included to explain the changing concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program. Finally, the paper will address the initial utilization schedule and strategy for the various materials science payloads including their corresponding hardware.

  10. Tissue grown in space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Final samples from Mir and Earth appeared histologically cartilaginous throughout their entire cross sections (5-8 mm thick), with the exception of fibrous outer capsules. Constructs grown on Earth (A) appeared to have a more organized extracellular matrix with more uniform collagen orientation as compared with constructs grown on Mir (B), but the average collagen fiber diameter was similar in the two groups (22 +- 2 nm) and comparable to that previously reported for developing articular cartilage. Randomly oriented collagen in Mir samples would be consistent with previous reports that microgravity disrupts fibrillogenesis. These are transmission electron micrographs of constructs from Mir (A) and Earth (B) groups at magnifications of x3,500 and x120,000 (Inset). The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Credit: Proceedings of the National Academy of Sciences.

  11. Tissue grown in space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens of cartilage tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Constructs grown on Mir (A) tended to become more spherical, whereas those grown on Earth (B) maintained their initial disc shape. These findings might be related to differences in cultivation conditions, i.e., videotapes showed that constructs floated freely in microgravity but settled and collided with the rotating vessel wall at 1g (Earth's gravity). In particular, on Mir the constructs were exposed to uniform shear and mass transfer at all surfaces such that the tissue grew equally in all directions, whereas on Earth the settling of discoid constructs tended to align their flat circular areas perpendicular to the direction of motion, increasing shear and mass transfer circumferentially such that the tissue grew preferentially in the radial direction. A and B are full cross sections of constructs from Mir and Earth groups shown at 10-power. C and D are representative areas at the construct surfaces enlarged to 200-power. They are stained red with safranin-O. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Photo credit: Proceedings of the National Academy of Sciences.

  12. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Marshall Porterfield, Life and Physical Sciences Division Director at NASA Headquarters, talks about the human body in microgravity and other life sciences at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  13. The German/Russian MIR 1997 Mission: An Overview

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TP4 includes short reports concerning: (1) Life Science Experiments During the German-Russian Mir '97 Mission; (2) Orthostatic Intolerance Following Microgravity: A Role for Autonomic Dysfunction; (3) Heart Rate Variability and Skin Blood Flow in Man During Orthostatic Stress in Weightlessness; (4) Effects of Microgravity and Lower Body Negative Pressure on Circulatory Drives from Excercising Calf Muscles; (5) The Mir Station in Its Second Decade: Crew Science Operation During Mir '97; (6) Metabolic WARD (Water, Sodium, Calcium, and Bone Metabolism) and Endocrinological Experiments During the Mir '97 Mission; (7) Long-term Monitoring of the Spine-geometry During the Mir '97 Mission: Introduction of a New Method; and (8) Effects of 20 days of Microgravity (German/Russian Mir '97 Mission) on the Mechanical and Electromyographic Characteristics of Explosive Efforts of the Lower Limbs and of Cycloergometric Exercises of Mild to Sprint-Like Intensity.

  14. Preparation for microgravity: The role of the microgravity materials science laboratory

    NASA Technical Reports Server (NTRS)

    Johnston, J. Christopher; Rosenthal, Bruce N.; Meyer, Maryjo B.; Glasgow, Thomas K.

    1988-01-01

    A laboratory dedicated to ground based materials processing in preparation for space flight was established at the NASA Lewis Research Center. Experiments are performed to delineate the effects of gravity on processes of both scientific and commercial interest. Processes are modeled physically and mathematically. Transport model systems are used where possible to visually track convection, settling, crystal growth, phase separation, agglomeration, vapor transport, diffusive flow, and polymers reactions. The laboratory contains apparatus which functionally duplicates apparatus available for flight experiments and other pieces instrumented specifically to allow process characterization. Materials addressed include metals, alloys, salts, glasses, ceramics, and polymers. The Microgravity Materials Science Laboratory is staffed by engineers and technicians from a variety of disciplines and is open to users from industry and academia as well as the government. Examples will be given of the laboratory apparatus typical experiments and results.

  15. The BioDyn facility on ISS: Advancing biomaterial production in microgravity for commercial applications

    NASA Astrophysics Data System (ADS)

    Myers, Niki; Wessling, Francis; Deuser, Mark; Anderson, C. D.; Lewis, Marian

    1999-01-01

    The primary goals of the BioDyn program are to foster use of the microgravity environment for commercial production of bio-materials from cells, and to develop services and processes for obtaining these materials through space processing. The scope of products includes commercial bio-molecules such as cytokines, other cell growth regulatory proteins, hormones, monoclonal antibodies and enzymes; transplantable cells or tissues which can be improved by low-G processes, or which cannot be obtained through standard processes in earth gravity; agriculture biotechnology products from plant cells; microencapsulation for diabetes treatment; and factors regulating cellular aging. To facilitate BioDyn's commercial science driven goals, hardware designed for ISS incorporates the flexibility for interchange between the different ISS facilities including the glovebox, various thermal units and centrifuges. By providing a permanent research facility, ISS is the critical space-based platform required by scientists for carrying out the long-term experiments necessary for developing bio-molecules and tissues using several cell culture modalities including suspension and anchorage-dependent cell types.

  16. Spacelab

    NASA Image and Video Library

    1992-01-22

    This is the Space Shuttle Orbiter Discovery, STS-42 mission, with the First International Microgravity Laboratory (IML-1) module shown in the cargo bay. IML-1, the first in a series of Shuttle flights, was dedicated to study the fundamental materials and life sciences in the microgravity environment inside Spacelab, a laboratory carried aloft by the Shuttle. The mission explored how life forms adapt to weightlessness and investigated how materials behave when processed in space. The IML program gave a team of scientists from around the world access to a unique environment, one that is free from most of Earth's gravity. The 14-nation European Space Agency (ESA), the Canadian Space Agency (SCA), the French National Center for Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DARA/DLR), and the National Space Development Agency of Japan (NASDA) participated in developing hardware and experiments for the IML missions. The missions were managed by NASA's Marshall Space Flight Center. The Orbiter Discovery was launched on January 22, 1992 for the IML-1 mission.

  17. Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Computer-generated drawing shows the relative scale and working space for the Microgravity Science Glovebox (MSG) being developed by NASA and the European Space Agency for science experiments aboard the International Space Station (ISS). The person at the glovebox repesents a 95th percentile American male. The MSG will be deployed first to the Destiny laboratory module and later will be moved to ESA's Columbus Attached Payload Module. Each module will be filled with International Standard Payload Racks (green) attached to standoff fittings (yellow) that hold the racks in position. Destiny is six racks in length. The MSG is being developed by the European Space Agency and NASA to provide a large working volume for hands-on experiments aboard the International Space Station. Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall)

  18. MOBI and FEANICS Programming in Labview

    NASA Technical Reports Server (NTRS)

    Rios, Jeffrey N.

    2004-01-01

    The flight software engineering branch provides design and development of embedded real-time software applications for flight and supporting ground systems to support the NASA Aeronautics and Space Programs. In addition, this branch evaluates, develops and implements new technologies for embedded real-time systems, and maintains a laboratory for applications of embedded technology. This branch supports other divisions and is involved with many other projects. My mentor Rochelle and I are involved in the Fluids and Combustion Facility (FCF) project, the MOBI project, and the FEANICS project. The Fluids and Combustion Facility (FCF) will occupy two powered racks on the International Space Station (ISS). It will be a permanent modular, multiuser facility to accommodate microgravity science experiments onboard the ISS's U.S. Laboratory Module. FCF will support NASA Human Exploration and Development of Space program objectives requiring sustained, systematic research in the disciplines of fluid physics and combustion science. The fluids experiment is called FIR and the combustion experiment is called CIR. The MOBI Experiment is an experiment that is performed to understand the physics of bubble segregation and resuspension in an inertia, monodisperse gas-liquid suspension, and to understand how bubble pressure resists segregation in suspensions with continuous phase inertia. The main focus of FEANICS and the solid combustion experiments will be to conduct basic and applied scientific investigations in fire-safety to support NASA's Bioastronautics Initiative. Based on data obtained in microgravity and experience gained from the beginning of the U.S. manned space program, these normal gravity flammability assessments have been assumed to be conservative with respect to flammability in all environments. However, some of the complex interactions that govern ignition and flame growth can only be evaluated in the long durations of microgravity available on the ISS. Before any of these projects actually go to the ISS, they are going to be tested on NASA's KC-135 Low-G airplane, the KC-135 Low-G Flight Research aircraft (a predecessor of the Boeing 707) is used to fly parabolas to create 20-25 seconds of weightlessness so that the astronauts can experience and researchers can investigate the effects of zero gravity. My mentor and I have been working with Labview to write the programs that are going to acquire, analyze and present the data acquired from these Test flights on the KC-135. We have been working closely with electrical, and mechanical engineers to make sure the program and the hardware can communicate and perform the operations necessary for the flight test. LabVIEW delivers a powerful graphical development environment for signal acquisition, measurement analysis, and data presentation, giving you the flexibility of a programming language without the complexity of traditional development tools. The programming of the control panel and the code are both done in GUIs which allow for flexibility in the code and the program.

  19. Time-dependent computational studies of flames in microgravity

    NASA Technical Reports Server (NTRS)

    Oran, Elaine S.; Kailasanath, K.

    1989-01-01

    The research performed at the Center for Reactive Flow and Dynamical Systems in the Laboratory for Computational Physics and Fluid Dynamics, at the Naval Research Laboratory, in support of the NASA Microgravity Science and Applications Program is described. The primary focus was on investigating fundamental questions concerning the propagation and extinction of premixed flames in Earth gravity and in microgravity environments. The approach was to use detailed time-dependent, multispecies, numerical models as tools to simulate flames in different gravity environments. The models include a detailed chemical kinetics mechanism consisting of elementary reactions among the eight reactive species involved in hydrogen combustion, coupled to algorithms for convection, thermal conduction, viscosity, molecular and thermal diffusion, and external forces. The external force, gravity, can be put in any direction relative to flame propagation and can have a range of values. A combination of one-dimensional and two-dimensional simulations was used to investigate the effects of curvature and dilution on ignition and propagation of flames, to help resolve fundamental questions on the existence of flammability limits when there are no external losses or buoyancy forces in the system, to understand the mechanism leading to cellular instability, and to study the effects of gravity on the transition to cellular structure. A flame in a microgravity environment can be extinguished without external losses, and the mechanism leading to cellular structure is not preferential diffusion but a thermo-diffusive instability. The simulations have also lead to a better understanding of the interactions between buoyancy forces and the processes leading to thermo-diffusive instability.

  20. Industrialization of Space: Microgravity Based Opportunities for Material and Life Science

    NASA Technical Reports Server (NTRS)

    Cozmuta, Ioana; Harper, Lynn D.; Rasky, Daniel J.; MacDonald, Alexander; Pittman, Robert

    2015-01-01

    Microgravity based commercial opportunities are broad, with applications ranging from fiber optics, device-grade semiconductor crystals, space beads, new materials, cell micro encapsulation, 3D tissues and cell cultures, genetic and molecular changes of immune suppression, protein and virus crystal growth, perfume and hair care. To date, primarily the knowledge gained from observing and understanding new end states of systems unraveled in microgravity has been translated into unique technologies and business opportunities on Earth. In some instances existing light qualified hardware is immediately available for commercial RD for small scale in-space manufacturing. Overall products manufactured in microgravity have key properties usually surpassing the best terrestrial counterparts. The talk will address the potential benefits of microgravity research for a variety of terrestrial markets. Our findings originate from discussions with 100+ non-aerospace private companies among the high-tech Silicon Valley ecosystem, show that the opportunities and benefits of using the ISS are largely not considered by experts, primarily due to a lack of awareness of the breadth of terrestrial applications that have been enabled or enhanced by microgravity RD. Based on this dialogue, the concept of microgravity verticals is developed to translate the benefits of the microgravity environment into blue ocean business opportunities for various key US commercial sectors.

Top